-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtransformation.py
37 lines (34 loc) · 1.25 KB
/
transformation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from albumentations import (
Compose, OneOf, Normalize, Resize, RandomResizedCrop, RandomCrop, HorizontalFlip, VerticalFlip,
RandomBrightness, RandomContrast, RandomBrightnessContrast, Rotate, ShiftScaleRotate, Cutout,
IAAAdditiveGaussianNoise, Transpose, Blur
)
from albumentations.pytorch import ToTensorV2
from config import CFG
# transformations
def get_transforms(*, data):
# train: tensor([0.5137, 0.4916, 0.4835]) tensor([0.2398, 0.2337, 0.2372])
# valid: tensor([2.3340e-04, 1.5935e-04, 1.1684e-05], tensor[0.0039, 0.0039, 0.0039])
if data == 'train':
return Compose([
Resize(CFG.size, CFG.size),
HorizontalFlip(p=0.5),
# Transpose(p=0.5),
# VerticalFlip(p=0.5),
# ShiftScaleRotate(p=0.5),
RandomCrop(height=CFG.size, width=CFG.size, p=0.5),
Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
ToTensorV2(),
])
elif data == 'valid':
return Compose([
Resize(CFG.size, CFG.size),
Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
ToTensorV2(),
])