- Table of contents
- Introduction
- Running the pipeline
- Main arguments
- Generic arguments
- Reference genomes
- Adapter trimming
- Alignments
- Skipping QC steps
- Job resources
- AWS Batch specific parameters
- Other command line parameters
Nextflow handles job submissions on SLURM or other environments, and supervises running the jobs. Thus the Nextflow process must run until the pipeline is finished. We recommend that you put the process running in the background through screen
/ tmux
or similar tool. Alternatively you can run nextflow within a cluster job submitted your job scheduler.
It is recommended to limit the Nextflow Java virtual machines memory. We recommend adding the following line to your environment (typically in ~/.bashrc
or ~./bash_profile
):
NXF_OPTS='-Xms1g -Xmx4g'
The typical command for running the pipeline is as follows:
nextflow run nf-core/mnaseseq --input design.csv --genome GRCh37 -profile docker
This will launch the pipeline with the docker
configuration profile. See below for more information about profiles.
Note that the pipeline will create the following files in your working directory:
work # Directory containing the nextflow working files
results # Finished results (configurable, see below)
.nextflow_log # Log file from Nextflow
# Other nextflow hidden files, eg. history of pipeline runs and old logs.
When you run the above command, Nextflow automatically pulls the pipeline code from GitHub and stores it as a cached version. When running the pipeline after this, it will always use the cached version if available - even if the pipeline has been updated since. To make sure that you're running the latest version of the pipeline, make sure that you regularly update the cached version of the pipeline:
nextflow pull nf-core/mnaseseq
It's a good idea to specify a pipeline version when running the pipeline on your data. This ensures that a specific version of the pipeline code and software are used when you run your pipeline. If you keep using the same tag, you'll be running the same version of the pipeline, even if there have been changes to the code since.
First, go to the nf-core/mnaseseq releases page and find the latest version number - numeric only (eg. 1.3.1
). Then specify this when running the pipeline with -r
(one hyphen) - eg. -r 1.3.1
.
This version number will be logged in reports when you run the pipeline, so that you'll know what you used when you look back in the future.
Use this parameter to choose a configuration profile. Profiles can give configuration presets for different compute environments.
Several generic profiles are bundled with the pipeline which instruct the pipeline to use software packaged using different methods (Docker, Singularity, Conda) - see below.
We highly recommend the use of Docker or Singularity containers for full pipeline reproducibility, however when this is not possible, Conda is also supported.
The pipeline also dynamically loads configurations from https://github.com/nf-core/configs when it runs, making multiple config profiles for various institutional clusters available at run time. For more information and to see if your system is available in these configs please see the nf-core/configs documentation.
Note that multiple profiles can be loaded, for example: -profile test,docker
- the order of arguments is important!
They are loaded in sequence, so later profiles can overwrite earlier profiles.
If -profile
is not specified, the pipeline will run locally and expect all software to be installed and available on the PATH
. This is not recommended.
docker
- A generic configuration profile to be used with Docker
- Pulls software from dockerhub:
nfcore/mnaseseq
singularity
- A generic configuration profile to be used with Singularity
- Pulls software from DockerHub:
nfcore/mnaseseq
conda
test
- A profile with a complete configuration for automated testing
- Includes links to test data so needs no other parameters
You will need to create a design file with information about the samples in your experiment before running the pipeline. Use this parameter to specify its location. It has to be a comma-separated file with 4 columns, and a header row as shown in the examples below.
--input '[path to design file]'
The group
identifier is the same when you have multiple replicates from the same experimental group, just increment the replicate
identifier appropriately. The first replicate value for any given experimental group must be 1. Below is an example for a single experimental group in triplicate:
group,replicate,fastq_1,fastq_2
control,1,AEG588A1_S1_L002_R1_001.fastq.gz,AEG588A1_S1_L002_R2_001.fastq.gz
control,2,AEG588A2_S2_L002_R1_001.fastq.gz,AEG588A2_S2_L002_R2_001.fastq.gz
control,3,AEG588A3_S3_L002_R1_001.fastq.gz,AEG588A3_S3_L002_R2_001.fastq.gz
The group
and replicate
identifiers are the same when you have re-sequenced the same sample more than once (e.g. to increase sequencing depth). The pipeline will perform the alignments in parallel, and subsequently merge them before further analysis. Below is an example for two samples sequenced across multiple lanes:
group,replicate,fastq_1,fastq_2
control,1,AEG588A1_S1_L002_R1_001.fastq.gz,AEG588A1_S1_L002_R2_001.fastq.gz
control,1,AEG588A1_S1_L003_R1_001.fastq.gz,AEG588A1_S1_L003_R2_001.fastq.gz
treatment,1,AEG588A4_S4_L003_R1_001.fastq.gz,AEG588A4_S4_L003_R2_001.fastq.gz
treatment,1,AEG588A4_S4_L004_R1_001.fastq.gz,AEG588A4_S4_L004_R2_001.fastq.gz
A final design file may look something like the one below. This is for two experimental groups in triplicate, where the last replicate of the treatment
group has been sequenced twice.
group,replicate,fastq_1,fastq_2
control,1,AEG588A1_S1_L002_R1_001.fastq.gz,AEG588A1_S1_L002_R2_001.fastq.gz
control,2,AEG588A2_S2_L002_R1_001.fastq.gz,AEG588A2_S2_L002_R2_001.fastq.gz
control,3,AEG588A3_S3_L002_R1_001.fastq.gz,AEG588A3_S3_L002_R2_001.fastq.gz
treatment,1,AEG588A4_S4_L003_R1_001.fastq.gz,AEG588A4_S4_L003_R2_001.fastq.gz
treatment,2,AEG588A5_S5_L003_R1_001.fastq.gz,AEG588A5_S5_L003_R2_001.fastq.gz
treatment,3,AEG588A6_S6_L003_R1_001.fastq.gz,AEG588A6_S6_L003_R2_001.fastq.gz
treatment,3,AEG588A6_S6_L004_R1_001.fastq.gz,AEG588A6_S6_L004_R2_001.fastq.gz
Column | Description |
---|---|
group |
Group identifier for sample. This will be identical for replicate samples from the same experimental group. |
replicate |
Integer representing replicate number. Must start from 1..<number of replicates> . |
fastq_1 |
Full path to FastQ file for read 1. File has to be zipped and have the extension ".fastq.gz" or ".fq.gz". |
fastq_2 |
Full path to FastQ file for read 2. File has to be zipped and have the extension ".fastq.gz" or ".fq.gz". |
Example design files have been provided with the pipeline for paired-end and single-end data.
By default, the pipeline expects paired-end data. If you have single-end data, specify --single_end
on the command line when you launch the pipeline.
It is not possible to run a mixture of single-end and paired-end files in one run.
Sequencing center information that will be added to read groups in BAM files.
Number of base pairs to extend single-end reads when creating bigWig files (Default: 150
).
Number of genomic bins to use when generating the deepTools fingerprint plot. Larger numbers will give a smoother profile, but take longer to run (Default: 500000
).
The pipeline config files come bundled with paths to the illumina iGenomes reference index files. If running with docker or AWS, the configuration is set up to use the AWS-iGenomes resource.
There are 31 different species supported in the iGenomes references. To run the pipeline, you must specify which to use with the --genome
flag.
You can find the keys to specify the genomes in the iGenomes config file. Common genomes that are supported are:
- Human
--genome GRCh37
- Mouse
--genome GRCm38
- Drosophila
--genome BDGP6
- S. cerevisiae
--genome 'R64-1-1'
There are numerous others - check the config file for more.
Note that you can use the same configuration setup to save sets of reference files for your own use, even if they are not part of the iGenomes resource. See the Nextflow documentation for instructions on where to save such a file.
The syntax for this reference configuration is as follows:
params {
genomes {
'GRCh37' {
fasta = '<path to the genome fasta file>' // Used if no star index given
}
// Any number of additional genomes, key is used with --genome
}
}
Full path to fasta file containing reference genome (mandatory if --genome
is not specified). If you don't have a BWA index available this will be generated for you automatically. Combine with --save_reference
to save BWA index for future runs.
--fasta '[path to FASTA reference]'
The full path to GTF file for annotating peaks (mandatory if --genome
is not specified). Note that the GTF file should resemble the Ensembl format.
--gtf '[path to GTF file]'
Full path to an existing BWA index for your reference genome including the base name for the index.
--bwa_index '[directory containing BWA index]/genome.fa'
The full path to BED file for genome-wide gene intervals. This will be created from the GTF file if not specified.
--gene_bed '[path to gene BED file]'
The full path to BED file for genome-wide transcription start sites. This will be created from the gene BED file if not specified.
--tss_bed '[path to tss BED file]'
If provided, alignments that overlap with the regions in this file will be filtered out (see ENCODE blacklists). The file should be in BED format. Blacklisted regions for GRCh37, GRCh38, GRCm38, hg19, hg38, mm10 are bundled with the pipeline in the blacklists
directory, and as such will be automatically used if any of those genomes are specified with the --genome
parameter.
--blacklist '[path to blacklisted regions]'
If the BWA index is generated by the pipeline use this parameter to save it to your results folder. These can then be used for future pipeline runs, reducing processing times.
Do not load igenomes.config
when running the pipeline. You may choose this option if you observe clashes between custom parameters and those supplied in igenomes.config
.
The pipeline accepts a number of parameters to change how the trimming is done, according to your data type. You can specify custom trimming parameters as follows:
--clip_r1 [int]
- Instructs Trim Galore to remove [int] bp from the 5' end of read 1 (for single-end reads).
--clip_r2 [int]
- Instructs Trim Galore to remove [int] bp from the 5' end of read 2 (paired-end reads only).
--three_prime_clip_r1 [int]
- Instructs Trim Galore to remove [int] bp from the 3' end of read 1 AFTER adapter/quality trimming has been
--three_prime_clip_r2 [int]
- Instructs Trim Galore to remove [int] bp from the 3' end of read 2 AFTER adapter/quality trimming has been performed.
--trim_nextseq [int]
- This enables the option Cutadapt
--nextseq-trim=3'CUTOFF
option via Trim Galore, which will set a quality cutoff (that is normally given with -q instead), but qualities of G bases are ignored. This trimming is in common for the NextSeq- and NovaSeq-platforms, where basecalls without any signal are called as high-quality G bases.
- This enables the option Cutadapt
Skip the adapter trimming step. Use this if your input FastQ files have already been trimmed outside of the workflow or if you're very confident that there is no adapter contamination in your data.
By default, trimmed FastQ files will not be saved to the results directory. Specify this flag (or set to true in your config file) to copy these files to the results directory when complete.
Maximum number of mismatches in alignment. Derived from XM tag in BAM file.
Default: 4
Minimum insert size for filtering of mono-nucleosome paired-end reads.
Default: 100
Maximum insert size for filtering of mono-nucleosome paired-end reads.
Default: 200
Duplicate reads are not filtered from alignments.
Reads mapping to multiple locations in the genome are not filtered from alignments.
An additional series of steps are performed by the pipeline by merging the replicates from the same experimental group. This is primarily to increase the sequencing depth in order to perform downstream analyses such as footprinting. Specifying this parameter means that these steps will not be performed.
By default, intermediate BAM files will not be saved. The final BAM files created after the appropriate filtering step are always saved to limit storage usage. Set to true to also save other intermediate BAM files.
The pipeline contains a large number of quality control steps. Sometimes, it may not be desirable to run all of them if time and compute resources are limited. The following options make this easy:
Step | Description |
---|---|
--skip_fastqc |
Skip FastQC |
--skip_picard_metrics |
Skip Picard CollectMultipleMetrics |
--skip_preseq |
Skip Preseq |
--skip_plot_profile |
Skip deepTools plotProfile |
--skip_plot_fingerprint |
Skip deepTools plotFingerprint |
--skip_danpos |
Skip DANPOS2 |
--skip_igv |
Skip IGV |
--skip_multiqc |
Skip MultiQC |
Each step in the pipeline has a default set of requirements for number of CPUs, memory and time. For most of the steps in the pipeline, if the job exits with an error code of 143
(exceeded requested resources) it will automatically resubmit with higher requests (2 x original, then 3 x original). If it still fails after three times then the pipeline is stopped.
Wherever process-specific requirements are set in the pipeline, the default value can be changed by creating a custom config file. See the files hosted at nf-core/configs
for examples.
If you are likely to be running nf-core
pipelines regularly it may be a good idea to request that your custom config file is uploaded to the nf-core/configs
git repository. Before you do this please can you test that the config file works with your pipeline of choice using the -c
parameter (see definition below). You can then create a pull request to the nf-core/configs
repository with the addition of your config file, associated documentation file (see examples in nf-core/configs/docs
), and amending nfcore_custom.config
to include your custom profile.
If you have any questions or issues please send us a message on Slack.
Running the pipeline on AWS Batch requires a couple of specific parameters to be set according to your AWS Batch configuration. Please use -profile awsbatch
and then specify all of the following parameters.
The JobQueue that you intend to use on AWS Batch.
The AWS region in which to run your job. Default is set to eu-west-1
but can be adjusted to your needs.
The AWS CLI path in your custom AMI. Default: /home/ec2-user/miniconda/bin/aws
.
Please make sure to also set the -w/--work-dir
and --outdir
parameters to a S3 storage bucket of your choice - you'll get an error message notifying you if you didn't.
The output directory where the results will be saved.
Set this parameter to your e-mail address to get a summary e-mail with details of the run sent to you when the workflow exits. If set in your user config file (~/.nextflow/config
) then you don't need to specify this on the command line for every run.
This works exactly as with --email
, except emails are only sent if the workflow is not successful.
Threshold size for MultiQC report to be attached in notification email. If file generated by pipeline exceeds the threshold, it will not be attached (Default: 25MB).
Name for the pipeline run. If not specified, Nextflow will automatically generate a random mnemonic.
This is used in the MultiQC report (if not default) and in the summary HTML / e-mail (always).
NB: Single hyphen (core Nextflow option)
Specify this when restarting a pipeline. Nextflow will used cached results from any pipeline steps where the inputs are the same, continuing from where it got to previously.
You can also supply a run name to resume a specific run: -resume [run-name]
. Use the nextflow log
command to show previous run names.
NB: Single hyphen (core Nextflow option)
Specify the path to a specific config file (this is a core NextFlow command).
NB: Single hyphen (core Nextflow option)
Note - you can use this to override pipeline defaults.
Provide git commit id for custom Institutional configs hosted at nf-core/configs
. This was implemented for reproducibility purposes. Default: master
.
## Download and use config file with following git commid id
--custom_config_version d52db660777c4bf36546ddb188ec530c3ada1b96
If you're running offline, nextflow will not be able to fetch the institutional config files
from the internet. If you don't need them, then this is not a problem. If you do need them,
you should download the files from the repo and tell nextflow where to find them with the
custom_config_base
option. For example:
## Download and unzip the config files
cd /path/to/my/configs
wget https://github.com/nf-core/configs/archive/master.zip
unzip master.zip
## Run the pipeline
cd /path/to/my/data
nextflow run /path/to/pipeline/ --custom_config_base /path/to/my/configs/configs-master/
Note that the nf-core/tools helper package has a
download
command to download all required pipeline files + singularity containers + institutional configs in one go for you, to make this process easier.
Use to set a top-limit for the default memory requirement for each process.
Should be a string in the format integer-unit. eg. --max_memory '8.GB'
Use to set a top-limit for the default time requirement for each process.
Should be a string in the format integer-unit. eg. --max_time '2.h'
Use to set a top-limit for the default CPU requirement for each process.
Should be a string in the format integer-unit. eg. --max_cpus 1
Set to receive plain-text e-mails instead of HTML formatted.
Set to disable colourful command line output and live life in monochrome.
Specify a path to a custom MultiQC configuration file.