forked from FunAudioLLM/SenseVoice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export_meta.py
78 lines (64 loc) · 2.72 KB
/
export_meta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import types
import torch
from funasr.utils.torch_function import sequence_mask
def export_rebuild_model(model, **kwargs):
model.device = kwargs.get("device")
model.make_pad_mask = sequence_mask(kwargs["max_seq_len"], flip=False)
model.forward = types.MethodType(export_forward, model)
model.export_dummy_inputs = types.MethodType(export_dummy_inputs, model)
model.export_input_names = types.MethodType(export_input_names, model)
model.export_output_names = types.MethodType(export_output_names, model)
model.export_dynamic_axes = types.MethodType(export_dynamic_axes, model)
model.export_name = types.MethodType(export_name, model)
return model
def export_forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
language: torch.Tensor,
textnorm: torch.Tensor,
**kwargs,
):
# speech = speech.to(device="cuda")
# speech_lengths = speech_lengths.to(device="cuda")
language_query = self.embed(language.to(speech.device)).unsqueeze(1)
textnorm_query = self.embed(textnorm.to(speech.device)).unsqueeze(1)
print(textnorm_query.shape, speech.shape)
speech = torch.cat((textnorm_query, speech), dim=1)
speech_lengths += 1
event_emo_query = self.embed(torch.LongTensor([[1, 2]]).to(speech.device)).repeat(
speech.size(0), 1, 1
)
input_query = torch.cat((language_query, event_emo_query), dim=1)
speech = torch.cat((input_query, speech), dim=1)
speech_lengths += 3
encoder_out, encoder_out_lens = self.encoder(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
ctc_logits = self.ctc.ctc_lo(encoder_out)
return ctc_logits, encoder_out_lens
def export_dummy_inputs(self):
speech = torch.randn(2, 30, 560)
speech_lengths = torch.tensor([6, 30], dtype=torch.int32)
language = torch.tensor([0, 0], dtype=torch.int32)
textnorm = torch.tensor([15, 15], dtype=torch.int32)
return (speech, speech_lengths, language, textnorm)
def export_input_names(self):
return ["speech", "speech_lengths", "language", "textnorm"]
def export_output_names(self):
return ["ctc_logits", "encoder_out_lens"]
def export_dynamic_axes(self):
return {
"speech": {0: "batch_size", 1: "feats_length"},
"speech_lengths": {0: "batch_size"},
"language": {0: "batch_size"},
"textnorm": {0: "batch_size"},
"ctc_logits": {0: "batch_size", 1: "logits_length"},
"encoder_out_lens": {0: "batch_size"},
}
def export_name(self):
return "model.onnx"