diff --git a/tests/models_core/test_magic_wand.py b/tests/models_core/test_magic_wand.py index a24618ec09a4a..f4f4831f4f1da 100644 --- a/tests/models_core/test_magic_wand.py +++ b/tests/models_core/test_magic_wand.py @@ -3,9 +3,11 @@ As a result, in this test, we just confirm that the top selected tokens of the sparse models are in the top N selections of same model running dense. -Run `pytest tests/models/test_compressed.py`. +Run `pytest tests/models_core/test_magic_wand.py`. """ +import gc + import pytest from tests.models.utils import check_logprobs_close @@ -47,6 +49,7 @@ def test_magic_wand( dense_outputs = dense_model.generate_greedy_logprobs( example_prompts, max_tokens, num_logprobs) del dense_model + gc.collect() sparse_model = vllm_runner( model_name=model_name,