-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_model.py
53 lines (44 loc) · 1.74 KB
/
test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from flatland.envs.agent_utils import RailAgentStatus
from flatland.evaluators.client import FlatlandRemoteClient
import numpy as np
import time
import yaml
import ray
import gym
from ray.rllib.utils import merge_dicts
from ray.rllib.agents.dqn import ApexTrainer
from ray.rllib.agents import dqn
from envs.flatland.observations.custom_graph_obs import CustomGraphObservation, Features
from utils.loader import load_models
import os
from envs.flatland.utils.gym_env_wrappers import available_actions
load_models(os.getcwd())
class FlatlandMinimalWrapper(gym.Env):
def __init__(self, env):
self.action_space = gym.spaces.Discrete(4)
self.observation_space = gym.spaces.Dict({
'obs': gym.spaces.Box(low=-1, high=np.inf, shape=(len(Features._fields),)),
'available_actions': gym.spaces.Box(low=0, high=1, shape=(self.action_space.n,), dtype=np.int32)
})
self._env = None
def step(self, action):
return self._env.step(action)
def reset(self):
return self._env.reset()
with open("apex_s_bigger_obs.yaml") as f:
experiments = yaml.safe_load(f)
ray.init(configure_logging=False)
config = dqn.apex.APEX_DEFAULT_CONFIG.copy()
experiment_name = list(experiments.keys())[0]
merged = merge_dicts(config, experiments[experiment_name]['config'])
merged["num_workers"] = 2
merged["num_envs_per_worker"] = 1
merged['exploration_config']['initial_epsilon'] = 0
merged['exploration_config']['final_epsilon'] = 0
if "use_pytorch" in experiments and experiments["use_pytorch"] == True:
merged["framework"] = "torch"
del merged["use_pytorch"]
agent = ApexTrainer(merged, FlatlandMinimalWrapper)
agent.restore("checkpoints/checkpoint_80/checkpoint-80")
obs = [0,0,0,0,0,0]
agent.compute_action(obs)