diff --git a/tutorials/frontend/from_coreml.py b/tutorials/frontend/from_coreml.py new file mode 100644 index 000000000000..a79e21921068 --- /dev/null +++ b/tutorials/frontend/from_coreml.py @@ -0,0 +1,101 @@ +""" +Compile CoreML Models +===================== +**Author**: `Joshua Z. Zhang `_, \ + `Kazutaka Morita `_ + +This article is an introductory tutorial to deploy CoreML models with Relay. + +For us to begin with, coremltools module is required to be installed. + +A quick solution is to install via pip + +.. code-block:: bash + + pip install -U coremltools --user + +or please refer to official site +https://github.com/apple/coremltools +""" +import tvm +import tvm.relay as relay +import coremltools as cm +import numpy as np +from PIL import Image + +def download(url, path, overwrite=False): + import os + if os.path.isfile(path) and not overwrite: + print('File {} existed, skip.'.format(path)) + return + print('Downloading from url {} to {}'.format(url, path)) + try: + import urllib.request + urllib.request.urlretrieve(url, path) + except: + import urllib + urllib.urlretrieve(url, path) + +###################################################################### +# Load pretrained CoreML model +# ---------------------------- +# We will download and load a pretrained mobilenet classification network +# provided by apple in this example +model_url = 'https://docs-assets.developer.apple.com/coreml/models/MobileNet.mlmodel' +model_file = 'mobilenet.mlmodel' +download(model_url, model_file) +# Now you have mobilenet.mlmodel on disk +mlmodel = cm.models.MLModel(model_file) + +###################################################################### +# Load a test image +# ------------------ +# A single cat dominates the examples! +img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true' +download(img_url, 'cat.png') +img = Image.open('cat.png').resize((224, 224)) +x = np.transpose(img, (2, 0, 1))[np.newaxis, :] + +###################################################################### +# Compile the model on Relay +# --------------------------- +# We should be familiar with the process right now. +target = 'cuda' +shape_dict = {'image': x.shape} + +# Parse CoreML model and convert into Relay computation graph +func, params = relay.frontend.from_coreml(mlmodel, shape_dict) + +with relay.build_config(opt_level=3): + graph, lib, params = relay.build(func, target, params=params) + +###################################################################### +# Execute on TVM +# ------------------- +# The process is no different from other example +from tvm.contrib import graph_runtime +ctx = tvm.gpu(0) +dtype = 'float32' +m = graph_runtime.create(graph, lib, ctx) +# set inputs +m.set_input('image', tvm.nd.array(x.astype(dtype))) +m.set_input(**params) +# execute +m.run() +# get outputs +tvm_output = m.get_output(0) +top1 = np.argmax(tvm_output.asnumpy()[0]) + +##################################################################### +# Look up synset name +# ------------------- +# Look up prediction top 1 index in 1000 class synset. +synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/', + '4d0b62f3d01426887599d4f7ede23ee5/raw/', + '596b27d23537e5a1b5751d2b0481ef172f58b539/', + 'imagenet1000_clsid_to_human.txt']) +synset_name = 'synset.txt' +download(synset_url, synset_name) +with open(synset_name) as f: + synset = eval(f.read()) +print('Top-1 id', top1, 'class name', synset[top1])