-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
0072-edit-distance.cpp
77 lines (68 loc) · 2.31 KB
/
0072-edit-distance.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/*
Given 2 strings, return minimum number of operations to convert word1 to word2
Naive: check all possible edit sequences & choose shortest one
Optimal: DP, if chars at i & j same, no operations needed, else 3 cases:
(1) replace (i - 1, j - 1), (2) delete (i - 1, j), (3) insert (i, j - 1)
Time: O(m x n)
Space: O(m x n)
*/
class Solution {
public:
int minDistance(string word1, string word2) {
if (word1.empty() && word2.empty()) {
return 0;
}
if (word1.empty() || word2.empty()) {
return 1;
}
int m = word1.size();
int n = word2.size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
// base cases (convert to empty string w/ deletions), dist is just length
for (int i = 1; i <= m; i++) {
dp[i][0] = i;
}
for (int j = 1; j <= n; j++) {
dp[0][j] = j;
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (word1[i - 1] == word2[j - 1]) {
// no operation needed, same char
dp[i][j] = dp[i - 1][j - 1];
} else {
// min(replace, delete, insert) + 1 <-- since an op was needed
dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1;
}
}
}
return dp[m][n];
}
};
// Since we only need at most dp[i - 1][j - 1], can space optimize to O(n)
// class Solution {
// public:
// int minDistance(string word1, string word2) {
// int m = word1.size();
// int n = word2.size();
// int prev = 0;
// vector<int> curr(n + 1);
// for (int j = 1; j <= n; j++) {
// curr[j] = j;
// }
// for (int i = 1; i <= m; i++) {
// prev = curr[0];
// curr[0] = i;
// for (int j = 1; j <= n; j++) {
// int temp = curr[j];
// if (word1[i - 1] == word2[j - 1]) {
// curr[j] = prev;
// } else {
// curr[j] = min(prev, min(curr[j - 1], curr[j])) + 1;
// }
// prev = temp;
// }
// }
// return curr[n];
// }
// };