-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocal-functions.R
354 lines (254 loc) · 7.4 KB
/
local-functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
##
##
##
# ## TODO:
# # * constant values?
# # * not enough values to fit a curve? dice() -> nls() | optim() -> coef()
# # * are exponential fits reasonable?
# # * lm(log(y) ~ x)
# # * ... group over larger collections of profiles
#
# fitDecayFunction <- function(z, p0, p) {
#
# # solve for p
# # res <- p0 * exp(-(z/p))
#
# return(res)
#
# }
# wt. mean component level property
# i: map unit / component records, split by mukey
wtMeanProperty <- function(i, v) {
# filter misc. areas
.keep <- which(i$compkind != 'Miscellaneous area' & !is.na(i$comppct_r))
i <- i[.keep, ]
if(nrow(i) < 1) {
return(NULL)
}
# wt. mean
.wm <- weighted.mean(x = i[[v]], w = i$comppct_r, na.rm = TRUE)
# assemble results
.res <- data.frame(
mukey = i$mukey[1],
.v = .wm
)
# fix names
names(.res)[2] <- v
return(.res)
}
# dominant component within a single map unit
# i: map unit / component records, split by mukey
dominantComponent <- function(i) {
# filter misc. areas
.keep <- which(i$compkind != 'Miscellaneous area' & !is.na(i$comppct_r))
i <- i[.keep, ]
if(nrow(i) < 1) {
return(NULL)
}
# largest component
idx <- order(i$comppct_r, decreasing = TRUE)[1]
return(i[idx, ])
}
# dominant condition by map unit key
dominantCondition <- function(i, v) {
# filter misc. areas
.keep <- which(i$compkind != 'Miscellaneous area' & !is.na(i$comppct_r))
i <- i[.keep, ]
if(nrow(i) < 1) {
return(NULL)
}
# sum component percent by 'v'
fm <- as.formula(sprintf("comppct_r ~ %s", v))
a <- aggregate(fm, data = i, FUN = sum, na.rm = TRUE)
# most frequent
idx <- order(a[['comppct_r']], decreasing = TRUE)[1]
# retain most frequent class and associated IDs
res <- data.frame(
mukey = i$mukey[1],
source = i$source[1],
v = a[[v]][idx],
pct = a[['comppct_r']][idx]
)
# fix names
names(res) <- c('mukey', 'source', v, 'pct')
return(res)
}
# dominant value by map unit key, with associated component percent
dominantValue <- function(i, v) {
i <- i[which(i$compkind != 'Miscellaneous area'), ]
if(nrow(i) < 1) {
return(NULL)
}
idx <- order(i[['comppct_r']], decreasing = TRUE)[1]
res <- data.frame(
mukey = i$mukey[1],
v = i[[v]][idx],
pct = i[['comppct_r']][idx]
)
names(res) <- c('mukey', v, 'pct')
return(res)
}
## not currently using this
#' @title Build a soil parameter list from SSURGO/RSS component data.
#'
#' @param s a `SoilProfileCollection` object
#' @param id
#' @param template
#'
#' @return list
#' @export
#'
#' @examples
buildParameterList <- function(s, template = NULL) {
# create a bare-bones parameter list
if(is.null(template)) {
p <- list()
} else {
# start with the template
p <- template
}
##
## Estimation of parameters via aggregation
##
## TODO: decide on what to do with organic horizons, which could be missing data
# remove organic horizons
s <- subsetHz(s, ! grepl('O', hzDesgn(s)))
# soil depth
.soildepth <- estimateSoilDepth(s)
# aggregate over entire soil depth, or specific depth interval
a <- suppressMessages(
slab(s, fm = ~ sandtotal_r + silttotal_r + claytotal_r, slab.structure = c(0, .soildepth), strict = FALSE, slab.fun = mean, na.rm = TRUE)
)
# long -> wide
a.wide <- reshape2::dcast(a, top + bottom ~ variable, value.var = 'value')
# extract SSC
.clay <- a.wide$claytotal_r
.sand <- a.wide$sandtotal_r
.silt <- a.wide$silttotal_r
# truncate at 100%
if(.sand + .silt + .clay > 100) {
.silt <- 100 - (.sand + .clay)
}
## convert Ksat units um/s --> m/d
#
# 1e-6 m / um
# 60*60*24 = 86400 s / d
#
# um/s * 1e-6 m/um / (1/86400 s/d) --> m/d
# um/s * 0.0864 ---------------------> m/d
s$ksat_r <- s$ksat_r * 0.0864
# Ksat of first mineral horizon
# m/d
.ksat0 <- s[, , .FIRST]$ksat_r
## Ksat decay parameter
# dice(s, ~ ksat_r, SPC = FALSE)
## edit every possible component of the parameter file
## using our best interpretation of the SSURGO/RSS component data
## soil depth
# convert cm -> m
p$soil_depth <- .soildepth * 0.01
## soil depth used by heat flux model
# set to soil depth
# convert cm -> m
p$deltaZ <- .soildepth * 0.01
## Saturated hydraulic conductivity at surface (meters / day)
# using first mineral horizon
p$Ksat_0 <- .ksat0
## Ksat decay function parameter
p$m
## sand, silt, clay
# convert percent -> fraction
p$sand <- .sand * 0.01
p$silt <- .silt * 0.01
p$clay <- .clay * 0.01
# done
return(p)
}
# convert a soil parameter file to named list of values
soilParameterFileToList <- function(f) {
# load as 2 column data.frame
s <- read.table(f)
# assign names, swap order
names(s) <- c('value', 'parameter')
s <- s[, c('parameter', 'value')]
# convert to named vector -> list
p <- s$value
names(p) <- s$parameter
p <- as.list(p)
return(p)
}
# map soil parameters to SSURGO-derivatives
#
# https://github.com/RHESSys/RHESSys/wiki/Parameter-Definition-Files#soil-definition-file-parameters
toParameterNames <- function(i) {
list(
# ID is the map unit key
patch_default_ID = i$mukey,
# wt. mean over soil horizons, derived from SSURGO
sand = i$sandtotal_r,
silt = i$silttotal_r,
clay = i$claytotal_r,
# soil depth, to contact if present, otherwise bottom depth of component
soil_depth = i$soil.depth,
# via lm(log(x) ~ hz mid point)
# model often unsuitable, or does not converge (n too small, constant values)
# Ksat_0 = i$ksat_0,
# porosity_0 = i$por_0,
# estimated by wt. geometric mean over component to contact
Ksat_0 = i$ksat_r,
# estimated by wt. mean over component to contact
porosity_0 = i$wsatiated_r,
# constants
m = 0.12,
psi_max = 0.01,
## TODO: what are these supposed to mean / how can we estimate?
psi_air_entry = 0.218000,
pore_size_index = 0.204000,
# all other parameters are defaults
N_decay = 0.120000,
P3 = 0.000000,
active_zone_z = 10.0000,
albedo = 0.280000,
deltaZ = 1.0000000,
detention_store_size = 0.000000,
m_z = 0.400000,
max_heat_capacity = 0.000000,
min_heat_capacity = 0.000000,
maximum_snow_energy_deficit = -10.000000,
snow_light_ext_coef = 10000.000000,
snow_melt_Tcoef = 0.050000,
snow_water_capacity = 0.000000,
theta_psi_curve = 1,
sat_to_gw_coeff = 1.000000,
NO3_adsorption_rate = 0.000000,
theta_mean_std_p1 = 0.000000,
theta_mean_std_p2 = 0.000000,
gl_c = 0.006200,
gsurf_slope = 0.010000,
gsurf_intercept = 0.001000,
p4 = -1.500000,
DOM_decay_rate = 0.050000,
NH4_adsorption_rate = 0.000005,
DON_production_rate = 0.030000,
DOC_adsorption_rate = 0.000023,
DON_adsorption_rate = 0.000001,
interval_size = 0.001000
)
}
# write named list to soil definition file
writeSoilDefinitionFile <- function(p, f = '') {
# names for iteration
nm <- names(p)
# file length depends on the number of parameters
textLines <- vector(mode = 'character', length = length(p))
for(i in seq_along(p)) {
# current key-value pair
.v <- p[[i]]
.n <- nm[i]
# encode with single-space delimiter
# [value] [label]
textLines[i] <- sprintf("%s %s", .v, .n)
}
# write to file
cat(textLines, sep = '\n', file = f)
}