-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp021.py
42 lines (36 loc) · 1.51 KB
/
p021.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
################################################################################
# P21: Amicable numbers #
################################################################################
# #
# Evaluate the sum of all the amicable numbers under 10000. #
# #
################################################################################
# Problem found at projecteuler.net #
# Author: ncfgrill #
################################################################################
from math import ceil, sqrt
def find_factors_sum(num):
factors = {1}
for f1 in range(2, ceil(sqrt(num)) + 1):
if num % f1 == 0:
f2 = num // f1
factors.add(f1)
factors.add(f2)
return sum(factors)
def find_amicable():
n, f_sum = 2, {1:0}
while n < 10000:
f_sum[n] = find_factors_sum(n)
n += 1
amicable, s = set(), 0
for n1 in range(2, 10000):
if n1 in amicable: continue
n2 = f_sum[n1]
if n1 == n2: continue
if n2 < 10000 and n2 not in amicable:
if f_sum[n2] == n1:
amicable.add(n1)
amicable.add(n2)
s += n1 + n2
return s
print('Sum:', find_amicable())