-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathguidedpath_naa.hpp
803 lines (710 loc) · 35.3 KB
/
guidedpath_naa.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
/*===========================================================================
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===========================================================================
*
*/
#ifndef _GuidedPathNAA_
#define _GuidedPathNAA_
#include "graphdigger.hpp"
#include "glb_align.hpp"
#include "genetic_code.hpp"
#include <stack>
using namespace std;
namespace DeBruijn {
struct SBranch {
vector<int> m_sm; // best scores in previs a-row
vector<int> m_gapb; // best score with b-gap
Node m_node; // last node
int m_na;
int m_maxscore;
int m_maxposa;
int m_maxposb;
int m_jmin; // b-interval evaluated using prevous row results
int m_jmax;
int m_isfork;
};
struct SBranchFS {
array<vector<int>,4> m_s; // best scores in 4 last raws
array<vector<int>,4> m_gapb; // best gaps (any length) in b (insertions in a)
Node m_node; // last node
int m_na;
int m_maxscore;
int m_maxposa;
int m_maxposb;
int m_isfork;
void Rotate() {
rotate(m_s.begin(), m_s.end()-1, m_s.end());
rotate(m_gapb.begin(), m_gapb.end()-1, m_gapb.end());
}
};
struct SPathBase {
SPathBase(char c = 0) : m_nt(c) {}
int m_fork = eNoFork; // eRightFork - base - 1 is right fork
// eLeftFork - base - (kmer-1) is left fork
char m_nt;
};
struct SPathBaseKmer : public SPathBase {
Node m_node;
};
struct SPathChunk {
SPathChunk() : m_score(numeric_limits<int>::min()), m_tlen(0), m_starting_shift(0) {}
int m_score;
int m_tlen;
int m_starting_shift;
int m_not_aligned;
vector<SPathBase> m_seq;
};
class CGuidedPathBase {
public:
virtual ~CGuidedPathBase() = default;
virtual bool ProcessNextEdge() = 0;
virtual void DeleteLastBranch() = 0;
virtual void DeleteNotAlignedForks(int starting_shift) = 0;
virtual SPathChunk GetBestPart() const = 0;
virtual SPathChunk GetLastSegment() const = 0;
virtual bool SolidKmer() = 0;
virtual int StartingShift() const = 0;
virtual int GetMaxPos() const = 0;
virtual const Node& LastStepNode() const = 0;
virtual int AssembledSeqLength() const = 0;
virtual int NotAligned() const = 0;
virtual const vector<SPathBaseKmer>& AssembledSeq() const = 0;
virtual bool PathEnd() const = 0;
virtual int Num() const = 0;
virtual int ForkCount() const = 0;
virtual int AlignedForkCount() const = 0;
protected:
virtual bool AddOneBase(const Successor& c) = 0;
};
template <class Branch>
class CGuidedPath : public CGuidedPathBase {
public:
CGuidedPath(const Node& initial_node, int initial_penalty, int initial_not_aligned, bool protect_ends, const string& target_extension, int position_on_target, GraphDigger& graph_digger,
GraphDigger& secondary_graph_digger, SMatrix& delta, int gapopen, int gapextend, int dropoff, double anchor_frac, int secondary_kmer_threshold) :
m_b(target_extension), m_position_on_target(position_on_target), m_fork_count(0), m_aligned_fork_count(0), m_path_end(false), m_num(0), m_starting_shift(0), m_initial_penalty(initial_penalty),
m_initial_not_aligned(initial_not_aligned), m_negative_limit(0), m_protect_ends(protect_ends), m_anchor_frac(anchor_frac), m_graph_digger(graph_digger), m_secondary_graph_digger(secondary_graph_digger),
m_delta(delta), m_rho(gapopen), m_sigma(gapextend), m_dropoff(dropoff), m_is_prot(false), m_initial_node(m_graph_digger.Graph().GetNodeSeq(initial_node)), m_secondary_kmer_threshold(secondary_kmer_threshold) {}
bool ProcessNextEdge() {
if(m_edges.empty())
return false;
++m_num;
if(m_path_end)
DeleteLastBranch();
m_branch.m_node = m_edges.top().m_node;
m_path_end = !AddOneBase(m_edges.top()) || (m_branch.m_maxposb == (int)m_b.size()-1);
m_edges.pop();
m_branch.m_isfork = eNoFork;
int kmer_len = m_graph_digger.Graph().KmerLen();
int remaining_len = m_b.size()-GetMaxPos()-1;
if(m_is_prot)
remaining_len *= 3;
remaining_len -= NotAligned();
int target_len = m_b.size()+m_position_on_target;
if(m_is_prot)
target_len *= 3;
target_len += kmer_len; // target size in bp
int back_step_len = target_len-(remaining_len+kmer_len-1); // 1 because we will make a 1bp step
int margin = max(100, kmer_len);
bool check_forward = (!m_protect_ends || margin < remaining_len);
bool check_backward = (!m_protect_ends || margin < back_step_len);
int fork_info;
vector<Successor> neighbors = m_graph_digger.GetReversibleNodeSuccessorsF(m_branch.m_node, &fork_info, check_forward, check_backward);
bool need_secondary = neighbors.empty();
if(neighbors.size() == 1 && (m_graph_digger.LowCount() == 1 || m_secondary_kmer_threshold > 1))
need_secondary = m_graph_digger.Graph().Abundance(neighbors.front().m_node) <= m_secondary_kmer_threshold;
int secondary_kmer_len = m_secondary_graph_digger.Graph().KmerLen();
int assembled_len = m_a.size();
if(need_secondary && secondary_kmer_len < kmer_len && NotAligned() < kmer_len && assembled_len >= kmer_len) {
string long_kmer;
if(assembled_len < kmer_len)
long_kmer = m_initial_node.substr(assembled_len);
for(int k = max(0,assembled_len-kmer_len); k < assembled_len; ++k)
long_kmer.push_back(m_a[k].m_nt);
bool good_extension = true;
deque<Node> nodes;
CReadHolder rh(false);
rh.PushBack(long_kmer);
for(CReadHolder::kmer_iterator ik = rh.kbegin(secondary_kmer_len) ; ik != rh.kend(); ++ik) // iteration from last kmer to first
nodes.push_front(m_secondary_graph_digger.Graph().GetNode(*ik));
for(int i = 0; i < (int)nodes.size()-1 && good_extension; ++i) {
int rl = remaining_len+kmer_len-secondary_kmer_len+i;
int bcl = target_len-(rl+secondary_kmer_len-1); // 1 because we will make a 1bp step
bool check_frwd = (!m_protect_ends || margin < rl);
bool check_bckwd = (!m_protect_ends || margin < bcl);
vector<Successor> nbrs = m_secondary_graph_digger.GetReversibleNodeSuccessorsF(nodes[i], nullptr, check_frwd, check_bckwd);
good_extension = false;
for(auto& nbr : nbrs) {
if(nbr.m_node == nodes[i+1]) {
good_extension = true;
break;
}
}
}
if(good_extension) {
string secondary_kmer;
if(assembled_len < secondary_kmer_len)
secondary_kmer = m_initial_node.substr(kmer_len-(secondary_kmer_len-assembled_len));
for(int k = max(0,assembled_len-secondary_kmer_len); k < assembled_len; ++k)
secondary_kmer.push_back(m_a[k].m_nt);
Node secondary_node = m_secondary_graph_digger.Graph().GetNode(secondary_kmer);
int rl = remaining_len;
int bcl = target_len-(rl+secondary_kmer_len-1); // 1 because we will make a 1bp step
bool check_frwd = (!m_protect_ends || margin < rl);
bool check_bckwd = (!m_protect_ends || margin < bcl);
vector<Successor> secondary_neighbors = m_secondary_graph_digger.GetReversibleNodeSuccessorsF(secondary_node, &fork_info, check_frwd, check_bckwd);
if(!secondary_neighbors.empty()) {
neighbors = secondary_neighbors;
if(fork_info & eLeftFork)
fork_info |= eSecondaryKmer;
for(auto& neighbor : neighbors) {
string kmer = long_kmer.substr(1);
kmer.push_back(neighbor.m_nt);
neighbor.m_node = m_graph_digger.Graph().GetNode(kmer);
}
}
}
}
if(neighbors.empty())
m_path_end = true;
else
m_branch.m_isfork |= fork_info;
if(m_path_end)
return true;
for(int i = (int)neighbors.size()-1; i >= 0; --i)
m_edges.push(neighbors[i]);
if(neighbors.size() > 1) {
int fcount = neighbors.size()-1;
m_forks.push(make_pair(m_branch, fcount));
++m_fork_count;
if(NotAligned() < kmer_len)
++m_aligned_fork_count;
}
return true;
}
void DeleteNotAlignedForks(int starting_shift) {
while(!m_forks.empty() && m_forks.top().first.m_na > starting_shift) {
int neigbors_num = m_forks.top().second;
while(neigbors_num-- > 0)
m_edges.pop();
m_forks.pop();
}
if(!m_forks.empty()) {
m_path_end = false;
m_branch = m_forks.top().first;
m_a.erase(m_a.begin()+m_branch.m_na, m_a.end());
m_starting_shift = m_branch.m_na;
if(--m_forks.top().second == 0)
m_forks.pop();
} else {
m_a.clear();
}
}
void DeleteLastBranch() {
if(m_edges.empty())
return;
if(!m_path_end) {
int neigbors_num = 1;
if(!m_forks.empty() && m_forks.top().first.m_na == m_branch.m_na) { // last base is a fork
neigbors_num += m_forks.top().second;
m_forks.pop();
}
while(neigbors_num-- > 0)
m_edges.pop();
}
if(!m_forks.empty()) {
m_path_end = false;
m_branch = m_forks.top().first;
m_a.erase(m_a.begin()+m_branch.m_na, m_a.end());
m_starting_shift = m_branch.m_na;
if(--m_forks.top().second == 0)
m_forks.pop();
} else {
m_a.clear();
}
}
SPathChunk GetBestPart() const { // whole sequence
SPathChunk rslt;
rslt.m_score = m_branch.m_maxscore;
rslt.m_tlen = m_branch.m_maxposb+1;
rslt.m_starting_shift = m_starting_shift;
rslt.m_not_aligned = 0;
if(m_branch.m_maxscore == 0)
rslt.m_not_aligned = m_initial_not_aligned;
rslt.m_seq.insert(rslt.m_seq.end(), m_a.begin(), m_a.begin()+m_branch.m_maxposa+1);
return rslt;
}
SPathChunk GetLastSegment() const { // last segment after fork
SPathChunk rslt;
rslt.m_score = m_branch.m_maxscore;
rslt.m_tlen = m_branch.m_maxposb+1;
rslt.m_starting_shift = m_starting_shift;
rslt.m_not_aligned = m_branch.m_na-1-m_branch.m_maxposa;
if(m_branch.m_maxscore == 0)
rslt.m_not_aligned += m_initial_not_aligned;
rslt.m_seq.insert(rslt.m_seq.end(), m_a.begin()+m_starting_shift, m_a.end());
return rslt;
}
bool SolidKmer() {
int kmer_len = m_graph_digger.Graph().KmerLen();
if(!m_branch.m_node.isValid() || m_branch.m_na < kmer_len || m_branch.m_na-1-m_branch.m_maxposa >= m_anchor_frac*kmer_len)
return false;
return true;
}
int StartingShift() const { return m_starting_shift; }
int GetMaxPos() const { return m_branch.m_maxposb; }
const Node& LastStepNode() const { return m_branch.m_node; }
int AssembledSeqLength() const { return m_a.size(); }
int NotAligned() const {
int not_aligned = m_branch.m_na-1-m_branch.m_maxposa;
if(m_branch.m_maxscore == 0)
not_aligned += m_initial_not_aligned;
return not_aligned;
}
const vector<SPathBaseKmer>& AssembledSeq() const { return m_a; }
bool PathEnd() const { return m_path_end; }
int Num() const { return m_num; }
int ForkCount() const { return m_fork_count; }
int AlignedForkCount() const { return m_aligned_fork_count; }
protected:
Branch m_branch;
vector<SPathBaseKmer> m_a;
string m_b;
int m_position_on_target;
stack<pair<Branch,int> > m_forks;
stack<Successor> m_edges;
int m_fork_count;
int m_aligned_fork_count;
bool m_path_end;
int m_num;
int m_starting_shift;
int m_initial_penalty;
int m_initial_not_aligned;
int m_negative_limit;
bool m_protect_ends;
double m_anchor_frac;
GraphDigger m_graph_digger;
GraphDigger m_secondary_graph_digger;
SMatrix& m_delta;
int m_rho;
int m_sigma;
int m_dropoff;
bool m_is_prot;
string m_initial_node;
int m_secondary_kmer_threshold;
};
class CGuidedPathNA : public CGuidedPath<SBranch> {
public:
CGuidedPathNA(const Node& initial_node, int initial_penalty, int initial_not_aligned, bool protect_ends, const string& target_extension, int position_on_target, GraphDigger& graph_digger, GraphDigger& secondary_graph_digger, SMatrix& delta,
int gapopen, int gapextend, int dropoff, double anchor_frac, int secondary_kmer_threshold) :
CGuidedPath(initial_node, initial_penalty, initial_not_aligned, protect_ends, target_extension, position_on_target, graph_digger, secondary_graph_digger, delta, gapopen, gapextend, dropoff, anchor_frac, secondary_kmer_threshold) {
int kmer_len = m_graph_digger.Graph().KmerLen();
m_negative_limit = min(m_delta.matrix['A']['C']*kmer_len, -m_rho-m_sigma*kmer_len);
int bignegative = numeric_limits<int>::min()/2;
int nb = m_b.size();
m_branch.m_sm.resize(nb+1,bignegative);
m_branch.m_gapb.resize(nb+1,bignegative);
m_branch.m_jmin = 0;
m_branch.m_jmax = nb-1;
m_branch.m_sm[0] = 0;
m_branch.m_sm[1] = -m_rho-m_sigma; // scores for --------------
for(int i = 2; i <= nb && m_branch.m_sm[i-1]-m_sigma > -2*m_dropoff; ++i) { // BBBBBBBBBBBBBB
m_branch.m_sm[i] = m_branch.m_sm[i-1]-m_sigma;
m_branch.m_jmax = min(nb-1,i);
}
m_branch.m_maxscore = 0;
m_branch.m_maxposa = -1;
m_branch.m_maxposb = -1;
m_branch.m_na = 0;
m_branch.m_node = initial_node;
m_branch.m_isfork = eNoFork;
if(m_branch.m_node.isValid()) {
int remaining_len = m_b.size();
int back_step_len = m_position_on_target+1; // 1 because we will make a 1bp step
int margin = max(100, kmer_len);
bool check_forward = (!m_protect_ends || margin < remaining_len);
bool check_backward = (!m_protect_ends || margin < back_step_len);
int fork_info;
vector<Successor> neighbors = m_graph_digger.GetReversibleNodeSuccessorsF(m_branch.m_node, &fork_info, check_forward, check_backward);
if(!neighbors.empty())
m_branch.m_isfork |= fork_info;
for(auto& neighbor : neighbors)
m_edges.push(neighbor);
if(neighbors.size() > 1) {
int fcount = neighbors.size()-1;
m_forks.push(make_pair(m_branch, fcount));
++m_fork_count;
++m_aligned_fork_count;
}
}
m_path_end = m_edges.empty();
}
private:
bool AddOneBase(const Successor& c) {
m_a.emplace_back();
m_a.back().m_node = c.m_node;
m_a.back().m_nt = c.m_nt;
m_a.back().m_fork = m_branch.m_isfork;
++m_branch.m_na;
return UpdateScore();
}
bool UpdateScore() {
int bignegative = numeric_limits<int>::min()/2;
int nb = m_b.size();
int rs = m_rho+m_sigma;
int next_jmax = -1;
int next_jmin = nb;
vector<int> s(nb+1,bignegative); // best scores in current a-raw
if(-m_rho-m_branch.m_na*m_sigma > m_branch.m_maxscore-2*m_dropoff) {
next_jmin = 0;
s[0] = -m_rho-m_branch.m_na*m_sigma; // score for AAAAAAAAAAA
} // -----------
int gapa = bignegative;
int ai = m_a[m_branch.m_na-1].m_nt;
const char* matrix = (m_delta.matrix)[ai];
int* sp = &s[m_branch.m_jmin];
int smax = *sp;
for(int j = m_branch.m_jmin; j <= m_branch.m_jmax; ) { // here j is 'real' position in b
int ss = m_branch.m_sm[j]+matrix[(int)m_b[j]];
gapa -= m_sigma;
if(*sp-rs > gapa)
gapa = *sp-rs;
int& gapbj = m_branch.m_gapb[++j]; // here j is one-shifted to account for extra element in vectors (nb+1)
gapbj -= m_sigma;
if(m_branch.m_sm[j]-rs > gapbj)
gapbj = m_branch.m_sm[j]-rs;
if(gapa > gapbj) {
if(ss >= gapa) {
*(++sp) = ss;
if(ss-m_initial_penalty > m_branch.m_maxscore) {
m_branch.m_maxscore = ss-m_initial_penalty;
m_branch.m_maxposa = m_branch.m_na-1;
m_branch.m_maxposb = j-1;
}
} else {
*(++sp) = gapa;
}
} else {
if(ss >= gapbj) {
*(++sp) = ss;
if(ss-m_initial_penalty > m_branch.m_maxscore) {
m_branch.m_maxscore = ss-m_initial_penalty;
m_branch.m_maxposa = m_branch.m_na-1;
m_branch.m_maxposb = j-1;
}
} else {
*(++sp) = gapbj;
}
}
if(*sp > m_branch.m_maxscore-2*m_dropoff) {
next_jmin = min(next_jmin, j-1);
next_jmax = min(nb-1,j);
}
smax = max(smax, *sp);
}
swap(m_branch.m_sm,s);
// jmin never decreases
m_branch.m_jmin = next_jmin;
//right may decrease
for(int l = next_jmax+1; l <= m_branch.m_jmax; ++l) {
m_branch.m_gapb[l+1] = bignegative;
m_branch.m_sm[l+1] = bignegative;
}
m_branch.m_jmax = next_jmax;
return smax-m_initial_penalty >= m_branch.m_maxscore-m_dropoff && m_branch.m_jmax >= m_branch.m_jmin && smax-m_initial_penalty > m_negative_limit;
}
};
class CGuidedPathAA : public CGuidedPath<SBranch> {
public:
CGuidedPathAA(const Node& initial_node, int initial_penalty, int initial_not_aligned, bool protect_ends, const string& target_extension, int position_on_target, GraphDigger& graph_digger, GraphDigger& secondary_graph_digger, SMatrix& delta,
int gapopen, int gapextend, int dropoff, double anchor_frac, const GeneticCode& genetic_code, bool forward, int secondary_kmer_threshold) :
CGuidedPath(initial_node, initial_penalty, initial_not_aligned, protect_ends, target_extension, position_on_target, graph_digger, secondary_graph_digger, delta, gapopen, gapextend, dropoff, anchor_frac, secondary_kmer_threshold),
m_genetic_code(genetic_code), m_forward(forward) {
m_is_prot = true;
int kmer_len = m_graph_digger.Graph().KmerLen();
char min_element = numeric_limits<char>::max();
for(int i = 0; i < 256; ++i) {
for(int j = 0; j < i; ++j)
min_element = min(min_element, m_delta.matrix[i][j]);
}
m_negative_limit = min(min_element*kmer_len, -m_rho-m_sigma*kmer_len);
int bignegative = numeric_limits<int>::min()/2;
int nb = m_b.size();
m_branch.m_jmin = 0;
m_branch.m_jmax = nb-1;
m_branch.m_sm.resize(nb+1,bignegative);
m_branch.m_gapb.resize(nb+1,bignegative);
// scores for --------------
// BBBBBBBBBBBBBB
m_branch.m_sm[0] = 0;
m_branch.m_sm[1] = -m_rho-m_sigma;
for(int i = 2; i <= nb; ++i)
m_branch.m_sm[i] = m_branch.m_sm[i-1]-m_sigma;
m_branch.m_maxscore = 0;
m_branch.m_maxposa = -1;
m_branch.m_maxposb = -1;
m_branch.m_na = 0;
m_branch.m_node = initial_node;
m_branch.m_isfork = eNoFork;
if(m_branch.m_node.isValid()) {
int remaining_len = 3*m_b.size();
int back_step_len = 3*m_position_on_target+1; // 1 because we will make a 1bp step
int margin = max(100, kmer_len);
bool check_forward = (!m_protect_ends || margin < remaining_len);
bool check_backward = (!m_protect_ends || margin < back_step_len);
int fork_info;
vector<Successor> neighbors = m_graph_digger.GetReversibleNodeSuccessorsF(m_branch.m_node, &fork_info, check_forward, check_backward);
if(!neighbors.empty())
m_branch.m_isfork |= fork_info;
for(auto& neighbor : neighbors)
m_edges.push(neighbor);
if(neighbors.size() > 1) {
int fcount = neighbors.size()-1;
m_forks.push(make_pair(m_branch, fcount));
++m_fork_count;
++m_aligned_fork_count;
}
}
if(m_edges.empty())
m_path_end = true;
}
private:
bool AddOneBase(const Successor& c) {
m_a.emplace_back();
m_a.back().m_node = c.m_node;
m_a.back().m_nt = c.m_nt;
m_a.back().m_fork = m_branch.m_isfork;
if((++m_branch.m_na)%3)
return true;
else
return UpdateScore();
}
bool UpdateScore() {
int bignegative = numeric_limits<int>::min()/2;
int nb = m_b.size();
int rs = m_rho+m_sigma;
vector<int> s(nb+1,bignegative); // best scores in current a-raw
s[0] = -m_rho-m_branch.m_na*m_sigma; // score for AAAAAAAAAAA
// -----------
int gapa = bignegative;
string codon(3, 0);
if(m_forward) {
codon[0] = m_a[m_branch.m_na-3].m_nt;
codon[1] = m_a[m_branch.m_na-2].m_nt;
codon[2] = m_a[m_branch.m_na-1].m_nt;
} else {
codon[0] = Complement(m_a[m_branch.m_na-1].m_nt);
codon[1] = Complement(m_a[m_branch.m_na-2].m_nt);
codon[2] = Complement(m_a[m_branch.m_na-3].m_nt);
}
int ai = m_genetic_code.AA(codon);
const char* matrix = (m_delta.matrix)[ai];
int* sp = &s[0];
int smax = *sp;
for(int j = 0; j < nb; ) { // here j is 'real' position in b
int ss = m_branch.m_sm[j]+matrix[(int)m_b[j]];
if(!m_forward && j == nb-1 && toupper(m_b[j]) == 'M' && m_genetic_code.IsStart(codon))
ss = m_branch.m_sm[j]+(m_delta.matrix)[(int)'M'][(int)'M'];
gapa -= m_sigma;
if(*sp-rs > gapa)
gapa = *sp-rs;
int& gapbj = m_branch.m_gapb[++j]; // here j is one-shifted to account for extra element in vectors (nb+1)
gapbj -= m_sigma;
if(m_branch.m_sm[j]-rs > gapbj)
gapbj = m_branch.m_sm[j]-rs;
if(gapa > gapbj) {
if(ss >= gapa) {
*(++sp) = ss;
if(ss-m_initial_penalty > m_branch.m_maxscore) {
m_branch.m_maxscore = ss-m_initial_penalty;
m_branch.m_maxposa = m_branch.m_na-1;
m_branch.m_maxposb = j-1;
}
} else {
*(++sp) = gapa;
}
} else {
if(ss >= gapbj) {
*(++sp) = ss;
if(ss-m_initial_penalty > m_branch.m_maxscore) {
m_branch.m_maxscore = ss-m_initial_penalty;
m_branch.m_maxposa = m_branch.m_na-1;
m_branch.m_maxposb = j-1;
}
} else {
*(++sp) = gapbj;
}
}
smax = max(smax, *sp);
}
swap(m_branch.m_sm,s);
return smax-m_initial_penalty >= m_branch.m_maxscore-m_dropoff && smax-m_initial_penalty > m_negative_limit;
}
const GeneticCode& m_genetic_code;
bool m_forward;
};
class CGuidedPathFS : public CGuidedPath<SBranchFS> {
public:
CGuidedPathFS(const Node& initial_node, int initial_penalty, int initial_not_aligned, bool protect_ends, const string& target_extension, int position_on_target, GraphDigger& graph_digger, GraphDigger& secondary_graph_digger, SMatrix& delta,
int gapopen, int gapextend, int fsopen, int dropoff, double anchor_frac, const GeneticCode& genetic_code, bool forward, int secondary_kmer_threshold) :
CGuidedPath(initial_node, initial_penalty, initial_not_aligned, protect_ends, target_extension, position_on_target, graph_digger, secondary_graph_digger, delta, gapopen, gapextend, dropoff, anchor_frac, secondary_kmer_threshold),
m_rhofs(fsopen), m_genetic_code(genetic_code), m_forward(forward) {
m_is_prot = true;
int kmer_len = m_graph_digger.Graph().KmerLen();
char min_element = numeric_limits<char>::max();
for(int i = 0; i < 256; ++i) {
for(int j = 0; j < i; ++j)
min_element = min(min_element, m_delta.matrix[i][j]);
}
m_negative_limit = min(min_element*kmer_len, -m_rho-m_sigma*kmer_len);
int bignegative = numeric_limits<int>::min()/2;
int nb = m_b.size();
// scores for na == 0,1,2
for(int k = 0; k < 4; ++k) {
m_branch.m_s[k].resize(nb+1, bignegative);
m_branch.m_gapb[k].resize(nb+1, bignegative);
}
m_branch.m_s[3][0] = -m_initial_penalty; // nothing aligned
m_branch.m_s[3][1] = m_branch.m_s[3][0]-m_rho-m_sigma; // 3*n deletion
for(int i = 2; i <= nb; ++i) // extend 3*n deletion
m_branch.m_s[3][i] = m_branch.m_s[3][i-1]-m_sigma;
m_branch.m_s[2][0] = -m_initial_penalty-m_rhofs-m_sigma; // first a base is insertion
m_branch.m_s[2][1] = m_branch.m_s[2][0]-m_rho-m_sigma;
for(int i = 2; i <= nb; ++i)
m_branch.m_s[2][i] = m_branch.m_s[2][i-1]-m_sigma;
m_branch.m_gapb[2] = m_branch.m_s[2];
m_branch.m_s[1][0] = -m_initial_penalty-m_rhofs-m_sigma; // first two a bases is insertion
m_branch.m_s[1][1] = m_branch.m_s[1][0]-m_rho-m_sigma;
for(int i = 2; i <= nb; ++i)
m_branch.m_s[1][i] = m_branch.m_s[1][i-1]-m_sigma;
m_branch.m_gapb[1] = m_branch.m_s[1];
m_branch.m_maxscore = 0;
m_branch.m_maxposa = -1;
m_branch.m_maxposb = -1;
m_branch.m_na = 0;
m_branch.m_node = initial_node;
m_branch.m_isfork = eNoFork;
if(m_branch.m_node.isValid()) {
int remaining_len = 3*m_b.size();
int back_step_len = 3*m_position_on_target+1; // 1 because we will make a 1bp step
int margin = max(100, kmer_len);
bool check_forward = (!m_protect_ends || margin < remaining_len);
bool check_backward = (!m_protect_ends || margin < back_step_len);
int fork_info;
vector<Successor> neighbors = m_graph_digger.GetReversibleNodeSuccessorsF(m_branch.m_node, &fork_info, check_forward, check_backward);
if(!neighbors.empty())
m_branch.m_isfork |= fork_info;
for(auto& neighbor : neighbors)
m_edges.push(neighbor);
if(neighbors.size() > 1) {
int fcount = neighbors.size()-1;
m_forks.push(make_pair(m_branch, fcount));
++m_fork_count;
++m_aligned_fork_count;
}
}
if(m_edges.empty())
m_path_end = true;
}
private:
bool AddOneBase(const Successor& c) {
m_a.emplace_back();
m_a.back().m_node = c.m_node;
m_a.back().m_nt = c.m_nt;
m_a.back().m_fork = m_branch.m_isfork;
if(++m_branch.m_na < 3)
return true;
else
return UpdateScore();
}
bool UpdateScore() {
// bacause we don't need back trace and any gap extension is the same cost we may have one gap score as long as we penilize properly for the gap opening
vector<int>& s = m_branch.m_s[0]; // best scores in current a-raw
vector<int>& sm1 = m_branch.m_s[1]; // best scores in -1 a-raw
vector<int>& sm2 = m_branch.m_s[2]; // best scores in -2 a-raw
vector<int>& sm3 = m_branch.m_s[3]; // best scores in -3 a-raw
vector<int>& gapb = m_branch.m_gapb[0]; // best score with b-gap (any insertion in a) in current a-raw
vector<int>& gapbm3 = m_branch.m_gapb[3]; // best score with b-gap (any insertion in a) in -3 a-raw
int bignegative = numeric_limits<int>::min()/2;
int nb = m_b.size();
int rs = m_rho+m_sigma;
int rsfs = m_rhofs+m_sigma;
s[0] = (m_branch.m_na%3 ? -m_rhofs-m_sigma : -m_rho)-m_branch.m_na/3*m_sigma; // score for AAAAAAAAAAA
// -----------
string codon(3, 0);
if(m_forward) {
codon[0] = m_a[m_branch.m_na-3].m_nt;
codon[1] = m_a[m_branch.m_na-2].m_nt;
codon[2] = m_a[m_branch.m_na-1].m_nt;
} else {
codon[0] = Complement(m_a[m_branch.m_na-1].m_nt);
codon[1] = Complement(m_a[m_branch.m_na-2].m_nt);
codon[2] = Complement(m_a[m_branch.m_na-3].m_nt);
}
int ai = m_genetic_code.AA(codon);
const char* matrix = (m_delta.matrix)[ai];
int smax = s[0];
int gapa = bignegative; // any deletion from a
for(int j = 0; j < nb; ) {
// b[j] current aa
// any_score[j] score for previous aa
// any_score[j+1] score for current aa
int ss = sm3[j]+matrix[(int)m_b[j]]; // diagonal extension
if(!m_forward && j == nb-1 && toupper(m_b[j]) == 'M' && m_genetic_code.IsStart(codon))
ss = sm3[j]+(m_delta.matrix)[(int)'M'][(int)'M'];
gapa -= m_sigma; // gapa extension
if(s[j]-rs > gapa)
gapa = s[j]-rs; // new 3bp deletion from a
if(sm2[j]-rsfs > gapa)
gapa = sm2[j]-rsfs; // new 1bp deletion from a
if(sm1[j]-rsfs > gapa)
gapa = sm1[j]-rsfs; // new 2bp deletion from a
int& gapbj = gapb[++j]; // here j is one-shifted to account for extra element in vectors (nb+1)
gapbj = gapbm3[j]-m_sigma; // gapb extension
if(sm3[j]-rs > gapbj)
gapbj = sm3[j]-rs; // new 3bp insertion in a
if(sm1[j]-rsfs > gapbj)
gapbj = sm1[j]-rsfs; // new 1bp insertion in a
if(sm2[j]-rsfs > gapbj)
gapbj = sm2[j]-rsfs; // new 2bp insertion in a
s[j] = gapa;
if(gapbj > s[j])
s[j] = gapbj;
if(ss >= s[j]) {
s[j] = ss;
if(ss > m_branch.m_maxscore) {
m_branch.m_maxscore = ss;
m_branch.m_maxposa = m_branch.m_na-1;
m_branch.m_maxposb = j-1;
}
}
smax = max(smax, s[j]);
}
m_branch.Rotate();
return smax >= m_branch.m_maxscore-m_dropoff && smax > m_negative_limit;
}
int m_rhofs;
const GeneticCode& m_genetic_code;
bool m_forward;
};
} // namespace
#endif /* _GuidedPathNAA_ */