-
Notifications
You must be signed in to change notification settings - Fork 19
/
common_util.hpp
645 lines (566 loc) · 27.4 KB
/
common_util.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
/*===========================================================================
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===========================================================================
*
*/
#ifndef _common_util_
#define _common_util_
#include <atomic>
#include <future>
#include <thread>
#include <boost/timer/timer.hpp>
#include <cmath>
using namespace std;
namespace DeBruijn {
// Wraps around atomic<> to make it possible to use in containers
// IMPORTANT: don't concurrently create or modify containers of SAtomic!!!!!
template <typename T>
struct SAtomic {
typedef T Type;
SAtomic(T t = 0) { m_atomic.store(t); }
SAtomic(const atomic<T> &a) { m_atomic.store(a.load()); }
SAtomic(const SAtomic &other) { m_atomic.store(other.m_atomic.load()); }
SAtomic& operator=(const SAtomic &other) {
m_atomic.store(other.m_atomic.load());
return *this;
}
SAtomic& operator=(T t) {
m_atomic.store(t);
return *this;
}
bool Set(T value, T expected = 0) { return m_atomic.compare_exchange_strong(expected, value); }
operator T() const { return m_atomic.load(); }
T Load() const { return m_atomic.load(); }
atomic<T> m_atomic;
};
class CStopWatch : public boost::timer::cpu_timer {
public:
void Restart() { start(); }
string Elapsed() const { return format(); }
void Stop() { stop (); }
void Resume() { resume(); }
};
// runs ncores threads until all jobs are exhausted
void RunThreads(int ncores, list<function<void()>>& jobs) {
typedef list<future<void>> ThreadsStatus;
ThreadsStatus active_threads_status;
// int total_jobs = jobs.size();
// cerr << "Remaining " << total_jobs << " jobs from " << total_jobs << endl;
//create ncores threads
for(int i = 0; i < ncores && !jobs.empty(); ++i) {
active_threads_status.push_front(async(launch::async, jobs.front()));
jobs.pop_front();
}
//for each finished thread create a new one until done
chrono::milliseconds span (1);
while(!active_threads_status.empty()) {
for(auto iloop = active_threads_status.begin(); iloop != active_threads_status.end(); ) {
auto done = iloop++;
if(done->wait_for(span) == future_status::timeout) // not ready
continue;
done->get();
active_threads_status.erase(done);
if(!jobs.empty()) {
active_threads_status.push_front(async(launch::async, jobs.front()));
jobs.pop_front();
}
// cerr << "Remaining jobs " << jobs.size()+active_threads_status.size() << " from " << total_jobs << endl;
}
}
// cerr << endl;
}
// Stores DNA sequences using 4 letter alphabet
// The sequences and kmers could be accessed sequentially using iterator-type classes
//
class CReadHolder {
public:
CReadHolder(bool contains_paired) : m_total_seq(0), m_contains_paired(contains_paired) {};
// inserts read at the end
template <typename Container>
void PushBack(const Container& read) {
int shift = (m_total_seq*2)%64;
int read_len = 0;
for(auto it = read.rbegin(); it != read.rend(); ++it) { // put backward for kmer compatibility
if(shift == 0)
m_storage.push_back(0);
m_storage.back() += ((find(bin2NT.begin(), bin2NT.end(), *it) - bin2NT.begin()) << shift);
shift = (shift+2)%64;
++read_len;
}
m_read_length.push_back(read_len);
m_total_seq += read_len;
}
template <typename RandomIterator>
void PushBack(RandomIterator begin, uint32_t len) {
int shift = (m_total_seq*2)%64;
for(RandomIterator it = begin+len-1; ; --it) {
if(shift == 0)
m_storage.push_back(0);
m_storage.back() += ((find(bin2NT.begin(), bin2NT.end(), *it) - bin2NT.begin()) << shift);
shift = (shift+2)%64;
if(it == begin)
break;
}
m_read_length.push_back(len);
m_total_seq += len;
}
// insert sequence from other container
class string_iterator;
void PushBack(const string_iterator& is) {
size_t read_len = is.ReadLen();
m_read_length.push_back(read_len);
size_t destination_first_bit = 2*m_total_seq;
m_total_seq += read_len;
m_storage.resize((2*m_total_seq+63)/64);
const CReadHolder& other_holder = *is.m_readholderp;
size_t bit_from = is.m_position;
size_t bit_to = bit_from+2*read_len;
other_holder.CopyBits(bit_from, bit_to, m_storage, destination_first_bit, m_storage.size());
}
// swaps contents with other
void Swap(CReadHolder& other) {
swap(m_storage, other.m_storage);
swap(m_read_length, other.m_read_length);
swap(m_total_seq, other.m_total_seq);
}
// deletes all sequences and releases memory
void Clear() { CReadHolder(m_contains_paired).Swap(*this); }
// Total nucleotide count of the sequnce
size_t TotalSeq() const { return m_total_seq; }
// Maximal length of included sequences
size_t MaxLength() const {
if(m_read_length.empty())
return 0;
else
return *max_element(m_read_length.begin(), m_read_length.end());
}
// the number of kmers of give length that could be generated
size_t KmerNum(unsigned kmer_len) const {
size_t num = 0;
if(m_read_length.empty())
return num;
for(auto l : m_read_length) {
if(l >= kmer_len)
num += l-kmer_len+1;
}
return num;
}
// total number of sequences
size_t ReadNum() const { return m_read_length.size(); }
size_t MemoryFootprint() const { return 8*m_storage.capacity()+4*m_read_length.capacity(); } // memory in bytes
void Reserve(size_t seq, size_t num = 0) {
m_storage.reserve(seq/32+1);
if(num > 0)
m_read_length.reserve(num);
}
// shortest sequence length at xx% of total length
size_t NXX(double xx) const {
vector<uint32_t> read_length(m_read_length.begin(), m_read_length.end());
sort(read_length.begin(), read_length.end());
size_t nxx = 0;
size_t len = 0;
for(int j = (int)read_length.size()-1; j >= 0 && len < xx*m_total_seq; --j) {
nxx = read_length[j];
len += read_length[j];
}
return nxx;
}
// shortest sequence length at 50% of total length
size_t N50() const { return NXX(0.5); }
// iterator-type clas to access kmers
class kmer_iterator;
kmer_iterator kend() const { return kmer_iterator(0, *this, 2*m_total_seq); }
kmer_iterator kbegin(int kmer_len) const { return kmer_iterator(kmer_len, *this); }
class kmer_iterator {
public:
// dereference operator; returns value!
TKmer operator*() const {
TKmer kmer(m_kmer_len, 0);
uint64_t* guts = kmer.getPointer();
size_t bit_from = m_position;
size_t bit_to = bit_from+2*m_kmer_len;
m_readholderp->CopyBits(bit_from, bit_to, guts, 0, (2*m_kmer_len+63)/64);
return kmer;
}
// iterator advance
kmer_iterator& operator++() {
if(m_position == 2*(m_readholderp->m_total_seq-m_kmer_len)) {
m_position = 2*m_readholderp->m_total_seq;
return *this;
}
m_position += 2;
if(++m_position_in_read == m_readholderp->m_read_length[m_read]-m_kmer_len+1) {
m_position += 2*(m_kmer_len-1);
++m_read;
m_position_in_read = 0;
SkipShortReads();
}
return *this;
}
// doesn't check read boundaries - should be used only if landing in the SAME read
kmer_iterator& operator+=(int l) {
m_position += 2*l;
m_position_in_read += l;
return *this;
}
friend bool operator==(kmer_iterator const& li, kmer_iterator const& ri) { return li.m_position == ri.m_position && li.m_readholderp == ri.m_readholderp; }
friend bool operator!=(kmer_iterator const& li, kmer_iterator const& ri) { return li.m_position != ri.m_position || li.m_readholderp != ri.m_readholderp; }
friend class CReadHolder;
private:
kmer_iterator(int kmer_len, const CReadHolder& rholder, size_t position = 0, size_t position_in_read = 0, size_t read = 0) : m_readholderp(&rholder), m_read(read), m_position(position), m_kmer_len(kmer_len), m_position_in_read(position_in_read) {
SkipShortReads();
}
void SkipShortReads() {
while(m_position < 2*m_readholderp->m_total_seq && m_read < m_readholderp->m_read_length.size() && m_readholderp->m_read_length[m_read] < m_kmer_len)
m_position += 2*m_readholderp->m_read_length[m_read++];
}
const CReadHolder* m_readholderp;
size_t m_read; // read number
size_t m_position; // BIT num in concatenated sequence
uint32_t m_kmer_len;
uint32_t m_position_in_read; // SYMBOL in read
};
// iterator-type clas to access reads
string_iterator send() const { return string_iterator(*this, 2*m_total_seq, m_read_length.size()); }
string_iterator sbegin() const { return string_iterator(*this); }
enum {eSingle = 0, eFirstMate = 1, eSecondMate = 2};
class string_iterator {
public:
string_iterator() : m_readholderp(nullptr), m_position(0), m_read(0) {}
string operator*() const {
int read_length = m_readholderp->m_read_length[m_read];
string read;
read.reserve(read_length);
size_t position = m_position+2*(read_length-1);
for(int i = 0; i < read_length; ++i) {
read.push_back(bin2NT[(m_readholderp->m_storage[position/64] >> position%64) & 3]);
position -= 2;
}
return read;
}
// returns inversed binary sequence (not complemented)
// assumes that destination is extended properly and filled with 0s
void BSeq(int shift, uint64_t* destination) const {
size_t position = m_position+2*shift;
size_t len = 2*(ReadLen()-shift);
m_readholderp->CopyBits(position, position+len, destination, 0, (len+63)/64);
}
// returns clipped binary sequence in correct order
// assumes that destination is extended properly and filled with 0s
// left/right refer to the original sequence
void TrueBSeq(size_t left_clip, size_t right_clip, bool reverse_complement, uint64_t* destination) const {
auto Reverse = [](uint64_t& word) {
word = ((word & 0x3333333333333333) << 2) | ((word >> 2) & 0x3333333333333333); // swap adjacent pairs
word = ((word & 0x0F0F0F0F0F0F0F0F) << 4) | ((word >> 4) & 0x0F0F0F0F0F0F0F0F); // swap nibbles
word = ((word & 0x00FF00FF00FF00FF) << 8) | ((word >> 8) & 0x00FF00FF00FF00FF); // swap bytes
word = ((word & 0x0000FFFF0000FFFF) << 16) | ((word >> 16) & 0x0000FFFF0000FFFF); // swap 16 bit chunks
word = ((word & 0x00000000FFFFFFFF) << 32) | ((word >> 32) & 0x00000000FFFFFFFF); // swap 32 bit chunks
};
size_t position = m_position+2*right_clip; // sequence stored reversed
size_t len = 2*(ReadLen()-right_clip-left_clip);
size_t destination_size = (len+63)/64;
if(reverse_complement) {
m_readholderp->CopyBits(position, position+len, destination, 0, destination_size); // already reversed; not complemented
for(size_t p = 0; p < destination_size; ++p) // complement (will also convert trailing As into Ts)
destination[p] ^= 0xAAAAAAAAAAAAAAAA;
int partial_bits = len%64;
if(partial_bits > 0) // remove trailing Ts
destination[destination_size-1] &= (1ULL << partial_bits) - 1;
} else {
int shift_to_right_end = 64*destination_size-len;
m_readholderp->CopyBits(position, position+len, destination, shift_to_right_end, destination_size); // reversed and shifted to the end of the destination
for(size_t p = 0; p < destination_size/2; ++p) {
swap(destination[p], destination[destination_size-1-p]);
Reverse(destination[p]);
Reverse(destination[destination_size-1-p]);
}
if(destination_size%2)
Reverse(destination[destination_size/2]);
}
}
// returns number of equal nucleotides (2bit) from the beginning
// could be longer than actual sequence length if sequence is not multiple of 32
static size_t CommomSeqLen(const uint64_t* seq1p, const uint64_t* seq2p, size_t word_len) {
auto last = seq1p+word_len;
auto mism = mismatch(seq1p, last, seq2p);
size_t extend = 32*(mism.first-seq1p);
if(mism.first != last)
extend += (ffsll(*mism.first ^ *mism.second)-1)/2; // after ^ all matches are 0s; ffs returns 1-based position of the first bit set to 1
return extend;
}
string_iterator& operator++() {
if(m_read == m_readholderp->m_read_length.size())
return *this;
m_position += 2*m_readholderp->m_read_length[m_read++];
return *this;
}
size_t ReadLen() const { return m_readholderp->m_read_length[m_read]; }
kmer_iterator KmersForRead(int kmer_len) const {
if(kmer_len <= (int)m_readholderp->m_read_length[m_read])
return kmer_iterator(kmer_len, *m_readholderp, m_position, 0, m_read);
else
return m_readholderp->kend();
}
size_t Hash() const {
hash<const CReadHolder*> h1;
hash<size_t> h2;
return h1(m_readholderp)^h2(m_position);
}
struct SHash { size_t operator()(const string_iterator& is) const { return is.Hash(); } };
bool HasMate() const { return m_readholderp->m_contains_paired; }
int PairType() const {
if(!m_readholderp->m_contains_paired)
return eSingle;
else if(m_read%2) // odd
return eSecondMate;
else // even
return eFirstMate;
}
string_iterator GetMate() const { // undefined behavior if not paired container
if(m_read%2) // odd
return string_iterator(*m_readholderp, m_position-2*m_readholderp->m_read_length[m_read-1], m_read-1);
else // even
return string_iterator(*m_readholderp, m_position+2*m_readholderp->m_read_length[m_read], m_read+1);
}
friend bool operator==(const string_iterator& li, const string_iterator& ri) { return li.m_read == ri.m_read && li.m_readholderp == ri.m_readholderp; }
friend bool operator!=(const string_iterator& li, const string_iterator& ri) { return li.m_read != ri.m_read || li.m_readholderp != ri.m_readholderp; }
friend class CReadHolder;
private:
string_iterator(const CReadHolder& rholder, size_t position = 0, size_t read = 0) : m_readholderp(&rholder), m_position(position), m_read(read) {}
const CReadHolder* m_readholderp;
size_t m_position;
size_t m_read;
};
private:
// efficiently copies sequence to destination without converting it to string
// assumes that destination is extended properly and filled with 0; destination_size - number of 'used' 8-byte words in destination after copy
template <typename Dest>
void CopyBits(size_t bit_from, size_t bit_to, Dest& destination, size_t destination_bit_from, size_t destination_size) const {
if(bit_to <= bit_from)
return;
size_t word = bit_from/64;
size_t last_word = (bit_to-1)/64;
unsigned shift = bit_from%64;
size_t destination_word = destination_bit_from/64;
unsigned destination_shift = destination_bit_from%64;
if(shift > 0) { // first word partial
uint64_t chunk = (m_storage[word++] >> shift);
if(destination_shift > 0) { // destination word partial
destination[destination_word] += (chunk << destination_shift);
if(shift <= destination_shift) // we used all remaining destination word
++destination_word;
if(shift < destination_shift && destination_word < destination_size) // first word spills out
destination[destination_word] += (chunk >> (64-destination_shift));
} else { // desination word is not partial - it is bigger than chunk
destination[destination_word] = chunk;
}
destination_shift = (destination_shift+64-shift)%64;
}
for( ; word <= last_word; ++word, ++destination_word) {
if(destination_shift > 0) {
destination[destination_word] += (m_storage[word] << destination_shift);
if(destination_word+1 < destination_size)
destination[destination_word+1] += (m_storage[word] >> (64-destination_shift));
} else {
destination[destination_word] = m_storage[word];
}
}
int partial_bits = (destination_bit_from+bit_to-bit_from)%64;
if(partial_bits > 0) {
uint64_t mask = (1ULL << partial_bits) - 1;
destination[destination_size-1] &= mask;
}
}
vector<uint64_t> m_storage;
vector<uint32_t> m_read_length;
size_t m_total_seq;
bool m_contains_paired;
};
typedef vector<pair<int,size_t>> TBins; // pair of position,count
// simple heuristic to find a valley/peak in a histogram
int FindValleyAndPeak(const TBins& bins, int rlimit) {
int SLOPE_LEN = 5;
int peak = min(rlimit,(int)bins.size()-SLOPE_LEN-1);
while(peak >= SLOPE_LEN) {
bool maxim = true;
for(int i = 1; i <= SLOPE_LEN && maxim; ++i)
maxim = bins[peak+i].second < bins[peak].second;
for(int i = 1; i <= SLOPE_LEN && maxim; ++i)
maxim = bins[peak-i].second < bins[peak].second;
if(maxim)
break;
--peak;
}
if(peak < SLOPE_LEN)
return -1;
int valley = 0;
for(int i = 1; i <= peak; ++i) {
if(bins[i].second < bins[valley].second)
valley = i;
}
if(valley == peak)
return -1;
for(int i = valley; i < (int)bins.size(); ++i) {
if(bins[i].second > bins[peak].second)
peak = i;
}
if(bins[valley].second < 0.7*bins[peak].second)
return valley;
else
return -1;
}
// a simple heuristic to find main range in a histogram
pair<int,int> HistogramRange(const TBins& bins) { // returns <valley,rlimit>; valley == -1 if not found
unsigned MIN_NUM = 100;
size_t gsize = 0;
for(auto& bin : bins) {
if(bin.second >= MIN_NUM)
gsize += bin.first*bin.second;
}
// step back over repeats and plasmids that are not likely to be more than 20 percent of the genome
int rl = 0;
size_t gs = 0;
for(auto& bin : bins) {
gs += bin.first*bin.second;
if(rl < (int)bins.size()-1)
++rl;
if(gs > 0.8*gsize)
break;
}
// find histogram portion with biggest volume and estimate genome size as number of kmers in the portion
int valley = -1;
int rlimit = rl;
size_t genome = 0;
size_t genome_vol = 0;
while(true) {
int v = FindValleyAndPeak(bins, rl);
size_t g = 0;
size_t g_vol = 0;
for(int i = max(0, v); i <= rl; ++i)
{
g_vol += (bins[i].first*bins[i].second);
g += bins[i].second;
}
if((v >= 0 && g > genome) || g_vol > genome_vol) {
valley = v;
rlimit = rl;
genome = g;
genome_vol = g_vol;
// cerr << valley << " " << rlimit << " " << genome << endl;
}
if(v < 0)
break;
rl = v;
}
return make_pair(valley, rlimit);
}
double GetAverageCount(const TBins& bins) {
pair<int,int> grange = HistogramRange(bins);
if(grange.first < 0)
grange.first = 0;
size_t genome = 0;
size_t kmers = 0;
for(int i = grange.first; i <= grange.second; ++i) {
genome += bins[i].second;
kmers += bins[i].first*bins[i].second;
}
if(genome > 0)
return double(kmers)/genome;
else
return 0.;
}
size_t CalculateGenomeSize(const TBins& bins) {
pair<int,int> grange = HistogramRange(bins);
if(grange.first < 0)
grange.first = 0;
size_t genome = 0;
for(int i = grange.first; i <= grange.second; ++i)
genome += bins[i].second;
return genome;
}
template <typename V> class CKmerMap {
// A hash with kmer as a key
// Implemented using a boost::variant of unordered_map<<LargeInt<N>,V> with maximal N = 16 which allows kmer size up to 512
public:
typedef V MappedType;
typedef TKmerMapN<V> Type;
CKmerMap(int kmer_len = 0) : m_kmer_len(kmer_len) {
if(m_kmer_len > 0)
m_container = CreateVariant<TKmerMapN<V>, TLargeIntMap, V>((m_kmer_len+31)/32);
}
size_t Size() const { return apply_visitor(container_size(), m_container); } // number of elements in the container
void Reserve(size_t rsrv) { apply_visitor(reserve(rsrv), m_container); } // reserves hash table for rsrv elements
void Clear() { apply_visitor(clear(), m_container); } // clear hash table
V& operator[] (const TKmer& kmer) {
if(m_kmer_len == 0)
throw runtime_error("Can't insert in uninitialized container");
return apply_visitor(mapper(kmer), m_container);
}
V* Find(const TKmer& kmer) { return apply_visitor(find(kmer), m_container); } // returns nullptr if not found
int KmerLen() const { return m_kmer_len; }
template <typename Prob>
void GetInfo(Prob& prob) { apply_visitor(get_info<Prob>(prob), m_container); } // scans the containier and calls prob(k, v) for each mapped element
private:
template <typename Prob>
struct get_info : public boost::static_visitor<> {
get_info(Prob& p) : prob(p) {}
template <typename T> void operator()(T& v) const {
for(auto& val : v)
prob(TKmer(val.first), val.second);
}
Prob& prob;
};
struct container_size : public boost::static_visitor<size_t> { template <typename T> size_t operator()(const T& v) const { return v.size();} };
struct clear : public boost::static_visitor<> { template <typename T> void operator()(const T& v) const { v.clear();} };
struct reserve : public boost::static_visitor<> {
reserve(size_t r) : rsrv(r) {}
template <typename T> void operator() (T& v) const { v.reserve(rsrv); }
size_t rsrv;
};
struct mapper : public boost::static_visitor<V&> {
mapper(const TKmer& k) : kmer(k) {}
template <typename T> V& operator()(T& v) const {
typedef typename T::key_type large_t;
return v[kmer.get<large_t>()];
}
const TKmer& kmer;
};
struct find : public boost::static_visitor<V*> {
find(const TKmer& k) : kmer(k) {}
template <typename T> V* operator()(T& v) const {
typedef typename T::key_type large_t;
typename T::iterator it = v.find(kmer.get<large_t>());
if(it != v.end())
return &(it->second);
else
return 0;
}
const TKmer& kmer;
};
Type m_container;
int m_kmer_len;
};
template <typename V>
using TKmerMap = CKmerMap<V>; // for compatibility with previous code
} // namespace
#endif /* _common_util_ */