-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_retriever.py
461 lines (394 loc) · 18.9 KB
/
train_retriever.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import torch
from torch.utils.data import DataLoader
from torch.cuda.amp import autocast, GradScaler
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from transformers import AutoTokenizer
from transformers import AdamW, get_linear_schedule_with_warmup
from transformers import DPRQuestionEncoder, DPRContextEncoder
import argparse
from tqdm import tqdm
import numpy as np
import random
import json
import time
import os
import shutil
import sys
import logging
import pytrec_eval
from utils import retrieval_utils, indexing_utils, set_seed, get_logger, batch_to_device
from utils.distributed_utils import is_main, init_distributed, get_world_size, get_rank
from utils.distributed_utils import dist_print, data_sharding, all_gather_items
from utils.indexing_utils import DenseIndexer, data_sharding, DocumentCollection
from data.base import load_processed_data
from dpr import DPRForPretraining, dpr_init_from_bert
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger = get_logger(__name__)
def evaluation(eval_loader,
model,
indexer,
qrel_path,
top_k=100,
logging_step=10,
world_size=1,
rank=0,
max_buffer_size=592000,
filtering_missing=True):
model.eval()
all_score = {}
all_index = {}
while len(eval_loader) < logging_step:
if logging_step <= 1:
logging_step = 1
break
logging_step = int(logging_step / 10)
dist_print("Evaluation start!", logger)
for idx, batch in enumerate(eval_loader):
all_input_ids, all_input_masks, all_ids = batch["input_ids"], batch["input_masks"], batch["ids"]
input_ids = data_sharding(all_input_ids, world_size, rank)
input_masks = data_sharding(all_input_masks, world_size, rank)
local_ids = data_sharding(all_ids, world_size, rank)
with torch.no_grad():
local_outputs = model.q_encoder(input_ids.to(device),
input_masks.to(device))
local_outputs = local_outputs.pooler_output
global_outputs, global_ids = all_gather_items([local_outputs, local_ids],
world_size,
rank,
max_buffer_size)
if is_main():
global_outputs = global_outputs.cpu().detach().numpy()
if -1 in global_ids:
global_ids = [i for i in global_ids if i >= 0]
global_outputs = global_outputs[:len(global_ids)]
score_dict, index_dict = indexer.retrieve(global_outputs, global_ids, top_k)
all_score.update(score_dict)
all_index.update(index_dict)
if dist.is_initialized():
dist.barrier(device_ids=[args.local_rank])
if is_main() and idx % logging_step == 0:
dist_print(f"[{idx}/{len(eval_loader)}]", logger)
if is_main():
with open(qrel_path) as handle:
qrels = json.load(handle)
if filtering_missing:
# QReCC: filtering missings
qrels = dict(filter(lambda x: x[1] != {"": 1}, qrels.items()))
evaluator = pytrec_eval.RelevanceEvaluator(
qrels, {'recip_rank', 'recall', 'map'})
metrics = evaluator.evaluate(all_score)
map_list = [v['map'] for v in metrics.values()]
mrr_list = [v['recip_rank'] for v in metrics.values()]
recall_5_list = [v['recall_5'] for v in metrics.values()]
recall_10_list = [v['recall_10'] for v in metrics.values()]
recall_20_list = [v['recall_20'] for v in metrics.values()]
recall_100_list = [v['recall_100'] for v in metrics.values()]
eval_metrics = {
'MAP': np.average(map_list),
'MRR': np.average(mrr_list),
'Recall@5': np.average(recall_5_list),
'Recall@10': np.average(recall_10_list),
'Recall@20': np.average(recall_20_list),
'Recall@100': np.average(recall_100_list)
}
else:
eval_metrics = {}
return eval_metrics, all_score, all_index
def training(args,
num_train_epochs,
model,
optimizer,
scheduler,
train_loader,
valid_loader):
scaler = GradScaler()
n_slide = args.n_hard_negative + 1
best_epoch = 0
best_score = -1
global_step = 0
for epoch in range(num_train_epochs):
model.train()
if args.distributed:
train_loader.sampler.set_epoch(epoch)
for idx, batch in enumerate(train_loader):
batch = batch_to_device(batch, device)
input_ids, input_masks, labels = batch["input_ids"], batch["input_masks"], batch["labels"]
batch_size = input_ids.size(0)
positive_idx = np.arange(0, batch_size * n_slide, n_slide).tolist()
hnegative_idx = []
if n_slide > 1:
cand_ids = torch.cat([batch["cand_ids"][torch.arange(batch_size), labels[:,i]].unsqueeze(1)
for i in range(n_slide)], 1)
cand_masks = torch.cat([batch["cand_masks"][torch.arange(batch_size), labels[:,i]].unsqueeze(1)
for i in range(n_slide)], 1)
if args.pseudo_positive_ratio:
hnegative_idx = (np.arange(0, batch_size * n_slide, n_slide) + 1).tolist()
else:
cand_ids = batch["cand_ids"][torch.arange(batch_size), labels]
cand_masks = batch["cand_masks"][torch.arange(batch_size), labels]
if len(cand_ids.size()) == 2:
cand_ids = cand_ids.unsqueeze(1)
cand_masks = cand_masks.unsqueeze(1)
optimizer.zero_grad()
with autocast():
loss, prob = model(input_ids,
input_masks,
cand_ids,
cand_masks,
positive_idx,
hnegative_idx)
if args.n_gpu > 1:
loss = loss.mean()
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
if args.max_grad_norm:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
scaler.step(optimizer)
scaler.update()
scheduler.step()
global_step += 1
if idx % 100 == 0:
msg = f"[{epoch}/{num_train_epochs}][{idx}/{len(train_loader)}] loss: {loss.item()}"
dist_print(msg, logger)
model_to_eval = model.module if hasattr(model, 'module') else model
indexer = DenseIndexer(os.path.join(args.data_path, args.task, "dev_collections"),
batch_size=args.index_batch_size, max_buffer_size=args.max_buffer_size, logger=logger)
indexer.set_collections()
indexer.passage_inference(model_to_eval.ctx_encoder,
os.path.join(args.output_path, "index_dev.faiss"),
args.local_rank,
get_world_size())
# TODO
if os.path.exists(os.path.join(args.data_path, args.task, 'qrels_dev.txt')):
qrel_path = os.path.join(args.data_path, args.task, 'qrels_dev.txt')
else:
qrel_path = args.qrel_path
eval_result, scores, indices = evaluation(valid_loader,
model_to_eval,
indexer,
qrel_path,
args.top_k,
world_size=get_world_size(),
rank=get_rank(),
max_buffer_size=args.max_buffer_size)
if is_main():
dist_print(f"Epoch {epoch}, {eval_result}", logger)
if eval_result['Recall@5'] >= best_score:
best_score = eval_result['Recall@5']
model_to_eval.save_pretrained(args.output_path)
json.dump(
eval_result,
open(os.path.join(args.output_path, "dev_eval_result.json"), "w"),
indent=4
)
json.dump(
scores,
open(os.path.join(args.output_path, "dev_eval_scores.json"), "w"),
indent=4
)
json.dump(
indices,
open(os.path.join(args.output_path, "dev_eval_indices.json"), "w"),
indent=4
)
dist_print(f"Save the best model...", logger)
if dist.is_initialized():
dist.barrier(device_ids=[args.local_rank])
return model, best_epoch, best_score
def load_model(args,
tokenizer,
num_train_epochs,
init_from_previous=False,
only_model=False):
if init_from_previous:
model = DPRForPretraining.from_pretrained(args.model_name_or_path)
model.max_buffer_size = args.max_buffer_size
else:
if "bert" in args.model_name_or_path:
q_encoder = dpr_init_from_bert(DPRQuestionEncoder, args.model_name_or_path)
ctx_encoder = dpr_init_from_bert(DPRContextEncoder, args.model_name_or_path)
else:
q_encoder = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
ctx_encoder = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
model = DPRForPretraining(q_encoder, ctx_encoder, max_buffer_size=args.max_buffer_size)
model.resize_token_embeddings(len(tokenizer))
if args.tie_encoder:
model.tie_encoder()
model.to(device)
if only_model:
return model
t_total = args.n_steps * num_train_epochs
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if p.requires_grad and not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if p.requires_grad and any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
if args.num_warmup_steps:
num_warmup_steps = args.num_warmup_steps
else:
num_warmup_steps = int(t_total * 0.1)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=t_total
)
if args.distributed:
from torch.nn.parallel import DistributedDataParallel as DDP
model = DDP(model,
device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
elif args.n_gpu > 1:
model = torch.nn.DataParallel(model)
return model, optimizer, scheduler
def main(args):
set_seed(args.random_seed)
args = init_distributed(args)
rng = random.Random(args.random_seed)
q_tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
ctx_tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
negative_sampler = None
if args.n_hard_negative:
negative_sampler = DocumentCollection(os.path.join(args.data_path, args.task, "test_collections", "data.h5"))
if "/" not in args.train_data:
train_examples = load_processed_data(os.path.join(args.data_path, args.task, args.train_data))
else:
train_examples = load_processed_data(args.train_data)
train_data = retrieval_utils.RetrievalDataset(
train_examples,
sampler=negative_sampler,
n_negative=args.n_hard_negative,
pad_token_id=q_tokenizer.pad_token_id,
tokenizer=q_tokenizer,
rng=rng
)
if args.distributed:
train_sampler = DistributedSampler(train_data, shuffle=True)
train_sampler.set_epoch(0)
else:
train_sampler = RandomSampler(train_data)
train_loader = DataLoader(train_data,
batch_size=args.train_batch_size,
sampler=train_sampler,
collate_fn=train_data.collate_fn)
args.n_steps = len(train_loader)
valid_examples = load_processed_data(os.path.join(args.data_path, args.task, args.dev_data))
valid_data = retrieval_utils.RetrievalDataset(valid_examples)
valid_loader = DataLoader(valid_data,
batch_size=args.eval_batch_size * get_world_size(),
shuffle=False,
collate_fn=valid_data.collate_fn)
test_examples = load_processed_data(os.path.join(args.data_path, args.task, args.test_data))
test_data = retrieval_utils.RetrievalDataset(test_examples)
test_loader = DataLoader(test_data,
batch_size=args.eval_batch_size * get_world_size(),
shuffle=False,
collate_fn=test_data.collate_fn)
if is_main() and os.path.exists(args.output_path):
q_tokenizer.save_pretrained(args.output_path)
json.dump(vars(args), open(os.path.join(args.output_path, "exp.json"), "w"), indent=4)
if not args.index_data_path:
args.index_data_path = args.output_path
args.qrel_path = os.path.join(args.data_path, args.task, 'qrels.txt')
model, optimizer, scheduler = load_model(args,
q_tokenizer,
num_train_epochs=args.num_train_epochs,
init_from_previous=False)
dist_print(f"training with batch size: {args.train_batch_size * args.n_all_gpu}", logger)
model, best_epoch, best_score = training(args,
args.num_train_epochs,
model,
optimizer,
scheduler,
train_loader,
valid_loader
)
if not args.do_predict:
return
dist_print(f"Indexing & Evaluaiton start. It takes a lot of time since it is based on exact search...", logger)
# Evaluation on test set
args.model_name_or_path = args.output_path
model = load_model(args,
q_tokenizer,
num_train_epochs=args.num_train_epochs,
init_from_previous=True,
only_model=True)
indexer = DenseIndexer(os.path.join(args.data_path, args.task, "test_collections"),
batch_size=args.index_batch_size, max_buffer_size=args.max_buffer_size, logger=logger)
indexer.set_collections()
indexer.passage_inference(model.ctx_encoder,
os.path.join(args.output_path, "index_test.faiss"),
args.local_rank,
get_world_size())
eval_result, scores, indices = evaluation(test_loader,
model,
indexer,
args.qrel_path,
args.top_k,
world_size=get_world_size(),
rank=get_rank(),
max_buffer_size=args.max_buffer_size)
dist_print(f"Test score: {eval_result}", logger)
if is_main():
json.dump(
eval_result,
open(os.path.join(args.output_path, "test_eval_result.json"), "w"),
indent=4
)
json.dump(
scores,
open(os.path.join(args.output_path, "test_eval_scores.json"), "w"),
indent=4
)
json.dump(
indices,
open(os.path.join(args.output_path, "test_eval_indices.json"), "w"),
indent=4
)
if dist.is_initialized():
dist.barrier(device_ids=[args.local_rank])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--random_seed', type=int, default=42)
parser.add_argument('--data_path', type=str, default=None)
parser.add_argument('--train_data', type=str, default='train.json')
parser.add_argument('--dev_data', type=str, default='dev.json')
parser.add_argument('--test_data', type=str, default='test.json')
parser.add_argument('--output_path', type=str, default="outputs")
parser.add_argument('--task', type=str, default='orconvqa')
parser.add_argument('--model_name_or_path', type=str, default='bert-base-uncased')
parser.add_argument('--num_train_epochs', type=int, default=5)
parser.add_argument('--learning_rate', type=float, default=3e-5)
parser.add_argument('--train_batch_size', type=int, default=64)
parser.add_argument('--eval_batch_size', type=int, default=64)
parser.add_argument('--num_warmup_steps', type=int, default=0)
parser.add_argument('--weight_decay', type=float, default=0.01)
parser.add_argument('--max_grad_norm', type=float, default=2.0)
parser.add_argument("--distributed", action='store_true', default=False,
help="training with DDP")
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument('--n_hard_negative', type=int, default=0)
parser.add_argument('--pseudo_positive_ratio', type=float, default=0.0)
parser.add_argument('--tie_encoder', action='store_true', default=False)
parser.add_argument('--top_k', type=int, default=100)
parser.add_argument('--index_batch_size', type=int, default=64)
parser.add_argument('--index_data_path', type=str, default=None)
parser.add_argument('--qrel_path', type=str, default=None)
parser.add_argument('--max_buffer_size', type=int, default=592000)
parser.add_argument('--do_predict', action='store_true', default=False)
args = parser.parse_args()
if is_main() and not os.path.exists(args.output_path):
os.makedirs(args.output_path, exist_ok=True)
fileHandler = logging.FileHandler(f"{args.output_path}/log.out", "a")
formatter = logging.Formatter('%(asctime)s > %(message)s')
fileHandler.setFormatter(formatter)
logger.addHandler(fileHandler)
logger.info(args.output_path)
logger.info("logging start!")
main(args)