-
Notifications
You must be signed in to change notification settings - Fork 26
/
MinUPBSize.m
72 lines (64 loc) · 3.21 KB
/
MinUPBSize.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
%% MINUPBSIZE Gives the minimum cardinality of an unextendible product basis in given dimensions
% This function has one required input argument:
% DIM: a vector containing the local dimensions
%
% S = MinUPBSize(DIM) is the minimum possible number of vectors in an
% unextendible product basis in a Hilbert space whose local dimensions
% are given by DIM. A reference to a journal article that provides a
% proof of the minimal size claimed by this script is also be displayed.
%
% This function has one optional input argument:
% VERBOSE (default 1)
%
% S = MinUPBSize(DIM,1) is as above. S = MinUPBSize(DIM,0) produces the
% same output, but does not print the reference to a journal article.
%
% URL: http://www.qetlab.com/MinUPBSize
% requires: opt_args.m, opt_disp.m
% author: Nathaniel Johnston (nathaniel@njohnston.ca)
% package: QETLAB
% last updated: June 22, 2013
function s = MinUPBSize(dim,varargin)
% set optional argument defaults: verbose=1
[verbose] = opt_args({ 1 },varargin{:});
% pre-load various references
refs = {'K. Feng. Unextendible product bases and 1-factorization of complete graphs. Discrete Applied Mathematics, 154:942–949, 2006.', ...
'D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, and B.M. Terhal. Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys. 238:379–410, 2003.', ...
'N. Alon and L. Lovasz. Unextendible product bases. J. Combinatorial Theory, Ser. A, 95:169-179, 2001.', ...
'J. Chen and N. Johnston. The minimum size of unextendible product bases in the bipartite case (and some multipartite cases). Comm. Math. Phys., 333(1):351-365, 2015.', ...
'N. Johnston. The minimum size of qubit unextendible product bases. In Proceedings of the 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013). E-print: arXiv:1302.1604 [quant-ph], 2013.'};
if(verbose > 1 && all(size(dim) == [1,1]))
error('MinUPBSize:IncorrectVerbose',['VERBOSE should be 0 or 1, not ',num2str(verbose),'. You perhaps meant to call this function like this: MinUPBSize([',num2str(dim),',',num2str(verbose),'])']);
end
np = length(dim);
dim = sort(dim);
tlb = sum(dim) - np + 1; % trivial lower bound on s
x_dim = max(dim);
if(np == 2 && min(dim) <= 2)
ref_ind = 2;
s = prod(dim);
elseif(mod(tlb,2) == 0 || all(mod(dim,2) == 1)) % if tlb is even or all dims are odd
ref_ind = 3;
s = tlb;
elseif(np == 2 && x_dim-1 >= tlb-x_dim && tlb-x_dim >= 3)
ref_ind = 4;
s = tlb + 1;
elseif((np == 4 && all(dim == [2,2,2,2])) || (mod(np,4) == 2 && all(dim == 2*ones(1,np))))
ref_ind = 1;
s = tlb + 1;
elseif(np == 8 && all(dim == [2,2,2,2,2,2,2,2]))
ref_ind = 5;
s = 11;
elseif(all(dim == 2*ones(1,np)))
ref_ind = 5;
s = tlb + 3;
elseif(np == 3 && (all(dim == [2,2,3]) || all(dim == [2,2,5])))
ref_ind = 1;
s = tlb + 1;
elseif(np == 3 && dim(1) == 2 && dim(2) == 2 && mod(dim(3),4) == 1)
ref_ind = 4;
s = tlb + 1;
else
error('MinUPBSize:MinSizeUnknown','The minimum size of UPBs in the specified space is not currently known.');
end
opt_disp(['A proof of the minimal size in this case can be found in:\n',refs{ref_ind},'\n'],verbose);