-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathAbsPPTConstraints.m
199 lines (178 loc) · 7.83 KB
/
AbsPPTConstraints.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
%% ABSPPTCONSTRAINTS Builds the eigenvalue matrices that determine whether or not a state is absolutely PPT
% This function has one required input argument:
% LAM: a vector of length prod(DIM) that contains the eigenvalues of
% the state
%
% L = AbsPPTConstraints(LAM) is a cell containing the constraint
% matrices constructed in [1] that characterize whether or not a mixed
% state with eigenvalues LAM is "absolutely PPT" (see [1] for
% definition). In particular, a state with eigenvalues LAM is absolutely
% PPT if and only if every matrix in L is positive semidefinite.
%
% These matrices can be used as constraints in a CVX optimization
% problem, allowing the user to solve SDPs whose feasible region is the
% set of absolutely PPT states (see online documentation for examples).
%
% This function has two optional input arguments:
% DIM (default has both subsystems of equal dimension)
% ESC_IF_NPOS (default 0)
% LIM (default 0)
%
% L = AbsPPTConstraints(LAM,DIM,ESC_IF_NPOS,LIM) is as above, but if LIM
% > 0 then at most LIM matrices are computed. The two local dimensions
% are specified by the 1-by-2 vector DIM. Additionally, if ESC_IF_NPOS =
% 1 then the function stops computing as soon as a matrix in L is not
% positive semidefinite.
%
% URL: http://www.qetlab.com/AbsPPTConstraints
%
% References:
% [1] R. Hildebrand. Positive partial transpose from spectra. Phys. Rev.
% A, 76:052325, 2007. E-print: arXiv:quant-ph/0502170
% requires: IsPSD.m, opt_args.m, perm_inv.m
% author: Nathaniel Johnston (nathaniel@njohnston.ca)
% package: QETLAB
% last updated: December 2, 2014
function L = AbsPPTConstraints(lam,varargin)
sz = size(lam);
if(min(sz) > 1) % LAM is a density matrix: get its eigenvalues
lam = eig(lam);
end
lam_len = max(sz);
dim_guess = round(sqrt(lam_len));
% set optional argument defaults: dim=dim_guess, esc_if_npos=0, lim=0
[dim,esc_if_npos,lim] = opt_args({ dim_guess, 0, 0 },varargin{:});
% Allow the user to enter a single number for DIM.
if(length(dim) == 1)
dim = [dim,dim];
end
% Now do some error checking.
if(prod(dim) ~= lam_len)
error('AbsPPTConstraints:InvalidDim','The dimensions provided by DIM do not match the length of the vector LAM.');
end
% Make sure that LAM is sorted in descending order (if possible).
if(isa(lam,'cvx') == 0)
lam = sort(lam,'descend');
end
% No simple formula is known for the number of matrices in L that will
% be returned, so just increase L's size every step. The speed
% reduction from re-allocating memory is minimal compared to the time
% it takes to do the recursion anyway.
L = cell(0);
% Begin by setting some preliminary values that will let the search
% work.
esc_now = 0;
p = min(dim);
X = (p*(p+1)/2+1)*ones(p); % set each entry to anything larger than p*(p+1)/2
num_pool = ones(p*(p+1)/2,1);
ct = 1;
% If p <= 2, hard-code the results (the recursion will get cranky).
if(p == 1)
return;
elseif(p == 2)
L{1} = [2*lam(end), lam(end-1)-lam(1); lam(end-1)-lam(1), 2*lam(end-2)];
return;
end
% The two top-left and bottom-right entries of the matrix are always
% the same, so fix them.
X(1,1) = 1;
X(1,2) = 2;
X(p,p) = p*(p+1)/2;
X(p-1,p) = p*(p+1)/2 - 1;
% Now recursely construct the absolutely PPT constraints.
fill_matrix(1,3,3);
% This function does the recursion itself. It is nested because it
% needs to have access to variables like num_pool and X.
function fill_matrix(i,j,low_lim)
up_lim = min(j*(j+1)/2 + i*(p-j), p*(p+1)/2 - 2);
for k = low_lim:up_lim
if(num_pool(k) == 1)
X(i,j) = k;
num_pool(k) = 0;
if(check_ordered(X,i,j) == 1)
if(i == p-1 && j == p-1) % we have completely filled X: check if it is valid
if(check_cross(p,X) == 1)
% This ordering is valid, so let's use the
% values in the lam vector to actually
% construct the matrix of eigenvalues from X.
L{ct} = eigen_from_order(X,lam,dim);
if((esc_if_npos == 1 && ~IsPSD(L{ct})) || (lim > 0 && ct >= lim))
esc_now = 1;
return;
end
ct = ct + 1;
end
elseif(j == p) % we are at the end of a column: move to the next row
fill_matrix(i+1,i+1,3);
else % we are somewhere in the middle of the matrix: move to the next column
fill_matrix(i,j+1,k+1);
end
if(esc_now == 1)
return;
end
end
num_pool(k) = 1;
end
end
X(i,j) = p*(p+1)/2+1; % anything larger than p*(p+1)/2
end
end
% This function makes sure that the entry of X that is currently being
% placed does not violate the fact that the columns of X must be ascending
% (the rows will automatically be ascending by the method of construction
% of X).
function is_o = check_ordered(X,i,j)
if(i > 1 && X(i-1,j) > X(i,j))
is_o = 0;
else
is_o = 1;
end
end
% This function makes sure that X does not contain any of the "criss-cross"
% suborderings described in the "A Better Upper Bound" section of
% http://www.njohnston.ca/2014/02/counting-the-possible-orderings-of-pairwise-multiplication/
function cc = check_cross(p,X)
for i=1:p % i: row
for j=1:p % j: column
for k=1:p % k: row
for l=1:p % l: column
for m=1:p % m: row
for n=1:p % n: column
if(X(min(i,j),max(i,j)) > X(min(k,l),max(k,l)) && X(min(l,n),max(l,n)) > X(min(j,m),max(j,m)) && X(min(i,n),max(i,n)) < X(min(k,m),max(k,m)))
cc = 0;
return
end
end
end
end
end
end
end
cc = 1;
end
% This function converts an ordering matrix to the corresponding eigenvalue
% constraint matrix. For example, the ordering matrix [1 2 3;* 4 5;* * 6]
% corresponds to the following eigenvalue constraint matrix:
% [2*lam(9), lam(8)-lam(1), lam(7)-lam(2);
% * , 2*lam(6) , lam(5)-lam(3);
% * , * , 2*lam(4)]
% For details of how these eigenvalue constraint matrices are constructed,
% see the Hildebrand paper.
function L_mat = eigen_from_order(X,lam,dim)
prod_dim = prod(dim);
% Do some pre-processing to extract information about the ordering X
% that will be useful for us.
Y = triu(X,1);
X = triu(X) + Y.';
sparsity_pattern = logical(Y);
% Reduce the entries in Y so that they are 1, 2, ..., (p-1)*p/2, but in
% the same order as the original entries of Y.
[~,ind] = sort(nonzeros(Y(sparsity_pattern).'));
Y(sparsity_pattern) = perm_inv(ind); % Y now contains the indices of the eigenvalues that are subtracted in the off-diagonal entries
Y = Y + Y' + diag(prod_dim + 1 - diag(X));
% We have now built all of the pieces we need: put them together to
% make the eigenvalue matrix in three steps.
L_mat = lam(prod_dim + 1 - X); % this places all of the eigenvalues that have a positive coefficient
L_mat = L_mat + 2*diag(diag(L_mat)); % this triples the diagonal (we only really want to double it, but one copy of it will be subtracted at the next step)
L_mat = L_mat - lam(Y); % this takes off all of the eigenvalues that have a negative coefficient
end