forked from thomasyu888/PCBC_DataExplorer_ShinyApp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.R
executable file
·491 lines (398 loc) · 20.2 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
#Define the server the logic
shinyServer(function(input,output,session){
#get the list of user submitted genes
user_submitted_geneList <- reactive({
input$custom_search
geneList <- isolate(input$custom_gene_list)
geneList <- unlist(strsplit(geneList, split=c('[\\s+,\\n+\\r+)]'),perl=T))
#conevert everything to upper case
geneList <- toupper(geneList)
geneList <- geneList[ !geneList == "" ] #remove the blank entries
flog.debug(sprintf("geneList: %s", paste(geneList, collapse=",")), name="server")
geneList
})
#get the list of user submitted genes
user_submitted_miRNAlist <- reactive({
input$custom_search
miRNAlist <- isolate(input$custom_miRNA_list)
miRNAlist <- unlist(strsplit(miRNAlist,split=c('[\\s+,\\n+\\r+)]'),perl=T))
#conevert everything to upper case
miRNAlist <- tolower(miRNAlist)
miRNAlist <- miRNAlist[ !miRNAlist == "" ] #remove the blank entries
flog.debug(sprintf("miRNAlist: %s", paste(miRNAlist, collapse=",")), name="server")
miRNAlist
})
#get list of miRNAs
selected_miRNAs <- reactive({
#get the list of geneIds that were selected by the user
# + ones correlated with other genes (if corr option selected)
#this is the reason why not getting geneIds from selected_genes() as it wont have the correlated genes
geneIds <- rownames(get_filtered_mRNA_matrix())
#get miRNA targetting the selected genes
# selected_miRNAs <- filter(miRNA_to_genes, GeneID %in% geneIds)
# selected_miRNAs <- unique(paste(selected_miRNAs$miRNA1,selected_miRNAs$miRNA2,sep=','))
keep_miRNAs <- miRNA_to_genes %>%
filter(GeneID %in% geneIds) %>%
group_by(GeneID) %>%
unite_("mirName", c("miRNA1", "miRNA2"), sep=",") %>%
count(mirName) %>%
arrange(desc(n)) %>%
head(15) # top_n(15)
selected_miRNAs <- keep_miRNAs$mirName
flog.debug(sprintf("%s selected_miRNAs", length(selected_miRNAs)), name="server")
selected_miRNAs
})
#get list of genes in current pathway or user entered list
selected_genes <- reactive({
if( input$genelist_type == 'custom_gene_list' ){
genes <- unique(user_submitted_geneList())
miRNAs <- user_submitted_miRNAlist()
#get miRNA targetting the selected genes
selected_miRNAs_targetGenes <- filter(miRNA_to_genes, miRNAPrecursor %in% miRNAs | miRNA1 %in% miRNAs |
miRNA2 %in% miRNAs)
selected_miRNAs_targetGenes <- unique(selected_miRNAs_targetGenes$GeneID)
genes <- unique(c(genes, selected_miRNAs_targetGenes))
} else if( input$genelist_type == 'precomputed_significant_geneList'){
if(input$enrichedPathways == 'ALL'){
genes_in_selected_GeneList <- sigGenes_lists[[input$selected_Significant_GeneList]]
genes <- unique(genes_in_selected_GeneList)
} else {
#1. get a list of all genes in the selected enriched pathway
#trimming the suffix : #pdj-
pathway = gsub('#p.adj_.*','',input$enrichedPathways)
genes_in_pathway <- MSigDB$C2.CP.KEGG[[pathway]]
genes_in_selected_GeneList <- sigGenes_lists[[input$selected_Significant_GeneList]]
genes <- intersect(genes_in_pathway, genes_in_selected_GeneList)
}
} else if( input$genelist_type == 'pathway'){
genes <- as.character(unlist(pathways_list[input$selected_pathways]))
} else genes
})
#get list of pathways enriched in the geneList selected by the user
get_enrichedPathways <- reactive({
#return the enriched pathway for a gene list
#labels contain the pvalue of the FET test
precomputed_enrichedPathways_in_geneLists[[input$selected_Significant_GeneList]]
})
#update the enriched pathways for the user selected genelist
output$enrichedPathways <- renderUI({
enriched_Pathways <- sort(get_enrichedPathways())
selectInput(inputId = "enrichedPathways",
label = sprintf('Enriched pathway/s: %d (?)', sum(! enriched_Pathways %in% c('NA','ALL'))),
choices = enriched_Pathways,
selected = enriched_Pathways[[1]],
selectize=FALSE,
width='400px')
})
output$mRNA_compute_time <- renderPrint({
print(mRNA_heatmap_compute_results$results$time)
})
get_filtered_mRNA_matrix <- reactive({
#a.) subset on sample names based on user selected filters
filtered_eset <- filter_by_metadata(input, eset.mRNA)
#b.) subset based on selected genes
selected_genesId <- convert_to_ensemblIds(selected_genes())
if(input$incl_corr_genes == 'TRUE' & input$genelist_type == 'custom_gene_list'){
filtered_eset <- get_eset_withcorrelated_genes(selected_genesId,
filtered_eset,
input$corr_threshold,
input$correlation_direction)
} else {
filtered_eset <- filtered_eset[rownames(filtered_eset) %in% selected_genesId, ]
}
filtered_eset
})
get_filtered_miRNA_matrix <- reactive({
#get the microRNA expression matrix
filtered_eset <- eset.miRNA[selected_miRNAs(), ]
#subset on sample names based on user selected filters
filtered_eset <- filter_by_metadata(input, filtered_eset)
filtered_eset
})
get_filtered_methylation_matrix <- reactive({
#get the methylation expression matrix
filtered_eset <- eset.meth[selected_methProbes(), ]
#subset on sample names based on user selected filters
filtered_eset <- filter_by_metadata(input, filtered_eset)
filtered_eset
})
#reactive value to store precomputed shiny results
heatmap_compute_results <- reactiveValues()
#return the mRNA heatMap plot
output$mRNA_heatMap <- renderPlot({
flog.debug("Making mRNA heatmap", name='server')
cluster_rows <- isolate(input$cluster_rows)
cluster_cols <- isolate(input$cluster_cols)
m_eset <- get_filtered_mRNA_matrix()
m <- exprs(m_eset)
# zero variance filter
rows_to_keep <- apply(m,1,var) > 0
m <- m[rows_to_keep, ]
m <- data.matrix(m)
validate( need( ncol(m) != 0, "Filtered mRNA expression matrix contains 0 Samples") )
validate( need( nrow(m) != 0, "Filtered mRNA expression matrix contains 0 genes") )
validate( need(nrow(m) < 10000, "Filtered mRNA expression matrix contains > 10000 genes. MAX LIMIT 10,000 ") )
filtered_metadata <- pData(m_eset)
annotation <- get_heatmapAnnotation(input$heatmap_annotation_labels, filtered_metadata)
fontsize_row <- ifelse(nrow(m) > 100, 0, 8)
fontsize_col <- ifelse(ncol(m) > 50, 0, 8)
withProgress(session, {
setProgress(message = "clustering & rendering heatmap, please wait",
detail = "This may take a few moments...")
heatmap_compute_results$mRNA_heatmap <- expHeatMap(m,annotation,
clustering_distance_rows = input$clustering_distance,
clustering_distance_cols = input$clustering_distance,
fontsize_col=fontsize_col,
fontsize_row=fontsize_row,
scale=T,
clustering_method = input$clustering_method,
explicit_rownames = fData(m_eset)$explicit_rownames,
cluster_rows=cluster_rows, cluster_cols=cluster_cols)
heatmap_compute_results$mRNA_annotation <- annotation
heatmap_compute_results$mRNA_metadata <- filtered_metadata
heatmap_compute_results$mRNA_rownames <- explicit_rownames
}) #END withProgress
})
output$microRNA_heatMap <- renderPlot({
flog.debug("Making miRNA heatmap", name='server')
cluster_rows <- isolate(input$cluster_rows)
cluster_cols <- isolate(input$cluster_cols)
m_eset <- get_filtered_miRNA_matrix()
#subset on sample names based on user selected filters
filtered_metadata <- pData(m_eset)
# zero variance filter
rows_to_keep <- apply(exprs(m_eset), 1, var) > 0
m_eset <- m_eset[rows_to_keep, ]
m <- exprs(m_eset)
validate( need( nrow(m) != 0, "Filtered miRNA expression matrix contains 0 genes") )
validate( need(nrow(m) < 10000, "Filtered miRNA expression matrix contains > 10000 genes. MAX LIMIT 10,000 ") )
annotation <- get_heatmapAnnotation(input$heatmap_annotation_labels, filtered_metadata)
fontsize_row <- ifelse(nrow(m) > 200, 0, 8)
fontsize_col <- ifelse(ncol(m) > 50, 0, 8)
withProgress(session, {
setProgress(message = "clustering & rendering heatmap, please wait",
detail = "This may take a few moments...")
heatmap_compute_results$miRNA_heatmap <- expHeatMap(m,annotation,
cluster_rows=cluster_rows, cluster_cols=cluster_cols,
clustering_distance_rows = input$clustering_distance,
clustering_distance_cols = input$clustering_distance,
fontsize_col=fontsize_col,
fontsize_row=fontsize_row,
scale=T,
clustering_method = input$clustering_method,
explicit_rownames = fData(m_eset)$explicit_rownames,
color=colorRampPalette(rev(brewer.pal(n = 7, name = "BrBG")))(100))
}) #END withProgress
})
#get list of miRNAs
selected_methProbes <- reactive({
#get the list of geneIds that were selected by the user
# + ones correlated with other genes (if corr option selected)
#this is the reason why not getting geneIds from selected_genes() as it wont have the correlated genes
geneIds <- rownames(get_filtered_mRNA_matrix())
#convert to entrezID
entrez_geneIds <- convert_to_EntrezIds(geneIds)
flt_res <- filter(meth_to_gene, entrezID %in% entrez_geneIds)
selected_methProbes <- unique(flt_res$methProbe)
selected_methProbes
})
output$methylation_heatMap <- renderPlot({
flog.debug("Making methylation heatmap", name='server')
cluster_rows <- isolate(input$cluster_rows)
cluster_cols <- isolate(input$cluster_cols)
#get the filtered methylation data
# These are based on the selected gene names
m_eset <- get_filtered_methylation_matrix()
validate( need( nrow(m_eset) != 0, "Filtered methylation data matrix contains 0 genes") )
# zero variance filter
var_methProbe <- apply(exprs(m_eset), 1, var)
rows_to_keep <- var_methProbe > .01
m_eset <- m_eset[rows_to_keep, ]
m <- exprs(m_eset)
annotation <- get_heatmapAnnotation(input$heatmap_annotation_labels, pData(m_eset))
validate( need( nrow(m) != 0, "Filtered methylation data matrix contains 0 genes") )
validate( need(nrow(m) < 5000, "Filtered methylation data matrix > 5000 genes. MAX LIMIT 5,000 ") )
fontsize_row <- ifelse(nrow(m) > 100, 0, 8)
fontsize_col <- ifelse(ncol(m) > 50, 0, 8)
withProgress(session, {
setProgress(message = "clustering & rendering heatmap, please wait",
detail = "This may take a few moments...")
heatmap_compute_results$methyl_heatmap <- expHeatMap(m, annotation,
cluster_rows=cluster_rows, cluster_cols=cluster_cols,
clustering_distance_rows = input$clustering_distance,
clustering_distance_cols = input$clustering_distance,
fontsize_col=fontsize_col,
fontsize_row=fontsize_row,
explicit_rownames = fData(m_eset)$explicit_rownames,
clustering_method = input$clustering_method)
}) #END withProgress
})
#create a table with selected gene list and merge with some annotation
output$geneExpTable <- renderDataTable({
filtered_mRNA_NormCounts <- subset(mRNA_NormCounts, symbol %in% selected_genes())
df <- merge(filtered_mRNA_NormCounts[,1:3], hg19_gene_annot, by.x='symbol',by.y='SYMBOL')
df
})
output$mRNA_summary <- renderTable({
summary <- data.frame('Category' = c('#Uniq genes in current list/pathway', '#genes found with exp values',
'#samples'),
'Value' = c( length(selected_genes()),
nrow(mRNA_heatmap_compute_results$filtered_mRNANormCounts),
as.integer(ncol(mRNA_heatmap_compute_results$filtered_mRNANormCounts)-3))
)
})
#prepare data for download
output$download_mRNAData <- downloadHandler(
filename = function() { paste('PCBC_geneExpr_data.csv')},
content = function(file){
mrna_res <- heatmap_compute_results$mRNA_heatmap
mat <- mrna_res$mat
output_download_data(mat=mat, file=file)
})
#prepare data for download
output$download_miRNAData <- downloadHandler(
filename = function() { paste('PCBC_microRNAExpr_data.csv')},
content = function(file){
#get the microRNA expression matrix
mirna_res <- heatmap_compute_results$miRNA_heatmap
mat <- mirna_res$mat
output_download_data(mat=mat, file=file)
})
#prepare data for download
output$download_methylationData <- downloadHandler(
filename = function() { paste('PCBC_methylation_data.csv')},
content = function(file){
#get the methylation matrix
methyl_res <- heatmap_compute_results$methyl_heatmap
mat <- methyl_res$mat
output_download_data(mat=mat, file=file)
})
output$microRNA_summary <- renderTable({
summary <- data.frame('Category' = c('#Uniq genes in current list/pathway',
'#Uniq miRNAs targetting these genes',
'#Uniq miRNAs(with expression values) targetting in these genes',
'#samples',
'overall #uniq miRNAs with matching ensembl geneId'),
'Value' = c( length(selected_genes()),
microRNA_heatmap_compute_results$num_miRNA,
nrow(microRNA_heatmap_compute_results$filtered_microRNANormCounts),
as.integer(ncol(microRNA_heatmap_compute_results$filtered_microRNANormCounts)),
length(unique(miRNA_to_genes$Pathway)))
)
})
output$topgene_linkOut <- reactive({
prefix <- '<form action="https://toppgene.cchmc.org/CheckInput.action" method="post" target="_blank" display="inline">\
<input type="hidden" name="query" value="TOPPFUN">\
<input type="hidden" id="type" name="type" value="HGNC">\
<input type="hidden" name="training_set" id="training_set" value="%s">\
<input type="Submit" class="btn shiny-download-link" value="Enrichment Analysis in ToppGene">\
</form>'
geneIds <- rownames(get_filtered_mRNA_matrix())
geneIds <- convert_to_HUGOIds(geneIds)
geneIds <- paste(geneIds, collapse=" ")
#generate the HTML content
htmlContent <- sprintf(prefix, geneIds)
htmlContent
})
#reactive value to store precomputed shiny results of mRNA data
mRNA_heatmap_compute_results <- reactiveValues()
mRNA_cache_time <- reactiveValues()
output$mRNA_cache_time = renderPrint({
print(mRNA_cache_time$time)
})
output$microRNA_compute_time = renderPrint({
print(microRNA_heatmap_compute_results$time)
})
#reactive value to store precomputed shiny results of mRNA data
microRNA_heatmap_compute_results <- reactiveValues()
})
#######
# TEST CODE
#######
# #create summary table
# #gene list to display
# output$selected_genes <- renderPrint({
# selected_genes <- selected_geneNormCounts()
# selected_genes <- as.character(selected_genes$symbol)
# print(selected_genes,quote=FALSE)
# })
# get_matrix <- reactive({
# # get the filtered geneExp counts
# m <- selected_geneNormCounts()
# #add the row names
# #PURE HACK : since many ensembly IDs have same gene names
# # and rownames(matrix) cant have duplicates
# # forcing the heatmap to render explicity passed rownames
# #rownames(m) <- m$gene_id
# explicit_rownames <- as.vector(m$symbol)
# #convert to matrix
# m <- as.matrix(m)
# # eliminate the first 3 cols to get rid of the annotation and convert to matrix
# m <- m[,4:ncol(m)]
#
# m <- apply(m,2,as.numeric)
#
# #removing those genes which dont vary much across the samples
# # so any gene with SD < .2 across the samples will be dropped
# drop_genes <- which(apply(m,1,sd) < .2)
# #following step to remove the bug seen
# #when m <- m[-drop_genes,] is done directly and length(drop_genes) = 0
# if(length(drop_genes) != 0){
# m <- m[-drop_genes,] #filtering a mat , IMP
# #also remove the same from the explicit rownames as those genes are taken out in anycase
# explicit_rownames <- explicit_rownames[-drop_genes] #filtering a vector no , needed
# }
# mat.scaled <- t(scale(t(m)))
# })
#testing interactive shiny heatmap
# output$test_heatmap <- renderHeatmap(
# get_matrix()
# )
# output$test <- renderText({
# selected_genes()
# # #print(paste( "samples:", length(selected_samples()) , sep=": "))
# # paste( "genecounts dim:" , dim(selected_geneNormCounts()))
# })
#function to render a dynamic dropdown on the UI
# output$enrichedPathways <- renderUI({
# enriched_Pathways = get_enrichedPathways()
# selectInput("enrichedPathways",
# sprintf("Enriched Pathways: %d", sum(! enriched_Pathways %in% c('NA','ALL'))),
# choices = sort(enriched_Pathways)
# )
# })
# output$mRNA_cached_heatMap <- renderImage({
# #a.) subset based on genes found in a pathway or user defined list
# filtered_mRNANormCounts <- subset(mRNA_NormCounts, symbol %in% selected_genes())
# #b.) subset on sample names based on user selected filters + rebind the gene names (first 3 cols)
# filtered_mRNA_metata <- get_filtered_metadata(input,mRNA_metadata)
# filtered_mRNA_samples <- filtered_mRNA_metata$bamName
# filtered_mRNANormCounts <- cbind( filtered_mRNANormCounts[,1:3],
# filtered_mRNANormCounts[, names(filtered_mRNANormCounts) %in% filtered_mRNA_samples ])
# m <- filtered_mRNANormCounts
# #add the row names
# #PURE HACK : since many ensembly IDs have same gene names
# # and rownames(matrix) cant have duplicates
# # forcing the heatmap to render explicity passed rownames
# #rownames(m) <- m$gene_id
# explicit_rownames <- as.vector(m$symbol)
# #convert to matrix
# m <- as.matrix(m, drop=FALSE)
# # eliminate the first 3 cols to get rid of the annotation and convert to matrix
# m <- m[,4:ncol(m)]
# annotation <- get_filtered_genesAnnotation(input,filtered_mRNA_metata)
# #create a md5 of matrix and annotation
# md5=digest(c(m,annotation), algo='md5')
# plot_file = paste0(cache_dir,'/',md5,'.png')
# start_time = proc.time()
# if ( ! file.exists(plot_file) ){
# png(plot_file)
# #png(plot_file,width=24, height=16, units="in",res=300)
# mRNA_heatmap_compute_results$results <- get_geneExpression_heatMap(m,annotation,explicit_rownames = explicit_rownames)
# dev.off()
# }
# mRNA_cache_time$time = proc.time() - start_time
# list(src= plot_file)
# },deleteFile=FALSE)
# })
#