-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjags_covariates.txt
52 lines (35 loc) · 952 Bytes
/
jags_covariates.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
model {
## joint likelihood
for (i in 1:n) {
c[i] ~ dnorm(phi.c[i], lambda)
e[i] ~ dnorm(phi.e[i], tau)
phi.c[i] = mu.c + beta*(e[i] - mu.e) + gamma.c[status[i]]
phi.e[i] = mu.e + gamma.e[status[i]]
}
lambda = 1/psi
psi = sigma2.c - sigma2.e*pow(beta, 2)
## priors
mu.c ~ dnorm(0, 0.0001)
logsigma.c ~ dunif(-5, 10)
sigma.c = exp(logsigma.c)
sigma2.c = pow(sigma.c, 2)
mu.e ~ dnorm(0, 0.0001)
logsigma.e ~ dunif(-5, 10)
sigma.e = exp(logsigma.e)
sigma2.e = pow(sigma.e, 2)
tau = 1/sigma2.e
beta ~ dunif(-5, 5)
gamma.c[1] = 0
gamma.e[1] = 0
for (j in 2:3) {
gamma.c[j] ~ dnorm(0, 0.0001)
gamma.e[j] ~ dnorm(0, 0.0001)
}
## predictions
for (k in 1:3) {
c_pred[k] ~ dnorm(phi.c_pred[k], lambda)
e_pred[k] ~ dnorm(phi.e_pred[k], tau)
phi.c_pred[k] = mu.c + beta*(e_pred[k] - mu.e) + gamma.c[k]
phi.e_pred[k] = mu.e + gamma.e[k]
}
}