forked from Gepetto/constraints-as-terminations
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
281 lines (235 loc) · 9.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# train.py
# Script to train policies in Isaac Gym
#
# Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import logging
import os
from datetime import datetime
# noinspection PyUnresolvedReferences
import isaacgym
import hydra
from isaacgymenvs.utils.rlgames_utils import multi_gpu_get_rank
from isaacgymenvs.pbt.pbt import PbtAlgoObserver, initial_pbt_check
from omegaconf import DictConfig, OmegaConf
from hydra.utils import to_absolute_path
from utils.isaacgymenvs_make import isaacgym_task_map, make
from omegaconf import DictConfig, OmegaConf
import gym
from isaacgymenvs.utils.reformat import omegaconf_to_dict, print_dict
from isaacgymenvs.utils.utils import set_np_formatting, set_seed
from utils.cat_common import CaTA2CAgent
def preprocess_train_config(cfg, config_dict):
"""
Adding common configuration parameters to the rl_games train config.
An alternative to this is inferring them in task-specific .yaml files, but that requires repeating the same
variable interpolations in each config.
"""
train_cfg = config_dict["params"]["config"]
train_cfg["device"] = cfg.rl_device
train_cfg["population_based_training"] = cfg.pbt.enabled
train_cfg["pbt_idx"] = cfg.pbt.policy_idx if cfg.pbt.enabled else None
train_cfg["full_experiment_name"] = cfg.get("full_experiment_name")
print(f"Using rl_device: {cfg.rl_device}")
print(f"Using sim_device: {cfg.sim_device}")
print(train_cfg)
try:
model_size_multiplier = config_dict["params"]["network"]["mlp"][
"model_size_multiplier"
]
if model_size_multiplier != 1:
units = config_dict["params"]["network"]["mlp"]["units"]
for i, u in enumerate(units):
units[i] = u * model_size_multiplier
print(
f'Modified MLP units by x{model_size_multiplier} to {config_dict["params"]["network"]["mlp"]["units"]}'
)
except KeyError:
pass
return config_dict
@hydra.main(config_name="config", config_path="./cfg")
def launch_rlg_hydra(cfg: DictConfig):
if cfg.pbt.enabled:
initial_pbt_check(cfg)
from isaacgymenvs.utils.rlgames_utils import (
RLGPUEnv,
RLGPUAlgoObserver,
MultiObserver,
ComplexObsRLGPUEnv,
)
from isaacgymenvs.utils.wandb_utils import WandbAlgoObserver
from rl_games.common import env_configurations, vecenv
from rl_games.torch_runner import Runner
from rl_games.algos_torch import model_builder
from isaacgymenvs.learning import amp_continuous
from isaacgymenvs.learning import amp_players
from isaacgymenvs.learning import amp_models
from isaacgymenvs.learning import amp_network_builder
import isaacgymenvs
time_str = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
run_name = f"{cfg.wandb_name}_{time_str}"
# ensure checkpoints can be specified as relative paths
if cfg.checkpoint:
cfg.checkpoint = to_absolute_path(cfg.checkpoint)
cfg_dict = omegaconf_to_dict(cfg)
print_dict(cfg_dict)
# set numpy formatting for printing only
set_np_formatting()
# global rank of the GPU
global_rank = int(os.getenv("RANK", "0"))
# sets seed. if seed is -1 will pick a random one
cfg.seed = set_seed(
cfg.seed, torch_deterministic=cfg.torch_deterministic, rank=global_rank
)
def create_isaacgym_env(**kwargs):
envs = make(
cfg.seed,
cfg.task_name,
cfg.task.env.numEnvs,
cfg.sim_device,
cfg.rl_device,
cfg.graphics_device_id,
cfg.headless,
cfg.multi_gpu,
cfg.capture_video,
cfg.force_render,
cfg,
**kwargs,
)
if cfg.capture_video:
envs.is_vector_env = True
envs = gym.wrappers.RecordVideo(
envs,
f"videos/{run_name}",
step_trigger=lambda step: step % cfg.capture_video_freq == 0,
video_length=cfg.capture_video_len,
)
return envs
env_configurations.register(
"rlgpu",
{
"vecenv_type": "RLGPU",
"env_creator": lambda **kwargs: create_isaacgym_env(**kwargs),
},
)
ige_env_cls = isaacgym_task_map[cfg.task_name]
dict_cls = (
ige_env_cls.dict_obs_cls
if hasattr(ige_env_cls, "dict_obs_cls") and ige_env_cls.dict_obs_cls
else False
)
if dict_cls:
obs_spec = {}
actor_net_cfg = cfg.train.params.network
obs_spec["obs"] = {
"names": list(actor_net_cfg.inputs.keys()),
"concat": not actor_net_cfg.name == "complex_net",
"space_name": "observation_space",
}
if "central_value_config" in cfg.train.params.config:
critic_net_cfg = cfg.train.params.config.central_value_config.network
obs_spec["states"] = {
"names": list(critic_net_cfg.inputs.keys()),
"concat": not critic_net_cfg.name == "complex_net",
"space_name": "state_space",
}
vecenv.register(
"RLGPU",
lambda config_name, num_actors, **kwargs: ComplexObsRLGPUEnv(
config_name, num_actors, obs_spec, **kwargs
),
)
else:
vecenv.register(
"RLGPU",
lambda config_name, num_actors, **kwargs: RLGPUEnv(
config_name, num_actors, **kwargs
),
)
rlg_config_dict = omegaconf_to_dict(cfg.train)
rlg_config_dict = preprocess_train_config(cfg, rlg_config_dict)
observers = [RLGPUAlgoObserver()]
if cfg.pbt.enabled:
pbt_observer = PbtAlgoObserver(cfg)
observers.append(pbt_observer)
if cfg.wandb_activate:
cfg.seed += global_rank
if global_rank == 0:
# initialize wandb only once per multi-gpu run
wandb_observer = WandbAlgoObserver(cfg)
observers.append(wandb_observer)
# register new AMP network builder and agent
def build_runner(algo_observer):
from rl_games.algos_torch import players
runner = Runner(algo_observer)
runner.algo_factory.register_builder(
"amp_continuous", lambda **kwargs: amp_continuous.AMPAgent(**kwargs)
)
runner.player_factory.register_builder(
"amp_continuous", lambda **kwargs: amp_players.AMPPlayerContinuous(**kwargs)
)
model_builder.register_model(
"continuous_amp",
lambda network, **kwargs: amp_models.ModelAMPContinuous(network),
)
model_builder.register_network(
"amp", lambda **kwargs: amp_network_builder.AMPBuilder()
)
# New builders for CaT
runner.algo_factory.register_builder(
"cat_a2c_continuous", lambda **kwargs: CaTA2CAgent(**kwargs)
)
runner.player_factory.register_builder(
"cat_a2c_continuous", lambda **kwargs: players.PpoPlayerContinuous(**kwargs)
)
return runner
# convert CLI arguments into dictionary
# create runner and set the settings
runner = build_runner(MultiObserver(observers))
runner.load(rlg_config_dict)
runner.reset()
# dump config dict
if not cfg.test:
experiment_dir = os.path.join(
"runs",
cfg.train.params.config.name
+ "_{date:%m-%d_%H-%M-%S}".format(date=datetime.now()),
)
os.makedirs(experiment_dir, exist_ok=True)
with open(os.path.join(experiment_dir, "config.yaml"), "w") as f:
f.write(OmegaConf.to_yaml(cfg))
runner.run(
{
"train": not cfg.test,
"play": cfg.test,
"checkpoint": cfg.checkpoint,
"sigma": cfg.sigma if cfg.sigma != "" else None,
}
)
if __name__ == "__main__":
launch_rlg_hydra()