-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_Synthetic_QBI.py
74 lines (50 loc) · 1.72 KB
/
exp_Synthetic_QBI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import numpy as np
import torch
import torch.nn as nn
from scipy.stats import norm
from torch.utils.data import DataLoader, Dataset
from core import multi_evaluate, exp_aggregator
class SyntheticModel(nn.Module):
def __init__(self, fc1):
super(SyntheticModel, self).__init__()
self.fc1 = fc1
def forward(self, x):
return self.fc1(x)
class RandomDataset(Dataset):
def __init__(self, shape):
self.shape = shape
def __len__(self):
return 1 << 20
def __getitem__(self, idx):
data = torch.randn(self.shape)
label = torch.zeros(1)
return data, label
def custom_collate(batch):
data, labels = zip(*batch)
return torch.stack(data), torch.stack(labels)
def experiment(num_neurons, batch_size):
test_dataset = RandomDataset((3, 32, 32))
val_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True, collate_fn=custom_collate)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
layer = nn.Linear(3 * 32 * 32, num_neurons).to(device)
with torch.no_grad():
layer.weight.data.normal_()
optimal_bias = norm.ppf(1 / batch_size) * np.sqrt(3 * 32 * 32)
layer.bias.data.fill_(optimal_bias)
model = SyntheticModel(layer)
return multi_evaluate(
model=model,
val_dataloader=val_loader,
batch_size=batch_size,
num_neurons=num_neurons,
eval_iters=10
)
def main():
file_name = 'results_random.csv'
torch.manual_seed(42)
runs_per_setting = 100
layer_sizes = [200, 500, 1000]
batch_sizes = [20, 50, 100, 200]
exp_aggregator(file_name, experiment, layer_sizes, batch_sizes, runs_per_setting)
if __name__ == "__main__":
main()