-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_ImageNet_PAIRS.py
72 lines (53 loc) · 2.01 KB
/
exp_ImageNet_PAIRS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np
import torch
import torch.nn as nn
import torchvision
from core import PAIRS, multi_evaluate, exp_aggregator, IdentityConv2d
from scipy.stats import norm
from torch.utils.data import DataLoader
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
def experiment(num_neurons, batch_size):
transforms = Compose([
Resize(size=256),
CenterCrop(size=(224, 224)),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
base_dataset = torchvision.datasets.ImageNet(
root='data/imagenet', split="val", transform=transforms,
)
indices = torch.randperm(len(base_dataset)).tolist()
split_index = len(base_dataset) // 2
train_dataset = torch.utils.data.Subset(base_dataset, indices[:split_index])
val_dataset = torch.utils.data.Subset(base_dataset, indices[split_index:])
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
layer = nn.Linear(3 * 224 * 224, num_neurons).to(device)
with torch.no_grad():
layer.weight.data.normal_()
optimal_bias = norm.ppf(1 / batch_size) * np.sqrt(3 * 224 * 224)
layer.bias.data.fill_(optimal_bias)
model = IdentityConv2d(layer, 1000)
PAIRS(
layer=model.fc1,
train_dataloader=train_loader,
batch_size=batch_size,
n_neurons=num_neurons,
)
return multi_evaluate(
model=model,
val_dataloader=val_loader,
batch_size=batch_size,
num_neurons=num_neurons,
eval_iters=10
)
def main():
file_name = 'results_ImageNet_PAIRS.csv'
torch.manual_seed(42)
runs_per_setting = 10
layer_sizes = [200, 500, 1000]
batch_sizes = [20, 50, 100, 200]
exp_aggregator(file_name, experiment, layer_sizes, batch_sizes, runs_per_setting)
if __name__ == "__main__":
main()