-
Notifications
You must be signed in to change notification settings - Fork 15
/
BN256G2.sol
394 lines (367 loc) · 13.9 KB
/
BN256G2.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
pragma solidity ^0.4.24;
/**
* @title Elliptic curve operations on twist points for alt_bn128
* @author Mustafa Al-Bassam (mus@musalbas.com)
* @dev Homepage: https://github.com/musalbas/solidity-BN256G2
*/
library BN256G2 {
uint256 internal constant FIELD_MODULUS = 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47;
uint256 internal constant TWISTBX = 0x2b149d40ceb8aaae81be18991be06ac3b5b4c5e559dbefa33267e6dc24a138e5;
uint256 internal constant TWISTBY = 0x9713b03af0fed4cd2cafadeed8fdf4a74fa084e52d1852e4a2bd0685c315d2;
uint internal constant PTXX = 0;
uint internal constant PTXY = 1;
uint internal constant PTYX = 2;
uint internal constant PTYY = 3;
uint internal constant PTZX = 4;
uint internal constant PTZY = 5;
/**
* @notice Add two twist points
* @param pt1xx Coefficient 1 of x on point 1
* @param pt1xy Coefficient 2 of x on point 1
* @param pt1yx Coefficient 1 of y on point 1
* @param pt1yy Coefficient 2 of y on point 1
* @param pt2xx Coefficient 1 of x on point 2
* @param pt2xy Coefficient 2 of x on point 2
* @param pt2yx Coefficient 1 of y on point 2
* @param pt2yy Coefficient 2 of y on point 2
* @return (pt3xx, pt3xy, pt3yx, pt3yy)
*/
function ECTwistAdd(
uint256 pt1xx, uint256 pt1xy,
uint256 pt1yx, uint256 pt1yy,
uint256 pt2xx, uint256 pt2xy,
uint256 pt2yx, uint256 pt2yy
) public view returns (
uint256, uint256,
uint256, uint256
) {
if (
pt1xx == 0 && pt1xy == 0 &&
pt1yx == 0 && pt1yy == 0
) {
if (!(
pt2xx == 0 && pt2xy == 0 &&
pt2yx == 0 && pt2yy == 0
)) {
assert(_isOnCurve(
pt2xx, pt2xy,
pt2yx, pt2yy
));
}
return (
pt2xx, pt2xy,
pt2yx, pt2yy
);
} else if (
pt2xx == 0 && pt2xy == 0 &&
pt2yx == 0 && pt2yy == 0
) {
assert(_isOnCurve(
pt1xx, pt1xy,
pt1yx, pt1yy
));
return (
pt1xx, pt1xy,
pt1yx, pt1yy
);
}
assert(_isOnCurve(
pt1xx, pt1xy,
pt1yx, pt1yy
));
assert(_isOnCurve(
pt2xx, pt2xy,
pt2yx, pt2yy
));
uint256[6] memory pt3 = _ECTwistAddJacobian(
pt1xx, pt1xy,
pt1yx, pt1yy,
1, 0,
pt2xx, pt2xy,
pt2yx, pt2yy,
1, 0
);
return _fromJacobian(
pt3[PTXX], pt3[PTXY],
pt3[PTYX], pt3[PTYY],
pt3[PTZX], pt3[PTZY]
);
}
/**
* @notice Multiply a twist point by a scalar
* @param s Scalar to multiply by
* @param pt1xx Coefficient 1 of x
* @param pt1xy Coefficient 2 of x
* @param pt1yx Coefficient 1 of y
* @param pt1yy Coefficient 2 of y
* @return (pt2xx, pt2xy, pt2yx, pt2yy)
*/
function ECTwistMul(
uint256 s,
uint256 pt1xx, uint256 pt1xy,
uint256 pt1yx, uint256 pt1yy
) public view returns (
uint256, uint256,
uint256, uint256
) {
uint256 pt1zx = 1;
if (
pt1xx == 0 && pt1xy == 0 &&
pt1yx == 0 && pt1yy == 0
) {
pt1xx = 1;
pt1yx = 1;
pt1zx = 0;
} else {
assert(_isOnCurve(
pt1xx, pt1xy,
pt1yx, pt1yy
));
}
uint256[6] memory pt2 = _ECTwistMulJacobian(
s,
pt1xx, pt1xy,
pt1yx, pt1yy,
pt1zx, 0
);
return _fromJacobian(
pt2[PTXX], pt2[PTXY],
pt2[PTYX], pt2[PTYY],
pt2[PTZX], pt2[PTZY]
);
}
/**
* @notice Get the field modulus
* @return The field modulus
*/
function GetFieldModulus() public pure returns (uint256) {
return FIELD_MODULUS;
}
function submod(uint256 a, uint256 b, uint256 n) internal pure returns (uint256) {
return addmod(a, n - b, n);
}
function _FQ2Mul(
uint256 xx, uint256 xy,
uint256 yx, uint256 yy
) internal pure returns (uint256, uint256) {
return (
submod(mulmod(xx, yx, FIELD_MODULUS), mulmod(xy, yy, FIELD_MODULUS), FIELD_MODULUS),
addmod(mulmod(xx, yy, FIELD_MODULUS), mulmod(xy, yx, FIELD_MODULUS), FIELD_MODULUS)
);
}
function _FQ2Muc(
uint256 xx, uint256 xy,
uint256 c
) internal pure returns (uint256, uint256) {
return (
mulmod(xx, c, FIELD_MODULUS),
mulmod(xy, c, FIELD_MODULUS)
);
}
function _FQ2Add(
uint256 xx, uint256 xy,
uint256 yx, uint256 yy
) internal pure returns (uint256, uint256) {
return (
addmod(xx, yx, FIELD_MODULUS),
addmod(xy, yy, FIELD_MODULUS)
);
}
function _FQ2Sub(
uint256 xx, uint256 xy,
uint256 yx, uint256 yy
) internal pure returns (uint256 rx, uint256 ry) {
return (
submod(xx, yx, FIELD_MODULUS),
submod(xy, yy, FIELD_MODULUS)
);
}
function _FQ2Div(
uint256 xx, uint256 xy,
uint256 yx, uint256 yy
) internal view returns (uint256, uint256) {
(yx, yy) = _FQ2Inv(yx, yy);
return _FQ2Mul(xx, xy, yx, yy);
}
function _FQ2Inv(uint256 x, uint256 y) internal view returns (uint256, uint256) {
uint256 inv = _modInv(addmod(mulmod(y, y, FIELD_MODULUS), mulmod(x, x, FIELD_MODULUS), FIELD_MODULUS), FIELD_MODULUS);
return (
mulmod(x, inv, FIELD_MODULUS),
FIELD_MODULUS - mulmod(y, inv, FIELD_MODULUS)
);
}
function _isOnCurve(
uint256 xx, uint256 xy,
uint256 yx, uint256 yy
) internal pure returns (bool) {
uint256 yyx;
uint256 yyy;
uint256 xxxx;
uint256 xxxy;
(yyx, yyy) = _FQ2Mul(yx, yy, yx, yy);
(xxxx, xxxy) = _FQ2Mul(xx, xy, xx, xy);
(xxxx, xxxy) = _FQ2Mul(xxxx, xxxy, xx, xy);
(yyx, yyy) = _FQ2Sub(yyx, yyy, xxxx, xxxy);
(yyx, yyy) = _FQ2Sub(yyx, yyy, TWISTBX, TWISTBY);
return yyx == 0 && yyy == 0;
}
function _modInv(uint256 a, uint256 n) internal view returns (uint256 result) {
bool success;
assembly {
let freemem := mload(0x40)
mstore(freemem, 0x20)
mstore(add(freemem,0x20), 0x20)
mstore(add(freemem,0x40), 0x20)
mstore(add(freemem,0x60), a)
mstore(add(freemem,0x80), sub(n, 2))
mstore(add(freemem,0xA0), n)
success := staticcall(sub(gas, 2000), 5, freemem, 0xC0, freemem, 0x20)
result := mload(freemem)
}
require(success);
}
function _fromJacobian(
uint256 pt1xx, uint256 pt1xy,
uint256 pt1yx, uint256 pt1yy,
uint256 pt1zx, uint256 pt1zy
) internal view returns (
uint256 pt2xx, uint256 pt2xy,
uint256 pt2yx, uint256 pt2yy
) {
uint256 invzx;
uint256 invzy;
(invzx, invzy) = _FQ2Inv(pt1zx, pt1zy);
(pt2xx, pt2xy) = _FQ2Mul(pt1xx, pt1xy, invzx, invzy);
(pt2yx, pt2yy) = _FQ2Mul(pt1yx, pt1yy, invzx, invzy);
}
function _ECTwistAddJacobian(
uint256 pt1xx, uint256 pt1xy,
uint256 pt1yx, uint256 pt1yy,
uint256 pt1zx, uint256 pt1zy,
uint256 pt2xx, uint256 pt2xy,
uint256 pt2yx, uint256 pt2yy,
uint256 pt2zx, uint256 pt2zy) internal pure returns (uint256[6] memory pt3) {
if (pt1zx == 0 && pt1zy == 0) {
(
pt3[PTXX], pt3[PTXY],
pt3[PTYX], pt3[PTYY],
pt3[PTZX], pt3[PTZY]
) = (
pt2xx, pt2xy,
pt2yx, pt2yy,
pt2zx, pt2zy
);
return pt3;
} else if (pt2zx == 0 && pt2zy == 0) {
(
pt3[PTXX], pt3[PTXY],
pt3[PTYX], pt3[PTYY],
pt3[PTZX], pt3[PTZY]
) = (
pt1xx, pt1xy,
pt1yx, pt1yy,
pt1zx, pt1zy
);
return pt3;
}
(pt2yx, pt2yy) = _FQ2Mul(pt2yx, pt2yy, pt1zx, pt1zy); // U1 = y2 * z1
(pt3[PTYX], pt3[PTYY]) = _FQ2Mul(pt1yx, pt1yy, pt2zx, pt2zy); // U2 = y1 * z2
(pt2xx, pt2xy) = _FQ2Mul(pt2xx, pt2xy, pt1zx, pt1zy); // V1 = x2 * z1
(pt3[PTZX], pt3[PTZY]) = _FQ2Mul(pt1xx, pt1xy, pt2zx, pt2zy); // V2 = x1 * z2
if (pt2xx == pt3[PTZX] && pt2xy == pt3[PTZY]) {
if (pt2yx == pt3[PTYX] && pt2yy == pt3[PTYY]) {
(
pt3[PTXX], pt3[PTXY],
pt3[PTYX], pt3[PTYY],
pt3[PTZX], pt3[PTZY]
) = _ECTwistDoubleJacobian(pt1xx, pt1xy, pt1yx, pt1yy, pt1zx, pt1zy);
return pt3;
}
(
pt3[PTXX], pt3[PTXY],
pt3[PTYX], pt3[PTYY],
pt3[PTZX], pt3[PTZY]
) = (
1, 0,
1, 0,
0, 0
);
return pt3;
}
(pt2zx, pt2zy) = _FQ2Mul(pt1zx, pt1zy, pt2zx, pt2zy); // W = z1 * z2
(pt1xx, pt1xy) = _FQ2Sub(pt2yx, pt2yy, pt3[PTYX], pt3[PTYY]); // U = U1 - U2
(pt1yx, pt1yy) = _FQ2Sub(pt2xx, pt2xy, pt3[PTZX], pt3[PTZY]); // V = V1 - V2
(pt1zx, pt1zy) = _FQ2Mul(pt1yx, pt1yy, pt1yx, pt1yy); // V_squared = V * V
(pt2yx, pt2yy) = _FQ2Mul(pt1zx, pt1zy, pt3[PTZX], pt3[PTZY]); // V_squared_times_V2 = V_squared * V2
(pt1zx, pt1zy) = _FQ2Mul(pt1zx, pt1zy, pt1yx, pt1yy); // V_cubed = V * V_squared
(pt3[PTZX], pt3[PTZY]) = _FQ2Mul(pt1zx, pt1zy, pt2zx, pt2zy); // newz = V_cubed * W
(pt2xx, pt2xy) = _FQ2Mul(pt1xx, pt1xy, pt1xx, pt1xy); // U * U
(pt2xx, pt2xy) = _FQ2Mul(pt2xx, pt2xy, pt2zx, pt2zy); // U * U * W
(pt2xx, pt2xy) = _FQ2Sub(pt2xx, pt2xy, pt1zx, pt1zy); // U * U * W - V_cubed
(pt2zx, pt2zy) = _FQ2Muc(pt2yx, pt2yy, 2); // 2 * V_squared_times_V2
(pt2xx, pt2xy) = _FQ2Sub(pt2xx, pt2xy, pt2zx, pt2zy); // A = U * U * W - V_cubed - 2 * V_squared_times_V2
(pt3[PTXX], pt3[PTXY]) = _FQ2Mul(pt1yx, pt1yy, pt2xx, pt2xy); // newx = V * A
(pt1yx, pt1yy) = _FQ2Sub(pt2yx, pt2yy, pt2xx, pt2xy); // V_squared_times_V2 - A
(pt1yx, pt1yy) = _FQ2Mul(pt1xx, pt1xy, pt1yx, pt1yy); // U * (V_squared_times_V2 - A)
(pt1xx, pt1xy) = _FQ2Mul(pt1zx, pt1zy, pt3[PTYX], pt3[PTYY]); // V_cubed * U2
(pt3[PTYX], pt3[PTYY]) = _FQ2Sub(pt1yx, pt1yy, pt1xx, pt1xy); // newy = U * (V_squared_times_V2 - A) - V_cubed * U2
}
function _ECTwistDoubleJacobian(
uint256 pt1xx, uint256 pt1xy,
uint256 pt1yx, uint256 pt1yy,
uint256 pt1zx, uint256 pt1zy
) internal pure returns (
uint256 pt2xx, uint256 pt2xy,
uint256 pt2yx, uint256 pt2yy,
uint256 pt2zx, uint256 pt2zy
) {
(pt2xx, pt2xy) = _FQ2Muc(pt1xx, pt1xy, 3); // 3 * x
(pt2xx, pt2xy) = _FQ2Mul(pt2xx, pt2xy, pt1xx, pt1xy); // W = 3 * x * x
(pt1zx, pt1zy) = _FQ2Mul(pt1yx, pt1yy, pt1zx, pt1zy); // S = y * z
(pt2yx, pt2yy) = _FQ2Mul(pt1xx, pt1xy, pt1yx, pt1yy); // x * y
(pt2yx, pt2yy) = _FQ2Mul(pt2yx, pt2yy, pt1zx, pt1zy); // B = x * y * S
(pt1xx, pt1xy) = _FQ2Mul(pt2xx, pt2xy, pt2xx, pt2xy); // W * W
(pt2zx, pt2zy) = _FQ2Muc(pt2yx, pt2yy, 8); // 8 * B
(pt1xx, pt1xy) = _FQ2Sub(pt1xx, pt1xy, pt2zx, pt2zy); // H = W * W - 8 * B
(pt2zx, pt2zy) = _FQ2Mul(pt1zx, pt1zy, pt1zx, pt1zy); // S_squared = S * S
(pt2yx, pt2yy) = _FQ2Muc(pt2yx, pt2yy, 4); // 4 * B
(pt2yx, pt2yy) = _FQ2Sub(pt2yx, pt2yy, pt1xx, pt1xy); // 4 * B - H
(pt2yx, pt2yy) = _FQ2Mul(pt2yx, pt2yy, pt2xx, pt2xy); // W * (4 * B - H)
(pt2xx, pt2xy) = _FQ2Muc(pt1yx, pt1yy, 8); // 8 * y
(pt2xx, pt2xy) = _FQ2Mul(pt2xx, pt2xy, pt1yx, pt1yy); // 8 * y * y
(pt2xx, pt2xy) = _FQ2Mul(pt2xx, pt2xy, pt2zx, pt2zy); // 8 * y * y * S_squared
(pt2yx, pt2yy) = _FQ2Sub(pt2yx, pt2yy, pt2xx, pt2xy); // newy = W * (4 * B - H) - 8 * y * y * S_squared
(pt2xx, pt2xy) = _FQ2Muc(pt1xx, pt1xy, 2); // 2 * H
(pt2xx, pt2xy) = _FQ2Mul(pt2xx, pt2xy, pt1zx, pt1zy); // newx = 2 * H * S
(pt2zx, pt2zy) = _FQ2Mul(pt1zx, pt1zy, pt2zx, pt2zy); // S * S_squared
(pt2zx, pt2zy) = _FQ2Muc(pt2zx, pt2zy, 8); // newz = 8 * S * S_squared
}
function _ECTwistMulJacobian(
uint256 d,
uint256 pt1xx, uint256 pt1xy,
uint256 pt1yx, uint256 pt1yy,
uint256 pt1zx, uint256 pt1zy
) internal pure returns (uint256[6] memory pt2) {
while (d != 0) {
if ((d & 1) != 0) {
pt2 = _ECTwistAddJacobian(
pt2[PTXX], pt2[PTXY],
pt2[PTYX], pt2[PTYY],
pt2[PTZX], pt2[PTZY],
pt1xx, pt1xy,
pt1yx, pt1yy,
pt1zx, pt1zy);
}
(
pt1xx, pt1xy,
pt1yx, pt1yy,
pt1zx, pt1zy
) = _ECTwistDoubleJacobian(
pt1xx, pt1xy,
pt1yx, pt1yy,
pt1zx, pt1zy
);
d = d / 2;
}
}
}