-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathapply_pdd_npz.py
46 lines (30 loc) · 1.67 KB
/
apply_pdd_npz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
import nibabel as nib
import struct
from scipy.ndimage.interpolation import zoom as zoom
from scipy.ndimage.interpolation import map_coordinates as map_coordinates
#import torch
#import torch.nn as nn
#import torch.nn.functional as F
import argparse
def main():
parser = argparse.ArgumentParser()
#inputdatagroup = parser.add_mutually_exclusive_group(required=True)
parser.add_argument("--input_field", dest="input_field", help="input pdd displacement field (.npz) half resolution", default=None, required=True)
parser.add_argument("--input_moving", dest="input_moving", help="input moving scan (.nii.gz)", default=None, required=True)
parser.add_argument("--output_warped", dest="output_warped", help="output waroed scan (.nii.gz)", default=None, required=True)
options = parser.parse_args()
d_options = vars(options)
input_field = np.load(d_options['input_field'])['arr_0']
_, H1, W1, D1 = input_field.shape
H = int(H1*2); W = int(W1*2); D = int(D1*2);
identity = np.meshgrid(np.arange(H), np.arange(W), np.arange(D), indexing='ij')
disp_field = np.zeros((3,H,W,D)).astype('float32')
disp_field[0] = zoom(input_field[0].astype('float32'),2,order=2)
disp_field[1] = zoom(input_field[1].astype('float32'),2,order=2)
disp_field[2] = zoom(input_field[2].astype('float32'),2,order=2)
moving = nib.load(d_options['input_moving']).get_fdata()
moving_warped = map_coordinates(moving, identity + disp_field, order=0) #assuming a segmentation -> nearest neighbour interpolation
nib.save(nib.Nifti1Image(moving_warped,np.eye(4)),d_options['output_warped'])
if __name__ == '__main__':
main()