forked from Superzchen/iFeature
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster.py
57 lines (50 loc) · 1.97 KB
/
cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/env python
#_*_coding:utf-8_*_
import argparse
import numpy as np
import pandas as pd
import matplotlib as mpl
mpl.use('Agg')
import pylab
from clusters import *
if __name__ == '__main__':
parser = argparse.ArgumentParser(usage="it's usage tip.",
description="cluster for the generated numerical represention")
parser.add_argument("--file", required=True, help="input encoding file")
parser.add_argument("--type", required=True,
choices=['kmeans', 'hcluster', 'apc', 'meanshift', 'dbscan'], help="select cluster method")
parser.add_argument("--sof", choices = ['sample', 'feature'], help="cluster for sample or feature, default: sample")
parser.add_argument("--nclusters", help="specify the cluster number for kmeans cluster method. default: 3")
parser.add_argument("--out", help="output file")
args = parser.parse_args()
kw = {'nclusters': args.nclusters if args.nclusters != None else 3, 'sof':args.sof if args.sof !=None else 'sample'}
output = args.out if args.out != None else '%s_cluster.txt' %args.type
encodings = readCode.readCode(args.file)
myFun = args.type + '.' + args.type + '(encodings, **kw)'
print('Cluster type: ' + args.type)
myCluster, e = eval(myFun)
saveCluster.saveCluster(myCluster, e, output)
## t-sne plot
if myCluster != 0:
if kw['sof'] == 'sample':
data = np.array(encodings)[1:, 1:].astype(float)
else:
data = np.array(encodings).T[1:, 1:].astype(float)
labels = np.array(myCluster)[0:, 1:].reshape(-1, )
e = ''
try:
Y = tsne.tsne(data, 2, 50, 20.0)
except RuntimeWarning as e:
Y = pca.pca(data, n_components = 2)
df = pd.DataFrame({'X': Y[:, 0], 'Y': Y[:, 1], 'L': labels})
mySet = set(labels)
if len(mySet) > 5:
pylab.scatter(Y[:, 0], Y[:, 1], 20, labels)
else:
for l in mySet:
newData = df.loc[df.loc[:, "L"] == l, :]
pylab.scatter(np.array(newData.X), np.array(newData.Y), 20, label="Cluster_%s" % l)
pylab.legend(loc='best')
#pylab.show()
pylab.savefig('%s.png' %output)
pylab.close()