From d70af682d7991218b7389802a4a35daf8328696b Mon Sep 17 00:00:00 2001 From: mtod92 Date: Tue, 19 Dec 2023 17:17:41 -0500 Subject: [PATCH] added biblio --- paper.md | 30 +++++++++++++++--------------- 1 file changed, 15 insertions(+), 15 deletions(-) diff --git a/paper.md b/paper.md index 3620b6d..7b52e40 100644 --- a/paper.md +++ b/paper.md @@ -61,21 +61,21 @@ AB_2 + C \Longleftrightarrow AB_2C \end{equation} And their associated equilibrium constants, defined as the ratio between forward and backward reaction rates: -\begin{equation}\label{eq:1} +\begin{equation}\label{eq:3} \frac{[AB_2]}{[A][B]^2} = K_1 \end{equation} -\begin{equation}\label{eq:2} +\begin{equation}\label{eq:4} \frac{[AB_2C]}{[AB_2][C]} = K_2 \end{equation} And the associated mass conservations: -\begin{equation}\label{eq:3} +\begin{equation}\label{eq:5} [A]_{tot} = [A] + [AB_2] + [AB_2C] \end{equation} -\begin{equation}\label{eq:4} +\begin{equation}\label{eq:6} [B]_{tot} = [B] + 2[AB_2] + 2[AB_2C] \end{equation} -\begin{equation}\label{eq:5} +\begin{equation}\label{eq:7} [C]_{tot} = [C] + [AB_2C] \end{equation} @@ -88,39 +88,39 @@ The algorithm presented here the advantage of operating on a user-friendly set o # Mathematical Treatment In a system with n different species $X_{1…n}$, the mass conservation relationship for the $i^{-th}$ species can be stated as the sum over all the species contributions with their relative stoichiometries (a). We can define the conservation of mass for species $X_i$ as: -\begin{equation}\label{eq:6} +\begin{equation}\label{eq:8} a_1[X_1] + a_2[X_2] + ... + a_n[X_n] = [X_i]_{tot} \end{equation} Or equivalently: -\begin{equation}\label{eq:7} +\begin{equation}\label{eq:9} \sum_{j=1}^n a_j[X_j] = [X_i]_{tot} \end{equation} In order to express such conservation of mass as a linear function of the logarithm of concentrations of the reactants, following the approach by Wall we must first transform the summations to products using the theory of the arithmetic-geometric mean inequality from Passy 3 as applied by Baker 4. We reorganize Eq. 7 so that the summation over all strictly positive terms *a* and *X* is rewritten as the following: -\begin{equation}\label{eq:8} +\begin{equation}\label{eq:10} \frac{[X_i]_{tot}}{\sum_{j=1}^n a_j[X_j]} = 1 \end{equation} -Then we “condense” the sum in the denominator of Eq. 8 into a product: -\begin{equation}\label{eq:9} +Then we “condense” the sum in the denominator of Eq. 10 into a product: +\begin{equation}\label{eq:11} \sum_{j=1}^n a_j[X_j] = \prod_{j=1}^n \bigg(\frac{a_j[X_j]}{W_j}\bigg)^{W_j} \end{equation} With *W* for a given species *j* part of a mass conservation relationship being equal to: -\begin{equation}\label{eq:10} +\begin{equation}\label{eq:12} W_j = \frac{a_j[X_j]}{\sum_{p=1}^n a_p[X_p]} \end{equation} -So that Eq. 8 becomes: -\begin{equation}\label{eq:11} +So that Eq. 10 becomes: +\begin{equation}\label{eq:13} \frac{[X_i]_{tot}}{\bigg(\frac{a_1[X_1]}{W_1}\bigg)^{W_1} * \bigg(\frac{a_2[X_2]}{W_2}\bigg)^{W_2} * ... * \bigg(\frac{a_n[X_n]}{W_n}\bigg)^{W_n}} = 1 \end{equation} We can then reorganize the fraction: -\begin{equation}\label{eq:12} -\left\{ [X_1]^{-1}\*[X_2]^{-2}\*...\*[X_n]^{-n} \right\}\*[X_i]_{tot} +\begin{equation}\label{eq:14} +\left\{ [X_1]^{-1}\*[X_2]^{-2}\*...\*[X_n]^{-n} \right\}\*[X_i]_{tot}*\bigg{\bigg(\frac{W_1}{a_1}\bigg)^{W_1}*\bigg(\frac{W_2}{a_2}\bigg)^{W_2}*...*\bigg(\frac{W_n}{a_n}\bigg)^{W_n}\bigg} \end{equation} # Old Stuff