-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_chain.py
116 lines (96 loc) · 4.07 KB
/
main_chain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import torch
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import argparse
import utils
import dataloader
from gnn_wrapper import GNNWrapper, SemiSupGNNWrapper
#
# # fix random seeds for reproducibility
SEED = 123
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=100, metavar='N',
help='input batch size for testing (default: 100)')
parser.add_argument('--epochs', type=int, default=100000, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.0001, metavar='LR',
help='learning rate (default: 0.0001)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--cuda_dev', type=int, default=0,
help='select specific CUDA device for training')
parser.add_argument('--n_gpu_use', type=int, default=1,
help='select number of CUDA device for training')
# parser.add_argument('--seed', type=int, default=1, metavar='S',
# help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=50, metavar='N',
help='logging training status cadency')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
parser.add_argument('--tensorboard', action='store_true', default=True,
help='For logging the model in tensorboard')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
if not use_cuda:
args.n_gpu_use = 0
device = utils.prepare_device(n_gpu_use=args.n_gpu_use, gpu_id=args.cuda_dev)
# kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
# torch.manual_seed(args.seed)
# # fix random seeds for reproducibility
# SEED = 123
# torch.manual_seed(SEED)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
# np.random.seed(SEED)
# configugations
cfg = GNNWrapper.Config()
cfg.use_cuda = use_cuda
cfg.device = device
cfg.log_interval = args.log_interval
cfg.tensorboard = args.tensorboard
# cfg.batch_size = args.batch_size
# cfg.test_batch_size = args.test_batch_size
# cfg.momentum = args.momentum
cfg.dataset_path = './data'
cfg.epochs = args.epochs
cfg.lrw = args.lr
cfg.activation = nn.Tanh()
cfg.state_transition_hidden_dims = [15]
cfg.output_function_hidden_dims = [5]
cfg.state_dim = 10
cfg.max_iterations = 50
cfg.convergence_threshold = 0.001
cfg.graph_based = False
cfg.log_interval = 10
cfg.task_type = "semisupervised"
cfg.lrw = 0.01
# model creation
model = SemiSupGNNWrapper(cfg)
# dataset creation
# dset = dataloader.get_karate(aggregation_type="sum", sparse_matrix=True) # generate the dataset
dset = dataloader.get_twochainsSSE(aggregation_type="sum", percentage=0.1, sparse_matrix=True) # generate the dataset
model(dset) # dataset initalization into the GNN
# training code
for epoch in range(1, args.epochs + 1):
model.train_step(epoch)
if epoch % 10 == 0:
model.test_step(epoch)
# model.test_step()
# if args.save_model:
# torch.save(model.gnn.state_dict(), "mnist_cnn.pt")
if __name__ == '__main__':
main()