-
Notifications
You must be signed in to change notification settings - Fork 0
/
dict.c
741 lines (643 loc) · 22.3 KB
/
dict.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
/* Hash Tables Implementation.
*
* This file implements in memory hash tables with insert/del/replace/find/
* get-random-element operations. Hash tables will auto resize if needed
* tables of power of two in size are used, collisions are handled by
* chaining. See the source code for more information... :)
*
* Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "fmacros.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <assert.h>
#include <limits.h>
#include <sys/time.h>
#include "dict.h"
#include "zmalloc.h"
/* Using dictEnableResize() / dictDisableResize() we make possible to
* enable/disable resizing of the hash table as needed. This is very important
* for Redis, as we use copy-on-write and don't want to move too much memory
* around when there is a child performing saving operations.
*
* Note that even when dict_can_resize is set to 0, not all resizes are
* prevented: an hash table is still allowed to grow if the ratio between
* the number of elements and the buckets > dict_force_resize_ratio. */
static int dict_can_resize = 1;
static unsigned int dict_force_resize_ratio = 5;
/* ---------------------------- Utility funcitons --------------------------- */
static void _dictPanic(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
fprintf(stderr, "\nDICT LIBRARY PANIC: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n\n");
va_end(ap);
}
/* ------------------------- Heap Management Wrappers------------------------ */
static void *_dictAlloc(size_t size)
{
void *p = zmalloc(size);
if (p == NULL)
_dictPanic("Out of memory");
return p;
}
static void _dictFree(void *ptr) {
zfree(ptr);
}
/* -------------------------- private prototypes ---------------------------- */
static int _dictExpandIfNeeded(dict *ht);
static unsigned long _dictNextPower(unsigned long size);
static int _dictKeyIndex(dict *ht, const void *key);
static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
/* -------------------------- hash functions -------------------------------- */
/* Thomas Wang's 32 bit Mix Function */
unsigned int dictIntHashFunction(unsigned int key)
{
key += ~(key << 15);
key ^= (key >> 10);
key += (key << 3);
key ^= (key >> 6);
key += ~(key << 11);
key ^= (key >> 16);
return key;
}
/* Identity hash function for integer keys */
unsigned int dictIdentityHashFunction(unsigned int key)
{
return key;
}
/* Generic hash function (a popular one from Bernstein).
* I tested a few and this was the best. */
unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
unsigned int hash = 5381;
while (len--)
hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */
return hash;
}
/* ----------------------------- API implementation ------------------------- */
/* Reset an hashtable already initialized with ht_init().
* NOTE: This function should only called by ht_destroy(). */
static void _dictReset(dictht *ht)
{
ht->table = NULL;
ht->size = 0;
ht->sizemask = 0;
ht->used = 0;
}
/* Create a new hash table */
dict *dictCreate(dictType *type,
void *privDataPtr)
{
dict *d = _dictAlloc(sizeof(*d));
_dictInit(d,type,privDataPtr);
return d;
}
/* Initialize the hash table */
int _dictInit(dict *d, dictType *type,
void *privDataPtr)
{
_dictReset(&d->ht[0]);
_dictReset(&d->ht[1]);
d->type = type;
d->privdata = privDataPtr;
d->rehashidx = -1;
d->iterators = 0;
return DICT_OK;
}
/* Resize the table to the minimal size that contains all the elements,
* but with the invariant of a USER/BUCKETS ration near to <= 1 */
int dictResize(dict *d)
{
int minimal;
if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
minimal = d->ht[0].used;
if (minimal < DICT_HT_INITIAL_SIZE)
minimal = DICT_HT_INITIAL_SIZE;
return dictExpand(d, minimal);
}
/* Expand or create the hashtable */
int dictExpand(dict *d, unsigned long size)
{
dictht n; /* the new hashtable */
unsigned long realsize = _dictNextPower(size);
/* the size is invalid if it is smaller than the number of
* elements already inside the hashtable */
if (dictIsRehashing(d) || d->ht[0].used > size)
return DICT_ERR;
n.size = realsize;
n.sizemask = realsize-1;
n.table = _dictAlloc(realsize*sizeof(dictEntry*));
n.used = 0;
/* Initialize all the pointers to NULL */
memset(n.table, 0, realsize*sizeof(dictEntry*));
/* Is this the first initialization? If so it's not really a rehashing
* we just set the first hash table so that it can accept keys. */
if (d->ht[0].table == NULL) {
d->ht[0] = n;
return DICT_OK;
}
/* Prepare a second hash table for incremental rehashing */
d->ht[1] = n;
d->rehashidx = 0;
return DICT_OK;
}
/* Performs N steps of incremental rehashing. Returns 1 if there are still
* keys to move from the old to the new hash table, otherwise 0 is returned.
* Note that a rehashing step consists in moving a bucket (that may have more
* thank one key as we use chaining) from the old to the new hash table. */
int dictRehash(dict *d, int n) {
if (!dictIsRehashing(d)) return 0;
while(n--) {
dictEntry *de, *nextde;
/* Check if we already rehashed the whole table... */
if (d->ht[0].used == 0) {
_dictFree(d->ht[0].table);
d->ht[0] = d->ht[1];
_dictReset(&d->ht[1]);
d->rehashidx = -1;
return 0;
}
/* Note that rehashidx can't overflow as we are sure there are more
* elements because ht[0].used != 0 */
while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;
de = d->ht[0].table[d->rehashidx];
/* Move all the keys in this bucket from the old to the new hash HT */
while(de) {
unsigned int h;
nextde = de->next;
/* Get the index in the new hash table */
h = dictHashKey(d, de->key) & d->ht[1].sizemask;
de->next = d->ht[1].table[h];
d->ht[1].table[h] = de;
d->ht[0].used--;
d->ht[1].used++;
de = nextde;
}
d->ht[0].table[d->rehashidx] = NULL;
d->rehashidx++;
}
return 1;
}
long long timeInMilliseconds(void) {
struct timeval tv;
gettimeofday(&tv,NULL);
return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
}
/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
int dictRehashMilliseconds(dict *d, int ms) {
long long start = timeInMilliseconds();
int rehashes = 0;
while(dictRehash(d,100)) {
rehashes += 100;
if (timeInMilliseconds()-start > ms) break;
}
return rehashes;
}
/* This function performs just a step of rehashing, and only if there are
* not iterators bound to our hash table. When we have iterators in the middle
* of a rehashing we can't mess with the two hash tables otherwise some element
* can be missed or duplicated.
*
* This function is called by common lookup or update operations in the
* dictionary so that the hash table automatically migrates from H1 to H2
* while it is actively used. */
static void _dictRehashStep(dict *d) {
if (d->iterators == 0) dictRehash(d,1);
}
/* Add an element to the target hash table */
int dictAdd(dict *d, void *key, void *val)
{
int index;
dictEntry *entry;
dictht *ht;
if (dictIsRehashing(d)) _dictRehashStep(d);
/* Get the index of the new element, or -1 if
* the element already exists. */
if ((index = _dictKeyIndex(d, key)) == -1)
return DICT_ERR;
/* Allocates the memory and stores key */
ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
entry = _dictAlloc(sizeof(*entry));
entry->next = ht->table[index];
ht->table[index] = entry;
ht->used++;
/* Set the hash entry fields. */
dictSetHashKey(d, entry, key);
dictSetHashVal(d, entry, val);
return DICT_OK;
}
/* Add an element, discarding the old if the key already exists.
* Return 1 if the key was added from scratch, 0 if there was already an
* element with such key and dictReplace() just performed a value update
* operation. */
int dictReplace(dict *d, void *key, void *val)
{
dictEntry *entry, auxentry;
/* Try to add the element. If the key
* does not exists dictAdd will suceed. */
if (dictAdd(d, key, val) == DICT_OK)
return 1;
/* It already exists, get the entry */
entry = dictFind(d, key);
/* Free the old value and set the new one */
/* Set the new value and free the old one. Note that it is important
* to do that in this order, as the value may just be exactly the same
* as the previous one. In this context, think to reference counting,
* you want to increment (set), and then decrement (free), and not the
* reverse. */
auxentry = *entry;
dictSetHashVal(d, entry, val);
dictFreeEntryVal(d, &auxentry);
return 0;
}
/* Search and remove an element */
static int dictGenericDelete(dict *d, const void *key, int nofree)
{
unsigned int h, idx;
dictEntry *he, *prevHe;
int table;
if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
if (dictIsRehashing(d)) _dictRehashStep(d);
h = dictHashKey(d, key);
for (table = 0; table <= 1; table++) {
idx = h & d->ht[table].sizemask;
he = d->ht[table].table[idx];
prevHe = NULL;
while(he) {
if (dictCompareHashKeys(d, key, he->key)) {
/* Unlink the element from the list */
if (prevHe)
prevHe->next = he->next;
else
d->ht[table].table[idx] = he->next;
if (!nofree) {
dictFreeEntryKey(d, he);
dictFreeEntryVal(d, he);
}
_dictFree(he);
d->ht[table].used--;
return DICT_OK;
}
prevHe = he;
he = he->next;
}
if (!dictIsRehashing(d)) break;
}
return DICT_ERR; /* not found */
}
int dictDelete(dict *ht, const void *key) {
return dictGenericDelete(ht,key,0);
}
int dictDeleteNoFree(dict *ht, const void *key) {
return dictGenericDelete(ht,key,1);
}
/* Destroy an entire dictionary */
int _dictClear(dict *d, dictht *ht)
{
unsigned long i;
/* Free all the elements */
for (i = 0; i < ht->size && ht->used > 0; i++) {
dictEntry *he, *nextHe;
if ((he = ht->table[i]) == NULL) continue;
while(he) {
nextHe = he->next;
dictFreeEntryKey(d, he);
dictFreeEntryVal(d, he);
_dictFree(he);
ht->used--;
he = nextHe;
}
}
/* Free the table and the allocated cache structure */
_dictFree(ht->table);
/* Re-initialize the table */
_dictReset(ht);
return DICT_OK; /* never fails */
}
/* Clear & Release the hash table */
void dictRelease(dict *d)
{
_dictClear(d,&d->ht[0]);
_dictClear(d,&d->ht[1]);
_dictFree(d);
}
dictEntry *dictFind(dict *d, const void *key)
{
dictEntry *he;
unsigned int h, idx, table;
if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */
if (dictIsRehashing(d)) _dictRehashStep(d);
h = dictHashKey(d, key);
for (table = 0; table <= 1; table++) {
idx = h & d->ht[table].sizemask;
he = d->ht[table].table[idx];
while(he) {
if (dictCompareHashKeys(d, key, he->key))
return he;
he = he->next;
}
if (!dictIsRehashing(d)) return NULL;
}
return NULL;
}
void *dictFetchValue(dict *d, const void *key) {
dictEntry *he;
he = dictFind(d,key);
return he ? dictGetEntryVal(he) : NULL;
}
dictIterator *dictGetIterator(dict *d)
{
dictIterator *iter = _dictAlloc(sizeof(*iter));
iter->d = d;
iter->table = 0;
iter->index = -1;
iter->entry = NULL;
iter->nextEntry = NULL;
return iter;
}
dictEntry *dictNext(dictIterator *iter)
{
while (1) {
if (iter->entry == NULL) {
dictht *ht = &iter->d->ht[iter->table];
if (iter->index == -1 && iter->table == 0) iter->d->iterators++;
iter->index++;
if (iter->index >= (signed) ht->size) {
if (dictIsRehashing(iter->d) && iter->table == 0) {
iter->table++;
iter->index = 0;
ht = &iter->d->ht[1];
} else {
break;
}
}
iter->entry = ht->table[iter->index];
} else {
iter->entry = iter->nextEntry;
}
if (iter->entry) {
/* We need to save the 'next' here, the iterator user
* may delete the entry we are returning. */
iter->nextEntry = iter->entry->next;
return iter->entry;
}
}
return NULL;
}
void dictReleaseIterator(dictIterator *iter)
{
if (!(iter->index == -1 && iter->table == 0)) iter->d->iterators--;
_dictFree(iter);
}
/* Return a random entry from the hash table. Useful to
* implement randomized algorithms */
dictEntry *dictGetRandomKey(dict *d)
{
dictEntry *he, *orighe;
unsigned int h;
int listlen, listele;
if (dictSize(d) == 0) return NULL;
if (dictIsRehashing(d)) _dictRehashStep(d);
if (dictIsRehashing(d)) {
do {
h = random() % (d->ht[0].size+d->ht[1].size);
he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
d->ht[0].table[h];
} while(he == NULL);
} else {
do {
h = random() & d->ht[0].sizemask;
he = d->ht[0].table[h];
} while(he == NULL);
}
/* Now we found a non empty bucket, but it is a linked
* list and we need to get a random element from the list.
* The only sane way to do so is counting the elements and
* select a random index. */
listlen = 0;
orighe = he;
while(he) {
he = he->next;
listlen++;
}
listele = random() % listlen;
he = orighe;
while(listele--) he = he->next;
return he;
}
/* ------------------------- private functions ------------------------------ */
/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *d)
{
/* Incremental rehashing already in progress. Return. */
if (dictIsRehashing(d)) return DICT_OK;
/* If the hash table is empty expand it to the intial size. */
if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
/* If we reached the 1:1 ratio, and we are allowed to resize the hash
* table (global setting) or we should avoid it but the ratio between
* elements/buckets is over the "safe" threshold, we resize doubling
* the number of buckets. */
if (d->ht[0].used >= d->ht[0].size &&
(dict_can_resize ||
d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
{
return dictExpand(d, ((d->ht[0].size > d->ht[0].used) ?
d->ht[0].size : d->ht[0].used)*2);
}
return DICT_OK;
}
/* Our hash table capability is a power of two */
static unsigned long _dictNextPower(unsigned long size)
{
unsigned long i = DICT_HT_INITIAL_SIZE;
if (size >= LONG_MAX) return LONG_MAX;
while(1) {
if (i >= size)
return i;
i *= 2;
}
}
/* Returns the index of a free slot that can be populated with
* an hash entry for the given 'key'.
* If the key already exists, -1 is returned.
*
* Note that if we are in the process of rehashing the hash table, the
* index is always returned in the context of the second (new) hash table. */
static int _dictKeyIndex(dict *d, const void *key)
{
unsigned int h, idx, table;
dictEntry *he;
/* Expand the hashtable if needed */
if (_dictExpandIfNeeded(d) == DICT_ERR)
return -1;
/* Compute the key hash value */
h = dictHashKey(d, key);
for (table = 0; table <= 1; table++) {
idx = h & d->ht[table].sizemask;
/* Search if this slot does not already contain the given key */
he = d->ht[table].table[idx];
while(he) {
if (dictCompareHashKeys(d, key, he->key))
return -1;
he = he->next;
}
if (!dictIsRehashing(d)) break;
}
return idx;
}
void dictEmpty(dict *d) {
_dictClear(d,&d->ht[0]);
_dictClear(d,&d->ht[1]);
d->rehashidx = -1;
d->iterators = 0;
}
#define DICT_STATS_VECTLEN 50
static void _dictPrintStatsHt(dictht *ht) {
unsigned long i, slots = 0, chainlen, maxchainlen = 0;
unsigned long totchainlen = 0;
unsigned long clvector[DICT_STATS_VECTLEN];
if (ht->used == 0) {
printf("No stats available for empty dictionaries\n");
return;
}
for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
for (i = 0; i < ht->size; i++) {
dictEntry *he;
if (ht->table[i] == NULL) {
clvector[0]++;
continue;
}
slots++;
/* For each hash entry on this slot... */
chainlen = 0;
he = ht->table[i];
while(he) {
chainlen++;
he = he->next;
}
clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
if (chainlen > maxchainlen) maxchainlen = chainlen;
totchainlen += chainlen;
}
printf("Hash table stats:\n");
printf(" table size: %ld\n", ht->size);
printf(" number of elements: %ld\n", ht->used);
printf(" different slots: %ld\n", slots);
printf(" max chain length: %ld\n", maxchainlen);
printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);
printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);
printf(" Chain length distribution:\n");
for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
if (clvector[i] == 0) continue;
printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100);
}
}
void dictPrintStats(dict *d) {
_dictPrintStatsHt(&d->ht[0]);
if (dictIsRehashing(d)) {
printf("-- Rehashing into ht[1]:\n");
_dictPrintStatsHt(&d->ht[1]);
}
}
void dictEnableResize(void) {
dict_can_resize = 1;
}
void dictDisableResize(void) {
dict_can_resize = 0;
}
/* ----------------------- StringCopy Hash Table Type ------------------------*/
static unsigned int _dictStringCopyHTHashFunction(const void *key)
{
return dictGenHashFunction(key, strlen(key));
}
static void *_dictStringCopyHTKeyDup(void *privdata, const void *key)
{
int len = strlen(key);
char *copy = _dictAlloc(len+1);
DICT_NOTUSED(privdata);
memcpy(copy, key, len);
copy[len] = '\0';
return copy;
}
static void *_dictStringKeyValCopyHTValDup(void *privdata, const void *val)
{
int len = strlen(val);
char *copy = _dictAlloc(len+1);
DICT_NOTUSED(privdata);
memcpy(copy, val, len);
copy[len] = '\0';
return copy;
}
static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
const void *key2)
{
DICT_NOTUSED(privdata);
return strcmp(key1, key2) == 0;
}
static void _dictStringCopyHTKeyDestructor(void *privdata, void *key)
{
DICT_NOTUSED(privdata);
_dictFree((void*)key); /* ATTENTION: const cast */
}
static void _dictStringKeyValCopyHTValDestructor(void *privdata, void *val)
{
DICT_NOTUSED(privdata);
_dictFree((void*)val); /* ATTENTION: const cast */
}
dictType dictTypeHeapStringCopyKey = {
_dictStringCopyHTHashFunction, /* hash function */
_dictStringCopyHTKeyDup, /* key dup */
NULL, /* val dup */
_dictStringCopyHTKeyCompare, /* key compare */
_dictStringCopyHTKeyDestructor, /* key destructor */
NULL /* val destructor */
};
/* This is like StringCopy but does not auto-duplicate the key.
* It's used for intepreter's shared strings. */
dictType dictTypeHeapStrings = {
_dictStringCopyHTHashFunction, /* hash function */
NULL, /* key dup */
NULL, /* val dup */
_dictStringCopyHTKeyCompare, /* key compare */
_dictStringCopyHTKeyDestructor, /* key destructor */
NULL /* val destructor */
};
/* This is like StringCopy but also automatically handle dynamic
* allocated C strings as values. */
dictType dictTypeHeapStringCopyKeyValue = {
_dictStringCopyHTHashFunction, /* hash function */
_dictStringCopyHTKeyDup, /* key dup */
_dictStringKeyValCopyHTValDup, /* val dup */
_dictStringCopyHTKeyCompare, /* key compare */
_dictStringCopyHTKeyDestructor, /* key destructor */
_dictStringKeyValCopyHTValDestructor, /* val destructor */
};