forked from galena100/Transform2020
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgr_bound.py
131 lines (109 loc) · 4.65 KB
/
gr_bound.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def gr_bound(dep,curve,fscales,thres):
# visit : https://github.com/galena100/Transform2020/
# Parameters
# ----------
# dep : array_like, shape (N,)
# the 1d array value of depth, equally spaced, because dt will be
# calculated from here
# curve : array_like, shape (N,)
# the 1d array value of GR curve
# fscales : array_like, shape (N,)
# the 1d array scale of frequency used
# thres : float
# threshold minimum contour samples that makes a contour eligible for boundary
# strength calculation. Its thres x standart deviation of number sample per contour
# Returns
# ----------
# bos : ndarray, shape (N,2)
# 2D array consist of boundary strength and signal sign
#
# Examples on Syntethic Log
# --------
# import numpy as np
# dep=np.arange(0,350,dt)
# freq1=0.05
# freq2=0.03
# freq3=0.01
# sin1 = np.array(np.sin(dep[0:1000] * freq1 * 2.0 * np.pi)).clip(-0.5,0.5)
# sin2 = np.array(np.sin(dep[1000:2000] * freq2 * 2.0 * np.pi)).clip(-0.5,0.5)
# sin3 = np.array(np.sin(dep[2000:] * freq3 * 2.0 * np.pi)).clip(-0.5,0.5)
# syntwave=np.hstack((sin1,sin2,sin3))
# fscales = np.linspace(50,600,100)
# thres = 0.5
# [bo,bos]=gr_bound(dep,syntwave,fscales,thres)
#getting the cwt gauss1 and gauss2
import pywt
import matplotlib.pyplot as plt
import numpy as np
wavelet = 'gaus2'
dt=dep[1]-dep[0]
[cfs, frequencies] = pywt.cwt(curve, fscales, wavelet, dt)
#power = (abs(cfs)) ** 2
zcwt=cfs.T
#period = 1. / frequencies
#lev_contour=np.arange(np.min(zcwt),np.max(zcwt),7)
wavelet2 = 'gaus1'
[cfs, frequencies] = pywt.cwt(curve, fscales, wavelet2, dt)
#power = (abs(cfs)) ** 2
zcwt2=cfs.T
#period = 1. / frequencies
fig, (ax1, ax2,ax3) = plt.subplots(1,3,figsize=(8, 6))
ax1.plot(curve,dep)
ax1.set_ylim([np.min(dep),np.max(dep)])
ax1.invert_yaxis()
cs=ax2.contour(fscales,dep,zcwt,levels=[0.0], colors='k',extend='both')
ax2.invert_yaxis()
ax2.contourf(fscales,dep,zcwt2,levels=np.arange(np.min(zcwt),np.max(zcwt),1),
cmap="RdBu_r", extend='both')
#boundary
#get 0 level
thres=0.8 #percent from std threshold
x0=np.array([])
y0=np.array([])
i0=np.array([])
id0=0
ncdat=np.zeros([len(cs.allsegs[0])])
for i in range(0,len(cs.allsegs[0])):
ncdat[i]=len(cs.allsegs[0][i])
for i in range(0,len(cs.allsegs[0])):
if len(cs.allsegs[0][i])>(np.std(ncdat)*thres):
dat0= cs.allsegs[0][i]
y0 = np.hstack((y0, dat0[:,0]))
x0 = np.hstack((x0, dat0[:,1]))
i0 = np.hstack((i0, np.ones([len(dat0[:,1])])*id0))
id0=id0+1
#rescale to a array position scale (to call the zcwt2)
x02=x0/dt
y02=(y0-np.min(y0))/(np.max(y0)-np.min(y0))*(len(fscales)-1)
z0=np.zeros([x0.shape[0]],dtype=float)
for i in range(z0.shape[0]):
z0[i]=zcwt2[int(np.floor(x02[i])),int(np.floor(y02[i]))]
#getting the boundary
bo=np.array([])
for i in range(0,id0):
locmax=np.where(z0 == np.max(z0[i0==i]))[0][0]
locmin=np.where(z0 == np.min(z0[i0==i]))[0][0]
if z0[locmax]>0.0:
if i==0 and bo.shape[0]==0:
bo=np.hstack((bo, [x02[locmax],y02[locmax],z0[locmax]]))
else:
bo=np.vstack((bo, [x02[locmax],y02[locmax],z0[locmax]]))
if z0[locmin]<0.0:
if i==0 and bo.shape[0]==0:
bo=np.hstack((bo, [x02[locmin],y02[locmin],z0[locmin]]))
else:
bo=np.vstack((bo, [x02[locmin],y02[locmin],z0[locmin]]))
bo=bo[bo[:,0].argsort()]
ax2.plot((bo[:,1]/fscales.shape[0])*(np.max(fscales)-np.min(fscales))+np.min(fscales),bo[:,0]*dt,'wo',markersize=5,markeredgecolor='y')
ax2.yaxis.set_visible(False)
#calculate the boundary strength & getting the signal polarity
bos=np.zeros([len(dep),2],dtype=float)
for i in range(0,bo.shape[0]):
bos[int(np.round(bo[i,0])),0]=np.abs(bo[i,2])/np.max(np.abs(bo[:,2]))
bos[int(np.round(bo[i,0])),1]=np.sign(curve[int(np.round(bo[i,0]))])
ax3.barh(dep,bos[:,0])
ax3.set_ylim([np.min(dep),np.max(dep)])
ax3.invert_yaxis()
ax3.set_aspect('auto')
ax3.yaxis.set_visible(False)
return(bo,bos)