-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
248 lines (224 loc) · 7.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from pathlib import Path
from model import Model
from tokenizer import CharTokenizer, ITokenizer
from utils import get_formated_date, load_stat_dict
from torch.optim import Optimizer
from data import AudioPipeline, DataLoader, TextPipeline
from typing import Callable, Union
from torch.nn import Module
from functools import wraps
from hprams import hprams
from loss import Loss
from tqdm import tqdm
import torch
import os
OPT = {
'sgd': torch.optim.SGD
}
def save_checkpoint(func) -> Callable:
"""Save a checkpoint after each iteration
"""
@wraps(func)
def wrapper(obj, *args, **kwargs):
result = func(obj, *args, **kwargs)
if not os.path.exists(hprams.training.checkpoints_dir):
os.mkdir(hprams.training.checkpoints_dir)
timestamp = get_formated_date()
model_path = os.path.join(
hprams.training.checkpoints_dir,
timestamp + '.pt'
)
torch.save(obj.model.state_dict(), model_path)
print(f'checkpoint saved to {model_path}')
return result
return wrapper
class Trainer:
__train_loss_key = 'train_loss'
__test_loss_key = 'test_loss'
def __init__(
self,
criterion: Module,
optimizer: Optimizer,
model: Module,
device: str,
train_loader: DataLoader,
test_loader: DataLoader,
epochs: int,
length_multiplier: float
) -> None:
self.criterion = criterion
self.optimizer = optimizer
self.model = model
self.train_loader = train_loader
self.test_loader = test_loader
self.device = device
self.epochs = epochs
self.step_history = dict()
self.history = dict()
self.length_multiplier = length_multiplier
def fit(self):
"""The main training loop that train the model on the training
data then test it on the test set and then log the results
"""
for _ in range(self.epochs):
self.train()
# self.test()
self.print_results()
def set_train_mode(self) -> None:
"""Set the models on the training mood
"""
self.model = self.model.train()
def set_test_mode(self) -> None:
"""Set the models on the testing mood
"""
self.model = self.model.eval()
def print_results(self):
"""Prints the results after each epoch
"""
result = ''
for key, value in self.history.items():
result += f'{key}: {str(value[-1])}, '
print(result[:-2])
def test(self):
"""Iterate over the whole test data and test the models
for a single epoch
"""
total_loss = 0
self.set_test_mode()
for x, y, lengths in tqdm(self.test_loader):
x = x.to(self.device)
y = y.to(self.device)
max_len = int(x.shape[0] * self.length_multiplier)
x = torch.squeeze(x, dim=1)
result = self.model(x, max_len)
result = result.reshape(-1, result.shape[-1])
y = y.reshape(-1)
y = torch.squeeze(y)
loss = self.criterion(torch.squeeze(result), y)
total_loss += loss.item()
total_loss /= len(self.test_loader)
if self.__test_loss_key in self.history:
self.history[self.__test_loss_key].append(total_loss)
else:
self.history[self.__test_loss_key] = [total_loss]
@save_checkpoint
def train(self):
"""Iterates over the whole training data and train the models
for a single epoch
"""
total_loss = 0
self.set_train_mode()
for (x, y, length) in tqdm(self.train_loader):
x = x.to(self.device)
y = y.to(self.device)
max_len = int(x.shape[1] * self.length_multiplier)
x = torch.squeeze(x, dim=1)
self.optimizer.zero_grad()
probs, term_state = self.model(x, max_len)
loss = self.criterion(probs, y, length)
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1)
loss.backward()
self.optimizer.step()
total_loss += loss.item()
total_loss /= len(self.train_loader)
if self.__train_loss_key in self.history:
self.history[self.__train_loss_key].append(total_loss)
else:
self.history[self.__train_loss_key] = [total_loss]
def get_model_args(
vocab_size: int,
pad_idx: int,
phi_idx: int,
sos_idx: int
) -> dict:
device = hprams.device
prednet_params = dict(
**hprams.model.pred_net,
vocab_size=vocab_size,
pad_idx=pad_idx
)
transnet_params = dict(**hprams.model.trans_net)
joinnet_params = dict(
**hprams.model.join_net,
vocab_size=vocab_size
)
return {
'prednet_params': prednet_params,
'transnet_params': transnet_params,
'joinnet_params': joinnet_params,
'device': device,
'phi_idx': phi_idx,
'pad_idx': pad_idx,
'sos_idx': sos_idx
}
def load_model(vocab_size: int, *args, **kwargs) -> Module:
model = Model(**get_model_args(vocab_size, *args, **kwargs))
if hprams.checkpoint is not None:
load_stat_dict(model, hprams.checkpoint)
return model
def get_tokenizer():
tokenizer = CharTokenizer()
if hprams.tokenizer.tokenizer_file is not None:
tokenizer = tokenizer.load_tokenizer(
hprams.tokenizer.tokenizer_file
)
tokenizer = tokenizer.add_phi_token().add_pad_token()
tokenizer = tokenizer.add_sos_token().add_eos_token()
with open(hprams.tokenizer.vocab_path, 'r') as f:
vocab = f.read().split('\n')
tokenizer.set_tokenizer(vocab)
tokenizer.save_tokenizer('tokenizer.json')
return tokenizer
def get_data_loader(
file_path: Union[str, Path],
tokenizer: ITokenizer
):
audio_pipeline = AudioPipeline()
text_pipeline = TextPipeline()
return DataLoader(
file_path,
text_pipeline,
audio_pipeline,
tokenizer,
hprams.training.batch_size,
hprams.data.max_str_len
)
def get_trainer():
tokenizer = get_tokenizer()
phi_idx = tokenizer.special_tokens.phi_id
pad_idx = tokenizer.special_tokens.pad_id
sos_idx = tokenizer.special_tokens.sos_id
vocab_size = tokenizer.vocab_size
train_loader = get_data_loader(
hprams.data.training_file,
tokenizer
)
test_loader = get_data_loader(
hprams.data.testing_file,
tokenizer
)
criterion = Loss(phi_idx)
model = load_model(
vocab_size,
pad_idx=pad_idx,
phi_idx=phi_idx,
sos_idx=sos_idx
)
optimizer = OPT[hprams.training.optimizer](
model.parameters(),
lr=hprams.training.optim.learning_rate,
momentum=hprams.training.optim.momentum
)
return Trainer(
criterion=criterion,
optimizer=optimizer,
model=model,
device=hprams.device,
train_loader=train_loader,
test_loader=test_loader,
epochs=hprams.training.epochs,
length_multiplier=hprams.length_multiplier
)
if __name__ == '__main__':
trainer = get_trainer()
trainer.fit()