-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
1050 lines (877 loc) · 45.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import random
import torch
from torch import nn, optim
import numpy as np
import editdistance
import os
from torch.utils.data import DataLoader
from torch.nn import functional as F
import torch.nn.parallel
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.utils.data.distributed
import torch.distributed as dist
import time
import glob
import wandb
import editdistance
from datetime import datetime
import sacrebleu, json
import soundfile as sf
import shutil
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from PIL import Image
import contextlib
import math
# model
from src.models.TMT_ENDE_BERT import TMT
from src.lr_scheduler import LinearWarmup, CosineAnnealingLRWarmup
# data
from src.data.dataset_train_TMT import AVTDataset
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--coco_path', default="path_to/COCO_2014")
parser.add_argument('--flickr_path', default="path_to/Flickr8k/Images")
parser.add_argument('--spcoco_path', default="path_to/SpokenCOCO/Hubert_units")
parser.add_argument('--spflickr_path', default="path_to/flickr_audio/Hubert_units")
parser.add_argument('--spcoco_split_path', default="path_to/SpokenCOCO")
parser.add_argument('--karpathy_split_path', default="path_to/Karpathy_split")
parser.add_argument("--max_sp_len", type=int, default=384)
parser.add_argument("--max_txt_len", type=int, default=128)
# Im token size
parser.add_argument("--im_size", type=int, default=16)
# Tasks
parser.add_argument("--num_task", type=int, default=6)
parser.add_argument("--im_sp", default=False, action='store_true')
parser.add_argument("--im_txt", default=False, action='store_true')
parser.add_argument("--txt_sp", default=False, action='store_true')
parser.add_argument("--txt_im", default=False, action='store_true')
parser.add_argument("--sp_txt", default=False, action='store_true')
parser.add_argument("--sp_im", default=False, action='store_true')
parser.add_argument("--pad", type=int, default=0, help='will be set by dataset')
parser.add_argument("--bos", type=int, default=0, help='will be set by dataset')
parser.add_argument("--eos", type=int, default=0, help='will be set by dataset')
parser.add_argument("--txt", type=int, default=0)
parser.add_argument("--sp", type=int, default=1)
parser.add_argument("--im", type=int, default=2)
parser.add_argument("--train_data", type=str, default='coco')
parser.add_argument("--temp_dir", type=str, default='')
parser.add_argument("--checkpoint_dir", type=str, default='./data/checkpoints/TMT')
parser.add_argument("--checkpoint", type=str, default=None)
parser.add_argument("--project", type=str, default=None)
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--update_frequency", type=int, default=1)
parser.add_argument("--epochs", type=int, default=500)
parser.add_argument("--tot_iters", type=int, default=500000)
parser.add_argument("--lr", type=float, default=0.0003)
parser.add_argument("--warmup", default=False, action='store_true')
parser.add_argument("--warmup_iteration", type=int, default=10000)
parser.add_argument("--weight_decay", type=float, default=0.000001)
parser.add_argument("--workers", type=int, default=5)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--eval_step", type=int, default=5000)
parser.add_argument("--start_epoch", type=int, default=0)
parser.add_argument("--start_step", type=int, default=0)
parser.add_argument("--mode", type=str, default='train', help='train, test, valid')
parser.add_argument("--reset_optimizer", default=False, action='store_true')
parser.add_argument("--fp16", default=False, action='store_true')
parser.add_argument("--architecture", default='bert')
parser.add_argument("--image_tokenizer", default='VQGAN', help='VQGAN, SEED')
parser.add_argument("--generate_im", default=False, action='store_true')
parser.add_argument("--generation_step", type=int, default=1000)
parser.add_argument("--num_gen_im", type=int, default=3)
parser.add_argument("--gen_max_len", type=int, default=256, help='sp/txt generation length if test mode')
parser.add_argument("--distributed", default=False, action='store_true')
parser.add_argument("--masterport", type=str, default='1234')
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--gpu", type=str, default='0')
args = parser.parse_args()
return args
def train_net(args):
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
torch.manual_seed(args.local_rank)
torch.cuda.manual_seed_all(args.local_rank)
random.seed(args.local_rank)
os.environ['OMP_NUM_THREADS'] = '2'
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
os.environ['MASTER_PORT'] = args.masterport
args.temp_dir = './tmp_eval/' + args.checkpoint_dir.split('/')[-1]
if args.distributed:
args.local_rank = int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl',
init_method='env://')
train_data = AVTDataset(
coco_path=args.coco_path,
flickr_path=args.flickr_path,
spcoco_path=args.spcoco_path,
spflickr_path=args.spflickr_path,
spcoco_split_path=args.spcoco_split_path,
karpathy_split_path=args.karpathy_split_path,
mode='train',
num_im_unit=8192,
max_sp_len=args.max_sp_len,
max_txt_len=args.max_txt_len,
tokenizer='bert-base-uncased',
train_data=args.train_data,
image_tokenizer=args.image_tokenizer,
architecture=args.architecture,
)
args.bos, args.eos, args.pad = train_data.bos, train_data.eos, train_data.pad
if args.architecture == 'bert':
model = TMT(args, train_data.num_sp_unit, train_data.num_txt, train_data.num_im_unit)
else:
raise NotImplementedError
num_model = sum(p.numel() for p in model.parameters())
if args.fp16:
scaler = torch.cuda.amp.GradScaler()
else:
scaler = None
if args.checkpoint is not None:
if args.local_rank == 0:
print(f"Loading checkpoint: {args.checkpoint}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
model.load_state_dict(checkpoint['state_dict'])
del checkpoint
# no decay on bias and layernorm and embedding
no_decay = ["bias", "layernorm", "LayerNorm", "embeddings.weight"]
params = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
}
]
num_train = []
for param in params:
for p in param['params']:
num_train.append(p.numel())
num_train = sum(num_train)
if args.local_rank == 0:
print(f'Train # of params: {num_train} / {num_model}')
optimizer = optim.AdamW(params, lr=args.lr, weight_decay=args.weight_decay, amsgrad=True)
if args.warmup:
if args.tot_iters is not None:
scheduler = CosineAnnealingLRWarmup(optimizer, T_max=args.tot_iters, T_warmup=args.warmup_iteration)
else:
scheduler = LinearWarmup(optimizer, T_warmup=args.warmup_iteration)
else:
scheduler = None
if args.distributed:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model.cuda()
if args.local_rank == 0:
num_in_optimizer = []
for param in optimizer.param_groups:
for p in param['params']:
num_in_optimizer.append(p.numel())
print(f"Params in optimizer: {sum(num_in_optimizer)}")
if args.distributed:
model = DDP(model,
device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=False \
if args.im_txt and args.im_sp and args.sp_txt and args.sp_im and args.txt_im and args.txt_sp \
else True,
)
if args.image_tokenizer == 'SEED':
from SEED.models.seed_llama_tokenizer import ImageTokenizer
vq_model = ImageTokenizer(model_path='./pretrained/seed_quantizer.pt',
diffusion_model_path='stabilityai/stable-diffusion-2-1-unclip',
fp16=False,
load_diffusion=True if args.generate_im else False)
if args.generate_im:
vq_model.diffusion_model.enable_xformers_memory_efficient_attention()
else:
assert NotImplementedError
vq_model.requires_grad_(False)
vq_model.cuda()
# _ = validate(model, vq_model, fast_validate=True)
train(model, vq_model, train_data, args.epochs, optimizer=optimizer, scheduler=scheduler, args=args, scaler=scaler)
def train(model, vq_model, train_data, epochs, optimizer, scheduler, args, scaler):
best_val_bleu = 0.0
now = datetime.now()
dt_string = now.strftime("%Y_%m_%d_%H:%M:%S")
if args.local_rank == 0:
writer = SummaryWriter(comment=os.path.split(args.checkpoint_dir)[-1])
if args.project is not None:
wandbrun = wandb.init(project="TMT", name=args.project + f'_{dt_string}')
wandbrun.config.epochs = args.epochs
wandbrun.config.batch_size = args.batch_size
wandbrun.config.learning_rate = args.lr
wandbrun.config.architecture = args.architecture
wandbrun.config.eval_step = args.eval_step
wandbrun.config.update_frequency = args.update_frequency
wandbrun.config.warmup = args.warmup
wandbrun.config.warmup_iteration = args.warmup_iteration
wandbrun.config.im_txt = args.im_txt
wandbrun.config.im_sp = args.im_sp
wandbrun.config.sp_txt = args.sp_txt
wandbrun.config.sp_im = args.sp_im
wandbrun.config.txt_sp = args.txt_sp
wandbrun.config.txt_im = args.txt_im
wandbrun.config.pad = args.pad
wandbrun.config.bos = args.bos
wandbrun.config.eos = args.eos
wandbrun.config.txt = args.txt
wandbrun.config.sp = args.sp
wandbrun.config.im = args.im
wandbrun.config.fp16 = args.fp16
wandbrun.config.tot_iters = args.tot_iters
wandbrun.config.image_tokenizer = args.image_tokenizer
wandbrun.config.generate_im = args.generate_im
else:
wandbrun = None
else:
writer = None
wandbrun = None
model.train()
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_data)
else:
train_sampler = None
dataloader = DataLoader(
train_data,
shuffle=False if args.distributed else True,
batch_size=args.batch_size,
num_workers=args.workers,
pin_memory=True,
sampler=train_sampler,
collate_fn=lambda x: train_data.collate_fn(x),
)
samples = len(dataloader.dataset)
batch_size = dataloader.batch_size
step = args.start_step
optimizer.zero_grad()
for epoch in range(args.start_epoch, epochs):
loss_list = []
it_uer_list, is_uer_list, ts_uer_list, st_uer_list = [], [], [], []
it_acc_list, is_acc_list, ts_acc_list, ti_acc_list, st_acc_list, si_acc_list = [], [], [], [], [], []
if args.distributed:
train_sampler.set_epoch(epoch)
if args.local_rank == 0:
print(f"Epoch [{epoch}/{epochs}]")
prev_time = time.time()
for i, batch in enumerate(dataloader):
if args.local_rank == 0 and i % 100 == 0:
iter_time = (time.time() - prev_time) / 100
prev_time = time.time()
print("******** Training [%d / %d] : %d / %d, Iter Time : %.3f sec, Learning Rate of %f ********" % (
epoch, epochs, (i + 1) * batch_size, samples, iter_time, optimizer.param_groups[0]['lr']))
image_input, sp_unit, txt_unit, sp_unit_len, txt_unit_len, _ = batch
gt_im_unit = im_unit_preparation(args, image_input.cuda(), vq_model)
im_unit = train_data.add_special_room(gt_im_unit.cpu())
im_unit = train_data.append_eos(im_unit)
im_unit = train_data.append_bos(im_unit)
# im_unit, sp_unit, txt_unit, sp_unit_len, txt_unit_len
with torch.autocast(device_type='cuda', dtype=torch.float16) if args.fp16 else contextlib.nullcontext():
output_is, output_it, output_st, output_si, output_ts, output_ti, is_loss, it_loss, st_loss, si_loss, ts_loss, ti_loss \
= model(im_unit.cuda(), sp_unit.cuda(), txt_unit.cuda(), sp_unit_len, txt_unit_len)
loss = (is_loss + it_loss + st_loss + si_loss + ts_loss + ti_loss) / (args.num_task * args.update_frequency)
if args.fp16:
scaler.scale(loss).backward()
loss = loss.float()
else:
loss.backward()
if ((i + 1) % args.update_frequency == 0) or (i + 1 == len(dataloader)):
step += 1
if args.fp16:
scaler.unscale_(optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=5.0)
if not torch.isfinite(grad_norm):
print(f"The grad norm is {grad_norm}. Skipping updating the model.")
scaler.step(optimizer)
scaler.update()
else:
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=5.0)
if not torch.isfinite(grad_norm):
print(f"The grad norm is {grad_norm}. Skipping updating the model.")
else:
optimizer.step()
optimizer.zero_grad()
if scheduler is not None:
scheduler.step()
else:
continue
loss = loss.cpu().item()
## image -> text
if args.im_txt:
output_it.logits = output_it.logits.float()
it_loss = it_loss.float().cpu().item()
it_results, it_gt_txt, it_acc_list, it_uer_list = process_text(args, output_it, train_data, txt_unit, txt_unit_len, it_acc_list, it_uer_list)
save_log(args, step=step, results=it_results, gt=it_gt_txt, acc_list=it_acc_list, uer_list=it_uer_list, loss=it_loss, writer=writer, wandbrun=wandbrun, text='Image -> Text', task='it')
## image -> speech
if args.im_sp:
output_is.logits = output_is.logits.float()
is_loss = is_loss.float().cpu().item()
is_results, is_gt_sp, is_acc_list, is_uer_list = process_speech(args, output_is, train_data, sp_unit, sp_unit_len, is_acc_list, is_uer_list)
save_log(args, step=step, results=is_results, gt=is_gt_sp, acc_list=is_acc_list, uer_list=is_uer_list, loss=is_loss, writer=writer, wandbrun=wandbrun, text='Image -> Speech', task='is')
## speech -> text
if args.sp_txt:
output_st.logits = output_st.logits.float()
st_loss = st_loss.float().cpu().item()
st_results, st_gt_txt, st_acc_list, st_uer_list = process_text(args, output_st, train_data, txt_unit, txt_unit_len, st_acc_list, st_uer_list)
save_log(args, step=step, results=st_results, gt=st_gt_txt, acc_list=st_acc_list, uer_list=st_uer_list, loss=st_loss, writer=writer, wandbrun=wandbrun, text='Speech -> Text', task='st')
## speech -> image
if args.sp_im:
output_si.logits = output_si.logits.float()
si_loss = si_loss.float().cpu().item()
si_results, si_gt_im, si_pred_im = process_image(output_si, train_data, vq_model, gt_im_unit, si_acc_list, args, generate=True if (step % args.generation_step == 0 and args.generate_im) else False)
save_log(args, step=step, results=si_results, gt=si_gt_im, acc_list=si_acc_list, uer_list=None, loss=si_loss, writer=writer, wandbrun=wandbrun, text='Speech -> Image', task='si', pred_im=si_pred_im)
if args.distributed:
dist.barrier()
## text -> speech
if args.txt_sp:
output_ts.logits = output_ts.logits.float()
ts_loss = ts_loss.float().cpu().item()
ts_results, ts_gt_sp, ts_acc_list, ts_uer_list = process_speech(args, output_ts, train_data, sp_unit, sp_unit_len, ts_acc_list, ts_uer_list)
save_log(args, step=step, results=ts_results, gt=ts_gt_sp, acc_list=ts_acc_list, uer_list=ts_uer_list, loss=ts_loss, writer=writer, wandbrun=wandbrun, text='Text -> Speech', task='ts')
## text -> image
if args.txt_im:
output_ti.logits = output_ti.logits.float()
ti_loss = ti_loss.float().cpu().item()
ti_results, ti_gt_im, ti_pred_im = process_image(output_ti, train_data, vq_model, gt_im_unit, ti_acc_list, args, generate=True if (step % args.generation_step == 0 and args.generate_im) else False)
save_log(args, step=step, results=ti_results, gt=ti_gt_im, acc_list=ti_acc_list, uer_list=None, loss=ti_loss, writer=writer, wandbrun=wandbrun, text='Text -> Image', task='ti', pred_im=ti_pred_im)
if args.distributed:
dist.barrier()
loss_list.append(loss)
if args.local_rank == 0 and writer is not None:
writer.add_scalar('train/loss', loss, step)
writer.add_scalar('lr/learning_rate', optimizer.param_groups[0]['lr'], step)
if step % 100 == 0:
if args.fp16:
print(f'######## Step(Epoch): {step}({epoch}), Loss: {loss}, Scale: {scaler.get_scale()} #########')
else:
print(f'######## Step(Epoch): {step}({epoch}), Loss: {loss} #########')
if wandbrun is not None:
wandbrun.log({'train/loss': loss}, step)
wandbrun.log({'train/learning_rate': optimizer.param_groups[0]['lr']}, step)
if (step - 1) % args.eval_step == 0:
logs = validate(model, vq_model, epoch=epoch, writer=writer, fast_validate=True, wandbrun=wandbrun, step=step)
model.train()
if args.distributed:
dist.barrier()
if args.local_rank == 0:
print('VAL_UER: ', logs[0])
print('VAL_BLEU: ', logs[1])
print('Saving checkpoint: %d' % epoch)
if args.distributed:
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
if not os.path.exists(args.checkpoint_dir):
os.makedirs(args.checkpoint_dir)
torch.save({'state_dict': state_dict},
os.path.join(args.checkpoint_dir, 'Epoch_%04d_%05d_%.2f.ckpt' % (epoch, step, logs[1])))
if logs[1] >= best_val_bleu:
best_val_bleu = logs[1]
bests = glob.glob(os.path.join(args.checkpoint_dir, 'Best_*.ckpt'))
for prev in bests:
os.remove(prev)
torch.save({'state_dict': state_dict},
os.path.join(args.checkpoint_dir, 'Best_%04d_%05d_%.2f.ckpt' % (epoch, step, logs[1])))
if (step - 1) == args.tot_iters:
if args.distributed:
dist.barrier()
assert 1 == 0, 'Total Iteration Reached'
if args.local_rank == 0:
print('Finishing training')
def validate(model, vq_model, fast_validate=False, epoch=0, writer=None, wandbrun=None, step=0):
with torch.no_grad():
model.eval()
val_data = AVTDataset(
coco_path=args.coco_path,
flickr_path=args.flickr_path,
spcoco_path=args.spcoco_path,
spflickr_path=args.spflickr_path,
spcoco_split_path=args.spcoco_split_path,
karpathy_split_path=args.karpathy_split_path,
mode='val',
num_im_unit=8192,
max_sp_len=args.max_sp_len,
max_txt_len=args.max_txt_len,
test_data='coco',
tokenizer='bert-base-uncased',
image_tokenizer=args.image_tokenizer,
architecture=args.architecture,
)
dataloader = DataLoader(
val_data,
shuffle=False,
batch_size=args.batch_size,
num_workers=args.workers,
drop_last=False,
collate_fn=lambda x: val_data.collate_fn(x),
)
batch_size = dataloader.batch_size
if fast_validate:
samples = min(5 * batch_size, int(len(dataloader.dataset)))
max_batches = 5
else:
samples = int(len(dataloader.dataset))
max_batches = int(len(dataloader))
it_uer_list, st_uer_list, si_acc_list, ti_acc_list = [], [], [], []
it_gts = []
it_preds = []
gt_im = None
if args.local_rank == 0:
if os.path.exists(os.path.join(args.temp_dir, 'unit')) \
or os.path.exists(os.path.join(args.temp_dir, 'si_gt_images')) \
or os.path.exists(os.path.join(args.temp_dir, 'ti_gt_images')):
shutil.rmtree(args.temp_dir)
description = 'Validation on subset of the Val dataset' if fast_validate else 'Validation'
if args.local_rank == 0:
print(description)
for i, batch in enumerate(dataloader):
if args.local_rank == 0 and i % 10 == 0:
if not fast_validate:
print("******** Validation : %d / %d ********" % ((i + 1) * batch_size, samples))
image_input, sp_unit, txt_unit, sp_unit_len, txt_unit_len, f_names = batch
gt_im_unit = im_unit_preparation(args, image_input.cuda(), vq_model)
im_unit = val_data.add_special_room(gt_im_unit.cpu())
im_unit = val_data.append_eos(im_unit)
im_unit = val_data.append_bos(im_unit)
## im -> text
if args.im_txt:
with torch.autocast(device_type='cuda', dtype=torch.float16) if args.fp16 else contextlib.nullcontext():
if hasattr(model, "module"):
output_it = model.module.forward_task(im_unit.cuda(), None, None, None, input_modal='image', output_modal='text', inference=True)
else:
output_it = model.forward_task(im_unit.cuda(), None, None, None, input_modal='image', output_modal='text', inference=True)
it_gt_txt = val_data.tokenizer.batch_decode(txt_unit, skip_special_tokens=True)
it_results = val_data.tokenizer.batch_decode(output_it.cpu().detach(), skip_special_tokens=True)
it_uer = uer_calc(it_results, it_gt_txt)
it_gts.extend(it_gt_txt)
it_preds.extend(it_results)
it_uer_list.extend(it_uer)
if args.local_rank == 0:
if (i % 10) == 0:
print("*" * 10, "Image -> Text", "*" * 10)
for j in range(image_input.size(0)):
print(f"GT: {it_gt_txt[j]}\nPR : {it_results[j]}\n")
if args.distributed:
dist.barrier()
## im -> speech
if args.im_sp:
with torch.autocast(device_type='cuda', dtype=torch.float16) if args.fp16 else contextlib.nullcontext():
if hasattr(model, "module"):
output_is = model.module.forward_task(im_unit.cuda(), None, None, None, input_modal='image', output_modal='speech', inference=True)
else:
output_is = model.forward_task(im_unit.cuda(), None, None, None, input_modal='image', output_modal='speech', inference=True)
# is_results
is_results = output_is[:, 1:].cpu().detach().numpy()
gt_sp_unit = sp_unit[:, 1:].clone()
gt_sp_unit = val_data.del_special_room(gt_sp_unit)
is_results = val_data.del_special_room(is_results)
gt_sp_unit = decode(gt_sp_unit)
is_results = decode(is_results)
pred_sp_unit = [[int(u) for u in unit.split()] for unit in is_results]
if args.local_rank == 0:
for pred_sp, f_name in zip(pred_sp_unit, f_names):
save_name = os.path.join(args.temp_dir, 'is_unit', f_name + '.unit')
if not os.path.exists(os.path.dirname(save_name)):
os.makedirs(os.path.dirname(save_name))
torch.save(pred_sp, save_name)
if args.distributed:
dist.barrier()
## speech -> text
if args.sp_txt:
with torch.autocast(device_type='cuda', dtype=torch.float16) if args.fp16 else contextlib.nullcontext():
if hasattr(model, "module"):
output_st = model.module.forward_task(sp_unit.cuda(), sp_unit_len, None, None, input_modal='speech', output_modal='text', inference=True)
else:
output_st = model.forward_task(sp_unit.cuda(), sp_unit_len, None, None, input_modal='speech', output_modal='text', inference=True)
st_gt_txt = val_data.tokenizer.batch_decode(txt_unit, skip_special_tokens=True)
st_results = val_data.tokenizer.batch_decode(output_st.cpu().detach(), skip_special_tokens=True)
st_uer = uer_calc(st_results, st_gt_txt)
st_uer_list.extend(st_uer)
if args.local_rank == 0:
if (i % 10) == 0:
print("*" * 10, "Speech -> Text", "*" * 10)
for j in range(image_input.size(0)):
print(f"GT: {st_gt_txt[j]}\nPR : {st_results[j]}\n")
if args.distributed:
dist.barrier()
## text -> speech
if args.txt_sp:
with torch.autocast(device_type='cuda', dtype=torch.float16) if args.fp16 else contextlib.nullcontext():
if hasattr(model, "module"):
output_ts = model.module.forward_task(txt_unit.cuda(), txt_unit_len, None, None, input_modal='text', output_modal='speech', inference=True)
else:
output_ts = model.forward_task(txt_unit.cuda(), txt_unit_len, None, None, input_modal='text', output_modal='speech', inference=True)
# ts_results
ts_results = output_ts[:, 1:].cpu().detach().numpy()
gt_sp_unit = sp_unit[:, 1:].clone()
gt_sp_unit = val_data.del_special_room(gt_sp_unit)
ts_results = val_data.del_special_room(ts_results)
gt_sp_unit = decode(gt_sp_unit)
ts_results = decode(ts_results)
pred_sp_unit = [[int(u) for u in unit.split()] for unit in ts_results]
if args.local_rank == 0:
for pred_sp, f_name in zip(pred_sp_unit, f_names):
save_name = os.path.join(args.temp_dir, 'ts_unit', f_name + '.unit')
if not os.path.exists(os.path.dirname(save_name)):
os.makedirs(os.path.dirname(save_name))
torch.save(pred_sp, save_name)
if args.distributed:
dist.barrier()
if i >= max_batches:
break
## speech -> im
if args.sp_im:
with torch.autocast(device_type='cuda', dtype=torch.float16) if args.fp16 else contextlib.nullcontext():
if hasattr(model, "module"):
output_si = model.module.forward_task(sp_unit.cuda(), sp_unit_len, None, None, input_modal='speech', output_modal='image', inference=True)
else:
output_si = model.forward_task(sp_unit.cuda(), sp_unit_len, None, None, input_modal='speech', output_modal='image', inference=True)
# si_results
si_results = output_si[:, 1:33].cpu().detach().numpy()
si_results = val_data.del_special_room(si_results)
si_results[si_results < 0] = 0
if si_results.shape[1] < 32:
si_results = np.concatenate([si_results, np.ones([si_results.shape[0], 32 - si_results.shape[1]])], 1)
for b_size in range(si_results.shape[0]):
acc = (si_results[b_size] == gt_im_unit.cpu().numpy()[b_size]).mean()
si_acc_list.append(acc)
if args.generate_im:
gt_si_im = im_decode(args, gt_im_unit[:args.num_gen_im], vq_model)
si_pred_im = im_decode(args, si_results[:args.num_gen_im], vq_model)
if args.distributed:
dist.barrier()
if args.local_rank == 0:
for gt_im, pred_im, f_name in zip(gt_si_im, si_pred_im, f_names):
gt_save_name = os.path.join(args.temp_dir, 'si_gt_images', f_name + '.jpg')
save_name = os.path.join(args.temp_dir, 'si_images', f_name + '.jpg')
if not os.path.exists(os.path.dirname(save_name)):
os.makedirs(os.path.dirname(save_name))
if not os.path.exists(os.path.dirname(gt_save_name)):
os.makedirs(os.path.dirname(gt_save_name))
gt_im.save(gt_save_name)
pred_im.save(save_name)
if args.distributed:
dist.barrier()
## text -> im
if args.txt_im:
with torch.autocast(device_type='cuda', dtype=torch.float16) if args.fp16 else contextlib.nullcontext():
if hasattr(model, "module"):
output_ti = model.module.forward_task(txt_unit.cuda(), txt_unit_len, None, None, input_modal='text', output_modal='image', inference=True)
else:
output_ti = model.forward_task(txt_unit.cuda(), txt_unit_len, None, None, input_modal='text', output_modal='image', inference=True)
# ti_results
ti_results = output_ti[:, 1:33].cpu().detach().numpy()
ti_results = val_data.del_special_room(ti_results)
ti_results[ti_results < 0] = 0
if ti_results.shape[1] < 32:
ti_results = np.concatenate([ti_results, np.ones([ti_results.shape[0], 32 - ti_results.shape[1]])], 1)
for b_size in range(ti_results.shape[0]):
acc = (ti_results[b_size] == gt_im_unit.cpu().numpy()[b_size]).mean()
ti_acc_list.append(acc)
if args.generate_im:
gt_ti_im = im_decode(args, gt_im_unit[:args.num_gen_im], vq_model)
ti_pred_im = im_decode(args, ti_results[:args.num_gen_im], vq_model)
if args.distributed:
dist.barrier()
if args.local_rank == 0:
for gt_im, pred_im, f_name in zip(gt_ti_im, ti_pred_im, f_names):
gt_save_name = os.path.join(args.temp_dir, 'ti_gt_images', f_name + '.jpg')
save_name = os.path.join(args.temp_dir, 'ti_images', f_name + '.jpg')
if not os.path.exists(os.path.dirname(save_name)):
os.makedirs(os.path.dirname(save_name))
if not os.path.exists(os.path.dirname(gt_save_name)):
os.makedirs(os.path.dirname(gt_save_name))
gt_im.save(gt_save_name)
pred_im.save(save_name)
if args.distributed:
dist.barrier()
if args.im_txt:
it_gts = [[it_gt] for it_gt in it_gts]
it_BLEU_score = sacrebleu.corpus_bleu(it_preds, it_gts).format()
if args.local_rank == 0:
print("## IM -> Text BLEU ## \n", it_BLEU_score)
it_BLEU_score = float(it_BLEU_score.split()[2])
if args.local_rank == 0 and writer is not None:
writer.add_scalar('val/it_uer', np.mean(it_uer_list), step)
writer.add_scalar('val/it_bleu', it_BLEU_score, step)
if wandbrun is not None:
wandbrun.log({'val/it_uer': np.mean(it_uer_list)}, step)
wandbrun.log({'val/it_bleu': it_BLEU_score}, step)
if args.sp_txt:
if args.local_rank == 0 and writer is not None:
writer.add_scalar('val/st_uer', np.mean(st_uer_list), step)
if wandbrun is not None:
wandbrun.log({'val/st_uer': np.mean(st_uer_list)}, step)
if args.sp_im:
if args.local_rank == 0 and writer is not None:
writer.add_scalar('val/si_acc', np.mean(si_acc_list), step)
if wandbrun is not None:
wandbrun.log({'val/si_acc': np.mean(si_acc_list)}, step)
if args.generate_im:
for kk, (predict, truth) in enumerate(list(zip(si_pred_im, gt_si_im))[:args.num_gen_im]):
truth = truth.resize((224, 224))
predict = predict.resize((224, 224))
writer.add_image(f'val/GT_si/{kk}', np.array(truth), global_step=step, dataformats='HWC')
writer.add_image(f'val/Pred_si/{kk}', np.array(predict), global_step=step, dataformats='HWC')
if wandbrun is not None:
wandbrun.log({f'val/GT_si/{kk}': wandb.Image(truth)}, step)
wandbrun.log({f'val/Pred_si/{kk}': wandb.Image(predict)}, step)
if args.txt_im:
if args.local_rank == 0 and writer is not None:
writer.add_scalar('val/ti_acc', np.mean(ti_acc_list), step)
if wandbrun is not None:
wandbrun.log({'val/ti_acc': np.mean(ti_acc_list)}, step)
if args.generate_im:
for kk, (predict, truth) in enumerate(list(zip(ti_pred_im, gt_ti_im))[:args.num_gen_im]):
truth = truth.resize((224, 224))
predict = predict.resize((224, 224))
writer.add_image(f'val/GT_ti/{kk}', np.array(truth), global_step=step, dataformats='HWC')
writer.add_image(f'val/Pred_ti/{kk}', np.array(predict), global_step=step, dataformats='HWC')
if wandbrun is not None:
wandbrun.log({f'val/GT_ti/{kk}': wandb.Image(truth)}, step)
wandbrun.log({f'val/Pred_ti/{kk}': wandb.Image(predict)}, step)
if args.txt_sp:
speech_generation(args, task='ts')
if args.im_sp:
speech_generation(args, task='is')
is_BLEU_score = speech_bleu(args, task='is')
if args.local_rank == 0 and writer is not None:
writer.add_scalar('val/is_bleu', is_BLEU_score, step)
if wandbrun is not None:
wandbrun.log({'val/is_bleu': is_BLEU_score}, step)
if args.im_txt and args.im_sp:
return np.mean(it_uer_list), is_BLEU_score
elif args.im_txt:
return np.mean(it_uer_list), it_BLEU_score
elif args.im_sp:
return 1.0, is_BLEU_score
else:
return 1.0, 0.0
def generate_key_mask(length, sz):
masks = []
for i in range(length.size(0)):
mask = [1] * length[i]
mask += [0] * (sz - length[i])
masks += [torch.tensor(mask)]
masks = torch.stack(masks, dim=0)
return masks
def gen_to_pil(x):
x = torch.clamp(x, 0., 1.)
x = x.permute(1,2,0).numpy()
x = (255 * x).astype(np.uint8)
x = Image.fromarray(x)
if not x.mode == "RGB":
x = x.convert("RGB")
return x
def uer_calc(predict, truth):
uer = []
for pred, truth in zip(predict, truth):
uer.append(1.0 * editdistance.eval(pred.split(' '), truth.split(' ')) / len(truth.split(' ')))
return uer
def decode(units):
out = list()
if not isinstance(units, np.ndarray):
units = units.numpy()
for unit in units:
valid_unit = list()
for u in unit:
if u >= 0:
valid_unit.append(str(u))
elif u <= -100: # EOS
break
else:
continue
out.append(' '.join(valid_unit))
return out
def process_text(args, output, dataset, txt_unit, txt_unit_len, acc_list, uer_list):
txt_unit_len -= 1
results = F.softmax(output.logits, dim=2).cpu()
_, results = results.topk(1, dim=2)
results = results.squeeze(dim=2).detach().numpy()
gt_txt = txt_unit[:, 1:].clone()
results = results[:, :-1]
for b_size in range(results.shape[0]):
acc = (results[b_size, :txt_unit_len[b_size]] == gt_txt.numpy()[b_size, :txt_unit_len[b_size]]).mean()
if not np.isnan(acc):
acc_list.append(acc)
gt_txt = dataset.tokenizer.batch_decode(gt_txt, skip_special_tokens=True)
results = dataset.tokenizer.batch_decode(results, skip_special_tokens=True)
uer = uer_calc(results, gt_txt)
uer_list.extend(uer)
return results, gt_txt, acc_list, uer_list
def process_speech(args, output, dataset, sp_unit, sp_unit_len, acc_list, uer_list):
sp_unit_len -= 1
results = F.softmax(output.logits, dim=2).cpu()
_, results = results.topk(1, dim=2)
results = results.squeeze(dim=2).detach().numpy()
gt_sp = sp_unit[:, 1:].clone()
results = results[:, :-1]
for b_size in range(results.shape[0]):
acc = (results[b_size, :sp_unit_len[b_size]] == gt_sp.numpy()[b_size, :sp_unit_len[b_size]]).mean()
acc_list.append(acc)
gt_sp = dataset.del_special_room(gt_sp)
results = dataset.del_special_room(results)
gt_sp = decode(gt_sp)
results = decode(results)
uer = uer_calc(results, gt_sp)
uer_list.extend(uer)
return results, gt_sp, acc_list, uer_list
def process_image(output, dataset, vq_model, gt_im_unit, acc_list, args, generate=False):
results = F.softmax(output.logits, dim=2).cpu()
_, results = results.topk(1, dim=2)
results = results.squeeze(dim=2).detach().numpy()
results = results[:, :32]
results = dataset.del_special_room(results)
for b_size in range(results.shape[0]):
acc = (results[b_size] == gt_im_unit.cpu().numpy()[b_size]).mean()
acc_list.append(acc)
results[results < 0] = 0
if generate:
gt_images = im_decode(args, gt_im_unit[:args.num_gen_im], vq_model)
pred_images = im_decode(args, results[:args.num_gen_im], vq_model)
else:
gt_images = None
pred_images = None
return results, gt_images, pred_images
def save_log(args, step, results, gt, acc_list, uer_list, loss, writer, wandbrun, text='Image -> Text', task='it', pred_im=None):
if args.local_rank == 0:
if step % 100 == 0 and task not in ['si', 'ti']:
for (predict, truth) in list(zip(results, gt))[:3]:
print('*' * 5, f' {text} ', '*' * 5)
print(f'GT: {truth}')
print(f'PR: {predict}\n')
if writer is not None:
writer.add_scalar(f'train/{task}_acc', np.array(acc_list).mean(), step)
writer.add_scalar(f'train/{task}_loss', loss, step)
if uer_list is not None:
writer.add_scalar(f'train/{task}_uer', np.array(uer_list).mean(), step)
if pred_im is not None:
for kk, (predict, truth) in enumerate(list(zip(pred_im, gt))):
truth = truth.resize((224, 224))
predict = predict.resize((224, 224))
writer.add_image(f'train/GT_{task}/{kk}', np.array(truth), global_step=step, dataformats='HWC')
writer.add_image(f'train/Pred_{task}/{kk}', np.array(predict), global_step=step, dataformats='HWC')
if wandbrun is not None:
wandbrun.log({f'train/GT_{task}/{kk}': wandb.Image(truth)}, step)
wandbrun.log({f'train/Pred_{task}/{kk}': wandb.Image(predict)}, step)
if wandbrun is not None:
wandbrun.log({f'train/{task}_acc': np.array(acc_list).mean()}, step)
wandbrun.log({f'train/{task}_loss': loss}, step)
if uer_list is not None:
wandbrun.log({f'train/{task}_uer': np.array(uer_list).mean()}, step)
@torch.no_grad()
def speech_generation(args, task='is'):
##### Wav Gen #####
print('Generating WAV from Unit')
from fairseq.models.text_to_speech.vocoder import CodeHiFiGANVocoder
with open('./Vocoder/config.json') as f:
vocoder_cfg = json.load(f)
vocoder = CodeHiFiGANVocoder('./Vocoder/g_00950000', vocoder_cfg).cuda()
def load_code(in_file):
unit_paths = glob.glob(f"{in_file}/*.unit")
for unit_path in unit_paths:
unit = torch.load(unit_path)
if len(unit) < 5:
unit += [0] * (5 - len(unit))
yield unit_path, unit
data = load_code(os.path.join(args.temp_dir, f'{task}_unit'))
for d_path, d in tqdm(data):
f_name = os.path.splitext(os.path.basename(d_path))[0]
x = {
"code": torch.LongTensor(d).view(1, -1).cuda(),
}
with torch.no_grad():
wav = vocoder(x, True)
wav_array = wav.detach().cpu().numpy()
if args.local_rank == 0:
save_name = os.path.join(args.temp_dir, f'{task}_wav', f_name + '.wav')
if not os.path.exists(os.path.dirname(save_name)):
os.makedirs(os.path.dirname(save_name))
sf.write(save_name, wav_array, 16000)
if args.distributed:
dist.barrier()
del vocoder, x, wav, wav_array
return
@torch.no_grad()
def speech_bleu(args, task='is'):
##### Txt Gen #####
print('Generating Transcription from WAV')
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
asrmodel = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
asrmodel = asrmodel.cuda()
def load_wav(in_file):
wav_paths = glob.glob(f"{in_file}/*.wav")
for wav_path in wav_paths:
wav, sample_rate = sf.read(wav_path)
if len(wav) < 16000:
wav = np.concatenate([wav, np.zeros([16000 - len(wav)])], axis=0)
assert sample_rate == 16_000
yield wav_path, wav, sample_rate
data = load_wav(os.path.join(args.temp_dir, f'{task}_wav'))
for d_path, d, sr in tqdm(data):
f_name = os.path.splitext(os.path.basename(d_path))[0]
inputs = processor(d, sampling_rate=sr, return_tensors="pt", padding="longest")
with torch.no_grad():
logits = asrmodel(inputs.input_values.cuda(), attention_mask=inputs.attention_mask.cuda()).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
assert len(transcription) == 1
transcription = transcription[0]
if args.local_rank == 0:
save_name = os.path.join(args.temp_dir, f'{task}_transcription', f_name + '.txt')
if not os.path.exists(os.path.dirname(save_name)):
os.makedirs(os.path.dirname(save_name))
with open(save_name, 'w') as f:
f.write(transcription)
if args.distributed:
dist.barrier()
del asrmodel, logits, inputs, processor, predicted_ids