-
Notifications
You must be signed in to change notification settings - Fork 0
/
lstm.py
359 lines (280 loc) · 9.4 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#-*- coding: utf-8 -*-
import numpy as np # for computing
from matplotlib import pyplot as plt # for plotting
import argparse # for argument parsing from command line
import pickle # for data dumping as checkpoint files
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', help='training file', default="hello.txt")
parser.add_argument('-c', '--checkpoint', help='checkpoint file', default='')
parser.add_argument('-o', '--output', help='sample file', default="hello")
parser.add_argument('--lstm_size', help='number of hidden units', type=int, default=128)
parser.add_argument('--seq_length', help='sequence length', type=int, default=25)
parser.add_argument('--learning_rate', help='learning rate', type=int, default=-1)
parser.add_argument('--sample_interval', help='sample interval', type=int, default=1000)
parser.add_argument('--checkpoint_interval', help='checkpoint interval', type=int, default=1000)
parser.add_argument('--sample_length', help='sample length', type=int, default=500)
parser.add_argument('--plot', help='plot the error', default=False)
args = parser.parse_args()
# Define sigmoid function
def sigmoid(x):
return 1.0 / (1.0 + np.exp(-x))
# Define derivate of sigmoid function
def der_sigmoid(x):
return sigmoid(x) * (1.0 - sigmoid(x))
def tanh(x):
return np.tanh(x)
def der_tanh(x):
return 1.0 - np.tanh(x) ** 2
"""
Creating checkpoints shall be done in a more compact manner.
Multi layers will be problematic and redundant if not done so.
"""
def saveWeights():
weights = {}
weights['Wz'] = Wz
weights['Wi'] = Wi
weights['Wf'] = Wf
weights['Wo'] = Wo
weights['Rz'] = Rz
weights['Ri'] = Ri
weights['Rf'] = Rf
weights['Ro'] = Ro
weights['bz'] = bz
weights['bi'] = bi
weights['bf'] = bf
weights['bo'] = bo
weights['Wy'] = Wy
weights['by'] = by
weights['iteration'] = iteration
weights['smooth_loss'] = smooth_loss
weights['lstm_size'] = lstm_size
checkpoint = open(args.output + '.checkpoint', 'wb')
pickle.dump(weights, checkpoint)
checkpoint.close()
def loadWeights():
checkpoint = open(args.checkpoint, 'rb')
weights = pickle.load(checkpoint)
checkpoint.close()
global Wz, Wi, Wf, Wo, Rz, Ri, Rf, Ro, bz, bi, bf, bo, Wy, by, lstm_size, iteration, smooth_loss
Wz = weights['Wz']
Wi = weights['Wi']
Wf = weights['Wf']
Wo = weights['Wo']
Rz = weights['Rz']
Ri = weights['Ri']
Rf = weights['Rf']
Ro = weights['Ro']
bz = weights['bz']
bi = weights['bi']
bf = weights['bf']
bo = weights['bo']
Wy = weights['Wy']
by = weights['by']
iteration = weights['iteration']
smooth_loss = weights['smooth_loss']
lstm_size = weights['lstm_size'] # override default value or specified value
input_file = args.input
file_name = '.'.join(input_file.split('.')[0:-1])
lstm_size = args.lstm_size
seq_length = args.seq_length
learning_rate = pow(10, int(args.learning_rate))
output_file = args.output + '.out'
weight_scale = 1e-2
input_text = open(input_file, 'r').read().decode('utf-8')
words = list(set(input_text.split(' ')))
chars = list(set(input_text))
input_text_length = len(input_text)
vocab_size = len(chars)
char_to_ix = { ch:i for i,ch in enumerate(chars) }
ix_to_char = { i:ch for i,ch in enumerate(chars) }
if args.checkpoint is not '':
loadWeights()
else:
Wz = np.random.randn(lstm_size, vocab_size) * weight_scale
Wi = np.random.randn(lstm_size, vocab_size) * weight_scale
Wf = np.random.randn(lstm_size, vocab_size) * weight_scale
Wo = np.random.randn(lstm_size, vocab_size) * weight_scale
Rz = np.random.randn(lstm_size, lstm_size) * weight_scale
Ri = np.random.randn(lstm_size, lstm_size) * weight_scale
Rf = np.random.randn(lstm_size, lstm_size) * weight_scale
Ro = np.random.randn(lstm_size, lstm_size) * weight_scale
bz = np.zeros((lstm_size, 1))
bi = np.zeros((lstm_size, 1))
bf = np.zeros((lstm_size, 1))
bo = np.zeros((lstm_size, 1))
Wy = np.random.randn(vocab_size, lstm_size) * weight_scale
by = np.zeros((vocab_size, 1))
iteration = 0
smooth_loss = -np.log(1.0 / vocab_size) * seq_length
def lossFun(inputs, targets, hprev, cprev):
z, z_, i, i_, f, f_, o, o_ = {}, {}, {}, {}, {}, {}, {}, {}
x, c, h, y, p = {}, {}, {}, {}, {}
h[-1] = np.copy(hprev)
c[-1] = np.copy(cprev)
loss = 0
# forward pass
for t in xrange(len(inputs)):
# Input layer
x[t] = np.zeros((vocab_size, 1))
x[t][inputs[t]] = 1
# LSTM layer 1
z_[t] = np.dot(Wz, x[t]) + np.dot(Rz, h[t-1]) + bz
z[t] = tanh(z_[t])
i_[t] = np.dot(Wi, x[t]) + np.dot(Ri, h[t-1]) + bi
i[t] = sigmoid(i_[t])
f_[t] = np.dot(Wf, x[t]) + np.dot(Rf, h[t-1]) + bf
f[t] = sigmoid(f_[t])
c[t] = i[t] * z[t] + f[t] * c[t-1]
o_[t] = np.dot(Wo, x[t]) + np.dot(Ro, h[t-1]) + bo
o[t] = sigmoid(o_[t])
h[t] = tanh(c[t]) * o[t]
# output
y[t] = np.dot(Wy, h[t]) + by
# normalize
p[t] = np.exp(y[t]) / np.sum(np.exp(y[t]))
# loss
loss += -np.log(p[t][targets[t], 0])
dWz = np.zeros_like(Wz)
dWi = np.zeros_like(Wi)
dWf = np.zeros_like(Wf)
dWo = np.zeros_like(Wo)
dRz = np.zeros_like(Rz)
dRi = np.zeros_like(Ri)
dRf = np.zeros_like(Rf)
dRo = np.zeros_like(Ro)
dbz = np.zeros_like(bz)
dbi = np.zeros_like(bi)
dbf = np.zeros_like(bf)
dbo = np.zeros_like(bo)
dWy = np.zeros_like(Wy)
dby = np.zeros_like(by)
dz, di, df, do, dc = {}, {}, {}, {}, {}
dy, dh = {}, {}
dz[len(inputs)] = np.zeros_like(z[0])
di[len(inputs)] = np.zeros_like(i[0])
df[len(inputs)] = np.zeros_like(f[0])
do[len(inputs)] = np.zeros_like(o[0])
dc[len(inputs)] = np.zeros_like(c[0])
f[len(inputs)] = np.zeros_like(f[0])
# backprop
for t in reversed(xrange(len(inputs))):
dy[t] = np.copy(p[t])
dy[t][targets[t]] -= 1
dWy += np.outer(dy[t], h[t])
dby += dy[t]
dh[t] = np.dot(Wy.T, dy[t])
dh[t] += np.dot(Rz.T, dz[t+1])
dh[t] += np.dot(Ri.T, di[t+1])
dh[t] += np.dot(Rf.T, df[t+1])
dh[t] += np.dot(Ro.T, do[t+1])
do[t] = dh[t] * tanh(c[t]) * der_sigmoid(o_[t])
dc[t] = dh[t] * o[t] * der_tanh(c[t])
dc[t] += dc[t+1] * f[t+1]
df[t] = dc[t] * c[t-1] * der_sigmoid(f_[t])
di[t] = dc[t] * z[t] * der_sigmoid(i_[t])
dz[t] = dc[t] * i[t] * der_tanh(z_[t])
dWz += np.outer(dz[t], x[t])
dWi += np.outer(di[t], x[t])
dWf += np.outer(df[t], x[t])
dWo += np.outer(do[t], x[t])
dRz += np.outer(dz[t+1], h[t])
dRi += np.outer(di[t+1], h[t])
dRf += np.outer(df[t+1], h[t])
dRo += np.outer(do[t+1], h[t])
dbz += dz[t]
dbi += di[t]
dbf += df[t]
dbo += do[t]
return loss, dWz, dWi, dWf, dWo, dRz, dRi, dRf, dRo, dbz, dbi, dbf, dbo, dWy, dby, h[len(inputs)-1], c[len(inputs)-1]
def sample(h, c, seed_ix, n):
x = np.zeros((vocab_size, 1))
x[seed_ix] = 1
ixes = []
t = 0
while (t < n):# or (ix_to_char[ixes[-1]] != ' '): # also generate characters until the last word is completed
z_ = np.dot(Wz, x) + np.dot(Rz, h) + bz
z = tanh(z_)
i_ = np.dot(Wi, x) + np.dot(Ri, h) + bi
i = sigmoid(i_)
f_ = np.dot(Wf, x) + np.dot(Rf, h) + bf
f = sigmoid(f_)
c = i * z + f * c
o_ = np.dot(Wo, x) + np.dot(Ro, h) + bo
o = sigmoid(o_)
h = tanh(c) * o
y = np.dot(Wy, h) + by
p = np.exp(y) / np.sum(np.exp(y))
ix = np.random.choice(range(vocab_size), p=p.ravel())
x = np.zeros((vocab_size, 1))
x[ix] = 1
ixes.append(ix)
t = t + 1
return ixes
mWz = np.zeros_like(Wz)
mWf = np.zeros_like(Wf)
mWi = np.zeros_like(Wi)
mWo = np.zeros_like(Wo)
mRz = np.zeros_like(Rz)
mRf = np.zeros_like(Rf)
mRi = np.zeros_like(Ri)
mRo = np.zeros_like(Ro)
mbz = np.zeros_like(bz)
mbi = np.zeros_like(bi)
mbf = np.zeros_like(bf)
mbo = np.zeros_like(bo)
mWy = np.zeros_like(Wy)
mby = np.zeros_like(by)
loss_over_time = []
hprev = np.zeros((lstm_size, 1))
cprev = np.zeros((lstm_size, 1))
pointer = 0
fo = open(output_file, 'a')
fo.write('\n\n***********\n start \n***********\n'.encode('utf-8', 'ignore'))
fo.close()
try:
while True:
fo = open(output_file, 'a')
if pointer + seq_length + 1 >= input_text_length:
hprev = np.zeros((lstm_size, 1))
cprev = np.zeros((lstm_size, 1))
pointer = 0
inputs = [char_to_ix[ch] for ch in input_text[pointer:pointer+seq_length]]
targets = [char_to_ix[ch] for ch in input_text[pointer+1:pointer+seq_length+1]]
if iteration % args.sample_interval == 0:
sample_ix = sample(hprev, cprev, inputs[0], args.sample_length)
txt = ''.join(ix_to_char[ix] for ix in sample_ix)
sampled_words = list(set(txt.split(' ')))
correct = 0
for word in sampled_words:
if word in words:
correct = correct + 1
accuracy = correct * 1.0 / len(sampled_words)
txt = txt.encode('utf-8', 'ignore')
fo.write('\n-----\n' + txt + '\n-----\n')
loss, dWz, dWi, dWf, dWo, dRz, dRi, dRf, dRo, dbz, dbi, dbf, dbo, dWy, dby, hprev, cprev = lossFun(inputs, targets, hprev, cprev)
smooth_loss = smooth_loss * 0.999 + loss * 0.001
if args.plot:
loss_over_time.append(smooth_loss)
for param, dparam, mem in zip(
[Wz, Wf, Wi, Wo, Rz, Rf, Ri, Ro, bz, bf, bi, bo, Wy, by],
[dWz, dWf, dWi, dWo, dRz, dRf, dRi, dRo, dbz, dbf, dbi, dbo, dWy, dby],
[mWz, mWf, mWi, mWo, mRz, mRf, mRi, mRo, mbz, mbf, mbi, mbo, mWy, mby]):
mem += dparam * dparam
param += -learning_rate * dparam / np.sqrt(mem + 1e-8)
if iteration % args.sample_interval == 0:
if args.plot:
plt.clf()
plt.plot(loss_over_time)
plt.pause(0.1)
status = 'iteration: %d, loss: %.2f, accuracy: %.2f' % (iteration, smooth_loss, accuracy)
fo.write(status)
print status
if iteration % args.checkpoint_interval == 0:
saveWeights()
pointer += seq_length
iteration += 1
fo.close()
except KeyboardInterrupt:
fo.close()
print "\n"
exit