-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
213 lines (170 loc) · 8.8 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import argparse
import torch
import random
import numpy as np
import os
import time
from Data.Dataset import PotsdamDataset
from torch.utils.data import DataLoader
from Configs.config import Configurations
from BaseTester import BaseTester
from Utils.tools import AverageMeter
from metrics import Metrics
from PIL import Image
from Models.FCNs import FCN8s
class Predictor(object):
def __init__(self, configs, args, model, dataloader_predict):
super(Predictor, self).__init__()
self.configs = configs
self.args = args
self.device = torch.device('cpu' if self.args.gpu == -1 else 'cuda')
self.model = model.to(self.device)
self.dataloader_predict = dataloader_predict
assert args.resume_file is not None, \
'The path of checkpoint-best.pth can not be None'
self.resume_ckpt_path = args.resume_file
self.predict_path = args.save_path
def predict(self):
self._resume_ckpt(self.resume_ckpt_path)
self.model.eval()
inference_time = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
ave_loss = AverageMeter()
ave_acc = AverageMeter()
ave_iou = AverageMeter()
ave_iou_pc = AverageMeter()
ave_f1 = AverageMeter()
ave_f1_pc = AverageMeter()
with torch.no_grad():
tic = time.time()
for step, (data, target, filename) in enumerate(self.loader_test, start = 1):
# data
data = data.to(self.device, non_blocking=True)
target = target.to(self.device, non_blocking=True)
data_time.update(time.time() - tic)
inf_tic = time.time()
logits = self.model(data)
inference_time.update(time.time() - inf_tic)
self._save_pred(logits, filename)
loss = self.loss(logits, target)
# TODO return cpu version
metrics = Metrics(logits, target, self.configs.nb_classes)
acc = metrics.acc
f1_score_per_class, f1_score_overall = metrics.f1_score, metrics.mean_f1_score
iou_per_class, iou_overall = metrics.iou, metrics.mean_iou
# time and metrics
batch_time.update(time.time() - tic)
ave_loss.update(loss.data.item())
# TODO return cpu version
ave_acc.update(acc.data.item())
ave_iou_pc.update(iou_per_class.data)
ave_iou.update(iou_overall.data.item())
ave_f1.update(f1_score_overall.data.item())
ave_f1_pc.update(f1_score_per_class.data)
# TODO nan detector
assert ave_acc.average() != float('nan') and ave_f1.average() != float('nan') and \
(ave_f1_pc.average() != float('nan')).all(), 'Appears nan value in {}step of testing phase!'.format(step)
# display evaluation result at the end
print('Evaluation phase !\n'
'Time: {:.2f}, Data: {:.2f},\n'
'F1_Score: {:6.4f}, IoU:{:6.4f}\n'
'class0: {:6.4f}, {:6.4f}\n'
'class1: {:6.4f}, {:6.4f}\n'
'class2: {:6.4f}, {:6.4f}\n'
'class3: {:6.4f}, {:6.4f}\n'
'class4: {:6.4f}, {:6.4f}\n'
'class5: {:6.4f}, {:6.4f}\n'
'Accuracy: {:6.4f}, Loss: {:.6f}'
.format(batch_time.average(), data_time.average(),
ave_f1.average(), ave_iou.average(),
ave_f1_pc.average()[0], ave_iou_pc.average()[0],
ave_f1_pc.average()[1], ave_iou_pc.average()[1],
ave_f1_pc.average()[2], ave_iou_pc.average()[2],
ave_f1_pc.average()[3], ave_iou_pc.average()[3],
ave_f1_pc.average()[4], ave_iou_pc.average()[4],
ave_f1_pc.average()[5], ave_iou_pc.average()[5],
ave_acc.average(), ave_loss.average()))
print('For inference !\n'
'Total Time cost: {}s\n'
'Average Time cost per batch: {}s!'
.format(inference_time._get_sum(), inference_time.average()))
def _save_pred(self, logits, filenames):
# here need to extend from 1-dim to 3-dim in channel dimension
invert_mask_mapping = {
0: (255, 255, 255), # impervious surfaces
1: (0, 0, 255), # Buildings
2: (0, 255, 255), # Low Vegetation
3: (0, 255, 0), # Tree
4: (255, 255, 0), # Car
5: (255, 0, 0), # background/Clutter
}
for index, score_map in enumerate(logits):
label_map_1 = torch.argmax(score_map, dim = 0).unsqueeze(0).cpu()
# torch.expand share memory, so we choose cat operation
label_map_3 = torch.cat([label_map_1, label_map_1, label_map_1], dim=0)
#print(label_map_3.shape)
label_map_3 = label_map_3.permute(1,2,0)
for k in invert_mask_mapping:
label_map_3[(label_map_3 == torch.tensor([k,k,k])).all(dim=2)] = torch.tensor(invert_mask_mapping[k])
label_map_3 = Image.fromarray(np.asarray(label_map_3, dtype = np.uint8))
# filename of the image like top_potsdam_2_10_RGB_x.tif
filename = filenames[index].split('/')[-1].split('.')
save_filename = filename[0] + '_pred.' + filename[1]
save_path = os.path.join(self.predict_path, save_filename)
label_map_3.save(save_path)
def _resume_ckpt(self, resume_file):
resume_path = os.path.join(resume_file)
print(" + Loading Checkpoint: {} ... ".format(resume_path))
checkpoint = torch.load(resume_path)
assert str(self.model) == checkpoint['arch'], \
'The model architecture of the checkpoint is not matched to the current model architecture'
self.model.load_state_dict(checkpoint['state_dict'])
print(" + Checkpoint file: '{}'\n"
" + Prepare to run ! ! !"
.format(resume_path))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='configurations of training environment setting')
parser.add_argument('-input', metavar='input', type=str, default= None,
help='root path to directory containing input images, including train & valid & test')
parser.add_argument('-output', metavar='output', type=str, default= None,
help='root path to directory containing all the output, including predictions, logs and ckpt')
parser.add_argument('-resume_file', metavar='resume_file', type=str, default=None,
help='path to ckpt which will be loaded')
parser.add_argument('-threads', metavar='threads', type=int, default=8,
help='number of thread used for DataLoader')
parser.add_argument('-gpu', metavar='gpu', type=int, default=0,
help='gpu id to be used for prediction')
parser.add_argument('-config_path', metavar='config_path', type=str, default='./Configs/config.cfg',
help='path to config file path')
parser.add_argument('-save_path', metavar='save_path', type=str, default=None,
help='path to directory that save output images')
args = parser.parse_args()
assert os.path.exists(args.save_path), \
'the path to directory that saves output images cannot be found.'
assert os.path.exists(args.config_path), \
'config file path cannot be found'
configs = Configurations(args.config_path)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
# set random seeds
random.seed(configs.random_seed)
np.random.seed(configs.random_seed)
torch.manual_seed(configs.random_seed)
loss_weight = torch.tensor([2.942786693572998,
3.0553994178771973,
3.2896230220794678,
4.235183238983154,
7.793163776397705,
6.382354259490967])
model = FCN8s(configs=configs)
print(model.name)
dataset_test = PotsdamDataset(configs=configs, subset='test')
loader_test = DataLoader(dataset=dataset_test,
batch_size=configs.batch_size,
shuffle=False,
pin_memory=False,
num_workers=args.threads,
drop_last=True)
predictor = Predictor(configs=configs, args=args, model=model, dataloader_predict=loader_test)
predictor.predict()