-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathColiCell.m
184 lines (135 loc) · 6.34 KB
/
ColiCell.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
classdef ColiCell < handle
properties
validCell
cellMask
topLeftX
topLeftY
parentSize
area
length
tilt
cheYMeanIntensity
cheZMeanIntensity
clusters
expansion
end
methods
function self = ColiCell( cellMask, tlx, tly, mIntensity,...
valid, sz, mIntensityZ, expansion )
self.cellMask = zeros( size( cellMask ) +...
( 2 * [ expansion expansion ] ) );
self.cellMask( expansion + 1:end - expansion,...
expansion + 1:end-expansion ) = cellMask;
self.validCell = valid;
self.topLeftX = ceil( tlx ) - expansion;
self.topLeftY = ceil( tly ) - expansion;
self.cheYMeanIntensity = mIntensity;
self.cheZMeanIntensity = mIntensityZ;
self.parentSize = sz;
self.expansion = expansion;
if self.validCell == 0
rp = regionprops( cellMask, 'Area',...
'MajorAxisLength', 'Orientation' );
self.area = rp.Area;
self.length = rp.MajorAxisLength;
self.tilt = rp.Orientation;
end
end
function mask = expandedMask( self )
mask = bwmorph( self.cellMask, 'dilate',...
floor( self.expansion / 1.5 ) );
end
function mask = fullMask( self )
mask = zeros( self.parentSize );
mask( self.topLeftY:self.topLeftY + size( self.cellMask, 1 ) - 1,...
self.topLeftX:self.topLeftX + size( self.cellMask, 2 ) - 1 )...
= self.cellMask;
end
function mask = expandedFullMask( self )
mask = zeros( self.parentSize );
mask( self.topLeftY:self.topLeftY + size( self.cellMask, 1 ) - 1,...
self.topLeftX:self.topLeftX + size( self.cellMask, 2 ) - 1 )...
= self.expandedMask();
end
function image = subImage( self, image )
image = image( self.topLeftY:self.topLeftY +...
size( self.cellMask, 1 ) - 1,...
self.topLeftX:self.topLeftX +...
size( self.cellMask, 2 ) - 1 );
end
function getClusters( self, image, cellBasalLevel, blackLevel,...
statSet, threshold, searchRadius, minSize, maxSize,...
xPix, yPix )
maskedImage = image .* self.expandedFullMask();
%figure(1);
%imshow( maskedImage, [min(maskedImage(:)), max(maskedImage(:))]);
self.clusters = {};
count = 0;
while(1)
ok = true;
[ maxPixelValue, maxPixelIndex ] = max( maskedImage(:) );
[ maxPixelY, maxPixelX ] = ind2sub( size(...
maskedImage ), maxPixelIndex );
if ( maxPixelValue < threshold * self.cheZMeanIntensity )
break
end
clusterBoxXMin = maxPixelX - searchRadius;
clusterBoxXMax = maxPixelX + searchRadius;
clusterBoxYMin = maxPixelY - searchRadius;
clusterBoxYMax = maxPixelY + searchRadius;
[ clusterBoxY, clusterBoxX ] = meshgrid(...
clusterBoxYMin:clusterBoxYMax,...
clusterBoxXMin:clusterBoxXMax );
clusterImage = image(...
clusterBoxYMin:clusterBoxYMax,...
clusterBoxXMin:clusterBoxXMax );
clusterBasalLevel = cellBasalLevel(...
clusterBoxYMin:clusterBoxYMax,...
clusterBoxXMin:clusterBoxXMax );
sumMass = sum( clusterImage(:) );
sumXMass = sum( sum( clusterBoxX .* clusterImage, 1 ), 2 );
sumYMass = sum( sum( clusterBoxY .* clusterImage, 1 ), 2 );
clusterCoMX = sumXMass / sumMass;
clusterCoMY = sumYMass / sumMass;
% CENTROID TO BE CENTERED ON CLUSTER
% centroid is given relative to maxPixelIndex always
centroidX = clusterCoMX - maxPixelX;
centroidY = clusterCoMY - maxPixelY;
beta = [ centroidX, centroidY, maxPixelValue * 1.5, 1 ];
xyInput = zeros( 1, numel( clusterImage ) );
zOutput = double( reshape( clusterImage -...
clusterBasalLevel - blackLevel,...
1, numel( clusterImage ) ) );
beta = nlinfit( xyInput, zOutput, @( beta, ~ )...
beta(3) * exp( -2 * ( ( xPix - beta(1) ) .^ 2 +...
( yPix - beta(2) ) .^ 2 ) /...
( beta(4) ) ^ 2 ), beta, statSet );
if beta(4) < minSize
ok = false;
end
if beta(4) > maxSize
ok = false;
end
if ok
count = count + 1;
self.clusters{ count } = ColiCluster(...
beta(1) + maxPixelX, beta(2) + maxPixelY,...
beta(3), beta(4) );
end
maskedImage(...
clusterBoxYMin:clusterBoxYMax,...
clusterBoxXMin:clusterBoxXMax ) = 0;
end
end
function cc = clusterCount( self )
cc = numel( self.clusters );
end
function cf = clusterFraction( self )
cf = zeros( 1, numel( self.clusters ) );
for i = 1:numel( self.clusters )
cf(i) = self.clusters{i}.fraction(...
self.cheZMeanIntensity, self.area );
end
end
end
end