forked from victoresque/pytorch-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
105 lines (88 loc) · 2.87 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import argparse
import torch
from tqdm import tqdm
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from parse_config import ConfigParser
def main(config):
logger = config.get_logger("test")
# setup data_loader instances
data_loader = getattr(module_data, config["data_loader"]["type"])(
config["data_loader"]["args"]["data_dir"],
batch_size=512,
shuffle=False,
validation_split=0.0,
training=False,
num_workers=2,
)
# build model architecture
model = config.init_obj("arch", module_arch)
logger.info(model)
# get function handles of loss and metrics
loss_fn = getattr(module_loss, config["loss"])
metric_fns = [getattr(module_metric, met) for met in config["metrics"]]
logger.info("Loading checkpoint: {} ...".format(config.resume))
checkpoint = torch.load(config.resume)
state_dict = checkpoint["state_dict"]
if config["n_gpu"] > 1:
model = torch.nn.DataParallel(model)
model.load_state_dict(state_dict)
# prepare model for testing
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
model.eval()
total_loss = 0.0
total_metrics = torch.zeros(len(metric_fns))
with torch.no_grad():
for i, (data, target) in enumerate(tqdm(data_loader)):
data, target = data.to(device), target.to(device)
output = model(data)
#
# save sample images, or do something with output here
#
# computing loss, metrics on test set
loss = loss_fn(output, target)
batch_size = data.shape[0]
total_loss += loss.item() * batch_size
for i, metric in enumerate(metric_fns):
total_metrics[i] += metric(output, target) * batch_size
n_samples = len(data_loader.sampler)
log = {"loss": total_loss / n_samples}
log.update(
{
met.__name__: total_metrics[i].item() / n_samples
for i, met in enumerate(metric_fns)
}
)
logger.info(log)
if __name__ == "__main__":
args = argparse.ArgumentParser(description="PyTorch Template")
args.add_argument(
"-c",
"--config",
default=None,
type=str,
help="config file path (default: None)",
)
args.add_argument(
"-r",
"--resume",
default=None,
type=str,
help="path to latest checkpoint (default: None)",
)
args.add_argument(
"-d",
"--device",
default=None,
type=str,
help="indices of GPUs to enable (default: all)",
)
config = ConfigParser.from_args(args)
try:
main(config)
except KeyboardInterrupt:
print("-" * 89)
print("Exiting " + "!" * 10)