From 57472d01ad2a84ec1937ba5efb2ef084eda83d07 Mon Sep 17 00:00:00 2001 From: fxl <1475486684@qq.com> Date: Thu, 5 Dec 2024 00:07:05 +0800 Subject: [PATCH 1/2] "fix: incorrect-08-exercise-title" --- ..._pytorch_paper_replicating_exercises.ipynb | 992 +-- ...paper_replicating_exercise_solutions.ipynb | 7136 ++++++++--------- 2 files changed, 4064 insertions(+), 4064 deletions(-) diff --git a/extras/exercises/08_pytorch_paper_replicating_exercises.ipynb b/extras/exercises/08_pytorch_paper_replicating_exercises.ipynb index c859dac4..ab46bc42 100644 --- a/extras/exercises/08_pytorch_paper_replicating_exercises.ipynb +++ b/extras/exercises/08_pytorch_paper_replicating_exercises.ipynb @@ -1,524 +1,524 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "name": "08_pytorch_paper_replicating_exercises.ipynb", - "provenance": [], - "collapsed_sections": [], - "toc_visible": true, - "authorship_tag": "ABX9TyOhoCjGZZxrecbm76R8UJZn", - "include_colab_link": true - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - }, - "accelerator": "GPU", - "gpuClass": "standard" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "view-in-github" + }, + "source": [ + "\"Open" + ] }, - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "view-in-github", - "colab_type": "text" - }, - "source": [ - "\"Open" - ] - }, - { - "cell_type": "markdown", - "source": [ - "# 08. PyTorch Experiment Tracking Exercises\n", - "\n", - "Welcome to the 08. PyTorch Paper Replicating exercises.\n", - "\n", - "Your objective is to write code to satisify each of the exercises below.\n", - "\n", - "Some starter code has been provided to make sure you have all the resources you need.\n", - "\n", - "> **Note:** There may be more than one solution to each of the exercises.\n", - "\n", - "## Resources\n", - "\n", - "1. These exercises/solutions are based on [section 08. PyTorch Paper Replicating](https://www.learnpytorch.io/08_pytorch_paper_replicating/) of the Learn PyTorch for Deep Learning course by Zero to Mastery.\n", - "2. See a live [walkthrough of the solutions (errors and all) on YouTube](https://youtu.be/tjpW_BY8y3g) (but try the exercises yourself first!).\n", - "3. See [all solutions on the course GitHub](https://github.com/mrdbourke/pytorch-deep-learning/tree/main/extras/solutions).\n", - "\n", - "> **Note:** The first section of this notebook is dedicated to getting various helper functions and datasets used for the exercises. The exercises start at the heading \"Exercise 1: ...\"." - ], - "metadata": { - "id": "zNqPNlYylluR" - } - }, - { - "cell_type": "markdown", - "source": [ - "### Get various imports and helper functions\n", - "\n", - "The code in the following cells prepares imports and data for the exercises below. They are taken from [08. PyTorch Paper Replicating](https://www.learnpytorch.io/08_pytorch_paper_replicating/). " - ], - "metadata": { - "id": "sf8ab9cyHTzU" - } + { + "cell_type": "markdown", + "metadata": { + "id": "zNqPNlYylluR" + }, + "source": [ + "# 08. PyTorch Paper Replicating Exercises\n", + "\n", + "Welcome to the 08. PyTorch Paper Replicating exercises.\n", + "\n", + "Your objective is to write code to satisify each of the exercises below.\n", + "\n", + "Some starter code has been provided to make sure you have all the resources you need.\n", + "\n", + "> **Note:** There may be more than one solution to each of the exercises.\n", + "\n", + "## Resources\n", + "\n", + "1. These exercises/solutions are based on [section 08. PyTorch Paper Replicating](https://www.learnpytorch.io/08_pytorch_paper_replicating/) of the Learn PyTorch for Deep Learning course by Zero to Mastery.\n", + "2. See a live [walkthrough of the solutions (errors and all) on YouTube](https://youtu.be/tjpW_BY8y3g) (but try the exercises yourself first!).\n", + "3. See [all solutions on the course GitHub](https://github.com/mrdbourke/pytorch-deep-learning/tree/main/extras/solutions).\n", + "\n", + "> **Note:** The first section of this notebook is dedicated to getting various helper functions and datasets used for the exercises. The exercises start at the heading \"Exercise 1: ...\"." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sf8ab9cyHTzU" + }, + "source": [ + "### Get various imports and helper functions\n", + "\n", + "The code in the following cells prepares imports and data for the exercises below. They are taken from [08. PyTorch Paper Replicating](https://www.learnpytorch.io/08_pytorch_paper_replicating/). " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "ChRaHUSJ8DYZ", + "outputId": "8f1c0a98-c04a-4d4b-a748-e591a315f805" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# For this notebook to run with updated APIs, we need torch 1.12+ and torchvision 0.13+\n", - "try:\n", - " import torch\n", - " import torchvision\n", - " assert int(torch.__version__.split(\".\")[1]) >= 12, \"torch version should be 1.12+\"\n", - " assert int(torchvision.__version__.split(\".\")[1]) >= 13, \"torchvision version should be 0.13+\"\n", - " print(f\"torch version: {torch.__version__}\")\n", - " print(f\"torchvision version: {torchvision.__version__}\")\n", - "except:\n", - " print(f\"[INFO] torch/torchvision versions not as required, installing nightly versions.\")\n", - " !pip3 install -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cu113\n", - " import torch\n", - " import torchvision\n", - " print(f\"torch version: {torch.__version__}\")\n", - " print(f\"torchvision version: {torchvision.__version__}\")\n" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "ChRaHUSJ8DYZ", - "outputId": "8f1c0a98-c04a-4d4b-a748-e591a315f805" - }, - "execution_count": 2, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "torch version: 1.12.0+cu113\n", - "torchvision version: 0.13.0+cu113\n" - ] - } - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "torch version: 1.12.0+cu113\n", + "torchvision version: 0.13.0+cu113\n" + ] + } + ], + "source": [ + "# For this notebook to run with updated APIs, we need torch 1.12+ and torchvision 0.13+\n", + "try:\n", + " import torch\n", + " import torchvision\n", + " assert int(torch.__version__.split(\".\")[1]) >= 12, \"torch version should be 1.12+\"\n", + " assert int(torchvision.__version__.split(\".\")[1]) >= 13, \"torchvision version should be 0.13+\"\n", + " print(f\"torch version: {torch.__version__}\")\n", + " print(f\"torchvision version: {torchvision.__version__}\")\n", + "except:\n", + " print(f\"[INFO] torch/torchvision versions not as required, installing nightly versions.\")\n", + " !pip3 install -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cu113\n", + " import torch\n", + " import torchvision\n", + " print(f\"torch version: {torch.__version__}\")\n", + " print(f\"torchvision version: {torchvision.__version__}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "Y5H5P8EjCNGK", + "outputId": "4214da9e-f3a8-43e6-a48c-1a33f44a9be9" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# Continue with regular imports\n", - "import matplotlib.pyplot as plt\n", - "import torch\n", - "import torchvision\n", - "\n", - "from torch import nn\n", - "from torchvision import transforms\n", - "\n", - "# Try to get torchinfo, install it if it doesn't work\n", - "try:\n", - " from torchinfo import summary\n", - "except:\n", - " print(\"[INFO] Couldn't find torchinfo... installing it.\")\n", - " !pip install -q torchinfo\n", - " from torchinfo import summary\n", - "\n", - "# Try to import the going_modular directory, download it from GitHub if it doesn't work\n", - "try:\n", - " from going_modular.going_modular import data_setup, engine\n", - " from helper_functions import download_data, set_seeds, plot_loss_curves\n", - "except:\n", - " # Get the going_modular scripts\n", - " print(\"[INFO] Couldn't find going_modular or helper_functions scripts... downloading them from GitHub.\")\n", - " !git clone https://github.com/mrdbourke/pytorch-deep-learning\n", - " !mv pytorch-deep-learning/going_modular .\n", - " !mv pytorch-deep-learning/helper_functions.py . # get the helper_functions.py script\n", - " !rm -rf pytorch-deep-learning\n", - " from going_modular.going_modular import data_setup, engine\n", - " from helper_functions import download_data, set_seeds, plot_loss_curves" - ], - "metadata": { - "id": "Y5H5P8EjCNGK", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "4214da9e-f3a8-43e6-a48c-1a33f44a9be9" - }, - "execution_count": 3, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "[INFO] Couldn't find torchinfo... installing it.\n", - "[INFO] Couldn't find going_modular or helper_functions scripts... downloading them from GitHub.\n", - "Cloning into 'pytorch-deep-learning'...\n", - "remote: Enumerating objects: 2589, done.\u001b[K\n", - "remote: Counting objects: 100% (28/28), done.\u001b[K\n", - "remote: Compressing objects: 100% (17/17), done.\u001b[K\n", - "remote: Total 2589 (delta 11), reused 28 (delta 11), pack-reused 2561\u001b[K\n", - "Receiving objects: 100% (2589/2589), 446.45 MiB | 41.00 MiB/s, done.\n", - "Resolving deltas: 100% (1455/1455), done.\n", - "Checking out files: 100% (184/184), done.\n" - ] - } - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "[INFO] Couldn't find torchinfo... installing it.\n", + "[INFO] Couldn't find going_modular or helper_functions scripts... downloading them from GitHub.\n", + "Cloning into 'pytorch-deep-learning'...\n", + "remote: Enumerating objects: 2589, done.\u001b[K\n", + "remote: Counting objects: 100% (28/28), done.\u001b[K\n", + "remote: Compressing objects: 100% (17/17), done.\u001b[K\n", + "remote: Total 2589 (delta 11), reused 28 (delta 11), pack-reused 2561\u001b[K\n", + "Receiving objects: 100% (2589/2589), 446.45 MiB | 41.00 MiB/s, done.\n", + "Resolving deltas: 100% (1455/1455), done.\n", + "Checking out files: 100% (184/184), done.\n" + ] + } + ], + "source": [ + "# Continue with regular imports\n", + "import matplotlib.pyplot as plt\n", + "import torch\n", + "import torchvision\n", + "\n", + "from torch import nn\n", + "from torchvision import transforms\n", + "\n", + "# Try to get torchinfo, install it if it doesn't work\n", + "try:\n", + " from torchinfo import summary\n", + "except:\n", + " print(\"[INFO] Couldn't find torchinfo... installing it.\")\n", + " !pip install -q torchinfo\n", + " from torchinfo import summary\n", + "\n", + "# Try to import the going_modular directory, download it from GitHub if it doesn't work\n", + "try:\n", + " from going_modular.going_modular import data_setup, engine\n", + " from helper_functions import download_data, set_seeds, plot_loss_curves\n", + "except:\n", + " # Get the going_modular scripts\n", + " print(\"[INFO] Couldn't find going_modular or helper_functions scripts... downloading them from GitHub.\")\n", + " !git clone https://github.com/mrdbourke/pytorch-deep-learning\n", + " !mv pytorch-deep-learning/going_modular .\n", + " !mv pytorch-deep-learning/helper_functions.py . # get the helper_functions.py script\n", + " !rm -rf pytorch-deep-learning\n", + " from going_modular.going_modular import data_setup, engine\n", + " from helper_functions import download_data, set_seeds, plot_loss_curves" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 }, + "id": "bE1AAH_uCjiP", + "outputId": "d4f0001d-3854-4845-f195-eeb08c503aa8" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", - "device" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 35 - }, - "id": "bE1AAH_uCjiP", - "outputId": "d4f0001d-3854-4845-f195-eeb08c503aa8" + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" }, - "execution_count": 4, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "'cuda'" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "string" - } - }, - "metadata": {}, - "execution_count": 4 - } + "text/plain": [ + "'cuda'" ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "device" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GmS5yuvxCpLp" + }, + "source": [ + "### Get data\n", + "\n", + "Want to download the data we've been using in PyTorch Paper Replicating: https://www.learnpytorch.io/08_pytorch_paper_replicating/#1-get-data" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "dm772wqgCzN9", + "outputId": "ca6c646d-dd40-4453-c12c-a1f0ef5f86f4" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "### Get data\n", - "\n", - "Want to download the data we've been using in PyTorch Paper Replicating: https://www.learnpytorch.io/08_pytorch_paper_replicating/#1-get-data" - ], - "metadata": { - "id": "GmS5yuvxCpLp" - } + "name": "stdout", + "output_type": "stream", + "text": [ + "[INFO] Did not find data/pizza_steak_sushi directory, creating one...\n", + "[INFO] Downloading pizza_steak_sushi.zip from https://github.com/mrdbourke/pytorch-deep-learning/raw/main/data/pizza_steak_sushi.zip...\n", + "[INFO] Unzipping pizza_steak_sushi.zip data...\n" + ] }, { - "cell_type": "code", - "source": [ - "# Download pizza, steak, sushi images from GitHub\n", - "image_path = download_data(source=\"https://github.com/mrdbourke/pytorch-deep-learning/raw/main/data/pizza_steak_sushi.zip\",\n", - " destination=\"pizza_steak_sushi\")\n", - "image_path" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "dm772wqgCzN9", - "outputId": "ca6c646d-dd40-4453-c12c-a1f0ef5f86f4" - }, - "execution_count": 5, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "[INFO] Did not find data/pizza_steak_sushi directory, creating one...\n", - "[INFO] Downloading pizza_steak_sushi.zip from https://github.com/mrdbourke/pytorch-deep-learning/raw/main/data/pizza_steak_sushi.zip...\n", - "[INFO] Unzipping pizza_steak_sushi.zip data...\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "PosixPath('data/pizza_steak_sushi')" - ] - }, - "metadata": {}, - "execution_count": 5 - } + "data": { + "text/plain": [ + "PosixPath('data/pizza_steak_sushi')" ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Download pizza, steak, sushi images from GitHub\n", + "image_path = download_data(source=\"https://github.com/mrdbourke/pytorch-deep-learning/raw/main/data/pizza_steak_sushi.zip\",\n", + " destination=\"pizza_steak_sushi\")\n", + "image_path" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "r1ML2c-dCzCi" + }, + "outputs": [], + "source": [ + "# Setup directory paths to train and test images\n", + "train_dir = image_path / \"train\"\n", + "test_dir = image_path / \"test\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nNBZ_2h_Cy86" + }, + "source": [ + "### Preprocess data\n", + "\n", + "Turn images into tensors using same code as PyTorch Paper Replicating section 2.1 and 2.2: https://www.learnpytorch.io/08_pytorch_paper_replicating/#21-prepare-transforms-for-images" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "mU0T4gP3DJdF", + "outputId": "de32055d-b807-4245-e4a6-c10653502630" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# Setup directory paths to train and test images\n", - "train_dir = image_path / \"train\"\n", - "test_dir = image_path / \"test\"" - ], - "metadata": { - "id": "r1ML2c-dCzCi" - }, - "execution_count": 6, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "### Preprocess data\n", - "\n", - "Turn images into tensors using same code as PyTorch Paper Replicating section 2.1 and 2.2: https://www.learnpytorch.io/08_pytorch_paper_replicating/#21-prepare-transforms-for-images" - ], - "metadata": { - "id": "nNBZ_2h_Cy86" - } - }, - { - "cell_type": "code", - "source": [ - "# Create image size (from Table 3 in the ViT paper) \n", - "IMG_SIZE = 224\n", - "\n", - "# Create transform pipeline manually\n", - "manual_transforms = transforms.Compose([\n", - " transforms.Resize((IMG_SIZE, IMG_SIZE)),\n", - " transforms.ToTensor(),\n", - "]) \n", - "print(f\"Manually created transforms: {manual_transforms}\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "mU0T4gP3DJdF", - "outputId": "de32055d-b807-4245-e4a6-c10653502630" - }, - "execution_count": 7, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Manually created transforms: Compose(\n", - " Resize(size=(224, 224), interpolation=bilinear, max_size=None, antialias=None)\n", - " ToTensor()\n", - ")\n" - ] - } - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Manually created transforms: Compose(\n", + " Resize(size=(224, 224), interpolation=bilinear, max_size=None, antialias=None)\n", + " ToTensor()\n", + ")\n" + ] + } + ], + "source": [ + "# Create image size (from Table 3 in the ViT paper) \n", + "IMG_SIZE = 224\n", + "\n", + "# Create transform pipeline manually\n", + "manual_transforms = transforms.Compose([\n", + " transforms.Resize((IMG_SIZE, IMG_SIZE)),\n", + " transforms.ToTensor(),\n", + "]) \n", + "print(f\"Manually created transforms: {manual_transforms}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "W4vWgIprDJau", + "outputId": "6de4b52b-1570-408a-8399-8f6465258a31" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# Set the batch size\n", - "BATCH_SIZE = 32 # this is lower than the ViT paper but it's because we're starting small\n", - "\n", - "# Create data loaders\n", - "train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(\n", - " train_dir=train_dir,\n", - " test_dir=test_dir,\n", - " transform=manual_transforms, # use manually created transforms\n", - " batch_size=BATCH_SIZE\n", - ")\n", - "\n", - "train_dataloader, test_dataloader, class_names" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "W4vWgIprDJau", - "outputId": "6de4b52b-1570-408a-8399-8f6465258a31" - }, - "execution_count": 8, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "(,\n", - " ,\n", - " ['pizza', 'steak', 'sushi'])" - ] - }, - "metadata": {}, - "execution_count": 8 - } + "data": { + "text/plain": [ + "(,\n", + " ,\n", + " ['pizza', 'steak', 'sushi'])" ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Set the batch size\n", + "BATCH_SIZE = 32 # this is lower than the ViT paper but it's because we're starting small\n", + "\n", + "# Create data loaders\n", + "train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(\n", + " train_dir=train_dir,\n", + " test_dir=test_dir,\n", + " transform=manual_transforms, # use manually created transforms\n", + " batch_size=BATCH_SIZE\n", + ")\n", + "\n", + "train_dataloader, test_dataloader, class_names" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "u7eLIFHyDJRr", + "outputId": "464ae045-dddd-40a4-ef6c-3414e3ebc787" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# Get a batch of images\n", - "image_batch, label_batch = next(iter(train_dataloader))\n", - "\n", - "# Get a single image from the batch\n", - "image, label = image_batch[0], label_batch[0]\n", - "\n", - "# View the batch shapes\n", - "image.shape, label" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "u7eLIFHyDJRr", - "outputId": "464ae045-dddd-40a4-ef6c-3414e3ebc787" - }, - "execution_count": 9, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "(torch.Size([3, 224, 224]), tensor(0))" - ] - }, - "metadata": {}, - "execution_count": 9 - } + "data": { + "text/plain": [ + "(torch.Size([3, 224, 224]), tensor(0))" ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Get a batch of images\n", + "image_batch, label_batch = next(iter(train_dataloader))\n", + "\n", + "# Get a single image from the batch\n", + "image, label = image_batch[0], label_batch[0]\n", + "\n", + "# View the batch shapes\n", + "image.shape, label" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 264 }, + "id": "2yyNHCmCDbSR", + "outputId": "da4b3c3a-6b9a-4954-9b44-226c89f89a8e" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# Plot image with matplotlib\n", - "plt.imshow(image.permute(1, 2, 0)) # rearrange image dimensions to suit matplotlib [color_channels, height, width] -> [height, width, color_channels]\n", - "plt.title(class_names[label])\n", - "plt.axis(False);" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 264 - }, - "id": "2yyNHCmCDbSR", - "outputId": "da4b3c3a-6b9a-4954-9b44-226c89f89a8e" - }, - "execution_count": 10, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAAD3CAYAAADmIkO7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9SaxlSZrn9fvM7Az33jf48yk8IjIicqqoys4q1cCiBE2J3iDEAsECMQhWiB0SrBBCzQIkGnYgBBtWiAUNvQGxQEiAUCNaNXQhqEXRTXVlVmZGRnj48NzfdO+795xjZh+Lz+zc656ZUZVBV1cgPVO43OO9O5xj9o3/7/99R1SVu3W37tZXb7m/6Au4W3frbv30daecd+tufUXXnXLerbv1FV13ynm37tZXdN0p5926W1/Rdaecd+tufUXXnXL+/2yJyG+JyB/9RV/H3frzX3JX57xbd+urue485926W1/RdaecX9ElIj8UkX9bRP6OiFyIyH8hIr2I/BUR+bS85p8XkfXBn0FE/qaIvPfWz29FRMt7viUi/6uIvBKRcxH5r0Tk3l/s3d6tn7bulPOrvf4l4J8AvgV8DPw7h79U1b+hqkeqegS8B/wJ8F+r6tP68/K7/w74b8rbBPgPy+u/A3wA/Lv/IG7mbv186045v9rrP1PVH6vqa+CvAf/iT3uRiDjgrwN/U1X/87d+928BvwT8KwCq+j1V/Z9VdVDVl8B/BPxjf543cbe+3Ap/0Rdwt75w/fjg3z/CvN1PW38NOAb+9cMfisg/CfwbwG+q6rb87B3gPwF+q7zHARd/fy/7bv39WHee86u9Pjj494fA07dfICL/AuZR/1lVnQ5+/ovAfwn8c6p6qOT/AaDAr6jqCfAvY6Hu3fqKrTvl/Gqvf01EviYi94G/CvyNw1+KyK8D/ynwz5QQtf78BPjvgb+qqn/rrc88BtbAlYi8D/ybf543cLe+/LpTzq/2+uvA/4QBPd8H/v23fv9PA2fA3zpAZv9H4DeAXwT+40PUtrzn3yu/vwL+B+C//QdwH3frS6w7EsJXdInID4F/VVX/l7/oa7lbfzHrznPerbv1FV13ynm37tZXdN2FtXfrbn1F153nvFt36yu6vpCE8E/9pYfFrQogqAIqZFUg471HRHAioIrzDnHCmCayZlRBNZf32v/LwvG1X32Po48XDMstmsDtHFntUpSEoIgo4hTnBFWHZiWlhPcBEJxzpKxUz++cQ0Tm/885z/fhvX/jvlJKiAjeN+Rsr1fN+OBIqqjIG5/Vti3TNOKdA1VyzvPvVRURR9b6/SA4RJzdPwnxE41rCNrgEZImpjSCD2h2eKeIJpxzqA/gPakZcKKEXaDbdVx9csmf/MH3yLuJE1mwCI5V6+mDw4nD+0BWwWXFe9s/1YxzHu9apggxB5SEc5mcJ7zPiGQa7/B4FFCE7BwxK+Bo8GhMeC+0fWCKE9thwHtP17ZM40iMkaZpSSqMSUEcwbWoetbbkWFKqDpCCPRdoPdK2waSRsZpYBwTCQje4Ug4BbIAHhc6RBxxiuQ8kZ0yoKwnB/0jju+/y/nlK15dvGKzviFNI20IdIslToTVYsHx0RGLxYImBHLOJisZpJR3U0omE2BnitrXS5EvFVJy3Gx2bG43HJ+sWPYLNGdEFbLiEDwZRbkdtvzgkx/x+vKCMSfECQ/vL3E+IS4jThmGkSAdq8Ux/9sfPv2pdeYvVM56I1U5QRGB4DziAqaTdjPemZDknHEiiJhCiIT9BuRM1sxuN7DMS4JvSRqxD8ooJvDiIAQPlI1KGVWdlcyuCbxzaLnOQ2XJeW847BqKMqc0v3Z/P/LGZ4oINdB35TNTjAQf7Hq0KnNVTHu9iOCdRxViTHjvUFVCCOAUwZE1mYFz9scJ+OBQjahT1GdwCXFKRwsD7C5GfvhH3+PVD1+xTIGT9piF8xy1DcvO0ZhEoWrX610ASVR7lDPFmArOmYFLccI5ilKbwUHA+2D3roo/ME5N1+G8MEw7pjix6BeAY5oiSCA0DRkhi+CDoDicE7bbW7yD1meaIPQtBIl4FK8Rp+C84DuPSjDDqGbUxDtUHVO5txQ61C1xjd2YT46RnvbkHmdty9G9e7x49jkXr17iRQjFWE/jyDiOdg4HKZwXB2rnrqrklOxem4acM5EE5nNIWVAxOfDe04YGzdn+qB2niBRDn2mblof3H7DZbkm7LZozt7cDq+MWcdD2DVNMTOPEMOx+pv59oXI652dBrEsx5TFBNY8jUDyloqKzFxMRNGcQwXkhBBiYGHcTkkBUiPYh2IdmgveIQNaifJrxvnpCUypTMGfXUhTPNicXj7hX4qq0qWx+VcL6td6H4p0TqpmcFUFx4uZ7N6XTN/7U79GcoRgnESGmCJrJybyJc5B0byTECzFH8IJDcSRyUFTsNIIXiMC1cP6j13zy935Mvp44DUuOfMeq6Wi90jjFqYIoDkWcmGfHPA5SzkOzKW+GmAZUlSYIIXhEFI8gTnDF00sRbK92784HcJ6YJsQ5+r4nxUxOCR9aYsqkZGcsvkEzDMNAdpPdn4PlqqF1CnGDB7q2J6uyjRPqPKHpyLQ45xlViTETfEPKkBBWp/c4e+9DHr7/dT78+jc5OT3jarPFdwtO7z/k6Wef8ekPf8DTH/0Jf/t3/nem3Q4REJSUlWEYCCGYAynRj3ghSNgbZUzGqqx7HDklUpHz3TCRNLNcLlAyw26gaRo8rhhH2xM044Ln4cOH7MaRz549ZRgHhiGyOl4SGscUIzErGdhN45dTTthbT/MEzMKe31JY1ATUu+LBckaLMvhincaUUJTtzS3DZmRx2iDFSsaYEOdQMoJZNVVB8BYaijPFkX0EUD0kMCvf3rC42YtWJatKVZXWjI+S84HioW98Rghh/14t3yn2/rIhOHGkHNEs5XPlQOEFR4kivJA141tfvEQmk8hOEOdx6tFbZff6lmf/zzkXn17S5sDKHXHse5bO04jgJOPUQvMgDuco12NeUsmkGA8Mkxm2tnE4sRMTzXjncdR9kOIJSnTkPSKOKdtnOQcpRnKCxgcLNWPCZQvrxXtSzqRxpA8CJZzr+gXBB7wTPB3Be4YhMsQI7YKER5slvl3R9Ecslktyzux2Iw/PHvDovff4+Lvf5aPv/ArN0QPaZkHjGxBLD77/wx/w9NUF7dEphBbvW5IM1GOsShdj3EdYWEhb98d7j5TzzjkTp2mf1ihMKbLd3aJYRKcpIgJpmlCgDWaERS0F88Ej3vPknXe4Wd/w+tK+e4rAmLnd3ZKz4sWxT75+TuU0N20Xv/c4ehgdmBBX61utkFYlEgRBUzZlVgulpl0k7TIaBec9eEVKSABu3pScIXgLd0wnEyLm0VNKBO9nI/F2eJpz3ucX5dpySjhn1yocKrvltinZFbsSEsvB50j5jjY0syeuhielZAoqec5j7TopFlwsPEdxRUEFyCRwgnOBPDqmTebms0tefO85XEUe+J4uNHR4eoReBC+ZrCMceH3vzFCkFInJJFKzGc2U7TrbJjCLpdg5iAg5JXLKiPPFSCXapsXhSFO0lMWLKSgZ7wIaEymVsFQc4gNTingRll0ATbTtgtB14HsILeIbxnHiNiZigBQE1y958M57PPngWzx+7yOevP8hq7NTU/ysrE5OWBwd47qOGBoinpw9owqi8OL8Bb//f/4fvPfB11k1Dc8+/YRu2aPj1nLBIq/1DNNbkVXKCYrDoZx3PWeqUQdijMQpEkKDF0WzmkEr+aZm23QnYsqWAcn0bcu77zxhe7tlM2653exoUyCLRxEQh7ifrYJfqJz7/IpZAVJK5ecyew+l5Dveco2chZxTCansgu3+BU0Qt4lxPbGMC1zwqEuEECyHKYpCyeFqyGQ/dzhnihNCQ4pppmwfGo/5bzGVcGKhsg/+4N7MEFTPCRYdNM48AOUeNZsRsJxu77m99/OhgxkoH4IdkNgJieQCOjjUEAhyyUMFDxLQrOQt7M4Hzv/4nM2nVxzllpO2pw/eFC9lOp9xkgkoOF8UMJMSpElnwXLl0DMZ5z1O7EyK/hpoB2i2aMeJmMfLBrY1jXmucYoWCYmBecEFck7EmBHxuOBpvCdlAR/oFoEYEymNLLolTdMhoUcWJ4SjM6Rd8u7DxyjCLk688977PHznCR9882NOHjwB16IugK/pDCQgOccklvOhijpBsnJx8Yrf+73f5eTkhG//4i+xfv2ak9NTVssjxusrNGWq+8w5M00TcZpmHCHGCHmf+gDEaSreFUtNgKhqEYLAatHjVE22czKP6+ys1TLP+RxM6eH+2RmbzYanz54xjCO3OZE1krKlcCfHiy+nnIdKWi2QCb/OSmI5p5RNqGFhCQ5LCGFhMMSc7aKTEHcJr44sjomJnAqoUcJiAVKacC7sUVCpoarlUCag9p1VOatHO1TYGsrW6/fOkUu+7FyY868K+OSUDUAAfGgOwKb0BopbP7vuDxkkCKK5eEdzn84V7+4ELw6Ps3ufMtvrkdc/vuDV988Ja3jkjlg1Lb2POEkEFxBvXk/IZmDE9iAr5ikVgqMAcQWcalq7Ju8QMYOX1fJyTeYNteTvzjtC8HN4LhJo2oYpJVIGcQ1ZE2M0cW/aBc4FRvG0qxX98Smh78kpEacdbXB0/Snf/MXv8uHH32X14AlH9x/huxXOebIH3wTwjkwgqiOrgDNJSoBKQY7FgFsh4zQjmrldr/nbv/s73Nys+Ud+5R/l5Pgew/qG5XLBomu59o6U8kGCAtM0MU1TMfAOdQ6nbg5rU4xvIbbFa6bMGM1wLboWlzPatjPWUr1DNSi5gBkWNjs0Jx7df8Bms+H84hUxKuARHMMuoas3Kwl/ZuV0riKU+SCn0xmltddYvJ4rHG0OZw4Fqd61IoYIkoU4RCRLESgTYFWZFXQON9h/D1iIoVpCaGEOTfe5cUWJDaR6O/cUsVKQFI9yiOhWQOgwjKccloXFxXqX8KhaSe88KZtHNONiXk2cx3sBBx5DJp06XBbiNnJ7vuX8T16xfnrF0eQ49h2dE9qQaVzGO+z9YuF7VmVIE15AxBuclA1ZrQaoItAidr2h8VaCKEioSEA8pBwxZDHgvJDyRFJHCB1IYIpKwhPVk5IVCXLocaEhNR3d0QlPvvEx73/jFzh59Jij03ukOLK+vuD4eMXDxx9w78ETpF8QxUClVBBdFYgFxKolOs1FzOUgUiv+CLVUySlMuy1/+If/Fz/+9BN+4zd+k0eP38eVHNiAPMULqAgx13zb9iTGSCjllL13K+WUGcW3b84kMkJMmZwyR/2CRpwBcAc4RM524RVryGrRlHeOPEWyZvqu4/HDh2x3W25ut6hIqXAI283w5ZQTnfPq+cJNxwq6hx6UTvaKVD1U0VN7n8gccrkmoJMyDZFwXG6qhG+uWCBX3phzpGk785AllxUqwiZzyFuVaH+tJqB7xdNZUavy1t87Zxmg/XuP8EoFxKSGwWqH6Kzu6r0vlreErgUgahpP1ojzxZN5Ky05hDQkdjc7Xn92yesfXBCu4B49xz6wCA4JGcJEI4YmZhXEWZ1viOY5vRgKmdQMQwU37D4sqrHIXIlTRApglIE4JXJO+OBo25YQGrJGfGjIKsRcSoyhJfiWpj2lOzpjuVox5oiEhnv3H/LdX/11PvhLv45fnaKhRZ0jNA5PJniI2jCWLDdTz0hx+3QOp1pSBUfwe6Bxj1kwA3GCkMaJv/t3/m/+4A/+gG9962O+/o1vE5oOcUJTDGPwnrZpidP2jRRHVZmmaS6xdW1r51/wg7lsWM67Gv6YLHxdLZfkFJGcTblU59KgiJTSmN8j+3mvpOKEs3unDNPE+PQpu9HydcEz7uYW3J9POXOayFSk1s3EAgDxFleW9NCOQRWtSmGIxAzIJOy9rWvpugUpJlNO7XDS4ryicbJQc1auUhYAYo4EF4gpgarVQeWNKN8scFEWy31LaKkye/uquN57u5+ci+IxH5yFqKZwPjhinBAnqHdoMv8fvMO5BERSHhF6CgSDukzbebP2HiYPbnKkG2V4MXL+J8/ZvlxzQsvKN/RO6LzQBIc6IapB8r7sYxwTYF5NRYhYXhTAQBknJWIRRDJZEynpnGs7hJQjMe9AHKHraPsV4lqSb3A+kJxjjIrzHaFfcfboCR9++2Meff3b3HvnfRarI6aYaNqG1dExvu3JLpT8txozRcWTqvXT6v20ComFfFJPrACGHNSWq0IJppSq+KykaeD7f++P+N3f+V3uPXzCd375N1gcnZrxSkoTGnxowXlC0+LczvJs2QObMU1MySPREUKDuCKvxTQ7cYYZ5IgmJcVEGiJ93xGCJ8YRL1YC0er5D4oEqnkGlswZlJsAgngeP3jAMIw8ff6cqWA34oWftb5QOUVkj3plJVWvo/uCKyWcIJubtpuz3XVirA/EXu88dE1DF1pudteMtwNL7YsCQ3QRTZZeo+BDudHqGWcF2pd1BFeYQ76ExtV76wGJorx2Dj/s+0hK1oQv9a4aqpbbMfkqwInV/Bw57w1CymaZnAtGIpCEBMudHIIkh5fAtE1sXt9y9ckl60+v8TeJU1mwdI7eKa1XgjOvgrpZQGNJBbwv55AiKuaxvVjZygyAGaI4TohP5qV9i0pDUiFqJuFpu57Q9LhuSbs6ZXX6gKPTB6zOzgjLFaqObnHMg3ee8Pj9Dzl9+AhtFqgLiPOIE8vVxRHNMh6oV5VQyxVVsPASsfOcT1HmqMhQUreP0EroqmL5e0YN6Z8mPvvkR/z2b/82iuOXf/lXOT45K+lJIicQ50GFlBVxlkPHlGpAVMA4S8+SS4zjhDYyp0tz6UWkpAyJcRzRnOjblhTj/h4OMIc3DHr9oHJ/qvt6OQht0/LuO4/ZbDa8vrpCi/78rPWnAkKVTFAvfmZTqCmiGj3ijeK+E7uJCn5kzQQn+CYQgiOlkSkPjJuApBPEQ57tkR245Y5ipQDcvIn7EPVNBtAsGzW3dQf1TF8V9Cdpfoehb1VOpYbQzICJSCZ4y5cpNVekXINTREbEY2G7eISAJthcDNw+3/DikxeMr3csU8Oxb1m5QO8Le8bV3MroXwIkcUQxkMepsWqakFFNOBTvGnwIpBJ6KYILLcKEhA5tVqSwRF1LvzpmsVzRCbjQsDx7wHvf+DYffPtjju8/oDs6wfe9XbcLuNCQxXJEStlCCsGh7nUuyaHOewfVbGmRUS1iI0VZ5SCXrFGOStpjEqpQym5aIp0UE6/Pz/nd3/s9nj1/wT/8W3+F997/Gt4HZFZy26cpJqaYcN7ojN4lkqgZ7aKlKSWiREQ84jxBzLx4EVLKRQ6FMSaGaSqKHtA44Q9cRQ2VD7GJfJC3HobUMyIswmKx4MmTd9gOA7e77Vwp+GnrT1XOCprUD5FyMxUIsiuYT6FsFIS2ofEeSyXNjDZtY5s4TTjJDNdbdExIa4GFOLH6WrIsxcGc14lATrV0sWcDHeaSh/nk4aZYTe/AAx+8tqLDphtWfkDcjN6GYPmjiGFseG+os695q4BkJGT7nuxwkydv4er5mtc/fsX09Jomwb2woPeBhTh6741i5xy5cjhLkOUKYJBL/mP7AqGSH6Qli2ckQNuCa2jajpgyTetx7YLTh1/j9N0POHv3I+6/9z5dv6CJmeXRMcuz+zSrY7TtiCKoHFA0xZERUi6hpWnTrHB7FKH8Xqq6FaWb/aMU9DLPIW5VQKcFl8DKbarJlCcrMmWmODHGke12x2a94Xt//H3++Hvf45vf+gW+/Qsf07YdtRJQy0EVWBpHQ5t9aGiazJRSSVEqFhJx4nE+zeSE4EMBzErUBQwpkVU5PlogBZn1JSqsbLgahR1WMt6mjM46U2VVhLN79xjHkR99+im74UsCQt77Eg7YmVjNzBVQqNCg6g1pLmwToQmeLpSit5bamq+1toiQCBnyZoJBkSMMBXOQs4WqmgFvypNyDewL+b4gyLXcMQvLbK0qyFMsfRGuQ5bQ/j1VkCwcqkpvXtaMRgjmKR0elWwEZsk4V2piZJAGT4CtEC8mLn58xfmPX6PrifvSsWgaOu9pgEAmOLPRSSwrE6pXL/uaJwtbvQE1+MCERSOT6+iPTzk+fcDy3hn9yRlHx2fc7nYcn95jcXKPr3/rlzh9/C5+cUTyHh8CoQShGUd2zjyjEyOBq6UrvuaFRQ+zlDBTq1+0ZWTLCtZgBgoMa8D2OxcB1yIHVTkrIytrZJoGdsMt2+2GYbtjc3nNxeUF5+cvefHyBefnF1xfr/nwo2/zq7/2G5ycnoG4OdGRWv4qdcnQ9sRpIDQteUoG0PhsxiaXyoNmJCVCKbtJNrKGeI/zjhQTY0ogjq7tyCkR3jD+so8oeZP2dyiHb8tmSsmiTJGC3u74/PPPf6b+/RnqnILVyXwBh4wYIIdoJoVF413J/Wr9s5CCC2qkxfOJKg2OYRuJm4nmQTuTwUWkhFCFipZ13oicapfKPhx9u+Z4+O/DDayvffs15Q7n3xtiV8IXLdSu4kVTUWDyRBMMwJEUjQwwLkibxPWnl9z8+IrxxZaTHFi6FQvv6EIgBMFh9685lVsuVn8mC5gCJWkhNLj+iHZ5Sn90j3GKdN2S9vQB7339Wzz+4ANOH73D4viM5eqIccr4xZLQ9ojzqDiSc1a6KH8qQGaVNpCSlqWSbAs6G5wasu5R9+LdLd5HCoJdu5RKrMq+LGVE/5Qi0xS5XW8YdluG7Y5xGtnc3nB1ecHri3NevnzB+vqG64tL1utrdrtbpphIWTg+vc9H3/gG77z3NZxv7CrnY6+Kn/E+cP/BI55eX9KUVMh5B4VWOctVttwzFpaZaxr2VL3EECeGcWLVLwppoWAXmfn+qry8rYiHPzvsjKp7V8Hg4D1PHj1i2G5/pub9mRhCc85Zw0WRwq2pX5hxzup4KqWTBCme1ISuombV4obsmYZEvI202iEBnBrgopWgU6B3p2+GCVqL6W95wsqDBaPOzfcwh9x7hZ3vDTtYKfmj/U7mcNoYRiUyE3CNIyRP1wRcioQsDNcj6xdrrp5dcfPZBf0gPJAFy7ahQfCNs+6LUGp6VE9s0QKuAd+AeJwPtG3L4vQRZ08+4OjhE04evcvJ2WOmBP1ixdGDxxydPcCvFmQfyOJQ8TQ4ojjGYm6sxFWFJ2OYrxHuAXwRFBXIrsI2QCFRgBqxu3S2yMHvbF8NJMnVW6ZETolxGhiGHZv1mt1ux/X1NVeXlzx7+jlXV1fcbm7Y7nZsNmu221umcWCK0wy+SQl3LYbynByvePjoIW3Xk7Hz4cCYmIw6fNNw7/4DPvvB9+f0p9L1co5I6ZoyTvYBnzpnGh9QB8M0sB0GpinRnXTknAjluxQtobz8RCj7BhkFfkKBaykO8aYDqqwWC7723s8aRfxn8pwGW+p8cvWLs1lPqWBBtbilw2LO1osjwpRaBRzeuk5SYryd6LPO4JLCG/ntfPi5+rd9KHGobIf/f4icVcZQDXPr586vzZWQcNCPKSU09lW41ZBjp4gH7wJOG/IWbl7f8uIHr7j5bINuE0c0HIfWvGWD0e9cMIPlBQik7MjiaZZHHN27z+L0jOXpfXzb433g+OSER1/7Bo8+/CbdyRm+X+FDa6iy2HuTQHRCcvOtmuJJEcoZMgQRY1R5gVq4ECmgSzk3X3PeIkiaElmz5de1xkxGFDRbrXQatkxxIsaRcRg4Pz/n+uqSq8sLNrdrXp2/YrNes17fsN3csr01wre42ozA7IV9TUnIFF9u+a94+q6l6zoUd6CY+zUDfc44q03bobs0R11zunBQy3bOI3MlIZe6vcnOMI4EbyR98jSTC1JR+Gq43+BvF3l/m7yy956ZWl7RkrqgcHx0/DM174tLKYWFcyjUTvYqYigmc8wfvCvIaKFOyd7ClUS1RiGGwKpntx44SWb5tDQcW6NwfVupRM3I4Jse3V4P3jezkuZcOG28Gc7U9+zRRZ0L9LaxFRap9thcSwh26NEZcizJsbsZef3JBZc/vmD78pajKCx9Tx8CfQiEoEgrSGiQcELb9XSLBVkdqoHj04c8/vAXePDhL3D84BHLew/wTYd4R9t2hOUSQkdyFpoKYnXNXBnB7JFSjBUjOZWGXwuYVQ+RdsXliukUbFxzAWIypEwaJ6ZhICfzXFOMDNNASkZtG6eBNA0Muy3X11dcXbxms1kzjSMpTTx9+pSr6yuG3YBqNP6qJft4xFhSUr5TC2JbCQlVoEvo7ZwvNd2amghJi0MoIIywR1edM1LFdrejXyzZ7G7xweOyWBTnhJTewhuKrGitxataO1eMHB+f7MnvVRGrUCZmkkFNf97QmwNQqL6/yq2V/fYdLz8tP63rC5UzYUCB1oJ4BQBECvUKKJZOygWQixJ5d6AUVdRroYACMAnDZkBvBVk2WNdJxrgsvqCWJlG5vHMfRphHkEJGt37EEhMTi1UO1DqaHNQxpZDSLcqQ0lVA+U6HkMiic5+jlXU8mhO6VdafX3P5ows2zzbIFk5kxbKBrmlZLJbWO9h4Fqslj97/iPsfftfAm+MjKIT307MHHD14l3DyEAnBuhNKpGB75aA0rLt6uGg9EFNIxFK9ilZKRtTSibn1rYRVKWcy1rpkPajWGhXjBMlav9I0sV1vmHY7xmHH1eUl569fcXl1wXq9Zru7ZRhv2e62ppS7W6v/lT0ap4mYU0HHD8AipKTxBX0Gan08zxJhKZGh1Q0idubeeZqmKVhAtiS5hrLF4Gvhy3ZN4Ha9JrQdSZW+8YTkydmI67UBI+dMihNikkJoPQklZmUYE148i8ajaUTJRJRS4DW5LwjzPmXYp1c1nD5ko9XyXgU0980jNX37MsqpJSzTw5zDQBHzzAbYQOmfTPsezpLksadfFSNaFDhnYy8OtwNxHfGnjXnPPJloumYWMGFP0N57vhKGkUC9oXDJYlIhUCFIKV8ukg8U2OG0La9VVMp1C4gkQ2erAcHKI5I98cXEq09fcfPZGr3K9BzRNwtOTu9x9uAdTu7d4+GjxzRtj2tazh485t2Pvsnq3Y9oup7QtGVfSv+jeJK4eXMs9y0BhwKarZFaa4N7EQRhLjshGJorRmzXbH2kNorFPjPlZEqUJjRFNCW8KwsAFTsAACAASURBVFMCtltub2+5ubnm8vVrXr98yfXlJevra64vr7i5ueJ2u2E3DiQ1rqiWiCOIdSKJ80wihXNZjHOuRlgODEsNtWtpq8YoJrxuPtsyskYL4Xy5pOu6gsxWllop6UmhQIjj5uqKq8tLGikluDJKxydDp7MzUBGMS+tSJIn1a0oOTDEzjRNd0+LIaIrF2BRSCc5sIz+ZW+57gvcGoCrmIQeg/uzQyXwp5awhI14KZWbfcyKH3f3s6XGV9T+TmtFZsWdOYorkmMlOSVNmtxloUw+VXeP3BsE5gaRvfPZsPFKck20pYZyTULxFpIxbmD0m5EKq90A752NIQrBeT+8tp3DiyBGctsQdnH9+weYHO/y44J2jd5Hes1yc8uDRY37pl3+FsyffZHVywurohKbtwHv6xYqm7cjBUbVLLUm38hRquZZYrpWpcadd6z4Eq4hWTVVcEWtFS8NBTkpM0aIAyUzDSAiGDeSUICXy7S23NzdcX11xfXXJ+cuX3FxdcXl1ycXVJVeXl2zWa4ZhZ43E2ebd4MwYmPUCSg6XSn3WqU2m2EMNFlrPwjenicreiZTop96UyNwqKKVbpPKB92BgiQjqeVPDdLueaYyMux0xRfquZ3c74XzA+1T6WhOSUom0TS5jShCNbDBGayxfdh06G7d6PhaGpmSW8xCIrDJYc+j692F4+6eFvj+3cvqDEQ7qCoigewW1Dy85plLGQPgCsPgDYSp5XNmMVEaXIIIkYVwPSBJcsPAoOWsANpzJDrR2itSbsdAAUDcfrBRvbdfsC1PHlakM9vlVSISJ6rScaEFTA056s9zZQXTcrjOXz9c8PP02v/aXf5EnD7/G/XuPmKLSLFas7p1w9ugxoT1CfLBGbWfDspIK2RoZLCqou1lycas4pnpaZY/yLAjIXlcFmSmUKVPuKxKniZQmtDBjyDa8axp2XK6vuL684OLinPXlFZdPn3F9ecn11RU3N9esr28YCqgz5WQlMoE6ycFCyaIB6kD9rIQmlK6gp4XEfpDyOK3TJg5CdTXur2EB7g3BrKCO3XtphC/EFCt9VHSeYiQqU8f2xSH0iyXBOTaXVxw/fsT1DSyagA+JxvpqiDGXwv3eu6WcGFNkGCer0bdNSa2Y9xTZ95QK+7TuELWtoWv9eVW+N4Eh9j/n/4NyupqjzcX5vXIWGTcBygamOOdnwUPqhRerkksPItl4lwXkkOwY1iMaISw8KU3gjA3kKV4Y++zDcGA/U8jPCqckEEPXXAaR1gRnrqu44n2TgU94nAt43+Ak0DUrlovHHB8/pO+OmbagQ2D1nXt89N63OT57j6ZZ0Lat8Yy9NzK8c/M9qt/TECmHKFr4xyJUkr05CUHV7fPDQgvUmZCvcwtSTolYRo9UPo/mxLjbMexuWV9d8er8JZevXvH6/CWbmyuuL1+zvr7kdnPDsN0w3e7sM1MsQ9NqLdK+P4iYg1dB6p9s4JLDGs5FBacCKhYJFd0Tqfcpdm4FLHRuL3y5jjSRA69K9TKWKllt25W0xJezTqUUwkFkYf/WGuoiNF3Psu+4GXclXQlkDEBy3iOxUECL8qQYySFYu6MObLdbTlbHhELMsPlXtk97juze2VSpm6sTWruYDu85z3+/4S2rk/uygFDNFSUr+9y3fPk+FzZPKQVihmKhpjknzXPxktnqZYWk1jkxrifiLhKOmkJYUGOuiM28EffTrZCU/NI520RxFtI552y8JWn2plbvkkIa72n8guXylDasEDr6/oTHD9/l7Ox9VsszmmaJaINPPQt/RN+sGBtPltoAULu9TY5cCfM1lfzW1RCsWvm0B7IKCJKLkFeEeZpGhsEK9DlFMyQl9PPFA6UUybsNL1885/L1a549fcrzz5/y/NlTrl9fkLY7xmFg3N2ieUI0AQaA4BxNaKyvFOtDdAXCrSCOaZTO124KZ21ppoiW6wqKzuUp85qu2hg9VDzms2Ie/vYmWXxuOXRWDsrYFAwjnmRiTnNrlpXj9rGy1NKKCm3X0gZHkEgcR0K3IA5ro92l/XXMoFDKqE4EEQOzpommKcCfViQ2z7luodTMFYt9Tb2CPzI3W9dV+6AroWVWxi9KNsv6YuXMJSfLViyv8K8/+HDNNe4p1D7sxmPpkdtviC8bmTGatr1HkiPtEnEXEVq8c4SmzKYtcbE5mzcT8DompOaRFiKE+fdOPJLtc7xr8D4QfMvx0SmPHnyDB6cfcXr6iL47wdHRNkd07YrQtDZsywWEgESP14as3upxYiCUGS498CK+GJYi7Fp5pYr6NO9drXelZCM/hnFiGifiODHstozjUGiOyjSNaIoMt7dcvn7F7fqGl88/5+b1M169fM7NzQ3bzYZxN7C5uSHHSCceNJPSRHBC1za2R2REGrzk0ldrGEIVJKfVEtukCEp04pzgvCIFNMtMkBNOgkUfYiUPzcn2rI5EJSDO2g3NgqkpujjLWWH2oJUbW/xQSZUEyvhMKF63dPtofZ/KnHs7DJxqg9D5zG63pj9+wvr2Gt+4NxQpV6wCZnrhdtzRh2B7U8fUWFG3GAaLBKR2sfyUtScc7PPROiP57TnKNSd9e6by4frisDZpTZgMGXTFTc/Wal8cUZRpsnBRqSySGuqWAcs5kyWhvvQaqiO4hmkaGXcjjtU++XeKJp1renZAeWYBzaitSza9IAQ0e8gBJwv69oSz43d5cP8RZ2ePaEKPcw2nJw9YLR7SNfcIvsO7puRSJljWxrO3ahqKAdI8C0pNxBzVQwi5CnvptTRwx4CIlDI5RlKcbDBW2bucE9M4stvecnuzZrfZsL654fzFC54+e8blxWuuX79iu74mbm/J00Acd+S4ISfLNx2O4Dx9iiAQnBlGJ8YrDb7gAaEhzMOkLP/SMohMxBhMruSLTQizh7dowyYuJOrcXUfT2ngH5wXf9kw5M8RoIzRpDHsohWMBayig6Bw1py05rOxzQJOZppQ7FBdq95HW/+yMtOTwaoBVRq3vViPBZdbrG04efFRy4r0n886TKONIckaCZ5hGht2O43tngJVvyKlwg/PsmDK5dCUxy98hGQHd0woPGWyHynv49yG4+XMrp3f7LxMFLYCBhWSVFGCCHGMiOwsF6mbPaFa28R+uKGvGCro269WaiYdtnSjnmXI8SK0ha6ISBm28Ron4pdQrRYCG4JecHL3Lw/tf5/0nH/Pk/scs+mNTTGmBgJNgnMsZ1tf9F+lhf50pm6oZFCcOtLXfiBHCc0Wtc0KZLJfLEdVEzlNh0ihOGkOcU2S3u2W72fD61Stevvyc588/5fXLc64vLri9uWG83XJ9dcWryyvGYcBppHNw1HqCqE3Ak4nWOVxTgTBIFG8nSvCC9x0uBCt1iFjtNRXASTO57Kcr+Vhomrl7x3tHE4IBI5JQbAqfAXmOtu/ou85YSllpugZ1niHBxfWaMU4oLVIxA9HZW1iIbzXwOiWghoTijDAi6hknK51ltcaHGGORqQoy7qsANv3RkVLk/OVzxt2WKSc0R5q2J8ddhUfqyR4sm2vrg9VTzW7WETvMQKZCmeJYqxN75UyV4F/a6+ZPnvGZfYfUT2u++Fnri+ucsq8t7ms4pp25llCc9cHZXBQpEE0teWgJSwtnpSTNLjtUrM9zSpmojuFmIA4TNFgFJAnFQJYGZoXyPeRsoQ3VAhn/ZNmf8Q/92j/Oew9/mUV4QOs7EG9/qKUMiqIXGLVA86DGCxYrqks5RQudKlMqll23SQUpjqYYKSJ5ZBq2ULpJAKYpcnNzw83VFS+fPeP8xQvOnz/j1Yvn3FxecnX1mnHY4AqJ3Cw1bLYD29sdMSV672m6htY5gku0jccTCN6mMaAwjvaYgqbtSNiMpRBM4agRjMTCaXBlU50NAPfOHrXQGUk8Jutb7RpY9gIukJLlpJpsTMqi72i7FvqOqFoIFI4kgeWi48WrS7ZpLJ7boc5bx79YvO/o5hEuoCW6Frw0hckTEWddQPUxEWOcypwfdxAAmwZF9YSstF6I40BOmT5kZHtBe/SQ61ef0xV0NKsagCcZdZ6UIsNux9HxMeRMSmb8caVdkjCnJKol4j1oCsiqZfC0cXTNV+wVz/n9xI59++P+92/PW/4zK2emsH4KGlWnlGVV64yf0ScLjZjRXSkQd4XN7RDynEgbfD1zgVwgbiIyWkeIlvKCZkF8gNygca9ENjenDN3SnZkD6enae7zz4OscLR/jdVm6JmQOw2v/Yck2ym3tick2d3Rm3RcFVXI2GlrOkayJHGNR0IQ9zSAjmrh69ZJxu+b68oJPPvmEH3/2OS9fnrO5es3N1SW7zYY8jXi1oVwpDqQ40AZHG4KN4BQPUYgNJO/pRGhFWbQNwTuWi8bKwbajTOOE5EjXmDfTEro6H8oITttroQJqNvhLEZjrutA2QtO3ZmAFWi/0XQNOGMcCADpnhAjNNM7R9gtobN7tNGWk6Vgsj+jbBZ+eXzBEA+dcaAqxN9vkf98X5NXC65wUxFNnC4PgQwNZCaFnuVwRQvNGlFMC3VmeFKVrGkLTkLwNCx/WNxx/+E1ev3xKK3syhBOxCX9qdL0UE22wR1GkMtpGCgd25ijPYfVPDlSv4XgFtebaLSV0lfL4Bw4jzTh73y+lnFYIdPOG2DhGQ1E1F0+jh+Ri857JMGIDCJyU8ZVF+NUaXBVBfPWwmXSdiWsIp8aeEZ/RJAar49GUcK61YVoFkjcEOIK2iDtm1b9D40/w0iHsZ9vUsKnOlJkJnWVzkYybGUdmAWOM5PJoBXtgDXiSgRyqxGlkN2yN4vbyJTeXl3z2yQ959umnXF6cs7lZM46RcRhJwy06TXhReu9pvSc4e2DQhBIksWwbujag4ul8T98IMSYYJ4JTVo2jXzT0XX2sgDCNA5IzbtERQs+i68DnIuSVpO0Q11TxstA0mfF0Htqm9Kg2jq4NdH034wl1Xq8PSppiAfwy6oxBlVNkuehou45xTGzHxGa7I4jytcePefbqCnzANW2hc1rzuhDsc9TULAvYpEchqoGHWcGLJ7QLum6Fc9YQXeGTOX+rIQ6wWCzou57JGYk9TjucTjRtIMfiZapsltLNrj5WYR7BqgXpP2gWP5CW+tyevU7keZqjlFzUOUELcaamZOL2YXC9/j8tvP1TlNNczRyvixAab88Dqdk5B7nljFaVW3G2+VUrklo3gxnh+sgCixfSbSLdJjppUEmoL6WIVGqXwYFOhjgGR4y7En4GPCuePP423/n4N1l09+225tykXENRTBMKKy9UIrMU7xhTpA4MtqM0355jZBi2rC8ueHX+ks+fPePly+dcXlxws15zu1mTx4E07MjTRBpHe/rWFBFVFi4Tek/bBBonuJxLh4gn+xbvYLFoaFp71kjnA8cLmyiu0Wbo9K2jbwKLviU0DU3TME4tawGRRQkqEl4cXdug2cgeqokmmBdVJ4zjhBNPnIyj2hSqovOO4LAnlNUatBhdzUVH1IQLjU1yDwHX2NhUydnC8pzYXF1wtRlo2iXHD49xjx/y8urWjG2wkNUXIojqfuxk2zQ4Zw/3caEpNUWPDx2u6en6I3tmSzWnB3mdFBkVlNC2hQQCaYpsx2uuL59zenrMxcs1rvCOU8kFDayL9P3KyP7OlbEmWD3X2z7kuH8AltZ2OQ4N/z6frXkpUsomhVWVyTPzqTKh3uAM/LzKmdTIACI2cpDi+ZT6zI03Uau65oFiWicFWH5pVsQepDM/NqE0b2qEcTey1K7Gk6SUaJy3VgzKI/J0JGMdLCIeyUua5j6/+t2/zAfvfpcgK/Oa823LjBgK9ryPGHeGpBYAR1T3UwRVrah/c83rV+dcvHrB50+f8vr1OdvLa6Ypsttt7ZF0KVqemBMaBzROpGkiDgNpmnAKXePssXd9y6rvcKpMgxXJvToacfYkrq6haY17O0XbN00JjZnbdWTRe5rO0zae0Hi6LiAS2QUxbzFGxsHoe6Lm4Z2DYZgQAl3bkVCmwVKGFAc0Z4K0hLah73qa1ts+U5rrSy7oxEZJtp151gyGoqJoTkxb2w+viqQRlxuII2dHJ+wmZcRD086N+EIm58g47qyuO4yGGIeWplvhXUMIvXXphA7nG1LSwmB6Mzycw06pT3krtfU0EQfl+tVz3v/omzyPmc55mhBAIWlmnG7LJ5glrwSCXP2JMo+Kcd5qvfkAoa0dU76M7BGBUGYOzRxcKHVZDlhOdZJlnav7JZRz7lh2hWRWQSG3b0eqz7JEIOfybE0stApNY095mqYC1wcqZ1RF5jAZcURRtkPmaArgehrxVlPT1lr7Sv0sJ8WFhlDahtvmhLPTj3hw+hFBjlC1kZQqpS+w9M5p4ZjutjeMw4am9Gqmydqdrq+vePb0KZ999hnnL1+wvr5iHHaM4w5X3uujM8JBTrTZCOU5J1IcyeOOcRzIMZKnEZ3s4T+N7zk97Tk5PqJvGsZhy+DsMQu9FxbB20S9IHR9b4+ZSEoaBm6urhjTQBClDVYmaQP0fYOSSdNg/Zs5kqaBOIx47xnyREw7nBOGYSDutngSUTPjLpJiJk5Ww9ylREhK1y+thMCI5kjOjhidZQ2q+KbsV55ou97OIk6kgTKxQDlatIgcMyXFxR2tO2LZB9LkTJmdzZTyAje3O26urohxKkILy9Up3fKErl0QQg+uQ0KLEGxMZR0rMmMdtfumREClPjuOIx7lZNUTdceya8E39vg+CiiUYDsMhMZy/eD2tESrS1Z5ZmapGaJsKVbKFpaFg+uhXMlha2WmoPsZqyzAGx73i9afEtaW7sBK2rYrZw4ToXBgCwzum4KgZrMwobUidd4Zn6Ygv6lYpCwK5XmLoyTWu4bH+SHHTYfkhpN7wmJ1zKp7yHJxxPHxMWRYLY/o+wXO2QDh5eI+x6snkBv2W5ILsFRy3WyPClhfX3D+4ilXFy95df6Si9evSWliHAc267W1UJVwR3OiES3eSKE8+MbliKYJP43oNODjREPGeyHiGZKjXS04OV5xerLi7GxVnk414SWwaFeE4Fg0DX0TyCTGNNF0LW3bk6bM1XbD9foKyULftYbMlr31wfJ472DZd7Rtx7TbMY07QtcTxDOMOyQIbXAIkWnYWsPwbmQclZggZaVtO1r1bG5HVquO4DzX11dsNjtSslm5Xd9Zs3ZoC1hiUc00jGicyDHSth2rRWfPW+kWRpnrHLk5YrjakQpX1yEMu1suLy+I48j86Dz8/CQw3zSGL4QOaTp7JMZbSvDm0hmAiWVIW+sciYzXCU0Dp6f3GdYXVnd3wnYaSaosu0Wp60oB/6xOLAd0O1dLNgV/SbXJuobUxWtT5E01FUdkTXG1H1W1ssb2uewhLfDnVM7iHatSFrev8xdh3rV0lFePmMSeMXE7FHBCOnAeFxp8aOgWCxarJYvVitXxKfcfPmB1esLROyd87eOvsTo+ZtEc40IgdA2ds5zDuQZNCjh73BqKMIJ6PD1ZC5dTLKwZx4Gb6xsuLy+5ub7i8vKc588+4+LVc/K0m0kBlPBM1ZqVY4rzsy8tLyhcT5fRGEEndNrANNKRaPtA2yzYDhOX6zVHqyMePXrAw/undMXjjbuNMVjaFhGlbRq6rqVpPEkykkZiyuzSRM7KqJlJlcZ5+tWSxaIjJqulmrc3tHi56GhCyxWZ3XbDom1ZLFY4N9pwbe9Re0yzTTZ0NpQ6xcQwZmJ27CbHbrqmcZmz04BOkWGzYbuNONdwcnpMuwz4NhEaIU6OaaqW38CpWPZytVoiLtC1gdgIuySsFh3XQxHmnFmv1zig6zqmyR7XJ2UAds42BMv4sDa0OjQ2BnT2DT9NVBG8D7RNR9s0SB5xmvGSuL2+4ez+Yz67ek0WayzYTRN939O0DcGXOKwQJep0g7fJ61oIOWkGgd4OrQ/MRZEfsOn8Wfc85DqsspiVL6ecij3yrj4OoMLQqnVQMAWFMjaIbxpC2+EXS45P7/Hw4WPuP37M8ck9lqtjjk7ucXRyyvHpPVbHR7SLJb5tEV+euNXYAGSXGzQ61EEOCdUybDo7yGX6X5ZigWxXkiTGYWCzvuHq+jW74dZKHmUHBKUNHs3W1yiaCr9UC/XMQNxsxc0SKVkjb5piQZwjyESa1niJ3LvXs2wcTgWVnjjdcHJ0zINHj3jy7jssFgEdt6TbG1LKrPoF3pW2R1FCE2iWPZNGtkNiSJMBNQkIgePTM4I4lqsVfReYRiHrRFbz0ou+K4KQWC562rZhGkZyjBytlmXKA0xjss/NyrJrEVVubzc26TAJm+0tbjsS3Ejnlyy7lrToGW+vGbdbhtbTL47I08T2do2PCR96vDiGcYRSGxyGHeIDmZHhdmJx9gjnGlarBdtseeU4jsZscm6eqrgfIWnyFEIglGdw2jNSm4Nw9ifLD5VBFEKg6wtRpHq2OHL+/DmPvvWuVRIKV3dMkZOjJY1InV4yg551zWT1N5g9NYQ2ZXa+tK7pPEbAcsnSUJA0l8JgmB1dRWnN8P9s9fxC5RzaFd/59V/n3uk9fu/3f5+cldB3LBZLjpb3ODm9x+m9Mx48esTDR4+5f/8+q5NTFqenLFcrmtZ4qnVWSxnMX0ZkaCGRlW0Re9RBeeQP+GJV1M+oa+VlV07oOA3sbm/njd3ttmhOLPue5aIvReXMMOzYbjcgao99EPMjQRy4XDBZRV3AJV/GUSY0TziNNG4qHvWa/5e1N2dyLMvy/H53fQsAXyIis7KqptnsIRXaCKM1JZpRHmkUqlT4mcdspDG2dVV1VWYs7ljeclcK5z44PJbMrGzCLMI9APhzBHDPvWf5L7UEDg89gx+bP4eh63ekIkN57zsOux373qJrFIIy0qUcB0M/dFQMEZELpUbyfMGmhZ5MJKNRdAaGXU/feYZxkIVrM7UYauMduo0InyND73jz5kAOF7RZ6Ps9RlsslnlZOJ3OXM4LykqTxVRNCie0WvC1kmeYPzrWwXL/7pGOxKBmtAmQFsJUKcXh+5GUFuzgKBqmOZBjxFmHn1YRuY4J6xzdIbHbZVRZyb1iCoW1VrJx5LRiq+gXJ60oOFC2uQS0xo3pML6TE7XZcGyNvWsQtU67UdLFUdZjnPAxU6mElIg848sF1/VMGZ6eT3S60jst8iw5Yqwj5Zfur4bWfKptutA6rUqhnRUYi9byvNZ/0WqzEpG1nVrHHBr1DH1FFAFXcP9vCs7/87/8V/75f/9nHt685X/75/9D0tDdjt3ujqEfcb7Deo9xrrWBaE0kQU4kXjpV19nQ9mJ+pn4ovPhutgpbPoS6KaPLf855i7V7lnlGAaPuWddVaqGSpXOaSuusNnBB3YAVDYKF1MLyu7Z8o14tEVQKGCKDVbhhZL9/w34YuJzOoAzDeGDYPxCSYtjvRS2QhC6BmhZIEe80nRsQb5XIeLcHN7CGlecPT4TLEecU4pAlbBHlFBgR4a5hZZomCQLj8M5jTE9NiXkWqRDjPAfX4UbHOAz0/QhJc3mamD9OLB8vpDWDV+AVHsvee7SRtNwqy/3dgZ3viFMgh4wuis4YrDaiDhIrupPFmGOgqtaVLIoYMk+fntntB6w17A93WKMoOVBCxtWO0Y9cTs3v1BhMLY0eKJulaY2ZbeErI2wn+R0CO7yWWbczwjabtM5hrSelSkmZWCqpCshinZ453N/xp7+tzCGx7zymjTK0Ec5v3rxOtGqgATm5tzTXttr0duW2Sg/BH2xSKi+c522tSUPyBaxgtMGYn68qf/bR/+v//n9Ejt453v3D/8KVLdBGDqW9uLWt6w2XqutLD01WONefexWGv6JjtQXx9oFcZ671BfyutRaRqRSvQ+Kccivcm1LA9euLSp9cW8t5ruQ/UbRIg+iUqXGmLCd2g+XhMDDuRnbjQN919F3PZQrcPb7F+hGfCrOaCGFtM8xISQslBrquwzqL0olcI77XVKO4zDPzcqSmCW9dE5woUBTaWrx1lFDI84qdM2ZO1BSINogcZsrEaZausU8oCv3Y4Y0jnAPPn44cP56ooWIKdGjWNVKzsFX67kDVEec1/eiaOWximRbCtFCCaAIJAUFTdWW5zCiXsaXivMZqTVaKFDOpZKwzWDtQcsQZwfqmZeI8nfDDG0xaMCU1Zoq/6vsIOb4QloVpOrE3A9721BLJeRvY33Aqb4KzIsFrtIxqUk7it0lDGmnN8fjE/e//o7B+tGEYekwtVFXkvbwO568rTAJOv8iwfvF7N0Oddv9WU264cxqQAaWbcsiX6/038zmLH1EoYhtIb2K+UjM1ndMGJNg0dyRHf4nHm2njv+P2Iu71kvcjY4uG5tla7TLeeCEob8pxOQmLQ+asDe8oENnr9SlZJGRLplzOjHVF2USvM/txYOgth7FHm5aC+cJ490CIGZUynbe4tkuHMDGdPxLniTdv3olIlUXgbqoQ80IIF5xNKFvRZcUahzUC5LbOogoyCnm64FeYP12oseC7kRAjOQguVGuN8plM4fg0c9aGsGZSKLgiJrFaa1wHS85cQiYvYLAY32FqwVUBR1AVaQqUNWGroUQIayIthWwnos74scN2HeP+gb4fZEifcutMSloqHeILftxx3zuOT2fO539jHO45l8SSK0lBVWLdp2qFmlnniafyAei4M07giDW3hl19RVqmrQTVZgRKG2qVhk1tUirKSG07Xy7clYzRmt1uj3MVlZK85mYQhdokTLJYVjZlhs/9Wm9v13UJjTvL1eelAqlkKBlnuyYYsAXkvxOEUFvXrEWdvA3XI/tGwkRtnBEk/Xz10m/fxJts9decmu16bC3o7a6Wx6eUCCGwrivUxmzfTsvbkxKB5NUsYk2b/IpIsrUhFOIVWUnMxyfSp7/y7nHH45s9xhf2B8/9wyNGdywxY51n13upoxuQonMWHJAMRRlqb0mLzOaM69Bek1QhpLbLloythcFb+jZSOl/OkDTMiXWKxPNCfJpFh3UtQgaoe+/JlwAAIABJREFUCd38TXUA6w06yUeUYiLWhKoGW4WsbIxiGDtsr1AxoWxhCollWnHFo6oikshzphZFCpkcqzB4osIWadTElAhlJaVEv9+8YQraOJzVoAzruhI6B1XkMe+pDN2O7x72/PnPP6G1ZtdsFWPWVOMamUGU84upVGbmy5GuH0S9HkeKkhk5526WxkZXZDvmrqoE6upGJ4P+NU6UFHn39g3H5w+gVjbpl42TLAAbSJsANOVVM2r7c/WkbTX/tcGjXsgeSktKnls6njc1hYaWK79i/f882ZradjTJxTdW/m1wUhvfY0v/VWsZf3Gtz//9OuB+7lZbcL3K9duJKbPJTOdFkmTr4JZaGseyPb9JclDri1ZNaR4uRsDctUCOM3W9sPOa+9Hz++8e6faeZCqdd2jjKbpicISiSEW1+S04awkh4JylYKl9h3l4xA0jdhjx+45cC6VAWFZsht54fE6YmFnmhemnZ+pSGM2IU5Z0WmFe0Rhs76UrXgQMkbUlqxfV8bv7AwUhccdYWKaVaipu1OCEbykbLq+YM2J13eRAopyeQlB3UBNaabquw1RHDk3VocifEheMamRzozHakXNmTgGoOOexITP6gfv9wBoDd8MoztmpiNJ8VS8We1VRVaLklQ2uWQukFK4L+lYKRE6flzW3aTiVLAdKTFHSUmCZL7x7947np/cYJ0D6muSULJs4gJH3Ri6/VY6vT+ztaxGkAortlKUVofIcpXVTB9lwAo231U5W6br/RrL1tgtI2vfSKm5VGjd/yU0hb/RtOls/C0x18/VnYvOVnMPWpq5bo1Ye00oJ5E3FF0uA1vShvtSVm2gcRViMzmiZxEh2K0PmEqVmXiI/PB7Y64G39zvuHu9R3jDFICgPq+nGnlgsNRZyzALTG0ZKDmLLlw0lS6cYJXxJ13XsdgeUVqyXhXpcUUvFLlDmlWU6E5aIOmXqWtFOyL75shLnFaym2xvu3jxggubp/ZGiMt3gSDVjB8vubiCXRAgZ35A9IVb6Q0elEBZJ24wR35a96wm5opRhnSM5Sn1ptMV1Dmv8S7pTNd52jGSWfEbniq6JHEU6xbgOpztAcZmCpIq5YG2Htom7B8fj/Z45ROywA1UIn45kKmtutDtlQFeBH1JQJChR6sLyIvfBZ00ZuV8WlW6g/FSF7ZJLQqGwRvHx4wf+6fs/tFmqEwC/Uiirm4pOozde9Y8aabqEq4aVKDOqKygi1/riYfvq1KR1ee01zQ0hijVhS5N/6fD8BcrYCyrjFv0P9bPT8SVwZfCqr99emzfy3t0+85u3LwDFW+pQbx4vBWcdfSc7WgrhGvgyLwPVVIQ3xgC1Yo1GOXc9wahyalqjyEukK5k/vntDrxPeKaqxZKxo0WpLRRNjbt4mCm8smUSpiTWK2kFcI6VolPL4rqJVoSRBE6kCfgnMTyfOf/krzBM2RnJYqBX62hPWyLJKnRVDwnuP2zncvmN86CjHRNcLvA6MKBGqxHk5omU4jKqGvuvxnaMfOlINxNjGVarS73q06wmlkBKc88QaRZ6z5kwMK4aK9fql0YdIgzjt6KzBKemsp9i66xrcYKkpE9aA1pawZryGkBK+8zzuD3TjjkJgmjKhRlIo1KqbppTgqK1p71sO5Nooglsj72bdbZOBba/faIi5FFJbf5uIYAwLyzLjvef5+IyxSiCWyqCyEV3fIiAFwdcqRJ6l4cDLxqSpV80sa4yoIuYGXVVAkVNRmzZGrBK4xllKkkzHWscv3X4BhKAb6/EmpNqxvQXnS8NnUyVX16DaAvNVV+grRfAv1Z/bHPiW9VKLzJFiqzOV3kStX0jhV5SHFqyj6NIKZUmzXQfhJ5LJQWQRB2sYh46UF5LSgMW4ntq4hrEIeN85TzWFZY6sIYgwV8qEmKkhQVGoUqhxQUXF/BSwRaFOC6c//5nLXz9gMrhNO9UYQfUkw5yzNDPQHMae4dChR4s1hTnO+E6j1IDvRqb1whwuLHOgMztyCJQo0iS+81hjZQ7oEqkKN9UohXMWlQo1ZbzzxDWQUhYUVEnUErA4lJOaVjbZymHccf9mT6wXQk7S0LGKojIpBemSp8q6isem7TqWZcF4gSuiMmOv2Pfw/tMzOndoNVIRzLH3nq7zKCoxR2EL5fRFGbQFysv3NJFprutEmIWVVCOxBJ6ePjLudnx4/zdyjfTeMjTGjIDbeckSryWRKEdq3bJI1QDxTQOX2lBFrd694mpreRF+21pXSpGaE7ux7rfPOdUNkmF7pZvawW1Ku9WhLy/hdWSpm6Dc3jh56Nedou2b24uypTBbfq+NyO6rVqirqqX4VKLbqbQWCKFxoGiJedtlasHklaoq3ll2u4G7fc/HpyhmrNZQdMYZI+jJksk1t3pCkYt0hGuuIpaQNUpb4nwhlwWrLGlqu2UsHP/ygenHJ/JxpWRFiAGjZDRRTSIsidRk/6kFZSrOi6pAOk/olKgpY5xl99gzFMP795HjpxO5BjEZzgnvRozZYYpGW8hGo6zBKkPKlXCaMNrjqmGpUWonJeroqRRqghxE69tboY9ZFId+5K7bEapmSSsJgRoWVSktA1BVspkUVhlkloSuhd44pnlCxcRD71ncmVgiGUVSDucN+8OBfhikEx8TKSHqgZtixc0BcF0nwEaukJl2y99KFSw3UEvk+OFH/vA//RM/7e6Z52fO00TQkd67Rilr8i3bGKSteKWqsIRUbnPN5uPCy3Sitlr16kmab3NNqYdrS4MV4qZ9tb3/yu3nNYRojZJtpri9IbUt7lcp77UP++okvEKWbgPtV9y+IKZuV99OYiWDY6XA2qYQnreWepNC0a1xVVodYBvxt1ipa2qVDl8tqJjovGI3jqw58OHjhXWe6ctANpnReWq1hBSbW7IDo0mlYjqPjZk8JWoqYqJLJJSCKYUSIsu8YownLZnTX5+YPs2UpaKzImVFNki9pYSWFNaI0hVnM2ta6LKBYMnnFVdEWmS1mexXOufZX0bOP86EWEFHUIkQF+pZY0xBWwmUvhNgfVoiMYrbuLVGRL2VRZiB+jowL1ngmUYZjCqUqlGhcP7pmawrfucwplDrQlWKmCtWWXEATwlVIzVMWK9RYeX88aOAA8KMjpFDp0iq4o0lmBHbecbdDqUtISZRnq9ACdQSqVXkRWR2uK0sWX/KGLp+bAD1hm6gEmmc1RpJ0xOayrB7pO8055Phcr6wrhNaaXyTf9GqMWm2Vb/9rrb8SluDuqn3b/EhldLNvKK+yIFShJrovdDnxKz4NwLfr92nFhSv5kvXOvL1fa0uf3Xf57dfc2K+uuZWgzY/im1ssyFGlFJXSJRWiqK0bJtFPD3ERcqgtXmRuxCwrgR5Leik6IeenVXEyzPz8RnnLSFGKjJvzLqQaiHlSjcKHEupgnU90RawgRrFjVYrjVGaEgvzNKNSZomFOmdOn46kUGQDaYptIWRKVRjTN/7iSs2Jceex3pCqEJoLSWbL1ousSJNDKgqM1XRJWD/KSH1cS2S+RFAL3oh2E1lynVQKMcwYxKXMtvdbo6BJnKAqVt5sitKkAtNlkS6lhjgH+rseayyZSu8txnVMpyYDU2Rhh3UBCtOHn7D9gZoz0+UT3c7z3bsHLoysakD5EW0tOccr3zbnwjJPxBjp6xYgm8CXZEBVSR3YdZ7NQEu1+rNsAVUKKYt4dO8985rZDwMWxTLNLMvKHEJLjTt6rbHGCD+5nZZbai99kExu3+s2uint9W1439LE7Yxt4mnaNNywaCsV9e0Q/IU5Zwumz+LrtpP65YjkZ5uwvxiYt6Dgn7mIvElKOJ1yl8htim2EBFxRSgLQ1GuOb0uT7KhZ0hRAlYrRitE6CBem84nL+cxuN6Ktpx8dUAXsQMUZj22WC9ZYYtg6iQVnpYYtKeKonI5nwvmIrWCzRgUgwuBH0Eo6pLX5dqRKTAXXdVgrbsvDODLeeaoT3xKnO2pJVAXD/UAshUQGC/2uFxmY6rC9J5SKs57CioxHDCVnlNL0vSeTCEn0j3yTTdHayEzOig5viQGVEqnVsKUawprQqWCAFCqhrBRfqZ2isx0GIw0lK5thikm6sVSePn5iSSdSCDzcd/zwxwf0/gCrISyBUjw5CtE/N9zrBibZTLO+WBnbGEUrrHVcrR6UEmMnVLtWQhvH5XRid/eO84eIb9Q9Owo3c1llbn6aV0IuDF1H3/lmX9hq2uuJ3Qq6FojXOndLiTcF/yIbb+cdFchUbDM9xvlvLvNfdrZW6vqf/7yefEWpuX59/dbdBtotDefz59xe7/PnXHesDTzQYFObCWptor9aS3BubPOrFGOVhSWLy0v9WwyoTdIw0xmFrZnL0yem44l1WbDWMhy0jEdKaR+QzEiXecZYjzWekgLL6ZmyHvFWUeOR9fiJfDxTT2f0kslRtHuI0JmesR+pRbEuKzEadNSsYSWljHG8cAW1Ynd3R3IRasRWRyyRrt9xeHzL89MTy7ww7HtscVzKCa0Mbj/itGbcj0znT9QEDk1cAwaaXpHGrEJ/qgaUE/nNEJtYtzFQRFIhoXDW03cj8TITlxmbocbaNplCToXMwlrPxFw49HuomRgy1noux4Wn9yc+njOdd/zuu7csU8K7hNceUiDXAKbNqnMWbG6TW9lAArezRF519jXOCx451U3DZ1Pdk6XjrGU6n3j7uz9iW3ajqjTfdN/h2jq5hIXLshJTJuZE7x3OWGFHXsXS5bcKPkc22M34WXxmWqbXZpm51MbLFYGxoizvvv/hm/H3K5ytb4Ky8tq1env8tgP7lYPxVq/z85+7fc7XTtVrcG/yFNsHoV+cqK6dOq1R1jbph22gLU5exjqc9XLqNEwlWqOaGHOnK+V8JExnVBFmSE75ejqXtJKyYhh3VK1FCDpf0FVq3/D8E+XyzELAqYCbn1k/fkKdVupaiSETEzgcbr+T1NyIuRJRGj+2uZu11jS1FpYQKEbh9wNKO3SKWNcz7B8xricfKyEHrNJUkyl9RNke92bP7vEO7zXlwwLRUkOk2MJgO5xyoES0K6VCSBHvlTD7qyKrKvWndB6oSkwZvHG4QXOZM8QsBIHYrBNCprjKklbuv9vx+HaHsx3rEpkuK09PF+apoKvD25GcDHEFtWT83uEozItgd6sy0n1vBPfSRJ43nuRLavmy9krTmxWrBdl4SxXjJyGnawwQw0qJEe97Slyl29zogppK7x1YRUqJFAPH05nVW8ZhEIW/ba1WoXsYpcn5xeovZ+GkXo3A1HZ6Z5wVemUGTDdw/93vvxl3v0C2vgkk9eXJeX3ss3+8GOt+5bmf1a7bi//8+y9P2FZb8LJjvtz7IvSL0ld1FeGdlqu9grYWnS3UIiJiTdFea7Ak4nSk06CcFy1c60QsO2fhLVZD32ptQ2G6nAnziq4Qnj8Qnn6kMPOw71DLBT3PqDkTz4mUKgqxmigpUoxglTGSrlqtcM1A12sN3l0pR+dl5u33b0S/J8xUZ9BDzzxHlLXsD3vsCpenE2qs3L175O6HH+juBub5E3oGmx3xkjBVYb2A5tMasKPHaYeaE2kV+pxLrVioBZqwuCqFvKysIeOMwzorLJeqiEnmgiGLrWN/t+P7373jcNiTE0xL4Hg8sSyJ+7tHzk3JDwx9v6PrBpS27HzlPF+EC2ncyxxamWsmISZPm2Zx28S206t1cjdstajUQ8pCeDZaNeGzyNPTE/144PnjTO8NpSR0zWwtVq8V3juSUayrIKmO+SJpbt/jrW0qBlVU5Zsa5dYg0iIfKP2Qdpo6a65rtipNf7jH9OM3Y+WXG0Lc9GE/O+mu33Ob+n5b8u/n6shfrDPlAl/+XFVsblTtjlcH+8azU1cwgkhxKiWdNVUrXkNZZ9LliK1FZCsxxCKzuqEUrLFUrBT3yGjAq0LNK+u0kKYzJgVUnQnnBZ3BVk2tGoeSdKg16qHgvMaPAyElrMoUo6i5UIrCa4WyFqd7zOjQ1oicixW8q+oHqraEFLh/eEStM+vHE67TMoZ43NHdj+hekZaFfmfxSbOuCxeVUKaAs1QUbjewH0emj5XzhwuxKKyVkyRTwRrZxGKGFZSpBCK5VpIu8tgqmkSrzcRSuD88oHTP82mGqpjnhUpmfzfw+9+/Y0qJ82kixZkYe7rao0vh0HnObuY4L1Td2CLNSrKUF1GtijB35PNrIPdW5zlrpfy5SWtLAwVQFLkmwHB8euLh3TumEOlchzikF6xujcYs4xCvNXYYCDmzrIF5jcQCfefpnMU2Z72r+Hqbq6SSqUmyuZyLyMRe3dUUxnfcv/2OUH+rTMnnsbEt+K88Ur/y4OcB97UT8lu3zx+vbQNQnwfozSl6W5tu8iJalSZCpq+n67XTraS17VRlmY+UuIBSpJBYUyFpS6c0VMU47iiN3VFzJocFUyP73uFSIHQd1uxZnk6EOeDooVpqKnjtaDMKXOfY7Qd2dz27uwPTumJrEvmQKYjJU04YDV3f09/vGB/u6IYOZSK5yP05W8bdnsEYzvMZbeHx7T1mp0hOoZwiEzEW7h72cE7C3O877ODR44j7/gE7jozOoZgIyyrd5qSITUTCDD0qF+l8pwpFaGTFaKppE0HVlM+rbHin88y//OuPLMtEKZGx73h8+8Awjtw9eva6x3vaPHZlnSd64+m952E3Mk0LU1ipxlOt1PixsY6ufQluNuFar2p2Xdc1fWQJzlQqSQxNqVXkMKtKTNOZLjyQ0cSc8UrUdlpjWuCXTY5EG6HvKWXa9TLzEkgx453FO0vXtHkpLzDSl9f7AkSoSPq8rKIiGX6r+t5VeeBVkLTHrv/+VrL78yfl3zXzRFLl7Y2jvGBtr89RLxpGLz8n/4FtBiX24QjQuWqqMjhTsOFMDSd0Iw2UHFnXgB72VAUpFWy1WNehrWJdzxSdqHXFG4OyIt6cFkWaLXUtoskaNalGeaFamgC73nP34NAuUWxAU/GDoSSNibLgQ9MHcmg6pRldR2e91KgFMKJbOxrF/P4jJUT04On2O7R3+G7EjE6sFXyPxqCGjPFnut6jDwf8wz12P0jtvU6YvWJ8O4iWUUq4UllVJVQoSmONE2GzUokVjHE4ragajLV4DZSZiwqENfD+x0jMEa0L/+H3P/DD7x6x3hLLisZx2Hu0FkX5TRcJZRg7y9g5ptMiY4Y20C8bbayA0nLKSVbbmkKqkhXYJt1ZqoyKUqqNmSN1IYA2CacTphaGYccczrhOPEV1LddNXDeVSXG5Lnht6Jwj1UqMkZwKS02kAgVLrzQaLV3Ybd6fa3Ofk3lMLpXj8cKqE//RdU3f6eu3v+vkfIEzfR5cL13abzV2boPo7wnMDcj+Wn8FaB6Q2+jmlVziNa2WhtBtYMoMSzqQuWasjqTpPaYuVOelzHIRlTK2c6LyoB1rqGAVVkEmgc6ktBJDJR0n0vOZ6enC+lRJFzn9rBHKkCqSomVVZKyhZT6ZtcEOHlMNOWvIlZJBx4wqCVMNuohMZlw1qle4bocaRrxzpKczKa/43pMHx/jHH9DdPcUocomouaDiDl0NS5zI3qP6gf7d93T3d2hTyeuFEMXzxXWO5Aq1NtMgFOfLhZBhRNGpZrOnPEVtKV1FW8tu54lTYq2RgsyCtfHc7Ufu9gdUSQJEB1RUaGWwTpOrEKJLTpSwYIc9h/3IcU7EnKm2tJSTFxAMIOePas2QKu8nBdv5xgKU07Zk2XBNU/9TGqzTKF3I64Vx6Pnp/MSu99iGwZbEWbcK9mW2bqgoJR1XZ7ywf1Ihlcp5WlijpnNOkD9K+iAxie9LbiltWlb+9ON7/vE//WeUsZyeT99c+78YnF8DH0BLM1/upX2av3j7XNHsm7ebdPXLw1m1jt1noAj1+WuSj/NWMUFrOTVVLXidMetCCpNYzh96jLKUbiS4iX53x25/j+6l5jBVgOuqZlwFlSE9T1x+fKI+T6zPM3UusEpLfVVFECJVaENVF2KMxLjivEOZjB8qxjuiSWS9YBKYZMiBK56zVFFQcK7HjSNmfy8jomFh9/0DqirKODL87g8kO0JamT79SK9hGHsBOUSNHnf4Yc/Y7+ltT1lnltNK/jBTnhKsirpCLYqiFUULZI2ShPSsDV03YpTmskZySrx4qLamFpo1R9ZccYNHuY41VjoHpQSKsaiarpaDaI3vPEoZQi7kGLFa03eeaRLnOcWLn+V1hng7dqsyRqi13hCaG2vJbo5m26FRkPZtYpnOjPdiQVmqR5QEkc1Ac01RVRWiBbp5xSCq7cZZjJFucAiBdQnEdRVHN63Ftax1J2tOTNPEx4+fmEvh3bvvhF74M1Ilv+rk/LmTsG5x9OrOr9eZ32oUffV3cpNCv+7wXE/S6076WS17VeNWSkSfrrvmZt5aUSnja0CFM16D2d/h+gPG9XRLoH56RqGwvsftRkpc0DqR00KeLviQKZfI5cdnwk8n3JxRl4wKoLLGOUuqUbrESTy2ja6oGlEkjDWgE9pnEZdSGoul1x5i4fLhwjpnjM5iXrTrcXc7unFP7Q4UlfD3keo1WjnM4S2M9xStKauMAEyt1ByoSjMcRkyy5FCYj2fUHKjzxPLhI+HpRLoEclKYgNRXtZBM5c56YlCo5pWqDVilhZhet3mfQSGmTl4b8hKYUyEqS79GctHkQvMVAWu4sj+ohRgCvhvQWviXVM3QOXzMBF6yoG1FCDd3O9WUdN+zoqaIUgrrHdpISYBqSpEtYkvJwswxlVJE69cYQ4zCQpJ5uWw2m7r76+anvGYa9M4YDU7jDCyrWEyklFlzQMfYZD0N6xp4/vCR0/HM4e13+L4XZpX5/6kh9DpQtjTy81B6fftWQ+jX/Q6uQfi181p945rSIZPSu52drWurmpMYaDIdK7WsYA3O7/C7B3S/w8bCmg2X5yMVTT90FJOp84V0uVAvM+m8Mv3bJ5a/PaOmRK87KfSLSKJgKsoIWN2UinPgBscwVoYefK+oHnSnpWZVjl1/YDQd8Tyzni/kUNEl4FXBNhMgYx1VD1S1grNQDdoM6H5HtSNOL9hUeNz1uNOF9+8/0t/f4/f36H3Hj3/6KzZPVDTp6ZnwfCQvKzkVVDF02qFGRygZXTMOR9AQ19A2worVMHrHmlcZ/BtN13thoGhNiRFrHGFZCWsGNCEkMdvVos6AqoRlIRWF9VWyAu/FTyRVOqeEapbl09rMs0oR69u6Gfk2yw+tNGld2I0DP/zx96yf3pPWILPPUpq0qQSXUgpKwehMSYG+71hDYHQdYvshkqifS6KAbCobPE8atYIS0sagOqkpY8ostbKGwGVZ0MYwrRPn04lSKsNuzzDuiCFwvly+GQe/CN+TROB1Crl9q179e+tIfX30wmeB9Iqz+ZUd6vbnv6WaUOWHryfp7XW3rFh0j170QQVhkjEloMIFnQO+73HjAT3sUN2I8eDHhWmaRbBKQ28hhoCaV+qcmP76xPkvHynPCx6L6TTOOnJniSjWGPDWibemilST6frCbgfWJfygUIcRNQxUpI7pDhaTKmGdcb1GBYXKK/F8JJ9A7Uf6vUcbT0oBtMH4HmsHlB+oysI6wTqx94bzPDE9HQWwoKTbq0qiA2yMxGWREYkC02tcNaLBi0Jj0LniKnivWZwBDMZ4dNVCNkiJEFKTEO3wVrPWgneax3eP/MtfP3I5PvPh/QcOg+b+8UAtsISVUivWZ1AW63tyzliUMH9KwhthwpA2VkiTy9k67vXlSBAT48J//2//jXT5kcP9gaprowUKP3Tb3rfZJFSMktdulOG8BNgNiCGzGP7KJp9frd1aZZapt8ytAR+sNq2bS3OB0xA0aZ45n85c1qmVKZb7xzdMy0IOil2/+0rkye2XT071OhIrNKxtffFS+Ttun9PFPv/6+le3OqF8GcTSrf3y/utXXv+svOL2AdWMqys6TSIyrQe078V/tGZQGj949vd7jC6otODjil0TP/3lPfH9ifD+BM8LOgiSJjdjWV0LDkteRQ1PqYzyBeUyymeKiQSl8N0D4/0e+pEUgvh2NsuGrAuqB73Iz9cUICZq1lCtpNvWoVSPVg5rR6qyQvNaF1RYycvM5fjEYDW9NsTzhXieuOssZlmwNUmaPXaYYY/rNSbDPAWWXKjaMeiRripO88LOOJTx5JixVREvC24VwyhtJM3dDR3PT0+8ezjw9vs7zucjT+eZpw8/ou4G7h/2WG1Z0iy+mEVhnKZk6YirJeJ6sZAIudB7g09QlEG1kY3ehLtoULnaZCdT5Md/+wvEJ9Yoc1Wn296duZoTXcd+taJrIOVAqc0IKiackZC/7VNswmJ183tlm5+/9DMU2whP1Ji91SjVQc5M57O4wtMaYdY3aZ0BxW8cpbycQp/PHLmepErxanxBe/m/pr78ucD8AtrHtve1Lu0NbOtrqKJ2ZVFV2150lbRGdGUXVIl0XYcb9+g2iNYlgjL0O49zB8pyQYUZnyPxuHL6l78RPpzpkkavVfibCjYXNIUYC1lVqWEl6Ii96+juBrpdAXuh9IbkPbnz2M7idSWmQJwnjALXG9Rdz7xG8powVmOcx/iRkBW2RFSvsWZAvDlsyyLA+h0pLswpoEzl4W7Ap5Xz6YnL8cTBWlSYocBw6Km2o7/boX0mXhaKAdP39IdHdLWs5wlzOqO6noJmejpKvYXFXFTzT5V58dB5KJm73Z5BRf74bi8NmRyo2ZLWFaWNbGRKCAPTckGbjpwh2MRQM77v0AgYxFnDimmO0puQ1nUxyKesa4vASAgzyzqhVMGoSqqCy31RvGvrohZqjCQ6inbUqliWgB27l/6menGj3kDt2+ldmwHXdsq23paszyoSJMZqVN8zOce6rlREtmQ3HnDOo5TmfPx3dGu/eqvbKfRaS/Tm4a92eOHnA/Lrv6teRyhthnKl5dB2tE0k6RWj5Ssp9IZeokRqnOmsZuz30O8o1kMJlLhiXEc/eOg1kUA5HlGqj2lcAAAgAElEQVTrwvzjJ9QpYOaMLYocW8ueiHHgjWjPOq2am5ZhNw7c/8P3vPnDI7EemdcPqMGgDnes1oDOOF1J60Q4ndjvR7rBoPHE2VN0pDvs8Hf3mGHHoiyFhDWOoo24QudKN1qMsSh9R44LtTthR48+TixPfyOfF+qSiVrjckYZg9+PqPGOZCqpBopT7H7/juH3f8DevyVMCfXhE/VyQfmeqjR17NDLQj1P6E8TeV5RQAgr3aD5/vvvML3C1jP7Dtz3j1zmCUXh+dMn3LKS0AzDjs4apuejCH9fFsEZN1HtimBT+84TsxgJb0ZHVanrZ1lr0/rNUeB5Vep9dCWlFbGJ+Rw11pKuKtmNVgpjLdM0sx87aRzerqXXy5GNqFYLQhhQmwm0OJZrK27fpgBa0xmLVcL9pdIc4jPnaWLQv7Fb+81Oa9u5NjzhtTvbHpcSvv18fc1bv60dtyThGrCv3oSbGnF7Pe13bGm1Ng0J1BS5r2D4VswLhCuLAZGWD8iVhJqPuHChP/R0d/dE20mLYQ2Uugk4ScvdVFjeP/P8r38i/OsnXCg421FWafjQpDHzWolGJBAtis45hocdb//pLYd/fMvhMDCHCOsjanzEPtyBB6MLJp7wBGmMmErRin7w6O/2hLViHna4/Yi2Cqsj1VmqyqSSULTcrUS0ajVcN1DTgWx3hOVC+vCMXhbe9IJyirliXEeiUMqJJSfcYOnefsfw7h8wb35H9TtcKIxv3mLXmbBkKIa39++o0yd+/B//nWIyxoIznhAS5bRyeDvyPL+n2zkedo4VjdZRsLVVE5Oi+o6qVg53D+zvHiml4geLNoKFzjnIKAJLrwtrjpSwkEIiVwlONl9XRJyr1MqaV2KM6KTQ2YAyUHKL9yY+0iYL4j0qMi2dikRbuUwrsQgE8Krb0QJKa/1iXtTKpnztAksQG92EwaCNwEQm1nXCLN3WeoiR8zRxGO9w385q/0743uf1Youe2k7S22zjmnLefL2VBtyutzWQNJ8F4m2DpwXlS4DK75SNSROjpKftB18CXrQp5E/7tTUG5qeP1Hyk7LzUM9Y38rCX+ZXWqCQGPT4X3v/1I6f/92/YS0WXtnMq8MOAUZoYIilGpmUmETn0Pbtdz90fR777X+9RB8cyX4hxwnqDH/do66km4bQw9rVKOK8xVjeZSdi/6VhDQfUGpTLx8pGqLbb/AV0EAKC0peBJuTTYn1gDZiVBk4KS8U4oxDhR/R7lepSzVJvo9p5+HFH9Dv/uj+iHH0j+nqq82NZ4iwoe6xdsNdjDjnyC09926PFMDDCO95wvgafLmVgW6CtO9+I0rSJLhFJFA6gWmfUWpbBLwDiP73sRIStJ/HNKRlUwNaPzis7iwlZK2aAHXJdErU1NHZQVqKXKSkYruR0qyLhH3L62TV+EanROaB3wFo5UpjUwiiPrFXxwHdttM8v6UpOqdijo9meDl5q20VRVGfc949yzTAndeYZhYL/b46xDremb8fb3pbWv0lN9c9/NQPiLdFVda9D2z+ttE0K6TYO/BUzYAq7ePqeCc455mq4+Fi+v7zWUr5YKpRCWmekyEeNF3rSHR6xSLFVRtUMR0Wklh2d6rSnnC+njCY4rKULvOqZ1kd3UGMahp/aW8xnWeMR1lcd3A+OdQj+smPtItI4wFbE7zzM1PKHtob0Jgia6bbK5YaACxlm8T6IkGE/E8yzBedjh3I5ixAoB31FNJ4shzdQ8YfJMXi7kZca7DgosATSGvje4AfrHnu67e/Kwo/YP6Lu35GEkawcYlKoYerTJZHMhh2ec6emcYdQjXT8yu4yKmdF3xJQJaWY9Bco+YRG0zth7Hh4PpKwl+GKgxsq6zuy8WDLEmKCJcWklRPZSMrWImv+6XMgpyHxUGV4XU1tvRJNiBATJlBU0jqOQ0JsqAe30E28a2leRsZkWkXKRNQQ115cDopVxorwnMiabzKXcz9XUyBhFbeCJ3TjycJdIo8KP9+K3ag2X84nLx+NX1zv8UnC2/8jLpGQ7vb7eWf3W7UX35/peXk+y7VQvtX7lqu3ary7Gdc6kWoAYI/KQ1n7+36k3801QNbMuZ46nEzZOvH37QG8tbhiw1bCsKyqtxOkD+fKeu34gX2a6NRNnwZRuJjdKy/VyXVAK+n1HiR2He8vv/nhPHVb09xX3RgE9pewxc+X09D+Yp2ce3/4HusOeVAMmhRdhZmfR3hFqYaagdcURIAd0nNC+w6QFWz25aFJ1oruqhHepdWadn7Cn99h4wuVE199RzYDrtLi36QS6EJWmaIU9PKJ2v6MM9ySzo2BbN7NilMOYjrmunJ7/DdyefukoU6IuK6ZUqtGEILZ+8RJY1pVluDD0ok6oK7x5eODpPLGmAlGQR8LU2Zgmgu5RIO7lRiPgAmmKlXWi5tRKldqaQhsIoXVPtSLmzXZDxLNqA6QsYZV0tII2Fmu0yG9SsbapQCg4zxN9N6BYrmTsl0Ok1a4tuEEyN7MJSqMw1rw62a1zDFrznenQytEf3jAMA0+fPtLZnjdvHr4ZN798ctYtQBWfR8+VIvPNn732cHgdnfLP+uUlf/YEfYFq3dS/tTIMA+u6Xh2hrjPUrd1NM1dKK8v5yPOnT+yd1JRxmbDjgX73iPU9c3jmcpwZTCadPpGOC0M1RASKFZeIVQbloOpKiAvaKXb3b+hKxdiIdorgDNUpusM9vnvL/cM7Lu87luVPlNMRWyKdruiUKFnU0UWqRNy0XeeIcSHnyDovDN6TUHjfg+3AWFJeqczoukDJlJrR6YSKJ1yeMGkhqorVjm434Jwnpgn0hPKZpB3V3WGH76jDA8WOYHo0QkKvzZ3NaY3SHbl4QoS6LJQSWNNCorDGlagV3a7nEh15UpyeZobdgfFxxxwyyll6vyPECacBpckhsOoZh8L1Xmz/SlOCL2Lwm0KS8U0OUEX57po9ta5MKWK5YIzFGuHEhhDQzTYhNyK7UropNILV8sdrLYp6CKhAUmewaEKKaKWwxslJqWV0VNX1QEbYJ6UpQUoH12hBDtVaKRSMtezHPRVDKJXL6cju7XeooklL+Gb4/LJMyU3A3HavXuaN6ovwfNXYaQwSCe6XNHb7Znuzv/Y7X80u2/O3muFW12h7zi2io25T6nbCqlrJYWE6feJyfsb0hvP5xPHTJ5LpOfi9pMg1ocjokpienkhPoaFjRMXdGtc0bTK7/ch5TXRjz93jHqt6pvkT75+O/PlPP9GfB/a//wPjDx477nG7A7u7BwZr6foeo6BSCDFClgWyzhN4x9gfMM4Qokha+v093nQELEGLEvu0zmgdcN5B1cQwU8vCzlZMCcR5Jk8LSWWGwwiDJ1UtxOO+UvaP2MMf0N1bsAPa9hTlW0dbuqNhFQSV7e65f/yf0TETpx9Z6wK9wtiBnDS7+wPLesTsDD4MzPPEpw8TttvR2TvOp0A1lhoMeV5QphJrRNuEryLlSXFi3143c6pETQlLxWuFkQ/2pp9RW89jg2vC5XwmhLUtr0pFjJG7hmENQRgmCqglknKm1IhyA05vurKJu/t9I2Y36hhNaUPJms40IbR2GudSmpO4gFFMg+WVRli3xpILrHOmc1baU0pMjL91+3WUsbIt9JvM9DYCX7dZJXW4KqBtjaPWwfkM1PC1S8jTb2RNbgJR30Tz1qm9ylLcjFW4NvTkA1SlsJxPfPjbX5hOz9z3j1DFXNXHlRImSgRFFFOhc4ZQSXMkNnOgXKFmka00VhgHaM1aEzHO7O8HEh1//fgT//q3J96QefrzM1HviIeRsMwoHN7sKChyjTLWyUk6w1rjKXSqYGsk54hKUU74BN14QClPUhqdE8vyxGAN2gkKRscVXRUqXAjHE3FaKDGzXmbUcCHEE35v6HaehYDxPb6/o+gBMKiqr3qt2zxRqUzOBW9Ght0OwgzDGdVlPsYTxjxy/49/5M0f3nB8+guxTvTRkYLl6dNEqp94+O4NtRiWuLBcIqfzmaoV450CZej6nrSurEqsIlIKWGvls40RlcEiEMbtpJRs6Ga98JItbc0aETMTylZOq3i+uHbA5IgyFUPjcarMfuioqmO6TCy9x1qL9h0lJ5ZlZb2IW7oxis57xl6jdBXrQaWvzaHN/MsYjUHqZ9Nk552VzWSaLnx8/wnHl6PI7fYLRkY39WV9dVRdg+P6zK8UjF/4pLxKVbf26aty9uapX6a1grBQUje19Da1gHTOyQd6c6I3d7+2w2aW6cz5+SMlTBjucV2H73qsNczH93hTcSVQ1kx4WtnrPTEHEeEqkYIjhCAuy9pQlebh7fcs6UIIZz58eKK4THdn6c8GHQPx/SdOtZDfFWq5UOcVlTXZBDQKVVKjswllzBgwcSUeBVbnmqWhjoESVvrdCBZKOHNvMsQLao4oVelURSfN+vxEOE0QCqoaYlyZT8/UHvr9gUgl6ozxVTC6dYXSHNOUDNi3jyOHlRgzfufxbiDlgDJQdUYNHjvsefiHH7j/YcTfzUzHH9FrYl0Gwnnh/U8fOR4vKOdIqjKHlRoroSRiOHKvLXEfSDWJW5pWTRJTziarNU5Vaoqi/VMK6JtNXwled/MvOZ1PDbu7iWxlQeu4DqN1M7MqaO1EwiaVRiOsmJpxShHXhcu0YlxmPV+4TBeWZaWWLN6rqjFejKH3HXe7A3eHA9Z5aJubOAuIRlQpmVrFP9Q5w2WZMdoyDj3mtyohfBW0rtTrE/SLoLs93V7qzG0+1C78RX/o527XApsXxYWtlBWBKmlHl42Fvl1TvfxwipFlmojrTMkrMS6knPC9BGdczlhXWZcL6TSxPs3c+QccnpoL2mninHDWk6tijRGXK8Z7+k6hwzO1Ru7e7Hh8e6CMif+PtDddjiRLsjO/u5qZLwBiy8rqYjVJaY5wZETm/V9lZIbSM2x2VVZGRmBxd1vuqvPjmjkckZHdxSREMiMCcBjg7ldNVY8ePSe/PJGf/4YxQrYG5SImJ5w6UFQh52UdfxhinBlPZ0yn6dMOs99jnG82Dalg/Ux8/kKJETV3eBdI42e0auV60RrTeYiVGgPGWIqUVQ2uoGrCa48zmrFMFFMozOTyjJYeqQdQDViCppNbFM0Cryp0jaArpZwpZabve37805/Q3Uf6uz3ZJKb0Qt9X7H3HOMOSIqU0obQaM1XrtjNpeqDZVpyfTwx3A/eHO9wamMuykHNht9tjtMXqlfCe8/XstFnlWtauyIdWiv2ww2jh+S8eJSsKu0mPIBjTHNSaRYNBGYXkCmSctjil8caQS+USJ8Ywk0tz49amlaONudQ0hEJM/DT+wul84cc/fOLDu4dGZzQaBdf+U68gi7IO1++YBV7mmZ3vf/Pc/ztGRlyZEq8B0l6Zuv7lDcXgTRZ8feGuMyK1CXR9E0Ctw3/tJZR60zvKzcP0ld7Rvnn7za79wLUUrkjNzQpQmrsyaeTh0BHUnr5vqtutqU84K9S0MP78mfD5K+PPT3hXWU4LKWXCvCBiG4tFO/J5IYVAuoxo3zSC/GHg/Z/eY9/3ZP+ev/0/T4ynM76/Rw8ziUANia7PWFeZY8tunRhyLIznkS57vPdgAqyHWldB9Mg4fcUdTnSHA5cyUusF33fksqqgSxOq7kwP3rBYQ2Fph6IIuSTGZULuFX7oMA6EiMgCeJQ4al6zS6moAr6CyolSZnIOxPEE4cK7Dx/g3pLoMJ1QS6NDHnc75J0mxx3LaaK/O9JWyhQxhqYisAppVxHiFJnOE4eHHZfLGd8P7HcDMWWUasvqWiuctzjbzHFZ+7Um4ry6TtfWNuXSMmXnfVNXkOaCZo3GqE0KTpq6oFIoUcSam7mtN/T7O1LR/PQyIk1QCGcMzlo66xl6T9fZFpyodTwXGMeRnz9/RivFpw/vMbbN7o1i5UznFcsUxvHCKWbGaWS+XH5fcIrmNcCUegMptxtBe6FkQ0S3uNzI5luQyY2hrmKFaVfkdU3Dt8n3lo3UNH/qNbBfg+91/iQiOGfXr8n6tYRSkarajEuViV4mfngYUO897z585N27e5yGEmc6294seTpz+X//Svz8wiNnwlwaapgBycxxRvuuzeSmmfIVzM6QdsLw44Gyh2IuGJ/o+57xNPPyeULCwLDfIWKZw8gugcu1mf3UtpR9PNzR7/rmgl0TdQrI1PowJRMuzhhVqHlhmids59EVlEsYL+RYsHaPTp4wZuYIoVQG41ClbYzc3d2x/9Mn1M6QEJT2GCpVJqgaVRS1WChCmgLTTz+R5xfQGVtmbJyoRRhFkySDLzjApcBRHGo4kopw70fe73vmDFlaK/Lw7kgIC6dTpEdhxEDSpHOmhopzLXN1fY8xmZhbtkwFrCpY51DG0dgFFVV9qw6Q5uOy2runXMg1ISUAq+Tomi+UUtRcKCVtNjl0nadQyfHSlPpKYQ4RXRT7wXHcDwy+a4LZSlBSkJKu53PYd9zvey5z4vF0RlnLpw/v6PsmLSNU8jXRtDnvPE0oJRwOv3Mr5TZjwqvV2jYfkSob1f8msl4DbLvGKzHhRghMXkvijf2/laW/+j20fgss3f64q8CvptZXtoWi4d1Soa6zLxD2+x19Z3i4P7Lb92inGZeJGgukRDxPjF9fMHPbUlBi2ekO7Rp7pFTFcp6a2JXTLHMA6+jfdRQJzGNm7yzp5UI5B2wwyCQYZ1jmhSIRYxLVV5RKiGSUamXzcb/HDKap2ukmQpxzbZxu3SB9hSVcCsspMgyGGjM4jfSK4XhAkpBOM/k0k19myhSRYUCcQquB/fs/Yz/8A7lXqDKtpPSFtBrMtkVj1/R4KZQVBe81EALlMpEylNViUCtFFyFfJvLzheVpZD5HLnPE7YWSNUZ79u/eo/qOgcryz38lj2dI0nxklqmZCK2ZRa8qAnEd5dTSlAZiaD2nbMvQtW2ASGnypca0BYC6kgWUNiva2vKBVlxFn53rGnZRIIdEojZChxZqzlgDDw93vH84riZHQs2laemu2Xo7r7W2ccn+sKPLlXm6cPYGax9ATANPdZvDKqU57Pfo/YHzZUbybzd1f0fPuW2EbGPWmzSnXrvKbQTJbVD+6npbhP26z/w1wfim311rYdmuu6JyUmvLimoTrW5Xfi2FDZoVCs8JhTAMHc4IKcxM8wWztwiZtMzU00Q4jegCg/Y475jmROcH9vc7ZLqQlSIsJ1TKuH6H9wrTWYaHnrv3nqouhNOMXjJ7euYk5BGibkAKRjCdIc4BWPC+YjqDdcDKhsGt6J7VZF0IS0Jpg9/1pATTSyScCmZOFJtxuw69g94KS5pITzPqkmBO2KqJuZBLoXMDqr8ndvdEbzDVo5ZHqAnjenLJpHRGqsOpDq1huDtivKKrI/OlcHm5EIJghnsOfY9SHfEUyVMijYkwB7S1+Pc9eVw46h3K7Dj+8JHzepDd/YCuM2p1DcshUVJGR+ElnZrOqzGEmEgptYVsadIgilck/1dDPBFqKeQY1xGoAIZcWqa1psmVeOeByrxMpNBGWMYZrLWN9qibbu1h6DjudmumbDuh5WaUuOnjigimFExtS9fWWsbLBWctd3f3q4/KCiStSWieFkqhlca/8fF30PduaQbqWkK8QXPUq9iWVvpN1ryWqNvc8Tu/zPeWsn+TxnfTi9ZaiTE1m/e6qbyv/1WQIpScqTk33RoKel0l0pLJaSbnjl3vcAjx8YypIKmSQhMzLqlyWUasNRQyIWTe3R9QIbDrDP3BkrtK6Sv9ux3TfKIuCebKwd5TaqBGRXiZ8DtPJUKqeN/QRWpFcqVmULkNrUuq6P0OozqctSwlkbOCuRByZhozYSmk52e8Newe9gzaspwWiqrs7EDICTJobZhzwusdw9CTVSbXAGoPukf5A1oqWvftJpVj68qkme24YcDaTH58ZLlcoIJVDiMajSMFxRQaKZ7ugNprdncPHA4dn//yE8vzTI0LJUc+/vgjC2Bywljh+ZcnzqeJkoXxNHI/3DMvEyiN7boWnFkoosmprEr+7UCrtV9sIzuNaI1b0dL7+weejUWso6zz2nb+2lmMpVBLWtshh/c9YtpYLZVM5zRWVeI0Yd/do1TDWITW6m0F3oaNlFLIIUAMV8aa1oanp2dSKtzf3+M7g9TmrVNzYl6W9rqV3xuc38t+vAKxm532FUGTt4yhrUT51TVuIdfvBN73/r6VtdcsuhIO3vqv3IBIK8lZSkFKJC0jOY3gMofDrnFirUKluc0Oxwkrwvv37zn5z5y+vGBKRNsOYwxVw9B7lBH2ts21rCn4veXwwxH52PE0nugweBl4fD6jx8wyV3IBg6brTRPKUhFtwHiP8pZcY3teWZp8hoEaavPSdB3GFJZpodaEMh1dP+CNBx/orEZb3QCHnDje36PnypTbfC9XiFIxThFdZlz+hhoDg/sjSu/B3KGsRYvBmYQ2CSlCDmtmUEIhMY7PXMYLHb6R9hFirRx/+AO9MYzjE0YXfEr0d/eklFG/zGhdCecLj//6F7IIn/7xz6j371guJ6aXM9Y2Ya/np7bihmtgkbcObSzz05lxWcj9SArxWnJtY7pN6tTo5pOC1s3jZn/g8ctXjLWg2qhNq6arV6WVodYqpGiWECjS1POdbYQHpyEtM1LySgutK+qrVh3kV4Eya23L2LU5gqf1HBrjWZbA+TJyuBt4OBxwtTLNEWsNf3z3A0b9TiOjKnIFgdZTfw2Ba7hodf2S3I46vkfD+05G/LekTL79uA1BtfpeKHXTZ6pX3xSQVfluHThLwlvY9YahN1jTHKxsgToGwvOJ+jTCFJt+jLQNGq01ftdhlCKbhcEb6jJjasYPBmzl7ocD8c4zXxI1WebHhAoDYRJiFrI0Z+YejfNCkwIH6zt0bzDKYyygMmo1Z81JkausqvGWuAglF5yHpQR65xju9qiSqKquzVNmOY+E55kpLFSBogTfdfRDz93DkaoDKr1g8z26v6e4A1gLBVRNKAlIbX1oza0nNkbY3x3Y//kfYTEsp5kcFpblgo8zd59+xO86tIHneaLYDmrkw8f/QKiOL5fAeD5z+etPTQCs65r9etnW+uB8WfDnGT00HxGMQWm7orypUQZLeYs9rO+1Vk3zR2tDFWF3OLSe01iMtRjbvEWlralst/DmPJaaaLRZTbBySTjj8F6TUhvrmN3u9aawVo5trX7VQd5avVrXtNq+VmuilEoumWk5c3l5wWnL0xz44T/9E8NuD/Lb9vP/vhLChppyA7LCuhrzPQr8r69xDdTvfP17ukG3Ze1WEl8r6e3nty++vf5NoLfydtWPqZFaZrxX7Pce73Ubao8XVHRIEeoc0LUQUxOKdtZBNqSUcNnx8OEB0x14/vKVJS1rv2SoFoJk9v0ddeyJj2fkyaKXoVkyGAN9aO5baUKMYI3glENqJadmnKu6ZuxbVcU7i1ThcskYyWg1QA3UJISUGWWGww57GPCdwyuhpoSMC+fnsWVdBVW3HUNnLF4UpiqGbmDRjkoH9GA66up81UgIIFKoNSNlRquKo2KHHmsOSHDk+SfOX38Co5msbnaHuz27+yM5VpYY6JZMHC+kZeLDuyOawjzO/PLf/8r+T3+g0wYtXI2glpAJqbI/OEqpnE8XjPWU2nxISl61fPSm77N+rxJyLWjVvE2a+mLzL6koUkxo3bSGrVFY3eicpRRyToBrNn2SqLlgTbP7U1Lb7zUvzRFOWgDcLkZez+kWC5tyX6ugqVJWeqCG2qwxckxU6/HOEWNimZffjJ2/T7d2DQS4CdAbYEetX1ar0PN3r7EON7exzA0j/vr528e/efL8+jawgUObjstrkLbPyVWhoSI1QYlY05C2VCq6CvFyplTBaUdZCiTFznvUbk90I/OSAE2OjV+rVYfXPVUFVAlIURjj+PnrE//n//Yncpn4/D/OqCfBiceqBkj1wx7XD7gugUzoKlgUprRB/aUEdPbsP9zTHQ4Uo8njwjzNSFbs3A6Fp6a8rqYqvBsQMe0QlgyxQigQI9Z2iNFkWsaOy5maK6GzvLv7j9T7PxD8Dzhzh1ECJLJxDVnUpq3BEoELxFWNfQmEUIlzxfkOlWbS8zN57d3SuCfGwM715JhIz78wvfwNrxN20OzyniXNGCx71yN6xitL73suIZJLZpwCD5+OdIMnlfY+VdFY66gCKaW2ZaK5IpBVVlCmlGtgtsXo1bR23XyppSCqOYfVkkA1onxjTlasM223VkBT6bwnl0QMiZzbzWAj33yLibzqCKmt1wNp0i3buDHn0nSgciEL/PLzz9h9YRjufzP2/udlSm4y19t551rWfju0vH0Ca1Bt88hbpBd1M3aRV9OaFoD6zXXgNeBf714rSLRmzCpl/VmVFBdKmulV6+ess2gteOMI5zNSE53uiNMCs6BFYUyzjpe1VFEiLQmX9hxN5xiOA8P9AfELJivGrxPzl4C9GIpEkhSKbdnr7t2euw8HprFSQmMntfewokpluiwU79l3PcZW4rQwL5GaBckGIxopNFtCo0lTwlmHZt0jJGOUsOsGrOuYlgxSqFkosZDChbN1yB//wIf//JFq35PUgJGIoclNtt10tS4rVKQupPOJeBpJ55k4a2p03DvN3jnmkjFhIjx9RvcHxtMTevfA3buP/PzyleX8zOHTA8fjHUlf6JLB2x1Pf/uFp8evOOPYDTv0JaEEpsvM+eWCNvdgmgaPUZaCprjmq1pyXimGq+xMlaup7iaw1RzhBGt1M51acd2ccvODcna1FGzBrbVZM2nGaAtoBu8JsbDEyLQsdJ1ryxOlNOe59XxyPc+vZ/gVAmknvjmeFSjNpTtXGHY7Hj5+pNTfKVNibogAW2B+bxSyhY6oxioy3Ga81zuL8E1wrf9+iwff9JbbHenmTnUblPAq9iTX10Ja/4VQlKIo3XqVvOBVpu8GXNcRzkvLBOeKj5WqNfkSCI8LRixZGaLWbQ0rZabLSHGBkBZKn1E9qD7y8rtTxrcAACAASURBVPxX7LuOPBbKLEiEmtrBSapQaxvSJ23IO01/HKjRkOdMjgJJ8DSH6PAYUWXCWkFCpKTKaZ54qYEPw91qOZDJBWLI3ImFXHF9M9RNVJzyzSEtJWpt6vYVTVWKtMxMTyN/SKtgVhUQj8KibLsBtXLdYpRuGWZ+IT+/kJ8W1Aw6wCk32ZCUPVY7UIGcMyFCfXnGh0g+TWixFN1xUY4yDJguMX195HSamk6u68iNKktXFCwwPwd2Q0T3ILYp7nnnUcOwsnLaHLMh86vCxeZwrmjSK1Jwrlk9ZslYu1ovFiFKy2AKtTKGhFLarqfSpmkNK809hsXA4zTzMo0c1Q5bM1KaTcSGHL85m9tJXs94u683+8ESG7821WaXWHLbvFG/2kH+O4PzjW7QFjk3AbY+6G0w8TZwbx93O0q5vcZ1WXUL/G9KhtslobdXf7u5sil7v2ER1WarbpXgtFrVzBVpyaRYGceZyynQi8VmQZaCdZbj/khOwjxNxLhwuiQe7g/oXmH7DuMrZlDUZSGcA5//x19QRfCdZxkDlEo1graa0mUmEzjs9gz392hR1CSMX0+kxxecQJ81eY5ERqKq6FLJGaZYWVLBdmXdnqiIGHKqnF8u9F5zGB6wveH08kzKCaMqOVRyaocghIz3HTs0vmrqEjF5JMmZWAxWdajq0AWQtVuTSi2VXBUhgbMD/tBxCWfO5xPzOLY+zc70RlOsYLVnWmb++t//mf3dkUM/UJfEZXqk6wa8GEKqaGW5O+44jwFiZbCenJobWDjPzAfPYPvVvKogqjSktTZ+7BW9Xw+NUvoapCKCcRbXddcEUEppBIKaQdV1g0Rdubqb3Ig2TT8ql0IloVWbm14ulybctr42ZbUU3MTKtyzeMnST7GzkDVkV4Ns4T6jNcdsYHp+eUN0du+PvDM66CWf9BoL6XWI8b7PibfB+f3LZfo7aTFq/yZIir4LWW2zfKuxtvawyqrFpuNEYXVXZVEkYkRuuqkMSWNuhrec8vVCCcKe7leTdRJ7uD0esguc8Ny5mD/2dx933lDKR6oxShTwHvv71Lxy7D9x9PJITLOOCUBkOe7ofDf0fd9iPe6LXDP2ezu2pwyNSM+HLc2M8FstyiWinsdqRa+v88mCJ+wE9Nw3bQRwpFAIRVSzzKTIMnho0dakUFDkIFEUtEELEWsdgHbvDPblkuHymLM8kZaiHD/j+Y1smlojkhTReyJeRNGeMHbh7f4+vHTVYLueAqOaydXqaqFpjes/xbkdi4fl8QnTBGEMcz1zGmfvDB3S27Po9unNoZVimSoclm0rtYEyBFArTy4jpFc60vVXtPdYpoK4iW2YNUo2mlfmUtkwttSnKN2L6SrovZdWGMq9k+dLOlVmdpjfLwFIKOVUK0ly+VZNTWZyl6hUo4k0Red0x3j5TVtuJUispZXJZSQyqJRBZQaMff/yRu4cffjP+/j7b+W8z2W8QBK7MnDVw1m/gW17st2js1jt8iyZdl6hpKtuvPWp7ITcwqBmjct3r3PwslJQ1MAvOW8wC03lCawiXhNGeh3fv4SWwnB+Z40inPalapGqktAXa/d2OXGYiE27w9B8GQijIOCNzbr0EExOG/vhAn3qiTpRUsXvH8dM9hz/ew16RpJL8geoP6I8WnwKpKEoNFAxzFGLIaF2JynAqMNaEk4orFZ8rw1qql9xWr85MxDG2fdRsm61cbruZRglD32OcIRhhN3RUVVmefub5X/4vShXu/uG/Yv6hww09SKCkkTCeyJeRPC+YYskhIRn2/Z774z0lJKZUSUtkeol0GeibW3bXGSqFFCM1VrqqUFMCpQmxkJQhzQvkyqEfGhnDNOR1DAt5iuQ5YgeL8QrndPNoWQmyVdZdTmnqj7W8jjBAbXpuVyRVoVCr07TWzSKjltpExFZd2rra1AuNuKFUMz22RjHHxLIszeQFuRZw16RTX8trucE+cq0tC5fX/rSss/eHhwec84QQfl9w/pZUyPepeVvdfdODrv+Xtw+8Bt720QLsNdhuiQU3OfNXHxt96vpTViDJrG9iIyAkJIU2AxxnytiIy6evZyiZe9fhjAPX4VcSZqmFGiJLjMS6sHvowWi0TZi9QR8sRYQyZ0RJE5PSgag0u909e9Mz5guyKEyvQVlqNnjVUyhMs0KJwfX3yKeMlR6/CyxnOH1+5PHlBWULWM1LFS4l0U0Lx5Dpq24/OwmlnWnSkiFVSkw45RrPONc2L1QK7yxKKxKFGGeONUEK5MsLMQTC/j31039AbELKhMoXBitErQlLIF5GpukFUxy96akhNFYRlpozccog8GLOpFJAKbQ3aOUoplDX1z6TGWNFu0Yi6bqOWgpLjjglDNZQkiXmQI0Zo5purbaaUhMlxsajFdMCFFYPlDYvNdpgdFPZU6ud3wZVGqOxzlBLbm7m1lynlKmUa6RprdFKU9aytbOas1RCDCCOK2Xw5rxvixkbDtLOplCk8YJXdc2rX8tWik/TxL9hMvb36db+VkB++7lvH7FJhdyWAer2a7/xs26//9rHirxOX77TmwJNIgJLrU2BjSpIzizzSPzyhfGXn6kYnLvj+fMjNSyYhweYZ5w1uN5Tq7AskRIjMUbEFqpS7B96xGi6hwG7c+hoKcaAtRyPe7LVnMaAca3PqCpTTbuDTs8zEeG9tRjvmVLFOY8d7snOofWe2s88yRN/+SycjKKoRAkLRjtigfM0c1S66c5UIaaMd818NsXUyCClgDMrK6tJcTjftV3IkvCzonz+jP3HH9kd78n/+E+EeMHue3SdyOOZGk7YONNLQRvDJWfmy4XlJVKmZmwkZVWeKAqjTNtgWSpLV7D7gTHM9Mqwuz9CUUzxhfnpzBQDyXgONnO82+O6nufTC2opKDK6ZpyiKU6k0v7LBbGZSqLksLYrt6j/mrW0xmiL1paSBesc0PpUrZoau1E0xzklaz+53tyFxvKpdTXzbc9PK0vnLVpDyvlG+nIFg7ZQXau7TaJzO++yyqhu+rVbkCilsNay2+3ph7tfB9768W8G59Zvfqsl9O1jroG0/mbXQFSKquQVxaJxb1+J6nLzc25fcG4e015Qvgna6+8jrwrwr/MmriWKiBBD4OX5mfPXZx5PC0o/ki8ze6N4yQUzR4ZiKNKYIqFkljmiAT8YRJUmoLzzmKGJZe3ijrDsWeKMPx7pjOb0/Jnp+UycQIWKroa4ZJTNiFk4/fzE4f07lGh6bTns7jnNikkt/C088d9OX/mFSN07qhZUhHfDA+N5JKdI9W2umUoh17rqpSp0bSirNoKyYDuDlQZy9INnWWbqnPHRoh+/Ej7/jf3H/4O7/3hPLCfIAfKFOp+R8YU0jW1GGzP7boc9aOr4wjmG1jaoTa3AXsdcShms29Ef75Ddjv2uwwwDxnjqqZJ9ZllmpCaEkf7hQHffI72i2Er93ECTqAVVKykE4hxw+w7jHUqVVWfoNzaXaOOvJnPS1CWamFdDbu3q56LNdpZeqaVqPUO1Vmqu1+0rrZpurdWKmJsP51shgfbnNhJD1m1RtQXmhiy/rR+3OKq1siy/s6z99mLfA4DezHrUW4OhDYHdXs7bO83tx/Vpyis76LZc3dbCZA3Gtwjy6+degdttM+W1BOl8h3v/kS/Pf+Hx6yOuVLrBs4zgYgaxRGVQYogpUWvFW4syCmUglYDt7lC2mbM664natK32UqljoEyVJU1rcLbSJUlBmcAwKGpYIC6UogiXF8L5nvE88tNPn/mXLz8z64p/vycsU8tKBXIKaGmk7NloAk2FXhnTFO+poCrWtnmn7eDh44FuMkzjQpUIFIwzKGvQZWZ6+sIuaeTuB0wZUONPxNMX5PREffqKTDNVLLUoatEM+wPhIJyfAjEmrNEo67GqgXDN89QSUuXh+I7OaVxauMTMpYzkmNBKc+h36JRRaWKeXtAPPcO7HXY+oQ10zhJqbdpNMZFCMyu2ypBrW+W6bZ+2276sIE1b6DeUknHGYJ1FKdsy59WSoYGFDQqxlCKrzUNjGimlGjVv9R+1xtB1jiVFqkhbS6tyBTpFthN3KyF7e663erFcz6vSK1k+ZU6Pv/xm3P1daO1rHHyDyH5n/sjKitgC43Ygu337JmuvGpP4+tTeLFhfB7uvKO72hG/zt1ob9E2fFGRV2wNqM7JRxtDvduz2kCTz7l1CJdDLjFUCeSaHTCCjtANqk040bRdPjKAc2N4gqjJdLuRpoesOHPoDL0+PpHPCpA6iwZTmjxGLIEUIy4QPFVf2MJ9Zxok5jOQYeIqZ03yh6tbr5nWGNl8iXAJGVaxSQAZZMyWCs/a6cnX1njQaOyi6vWb/8I5ffvnKeJqoSjC+o3Y77B6yLKTljE/v0DkRTs+kLz9Rn57JzydqSMSlUJKAMvTdgRgL0zyTlszxcKDruoYvpErJ7Y2J00JdMrvdO/IUmMeRMcyoS0BCQKuOrndIMJwvZ5Yvht37d6QccV2TxRy0ELVj0fl6rK026LqNLGrjS8NVI4oNoaexe6QkNNIWFlLLhFXTJD9RlFJXcklZq67G5rFar1ODto7Wm3ZO5+Q4jZlcKsZs7tmtz+XmnIK8Ct9tiYq19xV9PefOWPbDjpIiYZl+M/5+n5HRNx9vmRJbF34D+Nw+WN38qV6fxLeZePNGVGrbAngdPm8Mx/Y9qzap2tC5tcSRRhzPUluz4Qym0/yHP7/jz/+4J0+K8fEJZzTllxfk8cIv5zNLjvgV3Ss4rPP4vWX3oLC2UuMMMbGcA91wxBqPJxHnmRpUyzYojLfIsqzIXiWOE6UTUl1QywwxkAUuqfB5OfMSK19+fuISEiUXJFRcFureIBZ677jznmFuCvAGQeXcSn40KVWKAHHkedR8/MMP3H88MoVImtpd398N9O97yl6hps90J0POZ+KXv1C+/kx9CUiEJdlV/LkiZaKkSA6KVBaqWr0/zNrrSVMW0KVATJz++rc2wsmRfFnwUppVRZwoKoPzKJpEpSwROwW87zDvNefnM50R9q7HOrD7Ab2OOlRZF+elYmpuvZwy68u7upmr2uahKYAulFqagrxR62yygChybsiq0xqjIOeEUjSxcGgUVa0xRrA1M1qD05aQMjHGViKvLV9LMO0miVar/89KuJHXo25YqxwUqlbmcUSZ7n9tn/O3iOW3rKFXhb7tN3qb2+C1DLi97rZS9i0ItF1fRFqPofWVw7DG83rJlaqHum7Gb5sBso5VUo6tPHEO2+/o9zusWIqN9LqBEmOpaByl63gaRxgDElJDYjuP8e2NSsuMhMyuv8OEwjidCWKI08IyhSaVufbZztFkD03bDInTwtw15o5SCsmFZXlhKZXLcuJlSdQp0ntHd9ijQ6ZMiWUJzKlSvCZaT66VXhuMNOAi5YpGyBp0gaXMpNJ8X/puB6LJWQhhQZfEbvcOfCV++Zl5iiAReTojsyDisfsjvXWYXMnTRJ6eEGlSoA9/2FNC621DmFEaqnKozhCmmRwD56evhJQRqwllobemAUi1MuWFFBOqVmzn8NqgreG426GNoSghPSW8eLpDD7sON3QoZ6mxknK8bqZsh2EDYVCb0oAwzyNxOVNq06wtpbQF7rUs1VpjjcFqRUpN0LuNT9a9ZA1KC0plVC04bRq6m3KzdJCWEKw1q/q/vtJjtjpTqc1yeutfFSJN3bDWyvlyIokhlV9PRP7u4PzNjw2S+t7nb2IVXsvfb4NwC8zbr93eCK7WftwS6t+EONeRqrreBl4fpZoNgwWcsdiuw+/2MJ0RM7G/89iuI5978lj42H3k0x/+wOnzVy7yiDGOT58+kv3IeP6KqgFdDdVkyqww1ZCK5vzy0gbPCoxVWKWxHSjXCNgOxxwSFUsRTQyZeRpBJ7oPH/jP//CeH6pwmifU3vHDDx8ITy/86z//hX/5yy8sogi18IWAz0KnG3BFLW2jRkFNFbJQFmkSkvmZvgvMl0QOhZJgPD8zPTl8Mm3PVE8YSnOmtntk6FB377B9Tw4R7S8MR49loYSAskK8BGTJbctMVXb3e3S34/SsyV8jIYxo69CHPaUKz6czdQ6EmIkFkoGSE5pCmUdktnw89oiB7tjTpR6Rgj3uqb1FjKZqAdOypqxAjqh1ZUu3+ahSZlUZEMZxIj0/klLGrqZIzd/ErMlEmoZQ2RJEq8AaaV5Rs4CWBgTWJs/p7VbhvZa+KVeKqhitrkZGrzzwbfn/FcAy2lBV69eNd1QppJR+M8T+LvPcawp/ky1/PRb5/mjl+2n7eyjwptj+9jrqtVL+Fki6Bma7a4qolknXsZXSCmc0qTaSgrED3fEjotsLU3NEqrDb7zhxpi9tb9HsF/xdJoaMqjTa2VLoOkeKmaeXr6ho8brHVkuZM/5uQExoyt9OISYTwoVSKvd377DDkf64Q3tLfrlQawBnOHz6xMN/+hPZGOY0Uzvh/f2O+RdPOD3x87NlEUOolV+WyEEZ3isFK+NFWb2i04lSMyU5SqzUHAgecmw0QKMtLImXn55wvSJGQTPinMYMDvvhDnU8Uu/vCShKBbs7sDOOTi/k5YSqE6a2r2nrKd5y/IdPqP0B/+GIcprl68jQ9+w/vOcSJn75ORBSYVoCUTTJNGCnxEhYxblQYNeRRb/rm6ltKVCa+kRVC7U2Y6Xr0djGKbT5eL25eecVOGoZy2A3hHZte2Rrj/SmpLBKb9aMbEZESreyWSu8VfSuKSxW1VBhdcU5Ghuo1opBY80WqE3YSzbUSDSu70kCBU3KhUJqBJrf+Ph3M+d3Z51rirq1P/j2MW84h99k2H9vbvr2Ojc/8PYavDbjt7zGNyMXpIl7xYU8jtR3O3b7O2y/J3U95y8/wzIz+I5RhHq6kERhY2ksnCqcvzwyFMXOd+x3PdUK8+NncsiIRDKFKoosbXlackBpwVqw3lBCIpWAG3b4fQ/W0EkCc0DdPdD9+RPuxw8o63hQhWITPQnOcDgYDneeMQghCnOqBGXbgkGtoJo2TVM2d628Z2W7jIKktg6cUsU5MFGxPAaCA1EG01mM75sF4tDj7u9QdweIGRMTklNTXO8VnXXI0NElYYqtN3XHPd3DkdTvECpq3yGn1peioRs69ocDZUponaipeYpSK7UWwmVm1q3s7XZ+VRTIzCkTFajBQ28x1VPEUEpapTC3UVmlEe1eN1O0NldGjlIKCq8eslVWCZGVz11X8eq1PVJrqarXm58oMKJwInSrtWKmUf7MugGziX1tgGQpr2iwNqtyIoBy/Jf/+r8TinC6zPhhQGozBf6tj787ON/8W24z2Ya0bsDZ63zxJrreZMTvbZpsGfoaWDdZ9Yr9rnfDKy3r5i567UFvWUNSKbkp75V5ZDpbJM90+3cYY5lfJsLjiKTSlA4uE9PS3JPzHBtqmRMI3D0YyI2B4k0PnWaZmryiNpbzeURbhfeaXDJad9zf35HSwLLE5rtRMtpCf3B0Bw3vj/CpRx8Nzni0NWQWfBT2veNub7nfWy41Eqaw3qLU+lo1ilnJlVLaYS2l2c6hzHX30VqDoMkF1CJUDCRFtQo6QzaWqptpgDXtQPS1EuaF+eWFyzLB3rHvBa8cmNQYUY7mnN07kiqc5guFRid8uZxQF8/u7tgOuzZ0XUckEVLGaoPXhpgTaYpQ1RVVjSGQaqVaC13A3fUcnW3ylm8Evm4XHeo1uLaMiGq9psqtrLW2CUhvIyeFrCwgWU2K9NXOo1kPNnmfXJpig9nAptqub61hldVbE1VhlbFamWsFVdq6oLGWfuj5+MMfEeu4X2ID6kLk/fvu9wfnt0F6JbV/i8ZuAatueLS/TnhvrvVt1r39+pvA5abev74Zsgo9tY2Ejci8/WyRAjUjNbcXVAl5eWF++lc6pXDugBPF+HJBSmlapyFSx2ZfTlnh71IJl8ClClNNaGmHmwwlZpQF13l0dszzSCmK3htyam+w0Y4aA1OaEdEMDzv8QZFtIpQXOhnx3ON0hzKaWhRaNO/2R/7pjz8yPo+k8AuuNxy9o1te+/dSy7qEXMm1IEqjnUULqEoDL7JQqKgq1ApKt+2TKhVbC753YAzz04WMpdslZJrhdEbOI/P5TDlb6tFiTCFFsPsdKgO6tOohZHoLh3cH/Jw4P45cxheMN+TY9JF2uwGcoy4Bg27eMMYSS2E6B6Y5Nxe3mEhVUE4oc6Sjcnx/WD0tW7+n1DqC2wDBWmHVBtrOo9YGaw1eebSqKzUUcorryW3Btp6+9dyB1MbNrrVZPhYRjEBnFNbopshQS5MpVWZlDMmKGMsV8KlFX+mlNRaUzoTUKhyMx3mLFIV3v1Px/XvBo64p8tdZ9ebB1+d8VT5482X5VWmr1if13QyqXhlEcGO6W9cXZlUQF5HVfGcVuZZ6ZWp03tLpQJ2+sBhH6d9RpzNqmsBYqnMsolGlLd+qddu+CtQCCospljhHTGnzMyrUTXay6zFWk/NMKcI0LYQlchgOqGSRlEk14LWmWEPuAjUWfDhjpzPGGcydB9thc27K8KXy5+OB5eXEUTRmthyLoVOWmnLrrWuzMRel0G61YECjnVtvZIocA41pWzGlCTc7BYNX9FooqUARKhPzKcA4o5YJyRGdIefMrME4QfsO6y01R0oakZdfqKLZKYUiIb1itpWYQ5vhSaVz7SDqsqGn6xK9c01nN+dGAFfmuswuuZJ0onghxsxw1zxRr2Xk9n6vZVOtAqsaXyllfe83QEaRcmrZjIqzpgX62mvWtdfUWl0rJRENpm22KMkN5DMakbJSAl+F1hsrSKgNb6I2ZBDWKqdUwXY9qQi6thFfqdD3Ozr/OzWEvh90r2tab4Lspsb8Nll+bwTzW1TA7/aw14z5ChFfCQ/biEY1Q5taGwOD635e+7zvPL0vGBI1jVTdY3Rl6D397oCojrF7IYcJI00NIa+bwKWCsT2D69CrXYGscv6ylkhWa/puAG2JaSGn1A5SrVjjkQI6CfUSoPf4nWc47HFZWD4/YXrN4A/owaKxpFBJp5kHZfjTsIfzMylEjubYMo827e5eC0k11QDtDUlX0hhxYrDaYLzFqEoJgaQqVgq6CDpBngKXX76itUObnuUSKIAtBSsZrKC9B9FUbfGdoTtYqsmQFSYnNHC33zcC+zQjJaLTQk5CUAYlTbkulTYKacioQkojqvuuyXWGEom5VQIofQ1SrQwNSU1oWYNuOy9S12pN3zCANvJ6C4xcKiE3oydnmwqfMyv3WJp3SpWmbFBSuSK2rfZt46qtdLZKNapfbaR4qzSr1WjTDFqrxkZsWJ8niioK13VY68E6SC3AbWeI5Xeitbcft6EkbRr8htWzZS3kbX/5Cqu1MleuvoLfXP876O32p27/aH3merkWs+pVsuXmOijdFBCUaWLEtAxYcisBtW1l01gyouCoDbuupzsMnE5nYlF43a9D4wpoqrHEmCilEGuiKgHfyl9SRZmEMuD3BrPzzFNsYsK6YHpFiqpZ2VXQk6BkwB4/obt7ylMlpoJ+ELyGOhfKnCnnhDon9hfFh+yJFPbSdjQ725NqJutK6MDvLFEnVOcZ3AFzLux2A3qwcFGtPC8LkmaSGHy2ZIRuXOg6jxkK2rsGqKRMrs20qT/uyc5j+h67M3Q7IcvCNAJmYHf3nv7hPSFnzlETv85IyljRmJIwVqO6Nvt92B2aMkNSLHMghgJGo4YOUR6dMyEnIgWhKdx3yrUl5xIhz5Q4ssT79UyVdcYNIpmU0prpoOaVh6st1ltan9L0Z1NppHctbdcS1XpDrZt3Tq3NS6UNbhQZQ6oVWzKdSFtJE4039lrWbgw4od20W7W3tlyY5pciBWMtXnmsaEK4EOPv9Oe8DRqRVxMhEdYgeaXsbUyfbwntWr26TbM9ltes+C1Cu/Fqt9JWr/0F3N4g5AaUvVVfUFeGR6Vto0ut5JzQuamjG9M3Y9OQkDmyjBOPp8B8znTKsNvtGM8TUx3puoEkEdGKbtij80RMM1IbiJCKJtVMDDODsSwlonzHcOzpHu4QMcxLYvfDB0ypLM8TYYzEHFFjYF+aLGO3U2AcKs/Uy0J+emb++Zn584n4eGJeIqaAjkLIC1Ybsi7s9wemMREB9/FItYrnr0/8w+49rhR0b7h7dyDnQJqgBDCrzWBOGZaC0hY7AKaNgBpBor0ftVQ66zl8+oS626F8QasFXiI6afA7xA3EogniyG5H3d+j30d2Bo5396gK8xgwISFZsMbSD/c8Pj3z8jwisc0JUwFlLNYbbG1UOXW9sbcsVFICkaaMqFSj6indStLV09RYRz/0xLmR4FXTY1knC7DMiZLX6xiNs2bN5i0QUeZqP1i3vr20stc709wC1l5SryO8rYpsyWdNLNqslWCzhbC+w1pHyhVjHMpaylyvcif/08F5zVwrB3ZLTy3jvzJ7hHXmw2vW/BWrSG39wtttl1uywe3jr8F6G3bXG8A1Rq+/p+J1SL3R+JDmN5JyptNq7Vma3IeJlYOyRFHE84w+F2xReOu5qIWlZKY4kWtEk/n6+MR9r8gpo5Qm59K23HMm10KnmreIlATVor2jKEtFcJ+O7PYHXn5+YvnbIxIWvNJIFGJMzaOxjKTnBUFTvpwY//qV+cuJOgYcBmUcSldizZSaqRS0DVSEZDT5fk/36QOSC8XsmJcLpSyYqImSiCVgViU7tbFptKKgEGcwO4e4tQSzA0p6lNPI0GMf7tB3PdPyyHIZKXMCOkR7xinSqQE6z3D/Aa87+v0BqwLH3Z44R2L9hZ315CVQcyDnEaMLu96Qc2aMl3VOaDHOo6qwrEuQzZtk3TixlmEY6Pf7FZhsQVRq49T64x139/f8VQTrPTk3h3K3kVlqxWpDN9iW7ERoK2fqep5rbYp/IWXCahptdUN5XdVo3ZanNxuQa1ivpbWss9MtFowxWOvRpv3MxhCzlFzZ7Q4s/6vc2us62Pr3Aq3+3gLwJpiVfkVubrdLE4qIDAAAIABJREFU9Or4u1m23Y5Tvt3LvA3S7botQLfg1ysC+woIv86aXoECUasznLQdwU0q0TtDHhPk5lwV84gKCakW8gqXO7N6M0ZUiRzOlh0erQypZELM1+ertUacYjcMdB04q8hUgiSyM7D39O/vsP2Opwrhy9eGmL7MlKJh5WxWQBdN/HKhfL1Qx9Lmid6BOLKquM6z5LZ0XEJCe89lnvlv//f/hxtn5i/PfC0Ln4zHLRcepxcsmqSbyJXZ7RuSqQRjK8YJ3dCzf3/A7PdgPc54aq0kBerdA/LuQEoLzAsyB6zrSc6jpHl+WN39/6y9WZNkyXGl+altd/EllsysKgBEN0npmWmZl/n/f4VCTjcBAoWqzIzF3e9m6zzYvR6RUZlFEJgrUhURvkeGqanp0aPnIGhs43C3B5wRlB+YvWcYBy7LzL5tKQku5wtmqa5tIcSawVPlCvtYDYUbZ3DGsSyenAMFwTUNIhCCR/yynt5qjxkRSo6EeaQArm2xcuBBBFUKMQSUqjOUzhpEhGWZiZvPCTXLpZwIPtWJkUIVqtaqQt9UxF/XEvi6ppVU0I11nb10EOpXYwzWGkQsfgl0N3sytdyRomm6/d8fnKXUxq2IXBu+yJag6g4ja7EvwlcDDn55dH079fLabeylbn35ugWjvP5mRdqKLkhSq2Zt/SzaWLRtSEvtWYUQ8SkQUwUClDOEnEjzzBhK5Y6WKg1Z80pk1zYVbKLQtI445dozs7Z6Z4SE6Qz90aGYCWnBZ0GaA13fo0pBI2hradoG1bbE4cz4hx+RtkdrSDlUFM/D8jSjxkCcY/XWKIppXJgLRO340+OF437Pu8OBw+HI992Of/3Lf/Cn5z9y7BoehwtPwL0RjlZxPByZVKKgibsdXRH2OaL9hBTBWku/36GOe/T+QFGGQEF3FrXbAxpVPE27wxjLEjKfB4+MI/H5DMrSdR2X8Qw5gJ85f3xmGieyFNr9gfsP73l+eOQvnx/Rl5EcFfNS8CEjWHbNDmcSPkVSiqSc6ynF1H+3fr/H2io4nVaQRkjEtM3zVipcjJUUb6y7KhBoJXW8rsCyBJrG1uBeAyjEeJW8LIA2FiO6AkI5EktaxazV2mutiUGZ6jpQe+v1RKl0fV5ZCQ1bLetcUwc0UkZU3RRijDRN9/cFp6z8uWsWXHeGLWauofNFi+Plti0gU3rxN3l77H2N0r4lw28tmetmUF7esz75pQbd5vvYbNoKZBSLz4xhYeqE7hCZU8ZYRbPbEY5HhnNaDX4yfWcpJaDallwskjNKFeawXHmezrj6u2lLkUS3azjc7YgRfBgJc0CTeX97T5kzz//xF8Ic8U8XXK4THEyecvEUo2i7hiwK7zMpFZY5krLC50RZJmIseG14mi789Dxy8gndNOx2cNfe8GE38TCdONx+wN0oxo+fUSWypEJQho8x8un0mYOf+P1+xz+3PR2OEkb8OHH6/IS/DBx+EPrbW3TrkM4SLhfG88TN3Q3seuZTIKdCEwvTMEJYqut1mkjzhTgNzA+PTD/PlCLs398irSVrgz3ssfsd4+MJyZZpyiwLWKchK1rnUNkz+qWKQJeMaEXRFT2tA9GJrSOwjQtuG7Ex9ViM0rRtdQYvZalBmmttW0ul+viqOZUJsWoIsxoQQZ0uSeXVen+9nhXXFgoURCnMNpGydi5EaYw2GGNx1l4ZRbI6erPKZjbt39jn/DJAXihSorhmp5fmBlcywldfR7iO0Gy/5Hbf2xp0u78epzfS+wvg9PJur/qp15q4vADE1KZwEYPWDpIhRwUZlDO02pHigNv1tP+9Rz2c8J+fqkV4LNgV8XWNq67Oywgl0nbdOn1QkFj9TOpUcKFpG+LkKSGiUegA509PfP70uQp+KWHnNCpHHJm0eKZL4PR4xmgHYpAEjW0JJIZlXoGH+o4pZwqKZRWXhkyePb9/947L1BCM5v7dBz7GwPnxM5eY+H//9COTdgxLQOZP/PTxI0t/4P+5P2KT5/mTZ0me2DpOzyN3333H+99+j/KW8JefmccJ1zhKo1HOkk8T5TIgUtjdHHDHjiCRtjfMs4flTKsdS8yEZabpLD5WIKzrewYqWSNT52V9KKQ4o4wmSaqZrNQWWNu17I8HXNPUrBnTNVmwOgzI1gs3NUPFlNfn65UgvyL2SKU2Lpngqw+MErDO1Sy5tj7SRulb11Btn0BcVRJq//Q1Q+0FF9mSjzF6NTmqrDKRSmIIOZJSgQQhBsS/4C1vr796ZExY68n1uhrpbnHCS4DIm+dvAahXNaNC+eLo+rWRtOvz1zaIWntI14/w5qFXkt/6oJd2jMIYhyjHdIk8lYW2u7C/e08cPOfHJ5Zh4rsffkfM8DCc8H5CbKZ1gjhHFGhMT140TusqHFZqA9qgcKKJ0VfDIp2g0SyPnmV6JI9QloSbE6VAwHOaA0YijTJgDDHAMseqTyur+Y5YpEDTNBBr3dQ2jl4b9tYTCYzTiWfxFLHMSyVanMaBn0i8/907+t9/4OHhkZ9/fkR294Q/fySFzBACc6wjcWIEKRkZIiYo/OnM+Bx5+ngmq0ROE/e/+YEb17NYg7Utl+eZoKHb30DbYN/fYRrBzwOdb1g0nJcz3eHI8f2BAOQYaERolKC1VGV5gZCqNk+KiRIWIpmQI0vKJCX0pudwt6ffd/imqS0JfrlJCzUTKV2xjR9++C3/8a//wjQ/IKUq4ZVQMFqTcyUN6HUxpbUlA+qlfiRRiiKt7COhZlWtBFFxxRrWhJG3Fbhl07oxVKBzW7CZmDzzUr1TSqpH73n5G71Stt3hC3T0VRb7IkbW4NkS2tujLnBFuN5er6dRrjXolkVfER42KZJtCr0eQbY3qp8mrb4ZldC89igLhCXiimG4jJwen9GuY/r0zPnnj+ggfH58YHw+41MkSyKEGecch8ORc5yxux4TG1RM5BCYxhErmhQ90zxgG0vhiGkdHs/Nuxv8s6IshTInVCwYa6qKnBRs33DcHYkLXOIZvGCKxrIa+8wTgTpEbkTQumqrtkpz0zbVZi4v+JBRpmX2nudLJLWa4ITHS+Hu9/9AS6KJiVMotE3HzbsjH1j4p8Oe28Yiy0DwMyqslUrIOL+AL4Q4E6yn3R9ITxeS0hSViSGgdw3uZs/hu/fIvmfGMz8GTN9x+/4d2T+hW0NRCT8tVQ1w8YTLSMl14W/HqY25k3OdUglp3ZCNott39PsebTSUcpU+LesaEdY1UxK5ZMZpJIbA+w8f+O777/m3hz9SYlzRVLl2BlKlfV1X8HUyqmRSeblPr252pWgo24jjy5r7cny5WhFuGURrjVwHs6GkWNUuikBWq1rgL+Nhu/6TzFkXt7w6j177mkW+SF5f/CR1L3tBWTc/k18huG+v8qrvU9jgbriSENaWSoG1f3p9S0St83haQ5YKwqiGhHBeAm4xmGS4CZlwPjM9PRGTRwWNGSJ5TpQxY4xBGYshU9LM8bin7Dv8dMacF7TOnFTEiqJpIJoMWrEME/1xT7t3BO0hGVxzIMaR5BLRFUoyGIS+P+JMj8yeXs/QQY6FsERKFJZS9YwUAU/A7ncobTAhc3PjCKESQZasGHxkycJBtTi75/k8cFku/KH8ifMwcXk6cRki/9Ad+F2r+af7lv9233IgkZ/h9JhYcsaUOiQQl0CItd6Lg+Lzv3wkJcfxd9/R7HaI2lM6IStF193S3N+j/ETJqzhzjNwqy5ISCUWJmenjiel5IoYCyRBDQYvF6vr3VFKIWapyhVcUydiD5v1vjtzuW5aw0HSRxpQVqFO1/1kAVddl6xwf3r/jXwROlxNPl+qSbVcgR4ugKViliFqTqcEmZZtMSauqPIjodWi/UEQREWJOxByIGar0Vx3uVtt2UZNvDUpVx9iMCLlEtKoawq0YTkuq3ql+5tD3f1twXhPXNe4KW/reyrstEeaV51rr4V+eo7/QBeKX/dCv1avy5nnb/1/4vV/WxC+PeKk5BakyGNbw9POZMj5wd4DbvatuVm3DdB5p1YwzhqgNbatJWljiwPl84v7+SFSrJUAKxBDo2gabNJ1StLs6LJxTxC+e5tDgilD2hnKBbA37bs/iR3KISNbEc+RheWCZKtto1+0oRRjyRIgJMStDpqljakFqv9ZpMPuOcdEsOZGs4/PzmUuBU5g4X05EDW7Xsvv+NywzpPlCqxyH1vHff/cd//MfbvhNV+immSUXhsuMJIU1Fsng54APgUYanHbEJfP8h5+Jg4fvf6C9f0d/e0d0mfPzRHIT2sJNvyPGHeepIU8eFSsSK4PHx8Lsc21VrPI7SmsgrcBdXVsKhbMaJHA4dtzdHRgvZ57OF5ZOYX4/oO/XpLFqJ9UAqpuVMRZKYZpmLsOwsngyeq35tvpP1iCMMeJjrCtbvaD8cROqztTBNKWIGWJaP+dapulSFeVzLrAS7Nej3uvAuV7WtdgcQWmMCK7dfTP+/pPMKVvYXH++oqKr6O6r6Fhvf1EteM36+eLIysv9L99z/WXeDnd/QRF8HZRveqVbj3P7rNVAtZrT5Jx5ej6xPH3ku9vM9/c9uu3o7+7xz4XPD0/02tXPrlZB4Cr9Rix+BRUiziqKtrSuR+bMNJzo7nb0B8swDqRciFnjdj193/PoL0QNp2FE50I4BYiRSDUjWkJCW4sxXZW9DEIqNXMsLNjmAFahVxNbKYXTFJhz4dEXBp/45IVmt6OkM1ZNdLbSys4/fyZHxcHumadAp4QPN0du9ztud6vy+WmkaSzZK5wztE2LnwLzecaPM7rUVoQtmun5I88XBWVHMIHuxmJUYvn8iHJQZMKUymNdJNMeDxjdkRfFfIyMQ2G4nMmpAlqX8ZmCWYH/gjaaxlis0litOew6yJHT4yOPzyPc3kHWsGY8JfUYmWVbI7n+nCvW0DYNE5ptlCytc54JwQdP2jYEvRo7sR1t67G6bBIiUsfwVnXaKnGiDcLWVSgvfj9s7US5AkT1/et8cM6J3eFAUZbGNl+L3+v1nzKEXgfQFy2QvLU3Xsa5Xj9vqyO/RiZ4fV1nM/nGfa+r21eBWVG0Xzxhe+TaUllJCOtBqGlb9H5H4zTOgKfgjdAcDzx/GgjPA04LWIvqhH1/pNiEmIzSmcrfHNHaEPyICQYfIionWqMY/ETfNWgMl2nk2DfYXtB3PePjwOXxUgeB40Ypg5I1JWnGsyekzDQFlLYULYxhQZfq5WmUxSohhIUhRZ4S/HFceIyeZC3/+OF7vsu3fPz539g3VZjMLzNFGo7G0LfCh9ZxazQ2RsbHMzKc8POEAWa/sJSCbXsSCe8XmKogVhHBZkurLZwmlk+P7HYtxjm6VpiXGdUIcx7ITaHtdnz3vqc7HGndgWd1w0FumZ7/lWEsLCHUWlFDiJUArzS0TYO1lqw1U5lwVhGWifEycjkHlA2EkKvdhLz8pWsdtW7kSte6MVfdoAKwBkWhYIwmUYivMIxVV/ol4W3MtNVeIRchxLUWzhkl9tpyqYGor0dzUXV6pQqEvRICW9dn23ao3YHTsGDb3d9unvtFlnr98zVxvWS0ukOsYVPyF7d/GWxfPnf94RU8/oLw1ru2DUHWkHs57sqr17lOqcB1Kj2LgNJY5+i6HvfDb9G+pe8HMpGioThT7eYQwrQgrUIlYedaDjc9WS3QGNTOMo6ZMQzkpWDcAVMqEcGLIH2DOxxwuyPa9bRO0FaR8WTJ3H5/AwIxFERBSIFw9nCKlJhZlkDOlTWjy7rbi+GyRObnCw64v+3JSjFay0/DyL+PE58DqMZRPn3kN/cH7vd7XInc9R1zSvx0OjFeAi7BB/0P2GFgiZlpfED7BZfrUbKUhPczGPOidpgTOVbrg2AzYjIlTnRxQD/8SE7CrAORjN43FFWYF01WCpOENCQuTyemzwPTw0gjLRINioJzFttqZh/YyOLWKOokQaHtNG2nmaYLp/OJ81Bw/fJivcfLBlyoR09ZRd1yKcSUcM4xZShrC6RCuuvWLYJQfVKKbBv5Vgitr64KKWZCTkSliUVICYxTOGOxxkCuAF4uBaVr+0etol9K1NVGk/Xk2DQV/W/b7k3y+S8G5wv8ykudJy/H1o37uh0bvmyLfqna95qy93aOc3ur1zXmy5E4XwP0bZlZLeK2oF+PxCJkkZXNYVDGgKqOzf3hwEEb9PJHUsm0h45YCrPMaKuqmFQR5hDpRNDOEsNEDhM7ZXGdZu4EqMjhMs6YpsXev0MddxTvWHSLMR2NM+R5JMSFaT7THg98+J//SFIWnyNLWAg/n5j/9wP+MqFT3fx8SiQyBEXKhdOnR1JMqJwJpaBven6MkT96z3NrmTtVFeROn2ibwu9E865p+KHrOfkLzZ1l7AtmgX4amP8cMS1IHJEYQFuMqsylsHhSTjjbEKwQdEEVRSqKURILCecTzWPAjYrTpxlxBXfoSCeLPt5x/P4feL4sfP7zz6T8c0WjP42UAciGnd1R/EwIcx0hYx2xksIyz4jOiDYcbo/sbjqSeJCahWQ9GgpVjUBTQZ1IqaJcabXdi3GdCNK1fl85ssKaYKSWX5VoUDOlKIG82gWWXAkIpSBFU0QTMyyhZuPeWdrWrZlRKhAGrPphcA3wV1euomLzeEF6xa6/qeiv/jv6nL+41p3qy1nOF/BoC8ZvXW+D83p7+TILfm3u83rAXd/r+jjZauGXdoxSiqKEVefw6r8o2hCLMIXEvnP0ubDoSJG83hdJPjAunt20EJNnmS+ITdidY//9DbnA9JRIRKyz7N59YHYafdtjtCXrdYA3ZBrXEnfCqBM3729w/Q1KCnoeCWKRU1Vkr+LMGZc1WQx5AZsSrRZCLiht8crwMAX+cJ75y7zwUAqH7+5ogiKfL5zPDyRn6c2BZvEcSby7v2GZJoaPZ+w8UyThfUYRqp28LbRtVVTXWuOsra0bK+ROU7wQY2FOMypkdlYYwyoGUQKNMTgDmYgtBaaIWxTxYebnjw9MY8BEC0HT7++4PdwQfKXmlVz7N8rUOm7xmaIDu/ueu+9uaA6WwWds09EUXQfIpaxqe4KUmv1kHQcrVOqdqDqYUArVGSxtp7lypf4BBGq/WlTtEsSU6iRTqVlZSd3US1HELMyhWte3jaNxdh1lZGUIqeqfuiap6yC2bHTXQgqen/74vylNx/7mPcfdHZK/xGFeX3+1P+evEQXWkPkiQL46NP3q+V99vfIScG/Bonqy3VhCq8hTfouIvSLRSy30X/4zxHnC50hZ6wdlhH5nOdnadI65gNY0XYdrOqZpZplO+HwmMHPs32EPTR3CHupkgk8JL4qhdNx+d49TGe8fIXgKhr7dY9ojvj2S90f04Q5iZQ+VfoRWgS3V2DVltK2O4irraj/oHEhmifBJG/54eubHc+QcM4d3O25vWt4d3rP85SPmMtFaQ6cUMs70jVCmiIqK1rRIkfoHL6DNatqUMn5eKKLwi6cUoWsasiSSqerzEak7v8+MGdSuwa881AMWUZZ21/D4+MjzzzMqNjAWOlpSLBCF54cTD48Dquspq5RySYlUIkYMRQrOaVSvON4fsL1FGoVkQ9EWbRTGabQRRKq6wXakLWt7DUAbvSotVIX1mKsRcM2Cdb0o2XCRioCDrFYOaj29bQLmlaaac+Vlx0LVA2osRtUmp2xrbSUlwHpy3hYuKz6SE0qqa9nT+cTzwzM/SuUUf+v6q+Y5v9UGeTlOboXx64D6Ekjanvf2eluXXp9bf+v1eev7vnwCKGUdEXt5ry9YI1v9KoLSpgZnSmRd6PoDh5s616koNLbyHn1K5Jhp9Y6m6ciMFDG4tqffdZi+o+stPgTSYnj+81yPZMbSHL/D9ntIE8QzZCH5TON6aBpyc0C6nmQcrP1LYx1mZ8iPmTQuKOpo0rzMsCiUUVijMI0h+UwqwizCkqHrej68v+P/+j//kYPR/PvnT2CEm76hKQUT6ihUyIESoMkNojN67ZqL0eSoWLyHlfMcZo/ETPZh1eEteAmEnJGkaVbHsz8Pnk8soBXN7Nmdz/zmw5E2acKnZ8oFwiIkNPMYyL5Kkyw5MM2PWGVJZGIOZJWBRAwzygr9sUM3AjrjY8KnOniNqgS8nCOQoVQrxFwyZRVdr2upTj5V75ONFF/BQ0XNYiknlFA1ZNfMJ2pDbHNto5Cv98VcxbsBGmfpu23tVCSpjt+pdbazrue8ZuC8CpzXvmymc4aiFJdxZhomxsV/M/b+Kvre1wJoq/2uccQLYPT2sW8lNGvAfRnw1T/ldfNmja63PxVWle+6c213XlUZ1o1DodAIXkFpd2TTE1IVUtTWVruFOEIU8AFVBGUUcUnkWPApI4eO5vt/wh469vc3uKOiuEAOZzq98PiQyLrD7g8cd+9ZxjOPD3/GpQv7xRMWWG72cDiyMw1OZ6Z4woeILYm2V5T3Pf58YPKgch2G9tNUUUkUIobnXPgsMChBo7htDPu7Pd/tdqiffqLvW35A6LqW7xGOFFqrV7ZNVeRTFEwq1QE8VcKDVbYOWCtBO8esNeMwsgwJpxu0aonFM6S5yoM4OIXEHx5n/jgnplKV8Hsd+Kf7zD/f3RIeL7SmgUmYp4ngCyUpChp0udrw6erfRSypBo2uQpfW2DozmSeeHj0hO4oYssrIaj9fw0KviGpGViplRnE43NC2PVlqTzKmRF51gaRU012tBGUMph5eqXzaisqmrNaepULIlBgJsRBToRRF13bs2nb1Bt1OiGtQlop1ZCr2EVdd2229KzI2F46rUPZUqpLF3xScr3mxv7jvDWPgpUbcQunL13n7uG9Jkmwv8npIe5Mm2d75+rBNiv8KXL2Mo1U1b6pPirJo21JEmMaBGD7hXMMNVXhqHiZKqhP2ShSZwmWZ+OEff0/3wzuau1tU21FkYvAPBCI37264/x+GYfaYXpHjyPDTXxg//YVEoDManEXd7lB9hy2KEkeyD/hhRhVDSQuUKt1YipByRhUwypB0lS4Jc+RznHkWOMWBJiR+pxxu9rg//UTBE53luwIHYzmI0GlNI3WzGVJk8Wmtjah2eNZQVCaUhHMGYzSma+h3HdY5xmGhZIt2HQZDnD0pxWq0q4RhCTxfEo+lCkHvJdOnhUMYcQm6u5Y0e0IMpKTICWKpivjK1AxjbYOIMM0jWWWKqjO02hhKSYyXiY+fLih3oD/sSDmxTCN+qbOcKIWovAEglLKxxspqmVDvqtzYlQetK3qq1nXChkivQtmpqFXQLaM0oDSxgI91NM0ax3G3p2ua65H1SjsVdbW3ZDsW51fzzGuNrNdY3vcdc4Y5/B26tW+HoV+TCrYY3I63sqJgfCVw37ZdXr/+V4+1r+//Zg+Ul3P9q3+s6xSMqowQayxN27IYTYgLcT7jg0epO5SqYsWUamqTbQZXUFbT9D2mbde+Z1d31WmAGGG3Z/8PHYyPFDPh8wMyPLAfPaILUWmCKlgriK5/rDjOhOcL4emCdT1znBkeHllOF0pIOO0IMeB9WGUsFdEn5stMUtAozU0u9CljpoRNhb61HNC4nGlToZFqla4ooAuiC9ZWIx5iRIxa6zeFLPXIFUskBaFrO/Z9T45Czob2cMBkGELkfDoxTTNRK6wIplQAK0rGHTqcaxlGT9+3lKLJVHG0CrQp1IrDlJxRtg4tlwxGG5a0EEti1/ccDjuaTvN8mhkvHtsH2n2uIlwpraa9qabANRu+kFDKdXNOMVUVAm2qZCiV8lpy7XuXUirhfZ0wyeupz6jqf6KsIaIIKa80RNi3juOhxxhz9eLZLqW32eRqAVJrW1Ulr3P189m6DhvolGPAmb9Rfe/t7OV22/X7L4Ll+t0XgfL6v7e3f+01v/U5aitn06atm0FlcpQvdrHC62ysUKLrwHVTDXEQoW0NbSvkNCHFVepXobrsmbICvMLT8yNaB3Y2czw4pDH03RFUC00H+4zrhVwm0vJMUyZcLuSmQTtDijNlmCnioHNMfuLy+BmZM7brCZMnnify5CkzzMzMi8f7iBaNayyNddxnwQUPTlcKX1CQE05pnCiaVOi0Zh14AlStw1RG2Vq7NtaRoq6elySMaa791FzWo1yKWBROKc5L4Ol8oukP7PYHCuCXiWFZaBXcOMdzrKNZd/0OU5cftmlZQqTt6rBzzBMqrzYGpQpspbQQfUGrir5uolwiYJs6deLnTIyCynWESxuFrEFxNaxaa8mtnCqlsowq15VrmcPav9xsExQ1o27rR+tKpatD+/W4HCksMTP4wlLq6NfdzYGbfV+Ful+hrFefFLVyaksNSJGqxMBm+bABUcA0z5yfn+n3f6cSAnz9aPqVR10R27fPef3cbyG2X22xvEV13wJTvGTwbTPZVLsRWa3ILarpKM6RRTgcD9zfN1hTd3LbW5SNIJWNo7OgfGJ5fiKlZ5pDIi2Zoo4VBBBDlhZai2sEGT+RpycoCz57RLe1mT0E9mNBdYaQ9SqpoXFtg+07/OVMGjzKF3RS+JSrhKayq4tVPQMdm47OOsRUVDnMpWrVroasWYSoahNfi6wT+YI0BlpFJIGpCzewNscbizjQqi7qtCTSHCgRjGxuztXaMIaIc47bmz2zX5DnCV8qiDPME+p8Qpxg+4aYPaKhdw0mF6wP5AB65aVWOZlI2jZ+JVhlr0DOZbxgRDNPC3nlsWpjsM6wKF2z5hqUL43vlzWldZUWSamisAW5ovpFVtR5RXoRdVX32NzRU4ygIBZhCUIsgmjDbtfx7vaIswYtqhoYrT3KFzvAl81AiWCUWrm4r86SShFTYhgHyIne/v+kW/vLI+iXaOr2/Wvxr9fXt46vb7Pot4L1Ck6t7y1fvM71r3X9ICLbFItGNR2mP6B3R5q2as4oEZpDz+33ivE/CuE8IQm0L3RFYxKM0wUZP5PPkZwX4qUguUd3R0puUHKgqBkxF1LniMeC3rcUH8mPE9GdyLmB93uc7bAfvsOkyurRolFRwVLQq5uVOAtWE+OFrFAzAAAgAElEQVSy+kZWoGHnqv6rthaPMJTaDpIIds0oUBeEUdUPxDQt4kDqbAi5QL/fYdsWZw3zdEZI6FLQovApsSwLKVG1e1PNNmEO+Bhp7ZFD36PtHtcmbu3I4/MjpczsUJgSiGlGlGb29S9kW8sYZqxzpFgoofJTY04kv1SU0xmccySJzH6mbRwx+auPiagqkjWnUr1FXnoVVQZz+15Wndt1/SmlKvawYS5qJaggiDLXtZNSRXBr+Vprw5Cri5hg6NuGD/d37PuObXT79fr8YjDjdYzIC5+8UE8NsRSW4BnGkb5t6P9eUelfz2xffl9e1QC/Vmv+2m1v3+s6RM1bqIkrUvtFnboG6pWMpSziOuzhlnw+Mk1nzhfP8X1De9jx/r/dcP5j5PTo4SLgMzInmqBp2pYuZuR8xilHDOAztDEgcyYASnbY9g77waD2VfJCfnwmnj1/Gn8kn0du82/pv79B9h0qQRpn0mkGDyprUoREQrcN1jRMYyBGj1IZoxXNCqQYrXBZVbfqAjlkjK2emTrl6skSIGZF8QnddjSWakiUIq7v6e9viTkxj2dszpVP7DSqVNEupROtEfS8zsWuUpp+rn3U9zf3WFc4iuHWFpY40FmhsYJqLGPwTEvGSD1giskUk2kai3hFDBURTzlBzmQf6wTOzqGNIaYFa6HvDa6ppYj3gSUulJy2hbL+rbfvK3Nt6zcKUt23t3WzGlOBum7hpVTB8JhWj1dRoOqAtU/1nN05w/t3t3z/7harZZ2A+VIs4BfrdVvDbL6cL591CZ7zMJBS4nBzU53Vv3H9VYDQ6zf/hb7P65AovzzKviUgfI188PY5b7Pn1q55/Xtcg78+iDqp8CUsvX5iRFtwHbo/EHTLZcrsW8jFULRm9/7I7e9Gxj89gBckF+IcSaNlf9ihxhrozkSWUigNlDCjikM7QdoW0beYmwbdLUwfH5ifL/gI0RlsToTzGe5aUiNE7wk/fWb6yyfinFBYfAwsYcFIRaFLrsvI6IK1BREPdUIVawtdIyhgWjw5Jpy1NI1FSz3GpZxIc+RwNJU7GwJpCngTaMQgfUPWhnka0J1D9Q4aRdNb4uDJF4/OGbLUMSxW6wIfkJS46fc4BK0z01IwJdM7jWkcJcPpNBBFMFYokonF0zhL4xzlEsk5Iqtwc5aM6yz37+6gy0zxkd3OIm2D6ndoY5mWheA9wYdr3SisCE+pW3FeM6o1BlFC27ZopUmkK2FBK8ULlW9Va9wCUxtSEaIUxAqOwv3tke/f39BaqSBQUYjkX+AnbxNSWd+wrKx60fV2HwPnYcQ6S9s22F/BW369lbJmnq9mztddjGtw/bIu/Rqf9mu/2OuAuwbx+o8ur+rYb33S1x9qG8iWtQBX2iDGoZod2I7Jw/PTzNPjQHt7Q99pjh9u+bx3xKexumTHTPYg0RGHiCRY8khsFc1eyGkh+zPa7FaKV0s2iTIvLI8nnj8+YLs9x9//wPHGgk6UuIC1LJcL459+ZPn0QA6m8jfX3z8Gj6z6/soITUutPUsip6rSp53B7Q3ZJIISXF+zTttais8Qa583hMQ8emyjSXNChcJ0GZFhoOvuMF3PfKrGv6p1iDForSjmmewXjAOVFSobkgjTvJBiYLpcaG96bu5vUK1CPWbiOBCWABn2tkMOhpITmYgUSGRSqRZ+idUGnjqH6VrL3btb2r5lyhdEQdM4jN6hugNzKeRprpluVedT5WXtVWCnOsrlklelvMoQ09ogpm6ueV1nees/roGpjKvi1MrgrKU3lpgSrdV89+6WzlZouWwYx9dW4AYCrXKaFRUu6ybwsj6XpboG3NzcYJT8nbbzvIhFb0fFl+b/S9vkJeB++aG3r99iCG3XNaCpgbn9pOoDr+jbFyR6uP6jr4BbPesjtcGsYu2rKUc0O1R3A+2BZTlx/hy4+0Foeo3uG4yzVK5mqQZFi8ePgVIEg2UMI+WgUNNAsYpMQmeNeHOlhqXFUwYPYth99z39b39L0yaW6YHoPW3TUbJj8hkV6tEvSCJJpKiKIloF/c6Bgq6vE/lhzhQSYhLF1OB1e40+7jGtxZrqJ4POqGxoxJFDYp4GyA6dMioVdPQkP5HljubuHgkTuszY3R519x1KQeccSwj4PKFTS4myDkADC6RlZplPtL1l1zty7JhVIAyJlCrfdt+2q3RowWvPaXomhcwyeIZFEUJduMYUTGMouvBweiRyQXUZ63a4/oC0u6pkqBdMFNR2FN5adqsRUcqJmAJpZY1lqBlfuB5D04b0XteLpShNFAFdbfq6xl0BnsOuY9e11adHvSqfVvX4+ifPbOICdU2u4tRU+dTaN89kwIfANIw4beldWzm/+W/sc76qa7lWcq+Ojr+QL/lK0L3NjN9S2vvFVer7qa/dd31TeIWlX4NXVjoVqXIjta6IYNQtyvXY3S06nQlzJIyFfK8oxoBtKUURF4+sno9L8tBr7n/3AXMwGCnk6UJKCd2CSpo8FoyAT4XoFZkd/b2h/+Edem9JqhDmSJ4XjDjUknDakLRCopBtBYS0VIpX0yr6Q4NuHE1nqo9KLyjvyamKT5vGkoqiO3RkA8kvxMWzOza00qKLA59YYsKYasUXUqhgSY5VV3W3R93fE4cHimvp7r6rpPzs0Y+PhNNSdWBFYawgSSMFQoZpOnF6LhhnqiepF6QzpDkSwkJIno4d/c2ebt8jPYQpoMvCMC9r1pNqUqvh6XJhXAZ2t8Ku7dGuwXYtxRpUTFXYa8qrlcJG2wRZ/WzKqvsjehuerjVjSIkQAxuAKNfWoJCLpUht0ZimQdvaWupax67vsNq8CMpdE1GdiNky6FbKbVKZVTG+Gl0JVUgMU8kNwziwLJ6b403tO+fwRffh7fVf8uf8Wq35a8jq1yh7r5/z9nnXYy1fKsxvjeavI7kvx+eNW1lRWnUdBVJS2yvKGERbsm6JqmOaz0zDzG3OuL7H3ByJ+ifmxaOzUIoi+REVFId3e9r3B7IseD+T1p4gRHJaatM6WFB3qL3C7gL6xuHVgCmJXCJxWRimT6ghkJMnlCpZooyj1xqWAgr63tJ2DbozqK5a9jXGUXLEL2eWMWBEsYQFd9MjrSEsM/4i2K7BYoljpN01tCuneJwCpVO4fYc0DaIMyjaY23tUoymuQ1bZjegjYYk1/ZSKahdVZStTHbSqiGa0KNfRdpaUGzxVESD5hJ8SPgT6XCdzmmKIi0cbxaHvWEjEWMgEUoJxmIgCt92ett+hWocyhigFSiTHQIyZECqKq6RcWWoVD6onKa00ytR+Y8qVtF/E1Imkbf3IOnOJqdkUiDnhVDX8PfRdBclKQW+tGgFKQhXFC1VUVWuG1X0gs3mf1Pe4sugEfMycLiNKadq2rf1dgDc4yevrv9znfM2TfUs4/1rwvQ66r73ma+W9l2Ptm8e9+Qxf3ll3wVKu4YygEFXW2k29ahIbtG0opsPTcBo+cX4+8X2Y2B0O3Pz+e57+7UfGxws5CLJQFcd7VQ1plSOXyDIOKJNo1IykCMsAxpHSDnvzG7rvjsBC2c/EMtW+o2twIVGGgEr1zF6UIpaEzhFBMKrg2jqCpaROjjTHIyPV7nx/sFhvsc8z83mEojCdpTnuybFlsgpNJk7V58VqcK2pGbNTuOOe/uZIcl31j7QW3B7tNFlBDDN5mbl8+sTyfIJYm/9YRQiRoBJJFzKJtu9xh552t0NUoeiMKIjzghhBpZqrjNaUFHHGMJRESp7WtJjGMOSFKWWGaWaWjLSWcYEmCF3fEH1mTjM5bjqy9RhYyFwbnav9nqw8V73VmUqtWd+AphIB1pPJRtVIKZGVomkaVOMwjaui1NpQncdYa8LNg2dT31sDXL2sy0K+ku+rV8q2EShCSpzHmdkHuq6tA9irOmTKfwe3dru+lQW3738tMP+anufX3nPjKgpff931hbaqdKVivYKlVgu2jcpXXaw6inUE7VBSUUgpC2IDux/2HH57z/PPj1XvJQoGgVQIk2eZMvbQouKCKoLxGZczw6dnKJbYCM1dglu7OktpXAhoEqa3aLUnxTNluRBNh2lDtbZfqvuzUqvFQJgwsYGUaV2HT5kpelpr6nCwKlTfjrp0UgiIgFaGxirm8UQhEdKMYNGtZr+7wd3f0ewOPA4ev8zs9ntsv8N7TRifyU+f0dOZ4fEjLANODNJYooOoFdI4CEIJEWkMemfACalk+rsD6MLihKYISTxh9JUaOWf2ty36/h4dzuRZM4TILELjHF5llhCZToE5ZwLCXTbE4gmlDlOXUEW6lNrKqdW/BFmVG9aSZlW+K2Ub4laIMqt410YsyhhjuTnscV1L0bXHm1LidBmqi1xXNXKRLTMXVK7OdetbXVs3Ra8ZtLDWnBt6nClKMYfIeZpBNI11V9vAzJdl4tvrv0xCeD3f+fao+2sB/LXX+hqSe30uf81rvZoKePW4upPJq4xbvyqt0a4hK82UC1oMxjZ1CkKNNHcdd//8PZ//8pkxnVELUCJSFHGKLJfI/ngEFRBJpDEx40ljYBgi7e/eY01kUhdQGhVBFgMGrNuRlxnvB2yxNN2RwSwonRGJSHlREM+lEGMghYDPgt3fYK0my8AwTYTLGeaAQgjDjDGmqshdZppdixKNcw7VOpp9h27bOpPZOHANRJh8oKHgmhZlBPxAGk/IckFLAlOnN0qvoXG0eofpb4jK4MeRMs/4GJn8gCjBmIb29oC0mtY4dOP58X/9iXE80RuHnzKNaXDGcJpG/BKraVHjUC2EtrpczyHx8DDx8DCw3+8wTUdWG01Tk2OkpAglwSse94Z2b1cu+erXmaHaxQu0Tctut6tuZV2LNpYlVguIxQshJi6XEUmZrmtomqoXpNZsvf2NrrTWUrWD8tZbX1kRVSqlHpkn75kmT+NczeqlDn8nMt+Gg/4qUekvwZtvAT1/DcngW3XrVwNva9WUQsnlC2DoizbNqyOtbL3O60hZ/bodd5Q2KOvQTYvPcJ4Sw5xY5hm3X3B9x/H397z7P34gzB4eZiTW9ww+43winGcwFX8LMRKWqTb9feSohTCfGIPCuR22ONSYKTpCp5nmzDRFwnnC+KpPG2OqKm+lkvGsMtjGEnJEKVBdT3NzR1aQl8A4TUznM84LrTHMp4HGtRVBjBDGiAShxGohYJoG1XecTyfi88Ld/o4Pv/ktdjijnSIrQdue/ngLBPBn1H5HKNXqLjmF6Xvc4T3m9gOlaZguJ8LTM+mSGIap0tGiZ9e3gEWcoRWF6y1pWMgBlsEzxonhaWC4jARf3bKN0ux2HUhhOU88DQNaJ6xAaVpEJ2IMlZyvW8I8EZYJkyKbXEzJ5cq5Latw+cabTcFjlKLf79jtepqmpeu7qi1LrQuLAt01WG2YfMAvkfM4MYfI8WZP17oVka1YiFIrKssLKLphHa+XtyhFTJlxXihkrDVYJUip6o6pVJbXt66/yp/za6DNfxpcX7m+BSh91ZohvxT8ihWZ+2rdyrX5XDeJFwRtPT28vLZSKGPodnua7sD05Pj4aeL9pzOma2n3e9oPB374v/8b4iPjv38kPo5VICoppqcnLucfOb5vsZ0jFSEVsH1Hmk8EPyFzIIvCKCjTBf/5Ae0Kfm84P57QIRLHieHhxPg8QsxoZdb3SIRQKA5Kq1CdZdYgxhJy1WW1bcdFniq4JZqUMssw137fHJmmiPjKLrLWkIGQMyEV/Hng+fHEvttzuD2A0WSrScpRXI8ylZigdjucc5ScWFKgKINpetzhltS3KCmYlOgaAecYp5nmeEA7g5AIJJay0OwdfhyZBw8LzHNhGT0iQtM6fIacI9YKnTWYeSKWBa0Vx32HUREnGe0UpzEyTwOX5xPTcKG5C6C4oqO5lOuerFTl1jZNww/fva+u5c5dUVYjQI6UUgPKaakjaFTCxWIz07QQcubhdGEXHLu2wa7USK3Vuiqhbv4ZkTqCV7b6OANK1ay8LCitsEqRYs3mqWTGEBmX5Zvx8leJSv9aQG2MoV+rIV9nzK/Ohr4FlHgLCv0SgPra61RRrxW4Kltdsj59RddEGZp2R3+4Izx+5jR85NPHM23vsOYGsz9y89s72vCPLPs9pz985tOfPrGERDyPRD1gmp5WHTBtS3voUZKZdOTp+YG2v0P6IyZr/OmZz3/4XzSdo/ugmE8DfQjkcSJeRggRwdRaOUNRuiq5J3Btg/QNyRm0aygxkFAc798Tn2fckmFakAjjZcBZS46ZZVggVNqf+Gqa45qW/a1i8eB94HR65tje0rqWaAw+Cz4JVgzKNCSzoKyrmXscq5rB04Xd3mN2O0zb0RwKyheKdjT7TLfrUGSyJObpwnk6gUpop1kuIypVu3kthqYRtO6wCOd4wS8TtjtwuOk4Lg03dx03fcMyLEzTc5WZyRkpmrDMhHlBAdbWAYEiNUvGkkhBON7csJweOBz2qA/v64ifyFX4vOTVnmE9iur16GtqEYlpHUpZpmVmnEZC8FVI3Dr6xq3DFK91amsF+eLgXm9OuTBOMzEl+q5FBLxfmEJkiZHLEhnD36iEUDIr036tAV9FzNugex1crwPpa/d97frFkXi7/Vuf7Svvv92+keNFICtNKZnCijIrg7getd9jbw6Ep898+sOZXVb0pWH/w4yWHc19h8rvyVoY/Ix6mlmWCYrh/2PtvZsjybIsv9+TriIgMrNEd/V0z8zuzJJGfv9PQpotbY0rq6urUwGIcPU0/3jugUAWsrqmh54GSyCEh/B331XnnhOCptUdURraww1+mRARXBBkoWmHG4SQxPFEnk64dEvTeroAOkqmtZCTRimz5SaBGAsuR+KauFEaeddS5EAzHGmGHu0iLt5BEei7R6zzODchZWKZV2QZaKQl5UwIDts3yBiRISGlpr/pYQFtLT5FwuJpjm8otiGtE3F5RKSCMR3EhSwzWbWQJZweKA8PyOGIPpg6FH08sK6ZojQ2R3IKSAHaasoiiPMKKRJFxJeCjIBQDMcBlwKiZBpjiE6yxBWJ5fa+IesDt0PHoW0Jg2FdI84lCBEtJdborQ0ia5oi6qSOEAKVQRXLzeHAx8cPGAlW1yJa9TLpQm0jpajzppeIrFQuP1GQSmAbQassmsTiPS5QdVxJUGIVxFUVh5s2jRdKxTbHDFEqphB4nFd8Bp0jfnEE55FS45PkHAQx/50SgPsWIHbjucoDX7Q+/kb/8reEvb/wivtr1Ru57me+9rwv35fYellFSkrZdDVEHf+RpsX2R5rhSDx3PDw8IuInXIj8ITva5ob3P07EOXCQhuHtkflpQRSJzIpGD7RmYCWipSUpTymK4909tz/8ntzdwDLhcyFJg1Sa5CN58czzRHCV9S2nemFDjBSpELbFu5nT6hAxc9d1mM7SdIaYMr5U2b/20KNKpohE02hOT1VS3jYK2xqEatCNJojE48NHGi3o7u4pOTN0DVIVcnAIv9aK4/wIp7+SsGijyd0BZTXSDEjjSKMgj4GUYRzPJKO47Qe0kaRQSH5lHZ8YmoboIzkEZKiA9pwSicLiPIehQzQKHQrkgpSFvm8wrUT2lsO7W4Ybi1ESkRNta2n7wjRHilxxcxUyyjnVHmZKtZIvEqKqIZJzxhiztSkihYLSdZnnbXIHtrIEZYP71fxTbbOYokSkkAytwVrDuDhmV8WNJ+cJwdM2thbdqMwJlKqrWoQgUvAxMc9LHe0rhbCuaK3ohgNCGZanmSLrZvm14zdXayvi4tfzzdeKRV+GtK8Vj341JN6+yWtalNeKVNe/5704wJ6A1i1GSolWmqQbtOkRdkD19+iceJg+4X9e6YYVg+fnnz4yjyO/f/MtN82BxS3IpQ47CidIYyTJQOw8OWaCUNwMPVoVQlnJAtp331OKwc8zznmWx5E0jeATMSRiqB4kxkjRYIeB4batvDoHS39sKjl18YzTZ4o/Y9tE03es41jFcSQcDj1kgY8LyhqaYUDbqhl6Xk64vwZkcICl5IaQAjlI1s/UoYB1QrsV2TUEZSlWYzuLFRbBgLy3PJVHQttTlMKtM0vytciWPTnNxPnMtMwMbY/OGZMEyxpry0lXYacoKwtdDonGaFa/UlrJ4TjQvb2jv7/BrobgFtwa0EqjhKYVDS5XSYosxQVcklIdH6vGKTd6mkRMkRgTogSEUFd1+70nCSXVaOqafE5KWcWL2NuiGSsVt0NP12ameWUOnnP0nP1KZxsOTYemDouHBElULqJlXVmmmVYruq6n0ZWAHGn5dBoJKSONqe2+rxx/B8HX12lG/paH/DWwwtdD4l+2Wvb3lPO2sF/JQS9hrajhC3m7AKoSTSvbINue1BzrPKO2dHct85KI4xPzeGZdR4p8i20MgoLKihIFjz8/sqweddAYoQjZE6VEKkjuiRgNSVjM7R1IS/zLn/HTTFw8KkLKgsVH5q2/qQqbN3Acb2/phpbb7+6wurA8faLERJwesdlT5pE8B+KybuX4wvHdgRgl8zjji+fu7g22t6gSCY8RwoqYz4juDkgIkZnHMzIEettRVodQPaZ9gzMKIR0yLoj5AZxFy4bh9og+NohBQ5l5ev8TWsPQd6gUISx4nzlKjc2FrmlZxYKSksMwUPJIjLFO3ETwJVBErgyDjUJp8GFFa0nJGm0OlKKYllQLWgiKUhQlUUZdKEHqBixJlSj+sh6VUqisiKWqSD/3vvfG5TahsuEA98q/2B2IKJATSIHeNoMqA2n4PBeWeSH6ieQjfdOipSIgcCmzzgvTeUQrzd1hqFzAqlBQTL4W/Sog4ldt87eCEK5S31cM87Vq62uG9mtIodemU/Zzvva4/bWMMSzL8rzz7c/Z2iiVrlCQpdjET1UFJOjaVI9a87B6hIu0oiVZTZILb9695TwWuqEhTQGVCkZZQkxEv1JYaEvLY/hEEon2TYtSieXpL0TboIa36OEdIWW0sZymz6ynmWZDuvgCJw8UicoB3cCh1wy9pOuhMRmVHWUtOJ8YlEYBTx8eUF7gzzNIMMcG+oauPSCWA+t0ZvjuDts1pODJOTC/f09ZZ+Rwj+17ZFpJpzPz0xOImZg14uaIFF3V+SDD9AH35/+GP2eW1MKx53D8Fps7GiJrXNACVKKGqDHg5oU5V2HY9uaAnhbc6FAFtFAoAVop1pyY3YJoCkfbkUSmigVWqXdlDALJ6qrCdZIStCHLWFsZatO7pBYBa2RUQAqUtFjbIrVCZr0JDNV2i1ACI/VGV1kLQVK91PgBQSbjU9gqu4oL1E5JhG5IokDMzNPE56cnTnqm63pQmnmZmacJKyWHoafVCi0KVml8hnlxhFiZ4xEF+3XC998S1r7sb15FCF8PTTeExC9u/zcez5MwXCTvr73vvinEGC+UEft9RVT0heCLloqUaGNQjUV3HaWxzCWTgucYIqm94/aHP3DXeG6nG9wYCOMEMWFtj1CJ9eyrKO6ScdOM6RV3f3iLCh43PsLQ0rQdQniUrrIBfnKMjyNRgDCCxSfOPuFDxhJ402mGXtHpQBofOTMxyG8J0pBkR//Nt6QAbg20pcLMmkHRfXMgdAa6A2LxtLOkHCzsYr/nE0kUYqlSCyiFNT3ajIyfPxISSDS9MMiupde3ZGNISbNOK8uHjyShUfoNcQKpDlgheHc7QHFIMjFnetswrSc+P72n0R1vf/gH3uZv+PH8I+N5xlBVwckSNXSkOZF1QPUWtELZtgJEQkAoRYqJkCGkwrIGptmzrIl2C2XZNjlKBRyUZ2fE/d0bftYWFTeUtgAhCwpVDVgpgg+/IEzf15cUlZUCqqZmzrEyLOSEzHAjDc3NDSdteP/wwKfzCeaRxjQQM1Yrbo9HOmswkg2ul1nWwLw4fIjknLCq0Ouvm+BvRwhtceLXPONrs5ivHa+OiP1KzsmLjOGXz9O6Ulx8aaDX77ui+CQqKeKmoaJ1g7IW1bbIpsGPMDtPVIr+7g5Vzry5HfAzPI3vWcWPxOVU2XClJLtElIH+0GG1RkyZIGYaA2n15PMJX1rWMTN++MzycCb7iLAWIQ0xB3wslWHeNtwcW4wshOUMaUG2EkNCq4ZFSmTTkRSY+3cMpkeUe2KZKAPIQ0NWFpREqkAwkhADrTSIfkAfD+RcWOaJ5nxm+OYth24gdzNpWYjLGffxTFk/07gfkG/ekWVHHr5FD45OC8xNX1kE11roEjGS3LJJIjQY03Dob1jcxDrNnE6fac3A4XDgvI5I1GWT7G965jDhVAStmL3HZFDSoJsGISCllUKlpAwhEWMixYxfPd65qompKuDkIlyVATLffPM9+T/9H/zX//x/1VnVF6mYQGm1jY69XJPP6VbeeHVrblpd9AY6yFsxCzh0HcJokiicxonsPYem583dLY3VGFGZWUvJrN5zGmdcCKRSkGQ6DQf974Dv7b3Oazjd13C0+31fhrKvHa/1Ka/P/fI9lEuecOFkudoUtNZ471++LjvlYdnyilqtCz4SY0GoFql7tO1o2x4vFePpzDJP5JsD4zxzsHc0b99y9489f/1/fmT88890ukdbg0WSgkdGQYNl+TARJrj5rseJwvThkTYPpDGRxoX5aSS7SFQGkTNSKo5dS9MaDjpjZWY6PRGbQt9omraphM9GE0xPaDrkzYFDq9FKUOKEipqgHLQao1uUgqgrciausMZMFJLYWHQpCBeYHz+jrEaXwjC0lEbhLaTxETd/Ij0qTKPRbYu5vUXlqgImb27QfYNfZ6ZzHcY2AlIQVdY9V7VqiiA4j386UaTHCMnxcOR8npm8rxJ8y4LPie72QHc4EIpH2pZYdGUjiIE1ZFKCvHEASdQmhFuZKvZVkqqQJjknYqxUn1pb3rz5hj/brq6XVMVxuVq3O+Pfvlp2D5r2NtxunFe351Jq+yVnYgj4XBkHB2NJJjCYhrc3t1ir2bm+KLWqPLmFya3ErbtqlaA30Mn4qh3Ab8o5rzwdFxvZoE/wmot8fbTr5bA88UoAACAASURBVP2/fJ2vedBd9+Lqxb84lzHmF2CImnduWEi5s62Jim3MlQZE6x7bHFhUg9UtJaws55H0xmKVQTY9+vYNYVaIN0fUwwMKhRUNjTQEryBl1vOKkqBQpAnc7HAqou3M/Glm+XyqhSNRJQYshpubWw6iIPOKyg4ja17kQ6HrGkzfI42sULibW+iHGi7fdMQ0EZdMcgup1AZ7BehHosgY1dD2bWUwcFW/M4lCLwQpzMyPn1DS0GqFaDV6aHhUEuYJKzJpPYNwtCaSbu9xosH3DUWBNGDtSiwRXRTLtJJjQSRRK6NCQxaIeeXjwyeC15j2DtVUwurFr6zjCTR0hwO6bbFoYoLOtBRV51edrzoteUOAia1wk2Nl39tEwS6wTiEFaIVAYyU0ImNMU4WlSm2ZsKGIUkqbyFBdQxs2oRaSRFV324HyQlZeoToZk4ml4FO48B+5aUX6yDfDkaHrMEpukhf1CCmyesfT+YzPEDbxX6MFjRTI9Pfqc6ZcPzT7cKmoFGJi7xPtFvJsSLWS+jqY/WI0PLMX7B/j4kerLPHltEJuA6v1yRfqhyslhku1LcVYCwCXTUVsZ94+g0hoo8iikLJAKYMwPaK/QfYDfTH0piGWxOHtEXN7h2oP6JuC/v0d9uE96XFFFlk1O0om+YRIosLtgiA7yXG4Q5XC+X995uNfPsEp0FqN7CpET5eCDKkqZ4uIVp62USjTUUQiS0jaEkyD0pn56UdaA6r9gdAOFEId+l5XhFZg7kB3eP+ZkBqsPSB1gxGaEgK27cB7hFGUvCBzhzAtU5roDrccD9/D4R3z+ICQiRInyvhAkIWiNvB5EUyjZ9AWYwZKTsiUkVrgfCD7AA6KD7TNwLzCOK+E1dPEEdO02MbyNM1Er9AHwRRcfV9DD8oQS9XYFLlgUfhcqUKdDzyMK0sQtF2d50xlA43LDEUhi0TKStiFblEm1PSjxEtBJ8WEErou41K1YKTcGCSg8hcLseFn9+VTLiCDshVwBQpKIgaPEoVj12KUQaYKUBCiqnWnEPHO8zhNPLhCURpSRAtoZOVa8uXfkXOKK8N8/v26vSJ46T23OcqvHC9Dz+2ZAsrlzM/GtldcM+VSApf740SN//PWVpFi56zdaSKrenEVY90AFHI3+oKUbPwyBtN1hK4jL4EYIs5lzpND9I7uAMPtgW/++A98+PHPrKeFHD1GNshG4n1iDR5BwbRHnp5GmBTj4jlNK9ElDqYHMgbBeB6Zz2MlINYS2xeEqSghoRVCSXRrqtEpyTg98defPzJMK++6A1lZ/NMj5eE9HRFpDwTdIeyR9iixoa/ff6qfvfiAFQqEIYUKr1NSVHxx0yK7HmMP3DRHVNeynj6SpxH8ShSZYiqPbi6F6DzOZwy1fRVTRCmBUpJU6kLUWSCCZJwz0vTE9YyMmVJWlnkmuUAusgoDyQpA6ocDNA1C1RZJpI4LBhdZF0cqAp8KPhV0ChVRlepn2Qt+OWcEtU1Vsa0Vc7uvOQForeqIV6lrNG9K1C/GD4VAmrrWUkk1vBUgxN4vr04rxsTeyknRIXMNrYUGoRsEAu8947ry+Xwm0FKHtSOd0bSKypT4lbTvbxrndXP/RVXrGbBzKWmzV0WpCfCXueF+jv34Whr8ZT5byh5i7HnG9uKvhMI556q7UQqI2mQu21P27aV60K0oZAzWNsS2x5sGnGZeI8tUlcfitOCHE4fDG7774z+R/8eP/Pn9E9577u/esKzusovm4CkRFud4Wlemea0SB7ZFS0EMmRxyNRpRYW5CSawRGF2IZUWSMK0Bq3EhUJaFsK4k55gfHvHnM6Y9UOYJN54r95HWVQJdanR7xIeMmyaaDekST2fKEikugC/oVlOyrGiWBG72LG7EDLc0/RHpVqIcictEdAvyaBBdRqqIzJ4QHLnMlLIgcxW11Qb0YChLQYT62Y53hnVyzPNCiFX3RWmNkLbqwWxoJm0Mbd+xpMTqa1QiBAilMG2LmgMpx8raL8pGOxIv11NerSUhtvnKIipZmXxJn3Wd8iilahB4Wad1odTC6oYb32Y/dxkFqQolZZxfKVkgha2Y5xRRJlNyIIdCVBkpFJNzPE4jS4ygq2BTazWtkYhcqUp/rZfxq8b5a7ObzxQMuzFtuwsvZzS/NPCLwe2e8ZXC7nXPcrOt53OJ612hsON+xYsLUS6GKAW1ZJavvoat4VwN1GKbjnY44sKMzyvegQyWNM6E4wdS39Lf3/Hun/+JD//zL5yf/owrGZeq+Gs/HFgen1hmj1eSaYqsU6IRDcTCtJ4Rsu6kAoG1Bm00KQdyKhhrsI2ETqEOlmAhR4dwElUKB2spohCfTuj+SCs1HokLCRsTJYe6SFxBlYZeFdQ64Z+eCA8npAskF0kuIZE8lROD7VHCkEsiyZWoWloNRmlKhvm8kL2jaRN5dUgh6HQhRU+KCxlHxgIK27YbtWTgPJ8wwqKMZloXmqZlnR0ZSQoVPVNIl7xEG1NpQkq5aJjkEHHes4aIi5l140JaQwS14IKvKB4ukilVOv5qXW6jzJfWSF0uz+tQSnVFXQKI6q0RFY5XqIW1qhxQp1dS8izrTIiBvr/DmI6SBN6dkCqTRZ0Hdc6Ri+Q0LTwsniBrEdAYTddZZImQE4IKHfza8ZtJpa/pRPZK6LPlXBtgeWGQ+5dxfa7Lbbuxfq3v8vJNXP6/3iIupEobpvJyv2AbzaFCvL54DSElShukMghtMd3Aeq5M485nokuUZsXNAb59h2zuGP70D9z8h39kfBj56fMnDJJet7RtizOeyXuCVsxrAKEpWeBDQKm4QdFqj9X2DVkWSoq0rUWqjO4k7Zsec9vjRV1aOUVKynRNyzh7Pvz5f/JN39McLGZ4i1YOcqYlYMPM8jRjzBuEF4wfH5g//BUdQyUfWwMyC9Y5sMaMOi6VvV3WYpqfR8Y4odcz/vSZdR3RQpBSQKUq01BKpMQVrcCXOn8qpSVnRdEC07fIzhM2MurhZsDPAe8jyZcKCM+FIj1Wd7jk0CmA8xStLkZShGDxnmle8TGxLI7TNOERGDsQQyTnsvEkbv8uyJ99dOx5fe1R3e4xxfZYIVX1iuydwu3xqhJQy139iKp5Uos7CwXB7d0d3333Rz5//MCf/9d/ATEjVEOKcBoX5iWwLAEvNKVtkQWkMZTt9WXRtS3zK8e/mQmBbeE/h7iFl755K/hcqWK/ivh54UX/dgX3mfRrg2zlzai3jaPw7I33SfPdq+7N6v3tSSlr4zsrhKghobQtqhvw08QSI+M003aJZZxZ5yf62zfI2wP3//RHyuR4/5//X8a/PoCTdMWjrMGNKz99/MjqI+/u7jFKE5dlE7fJCKkppeC9q9+8yNWrK0UsHmEKTa/R2jJNS0U+pUyrG3Kq84zBL6jSobpbhJggT4jzA7gH8vuF0AniuvLpp/fE6cT90FWmhBw3iXMLpTDPE/3NG6SCdTmRciSnmRJmkB57NEhtkI2uBRW5YZb3CRDbgWiRosHNkeACRUvaY09QAYNhGddaMd9UoJVSuBjAZGQjEFrStN1G11GNIIYAm5dRWiFlLeLJLX9KKRF3rN4v1l/ZsgZRKxW/zMKqQtiGWCj72qgL+gIDlUKQ0+aR60MreddGYymEwFpL3w/E+8iHjz3zvBCL4GFc+fD5Ee+rlIPqWigKlCIUwexCZUtUEiXUy4jui+M3cwi9cu/zaufZW1bv+pL+ckfzvDDMS7W2fjl57y+9YqT7l7Q//oUnpjKnvXgNIS5UEfuXWZn25RWjQn2fSlmUbki2RfcH5ukTS47MseCSpsyJD395z3f6Ft0c+f4//sCgC0Nv+en//q88/Je/wJoovWZcZsiJH373DW/f3qIlLKPEr9WbpBCpsrG6wuRMLUqkreDgwoxYFe3xDW3XEWPiPD1ihobh9gahGoytA9RSW8gOETzh9Jn4sDL+PJOalbv7ezrTstgeczhQSqCY6rls19OaTCyJkguBjJKZVlYIHUTkoCndDUmqGo7KSEiJklPl6Gkspm1QGIqv+0soibLlUFLXT3k89IxpJFpNKZGYMlJmmtuG9qZluK0D2qdxohhDzIkSM4rqPZVRNK3h5tgxOV+/R+8JofLTSgFF1utca331OudUgQdKbTSpGxfIi1Sp5Brl7atqKyoVKgfQXjyUG7AlJQ8UjNGsa+Dz4yeGm3uc92SliMLyOC58epqZ1grs722PshYva7smpcwSXQWhlBrNKP5/EDL6Ehe7gxN+7fG7YXx52zOyYTfW5/u/HEdDvJxI2Y11RyGVUl6gg8qV0deqXXmuGBTqNlhqpU0KhbENTddTQo9qOuzhjuX8mcdlxTy1vPvuLSpa3OMnxCHQ9x3H//gth4Mi4XHnifmnp02hK/HNzZE3h4bWJOwgOb675enkOH2eWZ8cyQeiC3TS0vYN/e1Af2vJ+kwSI+tyJhWFag4MxyNCVQrH4XBLP9xAo1nmR2xbjVNFTzo9EX4emX+aGcsZ86d/5Ls//IE1vyWlBbd8ItpSGc2PB6wKODxSVQ1OkMTxkZgCxgi0suQikcoSc8YnTygBgMa2lTlfN4SnmfW8oCLoWEgxo6XgtC48LSN90yNEBiKNlYiQOBwNscmYoeF4f8MSI94HJDUvjD6y+BUlwBjJMDQUITnPjtEF1pQqIgjIolwYM/aMs0ZK9YLbbRzrOmrbB6JzKRRCLVKJOuFSNq5iKZ9DbCWrQrgQ1etaY3Eu8PD4qWJ+pWHygccl8Pk8saZM2zf87u1b7g4HUio8zjOjj8To0bbQdw3WdnzyJ6b17wQhvGZs1ZbEltB/aZ2vE3ZdeptX7AnV6LiUr/eQ9cvXe/Zzz3lBBTtXT5viFmbtifUl3xWXSnIByC+1PPf3YYwhGos0FtP0tMMblnliciudkxzXjuOhIY4T43xC39+QrEbewPH3R5rvOtbzGTnDsWvpG42OHp0TUin624bhmx8Q9iMpP+I/jkgEWipKLpjWcnt/RyCz5IW8jVVJAcpobu7uyLGg24ZkFb548E9I1VOyJzlHcZF1XBBR0slEXKpQTnu84TQH2vaGTiy4pNBti19XQphZphF1GGpZ0ghkVuQQSKnGctq0KFUQWaFIlCxo9IAwHT4K1vMT86czMhY6aTEpE9eIDIEcq65M1/RoObAsVVRYWAvfWO7evUFZy/K0kJPACFWjAp+RSJSqVz6lgHczgso2WEIh7Qa2L4zyHLnly/UVWNug9SYaLHa+qed6SAieECNaPzO272tvlyfclDFq1KUkTWPxPvLx8YnTuiBtx7xEltXjNnD9ze3AMBhaU1BWUrk5CyELQnJM58+k9lhJw8rfyfi+l5ef/85bQUhcbt8N4fo513R/lc/l5Ru4wPFE3edEkfzS0L94L688IpdCTmnjFi0XHcZLOpyvTF6U5/OU3QNXjlupTM07dYtuD9jhBu9GJpd5PC8oE7k7JoJ/IPm5guT7hptbxfCt5dOHgkahBRhdkHiMrNC8wMJw+x2NO6CdR4yecPL4NdEPBgrEHMBW41AKrJWsbmRyY0XRKItUgeifSEukiRGZC8I2iGxAGGIotO2AGKpg7aePP/Jt/6fKhWsN3TCA85BW3DgxjZ8JEZpBo1pBCq72kIWklLTxqFe2Qq2aKgJbJFYNZKEhOqTUGG1J80xKCzFk1mWlpEyval+1EChZEHOgGMHh3ZHmT99x8+6Op9PIw8MZ1QwYpWmaFjcv27WEkmtUVHJCq0oHGlOqyt8p1YFzcs0vi6weVdQ2hlAC3Uuao2J9iig0lEwuG5RPPoeTaYPhKbUZcM4gq1S9kLJyzAqQWmJFJf0WZ8nDaUKaAkITUyWgfnszcHtoUSUSXSLkQo6RQ2MQqiMkyepX8jKjs6Y3f3fOuaeHe7FlM6gN/X/d67w2nesi0GtjYntuuFPYP0MB99etf11GwL64r2xD31IpjNaXoVuuds16yC3l30fa5FYWBylqflGBCwalW1AeVMD0t/inz5y9Qy9nxJNGibZCux5X/PhElImbvuWP//IDqetY/8eEjo4mrqSnFZ8WsovQtYg8Ib+xdOIe4RTn6SMx1sn54BzLWlDGgRJoDb3NyFCYfIAgidkjlUeVjBzPiFWQbeHw/T3CZlxzImmJ6TvUW01yDu8fkeENb4aGx/EJWRQ2ReL8gH86E6eJrpOI5ROiDBVdpRRkRUwr2ViEMZSmo8hcG+xYPJWtXNiAvukhRkosxMcRv1TF6pAKOgdKgHX1VdxXAYOh+f097/71XxFZ8PTTI/PoaYvdWNMlxipstOSUWUPYQO+RGB05B3IxlWcpl2qUZAQJiq7XucSt3gA0GXUohKdACbqyt6sa0WRZmftiiighUfJKxb0ApM151EhRSYVWkiIy2khM25LPkRAFSoEoidvW8uamx8hCjoFlWfA+0rQ9fSsRSjLPAkrt4WptN6mIv8M4qwbFxSy++qi/NX95/ferz8/5uX/5lfOWbafYKRCVrHMDKVVemErXVC55KFeghUv+eenN8vzFi4q3bduO6FdyMtC2iJs7lsePzIujFRFnoO90FbSRLZ9OHwip8M//+79w+6f/k+k/eD7++b/jPv6It4niJ1CZ4B3Czbz93Xd8e/OGB2f4b3/9TPKBlDzrHNGzwdiC7mpPznmPMi03TUcWCp8huoS1BpE168MZlz8i5cDxXrP4ldgr1LsbzKBplpUwLsx+IakN9KAkbqfO8Gsds8qFZZrpTIu0HSFF3OqI3tG1HbpRFBlJhDq0vIWEyiiyLeiDQYYGvywkUVsFGsEyLkwuIFNV2o4CslXovuHmmzcch56ff/qZ6XyCkrGNxbS2DlGLCjiJG6NBDWHZWhvVuwoh6mRIbXDyjCXd0yOJkJIQI6axCD1VvtsMqlyqSJVO9OKA8mWN7AiiwnMqZrSuG33RZCTWekoOLOtKaw2dkvStqeLFCpxzuMVhmw4lJcFXdbQQPFYbGlP5cFP4d+WczyHsxWC+dFDXj74CK3xteuVLkAK8rKx++dzL7zt1fYGcEmVP8CkgyyV8rUWC+sBLseCStNY3LjZMpdQakWMtDCiNVJosFLYb8PPEMj0xkzjJCKml6RqE6imyozQHkh1o7r7D3AyYb255+p+Wv8YH9OIRYmuon85MViKLxvsJoSPJR2IRpAQpCXSRte+mDT5EpI/YrqkYmJTJAiSGRnXkOBKnGffpM53oKT7R3h6Qtw0uJYS1SO15eHygWerC17peF2s1eWiRpiBEJWmmVIheTHnjtVFoKyjFEaaRHNY65qR7hOo3lI8nphkXRryfiCXRtQPGGs5zYgmu4myNoqhafe2GluamZ50nnj59Yp5npBIcDgNd116ImXf9EaU0UiaE0pWkWwoa3TzniIWrqKuuqbw3z0o1EJ8itreElCFu2Nuc2AEwWspnnHcpdTh/r1WI5xRMUgEaqRSUkQg1IkTGqowunr7pOfbtRRHPO0/btDRdRwFCWIkh0LddrQCnjHcL2f87C0Jl7yVtOWgp8tIX+tLofq398jUvmnew+yve80VL5nLjFnKXspXO06XJfL377e93e9dXJ+W5QnxBixi6rqeUQAgzWTfY/sj0dGJaPE2GVjcYqxDS0g73mL4n6ha0RXY39L2i6RPj438nvp9h8eAz8bQwRV9zr1Mt80shkaKK7qAb0JoqbmIQBGSRm+JAxeQq1WAxxOzJISNcZPrrB4zvyHhkI5iXBecjVigabZlPJ/w40Q8dbd9glSU3IIpEGUMstcKcvUeoCo+zukLilHQs8wPraSLPM0hB092jO5DeE7MjnE7Mnx5YH2d0NEQNBUlzONKFQhSVoLkgKDmiuwq+GJ8e8euCIDEcjvSHFiEzyzjhl5Wy98ilRPhYgQvUAo2xDUptjIp51zCpVziL59SFUtsgj+dHDv2AX30F8m46Q5RKkYJ4xmXvS1AIuU0ylQuhuRTPRNIlVXK23mqObYPKmdYI7u+OpJCYnk5ALTbuFeIUElYbrDbkUotRohSOQ/9Ve/mb4rm1uFOg7CM2z8Ei5Zce7roV8lpY+5vC3Kvbr8/7/OrwXCJ63vUuXvhLSXDJNk1Ttgy07tBFUFXItEYmU6F8toW2r32tAmY4s5zfc06B+5uCFJrD4UApFtMZ5tXR5SoBiGnQx1tuf/c9k3tEGYcSGTdL0hyJPqBTgxYWnwMlK7KwoDt022M7UyuaySNSgFSB3UZUipLsAn5eGZeZUgR5CZzXqQIDbluk9CSfGNeR4lwtmJSMLxkrJdoolrDWGUgUwUeYPVqfMDlhGgWlEnal1eMilbDaRYy1iJwo3hFjwIcZpoV8XklLgKQ4u5VQIm03cH9zC0fB58dHxjjT3xx58+0b1mVmmjxawe3tkabtMVqSgyf6OkS9X+NcqiR8SJXEpEhQ1iCU3K7icyslX7VT9n24OwxgILAg26oAprCIKC6PKQi0klVikHJhVZCiVtNrCF1H1yrFjcaHWpC6HXqskpWgOiWWeULJqlx2OBwqHUmqHEhSK6RUhBCJsXrLvms3gurXj79REEqvggJyzhvT5C8pHr78/dfy0ctt289rONwX5y1X/q9+g1c90msofeZadWz/2f+JUq5ura+9e0+lKqQvmZZiM+3tG+b1jHOex8fPNK3hzdsD8xjIxeOVRg53SNEhtMbojpt331FOf0XYCa2BFAjrCllQaFC6YHR9zYIiJYmSLU3TkZOjyExaV1JwaKWBgNSJEAvkgLCKlD2qKNzkEUXSNYbyFInB4+YJUxJaiUoPaTU5JgSCFKvwbEwSUQzRrSxPj7hloju0SOUAT1YFLRuawwExCJQ2CN0SS+XYyZLKjGc7slWsY9XITKJuArjAvC4kU+je3PLDv/6J+2/umfyE0QJ96Glsg1s9MThiqRqjJdcaQgwZn0UNtYUCVRBGIrShiL11vTkGcXWZ9xWQC1Iq+tuB5fQZ2xqSvzyx9l9r2bYC5Lc6hKRy0e4V/b0ouUdnIQnmZUUguDsMKFFIMRBDIHjHHGdAcn97x3kaOY0jqSQOw4FlmYnBk0KsLbwcn8chXzl+k1ZK/TAv7uHah30Nevfl31/NQa/O+ppRv3jOqx608pFeP5fL5ri3V7YWy3Xv87qQICVK6zr9YBq8W0naYI5H7HTDeP6AenxiGCzvfw6o4ml6A0oxfv5ICYWmv8d2hub2Lcfvv8M/fKZIT3p4YPUeqwbs4a7C8OIJpetikFlAzKTFk7NDxEDxnuTWigZCIJqOGDNaag63PauR6GRYgiMt0OhbxtWxTBXyd7zpULLgi6IdelAK5yIhRBKKki2NbWpoGGZSSniRaQaBbixIi2kGZNvWCjeQk6h6r9SCiegH2tIR88xpfEALSd82aAk+r0zhTPPtPd//b//Ed//4PVkGJIomVw3PUgrzHFimsdZcQyCGOmQdY8HHQtxSnipya5BWkzYPt+eNgh2KJ15cfykFplVI1RFHR9O3la2BQskRhEHKOhyRc9mQ9FDIyKJq0fCq7VYoOO9xi6M1lpvOQo54KfCiCvXWiFnWqSJRNWJTLqwxEDZWBG000iiKEkjzdwLfX/d0bO2Il/C8L4+vhbdfhpwXbyme2ymvGfF1znlthPXn5eaxG2GmXFose0j+8r1ezYZu+p1aaaK2CG0gamTT0d/dsX5uiO7E6fxATiP3xwaJrpVEYSAlEAZRemIoeKnIrUXdWXh/wn2OGKWw/YDuE2U6EaNHrBl3LsxtJkeJklUyMLmV6D2NVigpENnXZrqy9EODaTQiGcgtD25mdJlsLVY1lALWNBQRsEZjh44sJCpUSYJcCkJoRJHb6NOWY4mKeBFakqQmplqZFFt+TwLhM5o66+iUQR0GVLToU4AlkWNkOZ3wbkQfNN//yx94+8/fUwZb2zVZQ95RXdUruXWlIMgxk2KqTAixKo6FRB05SxnRWHTbEkuuUL/tYlceo+vhMbboVpBJaCvQB4PWHeOSSC5WU95ySTbwwoW6JBfyFjUWkbeQua7dxXlyKhzajs4qctr7oYrs17r4siKmiFCSbuhpRCanjFUC01TSbKN1Hbf7e8PaTG1RXHvKApeK1B7iwq9roHzt79du30e/xFYlK3BBEH1prM8AiEtsu9+7n+0ZkLCnI/WKXtznvt+KutUiRM0NtGlQocq8m/7I4dvfk36eeDovkCOaTIgNikBjPFJNKP2Z6BwlRpZVU6Lh9qan+z7xdAqECbIPqFJhZquLhBDwwSFEwKge1SaSDBREZW7vDFJEUvaU7BG5DikrKWmbFhlhfPC4eaGTB94c3/H54T3jGhFWoIzEFKrWpClobcguIUViGUcoK7avYAM6i7eVJV8USXJV7FZSWehEEqTFU1IFf3gtMV2DbFqauxuSWgjnmTzPJFbuv/s9737/ltIIluTqmJSsZNeVLUOitWZdPCFWrxJSpQJ1oRByISaYFsecFd3dgGm7ehFL3hBgattdt1yzSITIFBICgyh16MBaQ2st46dx87bmuXqybz67KPUuVFeekUipCGYfOU9LHZ9rDEZDEaraI4KYIrKkSmtSKuWJtk1Nv7YNaUukqlLZ88p99fjbBF+XQvXFfH7Rf7zOFXcun2sj+vL4GrwPeKaMuL7vlXPsoanYveGXj9k9N3sVeDPka36VvR+6uV4pFUoZtGqwJpFMwEdH0Zbm7huW8yPL00fEksgl8MYOHFRP8BmpPOnxE9rMtI2hbd6RlUE2iuPveh7er4yf3iPnz/g5kUPGu5qvmCjoeotKurK1iYAykqRAWkORCZkLpiisbPBC4pcAKmOVQktILlWBI32kNQdiiZScUUVgNrU8lyJITY4RiSO5pS5ibcmDrNIAja6KZmsgrp5cFBhbq8rbhulmR3CJZDRWVCmCxkry0RIJJNugmpZv//g9zWBZcyL6SqMpYiKGjFsdJZban84QQ9zIowtZ1MqsFrDEwOIjLETMkwAAIABJREFUdAPN4RbbDShVvW/JsLMyV6RZrRYjIkIWpGgooY566V5TTAGTtjqiJZeMYkOJATlu4BjEFt6WrSIsSCiWUJhXz7Hr0ErUzyMFQmyjhxS88EAlBEOKLdzegTebJYmNPuyViPP6+E1TKeIq5Nw95kuE//O85+5J/1ae+Vob5rXX3f/+0vgvXnsDJUi5J5TbeV/Y4MuQWGxxb4Xo1t/zRm2itMbYllQyJgZSrBSNur+he/cPuCQY50dEFgzZol1GpoQQDhEKuRG0RtXcVXbM64hRmu7Y86l4/HmlrFBSDT2dUKQc8C7h54AxIHUBUZkRRA5IlSvazDYgWmwWuJCYp4U0K/waq1cOkdO60A0tulOEnMhaEpMgx8ISIUdYfMRS+YxyjmRXUF5jhMQoSwor7rziZwfCYHqJaKuUBcrg/ISfA6VraZyDuKLDik+O5t5y9+0fkdqijkMV2J1rFbZtGryLrNPKPE4YaSilzlhqbaquytbfzEUQcyImh9SG4fYNw3CDsC3W2uqtSqIUddVi21OnSmejjQUE4zhjjKbVhaY1jNIh5fMauiCD2NKbi4MQdSong0+ZeXZQBI3Rl8hOCIGWVVipGIvIV8VGUYfLcylkJciyQgyfUUi/fvyb5jmvk7uvFWy+dvuv3fZaznr92GvjvzbUvdr65ee8hK68TEZfvMc934QNIbLlz1JWiovcoGxAxY60VYLV7Xe0WTC+Fyx5ZlwzMU30naVkiWkKRhv8ulKswBpVWeSy5+0390zfvuFh/IDzDkND2x/oEPg0Eb1nPJ0RUtL0GWEWEJ7gVqzQZCuRjSaKiPISpWDxK26UBJdY50z0BT9HptNMO2iaY5U4l22um0VzIPiZaYmsMdUQjIQpCiN1Bb67Qp4zYUwsT1V526qOrARLjCgkSjWUWKvCGoeII0J4ZKt58w/fcv/Dd0yuQve097jTvEE1FXGuo18x1JwspQ1HK8TGByUoRZILrCGxhoyyPf3hFtv0oA3amk1avjIWPHNWPdcgiqicQXZDFE3zjMGCEhSZKSohinyx9i4RWMmIbdMW29znsqwsi6OzllbrmppsOWsBZCloqUDrOh6Wq1TG/pgs2ISOdlaGbfX9ipH+27VSXikA/RoSaP//Sy/4a4CF6/t/rfIrhKj1HsTFYe5Z6GWI9lLd/aIYJC63gpCbR66fj62tIrVF2w5yqrIARtLcfUMMnuXjTzyNjmRAlYyQlpzXuoPmRMo1F/Ihcv78iW+Ge777w+9Ip8DD9BETBb2SJClpTEtU+VLECiUjVVVHyzEiQg3FdCO2MSlZoW2x4NcaeqWUiJvXiS7ytMwcUk+je0wCKy1Ne0Aly0P5zNPpxNBotCyUKBBJUXxlz09TJs2FNGeEARUVIkuiLEhtOByPsCbC/ISbPbaN3Lwd6O7uefu7b4kolrBUpM/qKD5RpGRdPT4E9ski7wPOVfWytFVkY86sLjAukZNzRKFohhtU0yO1RWiNkGorBl181ItrvdcUpKgeuWlbTucnSoAbfUtzMIRTRNOgVR2+3oczaldPIEomFUkWilgE07xSMvRNg5WV/lLWchlbDQkJaKlJ24AIu0MBYmFr9z0XRi/gnq8c/4Zh6y3D+xtx8pfPfw3Od33fa79/edtr72kPrXd7SmX/YivqQ+y76P664uU424tkXIiLcVaBVQlSobRF6ZZsYg1/ciHnhuHuLcUvjB9+JK0OkQORjq7vgIp8yVkRAyyz4+PP71m7hd/dfk97f4N5f0aeIyL6yl7XgG0M3aDpbg2yzxTbI8i48xmZHDJ4lHegIP1/pL1JjyTZlt/3O3cwM58iIqca3/zYjyTQgPQRBIgLAQK0EKCvJ0Br7SVAC0EbLQWQ7CZEscl+3f2GelWVlZkR7m7jHbQ495p7RGVmFYuWSMTk4WF27z3T/5zzP7NnGifmQUjRQk741mKcIaNj+aYpsMwLTcqYCNNpYO4jJoLJljAlYkkdTPcDwbYcbEfTNcQ+s5wizBYrKrTMGVzSIvwMu0OLs5ZJMndfvuD285eE1HB/P7BMC0OY8LZhOo2EkNgdDkwpMpGJUQGhGEv3iwhJhGwsUwi8O03cn2YWa9m/fMXhxWf43QFjlXSafKmLLoeh7HU58FVYxWhzhG8wYjiejiSbud0+YxkDLJczF2Ms50Pbu7SDRV3RcZoYx5HWO7rGaqx55ZSpsdXY2xghJyln0Za+UfDGanN4EalAeDS9/X3Xx9HaJ/74h64PFQ/Un33o998nlE9j2fd9rH+n5p9i0gS7Ve77NaZE0lUO9XFqJ+fHYJcxQkpSKDMNGUuymvdMsSGFgPNJXVw5sHvxKcPxLQ/3PSmfOWBISUibAGkmJY91G7xvCEl4fTxy8+wT7LMd5qYjjielJkkKR1hnEeuIGLzfYDqPGENcOkw+Y+VMHBeMScx9YDouTL0hL4ZlUQ4D01hSyIS8EG0imkRYJsaHB61v1cY2TEi0tsUZZVYYhoHj64GYTrSbhjzMLOeEJE8UJfvKc09wAddaJhKtdxxebHl+uMW92MNmz/ntxPHbB9JgCCYiuz0pqKBMIYAX5qCtVIggzmPFldpWYZkD/RR46Ef6kOl2N2xun+N3N5hGqTMR0S6VmIrfo9VCSqHy+BKUJ8parepa3MT57ZH5PHOzeQbzxWLWs5hSWvOeSjwGp34gxMDNfkNjBcmxZNelCKZW0gkFnxIh5UI4FyPZSIllTWncUO8Hy08Xzo/lMZ++rgrMh97jfUK3oldPrqe50fehv5e/VV3nx+/19KEvvNTFeqbHCqX+CSOaUkllZIJ3HlJLDoFU+C4WMnZ/x+7Vl7ydR85zj50ibQNtk1nmmaYRJGX22z2f/+LXvHm4J+y3bLc3tG+OHI8DfV+EMziaIOQhEk0mJuhyg/MNOe/JxtN0e8J4QoKQxsB8nhmPkTgGxlGLwzfbhq4VolnYmi1uY0l5ZjyOWuCNJSRDmhImZlIQbNdhBcZ+pmcibjM2Jli0OmeYJlyYcDvBdJnGN0QTkc5w8/mnmNbzMA0QInl2WJMZ5oFYZmMar6mEZVHaSMrQ23kJeNdirSFEFau4LCwpg3V0+w27Z8+wmw3JeYxzKz94SFqosFYNXCnZvPpEZQygdXjfME09m+2GZZxZzjNLmvB4YnicCsw5r1yy4hwhJE7nHmNg02jTeT1dOWftla6vr7zIBfGNaAcPNYOR1EOQ2vJo/gvQ2qfC8WOt4vuE6RGH0OUvAI+F8GnetDLrPb2nyzsUZoQC6qRiTRUQqzkl8z3YurrDUAnGlDE857jmoIzRmZDWOpzzLOhYOLIhi6V59intcOL0+iv8nGiHCe8dyzyRmTEm0bWv+PxXv+aFBbfd0EQhTYHcTxz//JowJ+Ky4E6RLS1d8sRxxslCc7slBc9oErJ4hvNEGgLLKTMcM/NgybMlRsF6x/Zwg80L/uAxe8vupuN0/5rleCTPkwIv2ZFnRXbPc8+8ZMgWWRxpEha0DK+xnkRUAudxohPhZtNx2LSYg+PZZy/J2z3ffvdAPINJC02zQbaemCHHFtduWbLGqcs8kydlAsxZW8Ks1wMcRcOSJNonuTc7aHY0hxvENyTryKWSp5aNXtJixX6W2O4ajTfGrGwXMSbmRefpNK1DbKkyKrMGqltrjDLv5VJ1dhoGhnHgbr/BWxBiCaekIonEmLGllDQVChXkkuW4Njb1XFt7kYsPXf9ZlvNau1wLyfWckv/cmPR933sKFv3Qe9YiBQoKu1rTkqhee/bWygMhmxqZlOlRJd+lr0gYa7U5Nzuya8itdtmnvGCdLmqzueHFz36HaXec//z3yBTwZ8ERccZx9oFmjjRuoxSY3rDZtrz8q98wRGHc/gF5dyQd7zkdH0iTstAzRvr5THrIhAYWO5O9ZX6A/ruR9JCJg0cCWPHcHDzZO7742c+Ym0y2iWgCmxbajeUInL97i8eSfUdIymezTIG8GHy3JRvLfOxJ54zfNEQXmGXBbiLt3rK/3XDz/Ibt8wPRZ8ZkCQ+Z/iiEEZwR8Fqc3uw3GGNpmo77+yM5F96fDCFkQnb41pPITPNCdl7dQPE0nSNYQ2w2SLcF25S91coAIzoe3tT91Po6VcSZ0tVbuYQsMWkr4Ga/QehYmsDxu3sVxvI6RBAT0YFIGUmaGjkuC98c7zHGcLfd0VqLNbCS6gjFyibWbsaC+JPzRWGU2SyYUrf7I+XjRwNCH28H+z5K++HXfv9vfKg292mq5b0WOUdiCMoVcy2aV8jddbolSwajsYoYWadW5RpFFITb2Axoa5JJDpNbPInzqQeUhS2ZDuscd8Zglp7z11/x5jSxNUlZ0LeOaclMUyYsIzFNLJsN290Nd7/5JaHpGL/+mv5bw/TVRN8vdHOAJRHvzyynBXvryR30YSQNgXAfOd1HnPF4a8hEHe1gEkN/j799jusc03giLAvedexvn0O0sAi5bZExcDpHlnFEIuQQsU1BHZeFXiJsDM3dhhc/P/DFL15hW8/bhweGLIQJxtMJUiAUNnfjNJ1gxdE0nfaPIrRdQwyZhYUlJULMzEFo2oaUlpKg1z7LmAxzjCyA7zpM04LVJmeJEUoNLZWeRNJaOK5nTuexri2Ixe0VYxELQz9y2N2wjIHzdyf2bAFX2sHKaIUYC+u8dtn088jz7ZZd22IlrUN9rmf1yNV5tGWkRIzxUuWW84ow5ytLqSwcP7G29toVfZ/AXYTmcWz5McF8FBvmy6fXBQwfspTXr6lXTKkwgOfSwXH1uyWNtA5zEFPQOB2uq9unn+ht6eanjI6ZM1ktaEEAM62OPsAUDQpZhKbd8uKTnzMeB+7ffQuNxc8ZPybmc2DYaDfCsX/Hs2e3NN2W7rDj5S+/pL/Z4neOKUbu//iaeUn4kFmmGbdtubt7Dp3OWDke70nikZstIWWmccBLxoWB1nn+8oe/o4sv2R723Oy2nO8fiGIQtKNETCY5y+Zmw6EPpPkByVbL88KMeFhax9JZDl++4td//TtefnGg21rO5x4JooI2L8xjIsYZcRbftiwhsCyRttvQtR0xLkzDhGTR1y8RxCJOSMvEOI2IKKgSkzDNqYyYtzTbA26zU8G0lck/lwHKOqckRCWWlquzXbEDqVQ0hQo154h1lnmeOMUzd8/vtLf1a0saSq1eLocFWYGg4/GMzbDvOlzR2jFFxQmeDN4VqTGuXWWnfsxFSHJW/hRjDU0JtX6yW/u+630pkKcW7Ue7tisUfdF+P/S7j0b9iY7/64eBJeosjsuNVFj8Ug6tc0/VNVrhKamVQqgVrTWaTpB4USKClmQ9e/6SaRpJcSYGS1xGrOvwh5d88VvH7//u3/HH118x5ay5Unqm6VusF3b7DdvNVhFCK7jDlq5z2NYQsjAMmYc/vyGFSHNw3P72U179s18QTKQbJ579fGE+LUTfIcDDN99wev0dJswwa+vVPDzQkFjmhXgcOA0j7a6j2XQYiSTrCMnStA2brmMeA95A4zPmsCXd7Tj88gt+81//Nc++/JRpvmcaHxiGmeg6yBCzIcyBaBJODE27ATNxLAOaDIah7xnHkYQwL5FhWkgZnPM6T3VZyMYQs5bFPZwXzjPIZsducwO2UeI1MWs6M9dpAkHTRDFGtWZcjEMNXSqekKOOs2+dZ7PpON335JS5PdzAaLkfzuRklGVPjOZfEzzMI+M4cvAtt22DM5lkNE6VXDyuJ2nC+vUlLSMrDmKk0OhU/i2KAH/EkP0o4fwQ6PO0uuKHwKHySq5BoOvXPLXSH8p5Xue3rHMcDgeG8/nyflcf9b5gdW9MVK16KVO4IMkZYorUomxxojC5qffRYHLCpcySM9aZMt1K84vNbcMX/9zyj2L55us/YfNEmDK2GTjc7th0G8KSNWe222K9oev2bLyBCPdve/747TtO/T1f/vIVm9/dIV90eGdxGcbTjBlmrG3xxrP7bMf08Anzsef45g3962/pyYz397wdvqOhlIu5TGQhxoklC77ZkuYzlhlD0LTu3rP/8o79r3/O4Zc/w7244Rhmpr5nPJ149/ae/jRAsszTwsMw4luLbT3nYdS5mVjCFHlYzhq/xQy2ISZtoZhDZJgnIkmnivsN85w4TTPHIZLdlpu7T3DbLeK97ldB7mr2sta7XixOcXPX83I5b6YImyl5a2ctwzTw9u07xtuR/bhHrGAS1PbOjICznE8LKUSe3W7pLBgikbha5PeBl/V7j0aXVNc2Rerohyur9D15ub5+dD/nx14DfE+L1Ov6+9cA06Obf/J+7wODPnQvqSR+nbPF969tuKLaNpfcUy6uhzGFzFsJoi4LqBsfQiBncEqpBiLFlQWctlxZp/cRl5nkSi8plpw97c1Lfv67v+a1a5nvv+NdH8n9yHmaiDmy5MBdPJBypsFgW3WRds/u+Oyf/ZqhH3n3R2Hz+Y7eHMl94nB3hy9xnL/pyFmIc2Szu2PzyQvmfsG8fYm5/4x3r1/z8NU35BTw84yRiImeNIykFIjAOE5M40gMC2LAbjvsqx3NpzfsP3+G3Xruj++YphkzHsnDmdiP5LioZ2Ez2WbmsNDGtlCKOBxwOg/M08Ruv8daR38eGZeFZCxJ7DpXM0Qd6BRFyI1HvAO/xXY7cH6lKalAEhS6D135EkIVbuJrb67ufc1rowN9Szk7m22HWOE8nfDR4UwHMWPFEnLUYUQZ+mmi9Z5d6zGVZyHnVZ6eDmu+PvumpOKeGpj6yzklzXuWk/qh60dzCD3NVX4IxKk/e2ru32v5nlzXMeeHXv89YQ+LPiwZcuWwpUBAhXw6gymzLurCiMijvFSNVxoxKuC5LqJVgMhAxmqBypoeytis2GCWQhAssLl5xS/+ynP+yx9586c/8HB/JLzp6adJay7DwjyNbPqRtmvx3iG+4dUvvmR72HP+9ktc+pr5/I55PCLLzP5wi7WOptuwGEG6FucPiGzZmJbdHNnd37P55htuP/+Chz99y/jdW0J/5F1aiAScNfhNhzc6dn4JE8479l8+4/m//CU3n39G8o6H+zdaBxoyfhkJ/Zn5fGYJEayjn2cOzw4soxJQK0N6YlkCfT9xOp8Y5shmt1O3Nuoaxyw6qt02iO04B2GmIVnh2WefYNsdue10dIYVjGSt0ikgnUgB71Yw5pLTXI9IZp3LCcISLSkpvch+d4NvOu6PDzgjNMcN02sdAYE4TMEb7o9HhvOJL148o3NmFU6tTLpkA65nAV3Xflfr+cgYIRcUuUzZ1lTCB8Xuh/OcTy3jtcv5Ptf0fQL19HpqQX/Mde3yXru1GgOl0iSrQlR/RC45TE2Clhkcl5Tndd5JwaaSVMnFTYmRnB2xuE5CxljB6i+URHhBg42SJ6eKKG723H7+c7K1nP8h8O7rM+OfviaGCUmfIDGQhpG5dWz2Ww4vX9EcNnQbT2Mn7v/4DeGsk65O85nh7UzTdbz8rCFuG7ANYwLrlDc1eti82LO5bTG//RXT/cj53Zn+4Z7j2zfMU8+8zIiBxhs2n8z4t2+IOfDz/+pfcvOLL8EadfmOD3hjcWKIy8Lx2OssUufYdC3ddkMWg03CNCz08wAiOmDIWJYIeQmYkEjGIL4lpswwTYSYsKaD5JmSp08C7Q6/vUV8o6PjTcZIYa8AdPweGNWyJGPL1Oq8dpBcztVVTtxY5sUwzYn9zmHEIcw4J7y7f8tL22I3DmZRF9wp/8+745HOe252W53JWcTKZFsY/x53R8GH04xwSb1cO7XVkspHChF+lFtb/9i1L/1UMJ+mPa5/9qHrx6Rc3vfzR4KaQazl9PDA0A94r/MsmqYphEwKq9bOhVxgdmvtakHrpW7SJZ7IxlxtQh0fUQnPMtZpDCJCIbbWbvwE4PV1u5ef8CoszCEwvv2Gb755Q0vExJl4s2G71xGA5tTis5Bj4OF4z7gIvnuOFcswz5hsSb6hnw00WhoopkNMabUKPc4CLpLF4l7dcfvqUw7R8HycyMvMvIwYk3ASaMLE/bdfcerfcfurL5gRlkFZ3ztrSGEmgk6UNo5oPF3T0nVbMllre8eFeZoZxgnj1KrP84hrO7DCGCOSYQkjiCEkyGKZ5sw4jZhdi2132M0Npt2UeZkgkpBSjZWrdZFiuUTwVutUr0zoGmpeQCH9wThFdAi1Ivk5JVIMWCPc9/cc5DnG60zSlBP9NDDOE69ubum8AwKRAOKQZDQUMt+PO9e/ffW91SMrLWyimkbBoRJG8ZHj/1Hh1LHbUljIigm/EpjK2J5z6ZdcE/754oZcBcVyvYolJqxfGnNZ42vxrgudqQqhujHlo7UQA1/9+S/8zd/8G169fMmrV6/o2ra0DTm8c+vIcRGhazd0bYvzfs1LVc0XknKUilBmZRi0CFrvwojRBuRscc4RpXKdRiRmyElJqawlRIfd7Hj22ZcsIfIdCenvtbv/eMJJIMuGkDPjknGbHlKmP/Us0RBFsGKZUoYgzH0i3U/s7J5GMq5JWKtWxjtLDhOkWZFm43DtHjEd28OtPltWTiKJE3a+52F6y/7mFW674+3X3/Lw3RscAikxTxPTsrBEwzxH+mHhPCyMY8BbtWJxmenPJ879hO82WN9irMNlmHIix0ycZ0LMZONJWRiXzCIZ2obGbTDNFuc3haNWraZQz1mCYkGtKbQzYnTPuQpvro6TBqHlhBmLZIcVR05LOTOWxjWExvPuTc++fVYY9xRVvr8/IhhuNspBqzNeTUHzS1fJE8zkOm2yDkq6TguWuFjbttWSipTn+alobUoLOWW1QGIwuRxWtEYwmVoFocJojSn5wypeqiUq9Uh+dDOPhawCMqs4XqFvUtjdM5oOqRoIMbTWYrC8ePmCly+e8dvf/oq2a1e5N8YQQyCmSIgKc58ejkUDXgYgxZRomgbfOJxzhVPI4Jwtzw/GlPs3Oj7Oe6eLHA1WDHOeyTKRnSFise2GZRZkI7z48pcYsZy++QOkE3NcmJYE58A4DrTnRLfVfO04TIznCcmauxVjGPqBaV74ZBKc32iTedeyTIaYIp1v1O2eJowJBEakHfDdHvGdut55YZoFExM2nnB+wUhDf99zfv2G4eGIFcuyRMZZUx8EHbj77t1APy103cDtztP5xDQvxFJYQBD6MRQCdot3GyCTUsQ4IdIwBvhuHDh88pLt4RZpdthmQ9O02FIUomVzlpR1ZotB1zpaDUtErBKBo2yntUKIrIyQeRVsyEnYuJZxzoQ4lgZrwbuOZ3cN5zffMC8jPmoueJgnHh56DvsDW2+16gmHpQCCVznVayu5fl5nAuW8jppcPT9R1sK1ugguMvFThPP49V9UyouQOevwXqv8xVpteuUS21rrdIFNsXSAMa7keECDQkpgbZAciocoyltzCQZXARURTJ5VORghZ9EKH7EgEINWpnSN49ntjcYHclkAUOtZNVb9vi3ua6yMaTkTQ+ChP7MsyxoXzPOs4x+cVpLklHDW4cqcFoCUIo0DsQlHdX8NxIjHESTTbIUXn32JJTJ890dOsYfZsLUWm4QxLZznQioVI/OUiPOMMwHnPeMw893r77AYmq0lhz1+0qbjZZ5YjKHxVomixXLqR3zT0W0PStyVwWC4fzdjSNxtZph6xulIYkOYE5Ks5iTHmWnW/tBxWLg/Dnx3f2YOia7zIDvmVpjmjHEttC2LOMi+0HMob1FMGeMa5iWxiIWu4+XhFX5/g/UbbLPFtR2mVAGpRKkaVqoQo2djHZWgk9esVWK1FbtYd/X7B/3u7hlv778m5xMimaZp6IeJFAOHZ3ua+wY7eCaxHKeJlCN3u+2qtN+XOahWc+3J5NIw8b46gGppc3l99UCl/t5PEc7/9X/5n5mnmTgHxBi8a2gb/e/bhhcvXvDy+Qtef/cdxhp22y3tZoNtG7z3eN/gfUPT6ig259UVtN7jSiuPNZojzEbZz+v3jFFrZKxZuxFUgA2S1EKnlEkh4YyhsYbPP/uMWPzrWvT+yPWp7rUIoTKfmosYW+vZNJYudyuypsKXSqySSqpFteQwjkyTkiznPJYDpoXjzmpfaQyBaYyYjHb0v/hcFdj0gNs0REmM84SJGRMzEEkhMZ8TYYpYk+kai7dbMD3DlDne94Bge8E5QwoLkhOnqK1j1jlOpzPOOYbuHaCpprQIX339jhwCfLKhlYlzPyDuwLJkZb4bFuIciXMsxQOBU3Fp55CIGbabSAhasE7KNO1Ox9tlq6uaBcmZKAZjPMdlRJqGbv8c227xzQbrGsS1iNXmaWN0f1IKl55aXX0ymv4SY4sBsOuevM/wVG/MWotg6PuBZhtLSabw7t09yMyz56/gJJAMU8i8Pj7Qbhp2rdNC9nJVQbrOEjwFgKqn9qGCmmt/EVhZ/35yzPkf/u2/JoagcaTmEjQtIdru0niH8w3jqIxkiKjVsgIUQSosA6YImrHq5jrnMNZqA60YjLP4IvRt29H4RuNF73GNK8iqpdJyaqeJwVnP7e0NNzc3/O5f/Aus84ququPzaMMuLsajnSyLfPlatWKk9oBiRA+QCG2xwjmrdm/GkZQS3aZwu6ZQuHki1mqPYspWJ5QtC9P5wOZwhyfgJDEOPWE4Yw3EZaQ/Hwl50ilfJpONMBihj5HB3jD1wAlOeaFtHd4KcV6QGEnLQofBWhWyYBaim2gaT/CGYUnIkiBGxoeeKfZM04JpDFOGtBTXLCVyjMR5hqRehkHwxtB6v5JrWe9WeLxtGpIYxkUHBmUDxm8YxdE9u8F0d+R2R7IdttXY1Fi1/NZpTjnnCNleAKC1gEaLyY21pUZViCGSY0Hp5QmWUfdbDOM4cTyeuW0WfKMhyjJHmo2n23ZEl5iS4aHvOc8zv/jsRWGI0Pep7Ow8iS/h+x1T1a19Cpqu1t2Y9egJfFQw4QeEc5mPxXro7PpqzQSBFIjLQgyDuiAlKjcAoczKBBCjExSLMlTSI1Y3Ja85oCJStqRflYTwAAAgAElEQVQmilJJSX+S1v0qhEkr/6rFOct2t+e/+Vf/iv/2v/vvcZvditrJ1cKu1RpXixKfIGs1gDer5r4ItjLQlUctFP1+05FjWkn9jPUa2yRtLbJOW6EAPLC9e4bNGZN1jPtawpUCYeoJYUJyYhpnpnEizpOyuA897c0JUmJshYlI6Gcaq3M9JUaWYeCALfQZe3KasSbTRoudlIs2WsuyZL47BuKoJXDtPpKMCkPKmUgGK9jG4SNsItzebEvrnMXZTMFksM5ibEZMKqHBzLREzjlz+3KP726w7R6aPa7bY7yi6MZYrNHjZwxkSSWvLKytYKbkFTNFkduCuhflW1j6qtt72auycVkIMV+5lKrYb29vOZ7esPSBsAhjTLw9nmi6lt2m05LA/HjA0bXVfCqU68+lhnLmkWWtl61pO1inc3/s+niekwIbl2Ev5LwKkZHCG7rCq1fx3CPINa3xARXsgis3QL/hJK4Lq6xn+rn2Z2rMG1MdvKgTnxAdKJPmwLtp5P/43/83+mnmf/gf/yetOOHizsp6m3K5Z5FHPv8FtHpsadcKooLgsioeKup0weGKShTrVwVxBXORMcSC+mIbklU0mBQQv6WVjBFoRNgjmJxV+NNCiqEQKAdiCizzBHEhh5ml7xnPJ8Kko+limMlxhhxwRi2bzTpqMdie49hj2z0hLYw5k9MCUbmIjDjwQjCRZVqIDtqdUlKKCN4bnJPV48nWqMuL4NsN52XgYVo42B10N0izwzQbnG8VzBE9qM6olRRb0XhtNK8ej1ZmlZjOubWoPKasQ6DkqihACh5RtyULZG3KVroQTW0JSsIW5kj/ZmJ6MPRTZhh7nj3faxopxe+lEa8BoKcpxe8V3dTz9J6fqcdVWBT+S1IpVXPVxGuFeVbIej2dV9X5lGRx+aMXzZFXq6PKUa6E8GK9KudKzpkQcylWLxOJRfOQrfNkYJ4XwlInFQv96cjf/X//L+eHd+zvnoFVDVYXKz8asEuBfq8f+Bo1pkr2+jvarpRXxV1drqsnpGqfCwO5IFKLFerfkHXWb+2WwZT5j2VsRC5odCztbGJbxLO62s5odZIh4YC0zJATc5n0vMwT5FT4bhKdb7BLYI4T09BjlkCaZs79kTEOkBemfiBMGjtrxc/CkM8sBIw4klHMAG/IJURZYiAJvB2PON/hN3sOe0/nWkzTIX6Pa7ZY75Xh3BjEakJeisYzxSMCKX2064asytwU1FrKObFWc5M5JdI6R7bu20UgUszEGAghkpJOMW/bjv32Fjk7lmD49vSAMXDXNriUCFfH4qkFlJIjv/6eTj1bDzxPr2shv2bkMLUa7QPXR4XTryX0snYGaKeLaFrl6t9FA+SVSlLF1qyzMC/6oiRhC11DlkKhkTMhKugQo/b4ZSP4oq2pI9iyzl6MsXa4lsFFKXB894Y///Gf+NVmg210OrMu8IUhwYiseUvyZZHXWOfq61xNfH0HuVjgy+v02VaFlSGX3lBT29Dq2PuqkWssVapF8xof6yaalNWiSp05WexJNujUWAHJJJRGUpwhx0Q0BQl0B22ULN5Bto6AIDbRkWiSIY0LGxZC1sGucZohLsS4EJaJZR6ZxjMpRgzaoxhD1HydKdhDXBimkXY7E7Es0mCMp/MO41rE6vQ2ISMpYUyE1StSIc2y9t+B1KoZRfRNyTVL8U4k13JBVqtZPbNaJpdK6CJGcYoU1e1VME9d+RwgHw0Pp5m3w5lXhx033tMCMwn3JMa8LmGtSG0VslVw67m4en3NaRYp0n3OunY6x/cnjmPg6syu1iNxgYevfVSqX14bYetrilMnF8tZSSAQo3yeqUyUComQLj+zrsE7h5dYNkD5Z3TYTbzEkuX+coycH478+7/9G0QMu7vnvHr5QgfGpsg0T+Sc8U2Lc62CUyWDWgX9EtJUX+FKOsua5LLgqQpqFmoxNlJGyaWs6RqRR+tYwQHtM6z1uHIBJ+tGV+1dtZGogsu59BSaMk+SQtGS1K0zuSboq87QwexzMoQrtsIpCkZaEpYomSwGY9Xq+pxoJJeCAI2NyZkUc/Hii+VICyEFtZ5oK1lMykXrsu5RSjqLchx65uHEPAViqfahzBlxTvs264hGtaCabzZiLwZgXY7MOA70w5m995RyIV3hK6sJYK2sxScZRffjFOnchnlxPDy8I6bIYbfB19CtvFVtml63PpdmbFvc8XJPIQQESsP/lcwUj1KuvnPtlF3XMr3v+oGY80K5kLiqGZRcxkqoldG1SeXQXZ+zYk1WS6pork5eSprATok5aMlZyrog3rnyUBnJgaiUrsSYWaZFff6CHq86qxzm4Xjk//6//k/+9l//G168+oxf/vJLXr64pdvqRK5A5vbuFa9efcFud6DxDSEkpnnGGEPXtTRdg1irRMdRD6bkrBUiplr6EudcHP2LEIpW9uj3FMxaN/x6g0Rp/qvGX2PjrJOsi97V1B91shZkKUMEpFRvZRVSVVJJZ0vKZftVUBM+STW/qxIwZZ+ThMuBqaBfhiyebC6WKKXL4cV6skkYrxbNrZiBNhqkQsmRUyQsNyzzSI7FSidlMkwxqmULkRBmQlqIobA75A3ZanO3MQpILjEh1uOt4/54j3GFgkTMpc8yS3n+iOSglUpRmMaAzxGZPf27meO0MJ57XrWeg7dlzcHJ47rZuqdAaX8rFjRfWcgCOq2hEKrEqhteFfO1Za1H90PXDwtn9avLH6nRl0qDXNHSlylNsLoWSX3XUhQgpGKhYs4sBe1MJb4Sa3GiFTu21rPGtDa35jIIJkZFQakW88nDpRh5eHfPw8OJP/zhT/ztv/1/2G0bnr+4xW875hjZtHv22xuNPXZ7jFjmeWG/2/Plz7/g088/o91ucE1DTJFxnDBAs2nZ7LY6wFWUAmOZZy3AtkZRSDHqeirGr/FyOfS6QSBiijNbKYl1XkhZUlViRdtkuVS8rAnfurllf2tEqxUy6UqR5mquy3tc0Oj6Hup5pFWYdePNussX812/vn6dFoNc3L/LgU4lbhWykisbg29aMg0mBrxcikVMtfI5obBSictTyWWnvFJ6pOIOJxHGaeTtm28R+5Ku22JKuFRDgIwgtgUahvt7rMxsm5Y0Cf195P5eR8Hfvrh71NNL2a9aZPAYGErFSyn1stTU4nXHxUUg689XmbrKHMgVHvK+6wdaxvJq9cpeULdtdTIkrw2x9TVKFMzaoaETmNQlqIc1iay5K1vylzXAi2W6cfXrwxI0r5Uf9+3BJS1SdVy15tqprjm3/rwwzRNJYImR1nq2rtFDFZVGP+fMzeGGvzscyEC727ApI8HDEujalpuXL/nZL3/O3fM79vsDBni4v9f85+6G7XbPdrvFOq+bGzPLokOJjDGKVBpVUqnC/2XtpOSFL1Uljwu49VLhNLl0X5SwtwoypobM6QpFp7h9XFDzq7dNxf/NGgitv1QNQC6Kt66umAw5lnW3jxLtuv8X5SHFpZfSULsqAOfKGpRZJWh7mBThqu+TTQVgCqWHqIvqxLCEQAoL9/2JYTjx+edfctjdXQ5qPXvSEBbHdArsvGGxwnCOpLnlfHzLtmvZdN16rmv6ZL2H/LhEL5NXlFiucQdqTHklnNdAkDzu8/wx10eFc5XrKyR2Nc/lYci5EGbplTIl/lBmsvoxlPhDxCgvjNECZimTmKqLIKiVVK+x8J2Gwor21CWAdTHWRS3xYoVRcsosudSKoiPmGyLGaGeCjvVSwfdEmCeOxwfefBvVauVcGrSFMSXEWe6e3XE47Gm8Z5kGWtfQ7G548eIFn33+GfvDjYIR1nLuz3SblsPhwP5wQ9N2JANRNHbMMSE4vOu0aqa4j5lITHVCtykF96zGUMqsjXS9FwJkywoulddcGAavCspz3VeNVXOde1eF7XoaG9dWMV8BMJd89vdST6uQF5f4kQyvJ+nqO1bvzhT+vHIvequy7mvOhSpEoPWOqT/zl9ffEOeF3/zmr2jaHVraWf6GsRjx9O8Gmq4l5YmYWsY+kELk9u4O75zWUsR6/1w9bxWBy9nLJZR7Ws4nyKMHfd/vP1qFK+F93/Vxy/nkF1eEiioUZRNSrlkIXbySAliioq8hqZW0xpagtDyE1FRK6bUsQ0vJ4J1jLiO6r/bwew/9vaD6ymLkHMiIxqpRG6dN1vsQV4bGZi2xU9ck4xw4p+5qPe9EpcpsgKHv+fr0wNvW07UNjS1JgQx/cpZ/3zT4plmroVJOtK3ncLjh7u45u8MBt/F0N1tCjiwx4l3H82evOBxu8d7TNA0ZrevNGKz1tF3p3EB7ClOEeZ7B2vWsqztoyen71ixLXS2gWuhy6HM2q+eijpKs/0USOZmLNX7EgPd4L55eJeIpkIA2TavBr0NrI2TlKDBlDa/8NBXGEh5cdIUUD07YdC0xbHk4vuNPf/gntpsdX3z5c2yzQYEyWcOtXJrHi/fM8eFE5x3btkVy0lu5mO3LA3BpD9Onv3y+CleGFbL6gLA9Ivy6cpV/snDGdLXwq6Kr0HDRuutGqJCFYimXEJiXgFZxOCy15K4giTWWqjddusPVMifGcSAVV1bdp8utXLu3lzit3uelKLnmUyNCRLtqVJvqgNgkUvF8rf1tLNar4OZF4zcjZm0haw2It4whEqaRKS64zQZnlQncpEAaJ+ZJVyeWipfZwvGbr/gKQ5aM3zV0dxumNLPkhIjn9uYZN7d37HY79vsdrmkJIeKsp2033D57xm53wLsGyZYlJB7uH2g6zSHu9nuapoNSxJCzutSmxPNSSI9NWaNcRuBd8nPqVl9iLlgtJtcVOBWIqy7dk/fhsZW53rP1EMWSLtGOsEJgWWo7BGrKjNUDz5fPa0wummrZ7fZ8+unnfPP11/zTP/4e7xs++fxLrLfqBudECHOhiInkHBnmnmnqeXV3Q+uclivW+1zvtYZuj5/pOo1SXQJT/q/A0NVzP82T1hEnP2bMyUeFM+gILzVypsaExbSXITGpzCOMqVpJHRGulRSaF3WUsrCUtIRJVAAlXbpPVJjUkZ6XhVRqGi9Ily7d91zaK4tdeWfWWEw0ixgyaz7QZXX6UtltI4It1spYW8oLy/sWP1Lb5BJGBO8MYhumKIzjSBbYbbc0BVGtcYipnliJf8kZSRFsRsJEGGZCntXlTzD173j7RpvEnbf4ptyT0eT7Zrtlvz9gnVdrYxwP9ycyhqbd8tlnP2O320PWERLGGvq+p3EN1lm22y3dZl+aCrTyJsalgC0OxCtTgANNR1Rax8KfU9xjKiq8HmW+L5xUa1IEKT/OfetVIHg0rInlfVLSGLhadSl7nsobqmteulUQxDgON7cYY/jTH//I7//+P+KalleffoFFgcwQAvfnE413NCZxPJ1wzrDbtFgBSQqjmdoOmQsyf6VkroXJWh0krO6trLy39bXruX0CBMGF2uRp9dD7rh/o57xYOJMvFi/lTMxKljVHHSoTS61rTDAn0ML3UqYmaoVShbrrNtXqF1jbsZaCyMrVA11fj3x/3VsVhlrPKI/j0JCy0magTAe56JiwJGwpunbO4azXuC4qSbWpXgJgEtgSxxojCiA5BSimeSZPE7vWa1O3gOQCcphqd0rLVgZi1DK8AEjJj62uWihaxUBeSHHSiVXWMI5nQnirfK054n3D+Tjy8DBgbcO3f/l7rFd3Wp9HxwQ2jXYEHfa37HYvaJqmDJ81LMtS1sXTtnsOhxvtGrIOEaNdOCkoiJcEZxucbdaYTkRz008tZHX1qpdV2Qx1nqaQbVWqUg2pglzVNacm8Ms5ofjxph5Zzd0qA7wq5O3uwCeffspXf/4zv/9Pf8dmu+Nmf4fL2u/bz5Fvj0de3W0YlpndtsOKlJi/eAgpkY29un8ePVc9bpccfr3f78ekVfBqdqF+/b6i+A9dP4IJQVu6qip0VkhYsnimBOOiFT/GqjYO86KpBVPikgoeUAsGLg+Zc7qwbcfMsoTLA1QQILOCCjxZgDUOMXIlmPW/qGCGwmIgCvvb4lpfXHaLNb70nVrmqhxEhcaW6qaiu0uRNlgMm7bFGcs4TRxTYrdVd9lyxYubq8tPuSshR4FkEAc5lq6HpGmrnDR571JaEVkpB3JeRkJYcI0lxIXMDAykFOh7bUq3HuYwX4qsRdvFvv3W4dwWX4WPSoysHoV1HdvtHucbRZytI2f1gHTQkKPb7GlbdZ+9bWjahnledHx7KWRvfEOu3UPVj86pFDMW5LfsUwU7tbjhyjIWgKqelDUtkuGCYqsPnEr8ibEcbu9IGf7y1df8/j/+B/7qd/+8rIHDmobj8cyzm4htrOZGH6Uyyt9NtQyCtQDhmtju6ZVzIot5JMtPjcp1LW5NCT31Nt53fdxyZnXpokAkaYJ+0+h8RdNxOk1MSQ99Yzy+sWQjpGFYtYriECU+zQr4mLXuFO3Ni4GwxKusjfZw5iKYhTcYodYfVaSGQiVSBLluZ3nomBQMQmqeTC2l9U55aIzGLgEpC2yYgnbzm0JXosBHXoEJUzBsC9hcqltiZogLfT9A19IYwRUwyACm0EEmKc30UYiLlB5IzWpaW2D2BDkZUtLhudXtW0LU4T/WYMSV51KKFf2d4m0o7Fji8HIABBKRGBdAWBaVDu88gihbewy8fi2AodtsdDoWqjDCkkg4mmaL91us8bS+pd22V9ytltZv6Zqtzg0RwbmGtmsZhzJxzFis9Wy3W8TagoIXgCtpMYLohJoV0U9XIJZQFFauPZ5Ojep6bByH22ekBN98/RX/8Hvtd3XO05iGJZ44P9xzc3ejDBcoJ5AiVZmKBufSLvjU0j2qRrt2X8u5lAIM8Vg2H11VQKtV/cmAkHLlZJIkmk3D5tBoKVS2nPuFfhhU64qOizOxACvWkYr1EfPY964CKgLOKoVICKFwTnD1uisLmfL3io1rMl1sXTyowWYtno9Jt1ZdPUvTeJrGq/mzlrZr1cKEqCTRKTLOExTXfaVgoTTXKtEt1tiS2jEsS8BbQ3IN4zDS9wNm09J4BzVjAStbuSnPsMwLIzPBKGVlJkNEkeRy4HKJwWNM65pZ6yjmCFNarzJVEZiCd+n7rTM7KpiBqhdty2INAcRkXFZ3PKVMDjOUjhEFgwJkQ1gWiD1TiATrmEalg4kxEUKG5AgLpKDP6ZynaVpliw/aSZKzsNvtaduWtu1K87QhhMiyBNqmo9tuONzc0G23GGe1cb2MdUgpFGVs8I2mn3TzS5+vCM/vbpA0c//2NfvNnsNOaV0swrs3b3j54oW2PtYzV/CFi36vZ/FS/CCiw35X1LYiuMXF1fdZEaw1Tr0Wyqeu7A+NLvkBtNYiNtNsPLcvd2AS8zxhTcPpdGSelYNGRCkcQwjakbI+ZWYtZr5iv4spYo3RsW+1dlF49GDrxxLnrhagWHP9L1Qk8RpN06A+qttsVAk0jWOz6eg2LTlnut2Wm9tbrBGWYWA8nfXjNGkuvqBqtloio8nwqvkgKataOeiNCHhPCAv9OIFYWu81jZrj6rbpyihbQpJSlFHi0ZykpC00lxdjLF0pGusaq2u4wvFl3Ywpjb9oXtTai1Cq66jKTbK6nhWUXY9FCSOMqBdiULe9eha6CRYjFqcAASYvJZ2zMI0TKWRSgGVWJdMAQyjzUTCcjn2pib7MPd1styqUIeBdg3Wert3Qdh3dpqNpO6y3hcbEMs0LIS1gDEuMdJsdn37+BU23KYKpVvf08ECKC/Nw5vX9A9NwZhx7DMrof3z3jk9eflobi9ejdx12XZ/Deq6MMY8aqp/GklWuc3r8e9cfv8cG/5HrB/KcHjE6zdg2mRBnup3H4NlsWsKSqdOgtbiktn9dbf2qhGqDdKn0yaloqxpjXhbo8cIUd4OacFdFoAfnA7ddrIe1arm7tmG727I77BGr1SW+a+l229X9XE4nhv4MMeDLiDmKUsyrxnuMusUcMfZSQNE2Du8s0zQrTw2GrvHYrJ0cGu9eXM2m9RhK/S6lBC7qoJwYE2JCcdsp1kKIxVXOV89aP6ashR7OuXJgCrJYGALN2jgjGCslfVWavY0WiSfl19LIwioZc0LpLHf7W6z1jP1AjAvOthifuf/6D4RhJC8LLmvHkvUNOeqIv7ubZ5yXiTiM5UhYohimMGkra0pIt8HmSIyBYTwz3j/Nbaq3EnPUSq+UiFn40z/+npAy52FYmzLOpxOgitmiNJ/n05HdxuOs5Xh/z8u7F4hU8KcKlxqDlMqA3Kv0x1ollNLK2PgUja2GIZs1oFsBpOv3qufnh66PCqd1liyROSyI3eoQnhBx1vHJpy9w9sj9ux7vlfdH6yI1bzSXVEi+cjNTRbJQEEApD0u9qDzWLo+vWhua1hhTChX/RUmtx/WSp5KMt5po3m82tI3HescULEsI9ONA17bMIbJEjbscEFKiKZYZoxq5ghdV2xhT42gtyDfFomerk8zmEBinGXJm4wGj/Dprd31RIE4sS23u5YIE1rVTvlNZXW1t6CjrUZUHSQseks4ruY6TrJVVyWAzmFSqlwyXkiMtBjFlJKJaUA0LwpSZZ5ii5/blZ/j2AE0kpqjM8UTmf3jD+f5IR8RJxiRIWakux34ibnXgkStj8DrXAqWOuvFq7V2573wpEa3MDCklTF401kuRVCdDZ+H05jXnaeKbb18zjTNQ8pCFUtNZrTwyRIITXNsSQ2Dse7rtoawzF89sLa97XJFWXVoRWevM68+uwR71QmwBOQu7g1QwS8AULzLXvfuJwoloAD5Pgf48s6XBOyUxDktUEuMctZm33bCEqZwrzzSNKxVDukZgr1Bbe6V9Uq0yeqJhqkZTBjx7mST2yGo+hq8ziRiU0NikpPw608hiMm13Q9vt6ceZsR8xmAsiKcWFzVWz6UY3jSvNHJeC8mvXRLudKgpcmOGNYZkX+jFAUr6aupnqdlMOWlzBiMqvtErTE0HVj1dJcDFYZwghrf2V1Wux1uh62VKQUcYbiKnuOoVPJxMXBeRUR+rAdC1pNMxDwrkbPv3k19ztfsEQLEYSSRIxBFIYeX7zM8ZvH3B5pjEJSYEUdVygZMc4LBjT0DQ6Is9br8ba2RUtztXzqkevKuyrPRYytvTOSmFwbK2BxtNYYYyhoPq6V1k0fwkZjDAtkcZrj+3xeOKm22tTxRW2kWIs57V4Z2XPa11sLTZYGzDK3lw6pS7xpHGWFNTNrTnRldVvfc6fGHOKWRQZi5bj2wlDg2xhGgfOxxkrLUhinIYSDyUtME/KV8rKdK3uQl7vqiZ1zWoxrg9gfTiuvm+dwzde70sqQlf5QS9+fYyxtHklnLF4AYmBHAx5FoiB/c0dje8YplH7CY1FEiXPWWpuq/WhyM5V/XDdnHpo6mFShZsxZM13No4Qg46/E0PXNsUKaxmEFjskMrGsmUNSglQLrsshEW3VUn6lvP5ZY8oBj+rC1VLINdFtLusoNZ40FiOOHGEZdYam5hud8vuGhbBEllFBnmlM7PeWT5850v2Mzx4bYQk61iCHzMF2bGyLTIGUNHaWoEUsXbdHRKlErVFwrtb8UgfKZlU6Zh0tX+tnLx7VBXPgguIrnIEzQutdAbRKCFCUVMVsYqak1pQLqj+PTDcTm6ZdhVOVXsk5l7W7Xr9VGLmAldfntiqYWlVmROlcYlD61Wuk9mJ8Puze/kBXyoSIheyZh8yDjBizwdmG/c4xT+pqhhA4PugoOfXPc7EepabEqAtVZa+iavVJ66dPOwLqZa3BN8rSV62ucHm/eq0aMKtVdtbgraWxlqaw54VpZplmfLNBug0hBPrTWQsPih6rlUZiRBumUSDLUAP66s6wHqAcC3hFScFIxlmDsw3DpPMpc1aB9U5dXysZrCb4pbhSqQhnnc5c5ihdFINcP2/CWkMo9+GcaO+rCNZpZKqurVk7gMja1xjnBAHSZFimyNSPzNNEipEcIcyQosZPiwzM7+5xvWCToTXQxgXbeTCJaTrTxkAyhpgzKTuarHSlrvbm5qxKL3OlYAoHumg2XXJewaoULxViGgde5bWrP5ipg+DYdq2y3i9xFWRWITZrM8Y4BwW7UuB0OtHd+UfCom1pSmT9vqsq7KfnLsaosaYxmgtfa5GLR3NFZfIo4/CR66PCqU3QhpACMRvGuefcn2gbjcHmMTPNWrxMAXhqslIK0mml/IwSHBvhck/5Eay/rr2RR6VzTeOLu5e1JG9FcbkIaIkbUhn37Up/aGMVNW28dtvHeeHh7VvazYIYSz8MnM9nZS7gUufppJZllQ0u9/8ox2UusV11n9QpTGsTsxFDbjzTsjBNEyZFzFbL8lRWQqkvrrGyIq61cOOyVlIO4yWGzFnBn9nMgHoXadF4y9hqAUw5IJYYhGmYSUsmzzCfZ4bTQJwTedFeW0VtLTaCKQOd0jjxl9//J/xi8EuiJWs1kxFwwpQDLgWisyRxOLStzZja46p7ZnLNUZfwptQeG1PmmJSzs2bBc11vpa65ZuFYEcTyaeM93mnNca4H4grIQxTnWOJMKCWMp37g7nCDvZSMFEod6h08FkaRddZOxRtqRgG0aMEC2RhyynoOrkK6qgCuh+teMy08vT4qnPeToJ0dtWAa5iUx9AGdNqqaWPNsEREthXLIqjVTSmshgFozTW6vLqyki2Cuq6ClBtZavL+me5KLoBTtGVeXOZcYKOBEcAKNgHeCdbK6QDYm0jgwJ7DOE5ZFhd0qvaRHf89K7b8QVTCXs0KKaSUs1q8vedVaHyyF61UKMmqyY0owhYxE6HLlf01KJVLiIytOFcPKil87/EHL1SzKdqAQubVO+0dzRAz4RjW3khOqglyWzDDMpAHilFn6SP8wYKKQIxBBUG7dlGJp+8sgURnmRZDxDMcJ+qVUDGXanLDeIfuOvG/pnWWCUpZJcVsNoUhHSUKsrXgZ7aXVihlNI2kYkRBxICXHmwrrXb6EQ1JOiRFwSWiNo3GO0SzF7YfKxa0AAApySURBVC0YR66pNlAqGYhpAW85DxPDtHDYdLhsCEmJAIxzyi5Zzty1pxcpNb1yudcUU+lqKpY85YIBlENdlYhcYtiKqH/s+jhvbUgXeTGXG1VttkZ6NWigxoC+jBbXE30BT1ypW7wsVjntlV376maVMd6vFTDVRTNc/HRt1NWEewqRsGie1VodXqR9ehcfXyra5hzKu3shUTYkJMW1YF3rLK87cC6BPfAoIf24FEut5YrgFZDDGmhbzxwi4zgS00K7TRiXiUnTBo5aweSpo+FyznrYy73o+lsNNwCy0DQtYdGRFc4qO7oVwYojLcJympiGmelhZjxPeGkhZlJMOGu1wQF1yZaiYIzNK5VILC6aE6FDsFGIKZKK9UwxaY1q0sBAW0MvCu1RLy5ZlXUJeyropsX8mvZJpW3tgpxeAWNUD8zo+L/y31ilmDlNQ1GW+vpUd69Yw4QwLwHv1XU9ns/suv+/vatZcuO4wR+A7iHpteQHcCrv/0J2pSqXnFI5OFp5tZwhZ7obOQDonlkpkis5WAfiYNEUKZLd+McH4GzCJTaqRJIYltyt5Ej+DaNAPAS2v24nC91raSPU2pfhgGMc+yX6Q8tz90T7R6qAGmwssw1lOuWEU8qotfbVBYyA2O3cDIxYc0+qts8i59wPhaA92AZoF5v6BbSYzF1NMfgekyRDGUTxF4CNZySvXTXLTJo76zNvekwA//ebzzLdubHt88HC47dpbw0iX2vHPuxrmghtrZivV1QlnC5kSCxW2NDjmC6gUK1WpjFfCayRQPOJzuHaikCbvS+8k4SMcqtYXle8PM+4zSvKvFknULbSRmP13tUKbYqcJ1uc1JnIBkxrTPRz0P85CZoKbiTQk4CyvUcd8sj7uBIuF6q9lBYTDTRc1mqJnJzGmccZx2ObbLGL7yI776FUEsHlcga9ePshDJIJjPwTYMK6tgpZV+TzhHmZsdX3OPkc5O5q+hTGjgLi0U4X9938T+pZ211uwDtdwikupSDqoMzBt4Mnv0RfF05f6UXx43SAjnX3wUKMnBinyToztNk4f8tcmpYzd6IemF+E8Bbex8y+LEn6BXSL4RcaRXiRBGqKdVugrWLKGVM24Uy+eCjgVwH/My1dIUoQtnGR99Ksp6/6lqz9ngyNrN9RIez/fl+fDUvNO+uuu9hYhHE5TwAVbKtZOxChcYNMhhbqPKAwzKzHMMqtt9aZkJpFExHkZMyTJUFIsL5uWD6tePnwiuffPmGSCSfKSJ7xFhEUta4YJkFxI8ScEMO0WrPMcwhWJUJLCZrEmslzRRVCzYyWBJwYyfx7NPcYahTv/awi4RYKTHsfqX52lkGRaQ6wx/7sDThgbuXZt4SvvQ9Yh+UkA7aHnVqrNbovqnhdFuR370Z2CcFv6Be3L1+FsulOlQ6X1RkI/eUwy2rGNeCA2ZX98fe8pT9gOV2DOJY0MiMRT2VhZGGcTyfbiek/WvyLgMagaIzf6gLHw6OFvf58PndB2l9MuNL9OYS+aBZnCiPvtn8JE8SZLAkj+QT4UgocKY4pGwJm04KyVneZ9+nuuKtgmiFwwRydSXaPw32PgdYNCk7Ue0Utu3jBfTWXnURRthllNZdPFJBQAl3bxiQ3g70CG+BnlkRAkowpVsV1vuHTxytePyzIyJBNcJITMtk6u21zjKqaa2slKu3uGjyuJiLb1wkATCgT4caKSgJl4CbOD8IomVDFxopQG1YuqM/P8TMy1hgzk0SOOFTgOKw5cXL3etdo7wyl3ktMLDifzljuHhe7S6yRPSOvmQM7PiW8XK/48ccn6+2ED0vdQfC6k7wzFBHi2fOjxh443D3ZvqDBJ6Nk839ga3u86C5FgLaFGDlbqYG1Igvjh5OByO/r2jUZyNA21kA7cIhxWQFNi8zkNE09Vt2/Nsom5DGtNz1gXTcs8+xWc7LCu2eJra5mgXfy5bn2mxqqx9LEhJwSppSh2waEQL053Dg/9qzYW8xl0JgK6Emqrk3sip2P+6D5U5qwls3dQUFZN9RtAiaf4xpvjUfqiRsht3KWuMrZti7fl4r59xUvH6+YX27Qu9qyKWTUewNn7/FQm9/KwjYGhpL32gzLou4pxfNKii3B9qigoAmjJVMiImSTJZhHcq8NhRyKNIaLN/XMMAEAQ2RYrEicvD3XBoWWI2rHPsax1jBFf7k84ffXGVSPHggQ3SPuIcBiaiXCst5x2+54ulz6mwjUh7B11xYAkw+1Nk02QrZ4V3z3zru29c0So/WgyENh/Tf65oCvaBpmGivYUwo3ylqY3j1dkAQo9zu0FGunEralqtodi35Y4TZ1JsBIAO0zWh33CNh0+P6ehvt9xc03fCVJXTCTj9Y8CmYamrvHk56soSg0j7JFuKfj+4XG0y9q+Hgc/x/ufiCkKOIrat0CAkAiAQlh07vtCGlmsUwIeRfAmEsWIIKUzEoSORSyENpGeHm+4flfL1he7zjJGa00XJfFSkuTWIJnVVs8RIAqwzLucTnulhF1j6ZrEmE0BgrUGuuT3UcOVwqe+InAi2m44HSMQcldTODoDb2N6T7jRz72QpZSvP5sZyWceteOauSG/RLjB3m91CZC2kjQrVWsteJ9TtBSPM9LvcmEeOB4miva6ATtPKBhRLQrefY49e10+D1//c8JobwDUDPbjggmLy00A30/XS5IQijrHVptVyYo5g/FJAQ2lyTacsYNQGGa37rz6TOtqT37NeBy9+WG12UBETAlm2Ag4c66xRSPO/duRu/mYA/wydLnNsmhIXuwbgc73NuRoDke9J7eCqbxgZd9lLw/0lcLNovtQOSQrwQgozGZxi+KJmqQQIYNJiNPcqUJTAmSCGW7oxYFKOHlww1//9s/cf94wyQTrrpa+aU2/PT+CSxewoCVCxKzu2a+iHZn58x9DubRPuolPCKRgB+qNx2pocEsoWCfGzXggyJ2l05H3BmKzxog7HU2KX6cc2sN5HtvWms9uUJ+ftoAhgCcsG3NrWhCzNIFGlD9O9lXhGrDuq5YUsLlxLguV/z1Lz9jW25oWzFcrKJbzOgqitqtsFgiThVaoxxIfUCa8JHv0D83FE/7qmAC3xxTMlATcfDRK0jEuJxPIGpY5tnHcxCYs4OVazeLUVwOLG1XNmqr2/d9bbXWjiqJrdPkl1RLwbwsuN1uPXGUWA5JHxHfr7ETnn3xt8PbXOPXak3MAJkQ8Eibv9XeRPyZ4thjL+O5VuroPw1r7RdCBHTElsc1QgwVW4vQquOCRUDJmdPj30g21ALU0vDv356hFfgh/4Rff/kH5pcbTioozQRGiHCeTshZ0LSAaHLX0s6hVhcoeCPzTkCjuF60oXjGloFesHexAsOGWvbMiypQKwoRIHxQquMMLTkSn9PRUB18gkP/brz/bcHeas2O6pKE+7phWW4+WtXu1wAFbJ09RN0RINiKv23brAQzz5iXGXJQVNr/G9bTWvN2GNlweTWggqHU4yRx4L2exf8KbK/z27cKoQ960IP+HPq2+D7oQQ/6U+ghnA960HdKD+F80IO+U3oI54Me9J3SQzgf9KDvlB7C+aAHfaf0HxoabB3keOKzAAAAAElFTkSuQmCC\n" - }, - "metadata": { - "needs_background": "light" - } - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAAD3CAYAAADmIkO7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9SaxlSZrn9fvM7Az33jf48yk8IjIicqqoys4q1cCiBE2J3iDEAsECMQhWiB0SrBBCzQIkGnYgBBtWiAUNvQGxQEiAUCNaNXQhqEXRTXVlVmZGRnj48NzfdO+795xjZh+Lz+zc656ZUZVBV1cgPVO43OO9O5xj9o3/7/99R1SVu3W37tZXb7m/6Au4W3frbv30daecd+tufUXXnXLerbv1FV13ynm37tZXdN0p5926W1/Rdaecd+tufUXXnXL+/2yJyG+JyB/9RV/H3frzX3JX57xbd+urue485926W1/RdaecX9ElIj8UkX9bRP6OiFyIyH8hIr2I/BUR+bS85p8XkfXBn0FE/qaIvPfWz29FRMt7viUi/6uIvBKRcxH5r0Tk3l/s3d6tn7bulPOrvf4l4J8AvgV8DPw7h79U1b+hqkeqegS8B/wJ8F+r6tP68/K7/w74b8rbBPgPy+u/A3wA/Lv/IG7mbv186045v9rrP1PVH6vqa+CvAf/iT3uRiDjgrwN/U1X/87d+928BvwT8KwCq+j1V/Z9VdVDVl8B/BPxjf543cbe+3Ap/0Rdwt75w/fjg3z/CvN1PW38NOAb+9cMfisg/CfwbwG+q6rb87B3gPwF+q7zHARd/fy/7bv39WHee86u9Pjj494fA07dfICL/AuZR/1lVnQ5+/ovAfwn8c6p6qOT/AaDAr6jqCfAvY6Hu3fqKrTvl/Gqvf01EviYi94G/CvyNw1+KyK8D/ynwz5QQtf78BPjvgb+qqn/rrc88BtbAlYi8D/ybf543cLe+/LpTzq/2+uvA/4QBPd8H/v23fv9PA2fA3zpAZv9H4DeAXwT+40PUtrzn3yu/vwL+B+C//QdwH3frS6w7EsJXdInID4F/VVX/l7/oa7lbfzHrznPerbv1FV13ynm37tZXdN2FtXfrbn1F153nvFt36yu6vpCE8E/9pYfFrQogqAIqZFUg471HRHAioIrzDnHCmCayZlRBNZf32v/LwvG1X32Po48XDMstmsDtHFntUpSEoIgo4hTnBFWHZiWlhPcBEJxzpKxUz++cQ0Tm/885z/fhvX/jvlJKiAjeN+Rsr1fN+OBIqqjIG5/Vti3TNOKdA1VyzvPvVRURR9b6/SA4RJzdPwnxE41rCNrgEZImpjSCD2h2eKeIJpxzqA/gPakZcKKEXaDbdVx9csmf/MH3yLuJE1mwCI5V6+mDw4nD+0BWwWXFe9s/1YxzHu9apggxB5SEc5mcJ7zPiGQa7/B4FFCE7BwxK+Bo8GhMeC+0fWCKE9thwHtP17ZM40iMkaZpSSqMSUEcwbWoetbbkWFKqDpCCPRdoPdK2waSRsZpYBwTCQje4Ug4BbIAHhc6RBxxiuQ8kZ0yoKwnB/0jju+/y/nlK15dvGKzviFNI20IdIslToTVYsHx0RGLxYImBHLOJisZpJR3U0omE2BnitrXS5EvFVJy3Gx2bG43HJ+sWPYLNGdEFbLiEDwZRbkdtvzgkx/x+vKCMSfECQ/vL3E+IS4jThmGkSAdq8Ux/9sfPv2pdeYvVM56I1U5QRGB4DziAqaTdjPemZDknHEiiJhCiIT9BuRM1sxuN7DMS4JvSRqxD8ooJvDiIAQPlI1KGVWdlcyuCbxzaLnOQ2XJeW847BqKMqc0v3Z/P/LGZ4oINdB35TNTjAQf7Hq0KnNVTHu9iOCdRxViTHjvUFVCCOAUwZE1mYFz9scJ+OBQjahT1GdwCXFKRwsD7C5GfvhH3+PVD1+xTIGT9piF8xy1DcvO0ZhEoWrX610ASVR7lDPFmArOmYFLccI5ilKbwUHA+2D3roo/ME5N1+G8MEw7pjix6BeAY5oiSCA0DRkhi+CDoDicE7bbW7yD1meaIPQtBIl4FK8Rp+C84DuPSjDDqGbUxDtUHVO5txQ61C1xjd2YT46RnvbkHmdty9G9e7x49jkXr17iRQjFWE/jyDiOdg4HKZwXB2rnrqrklOxem4acM5EE5nNIWVAxOfDe04YGzdn+qB2niBRDn2mblof3H7DZbkm7LZozt7cDq+MWcdD2DVNMTOPEMOx+pv59oXI652dBrEsx5TFBNY8jUDyloqKzFxMRNGcQwXkhBBiYGHcTkkBUiPYh2IdmgveIQNaifJrxvnpCUypTMGfXUhTPNicXj7hX4qq0qWx+VcL6td6H4p0TqpmcFUFx4uZ7N6XTN/7U79GcoRgnESGmCJrJybyJc5B0byTECzFH8IJDcSRyUFTsNIIXiMC1cP6j13zy935Mvp44DUuOfMeq6Wi90jjFqYIoDkWcmGfHPA5SzkOzKW+GmAZUlSYIIXhEFI8gTnDF00sRbK92784HcJ6YJsQ5+r4nxUxOCR9aYsqkZGcsvkEzDMNAdpPdn4PlqqF1CnGDB7q2J6uyjRPqPKHpyLQ45xlViTETfEPKkBBWp/c4e+9DHr7/dT78+jc5OT3jarPFdwtO7z/k6Wef8ekPf8DTH/0Jf/t3/nem3Q4REJSUlWEYCCGYAynRj3ghSNgbZUzGqqx7HDklUpHz3TCRNLNcLlAyw26gaRo8rhhH2xM044Ln4cOH7MaRz549ZRgHhiGyOl4SGscUIzErGdhN45dTTthbT/MEzMKe31JY1ATUu+LBckaLMvhincaUUJTtzS3DZmRx2iDFSsaYEOdQMoJZNVVB8BYaijPFkX0EUD0kMCvf3rC42YtWJatKVZXWjI+S84HioW98Rghh/14t3yn2/rIhOHGkHNEs5XPlQOEFR4kivJA141tfvEQmk8hOEOdx6tFbZff6lmf/zzkXn17S5sDKHXHse5bO04jgJOPUQvMgDuco12NeUsmkGA8Mkxm2tnE4sRMTzXjncdR9kOIJSnTkPSKOKdtnOQcpRnKCxgcLNWPCZQvrxXtSzqRxpA8CJZzr+gXBB7wTPB3Be4YhMsQI7YKER5slvl3R9Ecslktyzux2Iw/PHvDovff4+Lvf5aPv/ArN0QPaZkHjGxBLD77/wx/w9NUF7dEphBbvW5IM1GOsShdj3EdYWEhb98d7j5TzzjkTp2mf1ihMKbLd3aJYRKcpIgJpmlCgDWaERS0F88Ej3vPknXe4Wd/w+tK+e4rAmLnd3ZKz4sWxT75+TuU0N20Xv/c4ehgdmBBX61utkFYlEgRBUzZlVgulpl0k7TIaBec9eEVKSABu3pScIXgLd0wnEyLm0VNKBO9nI/F2eJpz3ucX5dpySjhn1yocKrvltinZFbsSEsvB50j5jjY0syeuhielZAoqec5j7TopFlwsPEdxRUEFyCRwgnOBPDqmTebms0tefO85XEUe+J4uNHR4eoReBC+ZrCMceH3vzFCkFInJJFKzGc2U7TrbJjCLpdg5iAg5JXLKiPPFSCXapsXhSFO0lMWLKSgZ7wIaEymVsFQc4gNTingRll0ATbTtgtB14HsILeIbxnHiNiZigBQE1y958M57PPngWzx+7yOevP8hq7NTU/ysrE5OWBwd47qOGBoinpw9owqi8OL8Bb//f/4fvPfB11k1Dc8+/YRu2aPj1nLBIq/1DNNbkVXKCYrDoZx3PWeqUQdijMQpEkKDF0WzmkEr+aZm23QnYsqWAcn0bcu77zxhe7tlM2653exoUyCLRxEQh7ifrYJfqJz7/IpZAVJK5ecyew+l5Dveco2chZxTCansgu3+BU0Qt4lxPbGMC1zwqEuEECyHKYpCyeFqyGQ/dzhnihNCQ4pppmwfGo/5bzGVcGKhsg/+4N7MEFTPCRYdNM48AOUeNZsRsJxu77m99/OhgxkoH4IdkNgJieQCOjjUEAhyyUMFDxLQrOQt7M4Hzv/4nM2nVxzllpO2pw/eFC9lOp9xkgkoOF8UMJMSpElnwXLl0DMZ5z1O7EyK/hpoB2i2aMeJmMfLBrY1jXmucYoWCYmBecEFck7EmBHxuOBpvCdlAR/oFoEYEymNLLolTdMhoUcWJ4SjM6Rd8u7DxyjCLk688977PHznCR9882NOHjwB16IugK/pDCQgOccklvOhijpBsnJx8Yrf+73f5eTkhG//4i+xfv2ak9NTVssjxusrNGWq+8w5M00TcZpmHCHGCHmf+gDEaSreFUtNgKhqEYLAatHjVE22czKP6+ys1TLP+RxM6eH+2RmbzYanz54xjCO3OZE1krKlcCfHiy+nnIdKWi2QCb/OSmI5p5RNqGFhCQ5LCGFhMMSc7aKTEHcJr44sjomJnAqoUcJiAVKacC7sUVCpoarlUCag9p1VOatHO1TYGsrW6/fOkUu+7FyY868K+OSUDUAAfGgOwKb0BopbP7vuDxkkCKK5eEdzn84V7+4ELw6Ps3ufMtvrkdc/vuDV988Ja3jkjlg1Lb2POEkEFxBvXk/IZmDE9iAr5ikVgqMAcQWcalq7Ju8QMYOX1fJyTeYNteTvzjtC8HN4LhJo2oYpJVIGcQ1ZE2M0cW/aBc4FRvG0qxX98Smh78kpEacdbXB0/Snf/MXv8uHH32X14AlH9x/huxXOebIH3wTwjkwgqiOrgDNJSoBKQY7FgFsh4zQjmrldr/nbv/s73Nys+Ud+5R/l5Pgew/qG5XLBomu59o6U8kGCAtM0MU1TMfAOdQ6nbg5rU4xvIbbFa6bMGM1wLboWlzPatjPWUr1DNSi5gBkWNjs0Jx7df8Bms+H84hUxKuARHMMuoas3Kwl/ZuV0riKU+SCn0xmltddYvJ4rHG0OZw4Fqd61IoYIkoU4RCRLESgTYFWZFXQON9h/D1iIoVpCaGEOTfe5cUWJDaR6O/cUsVKQFI9yiOhWQOgwjKccloXFxXqX8KhaSe88KZtHNONiXk2cx3sBBx5DJp06XBbiNnJ7vuX8T16xfnrF0eQ49h2dE9qQaVzGO+z9YuF7VmVIE15AxBuclA1ZrQaoItAidr2h8VaCKEioSEA8pBwxZDHgvJDyRFJHCB1IYIpKwhPVk5IVCXLocaEhNR3d0QlPvvEx73/jFzh59Jij03ukOLK+vuD4eMXDxx9w78ETpF8QxUClVBBdFYgFxKolOs1FzOUgUiv+CLVUySlMuy1/+If/Fz/+9BN+4zd+k0eP38eVHNiAPMULqAgx13zb9iTGSCjllL13K+WUGcW3b84kMkJMmZwyR/2CRpwBcAc4RM524RVryGrRlHeOPEWyZvqu4/HDh2x3W25ut6hIqXAI283w5ZQTnfPq+cJNxwq6hx6UTvaKVD1U0VN7n8gccrkmoJMyDZFwXG6qhG+uWCBX3phzpGk785AllxUqwiZzyFuVaH+tJqB7xdNZUavy1t87Zxmg/XuP8EoFxKSGwWqH6Kzu6r0vlreErgUgahpP1ojzxZN5Ky05hDQkdjc7Xn92yesfXBCu4B49xz6wCA4JGcJEI4YmZhXEWZ1viOY5vRgKmdQMQwU37D4sqrHIXIlTRApglIE4JXJO+OBo25YQGrJGfGjIKsRcSoyhJfiWpj2lOzpjuVox5oiEhnv3H/LdX/11PvhLv45fnaKhRZ0jNA5PJniI2jCWLDdTz0hx+3QOp1pSBUfwe6Bxj1kwA3GCkMaJv/t3/m/+4A/+gG9962O+/o1vE5oOcUJTDGPwnrZpidP2jRRHVZmmaS6xdW1r51/wg7lsWM67Gv6YLHxdLZfkFJGcTblU59KgiJTSmN8j+3mvpOKEs3unDNPE+PQpu9HydcEz7uYW3J9POXOayFSk1s3EAgDxFleW9NCOQRWtSmGIxAzIJOy9rWvpugUpJlNO7XDS4ryicbJQc1auUhYAYo4EF4gpgarVQeWNKN8scFEWy31LaKkye/uquN57u5+ci+IxH5yFqKZwPjhinBAnqHdoMv8fvMO5BERSHhF6CgSDukzbebP2HiYPbnKkG2V4MXL+J8/ZvlxzQsvKN/RO6LzQBIc6IapB8r7sYxwTYF5NRYhYXhTAQBknJWIRRDJZEynpnGs7hJQjMe9AHKHraPsV4lqSb3A+kJxjjIrzHaFfcfboCR9++2Meff3b3HvnfRarI6aYaNqG1dExvu3JLpT8txozRcWTqvXT6v20ComFfFJPrACGHNSWq0IJppSq+KykaeD7f++P+N3f+V3uPXzCd375N1gcnZrxSkoTGnxowXlC0+LczvJs2QObMU1MySPREUKDuCKvxTQ7cYYZ5IgmJcVEGiJ93xGCJ8YRL1YC0er5D4oEqnkGlswZlJsAgngeP3jAMIw8ff6cqWA34oWftb5QOUVkj3plJVWvo/uCKyWcIJubtpuz3XVirA/EXu88dE1DF1pudteMtwNL7YsCQ3QRTZZeo+BDudHqGWcF2pd1BFeYQ76ExtV76wGJorx2Dj/s+0hK1oQv9a4aqpbbMfkqwInV/Bw57w1CymaZnAtGIpCEBMudHIIkh5fAtE1sXt9y9ckl60+v8TeJU1mwdI7eKa1XgjOvgrpZQGNJBbwv55AiKuaxvVjZygyAGaI4TohP5qV9i0pDUiFqJuFpu57Q9LhuSbs6ZXX6gKPTB6zOzgjLFaqObnHMg3ee8Pj9Dzl9+AhtFqgLiPOIE8vVxRHNMh6oV5VQyxVVsPASsfOcT1HmqMhQUreP0EroqmL5e0YN6Z8mPvvkR/z2b/82iuOXf/lXOT45K+lJIicQ50GFlBVxlkPHlGpAVMA4S8+SS4zjhDYyp0tz6UWkpAyJcRzRnOjblhTj/h4OMIc3DHr9oHJ/qvt6OQht0/LuO4/ZbDa8vrpCi/78rPWnAkKVTFAvfmZTqCmiGj3ijeK+E7uJCn5kzQQn+CYQgiOlkSkPjJuApBPEQ57tkR245Y5ipQDcvIn7EPVNBtAsGzW3dQf1TF8V9Cdpfoehb1VOpYbQzICJSCZ4y5cpNVekXINTREbEY2G7eISAJthcDNw+3/DikxeMr3csU8Oxb1m5QO8Le8bV3MroXwIkcUQxkMepsWqakFFNOBTvGnwIpBJ6KYILLcKEhA5tVqSwRF1LvzpmsVzRCbjQsDx7wHvf+DYffPtjju8/oDs6wfe9XbcLuNCQxXJEStlCCsGh7nUuyaHOewfVbGmRUS1iI0VZ5SCXrFGOStpjEqpQym5aIp0UE6/Pz/nd3/s9nj1/wT/8W3+F997/Gt4HZFZy26cpJqaYcN7ojN4lkqgZ7aKlKSWiREQ84jxBzLx4EVLKRQ6FMSaGaSqKHtA44Q9cRQ2VD7GJfJC3HobUMyIswmKx4MmTd9gOA7e77Vwp+GnrT1XOCprUD5FyMxUIsiuYT6FsFIS2ofEeSyXNjDZtY5s4TTjJDNdbdExIa4GFOLH6WrIsxcGc14lATrV0sWcDHeaSh/nk4aZYTe/AAx+8tqLDphtWfkDcjN6GYPmjiGFseG+os695q4BkJGT7nuxwkydv4er5mtc/fsX09Jomwb2woPeBhTh6741i5xy5cjhLkOUKYJBL/mP7AqGSH6Qli2ckQNuCa2jajpgyTetx7YLTh1/j9N0POHv3I+6/9z5dv6CJmeXRMcuz+zSrY7TtiCKoHFA0xZERUi6hpWnTrHB7FKH8Xqq6FaWb/aMU9DLPIW5VQKcFl8DKbarJlCcrMmWmODHGke12x2a94Xt//H3++Hvf45vf+gW+/Qsf07YdtRJQy0EVWBpHQ5t9aGiazJRSSVEqFhJx4nE+zeSE4EMBzErUBQwpkVU5PlogBZn1JSqsbLgahR1WMt6mjM46U2VVhLN79xjHkR99+im74UsCQt77Eg7YmVjNzBVQqNCg6g1pLmwToQmeLpSit5bamq+1toiQCBnyZoJBkSMMBXOQs4WqmgFvypNyDewL+b4gyLXcMQvLbK0qyFMsfRGuQ5bQ/j1VkCwcqkpvXtaMRgjmKR0elWwEZsk4V2piZJAGT4CtEC8mLn58xfmPX6PrifvSsWgaOu9pgEAmOLPRSSwrE6pXL/uaJwtbvQE1+MCERSOT6+iPTzk+fcDy3hn9yRlHx2fc7nYcn95jcXKPr3/rlzh9/C5+cUTyHh8CoQShGUd2zjyjEyOBq6UrvuaFRQ+zlDBTq1+0ZWTLCtZgBgoMa8D2OxcB1yIHVTkrIytrZJoGdsMt2+2GYbtjc3nNxeUF5+cvefHyBefnF1xfr/nwo2/zq7/2G5ycnoG4OdGRWv4qdcnQ9sRpIDQteUoG0PhsxiaXyoNmJCVCKbtJNrKGeI/zjhQTY0ogjq7tyCkR3jD+so8oeZP2dyiHb8tmSsmiTJGC3u74/PPPf6b+/RnqnILVyXwBh4wYIIdoJoVF413J/Wr9s5CCC2qkxfOJKg2OYRuJm4nmQTuTwUWkhFCFipZ13oicapfKPhx9u+Z4+O/DDayvffs15Q7n3xtiV8IXLdSu4kVTUWDyRBMMwJEUjQwwLkibxPWnl9z8+IrxxZaTHFi6FQvv6EIgBMFh9685lVsuVn8mC5gCJWkhNLj+iHZ5Sn90j3GKdN2S9vQB7339Wzz+4ANOH73D4viM5eqIccr4xZLQ9ojzqDiSc1a6KH8qQGaVNpCSlqWSbAs6G5wasu5R9+LdLd5HCoJdu5RKrMq+LGVE/5Qi0xS5XW8YdluG7Y5xGtnc3nB1ecHri3NevnzB+vqG64tL1utrdrtbpphIWTg+vc9H3/gG77z3NZxv7CrnY6+Kn/E+cP/BI55eX9KUVMh5B4VWOctVttwzFpaZaxr2VL3EECeGcWLVLwppoWAXmfn+qry8rYiHPzvsjKp7V8Hg4D1PHj1i2G5/pub9mRhCc85Zw0WRwq2pX5hxzup4KqWTBCme1ISuombV4obsmYZEvI202iEBnBrgopWgU6B3p2+GCVqL6W95wsqDBaPOzfcwh9x7hZ3vDTtYKfmj/U7mcNoYRiUyE3CNIyRP1wRcioQsDNcj6xdrrp5dcfPZBf0gPJAFy7ahQfCNs+6LUGp6VE9s0QKuAd+AeJwPtG3L4vQRZ08+4OjhE04evcvJ2WOmBP1ixdGDxxydPcCvFmQfyOJQ8TQ4ojjGYm6sxFWFJ2OYrxHuAXwRFBXIrsI2QCFRgBqxu3S2yMHvbF8NJMnVW6ZETolxGhiGHZv1mt1ux/X1NVeXlzx7+jlXV1fcbm7Y7nZsNmu221umcWCK0wy+SQl3LYbynByvePjoIW3Xk7Hz4cCYmIw6fNNw7/4DPvvB9+f0p9L1co5I6ZoyTvYBnzpnGh9QB8M0sB0GpinRnXTknAjluxQtobz8RCj7BhkFfkKBaykO8aYDqqwWC7723s8aRfxn8pwGW+p8cvWLs1lPqWBBtbilw2LO1osjwpRaBRzeuk5SYryd6LPO4JLCG/ntfPi5+rd9KHGobIf/f4icVcZQDXPr586vzZWQcNCPKSU09lW41ZBjp4gH7wJOG/IWbl7f8uIHr7j5bINuE0c0HIfWvGWD0e9cMIPlBQik7MjiaZZHHN27z+L0jOXpfXzb433g+OSER1/7Bo8+/CbdyRm+X+FDa6iy2HuTQHRCcvOtmuJJEcoZMgQRY1R5gVq4ECmgSzk3X3PeIkiaElmz5de1xkxGFDRbrXQatkxxIsaRcRg4Pz/n+uqSq8sLNrdrXp2/YrNes17fsN3csr01wre42ozA7IV9TUnIFF9u+a94+q6l6zoUd6CY+zUDfc44q03bobs0R11zunBQy3bOI3MlIZe6vcnOMI4EbyR98jSTC1JR+Gq43+BvF3l/m7yy956ZWl7RkrqgcHx0/DM174tLKYWFcyjUTvYqYigmc8wfvCvIaKFOyd7ClUS1RiGGwKpntx44SWb5tDQcW6NwfVupRM3I4Jse3V4P3jezkuZcOG28Gc7U9+zRRZ0L9LaxFRap9thcSwh26NEZcizJsbsZef3JBZc/vmD78pajKCx9Tx8CfQiEoEgrSGiQcELb9XSLBVkdqoHj04c8/vAXePDhL3D84BHLew/wTYd4R9t2hOUSQkdyFpoKYnXNXBnB7JFSjBUjOZWGXwuYVQ+RdsXliukUbFxzAWIypEwaJ6ZhICfzXFOMDNNASkZtG6eBNA0Muy3X11dcXbxms1kzjSMpTTx9+pSr6yuG3YBqNP6qJft4xFhSUr5TC2JbCQlVoEvo7ZwvNd2amghJi0MoIIywR1edM1LFdrejXyzZ7G7xweOyWBTnhJTewhuKrGitxataO1eMHB+f7MnvVRGrUCZmkkFNf97QmwNQqL6/yq2V/fYdLz8tP63rC5UzYUCB1oJ4BQBECvUKKJZOygWQixJ5d6AUVdRroYACMAnDZkBvBVk2WNdJxrgsvqCWJlG5vHMfRphHkEJGt37EEhMTi1UO1DqaHNQxpZDSLcqQ0lVA+U6HkMiic5+jlXU8mhO6VdafX3P5ows2zzbIFk5kxbKBrmlZLJbWO9h4Fqslj97/iPsfftfAm+MjKIT307MHHD14l3DyEAnBuhNKpGB75aA0rLt6uGg9EFNIxFK9ilZKRtTSibn1rYRVKWcy1rpkPajWGhXjBMlav9I0sV1vmHY7xmHH1eUl569fcXl1wXq9Zru7ZRhv2e62ppS7W6v/lT0ap4mYU0HHD8AipKTxBX0Gan08zxJhKZGh1Q0idubeeZqmKVhAtiS5hrLF4Gvhy3ZN4Ha9JrQdSZW+8YTkydmI67UBI+dMihNikkJoPQklZmUYE148i8ajaUTJRJRS4DW5LwjzPmXYp1c1nD5ko9XyXgU0980jNX37MsqpJSzTw5zDQBHzzAbYQOmfTPsezpLksadfFSNaFDhnYy8OtwNxHfGnjXnPPJloumYWMGFP0N57vhKGkUC9oXDJYlIhUCFIKV8ukg8U2OG0La9VVMp1C4gkQ2erAcHKI5I98cXEq09fcfPZGr3K9BzRNwtOTu9x9uAdTu7d4+GjxzRtj2tazh485t2Pvsnq3Y9oup7QtGVfSv+jeJK4eXMs9y0BhwKarZFaa4N7EQRhLjshGJorRmzXbH2kNorFPjPlZEqUJjRFNCW8KwsAFTsAACAASURBVFMCtltub2+5ubnm8vVrXr98yfXlJevra64vr7i5ueJ2u2E3DiQ1rqiWiCOIdSKJ80wihXNZjHOuRlgODEsNtWtpq8YoJrxuPtsyskYL4Xy5pOu6gsxWllop6UmhQIjj5uqKq8tLGikluDJKxydDp7MzUBGMS+tSJIn1a0oOTDEzjRNd0+LIaIrF2BRSCc5sIz+ZW+57gvcGoCrmIQeg/uzQyXwp5awhI14KZWbfcyKH3f3s6XGV9T+TmtFZsWdOYorkmMlOSVNmtxloUw+VXeP3BsE5gaRvfPZsPFKck20pYZyTULxFpIxbmD0m5EKq90A752NIQrBeT+8tp3DiyBGctsQdnH9+weYHO/y44J2jd5Hes1yc8uDRY37pl3+FsyffZHVywurohKbtwHv6xYqm7cjBUbVLLUm38hRquZZYrpWpcadd6z4Eq4hWTVVcEWtFS8NBTkpM0aIAyUzDSAiGDeSUICXy7S23NzdcX11xfXXJ+cuX3FxdcXl1ycXVJVeXl2zWa4ZhZ43E2ebd4MwYmPUCSg6XSn3WqU2m2EMNFlrPwjenicreiZTop96UyNwqKKVbpPKB92BgiQjqeVPDdLueaYyMux0xRfquZ3c74XzA+1T6WhOSUom0TS5jShCNbDBGayxfdh06G7d6PhaGpmSW8xCIrDJYc+j692F4+6eFvj+3cvqDEQ7qCoigewW1Dy85plLGQPgCsPgDYSp5XNmMVEaXIIIkYVwPSBJcsPAoOWsANpzJDrR2itSbsdAAUDcfrBRvbdfsC1PHlakM9vlVSISJ6rScaEFTA056s9zZQXTcrjOXz9c8PP02v/aXf5EnD7/G/XuPmKLSLFas7p1w9ugxoT1CfLBGbWfDspIK2RoZLCqou1lycas4pnpaZY/yLAjIXlcFmSmUKVPuKxKniZQmtDBjyDa8axp2XK6vuL684OLinPXlFZdPn3F9ecn11RU3N9esr28YCqgz5WQlMoE6ycFCyaIB6kD9rIQmlK6gp4XEfpDyOK3TJg5CdTXur2EB7g3BrKCO3XtphC/EFCt9VHSeYiQqU8f2xSH0iyXBOTaXVxw/fsT1DSyagA+JxvpqiDGXwv3eu6WcGFNkGCer0bdNSa2Y9xTZ95QK+7TuELWtoWv9eVW+N4Eh9j/n/4NyupqjzcX5vXIWGTcBygamOOdnwUPqhRerkksPItl4lwXkkOwY1iMaISw8KU3gjA3kKV4Y++zDcGA/U8jPCqckEEPXXAaR1gRnrqu44n2TgU94nAt43+Ak0DUrlovHHB8/pO+OmbagQ2D1nXt89N63OT57j6ZZ0Lat8Yy9NzK8c/M9qt/TECmHKFr4xyJUkr05CUHV7fPDQgvUmZCvcwtSTolYRo9UPo/mxLjbMexuWV9d8er8JZevXvH6/CWbmyuuL1+zvr7kdnPDsN0w3e7sM1MsQ9NqLdK+P4iYg1dB6p9s4JLDGs5FBacCKhYJFd0Tqfcpdm4FLHRuL3y5jjSRA69K9TKWKllt25W0xJezTqUUwkFkYf/WGuoiNF3Psu+4GXclXQlkDEBy3iOxUECL8qQYySFYu6MObLdbTlbHhELMsPlXtk97juze2VSpm6sTWruYDu85z3+/4S2rk/uygFDNFSUr+9y3fPk+FzZPKQVihmKhpjknzXPxktnqZYWk1jkxrifiLhKOmkJYUGOuiM28EffTrZCU/NI520RxFtI552y8JWn2plbvkkIa72n8guXylDasEDr6/oTHD9/l7Ox9VsszmmaJaINPPQt/RN+sGBtPltoAULu9TY5cCfM1lfzW1RCsWvm0B7IKCJKLkFeEeZpGhsEK9DlFMyQl9PPFA6UUybsNL1885/L1a549fcrzz5/y/NlTrl9fkLY7xmFg3N2ieUI0AQaA4BxNaKyvFOtDdAXCrSCOaZTO124KZ21ppoiW6wqKzuUp85qu2hg9VDzms2Ie/vYmWXxuOXRWDsrYFAwjnmRiTnNrlpXj9rGy1NKKCm3X0gZHkEgcR0K3IA5ro92l/XXMoFDKqE4EEQOzpommKcCfViQ2z7luodTMFYt9Tb2CPzI3W9dV+6AroWVWxi9KNsv6YuXMJSfLViyv8K8/+HDNNe4p1D7sxmPpkdtviC8bmTGatr1HkiPtEnEXEVq8c4SmzKYtcbE5mzcT8DompOaRFiKE+fdOPJLtc7xr8D4QfMvx0SmPHnyDB6cfcXr6iL47wdHRNkd07YrQtDZsywWEgESP14as3upxYiCUGS498CK+GJYi7Fp5pYr6NO9drXelZCM/hnFiGifiODHstozjUGiOyjSNaIoMt7dcvn7F7fqGl88/5+b1M169fM7NzQ3bzYZxN7C5uSHHSCceNJPSRHBC1za2R2REGrzk0ldrGEIVJKfVEtukCEp04pzgvCIFNMtMkBNOgkUfYiUPzcn2rI5EJSDO2g3NgqkpujjLWWH2oJUbW/xQSZUEyvhMKF63dPtofZ/KnHs7DJxqg9D5zG63pj9+wvr2Gt+4NxQpV6wCZnrhdtzRh2B7U8fUWFG3GAaLBKR2sfyUtScc7PPROiP57TnKNSd9e6by4frisDZpTZgMGXTFTc/Wal8cUZRpsnBRqSySGuqWAcs5kyWhvvQaqiO4hmkaGXcjjtU++XeKJp1renZAeWYBzaitSza9IAQ0e8gBJwv69oSz43d5cP8RZ2ePaEKPcw2nJw9YLR7SNfcIvsO7puRSJljWxrO3ahqKAdI8C0pNxBzVQwi5CnvptTRwx4CIlDI5RlKcbDBW2bucE9M4stvecnuzZrfZsL654fzFC54+e8blxWuuX79iu74mbm/J00Acd+S4ISfLNx2O4Dx9iiAQnBlGJ8YrDb7gAaEhzMOkLP/SMohMxBhMruSLTQizh7dowyYuJOrcXUfT2ngH5wXf9kw5M8RoIzRpDHsohWMBayig6Bw1py05rOxzQJOZppQ7FBdq95HW/+yMtOTwaoBVRq3vViPBZdbrG04efFRy4r0n886TKONIckaCZ5hGht2O43tngJVvyKlwg/PsmDK5dCUxy98hGQHd0woPGWyHynv49yG4+XMrp3f7LxMFLYCBhWSVFGCCHGMiOwsF6mbPaFa28R+uKGvGCro269WaiYdtnSjnmXI8SK0ha6ISBm28Ron4pdQrRYCG4JecHL3Lw/tf5/0nH/Pk/scs+mNTTGmBgJNgnMsZ1tf9F+lhf50pm6oZFCcOtLXfiBHCc0Wtc0KZLJfLEdVEzlNh0ihOGkOcU2S3u2W72fD61Stevvyc588/5fXLc64vLri9uWG83XJ9dcWryyvGYcBppHNw1HqCqE3Ak4nWOVxTgTBIFG8nSvCC9x0uBCt1iFjtNRXASTO57Kcr+Vhomrl7x3tHE4IBI5JQbAqfAXmOtu/ou85YSllpugZ1niHBxfWaMU4oLVIxA9HZW1iIbzXwOiWghoTijDAi6hknK51ltcaHGGORqQoy7qsANv3RkVLk/OVzxt2WKSc0R5q2J8ddhUfqyR4sm2vrg9VTzW7WETvMQKZCmeJYqxN75UyV4F/a6+ZPnvGZfYfUT2u++Fnri+ucsq8t7ms4pp25llCc9cHZXBQpEE0teWgJSwtnpSTNLjtUrM9zSpmojuFmIA4TNFgFJAnFQJYGZoXyPeRsoQ3VAhn/ZNmf8Q/92j/Oew9/mUV4QOs7EG9/qKUMiqIXGLVA86DGCxYrqks5RQudKlMqll23SQUpjqYYKSJ5ZBq2ULpJAKYpcnNzw83VFS+fPeP8xQvOnz/j1Yvn3FxecnX1mnHY4AqJ3Cw1bLYD29sdMSV672m6htY5gku0jccTCN6mMaAwjvaYgqbtSNiMpRBM4agRjMTCaXBlU50NAPfOHrXQGUk8Jutb7RpY9gIukJLlpJpsTMqi72i7FvqOqFoIFI4kgeWi48WrS7ZpLJ7boc5bx79YvO/o5hEuoCW6Frw0hckTEWddQPUxEWOcypwfdxAAmwZF9YSstF6I40BOmT5kZHtBe/SQ61ef0xV0NKsagCcZdZ6UIsNux9HxMeRMSmb8caVdkjCnJKol4j1oCsiqZfC0cXTNV+wVz/n9xI59++P+92/PW/4zK2emsH4KGlWnlGVV64yf0ScLjZjRXSkQd4XN7RDynEgbfD1zgVwgbiIyWkeIlvKCZkF8gNygca9ENjenDN3SnZkD6enae7zz4OscLR/jdVm6JmQOw2v/Yck2ym3tick2d3Rm3RcFVXI2GlrOkayJHGNR0IQ9zSAjmrh69ZJxu+b68oJPPvmEH3/2OS9fnrO5es3N1SW7zYY8jXi1oVwpDqQ40AZHG4KN4BQPUYgNJO/pRGhFWbQNwTuWi8bKwbajTOOE5EjXmDfTEro6H8oITttroQJqNvhLEZjrutA2QtO3ZmAFWi/0XQNOGMcCADpnhAjNNM7R9gtobN7tNGWk6Vgsj+jbBZ+eXzBEA+dcaAqxN9vkf98X5NXC65wUxFNnC4PgQwNZCaFnuVwRQvNGlFMC3VmeFKVrGkLTkLwNCx/WNxx/+E1ev3xKK3syhBOxCX9qdL0UE22wR1GkMtpGCgd25ijPYfVPDlSv4XgFtebaLSV0lfL4Bw4jzTh73y+lnFYIdPOG2DhGQ1E1F0+jh+Ri857JMGIDCJyU8ZVF+NUaXBVBfPWwmXSdiWsIp8aeEZ/RJAar49GUcK61YVoFkjcEOIK2iDtm1b9D40/w0iHsZ9vUsKnOlJkJnWVzkYybGUdmAWOM5PJoBXtgDXiSgRyqxGlkN2yN4vbyJTeXl3z2yQ959umnXF6cs7lZM46RcRhJwy06TXhReu9pvSc4e2DQhBIksWwbujag4ul8T98IMSYYJ4JTVo2jXzT0XX2sgDCNA5IzbtERQs+i68DnIuSVpO0Q11TxstA0mfF0Htqm9Kg2jq4NdH034wl1Xq8PSppiAfwy6oxBlVNkuehou45xTGzHxGa7I4jytcePefbqCnzANW2hc1rzuhDsc9TULAvYpEchqoGHWcGLJ7QLum6Fc9YQXeGTOX+rIQ6wWCzou57JGYk9TjucTjRtIMfiZapsltLNrj5WYR7BqgXpP2gWP5CW+tyevU7keZqjlFzUOUELcaamZOL2YXC9/j8tvP1TlNNczRyvixAab88Dqdk5B7nljFaVW3G2+VUrklo3gxnh+sgCixfSbSLdJjppUEmoL6WIVGqXwYFOhjgGR4y7En4GPCuePP423/n4N1l09+225tykXENRTBMKKy9UIrMU7xhTpA4MtqM0355jZBi2rC8ueHX+ks+fPePly+dcXlxws15zu1mTx4E07MjTRBpHe/rWFBFVFi4Tek/bBBonuJxLh4gn+xbvYLFoaFp71kjnA8cLmyiu0Wbo9K2jbwKLviU0DU3TME4tawGRRQkqEl4cXdug2cgeqokmmBdVJ4zjhBNPnIyj2hSqovOO4LAnlNUatBhdzUVH1IQLjU1yDwHX2NhUydnC8pzYXF1wtRlo2iXHD49xjx/y8urWjG2wkNUXIojqfuxk2zQ4Zw/3caEpNUWPDx2u6en6I3tmSzWnB3mdFBkVlNC2hQQCaYpsx2uuL59zenrMxcs1rvCOU8kFDayL9P3KyP7OlbEmWD3X2z7kuH8AltZ2OQ4N/z6frXkpUsomhVWVyTPzqTKh3uAM/LzKmdTIACI2cpDi+ZT6zI03Uau65oFiWicFWH5pVsQepDM/NqE0b2qEcTey1K7Gk6SUaJy3VgzKI/J0JGMdLCIeyUua5j6/+t2/zAfvfpcgK/Oa823LjBgK9ryPGHeGpBYAR1T3UwRVrah/c83rV+dcvHrB50+f8vr1OdvLa6Ypsttt7ZF0KVqemBMaBzROpGkiDgNpmnAKXePssXd9y6rvcKpMgxXJvToacfYkrq6haY17O0XbN00JjZnbdWTRe5rO0zae0Hi6LiAS2QUxbzFGxsHoe6Lm4Z2DYZgQAl3bkVCmwVKGFAc0Z4K0hLah73qa1ts+U5rrSy7oxEZJtp151gyGoqJoTkxb2w+viqQRlxuII2dHJ+wmZcRD086N+EIm58g47qyuO4yGGIeWplvhXUMIvXXphA7nG1LSwmB6Mzycw06pT3krtfU0EQfl+tVz3v/omzyPmc55mhBAIWlmnG7LJ5glrwSCXP2JMo+Kcd5qvfkAoa0dU76M7BGBUGYOzRxcKHVZDlhOdZJlnav7JZRz7lh2hWRWQSG3b0eqz7JEIOfybE0stApNY095mqYC1wcqZ1RF5jAZcURRtkPmaArgehrxVlPT1lr7Sv0sJ8WFhlDahtvmhLPTj3hw+hFBjlC1kZQqpS+w9M5p4ZjutjeMw4am9Gqmydqdrq+vePb0KZ999hnnL1+wvr5iHHaM4w5X3uujM8JBTrTZCOU5J1IcyeOOcRzIMZKnEZ3s4T+N7zk97Tk5PqJvGsZhy+DsMQu9FxbB20S9IHR9b4+ZSEoaBm6urhjTQBClDVYmaQP0fYOSSdNg/Zs5kqaBOIx47xnyREw7nBOGYSDutngSUTPjLpJiJk5Ww9ylREhK1y+thMCI5kjOjhidZQ2q+KbsV55ou97OIk6kgTKxQDlatIgcMyXFxR2tO2LZB9LkTJmdzZTyAje3O26urohxKkILy9Up3fKErl0QQg+uQ0KLEGxMZR0rMmMdtfumREClPjuOIx7lZNUTdceya8E39vg+CiiUYDsMhMZy/eD2tESrS1Z5ZmapGaJsKVbKFpaFg+uhXMlha2WmoPsZqyzAGx73i9afEtaW7sBK2rYrZw4ToXBgCwzum4KgZrMwobUidd4Zn6Ygv6lYpCwK5XmLoyTWu4bH+SHHTYfkhpN7wmJ1zKp7yHJxxPHxMWRYLY/o+wXO2QDh5eI+x6snkBv2W5ILsFRy3WyPClhfX3D+4ilXFy95df6Si9evSWliHAc267W1UJVwR3OiES3eSKE8+MbliKYJP43oNODjREPGeyHiGZKjXS04OV5xerLi7GxVnk414SWwaFeE4Fg0DX0TyCTGNNF0LW3bk6bM1XbD9foKyULftYbMlr31wfJ472DZd7Rtx7TbMY07QtcTxDOMOyQIbXAIkWnYWsPwbmQclZggZaVtO1r1bG5HVquO4DzX11dsNjtSslm5Xd9Zs3ZoC1hiUc00jGicyDHSth2rRWfPW+kWRpnrHLk5YrjakQpX1yEMu1suLy+I48j86Dz8/CQw3zSGL4QOaTp7JMZbSvDm0hmAiWVIW+sciYzXCU0Dp6f3GdYXVnd3wnYaSaosu0Wp60oB/6xOLAd0O1dLNgV/SbXJuobUxWtT5E01FUdkTXG1H1W1ssb2uewhLfDnVM7iHatSFrev8xdh3rV0lFePmMSeMXE7FHBCOnAeFxp8aOgWCxarJYvVitXxKfcfPmB1esLROyd87eOvsTo+ZtEc40IgdA2ds5zDuQZNCjh73BqKMIJ6PD1ZC5dTLKwZx4Gb6xsuLy+5ub7i8vKc588+4+LVc/K0m0kBlPBM1ZqVY4rzsy8tLyhcT5fRGEEndNrANNKRaPtA2yzYDhOX6zVHqyMePXrAw/undMXjjbuNMVjaFhGlbRq6rqVpPEkykkZiyuzSRM7KqJlJlcZ5+tWSxaIjJqulmrc3tHi56GhCyxWZ3XbDom1ZLFY4N9pwbe9Re0yzTTZ0NpQ6xcQwZmJ27CbHbrqmcZmz04BOkWGzYbuNONdwcnpMuwz4NhEaIU6OaaqW38CpWPZytVoiLtC1gdgIuySsFh3XQxHmnFmv1zig6zqmyR7XJ2UAds42BMv4sDa0OjQ2BnT2DT9NVBG8D7RNR9s0SB5xmvGSuL2+4ez+Yz67ek0WayzYTRN939O0DcGXOKwQJep0g7fJ61oIOWkGgd4OrQ/MRZEfsOn8Wfc85DqsspiVL6ecij3yrj4OoMLQqnVQMAWFMjaIbxpC2+EXS45P7/Hw4WPuP37M8ck9lqtjjk7ucXRyyvHpPVbHR7SLJb5tEV+euNXYAGSXGzQ61EEOCdUybDo7yGX6X5ZigWxXkiTGYWCzvuHq+jW74dZKHmUHBKUNHs3W1yiaCr9UC/XMQNxsxc0SKVkjb5piQZwjyESa1niJ3LvXs2wcTgWVnjjdcHJ0zINHj3jy7jssFgEdt6TbG1LKrPoF3pW2R1FCE2iWPZNGtkNiSJMBNQkIgePTM4I4lqsVfReYRiHrRFbz0ou+K4KQWC562rZhGkZyjBytlmXKA0xjss/NyrJrEVVubzc26TAJm+0tbjsS3Ejnlyy7lrToGW+vGbdbhtbTL47I08T2do2PCR96vDiGcYRSGxyGHeIDmZHhdmJx9gjnGlarBdtseeU4jsZscm6eqrgfIWnyFEIglGdw2jNSm4Nw9ifLD5VBFEKg6wtRpHq2OHL+/DmPvvWuVRIKV3dMkZOjJY1InV4yg551zWT1N5g9NYQ2ZXa+tK7pPEbAcsnSUJA0l8JgmB1dRWnN8P9s9fxC5RzaFd/59V/n3uk9fu/3f5+cldB3LBZLjpb3ODm9x+m9Mx48esTDR4+5f/8+q5NTFqenLFcrmtZ4qnVWSxnMX0ZkaCGRlW0Re9RBeeQP+GJV1M+oa+VlV07oOA3sbm/njd3ttmhOLPue5aIvReXMMOzYbjcgao99EPMjQRy4XDBZRV3AJV/GUSY0TziNNG4qHvWa/5e1N2dyLMvy/H53fQsAXyIis7KqptnsIRXaCKM1JZpRHmkUqlT4mcdspDG2dVV1VWYs7ljeclcK5z44PJbMrGzCLMI9APhzBHDPvWf5L7UEDg89gx+bP4eh63ekIkN57zsOux373qJrFIIy0qUcB0M/dFQMEZELpUbyfMGmhZ5MJKNRdAaGXU/feYZxkIVrM7UYauMduo0InyND73jz5kAOF7RZ6Ps9RlsslnlZOJ3OXM4LykqTxVRNCie0WvC1kmeYPzrWwXL/7pGOxKBmtAmQFsJUKcXh+5GUFuzgKBqmOZBjxFmHn1YRuY4J6xzdIbHbZVRZyb1iCoW1VrJx5LRiq+gXJ60oOFC2uQS0xo3pML6TE7XZcGyNvWsQtU67UdLFUdZjnPAxU6mElIg848sF1/VMGZ6eT3S60jst8iw5Yqwj5Zfur4bWfKptutA6rUqhnRUYi9byvNZ/0WqzEpG1nVrHHBr1DH1FFAFXcP9vCs7/87/8V/75f/9nHt685X/75/9D0tDdjt3ujqEfcb7Deo9xrrWBaE0kQU4kXjpV19nQ9mJ+pn4ovPhutgpbPoS6KaPLf855i7V7lnlGAaPuWddVaqGSpXOaSuusNnBB3YAVDYKF1MLyu7Z8o14tEVQKGCKDVbhhZL9/w34YuJzOoAzDeGDYPxCSYtjvRS2QhC6BmhZIEe80nRsQb5XIeLcHN7CGlecPT4TLEecU4pAlbBHlFBgR4a5hZZomCQLj8M5jTE9NiXkWqRDjPAfX4UbHOAz0/QhJc3mamD9OLB8vpDWDV+AVHsvee7SRtNwqy/3dgZ3viFMgh4wuis4YrDaiDhIrupPFmGOgqtaVLIoYMk+fntntB6w17A93WKMoOVBCxtWO0Y9cTs3v1BhMLY0eKJulaY2ZbeErI2wn+R0CO7yWWbczwjabtM5hrSelSkmZWCqpCshinZ453N/xp7+tzCGx7zymjTK0Ec5v3rxOtGqgATm5tzTXttr0duW2Sg/BH2xSKi+c522tSUPyBaxgtMGYn68qf/bR/+v//n9Ejt453v3D/8KVLdBGDqW9uLWt6w2XqutLD01WONefexWGv6JjtQXx9oFcZ671BfyutRaRqRSvQ+Kccivcm1LA9euLSp9cW8t5ruQ/UbRIg+iUqXGmLCd2g+XhMDDuRnbjQN919F3PZQrcPb7F+hGfCrOaCGFtM8xISQslBrquwzqL0olcI77XVKO4zDPzcqSmCW9dE5woUBTaWrx1lFDI84qdM2ZO1BSINogcZsrEaZausU8oCv3Y4Y0jnAPPn44cP56ooWIKdGjWNVKzsFX67kDVEec1/eiaOWximRbCtFCCaAIJAUFTdWW5zCiXsaXivMZqTVaKFDOpZKwzWDtQcsQZwfqmZeI8nfDDG0xaMCU1Zoq/6vsIOb4QloVpOrE3A9721BLJeRvY33Aqb4KzIsFrtIxqUk7it0lDGmnN8fjE/e//o7B+tGEYekwtVFXkvbwO568rTAJOv8iwfvF7N0Oddv9WU264cxqQAaWbcsiX6/038zmLH1EoYhtIb2K+UjM1ndMGJNg0dyRHf4nHm2njv+P2Iu71kvcjY4uG5tla7TLeeCEob8pxOQmLQ+asDe8oENnr9SlZJGRLplzOjHVF2USvM/txYOgth7FHm5aC+cJ490CIGZUynbe4tkuHMDGdPxLniTdv3olIlUXgbqoQ80IIF5xNKFvRZcUahzUC5LbOogoyCnm64FeYP12oseC7kRAjOQguVGuN8plM4fg0c9aGsGZSKLgiJrFaa1wHS85cQiYvYLAY32FqwVUBR1AVaQqUNWGroUQIayIthWwnos74scN2HeP+gb4fZEifcutMSloqHeILftxx3zuOT2fO539jHO45l8SSK0lBVWLdp2qFmlnniafyAei4M07giDW3hl19RVqmrQTVZgRKG2qVhk1tUirKSG07Xy7clYzRmt1uj3MVlZK85mYQhdokTLJYVjZlhs/9Wm9v13UJjTvL1eelAqlkKBlnuyYYsAXkvxOEUFvXrEWdvA3XI/tGwkRtnBEk/Xz10m/fxJts9decmu16bC3o7a6Wx6eUCCGwrivUxmzfTsvbkxKB5NUsYk2b/IpIsrUhFOIVWUnMxyfSp7/y7nHH45s9xhf2B8/9wyNGdywxY51n13upoxuQonMWHJAMRRlqb0mLzOaM69Bek1QhpLbLloythcFb+jZSOl/OkDTMiXWKxPNCfJpFh3UtQgaoe+/JlwAAIABJREFUCd38TXUA6w06yUeUYiLWhKoGW4WsbIxiGDtsr1AxoWxhCollWnHFo6oikshzphZFCpkcqzB4osIWadTElAhlJaVEv9+8YQraOJzVoAzruhI6B1XkMe+pDN2O7x72/PnPP6G1ZtdsFWPWVOMamUGU84upVGbmy5GuH0S9HkeKkhk5526WxkZXZDvmrqoE6upGJ4P+NU6UFHn39g3H5w+gVjbpl42TLAAbSJsANOVVM2r7c/WkbTX/tcGjXsgeSktKnls6njc1hYaWK79i/f882ZradjTJxTdW/m1wUhvfY0v/VWsZf3Gtz//9OuB+7lZbcL3K9duJKbPJTOdFkmTr4JZaGseyPb9JclDri1ZNaR4uRsDctUCOM3W9sPOa+9Hz++8e6faeZCqdd2jjKbpicISiSEW1+S04awkh4JylYKl9h3l4xA0jdhjx+45cC6VAWFZsht54fE6YmFnmhemnZ+pSGM2IU5Z0WmFe0Rhs76UrXgQMkbUlqxfV8bv7AwUhccdYWKaVaipu1OCEbykbLq+YM2J13eRAopyeQlB3UBNaabquw1RHDk3VocifEheMamRzozHakXNmTgGoOOexITP6gfv9wBoDd8MoztmpiNJ8VS8We1VRVaLklQ2uWQukFK4L+lYKRE6flzW3aTiVLAdKTFHSUmCZL7x7947np/cYJ0D6muSULJs4gJH3Ri6/VY6vT+ztaxGkAortlKUVofIcpXVTB9lwAo231U5W6br/RrL1tgtI2vfSKm5VGjd/yU0hb/RtOls/C0x18/VnYvOVnMPWpq5bo1Ye00oJ5E3FF0uA1vShvtSVm2gcRViMzmiZxEh2K0PmEqVmXiI/PB7Y64G39zvuHu9R3jDFICgPq+nGnlgsNRZyzALTG0ZKDmLLlw0lS6cYJXxJ13XsdgeUVqyXhXpcUUvFLlDmlWU6E5aIOmXqWtFOyL75shLnFaym2xvu3jxggubp/ZGiMt3gSDVjB8vubiCXRAgZ35A9IVb6Q0elEBZJ24wR35a96wm5opRhnSM5Sn1ptMV1Dmv8S7pTNd52jGSWfEbniq6JHEU6xbgOpztAcZmCpIq5YG2Htom7B8fj/Z45ROywA1UIn45kKmtutDtlQFeBH1JQJChR6sLyIvfBZ00ZuV8WlW6g/FSF7ZJLQqGwRvHx4wf+6fs/tFmqEwC/Uiirm4pOozde9Y8aabqEq4aVKDOqKygi1/riYfvq1KR1ee01zQ0hijVhS5N/6fD8BcrYCyrjFv0P9bPT8SVwZfCqr99emzfy3t0+85u3LwDFW+pQbx4vBWcdfSc7WgrhGvgyLwPVVIQ3xgC1Yo1GOXc9wahyalqjyEukK5k/vntDrxPeKaqxZKxo0WpLRRNjbt4mCm8smUSpiTWK2kFcI6VolPL4rqJVoSRBE6kCfgnMTyfOf/krzBM2RnJYqBX62hPWyLJKnRVDwnuP2zncvmN86CjHRNcLvA6MKBGqxHk5omU4jKqGvuvxnaMfOlINxNjGVarS73q06wmlkBKc88QaRZ6z5kwMK4aK9fql0YdIgzjt6KzBKemsp9i66xrcYKkpE9aA1pawZryGkBK+8zzuD3TjjkJgmjKhRlIo1KqbppTgqK1p71sO5Nooglsj72bdbZOBba/faIi5FFJbf5uIYAwLyzLjvef5+IyxSiCWyqCyEV3fIiAFwdcqRJ6l4cDLxqSpV80sa4yoIuYGXVVAkVNRmzZGrBK4xllKkkzHWscv3X4BhKAb6/EmpNqxvQXnS8NnUyVX16DaAvNVV+grRfAv1Z/bHPiW9VKLzJFiqzOV3kStX0jhV5SHFqyj6NIKZUmzXQfhJ5LJQWQRB2sYh46UF5LSgMW4ntq4hrEIeN85TzWFZY6sIYgwV8qEmKkhQVGoUqhxQUXF/BSwRaFOC6c//5nLXz9gMrhNO9UYQfUkw5yzNDPQHMae4dChR4s1hTnO+E6j1IDvRqb1whwuLHOgMztyCJQo0iS+81hjZQ7oEqkKN9UohXMWlQo1ZbzzxDWQUhYUVEnUErA4lJOaVjbZymHccf9mT6wXQk7S0LGKojIpBemSp8q6isem7TqWZcF4gSuiMmOv2Pfw/tMzOndoNVIRzLH3nq7zKCoxR2EL5fRFGbQFysv3NJFprutEmIWVVCOxBJ6ePjLudnx4/zdyjfTeMjTGjIDbeckSryWRKEdq3bJI1QDxTQOX2lBFrd694mpreRF+21pXSpGaE7ux7rfPOdUNkmF7pZvawW1Ku9WhLy/hdWSpm6Dc3jh56Nedou2b24uypTBbfq+NyO6rVqirqqX4VKLbqbQWCKFxoGiJedtlasHklaoq3ll2u4G7fc/HpyhmrNZQdMYZI+jJksk1t3pCkYt0hGuuIpaQNUpb4nwhlwWrLGlqu2UsHP/ygenHJ/JxpWRFiAGjZDRRTSIsidRk/6kFZSrOi6pAOk/olKgpY5xl99gzFMP795HjpxO5BjEZzgnvRozZYYpGW8hGo6zBKkPKlXCaMNrjqmGpUWonJeroqRRqghxE69tboY9ZFId+5K7bEapmSSsJgRoWVSktA1BVspkUVhlkloSuhd44pnlCxcRD71ncmVgiGUVSDucN+8OBfhikEx8TKSHqgZtixc0BcF0nwEaukJl2y99KFSw3UEvk+OFH/vA//RM/7e6Z52fO00TQkd67Rilr8i3bGKSteKWqsIRUbnPN5uPCy3Sitlr16kmab3NNqYdrS4MV4qZ9tb3/yu3nNYRojZJtpri9IbUt7lcp77UP++okvEKWbgPtV9y+IKZuV99OYiWDY6XA2qYQnreWepNC0a1xVVodYBvxt1ipa2qVDl8tqJjovGI3jqw58OHjhXWe6ctANpnReWq1hBSbW7IDo0mlYjqPjZk8JWoqYqJLJJSCKYUSIsu8YownLZnTX5+YPs2UpaKzImVFNki9pYSWFNaI0hVnM2ta6LKBYMnnFVdEWmS1mexXOufZX0bOP86EWEFHUIkQF+pZY0xBWwmUvhNgfVoiMYrbuLVGRL2VRZiB+jowL1ngmUYZjCqUqlGhcP7pmawrfucwplDrQlWKmCtWWXEATwlVIzVMWK9RYeX88aOAA8KMjpFDp0iq4o0lmBHbecbdDqUtISZRnq9ACdQSqVXkRWR2uK0sWX/KGLp+bAD1hm6gEmmc1RpJ0xOayrB7pO8055Phcr6wrhNaaXyTf9GqMWm2Vb/9rrb8SluDuqn3b/EhldLNvKK+yIFShJrovdDnxKz4NwLfr92nFhSv5kvXOvL1fa0uf3Xf57dfc2K+uuZWgzY/im1ssyFGlFJXSJRWiqK0bJtFPD3ERcqgtXmRuxCwrgR5Leik6IeenVXEyzPz8RnnLSFGKjJvzLqQaiHlSjcKHEupgnU90RawgRrFjVYrjVGaEgvzNKNSZomFOmdOn46kUGQDaYptIWRKVRjTN/7iSs2Jceex3pCqEJoLSWbL1ousSJNDKgqM1XRJWD/KSH1cS2S+RFAL3oh2E1lynVQKMcwYxKXMtvdbo6BJnKAqVt5sitKkAtNlkS6lhjgH+rseayyZSu8txnVMpyYDU2Rhh3UBCtOHn7D9gZoz0+UT3c7z3bsHLoysakD5EW0tOccr3zbnwjJPxBjp6xYgm8CXZEBVSR3YdZ7NQEu1+rNsAVUKKYt4dO8985rZDwMWxTLNLMvKHEJLjTt6rbHGCD+5nZZbai99kExu3+s2uint9W1439LE7Yxt4mnaNNywaCsV9e0Q/IU5Zwumz+LrtpP65YjkZ5uwvxiYt6Dgn7mIvElKOJ1yl8htim2EBFxRSgLQ1GuOb0uT7KhZ0hRAlYrRitE6CBem84nL+cxuN6Ktpx8dUAXsQMUZj22WC9ZYYtg6iQVnpYYtKeKonI5nwvmIrWCzRgUgwuBH0Eo6pLX5dqRKTAXXdVgrbsvDODLeeaoT3xKnO2pJVAXD/UAshUQGC/2uFxmY6rC9J5SKs57CioxHDCVnlNL0vSeTCEn0j3yTTdHayEzOig5viQGVEqnVsKUawprQqWCAFCqhrBRfqZ2isx0GIw0lK5thikm6sVSePn5iSSdSCDzcd/zwxwf0/gCrISyBUjw5CtE/N9zrBibZTLO+WBnbGEUrrHVcrR6UEmMnVLtWQhvH5XRid/eO84eIb9Q9Owo3c1llbn6aV0IuDF1H3/lmX9hq2uuJ3Qq6FojXOndLiTcF/yIbb+cdFchUbDM9xvlvLvNfdrZW6vqf/7yefEWpuX59/dbdBtotDefz59xe7/PnXHesDTzQYFObCWptor9aS3BubPOrFGOVhSWLy0v9WwyoTdIw0xmFrZnL0yem44l1WbDWMhy0jEdKaR+QzEiXecZYjzWekgLL6ZmyHvFWUeOR9fiJfDxTT2f0kslRtHuI0JmesR+pRbEuKzEadNSsYSWljHG8cAW1Ynd3R3IRasRWRyyRrt9xeHzL89MTy7ww7HtscVzKCa0Mbj/itGbcj0znT9QEDk1cAwaaXpHGrEJ/qgaUE/nNEJtYtzFQRFIhoXDW03cj8TITlxmbocbaNplCToXMwlrPxFw49HuomRgy1noux4Wn9yc+njOdd/zuu7csU8K7hNceUiDXAKbNqnMWbG6TW9lAArezRF519jXOCx451U3DZ1Pdk6XjrGU6n3j7uz9iW3ajqjTfdN/h2jq5hIXLshJTJuZE7x3OWGFHXsXS5bcKPkc22M34WXxmWqbXZpm51MbLFYGxoizvvv/hm/H3K5ytb4Ky8tq1env8tgP7lYPxVq/z85+7fc7XTtVrcG/yFNsHoV+cqK6dOq1R1jbph22gLU5exjqc9XLqNEwlWqOaGHOnK+V8JExnVBFmSE75ejqXtJKyYhh3VK1FCDpf0FVq3/D8E+XyzELAqYCbn1k/fkKdVupaiSETEzgcbr+T1NyIuRJRGj+2uZu11jS1FpYQKEbh9wNKO3SKWNcz7B8xricfKyEHrNJUkyl9RNke92bP7vEO7zXlwwLRUkOk2MJgO5xyoES0K6VCSBHvlTD7qyKrKvWndB6oSkwZvHG4QXOZM8QsBIHYrBNCprjKklbuv9vx+HaHsx3rEpkuK09PF+apoKvD25GcDHEFtWT83uEozItgd6sy0n1vBPfSRJ43nuRLavmy9krTmxWrBdl4SxXjJyGnawwQw0qJEe97Slyl29zogppK7x1YRUqJFAPH05nVW8ZhEIW/ba1WoXsYpcn5xeovZ+GkXo3A1HZ6Z5wVemUGTDdw/93vvxl3v0C2vgkk9eXJeX3ss3+8GOt+5bmf1a7bi//8+y9P2FZb8LJjvtz7IvSL0ld1FeGdlqu9grYWnS3UIiJiTdFea7Ak4nSk06CcFy1c60QsO2fhLVZD32ptQ2G6nAnziq4Qnj8Qnn6kMPOw71DLBT3PqDkTz4mUKgqxmigpUoxglTGSrlqtcM1A12sN3l0pR+dl5u33b0S/J8xUZ9BDzzxHlLXsD3vsCpenE2qs3L175O6HH+juBub5E3oGmx3xkjBVYb2A5tMasKPHaYeaE2kV+pxLrVioBZqwuCqFvKysIeOMwzorLJeqiEnmgiGLrWN/t+P7373jcNiTE0xL4Hg8sSyJ+7tHzk3JDwx9v6PrBpS27HzlPF+EC2ncyxxamWsmISZPm2Zx28S206t1cjdstajUQ8pCeDZaNeGzyNPTE/144PnjTO8NpSR0zWwtVq8V3juSUayrIKmO+SJpbt/jrW0qBlVU5Zsa5dYg0iIfKP2Qdpo6a65rtipNf7jH9OM3Y+WXG0Lc9GE/O+mu33Ob+n5b8u/n6shfrDPlAl/+XFVsblTtjlcH+8azU1cwgkhxKiWdNVUrXkNZZ9LliK1FZCsxxCKzuqEUrLFUrBT3yGjAq0LNK+u0kKYzJgVUnQnnBZ3BVk2tGoeSdKg16qHgvMaPAyElrMoUo6i5UIrCa4WyFqd7zOjQ1oicixW8q+oHqraEFLh/eEStM+vHE67TMoZ43NHdj+hekZaFfmfxSbOuCxeVUKaAs1QUbjewH0emj5XzhwuxKKyVkyRTwRrZxGKGFZSpBCK5VpIu8tgqmkSrzcRSuD88oHTP82mGqpjnhUpmfzfw+9+/Y0qJ82kixZkYe7rao0vh0HnObuY4L1Td2CLNSrKUF1GtijB35PNrIPdW5zlrpfy5SWtLAwVQFLkmwHB8euLh3TumEOlchzikF6xujcYs4xCvNXYYCDmzrIF5jcQCfefpnMU2Z72r+Hqbq6SSqUmyuZyLyMRe3dUUxnfcv/2OUH+rTMnnsbEt+K88Ur/y4OcB97UT8lu3zx+vbQNQnwfozSl6W5tu8iJalSZCpq+n67XTraS17VRlmY+UuIBSpJBYUyFpS6c0VMU47iiN3VFzJocFUyP73uFSIHQd1uxZnk6EOeDooVpqKnjtaDMKXOfY7Qd2dz27uwPTumJrEvmQKYjJU04YDV3f09/vGB/u6IYOZSK5yP05W8bdnsEYzvMZbeHx7T1mp0hOoZwiEzEW7h72cE7C3O877ODR44j7/gE7jozOoZgIyyrd5qSITUTCDD0qF+l8pwpFaGTFaKppE0HVlM+rbHin88y//OuPLMtEKZGx73h8+8Awjtw9eva6x3vaPHZlnSd64+m952E3Mk0LU1ipxlOt1PixsY6ufQluNuFar2p2Xdc1fWQJzlQqSQxNqVXkMKtKTNOZLjyQ0cSc8UrUdlpjWuCXTY5EG6HvKWXa9TLzEkgx453FO0vXtHkpLzDSl9f7AkSoSPq8rKIiGX6r+t5VeeBVkLTHrv/+VrL78yfl3zXzRFLl7Y2jvGBtr89RLxpGLz8n/4FtBiX24QjQuWqqMjhTsOFMDSd0Iw2UHFnXgB72VAUpFWy1WNehrWJdzxSdqHXFG4OyIt6cFkWaLXUtoskaNalGeaFamgC73nP34NAuUWxAU/GDoSSNibLgQ9MHcmg6pRldR2e91KgFMKJbOxrF/P4jJUT04On2O7R3+G7EjE6sFXyPxqCGjPFnut6jDwf8wz12P0jtvU6YvWJ8O4iWUUq4UllVJVQoSmONE2GzUokVjHE4ragajLV4DZSZiwqENfD+x0jMEa0L/+H3P/DD7x6x3hLLisZx2Hu0FkX5TRcJZRg7y9g5ptMiY4Y20C8bbayA0nLKSVbbmkKqkhXYJt1ZqoyKUqqNmSN1IYA2CacTphaGYccczrhOPEV1LddNXDeVSXG5Lnht6Jwj1UqMkZwKS02kAgVLrzQaLV3Ybd6fa3Ofk3lMLpXj8cKqE//RdU3f6eu3v+vkfIEzfR5cL13abzV2boPo7wnMDcj+Wn8FaB6Q2+jmlVziNa2WhtBtYMoMSzqQuWasjqTpPaYuVOelzHIRlTK2c6LyoB1rqGAVVkEmgc6ktBJDJR0n0vOZ6enC+lRJFzn9rBHKkCqSomVVZKyhZT6ZtcEOHlMNOWvIlZJBx4wqCVMNuohMZlw1qle4bocaRrxzpKczKa/43pMHx/jHH9DdPcUocomouaDiDl0NS5zI3qP6gf7d93T3d2hTyeuFEMXzxXWO5Aq1NtMgFOfLhZBhRNGpZrOnPEVtKV1FW8tu54lTYq2RgsyCtfHc7Ufu9gdUSQJEB1RUaGWwTpOrEKJLTpSwYIc9h/3IcU7EnKm2tJSTFxAMIOePas2QKu8nBdv5xgKU07Zk2XBNU/9TGqzTKF3I64Vx6Pnp/MSu99iGwZbEWbcK9mW2bqgoJR1XZ7ywf1Ihlcp5WlijpnNOkD9K+iAxie9LbiltWlb+9ON7/vE//WeUsZyeT99c+78YnF8DH0BLM1/upX2av3j7XNHsm7ebdPXLw1m1jt1noAj1+WuSj/NWMUFrOTVVLXidMetCCpNYzh96jLKUbiS4iX53x25/j+6l5jBVgOuqZlwFlSE9T1x+fKI+T6zPM3UusEpLfVVFECJVaENVF2KMxLjivEOZjB8qxjuiSWS9YBKYZMiBK56zVFFQcK7HjSNmfy8jomFh9/0DqirKODL87g8kO0JamT79SK9hGHsBOUSNHnf4Yc/Y7+ltT1lnltNK/jBTnhKsirpCLYqiFUULZI2ShPSsDV03YpTmskZySrx4qLamFpo1R9ZccYNHuY41VjoHpQSKsaiarpaDaI3vPEoZQi7kGLFa03eeaRLnOcWLn+V1hng7dqsyRqi13hCaG2vJbo5m26FRkPZtYpnOjPdiQVmqR5QEkc1Ac01RVRWiBbp5xSCq7cZZjJFucAiBdQnEdRVHN63Ftax1J2tOTNPEx4+fmEvh3bvvhF74M1Ilv+rk/LmTsG5x9OrOr9eZ32oUffV3cpNCv+7wXE/S6076WS17VeNWSkSfrrvmZt5aUSnja0CFM16D2d/h+gPG9XRLoH56RqGwvsftRkpc0DqR00KeLviQKZfI5cdnwk8n3JxRl4wKoLLGOUuqUbrESTy2ja6oGlEkjDWgE9pnEZdSGoul1x5i4fLhwjpnjM5iXrTrcXc7unFP7Q4UlfD3keo1WjnM4S2M9xStKauMAEyt1ByoSjMcRkyy5FCYj2fUHKjzxPLhI+HpRLoEclKYgNRXtZBM5c56YlCo5pWqDVilhZhet3mfQSGmTl4b8hKYUyEqS79GctHkQvMVAWu4sj+ohRgCvhvQWviXVM3QOXzMBF6yoG1FCDd3O9WUdN+zoqaIUgrrHdpISYBqSpEtYkvJwswxlVJE69cYQ4zCQpJ5uWw2m7r76+anvGYa9M4YDU7jDCyrWEyklFlzQMfYZD0N6xp4/vCR0/HM4e13+L4XZpX5/6kh9DpQtjTy81B6fftWQ+jX/Q6uQfi181p945rSIZPSu52drWurmpMYaDIdK7WsYA3O7/C7B3S/w8bCmg2X5yMVTT90FJOp84V0uVAvM+m8Mv3bJ5a/PaOmRK87KfSLSKJgKsoIWN2UinPgBscwVoYefK+oHnSnpWZVjl1/YDQd8Tyzni/kUNEl4FXBNhMgYx1VD1S1grNQDdoM6H5HtSNOL9hUeNz1uNOF9+8/0t/f4/f36H3Hj3/6KzZPVDTp6ZnwfCQvKzkVVDF02qFGRygZXTMOR9AQ19A2worVMHrHmlcZ/BtN13thoGhNiRFrHGFZCWsGNCEkMdvVos6AqoRlIRWF9VWyAu/FTyRVOqeEapbl09rMs0oR69u6Gfk2yw+tNGld2I0DP/zx96yf3pPWILPPUpq0qQSXUgpKwehMSYG+71hDYHQdYvshkqifS6KAbCobPE8atYIS0sagOqkpY8ostbKGwGVZ0MYwrRPn04lSKsNuzzDuiCFwvly+GQe/CN+TROB1Crl9q179e+tIfX30wmeB9Iqz+ZUd6vbnv6WaUOWHryfp7XW3rFh0j170QQVhkjEloMIFnQO+73HjAT3sUN2I8eDHhWmaRbBKQ28hhoCaV+qcmP76xPkvHynPCx6L6TTOOnJniSjWGPDWibemilST6frCbgfWJfygUIcRNQxUpI7pDhaTKmGdcb1GBYXKK/F8JJ9A7Uf6vUcbT0oBtMH4HmsHlB+oysI6wTqx94bzPDE9HQWwoKTbq0qiA2yMxGWREYkC02tcNaLBi0Jj0LniKnivWZwBDMZ4dNVCNkiJEFKTEO3wVrPWgneax3eP/MtfP3I5PvPh/QcOg+b+8UAtsISVUivWZ1AW63tyzliUMH9KwhthwpA2VkiTy9k67vXlSBAT48J//2//jXT5kcP9gaprowUKP3Tb3rfZJFSMktdulOG8BNgNiCGzGP7KJp9frd1aZZapt8ytAR+sNq2bS3OB0xA0aZ45n85c1qmVKZb7xzdMy0IOil2/+0rkye2XT071OhIrNKxtffFS+Ttun9PFPv/6+le3OqF8GcTSrf3y/utXXv+svOL2AdWMqys6TSIyrQe078V/tGZQGj949vd7jC6otODjil0TP/3lPfH9ifD+BM8LOgiSJjdjWV0LDkteRQ1PqYzyBeUyymeKiQSl8N0D4/0e+pEUgvh2NsuGrAuqB73Iz9cUICZq1lCtpNvWoVSPVg5rR6qyQvNaF1RYycvM5fjEYDW9NsTzhXieuOssZlmwNUmaPXaYYY/rNSbDPAWWXKjaMeiRripO88LOOJTx5JixVREvC24VwyhtJM3dDR3PT0+8ezjw9vs7zucjT+eZpw8/ou4G7h/2WG1Z0iy+mEVhnKZk6YirJeJ6sZAIudB7g09QlEG1kY3ehLtoULnaZCdT5Md/+wvEJ9Yoc1Wn296duZoTXcd+taJrIOVAqc0IKiackZC/7VNswmJ183tlm5+/9DMU2whP1Ji91SjVQc5M57O4wtMaYdY3aZ0BxW8cpbycQp/PHLmepErxanxBe/m/pr78ucD8AtrHtve1Lu0NbOtrqKJ2ZVFV2150lbRGdGUXVIl0XYcb9+g2iNYlgjL0O49zB8pyQYUZnyPxuHL6l78RPpzpkkavVfibCjYXNIUYC1lVqWEl6Ii96+juBrpdAXuh9IbkPbnz2M7idSWmQJwnjALXG9Rdz7xG8powVmOcx/iRkBW2RFSvsWZAvDlsyyLA+h0pLswpoEzl4W7Ap5Xz6YnL8cTBWlSYocBw6Km2o7/boX0mXhaKAdP39IdHdLWs5wlzOqO6noJmejpKvYXFXFTzT5V58dB5KJm73Z5BRf74bi8NmRyo2ZLWFaWNbGRKCAPTckGbjpwh2MRQM77v0AgYxFnDimmO0puQ1nUxyKesa4vASAgzyzqhVMGoSqqCy31RvGvrohZqjCQ6inbUqliWgB27l/6menGj3kDt2+ldmwHXdsq23paszyoSJMZqVN8zOce6rlREtmQ3HnDOo5TmfPx3dGu/eqvbKfRaS/Tm4a92eOHnA/Lrv6teRyhthnKl5dB2tE0k6RWj5Ssp9IZeokRqnOmsZuz30O8o1kMJlLhiXEc/eOg1kUA5HlGqj2lcAAAgAElEQVTrwvzjJ9QpYOaMLYocW8ueiHHgjWjPOq2am5ZhNw7c/8P3vPnDI7EemdcPqMGgDnes1oDOOF1J60Q4ndjvR7rBoPHE2VN0pDvs8Hf3mGHHoiyFhDWOoo24QudKN1qMsSh9R44LtTthR48+TixPfyOfF+qSiVrjckYZg9+PqPGOZCqpBopT7H7/juH3f8DevyVMCfXhE/VyQfmeqjR17NDLQj1P6E8TeV5RQAgr3aD5/vvvML3C1jP7Dtz3j1zmCUXh+dMn3LKS0AzDjs4apuejCH9fFsEZN1HtimBT+84TsxgJb0ZHVanrZ1lr0/rNUeB5Vep9dCWlFbGJ+Rw11pKuKtmNVgpjLdM0sx87aRzerqXXy5GNqFYLQhhQmwm0OJZrK27fpgBa0xmLVcL9pdIc4jPnaWLQv7Fb+81Oa9u5NjzhtTvbHpcSvv18fc1bv60dtyThGrCv3oSbGnF7Pe13bGm1Ng0J1BS5r2D4VswLhCuLAZGWD8iVhJqPuHChP/R0d/dE20mLYQ2Uugk4ScvdVFjeP/P8r38i/OsnXCg421FWafjQpDHzWolGJBAtis45hocdb//pLYd/fMvhMDCHCOsjanzEPtyBB6MLJp7wBGmMmErRin7w6O/2hLViHna4/Yi2Cqsj1VmqyqSSULTcrUS0ajVcN1DTgWx3hOVC+vCMXhbe9IJyirliXEeiUMqJJSfcYOnefsfw7h8wb35H9TtcKIxv3mLXmbBkKIa39++o0yd+/B//nWIyxoIznhAS5bRyeDvyPL+n2zkedo4VjdZRsLVVE5Oi+o6qVg53D+zvHiml4geLNoKFzjnIKAJLrwtrjpSwkEIiVwlONl9XRJyr1MqaV2KM6KTQ2YAyUHKL9yY+0iYL4j0qMi2dikRbuUwrsQgE8Krb0QJKa/1iXtTKpnztAksQG92EwaCNwEQm1nXCLN3WeoiR8zRxGO9w385q/0743uf1Youe2k7S22zjmnLefL2VBtyutzWQNJ8F4m2DpwXlS4DK75SNSROjpKftB18CXrQp5E/7tTUG5qeP1Hyk7LzUM9Y38rCX+ZXWqCQGPT4X3v/1I6f/92/YS0WXtnMq8MOAUZoYIilGpmUmETn0Pbtdz90fR777X+9RB8cyX4hxwnqDH/do66km4bQw9rVKOK8xVjeZSdi/6VhDQfUGpTLx8pGqLbb/AV0EAKC0peBJuTTYn1gDZiVBk4KS8U4oxDhR/R7lepSzVJvo9p5+HFH9Dv/uj+iHH0j+nqq82NZ4iwoe6xdsNdjDjnyC09926PFMDDCO95wvgafLmVgW6CtO9+I0rSJLhFJFA6gWmfUWpbBLwDiP73sRIStJ/HNKRlUwNaPzis7iwlZK2aAHXJdErU1NHZQVqKXKSkYruR0qyLhH3L62TV+EanROaB3wFo5UpjUwiiPrFXxwHdttM8v6UpOqdijo9meDl5q20VRVGfc949yzTAndeYZhYL/b46xDremb8fb3pbWv0lN9c9/NQPiLdFVda9D2z+ttE0K6TYO/BUzYAq7ePqeCc455mq4+Fi+v7zWUr5YKpRCWmekyEeNF3rSHR6xSLFVRtUMR0Wklh2d6rSnnC+njCY4rKULvOqZ1kd3UGMahp/aW8xnWeMR1lcd3A+OdQj+smPtItI4wFbE7zzM1PKHtob0Jgia6bbK5YaACxlm8T6IkGE/E8yzBedjh3I5ixAoB31FNJ4shzdQ8YfJMXi7kZca7DgosATSGvje4AfrHnu67e/Kwo/YP6Lu35GEkawcYlKoYerTJZHMhh2ec6emcYdQjXT8yu4yKmdF3xJQJaWY9Bco+YRG0zth7Hh4PpKwl+GKgxsq6zuy8WDLEmKCJcWklRPZSMrWImv+6XMgpyHxUGV4XU1tvRJNiBATJlBU0jqOQ0JsqAe30E28a2leRsZkWkXKRNQQ115cDopVxorwnMiabzKXcz9XUyBhFbeCJ3TjycJdIo8KP9+K3ag2X84nLx+NX1zv8UnC2/8jLpGQ7vb7eWf3W7UX35/peXk+y7VQvtX7lqu3ary7Gdc6kWoAYI/KQ1n7+36k3801QNbMuZ46nEzZOvH37QG8tbhiw1bCsKyqtxOkD+fKeu34gX2a6NRNnwZRuJjdKy/VyXVAK+n1HiR2He8vv/nhPHVb09xX3RgE9pewxc+X09D+Yp2ce3/4HusOeVAMmhRdhZmfR3hFqYaagdcURIAd0nNC+w6QFWz25aFJ1oruqhHepdWadn7Cn99h4wuVE199RzYDrtLi36QS6EJWmaIU9PKJ2v6MM9ySzo2BbN7NilMOYjrmunJ7/DdyefukoU6IuK6ZUqtGEILZ+8RJY1pVluDD0ok6oK7x5eODpPLGmAlGQR8LU2Zgmgu5RIO7lRiPgAmmKlXWi5tRKldqaQhsIoXVPtSLmzXZDxLNqA6QsYZV0tII2Fmu0yG9SsbapQCg4zxN9N6BYrmTsl0Ok1a4tuEEyN7MJSqMw1rw62a1zDFrznenQytEf3jAMA0+fPtLZnjdvHr4ZN798ctYtQBWfR8+VIvPNn732cHgdnfLP+uUlf/YEfYFq3dS/tTIMA+u6Xh2hrjPUrd1NM1dKK8v5yPOnT+yd1JRxmbDjgX73iPU9c3jmcpwZTCadPpGOC0M1RASKFZeIVQbloOpKiAvaKXb3b+hKxdiIdorgDNUpusM9vnvL/cM7Lu87luVPlNMRWyKdruiUKFnU0UWqRNy0XeeIcSHnyDovDN6TUHjfg+3AWFJeqczoukDJlJrR6YSKJ1yeMGkhqorVjm434Jwnpgn0hPKZpB3V3WGH76jDA8WOYHo0QkKvzZ3NaY3SHbl4QoS6LJQSWNNCorDGlagV3a7nEh15UpyeZobdgfFxxxwyyll6vyPECacBpckhsOoZh8L1Xmz/SlOCL2Lwm0KS8U0OUEX57po9ta5MKWK5YIzFGuHEhhDQzTYhNyK7UropNILV8sdrLYp6CKhAUmewaEKKaKWwxslJqWV0VNX1QEbYJ6UpQUoH12hBDtVaKRSMtezHPRVDKJXL6cju7XeooklL+Gb4/LJMyU3A3HavXuaN6ovwfNXYaQwSCe6XNHb7Znuzv/Y7X80u2/O3muFW12h7zi2io25T6nbCqlrJYWE6feJyfsb0hvP5xPHTJ5LpOfi9pMg1ocjokpienkhPoaFjRMXdGtc0bTK7/ch5TXRjz93jHqt6pvkT75+O/PlPP9GfB/a//wPjDx477nG7A7u7BwZr6foeo6BSCDFClgWyzhN4x9gfMM4Qokha+v093nQELEGLEvu0zmgdcN5B1cQwU8vCzlZMCcR5Jk8LSWWGwwiDJ1UtxOO+UvaP2MMf0N1bsAPa9hTlW0dbuqNhFQSV7e65f/yf0TETpx9Z6wK9wtiBnDS7+wPLesTsDD4MzPPEpw8TttvR2TvOp0A1lhoMeV5QphJrRNuEryLlSXFi3143c6pETQlLxWuFkQ/2pp9RW89jg2vC5XwmhLUtr0pFjJG7hmENQRgmCqglknKm1IhyA05vurKJu/t9I2Y36hhNaUPJms40IbR2GudSmpO4gFFMg+WVRli3xpILrHOmc1baU0pMjL91+3WUsbIt9JvM9DYCX7dZJXW4KqBtjaPWwfkM1PC1S8jTb2RNbgJR30Tz1qm9ylLcjFW4NvTkA1SlsJxPfPjbX5hOz9z3j1DFXNXHlRImSgRFFFOhc4ZQSXMkNnOgXKFmka00VhgHaM1aEzHO7O8HEh1//fgT//q3J96QefrzM1HviIeRsMwoHN7sKChyjTLWyUk6w1rjKXSqYGsk54hKUU74BN14QClPUhqdE8vyxGAN2gkKRscVXRUqXAjHE3FaKDGzXmbUcCHEE35v6HaehYDxPb6/o+gBMKiqr3qt2zxRqUzOBW9Ght0OwgzDGdVlPsYTxjxy/49/5M0f3nB8+guxTvTRkYLl6dNEqp94+O4NtRiWuLBcIqfzmaoV450CZej6nrSurEqsIlIKWGvls40RlcEiEMbtpJRs6Ga98JItbc0aETMTylZOq3i+uHbA5IgyFUPjcarMfuioqmO6TCy9x1qL9h0lJ5ZlZb2IW7oxis57xl6jdBXrQaWvzaHN/MsYjUHqZ9Nk552VzWSaLnx8/wnHl6PI7fYLRkY39WV9dVRdg+P6zK8UjF/4pLxKVbf26aty9uapX6a1grBQUje19Da1gHTOyQd6c6I3d7+2w2aW6cz5+SMlTBjucV2H73qsNczH93hTcSVQ1kx4WtnrPTEHEeEqkYIjhCAuy9pQlebh7fcs6UIIZz58eKK4THdn6c8GHQPx/SdOtZDfFWq5UOcVlTXZBDQKVVKjswllzBgwcSUeBVbnmqWhjoESVvrdCBZKOHNvMsQLao4oVelURSfN+vxEOE0QCqoaYlyZT8/UHvr9gUgl6ozxVTC6dYXSHNOUDNi3jyOHlRgzfufxbiDlgDJQdUYNHjvsefiHH7j/YcTfzUzHH9FrYl0Gwnnh/U8fOR4vKOdIqjKHlRoroSRiOHKvLXEfSDWJW5pWTRJTziarNU5Vaoqi/VMK6JtNXwled/MvOZ1PDbu7iWxlQeu4DqN1M7MqaO1EwiaVRiOsmJpxShHXhcu0YlxmPV+4TBeWZaWWLN6rqjFejKH3HXe7A3eHA9Z5aJubOAuIRlQpmVrFP9Q5w2WZMdoyDj3mtyohfBW0rtTrE/SLoLs93V7qzG0+1C78RX/o527XApsXxYWtlBWBKmlHl42Fvl1TvfxwipFlmojrTMkrMS6knPC9BGdczlhXWZcL6TSxPs3c+QccnpoL2mninHDWk6tijRGXK8Z7+k6hwzO1Ru7e7Hh8e6CMif+PtDddjiRLsjO/u5qZLwBiy8rqYjVJaY5wZETm/V9lZIbSM2x2VVZGRmBxd1vuqvPjmjkckZHdxSREMiMCcBjg7ldNVY8ePSe/PJGf/4YxQrYG5SImJ5w6UFQh52UdfxhinBlPZ0yn6dMOs99jnG82Dalg/Ux8/kKJETV3eBdI42e0auV60RrTeYiVGgPGWIqUVQ2uoGrCa48zmrFMFFMozOTyjJYeqQdQDViCppNbFM0Cryp0jaArpZwpZabve37805/Q3Uf6uz3ZJKb0Qt9X7H3HOMOSIqU0obQaM1XrtjNpeqDZVpyfTwx3A/eHO9wamMuykHNht9tjtMXqlfCe8/XstFnlWtauyIdWiv2ww2jh+S8eJSsKu0mPIBjTHNSaRYNBGYXkCmSctjil8caQS+USJ8Ywk0tz49amlaONudQ0hEJM/DT+wul84cc/fOLDu4dGZzQaBdf+U68gi7IO1++YBV7mmZ3vf/Pc/ztGRlyZEq8B0l6Zuv7lDcXgTRZ8feGuMyK1CXR9E0Ctw3/tJZR60zvKzcP0ld7Rvnn7za79wLUUrkjNzQpQmrsyaeTh0BHUnr5vqtutqU84K9S0MP78mfD5K+PPT3hXWU4LKWXCvCBiG4tFO/J5IYVAuoxo3zSC/GHg/Z/eY9/3ZP+ev/0/T4ynM76/Rw8ziUANia7PWFeZY8tunRhyLIznkS57vPdgAqyHWldB9Mg4fcUdTnSHA5cyUusF33fksqqgSxOq7kwP3rBYQ2Fph6IIuSTGZULuFX7oMA6EiMgCeJQ4al6zS6moAr6CyolSZnIOxPEE4cK7Dx/g3pLoMJ1QS6NDHnc75J0mxx3LaaK/O9JWyhQxhqYisAppVxHiFJnOE4eHHZfLGd8P7HcDMWWUasvqWiuctzjbzHFZ+7Um4ry6TtfWNuXSMmXnfVNXkOaCZo3GqE0KTpq6oFIoUcSam7mtN/T7O1LR/PQyIk1QCGcMzlo66xl6T9fZFpyodTwXGMeRnz9/RivFpw/vMbbN7o1i5UznFcsUxvHCKWbGaWS+XH5fcIrmNcCUegMptxtBe6FkQ0S3uNzI5luQyY2hrmKFaVfkdU3Dt8n3lo3UNH/qNbBfg+91/iQiOGfXr8n6tYRSkarajEuViV4mfngYUO897z585N27e5yGEmc6294seTpz+X//Svz8wiNnwlwaapgBycxxRvuuzeSmmfIVzM6QdsLw44Gyh2IuGJ/o+57xNPPyeULCwLDfIWKZw8gugcu1mf3UtpR9PNzR7/rmgl0TdQrI1PowJRMuzhhVqHlhmids59EVlEsYL+RYsHaPTp4wZuYIoVQG41ClbYzc3d2x/9Mn1M6QEJT2GCpVJqgaVRS1WChCmgLTTz+R5xfQGVtmbJyoRRhFkySDLzjApcBRHGo4kopw70fe73vmDFlaK/Lw7kgIC6dTpEdhxEDSpHOmhopzLXN1fY8xmZhbtkwFrCpY51DG0dgFFVV9qw6Q5uOy2runXMg1ISUAq+Tomi+UUtRcKCVtNjl0nadQyfHSlPpKYQ4RXRT7wXHcDwy+a4LZSlBSkJKu53PYd9zvey5z4vF0RlnLpw/v6PsmLSNU8jXRtDnvPE0oJRwOv3Mr5TZjwqvV2jYfkSob1f8msl4DbLvGKzHhRghMXkvijf2/laW/+j20fgss3f64q8CvptZXtoWi4d1Soa6zLxD2+x19Z3i4P7Lb92inGZeJGgukRDxPjF9fMHPbUlBi2ekO7Rp7pFTFcp6a2JXTLHMA6+jfdRQJzGNm7yzp5UI5B2wwyCQYZ1jmhSIRYxLVV5RKiGSUamXzcb/HDKap2ukmQpxzbZxu3SB9hSVcCsspMgyGGjM4jfSK4XhAkpBOM/k0k19myhSRYUCcQquB/fs/Yz/8A7lXqDKtpPSFtBrMtkVj1/R4KZQVBe81EALlMpEylNViUCtFFyFfJvLzheVpZD5HLnPE7YWSNUZ79u/eo/qOgcryz38lj2dI0nxklqmZCK2ZRa8qAnEd5dTSlAZiaD2nbMvQtW2ASGnypca0BYC6kgWUNiva2vKBVlxFn53rGnZRIIdEojZChxZqzlgDDw93vH84riZHQs2laemu2Xo7r7W2ccn+sKPLlXm6cPYGax9ATANPdZvDKqU57Pfo/YHzZUbybzd1f0fPuW2EbGPWmzSnXrvKbQTJbVD+6npbhP26z/w1wfim311rYdmuu6JyUmvLimoTrW5Xfi2FDZoVCs8JhTAMHc4IKcxM8wWztwiZtMzU00Q4jegCg/Y475jmROcH9vc7ZLqQlSIsJ1TKuH6H9wrTWYaHnrv3nqouhNOMXjJ7euYk5BGibkAKRjCdIc4BWPC+YjqDdcDKhsGt6J7VZF0IS0Jpg9/1pATTSyScCmZOFJtxuw69g94KS5pITzPqkmBO2KqJuZBLoXMDqr8ndvdEbzDVo5ZHqAnjenLJpHRGqsOpDq1huDtivKKrI/OlcHm5EIJghnsOfY9SHfEUyVMijYkwB7S1+Pc9eVw46h3K7Dj+8JHzepDd/YCuM2p1DcshUVJGR+ElnZrOqzGEmEgptYVsadIgilck/1dDPBFqKeQY1xGoAIZcWqa1psmVeOeByrxMpNBGWMYZrLWN9qibbu1h6DjudmumbDuh5WaUuOnjigimFExtS9fWWsbLBWctd3f3q4/KCiStSWieFkqhlca/8fF30PduaQbqWkK8QXPUq9iWVvpN1ryWqNvc8Tu/zPeWsn+TxnfTi9ZaiTE1m/e6qbyv/1WQIpScqTk33RoKel0l0pLJaSbnjl3vcAjx8YypIKmSQhMzLqlyWUasNRQyIWTe3R9QIbDrDP3BkrtK6Sv9ux3TfKIuCebKwd5TaqBGRXiZ8DtPJUKqeN/QRWpFcqVmULkNrUuq6P0OozqctSwlkbOCuRByZhozYSmk52e8Newe9gzaspwWiqrs7EDICTJobZhzwusdw9CTVSbXAGoPukf5A1oqWvftJpVj68qkme24YcDaTH58ZLlcoIJVDiMajSMFxRQaKZ7ugNprdncPHA4dn//yE8vzTI0LJUc+/vgjC2Bywljh+ZcnzqeJkoXxNHI/3DMvEyiN7boWnFkoosmprEr+7UCrtV9sIzuNaI1b0dL7+weejUWso6zz2nb+2lmMpVBLWtshh/c9YtpYLZVM5zRWVeI0Yd/do1TDWITW6m0F3oaNlFLIIUAMV8aa1oanp2dSKtzf3+M7g9TmrVNzYl6W9rqV3xuc38t+vAKxm532FUGTt4yhrUT51TVuIdfvBN73/r6VtdcsuhIO3vqv3IBIK8lZSkFKJC0jOY3gMofDrnFirUKluc0Oxwkrwvv37zn5z5y+vGBKRNsOYwxVw9B7lBH2ts21rCn4veXwwxH52PE0nugweBl4fD6jx8wyV3IBg6brTRPKUhFtwHiP8pZcY3teWZp8hoEaavPSdB3GFJZpodaEMh1dP+CNBx/orEZb3QCHnDje36PnypTbfC9XiFIxThFdZlz+hhoDg/sjSu/B3KGsRYvBmYQ2CSlCDmtmUEIhMY7PXMYLHb6R9hFirRx/+AO9MYzjE0YXfEr0d/eklFG/zGhdCecLj//6F7IIn/7xz6j371guJ6aXM9Y2Ya/np7bihmtgkbcObSzz05lxWcj9SArxWnJtY7pN6tTo5pOC1s3jZn/g8ctXjLWg2qhNq6arV6WVodYqpGiWECjS1POdbYQHpyEtM1LySgutK+qrVh3kV4Eya23L2LU5gqf1HBrjWZbA+TJyuBt4OBxwtTLNEWsNf3z3A0b9TiOjKnIFgdZTfw2Ba7hodf2S3I46vkfD+05G/LekTL79uA1BtfpeKHXTZ6pX3xSQVfluHThLwlvY9YahN1jTHKxsgToGwvOJ+jTCFJt+jLQNGq01ftdhlCKbhcEb6jJjasYPBmzl7ocD8c4zXxI1WebHhAoDYRJiFrI0Z+YejfNCkwIH6zt0bzDKYyygMmo1Z81JkausqvGWuAglF5yHpQR65xju9qiSqKquzVNmOY+E55kpLFSBogTfdfRDz93DkaoDKr1g8z26v6e4A1gLBVRNKAlIbX1oza0nNkbY3x3Y//kfYTEsp5kcFpblgo8zd59+xO86tIHneaLYDmrkw8f/QKiOL5fAeD5z+etPTQCs65r9etnW+uB8WfDnGT00HxGMQWm7orypUQZLeYs9rO+1Vk3zR2tDFWF3OLSe01iMtRjbvEWlralst/DmPJaaaLRZTbBySTjj8F6TUhvrmN3u9aawVo5trX7VQd5avVrXtNq+VmuilEoumWk5c3l5wWnL0xz44T/9E8NuD/Lb9vP/vhLChppyA7LCuhrzPQr8r69xDdTvfP17ukG3Ze1WEl8r6e3nty++vf5NoLfydtWPqZFaZrxX7Pce73Ubao8XVHRIEeoc0LUQUxOKdtZBNqSUcNnx8OEB0x14/vKVJS1rv2SoFoJk9v0ddeyJj2fkyaKXoVkyGAN9aO5baUKMYI3glENqJadmnKu6ZuxbVcU7i1ThcskYyWg1QA3UJISUGWWGww57GPCdwyuhpoSMC+fnsWVdBVW3HUNnLF4UpiqGbmDRjkoH9GA66up81UgIIFKoNSNlRquKo2KHHmsOSHDk+SfOX38Co5msbnaHuz27+yM5VpYY6JZMHC+kZeLDuyOawjzO/PLf/8r+T3+g0wYtXI2glpAJqbI/OEqpnE8XjPWU2nxISl61fPSm77N+rxJyLWjVvE2a+mLzL6koUkxo3bSGrVFY3eicpRRyToBrNn2SqLlgTbP7U1Lb7zUvzRFOWgDcLkZez+kWC5tyX6ugqVJWeqCG2qwxckxU6/HOEWNimZffjJ2/T7d2DQS4CdAbYEetX1ar0PN3r7EON7exzA0j/vr528e/efL8+jawgUObjstrkLbPyVWhoSI1QYlY05C2VCq6CvFyplTBaUdZCiTFznvUbk90I/OSAE2OjV+rVYfXPVUFVAlIURjj+PnrE//n//Yncpn4/D/OqCfBiceqBkj1wx7XD7gugUzoKlgUprRB/aUEdPbsP9zTHQ4Uo8njwjzNSFbs3A6Fp6a8rqYqvBsQMe0QlgyxQigQI9Z2iNFkWsaOy5maK6GzvLv7j9T7PxD8Dzhzh1ECJLJxDVnUpq3BEoELxFWNfQmEUIlzxfkOlWbS8zN57d3SuCfGwM715JhIz78wvfwNrxN20OzyniXNGCx71yN6xitL73suIZJLZpwCD5+OdIMnlfY+VdFY66gCKaW2ZaK5IpBVVlCmlGtgtsXo1bR23XyppSCqOYfVkkA1onxjTlasM223VkBT6bwnl0QMiZzbzWAj33yLibzqCKmt1wNp0i3buDHn0nSgciEL/PLzz9h9YRjufzP2/udlSm4y19t551rWfju0vH0Ca1Bt88hbpBd1M3aRV9OaFoD6zXXgNeBf714rSLRmzCpl/VmVFBdKmulV6+ess2gteOMI5zNSE53uiNMCs6BFYUyzjpe1VFEiLQmX9hxN5xiOA8P9AfELJivGrxPzl4C9GIpEkhSKbdnr7t2euw8HprFSQmMntfewokpluiwU79l3PcZW4rQwL5GaBckGIxopNFtCo0lTwlmHZt0jJGOUsOsGrOuYlgxSqFkosZDChbN1yB//wIf//JFq35PUgJGIoclNtt10tS4rVKQupPOJeBpJ55k4a2p03DvN3jnmkjFhIjx9RvcHxtMTevfA3buP/PzyleX8zOHTA8fjHUlf6JLB2x1Pf/uFp8evOOPYDTv0JaEEpsvM+eWCNvdgmgaPUZaCprjmq1pyXimGq+xMlaup7iaw1RzhBGt1M51acd2ccvODcna1FGzBrbVZM2nGaAtoBu8JsbDEyLQsdJ1ryxOlNOe59XxyPc+vZ/gVAmknvjmeFSjNpTtXGHY7Hj5+pNTfKVNibogAW2B+bxSyhY6oxioy3Ga81zuL8E1wrf9+iwff9JbbHenmTnUblPAq9iTX10Ja/4VQlKIo3XqVvOBVpu8GXNcRzkvLBOeKj5WqNfkSCI8LRixZGaLWbQ0rZabLSHGBkBZKn1E9qD7y8rtTxrcAACAASURBVPxX7LuOPBbKLEiEmtrBSapQaxvSJ23IO01/HKjRkOdMjgJJ8DSH6PAYUWXCWkFCpKTKaZ54qYEPw91qOZDJBWLI3ImFXHF9M9RNVJzyzSEtJWpt6vYVTVWKtMxMTyN/SKtgVhUQj8KibLsBtXLdYpRuGWZ+IT+/kJ8W1Aw6wCk32ZCUPVY7UIGcMyFCfXnGh0g+TWixFN1xUY4yDJguMX195HSamk6u68iNKktXFCwwPwd2Q0T3ILYp7nnnUcOwsnLaHLMh86vCxeZwrmjSK1Jwrlk9ZslYu1ovFiFKy2AKtTKGhFLarqfSpmkNK809hsXA4zTzMo0c1Q5bM1KaTcSGHL85m9tJXs94u683+8ESG7821WaXWHLbvFG/2kH+O4PzjW7QFjk3AbY+6G0w8TZwbx93O0q5vcZ1WXUL/G9KhtslobdXf7u5sil7v2ER1WarbpXgtFrVzBVpyaRYGceZyynQi8VmQZaCdZbj/khOwjxNxLhwuiQe7g/oXmH7DuMrZlDUZSGcA5//x19QRfCdZxkDlEo1graa0mUmEzjs9gz392hR1CSMX0+kxxecQJ81eY5ERqKq6FLJGaZYWVLBdmXdnqiIGHKqnF8u9F5zGB6wveH08kzKCaMqOVRyaocghIz3HTs0vmrqEjF5JMmZWAxWdajq0AWQtVuTSi2VXBUhgbMD/tBxCWfO5xPzOLY+zc70RlOsYLVnWmb++t//mf3dkUM/UJfEZXqk6wa8GEKqaGW5O+44jwFiZbCenJobWDjPzAfPYPvVvKogqjSktTZ+7BW9Xw+NUvoapCKCcRbXddcEUEppBIKaQdV1g0Rdubqb3Ig2TT8ql0IloVWbm14ulybctr42ZbUU3MTKtyzeMnST7GzkDVkV4Ns4T6jNcdsYHp+eUN0du+PvDM66CWf9BoL6XWI8b7PibfB+f3LZfo7aTFq/yZIir4LWW2zfKuxtvawyqrFpuNEYXVXZVEkYkRuuqkMSWNuhrec8vVCCcKe7leTdRJ7uD0esguc8Ny5mD/2dx933lDKR6oxShTwHvv71Lxy7D9x9PJITLOOCUBkOe7ofDf0fd9iPe6LXDP2ezu2pwyNSM+HLc2M8FstyiWinsdqRa+v88mCJ+wE9Nw3bQRwpFAIRVSzzKTIMnho0dakUFDkIFEUtEELEWsdgHbvDPblkuHymLM8kZaiHD/j+Y1smlojkhTReyJeRNGeMHbh7f4+vHTVYLueAqOaydXqaqFpjes/xbkdi4fl8QnTBGEMcz1zGmfvDB3S27Po9unNoZVimSoclm0rtYEyBFArTy4jpFc60vVXtPdYpoK4iW2YNUo2mlfmUtkwttSnKN2L6SrovZdWGMq9k+dLOlVmdpjfLwFIKOVUK0ly+VZNTWZyl6hUo4k0Red0x3j5TVtuJUispZXJZSQyqJRBZQaMff/yRu4cffjP+/j7b+W8z2W8QBK7MnDVw1m/gW17st2js1jt8iyZdl6hpKtuvPWp7ITcwqBmjct3r3PwslJQ1MAvOW8wC03lCawiXhNGeh3fv4SWwnB+Z40inPalapGqktAXa/d2OXGYiE27w9B8GQijIOCNzbr0EExOG/vhAn3qiTpRUsXvH8dM9hz/ew16RpJL8geoP6I8WnwKpKEoNFAxzFGLIaF2JynAqMNaEk4orFZ8rw1qql9xWr85MxDG2fdRsm61cbruZRglD32OcIRhhN3RUVVmefub5X/4vShXu/uG/Yv6hww09SKCkkTCeyJeRPC+YYskhIRn2/Z774z0lJKZUSUtkeol0GeibW3bXGSqFFCM1VrqqUFMCpQmxkJQhzQvkyqEfGhnDNOR1DAt5iuQ5YgeL8QrndPNoWQmyVdZdTmnqj7W8jjBAbXpuVyRVoVCr07TWzSKjltpExFZd2rra1AuNuKFUMz22RjHHxLIszeQFuRZw16RTX8trucE+cq0tC5fX/rSss/eHhwec84QQfl9w/pZUyPepeVvdfdODrv+Xtw+8Bt720QLsNdhuiQU3OfNXHxt96vpTViDJrG9iIyAkJIU2AxxnytiIy6evZyiZe9fhjAPX4VcSZqmFGiJLjMS6sHvowWi0TZi9QR8sRYQyZ0RJE5PSgag0u909e9Mz5guyKEyvQVlqNnjVUyhMs0KJwfX3yKeMlR6/CyxnOH1+5PHlBWULWM1LFS4l0U0Lx5Dpq24/OwmlnWnSkiFVSkw45RrPONc2L1QK7yxKKxKFGGeONUEK5MsLMQTC/j31039AbELKhMoXBitErQlLIF5GpukFUxy96akhNFYRlpozccog8GLOpFJAKbQ3aOUoplDX1z6TGWNFu0Yi6bqOWgpLjjglDNZQkiXmQI0Zo5purbaaUhMlxsajFdMCFFYPlDYvNdpgdFPZU6ud3wZVGqOxzlBLbm7m1lynlKmUa6RprdFKU9aytbOas1RCDCCOK2Xw5rxvixkbDtLOplCk8YJXdc2rX8tWik/TxL9hMvb36db+VkB++7lvH7FJhdyWAer2a7/xs26//9rHirxOX77TmwJNIgJLrU2BjSpIzizzSPzyhfGXn6kYnLvj+fMjNSyYhweYZ5w1uN5Tq7AskRIjMUbEFqpS7B96xGi6hwG7c+hoKcaAtRyPe7LVnMaAca3PqCpTTbuDTs8zEeG9tRjvmVLFOY8d7snOofWe2s88yRN/+SycjKKoRAkLRjtigfM0c1S66c5UIaaMd818NsXUyCClgDMrK6tJcTjftV3IkvCzonz+jP3HH9kd78n/+E+EeMHue3SdyOOZGk7YONNLQRvDJWfmy4XlJVKmZmwkZVWeKAqjTNtgWSpLV7D7gTHM9Mqwuz9CUUzxhfnpzBQDyXgONnO82+O6nufTC2opKDK6ZpyiKU6k0v7LBbGZSqLksLYrt6j/mrW0xmiL1paSBesc0PpUrZoau1E0xzklaz+53tyFxvKpdTXzbc9PK0vnLVpDyvlG+nIFg7ZQXau7TaJzO++yyqhu+rVbkCilsNay2+3ph7tfB9768W8G59Zvfqsl9O1jroG0/mbXQFSKquQVxaJxb1+J6nLzc25fcG4e015Qvgna6+8jrwrwr/MmriWKiBBD4OX5mfPXZx5PC0o/ki8ze6N4yQUzR4ZiKNKYIqFkljmiAT8YRJUmoLzzmKGJZe3ijrDsWeKMPx7pjOb0/Jnp+UycQIWKroa4ZJTNiFk4/fzE4f07lGh6bTns7jnNikkt/C088d9OX/mFSN07qhZUhHfDA+N5JKdI9W2umUoh17rqpSp0bSirNoKyYDuDlQZy9INnWWbqnPHRoh+/Ej7/jf3H/4O7/3hPLCfIAfKFOp+R8YU0jW1GGzP7boc9aOr4wjmG1jaoTa3AXsdcShms29Ef75Ddjv2uwwwDxnjqqZJ9ZllmpCaEkf7hQHffI72i2Er93ECTqAVVKykE4hxw+w7jHUqVVWfoNzaXaOOvJnPS1CWamFdDbu3q56LNdpZeqaVqPUO1Vmqu1+0rrZpurdWKmJsP51shgfbnNhJD1m1RtQXmhiy/rR+3OKq1siy/s6z99mLfA4DezHrUW4OhDYHdXs7bO83tx/Vpyis76LZc3dbCZA3Gtwjy6+degdttM+W1BOl8h3v/kS/Pf+Hx6yOuVLrBs4zgYgaxRGVQYogpUWvFW4syCmUglYDt7lC2mbM664natK32UqljoEyVJU1rcLbSJUlBmcAwKGpYIC6UogiXF8L5nvE88tNPn/mXLz8z64p/vycsU8tKBXIKaGmk7NloAk2FXhnTFO+poCrWtnmn7eDh44FuMkzjQpUIFIwzKGvQZWZ6+sIuaeTuB0wZUONPxNMX5PREffqKTDNVLLUoatEM+wPhIJyfAjEmrNEo67GqgXDN89QSUuXh+I7OaVxauMTMpYzkmNBKc+h36JRRaWKeXtAPPcO7HXY+oQ10zhJqbdpNMZFCMyu2ypBrW+W6bZ+2276sIE1b6DeUknHGYJ1FKdsy59WSoYGFDQqxlCKrzUNjGimlGjVv9R+1xtB1jiVFqkhbS6tyBTpFthN3KyF7e663erFcz6vSK1k+ZU6Pv/xm3P1daO1rHHyDyH5n/sjKitgC43Ygu337JmuvGpP4+tTeLFhfB7uvKO72hG/zt1ob9E2fFGRV2wNqM7JRxtDvduz2kCTz7l1CJdDLjFUCeSaHTCCjtANqk040bRdPjKAc2N4gqjJdLuRpoesOHPoDL0+PpHPCpA6iwZTmjxGLIEUIy4QPFVf2MJ9Zxok5jOQYeIqZ03yh6tbr5nWGNl8iXAJGVaxSQAZZMyWCs/a6cnX1njQaOyi6vWb/8I5ffvnKeJqoSjC+o3Y77B6yLKTljE/v0DkRTs+kLz9Rn57JzydqSMSlUJKAMvTdgRgL0zyTlszxcKDruoYvpErJ7Y2J00JdMrvdO/IUmMeRMcyoS0BCQKuOrndIMJwvZ5Yvht37d6QccV2TxRy0ELVj0fl6rK026LqNLGrjS8NVI4oNoaexe6QkNNIWFlLLhFXTJD9RlFJXcklZq67G5rFar1ODto7Wm3ZO5+Q4jZlcKsZs7tmtz+XmnIK8Ct9tiYq19xV9PefOWPbDjpIiYZl+M/5+n5HRNx9vmRJbF34D+Nw+WN38qV6fxLeZePNGVGrbAngdPm8Mx/Y9qzap2tC5tcSRRhzPUluz4Qym0/yHP7/jz/+4J0+K8fEJZzTllxfk8cIv5zNLjvgV3Ss4rPP4vWX3oLC2UuMMMbGcA91wxBqPJxHnmRpUyzYojLfIsqzIXiWOE6UTUl1QywwxkAUuqfB5OfMSK19+fuISEiUXJFRcFureIBZ677jznmFuCvAGQeXcSn40KVWKAHHkedR8/MMP3H88MoVImtpd398N9O97yl6hps90J0POZ+KXv1C+/kx9CUiEJdlV/LkiZaKkSA6KVBaqWr0/zNrrSVMW0KVATJz++rc2wsmRfFnwUppVRZwoKoPzKJpEpSwROwW87zDvNefnM50R9q7HOrD7Ab2OOlRZF+elYmpuvZwy68u7upmr2uahKYAulFqagrxR62yygChybsiq0xqjIOeEUjSxcGgUVa0xRrA1M1qD05aQMjHGViKvLV9LMO0miVar/89KuJHXo25YqxwUqlbmcUSZ7n9tn/O3iOW3rKFXhb7tN3qb2+C1DLi97rZS9i0ItF1fRFqPofWVw7DG83rJlaqHum7Gb5sBso5VUo6tPHEO2+/o9zusWIqN9LqBEmOpaByl63gaRxgDElJDYjuP8e2NSsuMhMyuv8OEwjidCWKI08IyhSaVufbZztFkD03bDInTwtw15o5SCsmFZXlhKZXLcuJlSdQp0ntHd9ijQ6ZMiWUJzKlSvCZaT66VXhuMNOAi5YpGyBp0gaXMpNJ8X/puB6LJWQhhQZfEbvcOfCV++Zl5iiAReTojsyDisfsjvXWYXMnTRJ6eEGlSoA9/2FNC621DmFEaqnKozhCmmRwD56evhJQRqwllobemAUi1MuWFFBOqVmzn8NqgreG426GNoSghPSW8eLpDD7sON3QoZ6mxknK8bqZsh2EDYVCb0oAwzyNxOVNq06wtpbQF7rUs1VpjjcFqRUpN0LuNT9a9ZA1KC0plVC04bRq6m3KzdJCWEKw1q/q/vtJjtjpTqc1yeutfFSJN3bDWyvlyIokhlV9PRP7u4PzNjw2S+t7nb2IVXsvfb4NwC8zbr93eCK7WftwS6t+EONeRqrreBl4fpZoNgwWcsdiuw+/2MJ0RM7G/89iuI5978lj42H3k0x/+wOnzVy7yiDGOT58+kv3IeP6KqgFdDdVkyqww1ZCK5vzy0gbPCoxVWKWxHSjXCNgOxxwSFUsRTQyZeRpBJ7oPH/jP//CeH6pwmifU3vHDDx8ITy/86z//hX/5yy8sogi18IWAz0KnG3BFLW2jRkFNFbJQFmkSkvmZvgvMl0QOhZJgPD8zPTl8Mm3PVE8YSnOmtntk6FB377B9Tw4R7S8MR49loYSAskK8BGTJbctMVXb3e3S34/SsyV8jIYxo69CHPaUKz6czdQ6EmIkFkoGSE5pCmUdktnw89oiB7tjTpR6Rgj3uqb1FjKZqAdOypqxAjqh1ZUu3+ahSZlUZEMZxIj0/klLGrqZIzd/ErMlEmoZQ2RJEq8AaaV5Rs4CWBgTWJs/p7VbhvZa+KVeKqhitrkZGrzzwbfn/FcAy2lBV69eNd1QppJR+M8T+LvPcawp/ky1/PRb5/mjl+2n7eyjwptj+9jrqtVL+Fki6Bma7a4qolknXsZXSCmc0qTaSgrED3fEjotsLU3NEqrDb7zhxpi9tb9HsF/xdJoaMqjTa2VLoOkeKmaeXr6ho8brHVkuZM/5uQExoyt9OISYTwoVSKvd377DDkf64Q3tLfrlQawBnOHz6xMN/+hPZGOY0Uzvh/f2O+RdPOD3x87NlEUOolV+WyEEZ3isFK+NFWb2i04lSMyU5SqzUHAgecmw0QKMtLImXn55wvSJGQTPinMYMDvvhDnU8Uu/vCShKBbs7sDOOTi/k5YSqE6a2r2nrKd5y/IdPqP0B/+GIcprl68jQ9+w/vOcSJn75ORBSYVoCUTTJNGCnxEhYxblQYNeRRb/rm6ltKVCa+kRVC7U2Y6Xr0djGKbT5eL25eecVOGoZy2A3hHZte2Rrj/SmpLBKb9aMbEZESreyWSu8VfSuKSxW1VBhdcU5Ghuo1opBY80WqE3YSzbUSDSu70kCBU3KhUJqBJrf+Ph3M+d3Z51rirq1P/j2MW84h99k2H9vbvr2Ojc/8PYavDbjt7zGNyMXpIl7xYU8jtR3O3b7O2y/J3U95y8/wzIz+I5RhHq6kERhY2ksnCqcvzwyFMXOd+x3PdUK8+NncsiIRDKFKoosbXlackBpwVqw3lBCIpWAG3b4fQ/W0EkCc0DdPdD9+RPuxw8o63hQhWITPQnOcDgYDneeMQghCnOqBGXbgkGtoJo2TVM2d628Z2W7jIKktg6cUsU5MFGxPAaCA1EG01mM75sF4tDj7u9QdweIGRMTklNTXO8VnXXI0NElYYqtN3XHPd3DkdTvECpq3yGn1peioRs69ocDZUponaipeYpSK7UWwmVm1q3s7XZ+VRTIzCkTFajBQ28x1VPEUEpapTC3UVmlEe1eN1O0NldGjlIKCq8eslVWCZGVz11X8eq1PVJrqarXm58oMKJwInSrtWKmUf7MugGziX1tgGQpr2iwNqtyIoBy/Jf/+r8TinC6zPhhQGozBf6tj787ON/8W24z2Ya0bsDZ63zxJrreZMTvbZpsGfoaWDdZ9Yr9rnfDKy3r5i567UFvWUNSKbkp75V5ZDpbJM90+3cYY5lfJsLjiKTSlA4uE9PS3JPzHBtqmRMI3D0YyI2B4k0PnWaZmryiNpbzeURbhfeaXDJad9zf35HSwLLE5rtRMtpCf3B0Bw3vj/CpRx8Nzni0NWQWfBT2veNub7nfWy41Eqaw3qLU+lo1ilnJlVLaYS2l2c6hzHX30VqDoMkF1CJUDCRFtQo6QzaWqptpgDXtQPS1EuaF+eWFyzLB3rHvBa8cmNQYUY7mnN07kiqc5guFRid8uZxQF8/u7tgOuzZ0XUckEVLGaoPXhpgTaYpQ1RVVjSGQaqVaC13A3fUcnW3ylm8Evm4XHeo1uLaMiGq9psqtrLW2CUhvIyeFrCwgWU2K9NXOo1kPNnmfXJpig9nAptqub61hldVbE1VhlbFamWsFVdq6oLGWfuj5+MMfEeu4X2ID6kLk/fvu9wfnt0F6JbV/i8ZuAatueLS/TnhvrvVt1r39+pvA5abev74Zsgo9tY2Ejci8/WyRAjUjNbcXVAl5eWF++lc6pXDugBPF+HJBSmlapyFSx2ZfTlnh71IJl8ClClNNaGmHmwwlZpQF13l0dszzSCmK3htyam+w0Y4aA1OaEdEMDzv8QZFtIpQXOhnx3ON0hzKaWhRaNO/2R/7pjz8yPo+k8AuuNxy9o1te+/dSy7qEXMm1IEqjnUULqEoDL7JQqKgq1ApKt+2TKhVbC753YAzz04WMpdslZJrhdEbOI/P5TDlb6tFiTCFFsPsdKgO6tOohZHoLh3cH/Jw4P45cxheMN+TY9JF2uwGcoy4Bg27eMMYSS2E6B6Y5Nxe3mEhVUE4oc6Sjcnx/WD0tW7+n1DqC2wDBWmHVBtrOo9YGaw1eebSqKzUUcorryW3Btp6+9dyB1MbNrrVZPhYRjEBnFNbopshQS5MpVWZlDMmKGMsV8KlFX+mlNRaUzoTUKhyMx3mLFIV3v1Px/XvBo64p8tdZ9ebB1+d8VT5482X5VWmr1if13QyqXhlEcGO6W9cXZlUQF5HVfGcVuZZ6ZWp03tLpQJ2+sBhH6d9RpzNqmsBYqnMsolGlLd+qddu+CtQCCospljhHTGnzMyrUTXay6zFWk/NMKcI0LYQlchgOqGSRlEk14LWmWEPuAjUWfDhjpzPGGcydB9thc27K8KXy5+OB5eXEUTRmthyLoVOWmnLrrWuzMRel0G61YECjnVtvZIocA41pWzGlCTc7BYNX9FooqUARKhPzKcA4o5YJyRGdIefMrME4QfsO6y01R0oakZdfqKLZKYUiIb1itpWYQ5vhSaVz7SDqsqGn6xK9c01nN+dGAFfmuswuuZJ0onghxsxw1zxRr2Xk9n6vZVOtAqsaXyllfe83QEaRcmrZjIqzpgX62mvWtdfUWl0rJRENpm22KMkN5DMakbJSAl+F1hsrSKgNb6I2ZBDWKqdUwXY9qQi6thFfqdD3Ozr/OzWEvh90r2tab4Lspsb8Nll+bwTzW1TA7/aw14z5ChFfCQ/biEY1Q5taGwOD635e+7zvPL0vGBI1jVTdY3Rl6D397oCojrF7IYcJI00NIa+bwKWCsT2D69CrXYGscv6ylkhWa/puAG2JaSGn1A5SrVjjkQI6CfUSoPf4nWc47HFZWD4/YXrN4A/owaKxpFBJp5kHZfjTsIfzMylEjubYMo827e5eC0k11QDtDUlX0hhxYrDaYLzFqEoJgaQqVgq6CDpBngKXX76itUObnuUSKIAtBSsZrKC9B9FUbfGdoTtYqsmQFSYnNHC33zcC+zQjJaLTQk5CUAYlTbkulTYKacioQkojqvuuyXWGEom5VQIofQ1SrQwNSU1oWYNuOy9S12pN3zCANvJ6C4xcKiE3oydnmwqfMyv3WJp3SpWmbFBSuSK2rfZt46qtdLZKNapfbaR4qzSr1WjTDFqrxkZsWJ8niioK13VY68E6SC3AbWeI5Xeitbcft6EkbRr8htWzZS3kbX/5Cqu1MleuvoLfXP876O32p27/aH3merkWs+pVsuXmOijdFBCUaWLEtAxYcisBtW1l01gyouCoDbuupzsMnE5nYlF43a9D4wpoqrHEmCilEGuiKgHfyl9SRZmEMuD3BrPzzFNsYsK6YHpFiqpZ2VXQk6BkwB4/obt7ylMlpoJ+ELyGOhfKnCnnhDon9hfFh+yJFPbSdjQ725NqJutK6MDvLFEnVOcZ3AFzLux2A3qwcFGtPC8LkmaSGHy2ZIRuXOg6jxkK2rsGqKRMrs20qT/uyc5j+h67M3Q7IcvCNAJmYHf3nv7hPSFnzlETv85IyljRmJIwVqO6Nvt92B2aMkNSLHMghgJGo4YOUR6dMyEnIgWhKdx3yrUl5xIhz5Q4ssT79UyVdcYNIpmU0prpoOaVh6st1ltan9L0Z1NppHctbdcS1XpDrZt3Tq3NS6UNbhQZQ6oVWzKdSFtJE4039lrWbgw4od20W7W3tlyY5pciBWMtXnmsaEK4EOPv9Oe8DRqRVxMhEdYgeaXsbUyfbwntWr26TbM9ltes+C1Cu/Fqt9JWr/0F3N4g5AaUvVVfUFeGR6Vto0ut5JzQuamjG9M3Y9OQkDmyjBOPp8B8znTKsNvtGM8TUx3puoEkEdGKbtij80RMM1IbiJCKJtVMDDODsSwlonzHcOzpHu4QMcxLYvfDB0ypLM8TYYzEHFFjYF+aLGO3U2AcKs/Uy0J+emb++Zn584n4eGJeIqaAjkLIC1Ybsi7s9wemMREB9/FItYrnr0/8w+49rhR0b7h7dyDnQJqgBDCrzWBOGZaC0hY7AKaNgBpBor0ftVQ66zl8+oS626F8QasFXiI6afA7xA3EogniyG5H3d+j30d2Bo5396gK8xgwISFZsMbSD/c8Pj3z8jwisc0JUwFlLNYbbG1UOXW9sbcsVFICkaaMqFSj6indStLV09RYRz/0xLmR4FXTY1knC7DMiZLX6xiNs2bN5i0QUeZqP1i3vr20stc709wC1l5SryO8rYpsyWdNLNqslWCzhbC+w1pHyhVjHMpaylyvcif/08F5zVwrB3ZLTy3jvzJ7hHXmw2vW/BWrSG39wtttl1uywe3jr8F6G3bXG8A1Rq+/p+J1SL3R+JDmN5JyptNq7Vma3IeJlYOyRFHE84w+F2xReOu5qIWlZKY4kWtEk/n6+MR9r8gpo5Qm59K23HMm10KnmreIlATVor2jKEtFcJ+O7PYHXn5+YvnbIxIWvNJIFGJMzaOxjKTnBUFTvpwY//qV+cuJOgYcBmUcSldizZSaqRS0DVSEZDT5fk/36QOSC8XsmJcLpSyYqImSiCVgViU7tbFptKKgEGcwO4e4tQSzA0p6lNPI0GMf7tB3PdPyyHIZKXMCOkR7xinSqQE6z3D/Aa87+v0BqwLH3Z44R2L9hZ315CVQcyDnEaMLu96Qc2aMl3VOaDHOo6qwrEuQzZtk3TixlmEY6Pf7FZhsQVRq49T64x139/f8VQTrPTk3h3K3kVlqxWpDN9iW7ERoK2fqep5rbYp/IWXCahptdUN5XdVo3ZanNxuQa1ivpbWss9MtFowxWOvRpv3MxhCzlFzZ7Q4s/6vc2us62Pr3Aq3+3gLwJpiVfkVubrdLE4qIDAAAIABJREFU9Or4u1m23Y5Tvt3LvA3S7botQLfg1ysC+woIv86aXoECUasznLQdwU0q0TtDHhPk5lwV84gKCakW8gqXO7N6M0ZUiRzOlh0erQypZELM1+ertUacYjcMdB04q8hUgiSyM7D39O/vsP2Opwrhy9eGmL7MlKJh5WxWQBdN/HKhfL1Qx9Lmid6BOLKquM6z5LZ0XEJCe89lnvlv//f/hxtn5i/PfC0Ln4zHLRcepxcsmqSbyJXZ7RuSqQRjK8YJ3dCzf3/A7PdgPc54aq0kBerdA/LuQEoLzAsyB6zrSc6jpHl+WN39/6y9WZNkyXGl+altd/EllsysKgBEN0npmWmZl/n/f4VCTjcBAoWqzIzF3e9m6zzYvR6RUZlFEJgrUhURvkeGqanp0aPnIGhs43C3B5wRlB+YvWcYBy7LzL5tKQku5wtmqa5tIcSawVPlCvtYDYUbZ3DGsSyenAMFwTUNIhCCR/yynt5qjxkRSo6EeaQArm2xcuBBBFUKMQSUqjOUzhpEhGWZiZvPCTXLpZwIPtWJkUIVqtaqQt9UxF/XEvi6ppVU0I11nb10EOpXYwzWGkQsfgl0N3sytdyRomm6/d8fnKXUxq2IXBu+yJag6g4ja7EvwlcDDn55dH079fLabeylbn35ugWjvP5mRdqKLkhSq2Zt/SzaWLRtSEvtWYUQ8SkQUwUClDOEnEjzzBhK5Y6WKg1Z80pk1zYVbKLQtI445dozs7Z6Z4SE6Qz90aGYCWnBZ0GaA13fo0pBI2hradoG1bbE4cz4hx+RtkdrSDlUFM/D8jSjxkCcY/XWKIppXJgLRO340+OF437Pu8OBw+HI992Of/3Lf/Cn5z9y7BoehwtPwL0RjlZxPByZVKKgibsdXRH2OaL9hBTBWku/36GOe/T+QFGGQEF3FrXbAxpVPE27wxjLEjKfB4+MI/H5DMrSdR2X8Qw5gJ85f3xmGieyFNr9gfsP73l+eOQvnx/Rl5EcFfNS8CEjWHbNDmcSPkVSiqSc6ynF1H+3fr/H2io4nVaQRkjEtM3zVipcjJUUb6y7KhBoJXW8rsCyBJrG1uBeAyjEeJW8LIA2FiO6AkI5EktaxazV2mutiUGZ6jpQe+v1RKl0fV5ZCQ1bLetcUwc0UkZU3RRijDRN9/cFp6z8uWsWXHeGLWauofNFi+Plti0gU3rxN3l77H2N0r4lw28tmetmUF7esz75pQbd5vvYbNoKZBSLz4xhYeqE7hCZU8ZYRbPbEY5HhnNaDX4yfWcpJaDallwskjNKFeawXHmezrj6u2lLkUS3azjc7YgRfBgJc0CTeX97T5kzz//xF8Ic8U8XXK4THEyecvEUo2i7hiwK7zMpFZY5krLC50RZJmIseG14mi789Dxy8gndNOx2cNfe8GE38TCdONx+wN0oxo+fUSWypEJQho8x8un0mYOf+P1+xz+3PR2OEkb8OHH6/IS/DBx+EPrbW3TrkM4SLhfG88TN3Q3seuZTIKdCEwvTMEJYqut1mkjzhTgNzA+PTD/PlCLs398irSVrgz3ssfsd4+MJyZZpyiwLWKchK1rnUNkz+qWKQJeMaEXRFT2tA9GJrSOwjQtuG7Ex9ViM0rRtdQYvZalBmmttW0ul+viqOZUJsWoIsxoQQZ0uSeXVen+9nhXXFgoURCnMNpGydi5EaYw2GGNx1l4ZRbI6erPKZjbt39jn/DJAXihSorhmp5fmBlcywldfR7iO0Gy/5Hbf2xp0u78epzfS+wvg9PJur/qp15q4vADE1KZwEYPWDpIhRwUZlDO02pHigNv1tP+9Rz2c8J+fqkV4LNgV8XWNq67Oywgl0nbdOn1QkFj9TOpUcKFpG+LkKSGiUegA509PfP70uQp+KWHnNCpHHJm0eKZL4PR4xmgHYpAEjW0JJIZlXoGH+o4pZwqKZRWXhkyePb9/947L1BCM5v7dBz7GwPnxM5eY+H//9COTdgxLQOZP/PTxI0t/4P+5P2KT5/mTZ0me2DpOzyN3333H+99+j/KW8JefmccJ1zhKo1HOkk8T5TIgUtjdHHDHjiCRtjfMs4flTKsdS8yEZabpLD5WIKzrewYqWSNT52V9KKQ4o4wmSaqZrNQWWNu17I8HXNPUrBnTNVmwOgzI1gs3NUPFlNfn65UgvyL2SKU2Lpngqw+MErDO1Sy5tj7SRulb11Btn0BcVRJq//Q1Q+0FF9mSjzF6NTmqrDKRSmIIOZJSgQQhBsS/4C1vr796ZExY68n1uhrpbnHCS4DIm+dvAahXNaNC+eLo+rWRtOvz1zaIWntI14/w5qFXkt/6oJd2jMIYhyjHdIk8lYW2u7C/e08cPOfHJ5Zh4rsffkfM8DCc8H5CbKZ1gjhHFGhMT140TusqHFZqA9qgcKKJ0VfDIp2g0SyPnmV6JI9QloSbE6VAwHOaA0YijTJgDDHAMseqTyur+Y5YpEDTNBBr3dQ2jl4b9tYTCYzTiWfxFLHMSyVanMaBn0i8/907+t9/4OHhkZ9/fkR294Q/fySFzBACc6wjcWIEKRkZIiYo/OnM+Bx5+ngmq0ROE/e/+YEb17NYg7Utl+eZoKHb30DbYN/fYRrBzwOdb1g0nJcz3eHI8f2BAOQYaERolKC1VGV5gZCqNk+KiRIWIpmQI0vKJCX0pudwt6ffd/imqS0JfrlJCzUTKV2xjR9++C3/8a//wjQ/IKUq4ZVQMFqTcyUN6HUxpbUlA+qlfiRRiiKt7COhZlWtBFFxxRrWhJG3Fbhl07oxVKBzW7CZmDzzUr1TSqpH73n5G71Stt3hC3T0VRb7IkbW4NkS2tujLnBFuN5er6dRrjXolkVfER42KZJtCr0eQbY3qp8mrb4ZldC89igLhCXiimG4jJwen9GuY/r0zPnnj+ggfH58YHw+41MkSyKEGecch8ORc5yxux4TG1RM5BCYxhErmhQ90zxgG0vhiGkdHs/Nuxv8s6IshTInVCwYa6qKnBRs33DcHYkLXOIZvGCKxrIa+8wTgTpEbkTQumqrtkpz0zbVZi4v+JBRpmX2nudLJLWa4ITHS+Hu9/9AS6KJiVMotE3HzbsjH1j4p8Oe28Yiy0DwMyqslUrIOL+AL4Q4E6yn3R9ITxeS0hSViSGgdw3uZs/hu/fIvmfGMz8GTN9x+/4d2T+hW0NRCT8tVQ1w8YTLSMl14W/HqY25k3OdUglp3ZCNott39PsebTSUcpU+LesaEdY1UxK5ZMZpJIbA+w8f+O777/m3hz9SYlzRVLl2BlKlfV1X8HUyqmRSeblPr252pWgo24jjy5r7cny5WhFuGURrjVwHs6GkWNUuikBWq1rgL+Nhu/6TzFkXt7w6j177mkW+SF5f/CR1L3tBWTc/k18huG+v8qrvU9jgbriSENaWSoG1f3p9S0St83haQ5YKwqiGhHBeAm4xmGS4CZlwPjM9PRGTRwWNGSJ5TpQxY4xBGYshU9LM8bin7Dv8dMacF7TOnFTEiqJpIJoMWrEME/1xT7t3BO0hGVxzIMaR5BLRFUoyGIS+P+JMj8yeXs/QQY6FsERKFJZS9YwUAU/A7ncobTAhc3PjCKESQZasGHxkycJBtTi75/k8cFku/KH8ifMwcXk6cRki/9Ad+F2r+af7lv9233IgkZ/h9JhYcsaUOiQQl0CItd6Lg+Lzv3wkJcfxd9/R7HaI2lM6IStF193S3N+j/ETJqzhzjNwqy5ISCUWJmenjiel5IoYCyRBDQYvF6vr3VFKIWapyhVcUydiD5v1vjtzuW5aw0HSRxpQVqFO1/1kAVddl6xwf3r/jXwROlxNPl+qSbVcgR4ugKViliFqTqcEmZZtMSauqPIjodWi/UEQREWJOxByIGar0Vx3uVtt2UZNvDUpVx9iMCLlEtKoawq0YTkuq3ql+5tD3f1twXhPXNe4KW/reyrstEeaV51rr4V+eo7/QBeKX/dCv1avy5nnb/1/4vV/WxC+PeKk5BakyGNbw9POZMj5wd4DbvatuVm3DdB5p1YwzhqgNbatJWljiwPl84v7+SFSrJUAKxBDo2gabNJ1StLs6LJxTxC+e5tDgilD2hnKBbA37bs/iR3KISNbEc+RheWCZKtto1+0oRRjyRIgJMStDpqljakFqv9ZpMPuOcdEsOZGs4/PzmUuBU5g4X05EDW7Xsvv+NywzpPlCqxyH1vHff/cd//MfbvhNV+immSUXhsuMJIU1Fsng54APgUYanHbEJfP8h5+Jg4fvf6C9f0d/e0d0mfPzRHIT2sJNvyPGHeepIU8eFSsSK4PHx8Lsc21VrPI7SmsgrcBdXVsKhbMaJHA4dtzdHRgvZ57OF5ZOYX4/oO/XpLFqJ9UAqpuVMRZKYZpmLsOwsngyeq35tvpP1iCMMeJjrCtbvaD8cROqztTBNKWIGWJaP+dapulSFeVzLrAS7Nej3uvAuV7WtdgcQWmMCK7dfTP+/pPMKVvYXH++oqKr6O6r6Fhvf1EteM36+eLIysv9L99z/WXeDnd/QRF8HZRveqVbj3P7rNVAtZrT5Jx5ej6xPH3ku9vM9/c9uu3o7+7xz4XPD0/02tXPrlZB4Cr9Rix+BRUiziqKtrSuR+bMNJzo7nb0B8swDqRciFnjdj193/PoL0QNp2FE50I4BYiRSDUjWkJCW4sxXZW9DEIqNXMsLNjmAFahVxNbKYXTFJhz4dEXBp/45IVmt6OkM1ZNdLbSys4/fyZHxcHumadAp4QPN0du9ztud6vy+WmkaSzZK5wztE2LnwLzecaPM7rUVoQtmun5I88XBWVHMIHuxmJUYvn8iHJQZMKUymNdJNMeDxjdkRfFfIyMQ2G4nMmpAlqX8ZmCWYH/gjaaxlis0litOew6yJHT4yOPzyPc3kHWsGY8JfUYmWVbI7n+nCvW0DYNE5ptlCytc54JwQdP2jYEvRo7sR1t67G6bBIiUsfwVnXaKnGiDcLWVSgvfj9s7US5AkT1/et8cM6J3eFAUZbGNl+L3+v1nzKEXgfQFy2QvLU3Xsa5Xj9vqyO/RiZ4fV1nM/nGfa+r21eBWVG0Xzxhe+TaUllJCOtBqGlb9H5H4zTOgKfgjdAcDzx/GgjPA04LWIvqhH1/pNiEmIzSmcrfHNHaEPyICQYfIionWqMY/ETfNWgMl2nk2DfYXtB3PePjwOXxUgeB40Ypg5I1JWnGsyekzDQFlLYULYxhQZfq5WmUxSohhIUhRZ4S/HFceIyeZC3/+OF7vsu3fPz539g3VZjMLzNFGo7G0LfCh9ZxazQ2RsbHMzKc8POEAWa/sJSCbXsSCe8XmKogVhHBZkurLZwmlk+P7HYtxjm6VpiXGdUIcx7ITaHtdnz3vqc7HGndgWd1w0FumZ7/lWEsLCHUWlFDiJUArzS0TYO1lqw1U5lwVhGWifEycjkHlA2EkKvdhLz8pWsdtW7kSte6MVfdoAKwBkWhYIwmUYivMIxVV/ol4W3MtNVeIRchxLUWzhkl9tpyqYGor0dzUXV6pQqEvRICW9dn23ao3YHTsGDb3d9unvtFlnr98zVxvWS0ukOsYVPyF7d/GWxfPnf94RU8/oLw1ru2DUHWkHs57sqr17lOqcB1Kj2LgNJY5+i6HvfDb9G+pe8HMpGioThT7eYQwrQgrUIlYedaDjc9WS3QGNTOMo6ZMQzkpWDcAVMqEcGLIH2DOxxwuyPa9bRO0FaR8WTJ3H5/AwIxFERBSIFw9nCKlJhZlkDOlTWjy7rbi+GyRObnCw64v+3JSjFay0/DyL+PE58DqMZRPn3kN/cH7vd7XInc9R1zSvx0OjFeAi7BB/0P2GFgiZlpfED7BZfrUbKUhPczGPOidpgTOVbrg2AzYjIlTnRxQD/8SE7CrAORjN43FFWYF01WCpOENCQuTyemzwPTw0gjLRINioJzFttqZh/YyOLWKOokQaHtNG2nmaYLp/OJ81Bw/fJivcfLBlyoR09ZRd1yKcSUcM4xZShrC6RCuuvWLYJQfVKKbBv5Vgitr64KKWZCTkSliUVICYxTOGOxxkCuAF4uBaVr+0etol9K1NVGk/Xk2DQV/W/b7k3y+S8G5wv8ykudJy/H1o37uh0bvmyLfqna95qy93aOc3ur1zXmy5E4XwP0bZlZLeK2oF+PxCJkkZXNYVDGgKqOzf3hwEEb9PJHUsm0h45YCrPMaKuqmFQR5hDpRNDOEsNEDhM7ZXGdZu4EqMjhMs6YpsXev0MddxTvWHSLMR2NM+R5JMSFaT7THg98+J//SFIWnyNLWAg/n5j/9wP+MqFT3fx8SiQyBEXKhdOnR1JMqJwJpaBven6MkT96z3NrmTtVFeROn2ibwu9E865p+KHrOfkLzZ1l7AtmgX4amP8cMS1IHJEYQFuMqsylsHhSTjjbEKwQdEEVRSqKURILCecTzWPAjYrTpxlxBXfoSCeLPt5x/P4feL4sfP7zz6T8c0WjP42UAciGnd1R/EwIcx0hYx2xksIyz4jOiDYcbo/sbjqSeJCahWQ9GgpVjUBTQZ1IqaJcabXdi3GdCNK1fl85ssKaYKSWX5VoUDOlKIG82gWWXAkIpSBFU0QTMyyhZuPeWdrWrZlRKhAGrPphcA3wV1euomLzeEF6xa6/qeiv/jv6nL+41p3qy1nOF/BoC8ZvXW+D83p7+TILfm3u83rAXd/r+jjZauGXdoxSiqKEVefw6r8o2hCLMIXEvnP0ubDoSJG83hdJPjAunt20EJNnmS+ITdidY//9DbnA9JRIRKyz7N59YHYafdtjtCXrdYA3ZBrXEnfCqBM3729w/Q1KCnoeCWKRU1Vkr+LMGZc1WQx5AZsSrRZCLiht8crwMAX+cJ75y7zwUAqH7+5ogiKfL5zPDyRn6c2BZvEcSby7v2GZJoaPZ+w8UyThfUYRqp28LbRtVVTXWuOsra0bK+ROU7wQY2FOMypkdlYYwyoGUQKNMTgDmYgtBaaIWxTxYebnjw9MY8BEC0HT7++4PdwQfKXmlVz7N8rUOm7xmaIDu/ueu+9uaA6WwWds09EUXQfIpaxqe4KUmv1kHQcrVOqdqDqYUArVGSxtp7lypf4BBGq/WlTtEsSU6iRTqVlZSd3US1HELMyhWte3jaNxdh1lZGUIqeqfuiap6yC2bHTXQgqen/74vylNx/7mPcfdHZK/xGFeX3+1P+evEQXWkPkiQL46NP3q+V99vfIScG/Bonqy3VhCq8hTfouIvSLRSy30X/4zxHnC50hZ6wdlhH5nOdnadI65gNY0XYdrOqZpZplO+HwmMHPs32EPTR3CHupkgk8JL4qhdNx+d49TGe8fIXgKhr7dY9ojvj2S90f04Q5iZQ+VfoRWgS3V2DVltK2O4irraj/oHEhmifBJG/54eubHc+QcM4d3O25vWt4d3rP85SPmMtFaQ6cUMs70jVCmiIqK1rRIkfoHL6DNatqUMn5eKKLwi6cUoWsasiSSqerzEak7v8+MGdSuwa881AMWUZZ21/D4+MjzzzMqNjAWOlpSLBCF54cTD48Dquspq5RySYlUIkYMRQrOaVSvON4fsL1FGoVkQ9EWbRTGabQRRKq6wXakLWt7DUAbvSotVIX1mKsRcM2Cdb0o2XCRioCDrFYOaj29bQLmlaaac+Vlx0LVA2osRtUmp2xrbSUlwHpy3hYuKz6SE0qqa9nT+cTzwzM/SuUUf+v6q+Y5v9UGeTlOboXx64D6Ekjanvf2eluXXp9bf+v1eev7vnwCKGUdEXt5ry9YI1v9KoLSpgZnSmRd6PoDh5s616koNLbyHn1K5Jhp9Y6m6ciMFDG4tqffdZi+o+stPgTSYnj+81yPZMbSHL/D9ntIE8QzZCH5TON6aBpyc0C6nmQcrP1LYx1mZ8iPmTQuKOpo0rzMsCiUUVijMI0h+UwqwizCkqHrej68v+P/+j//kYPR/PvnT2CEm76hKQUT6ihUyIESoMkNojN67ZqL0eSoWLyHlfMcZo/ETPZh1eEteAmEnJGkaVbHsz8Pnk8soBXN7Nmdz/zmw5E2acKnZ8oFwiIkNPMYyL5Kkyw5MM2PWGVJZGIOZJWBRAwzygr9sUM3AjrjY8KnOniNqgS8nCOQoVQrxFwyZRVdr2upTj5V75ONFF/BQ0XNYiknlFA1ZNfMJ2pDbHNto5Cv98VcxbsBGmfpu23tVCSpjt+pdbazrue8ZuC8CpzXvmymc4aiFJdxZhomxsV/M/b+Kvre1wJoq/2uccQLYPT2sW8lNGvAfRnw1T/ldfNmja63PxVWle+6c213XlUZ1o1DodAIXkFpd2TTE1IVUtTWVruFOEIU8AFVBGUUcUnkWPApI4eO5vt/wh469vc3uKOiuEAOZzq98PiQyLrD7g8cd+9ZxjOPD3/GpQv7xRMWWG72cDiyMw1OZ6Z4woeILYm2V5T3Pf58YPKgch2G9tNUUUkUIobnXPgsMChBo7htDPu7Pd/tdqiffqLvW35A6LqW7xGOFFqrV7ZNVeRTFEwq1QE8VcKDVbYOWCtBO8esNeMwsgwJpxu0aonFM6S5yoM4OIXEHx5n/jgnplKV8Hsd+Kf7zD/f3RIeL7SmgUmYp4ngCyUpChp0udrw6erfRSypBo2uQpfW2DozmSeeHj0hO4oYssrIaj9fw0KviGpGViplRnE43NC2PVlqTzKmRF51gaRU012tBGUMph5eqXzaisqmrNaepULIlBgJsRBToRRF13bs2nb1Bt1OiGtQlop1ZCr2EVdd2229KzI2F46rUPZUqpLF3xScr3mxv7jvDWPgpUbcQunL13n7uG9Jkmwv8npIe5Mm2d75+rBNiv8KXL2Mo1U1b6pPirJo21JEmMaBGD7hXMMNVXhqHiZKqhP2ShSZwmWZ+OEff0/3wzuau1tU21FkYvAPBCI37264/x+GYfaYXpHjyPDTXxg//YVEoDManEXd7lB9hy2KEkeyD/hhRhVDSQuUKt1YipByRhUwypB0lS4Jc+RznHkWOMWBJiR+pxxu9rg//UTBE53luwIHYzmI0GlNI3WzGVJk8Wmtjah2eNZQVCaUhHMGYzSma+h3HdY5xmGhZIt2HQZDnD0pxWq0q4RhCTxfEo+lCkHvJdOnhUMYcQm6u5Y0e0IMpKTICWKpivjK1AxjbYOIMM0jWWWKqjO02hhKSYyXiY+fLih3oD/sSDmxTCN+qbOcKIWovAEglLKxxspqmVDvqtzYlQetK3qq1nXChkivQtmpqFXQLaM0oDSxgI91NM0ax3G3p2ua65H1SjsVdbW3ZDsW51fzzGuNrNdY3vcdc4Y5/B26tW+HoV+TCrYY3I63sqJgfCVw37ZdXr/+V4+1r+//Zg+Ul3P9q3+s6xSMqowQayxN27IYTYgLcT7jg0epO5SqYsWUamqTbQZXUFbT9D2mbde+Z1d31WmAGGG3Z/8PHYyPFDPh8wMyPLAfPaILUWmCKlgriK5/rDjOhOcL4emCdT1znBkeHllOF0pIOO0IMeB9WGUsFdEn5stMUtAozU0u9CljpoRNhb61HNC4nGlToZFqla4ooAuiC9ZWIx5iRIxa6zeFLPXIFUskBaFrO/Z9T45Czob2cMBkGELkfDoxTTNRK6wIplQAK0rGHTqcaxlGT9+3lKLJVHG0CrQp1IrDlJxRtg4tlwxGG5a0EEti1/ccDjuaTvN8mhkvHtsH2n2uIlwpraa9qabANRu+kFDKdXNOMVUVAm2qZCiV8lpy7XuXUirhfZ0wyeupz6jqf6KsIaIIKa80RNi3juOhxxhz9eLZLqW32eRqAVJrW1Ulr3P189m6DhvolGPAmb9Rfe/t7OV22/X7L4Ll+t0XgfL6v7e3f+01v/U5aitn06atm0FlcpQvdrHC62ysUKLrwHVTDXEQoW0NbSvkNCHFVepXobrsmbICvMLT8yNaB3Y2czw4pDH03RFUC00H+4zrhVwm0vJMUyZcLuSmQTtDijNlmCnioHNMfuLy+BmZM7brCZMnnify5CkzzMzMi8f7iBaNayyNddxnwQUPTlcKX1CQE05pnCiaVOi0Zh14AlStw1RG2Vq7NtaRoq6elySMaa791FzWo1yKWBROKc5L4Ol8oukP7PYHCuCXiWFZaBXcOMdzrKNZd/0OU5cftmlZQqTt6rBzzBMqrzYGpQpspbQQfUGrir5uolwiYJs6deLnTIyCynWESxuFrEFxNaxaa8mtnCqlsowq15VrmcPav9xsExQ1o27rR+tKpatD+/W4HCksMTP4wlLq6NfdzYGbfV+Ful+hrFefFLVyaksNSJGqxMBm+bABUcA0z5yfn+n3f6cSAnz9aPqVR10R27fPef3cbyG2X22xvEV13wJTvGTwbTPZVLsRWa3ILarpKM6RRTgcD9zfN1hTd3LbW5SNIJWNo7OgfGJ5fiKlZ5pDIi2Zoo4VBBBDlhZai2sEGT+RpycoCz57RLe1mT0E9mNBdYaQ9SqpoXFtg+07/OVMGjzKF3RS+JSrhKayq4tVPQMdm47OOsRUVDnMpWrVroasWYSoahNfi6wT+YI0BlpFJIGpCzewNscbizjQqi7qtCTSHCgRjGxuztXaMIaIc47bmz2zX5DnCV8qiDPME+p8Qpxg+4aYPaKhdw0mF6wP5AB65aVWOZlI2jZ+JVhlr0DOZbxgRDNPC3nlsWpjsM6wKF2z5hqUL43vlzWldZUWSamisAW5ovpFVtR5RXoRdVX32NzRU4ygIBZhCUIsgmjDbtfx7vaIswYtqhoYrT3KFzvAl81AiWCUWrm4r86SShFTYhgHyIne/v+kW/vLI+iXaOr2/Wvxr9fXt46vb7Pot4L1Ck6t7y1fvM71r3X9ICLbFItGNR2mP6B3R5q2as4oEZpDz+33ivE/CuE8IQm0L3RFYxKM0wUZP5PPkZwX4qUguUd3R0puUHKgqBkxF1LniMeC3rcUH8mPE9GdyLmB93uc7bAfvsOkyurRolFRwVLQq5uVOAtWE+OFrFAzAAAgAElEQVSy+kZWoGHnqv6rthaPMJTaDpIIds0oUBeEUdUPxDQt4kDqbAi5QL/fYdsWZw3zdEZI6FLQovApsSwLKVG1e1PNNmEO+Bhp7ZFD36PtHtcmbu3I4/MjpczsUJgSiGlGlGb29S9kW8sYZqxzpFgoofJTY04kv1SU0xmccySJzH6mbRwx+auPiagqkjWnUr1FXnoVVQZz+15Wndt1/SmlKvawYS5qJaggiDLXtZNSRXBr+Vprw5Cri5hg6NuGD/d37PuObXT79fr8YjDjdYzIC5+8UE8NsRSW4BnGkb5t6P9eUelfz2xffl9e1QC/Vmv+2m1v3+s6RM1bqIkrUvtFnboG6pWMpSziOuzhlnw+Mk1nzhfP8X1De9jx/r/dcP5j5PTo4SLgMzInmqBp2pYuZuR8xilHDOAztDEgcyYASnbY9g77waD2VfJCfnwmnj1/Gn8kn0du82/pv79B9h0qQRpn0mkGDyprUoREQrcN1jRMYyBGj1IZoxXNCqQYrXBZVbfqAjlkjK2emTrl6skSIGZF8QnddjSWakiUIq7v6e9viTkxj2dszpVP7DSqVNEupROtEfS8zsWuUpp+rn3U9zf3WFc4iuHWFpY40FmhsYJqLGPwTEvGSD1giskUk2kai3hFDBURTzlBzmQf6wTOzqGNIaYFa6HvDa6ppYj3gSUulJy2hbL+rbfvK3Nt6zcKUt23t3WzGlOBum7hpVTB8JhWj1dRoOqAtU/1nN05w/t3t3z/7harZZ2A+VIs4BfrdVvDbL6cL591CZ7zMJBS4nBzU53Vv3H9VYDQ6zf/hb7P65AovzzKviUgfI188PY5b7Pn1q55/Xtcg78+iDqp8CUsvX5iRFtwHbo/EHTLZcrsW8jFULRm9/7I7e9Gxj89gBckF+IcSaNlf9ihxhrozkSWUigNlDCjikM7QdoW0beYmwbdLUwfH5ifL/gI0RlsToTzGe5aUiNE7wk/fWb6yyfinFBYfAwsYcFIRaFLrsvI6IK1BREPdUIVawtdIyhgWjw5Jpy1NI1FSz3GpZxIc+RwNJU7GwJpCngTaMQgfUPWhnka0J1D9Q4aRdNb4uDJF4/OGbLUMSxW6wIfkJS46fc4BK0z01IwJdM7jWkcJcPpNBBFMFYokonF0zhL4xzlEsk5Iqtwc5aM6yz37+6gy0zxkd3OIm2D6ndoY5mWheA9wYdr3SisCE+pW3FeM6o1BlFC27ZopUmkK2FBK8ULlW9Va9wCUxtSEaIUxAqOwv3tke/f39BaqSBQUYjkX+AnbxNSWd+wrKx60fV2HwPnYcQ6S9s22F/BW369lbJmnq9mztddjGtw/bIu/Rqf9mu/2OuAuwbx+o8ur+rYb33S1x9qG8iWtQBX2iDGoZod2I7Jw/PTzNPjQHt7Q99pjh9u+bx3xKexumTHTPYg0RGHiCRY8khsFc1eyGkh+zPa7FaKV0s2iTIvLI8nnj8+YLs9x9//wPHGgk6UuIC1LJcL459+ZPn0QA6m8jfX3z8Gj6z6/soITUutPUsip6rSp53B7Q3ZJIISXF+zTttais8Qa583hMQ8emyjSXNChcJ0GZFhoOvuMF3PfKrGv6p1iDForSjmmewXjAOVFSobkgjTvJBiYLpcaG96bu5vUK1CPWbiOBCWABn2tkMOhpITmYgUSGRSqRZ+idUGnjqH6VrL3btb2r5lyhdEQdM4jN6hugNzKeRprpluVedT5WXtVWCnOsrlklelvMoQ09ogpm6ueV1nees/roGpjKvi1MrgrKU3lpgSrdV89+6WzlZouWwYx9dW4AYCrXKaFRUu6ybwsj6XpboG3NzcYJT8nbbzvIhFb0fFl+b/S9vkJeB++aG3r99iCG3XNaCpgbn9pOoDr+jbFyR6uP6jr4BbPesjtcGsYu2rKUc0O1R3A+2BZTlx/hy4+0Foeo3uG4yzVK5mqQZFi8ePgVIEg2UMI+WgUNNAsYpMQmeNeHOlhqXFUwYPYth99z39b39L0yaW6YHoPW3TUbJj8hkV6tEvSCJJpKiKIloF/c6Bgq6vE/lhzhQSYhLF1OB1e40+7jGtxZrqJ4POqGxoxJFDYp4GyA6dMioVdPQkP5HljubuHgkTuszY3R519x1KQeccSwj4PKFTS4myDkADC6RlZplPtL1l1zty7JhVIAyJlCrfdt+2q3RowWvPaXomhcwyeIZFEUJduMYUTGMouvBweiRyQXUZ63a4/oC0u6pkqBdMFNR2FN5adqsRUcqJmAJpZY1lqBlfuB5D04b0XteLpShNFAFdbfq6xl0BnsOuY9e11adHvSqfVvX4+ifPbOICdU2u4tRU+dTaN89kwIfANIw4beldWzm/+W/sc76qa7lWcq+Ojr+QL/lK0L3NjN9S2vvFVer7qa/dd31TeIWlX4NXVjoVqXIjta6IYNQtyvXY3S06nQlzJIyFfK8oxoBtKUURF4+sno9L8tBr7n/3AXMwGCnk6UJKCd2CSpo8FoyAT4XoFZkd/b2h/+Edem9JqhDmSJ4XjDjUknDakLRCopBtBYS0VIpX0yr6Q4NuHE1nqo9KLyjvyamKT5vGkoqiO3RkA8kvxMWzOza00qKLA59YYsKYasUXUqhgSY5VV3W3R93fE4cHimvp7r6rpPzs0Y+PhNNSdWBFYawgSSMFQoZpOnF6LhhnqiepF6QzpDkSwkJIno4d/c2ebt8jPYQpoMvCMC9r1pNqUqvh6XJhXAZ2t8Ku7dGuwXYtxRpUTFXYa8qrlcJG2wRZ/WzKqvsjehuerjVjSIkQAxuAKNfWoJCLpUht0ZimQdvaWupax67vsNq8CMpdE1GdiNky6FbKbVKZVTG+Gl0JVUgMU8kNwziwLJ6b403tO+fwRffh7fVf8uf8Wq35a8jq1yh7r5/z9nnXYy1fKsxvjeavI7kvx+eNW1lRWnUdBVJS2yvKGERbsm6JqmOaz0zDzG3OuL7H3ByJ+ifmxaOzUIoi+REVFId3e9r3B7IseD+T1p4gRHJaatM6WFB3qL3C7gL6xuHVgCmJXCJxWRimT6ghkJMnlCpZooyj1xqWAgr63tJ2DbozqK5a9jXGUXLEL2eWMWBEsYQFd9MjrSEsM/4i2K7BYoljpN01tCuneJwCpVO4fYc0DaIMyjaY23tUoymuQ1bZjegjYYk1/ZSKahdVZStTHbSqiGa0KNfRdpaUGzxVESD5hJ8SPgT6XCdzmmKIi0cbxaHvWEjEWMgEUoJxmIgCt92ett+hWocyhigFSiTHQIyZECqKq6RcWWoVD6onKa00ytR+Y8qVtF/E1Imkbf3IOnOJqdkUiDnhVDX8PfRdBclKQW+tGgFKQhXFC1VUVWuG1X0gs3mf1Pe4sugEfMycLiNKadq2rf1dgDc4yevrv9znfM2TfUs4/1rwvQ66r73ma+W9l2Ptm8e9+Qxf3ll3wVKu4YygEFXW2k29ahIbtG0opsPTcBo+cX4+8X2Y2B0O3Pz+e57+7UfGxws5CLJQFcd7VQ1plSOXyDIOKJNo1IykCMsAxpHSDnvzG7rvjsBC2c/EMtW+o2twIVGGgEr1zF6UIpaEzhFBMKrg2jqCpaROjjTHIyPV7nx/sFhvsc8z83mEojCdpTnuybFlsgpNJk7V58VqcK2pGbNTuOOe/uZIcl31j7QW3B7tNFlBDDN5mbl8+sTyfIJYm/9YRQiRoBJJFzKJtu9xh552t0NUoeiMKIjzghhBpZqrjNaUFHHGMJRESp7WtJjGMOSFKWWGaWaWjLSWcYEmCF3fEH1mTjM5bjqy9RhYyFwbnav9nqw8V73VmUqtWd+AphIB1pPJRtVIKZGVomkaVOMwjaui1NpQncdYa8LNg2dT31sDXL2sy0K+ku+rV8q2EShCSpzHmdkHuq6tA9irOmTKfwe3dru+lQW3738tMP+anufX3nPjKgpff931hbaqdKVivYKlVgu2jcpXXaw6inUE7VBSUUgpC2IDux/2HH57z/PPj1XvJQoGgVQIk2eZMvbQouKCKoLxGZczw6dnKJbYCM1dglu7OktpXAhoEqa3aLUnxTNluRBNh2lDtbZfqvuzUqvFQJgwsYGUaV2HT5kpelpr6nCwKlTfjrp0UgiIgFaGxirm8UQhEdKMYNGtZr+7wd3f0ewOPA4ev8zs9ntsv8N7TRifyU+f0dOZ4fEjLANODNJYooOoFdI4CEIJEWkMemfACalk+rsD6MLihKYISTxh9JUaOWf2ty36/h4dzuRZM4TILELjHF5llhCZToE5ZwLCXTbE4gmlDlOXUEW6lNrKqdW/BFmVG9aSZlW+K2Ub4laIMqt410YsyhhjuTnscV1L0bXHm1LidBmqi1xXNXKRLTMXVK7OdetbXVs3Ra8ZtLDWnBt6nClKMYfIeZpBNI11V9vAzJdl4tvrv0xCeD3f+fao+2sB/LXX+hqSe30uf81rvZoKePW4upPJq4xbvyqt0a4hK82UC1oMxjZ1CkKNNHcdd//8PZ//8pkxnVELUCJSFHGKLJfI/ngEFRBJpDEx40ljYBgi7e/eY01kUhdQGhVBFgMGrNuRlxnvB2yxNN2RwSwonRGJSHlREM+lEGMghYDPgt3fYK0my8AwTYTLGeaAQgjDjDGmqshdZppdixKNcw7VOpp9h27bOpPZOHANRJh8oKHgmhZlBPxAGk/IckFLAlOnN0qvoXG0eofpb4jK4MeRMs/4GJn8gCjBmIb29oC0mtY4dOP58X/9iXE80RuHnzKNaXDGcJpG/BKraVHjUC2EtrpczyHx8DDx8DCw3+8wTUdWG01Tk2OkpAglwSse94Z2b1cu+erXmaHaxQu0Tctut6tuZV2LNpYlVguIxQshJi6XEUmZrmtomqoXpNZsvf2NrrTWUrWD8tZbX1kRVSqlHpkn75kmT+NczeqlDn8nMt+Gg/4qUekvwZtvAT1/DcngW3XrVwNva9WUQsnlC2DoizbNqyOtbL3O60hZ/bodd5Q2KOvQTYvPcJ4Sw5xY5hm3X3B9x/H397z7P34gzB4eZiTW9ww+43winGcwFX8LMRKWqTb9feSohTCfGIPCuR22ONSYKTpCp5nmzDRFwnnC+KpPG2OqKm+lkvGsMtjGEnJEKVBdT3NzR1aQl8A4TUznM84LrTHMp4HGtRVBjBDGiAShxGohYJoG1XecTyfi88Ld/o4Pv/ktdjijnSIrQdue/ngLBPBn1H5HKNXqLjmF6Xvc4T3m9gOlaZguJ8LTM+mSGIap0tGiZ9e3gEWcoRWF6y1pWMgBlsEzxonhaWC4jARf3bKN0ux2HUhhOU88DQNaJ6xAaVpEJ2IMlZyvW8I8EZYJkyKbXEzJ5cq5Latw+cabTcFjlKLf79jtepqmpeu7qi1LrQuLAt01WG2YfMAvkfM4MYfI8WZP17oVka1YiFIrKssLKLphHa+XtyhFTJlxXihkrDVYJUip6o6pVJbXt66/yp/za6DNfxpcX7m+BSh91ZohvxT8ihWZ+2rdyrX5XDeJFwRtPT28vLZSKGPodnua7sD05Pj4aeL9pzOma2n3e9oPB374v/8b4iPjv38kPo5VICoppqcnLucfOb5vsZ0jFSEVsH1Hmk8EPyFzIIvCKCjTBf/5Ae0Kfm84P57QIRLHieHhxPg8QsxoZdb3SIRQKA5Kq1CdZdYgxhJy1WW1bcdFniq4JZqUMssw137fHJmmiPjKLrLWkIGQMyEV/Hng+fHEvttzuD2A0WSrScpRXI8ylZigdjucc5ScWFKgKINpetzhltS3KCmYlOgaAecYp5nmeEA7g5AIJJay0OwdfhyZBw8LzHNhGT0iQtM6fIacI9YKnTWYeSKWBa0Vx32HUREnGe0UpzEyTwOX5xPTcKG5C6C4oqO5lOuerFTl1jZNww/fva+u5c5dUVYjQI6UUgPKaakjaFTCxWIz07QQcubhdGEXHLu2wa7USK3Vuiqhbv4ZkTqCV7b6OANK1ay8LCitsEqRYs3mqWTGEBmX5Zvx8leJSv9aQG2MoV+rIV9nzK/Ohr4FlHgLCv0SgPra61RRrxW4Kltdsj59RddEGZp2R3+4Izx+5jR85NPHM23vsOYGsz9y89s72vCPLPs9pz985tOfPrGERDyPRD1gmp5WHTBtS3voUZKZdOTp+YG2v0P6IyZr/OmZz3/4XzSdo/ugmE8DfQjkcSJeRggRwdRaOUNRuiq5J3Btg/QNyRm0aygxkFAc798Tn2fckmFakAjjZcBZS46ZZVggVNqf+Gqa45qW/a1i8eB94HR65tje0rqWaAw+Cz4JVgzKNCSzoKyrmXscq5rB04Xd3mN2O0zb0RwKyheKdjT7TLfrUGSyJObpwnk6gUpop1kuIypVu3kthqYRtO6wCOd4wS8TtjtwuOk4Lg03dx03fcMyLEzTc5WZyRkpmrDMhHlBAdbWAYEiNUvGkkhBON7csJweOBz2qA/v64ifyFX4vOTVnmE9iur16GtqEYlpHUpZpmVmnEZC8FVI3Dr6xq3DFK91amsF+eLgXm9OuTBOMzEl+q5FBLxfmEJkiZHLEhnD36iEUDIr036tAV9FzNugex1crwPpa/d97frFkXi7/Vuf7Svvv92+keNFICtNKZnCijIrg7getd9jbw6Ep898+sOZXVb0pWH/w4yWHc19h8rvyVoY/Ix6mlmWCYrh/2PtvZsjybIsv9+TriIgMrNEd/V0z8zuzJJGfv9PQpotbY0rq6urUwGIcPU0/3jugUAWsrqmh54GSyCEh/B331XnnhOCptUdURraww1+mRARXBBkoWmHG4SQxPFEnk64dEvTeroAOkqmtZCTRimz5SaBGAsuR+KauFEaeddS5EAzHGmGHu0iLt5BEei7R6zzODchZWKZV2QZaKQl5UwIDts3yBiRISGlpr/pYQFtLT5FwuJpjm8otiGtE3F5RKSCMR3EhSwzWbWQJZweKA8PyOGIPpg6FH08sK6ZojQ2R3IKSAHaasoiiPMKKRJFxJeCjIBQDMcBlwKiZBpjiE6yxBWJ5fa+IesDt0PHoW0Jg2FdI84lCBEtJdborQ0ia5oi6qSOEAKVQRXLzeHAx8cPGAlW1yJa9TLpQm0jpajzppeIrFQuP1GQSmAbQassmsTiPS5QdVxJUGIVxFUVh5s2jRdKxTbHDFEqphB4nFd8Bp0jfnEE55FS45PkHAQx/50SgPsWIHbjucoDX7Q+/kb/8reEvb/wivtr1Ru57me+9rwv35fYellFSkrZdDVEHf+RpsX2R5rhSDx3PDw8IuInXIj8ITva5ob3P07EOXCQhuHtkflpQRSJzIpGD7RmYCWipSUpTymK4909tz/8ntzdwDLhcyFJg1Sa5CN58czzRHCV9S2nemFDjBSpELbFu5nT6hAxc9d1mM7SdIaYMr5U2b/20KNKpohE02hOT1VS3jYK2xqEatCNJojE48NHGi3o7u4pOTN0DVIVcnAIv9aK4/wIp7+SsGijyd0BZTXSDEjjSKMgj4GUYRzPJKO47Qe0kaRQSH5lHZ8YmoboIzkEZKiA9pwSicLiPIehQzQKHQrkgpSFvm8wrUT2lsO7W4Ybi1ESkRNta2n7wjRHilxxcxUyyjnVHmZKtZIvEqKqIZJzxhiztSkihYLSdZnnbXIHtrIEZYP71fxTbbOYokSkkAytwVrDuDhmV8WNJ+cJwdM2thbdqMwJlKqrWoQgUvAxMc9LHe0rhbCuaK3ohgNCGZanmSLrZvm14zdXayvi4tfzzdeKRV+GtK8Vj341JN6+yWtalNeKVNe/5704wJ6A1i1GSolWmqQbtOkRdkD19+iceJg+4X9e6YYVg+fnnz4yjyO/f/MtN82BxS3IpQ47CidIYyTJQOw8OWaCUNwMPVoVQlnJAtp331OKwc8zznmWx5E0jeATMSRiqB4kxkjRYIeB4batvDoHS39sKjl18YzTZ4o/Y9tE03es41jFcSQcDj1kgY8LyhqaYUDbqhl6Xk64vwZkcICl5IaQAjlI1s/UoYB1QrsV2TUEZSlWYzuLFRbBgLy3PJVHQttTlMKtM0vytciWPTnNxPnMtMwMbY/OGZMEyxpry0lXYacoKwtdDonGaFa/UlrJ4TjQvb2jv7/BrobgFtwa0EqjhKYVDS5XSYosxQVcklIdH6vGKTd6mkRMkRgTogSEUFd1+70nCSXVaOqafE5KWcWL2NuiGSsVt0NP12ameWUOnnP0nP1KZxsOTYemDouHBElULqJlXVmmmVYruq6n0ZWAHGn5dBoJKSONqe2+rxx/B8HX12lG/paH/DWwwtdD4l+2Wvb3lPO2sF/JQS9hrajhC3m7AKoSTSvbINue1BzrPKO2dHct85KI4xPzeGZdR4p8i20MgoLKihIFjz8/sqweddAYoQjZE6VEKkjuiRgNSVjM7R1IS/zLn/HTTFw8KkLKgsVH5q2/qQqbN3Acb2/phpbb7+6wurA8faLERJwesdlT5pE8B+KybuX4wvHdgRgl8zjji+fu7g22t6gSCY8RwoqYz4juDkgIkZnHMzIEettRVodQPaZ9gzMKIR0yLoj5AZxFy4bh9og+NohBQ5l5ev8TWsPQd6gUISx4nzlKjc2FrmlZxYKSksMwUPJIjLFO3ETwJVBErgyDjUJp8GFFa0nJGm0OlKKYllQLWgiKUhQlUUZdKEHqBixJlSj+sh6VUqisiKWqSD/3vvfG5TahsuEA98q/2B2IKJATSIHeNoMqA2n4PBeWeSH6ieQjfdOipSIgcCmzzgvTeUQrzd1hqFzAqlBQTL4W/Sog4ldt87eCEK5S31cM87Vq62uG9mtIodemU/Zzvva4/bWMMSzL8rzz7c/Z2iiVrlCQpdjET1UFJOjaVI9a87B6hIu0oiVZTZILb9695TwWuqEhTQGVCkZZQkxEv1JYaEvLY/hEEon2TYtSieXpL0TboIa36OEdIWW0sZymz6ynmWZDuvgCJw8UicoB3cCh1wy9pOuhMRmVHWUtOJ8YlEYBTx8eUF7gzzNIMMcG+oauPSCWA+t0ZvjuDts1pODJOTC/f09ZZ+Rwj+17ZFpJpzPz0xOImZg14uaIFF3V+SDD9AH35/+GP2eW1MKx53D8Fps7GiJrXNACVKKGqDHg5oU5V2HY9uaAnhbc6FAFtFAoAVop1pyY3YJoCkfbkUSmigVWqXdlDALJ6qrCdZIStCHLWFsZatO7pBYBa2RUQAqUtFjbIrVCZr0JDNV2i1ACI/VGV1kLQVK91PgBQSbjU9gqu4oL1E5JhG5IokDMzNPE56cnTnqm63pQmnmZmacJKyWHoafVCi0KVml8hnlxhFiZ4xEF+3XC998S1r7sb15FCF8PTTeExC9u/zcez5MwXCTvr73vvinEGC+UEft9RVT0heCLloqUaGNQjUV3HaWxzCWTgucYIqm94/aHP3DXeG6nG9wYCOMEMWFtj1CJ9eyrKO6ScdOM6RV3f3iLCh43PsLQ0rQdQniUrrIBfnKMjyNRgDCCxSfOPuFDxhJ402mGXtHpQBofOTMxyG8J0pBkR//Nt6QAbg20pcLMmkHRfXMgdAa6A2LxtLOkHCzsYr/nE0kUYqlSCyiFNT3ajIyfPxISSDS9MMiupde3ZGNISbNOK8uHjyShUfoNcQKpDlgheHc7QHFIMjFnetswrSc+P72n0R1vf/gH3uZv+PH8I+N5xlBVwckSNXSkOZF1QPUWtELZtgJEQkAoRYqJkCGkwrIGptmzrIl2C2XZNjlKBRyUZ2fE/d0bftYWFTeUtgAhCwpVDVgpgg+/IEzf15cUlZUCqqZmzrEyLOSEzHAjDc3NDSdteP/wwKfzCeaRxjQQM1Yrbo9HOmswkg2ul1nWwLw4fIjknLCq0Ouvm+BvRwhtceLXPONrs5ivHa+OiP1KzsmLjOGXz9O6Ulx8aaDX77ui+CQqKeKmoaJ1g7IW1bbIpsGPMDtPVIr+7g5Vzry5HfAzPI3vWcWPxOVU2XClJLtElIH+0GG1RkyZIGYaA2n15PMJX1rWMTN++MzycCb7iLAWIQ0xB3wslWHeNtwcW4wshOUMaUG2EkNCq4ZFSmTTkRSY+3cMpkeUe2KZKAPIQ0NWFpREqkAwkhADrTSIfkAfD+RcWOaJ5nxm+OYth24gdzNpWYjLGffxTFk/07gfkG/ekWVHHr5FD45OC8xNX1kE11roEjGS3LJJIjQY03Dob1jcxDrNnE6fac3A4XDgvI5I1GWT7G965jDhVAStmL3HZFDSoJsGISCllUKlpAwhEWMixYxfPd65qompKuDkIlyVATLffPM9+T/9H/zX//x/1VnVF6mYQGm1jY69XJPP6VbeeHVrblpd9AY6yFsxCzh0HcJokiicxonsPYem583dLY3VGFGZWUvJrN5zGmdcCKRSkGQ6DQf974Dv7b3Oazjd13C0+31fhrKvHa/1Ka/P/fI9lEuecOFkudoUtNZ471++LjvlYdnyilqtCz4SY0GoFql7tO1o2x4vFePpzDJP5JsD4zxzsHc0b99y9489f/1/fmT88890ukdbg0WSgkdGQYNl+TARJrj5rseJwvThkTYPpDGRxoX5aSS7SFQGkTNSKo5dS9MaDjpjZWY6PRGbQt9omraphM9GE0xPaDrkzYFDq9FKUOKEipqgHLQao1uUgqgrciausMZMFJLYWHQpCBeYHz+jrEaXwjC0lEbhLaTxETd/Ij0qTKPRbYu5vUXlqgImb27QfYNfZ6ZzHcY2AlIQVdY9V7VqiiA4j386UaTHCMnxcOR8npm8rxJ8y4LPie72QHc4EIpH2pZYdGUjiIE1ZFKCvHEASdQmhFuZKvZVkqqQJjknYqxUn1pb3rz5hj/brq6XVMVxuVq3O+Pfvlp2D5r2NtxunFe351Jq+yVnYgj4XBkHB2NJJjCYhrc3t1ir2bm+KLWqPLmFya3ErbtqlaA30Mn4qh3Ab8o5rzwdFxvZoE/wmot8fbTr5bA88UoAACAASURBVP2/fJ2vedBd9+Lqxb84lzHmF2CImnduWEi5s62Jim3MlQZE6x7bHFhUg9UtJaws55H0xmKVQTY9+vYNYVaIN0fUwwMKhRUNjTQEryBl1vOKkqBQpAnc7HAqou3M/Glm+XyqhSNRJQYshpubWw6iIPOKyg4ja17kQ6HrGkzfI42sULibW+iHGi7fdMQ0EZdMcgup1AZ7BehHosgY1dD2bWUwcFW/M4lCLwQpzMyPn1DS0GqFaDV6aHhUEuYJKzJpPYNwtCaSbu9xosH3DUWBNGDtSiwRXRTLtJJjQSRRK6NCQxaIeeXjwyeC15j2DtVUwurFr6zjCTR0hwO6bbFoYoLOtBRV51edrzoteUOAia1wk2Nl39tEwS6wTiEFaIVAYyU0ImNMU4WlSm2ZsKGIUkqbyFBdQxs2oRaSRFV324HyQlZeoToZk4ml4FO48B+5aUX6yDfDkaHrMEpukhf1CCmyesfT+YzPEDbxX6MFjRTI9Pfqc6ZcPzT7cKmoFGJi7xPtFvJsSLWS+jqY/WI0PLMX7B/j4kerLPHltEJuA6v1yRfqhyslhku1LcVYCwCXTUVsZ94+g0hoo8iikLJAKYMwPaK/QfYDfTH0piGWxOHtEXN7h2oP6JuC/v0d9uE96XFFFlk1O0om+YRIosLtgiA7yXG4Q5XC+X995uNfPsEp0FqN7CpET5eCDKkqZ4uIVp62USjTUUQiS0jaEkyD0pn56UdaA6r9gdAOFEId+l5XhFZg7kB3eP+ZkBqsPSB1gxGaEgK27cB7hFGUvCBzhzAtU5roDrccD9/D4R3z+ICQiRInyvhAkIWiNvB5EUyjZ9AWYwZKTsiUkVrgfCD7AA6KD7TNwLzCOK+E1dPEEdO02MbyNM1Er9AHwRRcfV9DD8oQS9XYFLlgUfhcqUKdDzyMK0sQtF2d50xlA43LDEUhi0TKStiFblEm1PSjxEtBJ8WEErou41K1YKTcGCSg8hcLseFn9+VTLiCDshVwBQpKIgaPEoVj12KUQaYKUBCiqnWnEPHO8zhNPLhCURpSRAtoZOVa8uXfkXOKK8N8/v26vSJ46T23OcqvHC9Dz+2ZAsrlzM/GtldcM+VSApf740SN//PWVpFi56zdaSKrenEVY90AFHI3+oKUbPwyBtN1hK4jL4EYIs5lzpND9I7uAMPtgW/++A98+PHPrKeFHD1GNshG4n1iDR5BwbRHnp5GmBTj4jlNK9ElDqYHMgbBeB6Zz2MlINYS2xeEqSghoRVCSXRrqtEpyTg98defPzJMK++6A1lZ/NMj5eE9HRFpDwTdIeyR9iixoa/ff6qfvfiAFQqEIYUKr1NSVHxx0yK7HmMP3DRHVNeynj6SpxH8ShSZYiqPbi6F6DzOZwy1fRVTRCmBUpJU6kLUWSCCZJwz0vTE9YyMmVJWlnkmuUAusgoDyQpA6ocDNA1C1RZJpI4LBhdZF0cqAp8KPhV0ChVRlepn2Qt+OWcEtU1Vsa0Vc7uvOQForeqIV6lrNG9K1C/GD4VAmrrWUkk1vBUgxN4vr04rxsTeyknRIXMNrYUGoRsEAu8947ry+Xwm0FKHtSOd0bSKypT4lbTvbxrndXP/RVXrGbBzKWmzV0WpCfCXueF+jv34Whr8ZT5byh5i7HnG9uKvhMI556q7UQqI2mQu21P27aV60K0oZAzWNsS2x5sGnGZeI8tUlcfitOCHE4fDG7774z+R/8eP/Pn9E9577u/esKzusovm4CkRFud4Wlemea0SB7ZFS0EMmRxyNRpRYW5CSawRGF2IZUWSMK0Bq3EhUJaFsK4k55gfHvHnM6Y9UOYJN54r95HWVQJdanR7xIeMmyaaDekST2fKEikugC/oVlOyrGiWBG72LG7EDLc0/RHpVqIcictEdAvyaBBdRqqIzJ4QHLnMlLIgcxW11Qb0YChLQYT62Y53hnVyzPNCiFX3RWmNkLbqwWxoJm0Mbd+xpMTqa1QiBAilMG2LmgMpx8raL8pGOxIv11NerSUhtvnKIipZmXxJn3Wd8iilahB4Wad1odTC6oYb32Y/dxkFqQolZZxfKVkgha2Y5xRRJlNyIIdCVBkpFJNzPE4jS4ygq2BTazWtkYhcqUp/rZfxq8b5a7ObzxQMuzFtuwsvZzS/NPCLwe2e8ZXC7nXPcrOt53OJ612hsON+xYsLUS6GKAW1ZJavvoat4VwN1GKbjnY44sKMzyvegQyWNM6E4wdS39Lf3/Hun/+JD//zL5yf/owrGZeq+Gs/HFgen1hmj1eSaYqsU6IRDcTCtJ4Rsu6kAoG1Bm00KQdyKhhrsI2ETqEOlmAhR4dwElUKB2spohCfTuj+SCs1HokLCRsTJYe6SFxBlYZeFdQ64Z+eCA8npAskF0kuIZE8lROD7VHCkEsiyZWoWloNRmlKhvm8kL2jaRN5dUgh6HQhRU+KCxlHxgIK27YbtWTgPJ8wwqKMZloXmqZlnR0ZSQoVPVNIl7xEG1NpQkq5aJjkEHHes4aIi5l140JaQwS14IKvKB4ukilVOv5qXW6jzJfWSF0uz+tQSnVFXQKI6q0RFY5XqIW1qhxQp1dS8izrTIiBvr/DmI6SBN6dkCqTRZ0Hdc6Ri+Q0LTwsniBrEdAYTddZZImQE4IKHfza8ZtJpa/pRPZK6LPlXBtgeWGQ+5dxfa7Lbbuxfq3v8vJNXP6/3iIupEobpvJyv2AbzaFCvL54DSElShukMghtMd3Aeq5M485nokuUZsXNAb59h2zuGP70D9z8h39kfBj56fMnDJJet7RtizOeyXuCVsxrAKEpWeBDQKm4QdFqj9X2DVkWSoq0rUWqjO4k7Zsec9vjRV1aOUVKynRNyzh7Pvz5f/JN39McLGZ4i1YOcqYlYMPM8jRjzBuEF4wfH5g//BUdQyUfWwMyC9Y5sMaMOi6VvV3WYpqfR8Y4odcz/vSZdR3RQpBSQKUq01BKpMQVrcCXOn8qpSVnRdEC07fIzhM2MurhZsDPAe8jyZcKCM+FIj1Wd7jk0CmA8xStLkZShGDxnmle8TGxLI7TNOERGDsQQyTnsvEkbv8uyJ99dOx5fe1R3e4xxfZYIVX1iuydwu3xqhJQy139iKp5Uos7CwXB7d0d3333Rz5//MCf/9d/ATEjVEOKcBoX5iWwLAEvNKVtkQWkMZTt9WXRtS3zK8e/mQmBbeE/h7iFl755K/hcqWK/ivh54UX/dgX3mfRrg2zlzai3jaPw7I33SfPdq+7N6v3tSSlr4zsrhKghobQtqhvw08QSI+M003aJZZxZ5yf62zfI2wP3//RHyuR4/5//X8a/PoCTdMWjrMGNKz99/MjqI+/u7jFKE5dlE7fJCKkppeC9q9+8yNWrK0UsHmEKTa/R2jJNS0U+pUyrG3Kq84zBL6jSobpbhJggT4jzA7gH8vuF0AniuvLpp/fE6cT90FWmhBw3iXMLpTDPE/3NG6SCdTmRciSnmRJmkB57NEhtkI2uBRW5YZb3CRDbgWiRosHNkeACRUvaY09QAYNhGddaMd9UoJVSuBjAZGQjEFrStN1G11GNIIYAm5dRWiFlLeLJLX9KKRF3rN4v1l/ZsgZRKxW/zMKqQtiGWCj72qgL+gIDlUKQ0+aR60MreddGYymEwFpL3w/E+8iHjz3zvBCL4GFc+fD5Ee+rlIPqWigKlCIUwexCZUtUEiXUy4jui+M3cwi9cu/zaufZW1bv+pL+ckfzvDDMS7W2fjl57y+9YqT7l7Q//oUnpjKnvXgNIS5UEfuXWZn25RWjQn2fSlmUbki2RfcH5ukTS47MseCSpsyJD395z3f6Ft0c+f4//sCgC0Nv+en//q88/Je/wJoovWZcZsiJH373DW/f3qIlLKPEr9WbpBCpsrG6wuRMLUqkreDgwoxYFe3xDW3XEWPiPD1ihobh9gahGoytA9RSW8gOETzh9Jn4sDL+PJOalbv7ezrTstgeczhQSqCY6rls19OaTCyJkguBjJKZVlYIHUTkoCndDUmqGo7KSEiJklPl6Gkspm1QGIqv+0soibLlUFLXT3k89IxpJFpNKZGYMlJmmtuG9qZluK0D2qdxohhDzIkSM4rqPZVRNK3h5tgxOV+/R+8JofLTSgFF1utca331OudUgQdKbTSpGxfIi1Sp5Brl7atqKyoVKgfQXjyUG7AlJQ8UjNGsa+Dz4yeGm3uc92SliMLyOC58epqZ1grs722PshYva7smpcwSXQWhlBrNKP5/EDL6Ehe7gxN+7fG7YXx52zOyYTfW5/u/HEdDvJxI2Y11RyGVUl6gg8qV0deqXXmuGBTqNlhqpU0KhbENTddTQo9qOuzhjuX8mcdlxTy1vPvuLSpa3OMnxCHQ9x3H//gth4Mi4XHnifmnp02hK/HNzZE3h4bWJOwgOb675enkOH2eWZ8cyQeiC3TS0vYN/e1Af2vJ+kwSI+tyJhWFag4MxyNCVQrH4XBLP9xAo1nmR2xbjVNFTzo9EX4emX+aGcsZ86d/5Ls//IE1vyWlBbd8ItpSGc2PB6wKODxSVQ1OkMTxkZgCxgi0suQikcoSc8YnTygBgMa2lTlfN4SnmfW8oCLoWEgxo6XgtC48LSN90yNEBiKNlYiQOBwNscmYoeF4f8MSI94HJDUvjD6y+BUlwBjJMDQUITnPjtEF1pQqIgjIolwYM/aMs0ZK9YLbbRzrOmrbB6JzKRRCLVKJOuFSNq5iKZ9DbCWrQrgQ1etaY3Eu8PD4qWJ+pWHygccl8Pk8saZM2zf87u1b7g4HUio8zjOjj8To0bbQdw3WdnzyJ6b17wQhvGZs1ZbEltB/aZ2vE3ZdeptX7AnV6LiUr/eQ9cvXe/Zzz3lBBTtXT5viFmbtifUl3xWXSnIByC+1PPf3YYwhGos0FtP0tMMblnliciudkxzXjuOhIY4T43xC39+QrEbewPH3R5rvOtbzGTnDsWvpG42OHp0TUin624bhmx8Q9iMpP+I/jkgEWipKLpjWcnt/RyCz5IW8jVVJAcpobu7uyLGg24ZkFb548E9I1VOyJzlHcZF1XBBR0slEXKpQTnu84TQH2vaGTiy4pNBti19XQphZphF1GGpZ0ghkVuQQSKnGctq0KFUQWaFIlCxo9IAwHT4K1vMT86czMhY6aTEpE9eIDIEcq65M1/RoObAsVVRYWAvfWO7evUFZy/K0kJPACFWjAp+RSJSqVz6lgHczgso2WEIh7Qa2L4zyHLnly/UVWNug9SYaLHa+qed6SAieECNaPzO272tvlyfclDFq1KUkTWPxPvLx8YnTuiBtx7xEltXjNnD9ze3AMBhaU1BWUrk5CyELQnJM58+k9lhJw8rfyfi+l5ef/85bQUhcbt8N4fo513R/lc/l5Ru4wPFE3edEkfzS0L94L688IpdCTmnjFi0XHcZLOpyvTF6U5/OU3QNXjlupTM07dYtuD9jhBu9GJpd5PC8oE7k7JoJ/IPm5guT7hptbxfCt5dOHgkahBRhdkHiMrNC8wMJw+x2NO6CdR4yecPL4NdEPBgrEHMBW41AKrJWsbmRyY0XRKItUgeifSEukiRGZC8I2iGxAGGIotO2AGKpg7aePP/Jt/6fKhWsN3TCA85BW3DgxjZ8JEZpBo1pBCq72kIWklLTxqFe2Qq2aKgJbJFYNZKEhOqTUGG1J80xKCzFk1mWlpEyval+1EChZEHOgGMHh3ZHmT99x8+6Op9PIw8MZ1QwYpWmaFjcv27WEkmtUVHJCq0oHGlOqyt8p1YFzcs0vi6weVdQ2hlAC3Uuao2J9iig0lEwuG5RPPoeTaYPhKbUZcM4gq1S9kLJyzAqQWmJFJf0WZ8nDaUKaAkITUyWgfnszcHtoUSUSXSLkQo6RQ2MQqiMkyepX8jKjs6Y3f3fOuaeHe7FlM6gN/X/d67w2nesi0GtjYntuuFPYP0MB99etf11GwL64r2xD31IpjNaXoVuuds16yC3l30fa5FYWBylqflGBCwalW1AeVMD0t/inz5y9Qy9nxJNGibZCux5X/PhElImbvuWP//IDqetY/8eEjo4mrqSnFZ8WsovQtYg8Ib+xdOIe4RTn6SMx1sn54BzLWlDGgRJoDb3NyFCYfIAgidkjlUeVjBzPiFWQbeHw/T3CZlxzImmJ6TvUW01yDu8fkeENb4aGx/EJWRQ2ReL8gH86E6eJrpOI5ROiDBVdpRRkRUwr2ViEMZSmo8hcG+xYPJWtXNiAvukhRkosxMcRv1TF6pAKOgdKgHX1VdxXAYOh+f097/71XxFZ8PTTI/PoaYvdWNMlxipstOSUWUPYQO+RGB05B3IxlWcpl2qUZAQJiq7XucSt3gA0GXUohKdACbqyt6sa0WRZmftiiighUfJKxb0ApM151EhRSYVWkiIy2khM25LPkRAFSoEoidvW8uamx8hCjoFlWfA+0rQ9fSsRSjLPAkrt4WptN6mIv8M4qwbFxSy++qi/NX95/ferz8/5uX/5lfOWbafYKRCVrHMDKVVemErXVC55KFeghUv+eenN8vzFi4q3bduO6FdyMtC2iJs7lsePzIujFRFnoO90FbSRLZ9OHwip8M//+79w+6f/k+k/eD7++b/jPv6It4niJ1CZ4B3Czbz93Xd8e/OGB2f4b3/9TPKBlDzrHNGzwdiC7mpPznmPMi03TUcWCp8huoS1BpE168MZlz8i5cDxXrP4ldgr1LsbzKBplpUwLsx+IakN9KAkbqfO8Gsds8qFZZrpTIu0HSFF3OqI3tG1HbpRFBlJhDq0vIWEyiiyLeiDQYYGvywkUVsFGsEyLkwuIFNV2o4CslXovuHmmzcch56ff/qZ6XyCkrGNxbS2DlGLCjiJG6NBDWHZWhvVuwoh6mRIbXDyjCXd0yOJkJIQI6axCD1VvtsMqlyqSJVO9OKA8mWN7AiiwnMqZrSuG33RZCTWekoOLOtKaw2dkvStqeLFCpxzuMVhmw4lJcFXdbQQPFYbGlP5cFP4d+WczyHsxWC+dFDXj74CK3xteuVLkAK8rKx++dzL7zt1fYGcEmVP8CkgyyV8rUWC+sBLseCStNY3LjZMpdQakWMtDCiNVJosFLYb8PPEMj0xkzjJCKml6RqE6imyozQHkh1o7r7D3AyYb255+p+Wv8YH9OIRYmuon85MViKLxvsJoSPJR2IRpAQpCXSRte+mDT5EpI/YrqkYmJTJAiSGRnXkOBKnGffpM53oKT7R3h6Qtw0uJYS1SO15eHygWerC17peF2s1eWiRpiBEJWmmVIheTHnjtVFoKyjFEaaRHNY65qR7hOo3lI8nphkXRryfiCXRtQPGGs5zYgmu4myNoqhafe2GluamZ50nnj59Yp5npBIcDgNd116ImXf9EaU0UiaE0pWkWwoa3TzniIWrqKuuqbw3z0o1EJ8itreElCFu2Nuc2AEwWspnnHcpdTh/r1WI5xRMUgEaqRSUkQg1IkTGqowunr7pOfbtRRHPO0/btDRdRwFCWIkh0LddrQCnjHcL2f87C0Jl7yVtOWgp8tIX+tLofq398jUvmnew+yve80VL5nLjFnKXspXO06XJfL377e93e9dXJ+W5QnxBixi6rqeUQAgzWTfY/sj0dGJaPE2GVjcYqxDS0g73mL4n6ha0RXY39L2i6RPj438nvp9h8eAz8bQwRV9zr1Mt80shkaKK7qAb0JoqbmIQBGSRm+JAxeQq1WAxxOzJISNcZPrrB4zvyHhkI5iXBecjVigabZlPJ/w40Q8dbd9glSU3IIpEGUMstcKcvUeoCo+zukLilHQs8wPraSLPM0hB092jO5DeE7MjnE7Mnx5YH2d0NEQNBUlzONKFQhSVoLkgKDmiuwq+GJ8e8euCIDEcjvSHFiEzyzjhl5Wy98ilRPhYgQvUAo2xDUptjIp51zCpVziL59SFUtsgj+dHDv2AX30F8m46Q5RKkYJ4xmXvS1AIuU0ylQuhuRTPRNIlVXK23mqObYPKmdYI7u+OpJCYnk5ALTbuFeIUElYbrDbkUotRohSOQ/9Ve/mb4rm1uFOg7CM2z8Ei5Zce7roV8lpY+5vC3Kvbr8/7/OrwXCJ63vUuXvhLSXDJNk1Ttgy07tBFUFXItEYmU6F8toW2r32tAmY4s5zfc06B+5uCFJrD4UApFtMZ5tXR5SoBiGnQx1tuf/c9k3tEGYcSGTdL0hyJPqBTgxYWnwMlK7KwoDt022M7UyuaySNSgFSB3UZUipLsAn5eGZeZUgR5CZzXqQIDbluk9CSfGNeR4lwtmJSMLxkrJdoolrDWGUgUwUeYPVqfMDlhGgWlEnal1eMilbDaRYy1iJwo3hFjwIcZpoV8XklLgKQ4u5VQIm03cH9zC0fB58dHxjjT3xx58+0b1mVmmjxawe3tkabtMVqSgyf6OkS9X+NcqiR8SJXEpEhQ1iCU3K7icyslX7VT9n24OwxgILAg26oAprCIKC6PKQi0klVikHJhVZCiVtNrCF1H1yrFjcaHWpC6HXqskpWgOiWWeULJqlx2OBwqHUmqHEhSK6RUhBCJsXrLvms3gurXj79REEqvggJyzhvT5C8pHr78/dfy0ctt289rONwX5y1X/q9+g1c90msofeZadWz/2f+JUq5ura+9e0+lKqQvmZZiM+3tG+b1jHOex8fPNK3hzdsD8xjIxeOVRg53SNEhtMbojpt331FOf0XYCa2BFAjrCllQaFC6YHR9zYIiJYmSLU3TkZOjyExaV1JwaKWBgNSJEAvkgLCKlD2qKNzkEUXSNYbyFInB4+YJUxJaiUoPaTU5JgSCFKvwbEwSUQzRrSxPj7hloju0SOUAT1YFLRuawwExCJQ2CN0SS+XYyZLKjGc7slWsY9XITKJuArjAvC4kU+je3PLDv/6J+2/umfyE0QJ96Glsg1s9MThiqRqjJdcaQgwZn0UNtYUCVRBGIrShiL11vTkGcXWZ9xWQC1Iq+tuB5fQZ2xqSvzyx9l9r2bYC5Lc6hKRy0e4V/b0ouUdnIQnmZUUguDsMKFFIMRBDIHjHHGdAcn97x3kaOY0jqSQOw4FlmYnBk0KsLbwcn8chXzl+k1ZK/TAv7uHah30Nevfl31/NQa/O+ppRv3jOqx608pFeP5fL5ri3V7YWy3Xv87qQICVK6zr9YBq8W0naYI5H7HTDeP6AenxiGCzvfw6o4ml6A0oxfv5ICYWmv8d2hub2Lcfvv8M/fKZIT3p4YPUeqwbs4a7C8OIJpetikFlAzKTFk7NDxEDxnuTWigZCIJqOGDNaag63PauR6GRYgiMt0OhbxtWxTBXyd7zpULLgi6IdelAK5yIhRBKKki2NbWpoGGZSSniRaQaBbixIi2kGZNvWCjeQk6h6r9SCiegH2tIR88xpfEALSd82aAk+r0zhTPPtPd//b//Ed//4PVkGJIomVw3PUgrzHFimsdZcQyCGOmQdY8HHQtxSnipya5BWkzYPt+eNgh2KJ15cfykFplVI1RFHR9O3la2BQskRhEHKOhyRc9mQ9FDIyKJq0fCq7VYoOO9xi6M1lpvOQo54KfCiCvXWiFnWqSJRNWJTLqwxEDZWBG000iiKEkjzdwLfX/d0bO2Il/C8L4+vhbdfhpwXbyme2ymvGfF1znlthPXn5eaxG2GmXFose0j+8r1ezYZu+p1aaaK2CG0gamTT0d/dsX5uiO7E6fxATiP3xwaJrpVEYSAlEAZRemIoeKnIrUXdWXh/wn2OGKWw/YDuE2U6EaNHrBl3LsxtJkeJklUyMLmV6D2NVigpENnXZrqy9EODaTQiGcgtD25mdJlsLVY1lALWNBQRsEZjh44sJCpUSYJcCkJoRJHb6NOWY4mKeBFakqQmplqZFFt+TwLhM5o66+iUQR0GVLToU4AlkWNkOZ3wbkQfNN//yx94+8/fUwZb2zVZQ95RXdUruXWlIMgxk2KqTAixKo6FRB05SxnRWHTbEkuuUL/tYlceo+vhMbboVpBJaCvQB4PWHeOSSC5WU95ySTbwwoW6JBfyFjUWkbeQua7dxXlyKhzajs4qctr7oYrs17r4siKmiFCSbuhpRCanjFUC01TSbKN1Hbf7e8PaTG1RXHvKApeK1B7iwq9roHzt79du30e/xFYlK3BBEH1prM8AiEtsu9+7n+0ZkLCnI/WKXtznvt+KutUiRM0NtGlQocq8m/7I4dvfk36eeDovkCOaTIgNikBjPFJNKP2Z6BwlRpZVU6Lh9qan+z7xdAqECbIPqFJhZquLhBDwwSFEwKge1SaSDBREZW7vDFJEUvaU7BG5DikrKWmbFhlhfPC4eaGTB94c3/H54T3jGhFWoIzEFKrWpClobcguIUViGUcoK7avYAM6i7eVJV8USXJV7FZSWehEEqTFU1IFf3gtMV2DbFqauxuSWgjnmTzPJFbuv/s9737/ltIIluTqmJSsZNeVLUOitWZdPCFWrxJSpQJ1oRByISaYFsecFd3dgGm7ehFL3hBgattdt1yzSITIFBICgyh16MBaQ2st46dx87bmuXqybz67KPUuVFeekUipCGYfOU9LHZ9rDEZDEaraI4KYIrKkSmtSKuWJtk1Nv7YNaUukqlLZ88p99fjbBF+XQvXFfH7Rf7zOFXcun2sj+vL4GrwPeKaMuL7vlXPsoanYveGXj9k9N3sVeDPka36VvR+6uV4pFUoZtGqwJpFMwEdH0Zbm7huW8yPL00fEksgl8MYOHFRP8BmpPOnxE9rMtI2hbd6RlUE2iuPveh7er4yf3iPnz/g5kUPGu5qvmCjoeotKurK1iYAykqRAWkORCZkLpiisbPBC4pcAKmOVQktILlWBI32kNQdiiZScUUVgNrU8lyJITY4RiSO5pS5ibcmDrNIAja6KZmsgrp5cFBhbq8rbhulmR3CJZDRWVCmCxkry0RIJJNugmpZv//g9zWBZcyL6SqMpYiKGjFsdJZban84QQ9zIowtZ1MqsFrDEwOIjLETMkwAAIABJREFUdAPN4RbbDShVvW/JsLMyV6RZrRYjIkIWpGgooY566V5TTAGTtjqiJZeMYkOJATlu4BjEFt6WrSIsSCiWUJhXz7Hr0ErUzyMFQmyjhxS88EAlBEOKLdzegTebJYmNPuyViPP6+E1TKeIq5Nw95kuE//O85+5J/1ae+Vob5rXX3f/+0vgvXnsDJUi5J5TbeV/Y4MuQWGxxb4Xo1t/zRm2itMbYllQyJgZSrBSNur+he/cPuCQY50dEFgzZol1GpoQQDhEKuRG0RtXcVXbM64hRmu7Y86l4/HmlrFBSDT2dUKQc8C7h54AxIHUBUZkRRA5IlSvazDYgWmwWuJCYp4U0K/waq1cOkdO60A0tulOEnMhaEpMgx8ISIUdYfMRS+YxyjmRXUF5jhMQoSwor7rziZwfCYHqJaKuUBcrg/ISfA6VraZyDuKLDik+O5t5y9+0fkdqijkMV2J1rFbZtGryLrNPKPE4YaSilzlhqbaquytbfzEUQcyImh9SG4fYNw3CDsC3W2uqtSqIUddVi21OnSmejjQUE4zhjjKbVhaY1jNIh5fMauiCD2NKbi4MQdSong0+ZeXZQBI3Rl8hOCIGWVVipGIvIV8VGUYfLcylkJciyQgyfUUi/fvyb5jmvk7uvFWy+dvuv3fZaznr92GvjvzbUvdr65ee8hK68TEZfvMc934QNIbLlz1JWiovcoGxAxY60VYLV7Xe0WTC+Fyx5ZlwzMU30naVkiWkKRhv8ulKswBpVWeSy5+0390zfvuFh/IDzDkND2x/oEPg0Eb1nPJ0RUtL0GWEWEJ7gVqzQZCuRjSaKiPISpWDxK26UBJdY50z0BT9HptNMO2iaY5U4l22um0VzIPiZaYmsMdUQjIQpCiN1Bb67Qp4zYUwsT1V526qOrARLjCgkSjWUWKvCGoeII0J4ZKt58w/fcv/Dd0yuQve097jTvEE1FXGuo18x1JwspQ1HK8TGByUoRZILrCGxhoyyPf3hFtv0oA3amk1avjIWPHNWPdcgiqicQXZDFE3zjMGCEhSZKSohinyx9i4RWMmIbdMW29znsqwsi6OzllbrmppsOWsBZCloqUDrOh6Wq1TG/pgs2ISOdlaGbfX9ipH+27VSXikA/RoSaP//Sy/4a4CF6/t/rfIrhKj1HsTFYe5Z6GWI9lLd/aIYJC63gpCbR66fj62tIrVF2w5yqrIARtLcfUMMnuXjTzyNjmRAlYyQlpzXuoPmRMo1F/Ihcv78iW+Ge777w+9Ip8DD9BETBb2SJClpTEtU+VLECiUjVVVHyzEiQg3FdCO2MSlZoW2x4NcaeqWUiJvXiS7ytMwcUk+je0wCKy1Ne0Aly0P5zNPpxNBotCyUKBBJUXxlz09TJs2FNGeEARUVIkuiLEhtOByPsCbC/ISbPbaN3Lwd6O7uefu7b4kolrBUpM/qKD5RpGRdPT4E9ski7wPOVfWytFVkY86sLjAukZNzRKFohhtU0yO1RWiNkGorBl181ItrvdcUpKgeuWlbTucnSoAbfUtzMIRTRNOgVR2+3oczaldPIEomFUkWilgE07xSMvRNg5WV/lLWchlbDQkJaKlJ24AIu0MBYmFr9z0XRi/gnq8c/4Zh6y3D+xtx8pfPfw3Od33fa79/edtr72kPrXd7SmX/YivqQ+y76P664uU424tkXIiLcVaBVQlSobRF6ZZsYg1/ciHnhuHuLcUvjB9+JK0OkQORjq7vgIp8yVkRAyyz4+PP71m7hd/dfk97f4N5f0aeIyL6yl7XgG0M3aDpbg2yzxTbI8i48xmZHDJ4lHegIP1/pL1JjyTZlt/3O3cwM58iIqca3/zYjyTQgPQRBIgLAQK0EKCvJ0Br7SVAC0EbLQWQ7CZEscl+3f2GelWVlZkR7m7jHbQ495p7RGVmFYuWSMTk4WF27z3T/5zzP7NnGifmQUjRQk741mKcIaNj+aYpsMwLTcqYCNNpYO4jJoLJljAlYkkdTPcDwbYcbEfTNcQ+s5wizBYrKrTMGVzSIvwMu0OLs5ZJMndfvuD285eE1HB/P7BMC0OY8LZhOo2EkNgdDkwpMpGJUQGhGEv3iwhJhGwsUwi8O03cn2YWa9m/fMXhxWf43QFjlXSafKmLLoeh7HU58FVYxWhzhG8wYjiejiSbud0+YxkDLJczF2Ms50Pbu7SDRV3RcZoYx5HWO7rGaqx55ZSpsdXY2xghJyln0Za+UfDGanN4EalAeDS9/X3Xx9HaJ/74h64PFQ/Un33o998nlE9j2fd9rH+n5p9i0gS7Ve77NaZE0lUO9XFqJ+fHYJcxQkpSKDMNGUuymvdMsSGFgPNJXVw5sHvxKcPxLQ/3PSmfOWBISUibAGkmJY91G7xvCEl4fTxy8+wT7LMd5qYjjielJkkKR1hnEeuIGLzfYDqPGENcOkw+Y+VMHBeMScx9YDouTL0hL4ZlUQ4D01hSyIS8EG0imkRYJsaHB61v1cY2TEi0tsUZZVYYhoHj64GYTrSbhjzMLOeEJE8UJfvKc09wAddaJhKtdxxebHl+uMW92MNmz/ntxPHbB9JgCCYiuz0pqKBMIYAX5qCtVIggzmPFldpWYZkD/RR46Ef6kOl2N2xun+N3N5hGqTMR0S6VmIrfo9VCSqHy+BKUJ8parepa3MT57ZH5PHOzeQbzxWLWs5hSWvOeSjwGp34gxMDNfkNjBcmxZNelCKZW0gkFnxIh5UI4FyPZSIllTWncUO8Hy08Xzo/lMZ++rgrMh97jfUK3oldPrqe50fehv5e/VV3nx+/19KEvvNTFeqbHCqX+CSOaUkllZIJ3HlJLDoFU+C4WMnZ/x+7Vl7ydR85zj50ibQNtk1nmmaYRJGX22z2f/+LXvHm4J+y3bLc3tG+OHI8DfV+EMziaIOQhEk0mJuhyg/MNOe/JxtN0e8J4QoKQxsB8nhmPkTgGxlGLwzfbhq4VolnYmi1uY0l5ZjyOWuCNJSRDmhImZlIQbNdhBcZ+pmcibjM2Jli0OmeYJlyYcDvBdJnGN0QTkc5w8/mnmNbzMA0QInl2WJMZ5oFYZmMar6mEZVHaSMrQ23kJeNdirSFEFau4LCwpg3V0+w27Z8+wmw3JeYxzKz94SFqosFYNXCnZvPpEZQygdXjfME09m+2GZZxZzjNLmvB4YnicCsw5r1yy4hwhJE7nHmNg02jTeT1dOWftla6vr7zIBfGNaAcPNYOR1EOQ2vJo/gvQ2qfC8WOt4vuE6RGH0OUvAI+F8GnetDLrPb2nyzsUZoQC6qRiTRUQqzkl8z3YurrDUAnGlDE857jmoIzRmZDWOpzzLOhYOLIhi6V59intcOL0+iv8nGiHCe8dyzyRmTEm0bWv+PxXv+aFBbfd0EQhTYHcTxz//JowJ+Ky4E6RLS1d8sRxxslCc7slBc9oErJ4hvNEGgLLKTMcM/NgybMlRsF6x/Zwg80L/uAxe8vupuN0/5rleCTPkwIv2ZFnRXbPc8+8ZMgWWRxpEha0DK+xnkRUAudxohPhZtNx2LSYg+PZZy/J2z3ffvdAPINJC02zQbaemCHHFtduWbLGqcs8kydlAsxZW8Ks1wMcRcOSJNonuTc7aHY0hxvENyTryKWSp5aNXtJixX6W2O4ajTfGrGwXMSbmRefpNK1DbKkyKrMGqltrjDLv5VJ1dhoGhnHgbr/BWxBiCaekIonEmLGllDQVChXkkuW4Njb1XFt7kYsPXf9ZlvNau1wLyfWckv/cmPR933sKFv3Qe9YiBQoKu1rTkqhee/bWygMhmxqZlOlRJd+lr0gYa7U5Nzuya8itdtmnvGCdLmqzueHFz36HaXec//z3yBTwZ8ERccZx9oFmjjRuoxSY3rDZtrz8q98wRGHc/gF5dyQd7zkdH0iTstAzRvr5THrIhAYWO5O9ZX6A/ruR9JCJg0cCWPHcHDzZO7742c+Ym0y2iWgCmxbajeUInL97i8eSfUdIymezTIG8GHy3JRvLfOxJ54zfNEQXmGXBbiLt3rK/3XDz/Ibt8wPRZ8ZkCQ+Z/iiEEZwR8Fqc3uw3GGNpmo77+yM5F96fDCFkQnb41pPITPNCdl7dQPE0nSNYQ2w2SLcF25S91coAIzoe3tT91Po6VcSZ0tVbuYQsMWkr4Ga/QehYmsDxu3sVxvI6RBAT0YFIGUmaGjkuC98c7zHGcLfd0VqLNbCS6gjFyibWbsaC+JPzRWGU2SyYUrf7I+XjRwNCH28H+z5K++HXfv9vfKg292mq5b0WOUdiCMoVcy2aV8jddbolSwajsYoYWadW5RpFFITb2Axoa5JJDpNbPInzqQeUhS2ZDuscd8Zglp7z11/x5jSxNUlZ0LeOaclMUyYsIzFNLJsN290Nd7/5JaHpGL/+mv5bw/TVRN8vdHOAJRHvzyynBXvryR30YSQNgXAfOd1HnPF4a8hEHe1gEkN/j799jusc03giLAvedexvn0O0sAi5bZExcDpHlnFEIuQQsU1BHZeFXiJsDM3dhhc/P/DFL15hW8/bhweGLIQJxtMJUiAUNnfjNJ1gxdE0nfaPIrRdQwyZhYUlJULMzEFo2oaUlpKg1z7LmAxzjCyA7zpM04LVJmeJEUoNLZWeRNJaOK5nTuexri2Ixe0VYxELQz9y2N2wjIHzdyf2bAFX2sHKaIUYC+u8dtn088jz7ZZd22IlrUN9rmf1yNV5tGWkRIzxUuWW84ow5ytLqSwcP7G29toVfZ/AXYTmcWz5McF8FBvmy6fXBQwfspTXr6lXTKkwgOfSwXH1uyWNtA5zEFPQOB2uq9unn+ht6eanjI6ZM1ktaEEAM62OPsAUDQpZhKbd8uKTnzMeB+7ffQuNxc8ZPybmc2DYaDfCsX/Hs2e3NN2W7rDj5S+/pL/Z4neOKUbu//iaeUn4kFmmGbdtubt7Dp3OWDke70nikZstIWWmccBLxoWB1nn+8oe/o4sv2R723Oy2nO8fiGIQtKNETCY5y+Zmw6EPpPkByVbL88KMeFhax9JZDl++4td//TtefnGg21rO5x4JooI2L8xjIsYZcRbftiwhsCyRttvQtR0xLkzDhGTR1y8RxCJOSMvEOI2IKKgSkzDNqYyYtzTbA26zU8G0lck/lwHKOqckRCWWlquzXbEDqVQ0hQo154h1lnmeOMUzd8/vtLf1a0saSq1eLocFWYGg4/GMzbDvOlzR2jFFxQmeDN4VqTGuXWWnfsxFSHJW/hRjDU0JtX6yW/u+630pkKcW7Ue7tisUfdF+P/S7j0b9iY7/64eBJeosjsuNVFj8Ug6tc0/VNVrhKamVQqgVrTWaTpB4USKClmQ9e/6SaRpJcSYGS1xGrOvwh5d88VvH7//u3/HH118x5ay5Unqm6VusF3b7DdvNVhFCK7jDlq5z2NYQsjAMmYc/vyGFSHNw3P72U179s18QTKQbJ579fGE+LUTfIcDDN99wev0dJswwa+vVPDzQkFjmhXgcOA0j7a6j2XQYiSTrCMnStA2brmMeA95A4zPmsCXd7Tj88gt+81//Nc++/JRpvmcaHxiGmeg6yBCzIcyBaBJODE27ATNxLAOaDIah7xnHkYQwL5FhWkgZnPM6T3VZyMYQs5bFPZwXzjPIZsducwO2UeI1MWs6M9dpAkHTRDFGtWZcjEMNXSqekKOOs2+dZ7PpON335JS5PdzAaLkfzuRklGVPjOZfEzzMI+M4cvAtt22DM5lkNE6VXDyuJ2nC+vUlLSMrDmKk0OhU/i2KAH/EkP0o4fwQ6PO0uuKHwKHySq5BoOvXPLXSH8p5Xue3rHMcDgeG8/nyflcf9b5gdW9MVK16KVO4IMkZYorUomxxojC5qffRYHLCpcySM9aZMt1K84vNbcMX/9zyj2L55us/YfNEmDK2GTjc7th0G8KSNWe222K9oev2bLyBCPdve/747TtO/T1f/vIVm9/dIV90eGdxGcbTjBlmrG3xxrP7bMf08Anzsef45g3962/pyYz397wdvqOhlIu5TGQhxoklC77ZkuYzlhlD0LTu3rP/8o79r3/O4Zc/w7244Rhmpr5nPJ149/ae/jRAsszTwsMw4luLbT3nYdS5mVjCFHlYzhq/xQy2ISZtoZhDZJgnIkmnivsN85w4TTPHIZLdlpu7T3DbLeK97ldB7mr2sta7XixOcXPX83I5b6YImyl5a2ctwzTw9u07xtuR/bhHrGAS1PbOjICznE8LKUSe3W7pLBgikbha5PeBl/V7j0aXVNc2Rerohyur9D15ub5+dD/nx14DfE+L1Ov6+9cA06Obf/J+7wODPnQvqSR+nbPF969tuKLaNpfcUy6uhzGFzFsJoi4LqBsfQiBncEqpBiLFlQWctlxZp/cRl5nkSi8plpw97c1Lfv67v+a1a5nvv+NdH8n9yHmaiDmy5MBdPJBypsFgW3WRds/u+Oyf/ZqhH3n3R2Hz+Y7eHMl94nB3hy9xnL/pyFmIc2Szu2PzyQvmfsG8fYm5/4x3r1/z8NU35BTw84yRiImeNIykFIjAOE5M40gMC2LAbjvsqx3NpzfsP3+G3Xruj++YphkzHsnDmdiP5LioZ2Ez2WbmsNDGtlCKOBxwOg/M08Ruv8daR38eGZeFZCxJ7DpXM0Qd6BRFyI1HvAO/xXY7cH6lKalAEhS6D135EkIVbuJrb67ufc1rowN9Szk7m22HWOE8nfDR4UwHMWPFEnLUYUQZ+mmi9Z5d6zGVZyHnVZ6eDmu+PvumpOKeGpj6yzklzXuWk/qh60dzCD3NVX4IxKk/e2ru32v5nlzXMeeHXv89YQ+LPiwZcuWwpUBAhXw6gymzLurCiMijvFSNVxoxKuC5LqJVgMhAxmqBypoeytis2GCWQhAssLl5xS/+ynP+yx9586c/8HB/JLzp6adJay7DwjyNbPqRtmvx3iG+4dUvvmR72HP+9ktc+pr5/I55PCLLzP5wi7WOptuwGEG6FucPiGzZmJbdHNnd37P55htuP/+Chz99y/jdW0J/5F1aiAScNfhNhzc6dn4JE8479l8+4/m//CU3n39G8o6H+zdaBxoyfhkJ/Zn5fGYJEayjn2cOzw4soxJQK0N6YlkCfT9xOp8Y5shmt1O3Nuoaxyw6qt02iO04B2GmIVnh2WefYNsdue10dIYVjGSt0ikgnUgB71Yw5pLTXI9IZp3LCcISLSkpvch+d4NvOu6PDzgjNMcN02sdAYE4TMEb7o9HhvOJL148o3NmFU6tTLpkA65nAV3Xflfr+cgYIRcUuUzZ1lTCB8Xuh/OcTy3jtcv5Ptf0fQL19HpqQX/Mde3yXru1GgOl0iSrQlR/RC45TE2Clhkcl5Tndd5JwaaSVMnFTYmRnB2xuE5CxljB6i+URHhBg42SJ6eKKG723H7+c7K1nP8h8O7rM+OfviaGCUmfIDGQhpG5dWz2Ww4vX9EcNnQbT2Mn7v/4DeGsk65O85nh7UzTdbz8rCFuG7ANYwLrlDc1eti82LO5bTG//RXT/cj53Zn+4Z7j2zfMU8+8zIiBxhs2n8z4t2+IOfDz/+pfcvOLL8EadfmOD3hjcWKIy8Lx2OssUufYdC3ddkMWg03CNCz08wAiOmDIWJYIeQmYkEjGIL4lpswwTYSYsKaD5JmSp08C7Q6/vUV8o6PjTcZIYa8AdPweGNWyJGPL1Oq8dpBcztVVTtxY5sUwzYn9zmHEIcw4J7y7f8tL22I3DmZRF9wp/8+745HOe252W53JWcTKZFsY/x53R8GH04xwSb1cO7XVkspHChF+lFtb/9i1L/1UMJ+mPa5/9qHrx6Rc3vfzR4KaQazl9PDA0A94r/MsmqYphEwKq9bOhVxgdmvtakHrpW7SJZ7IxlxtQh0fUQnPMtZpDCJCIbbWbvwE4PV1u5ef8CoszCEwvv2Gb755Q0vExJl4s2G71xGA5tTis5Bj4OF4z7gIvnuOFcswz5hsSb6hnw00WhoopkNMabUKPc4CLpLF4l7dcfvqUw7R8HycyMvMvIwYk3ASaMLE/bdfcerfcfurL5gRlkFZ3ztrSGEmgk6UNo5oPF3T0nVbMllre8eFeZoZxgnj1KrP84hrO7DCGCOSYQkjiCEkyGKZ5sw4jZhdi2132M0Npt2UeZkgkpBSjZWrdZFiuUTwVutUr0zoGmpeQCH9wThFdAi1Ivk5JVIMWCPc9/cc5DnG60zSlBP9NDDOE69ubum8AwKRAOKQZDQUMt+PO9e/ffW91SMrLWyimkbBoRJG8ZHj/1Hh1LHbUljIigm/EpjK2J5z6ZdcE/754oZcBcVyvYolJqxfGnNZ42vxrgudqQqhujHlo7UQA1/9+S/8zd/8G169fMmrV6/o2ra0DTm8c+vIcRGhazd0bYvzfs1LVc0XknKUilBmZRi0CFrvwojRBuRscc4RpXKdRiRmyElJqawlRIfd7Hj22ZcsIfIdCenvtbv/eMJJIMuGkDPjknGbHlKmP/Us0RBFsGKZUoYgzH0i3U/s7J5GMq5JWKtWxjtLDhOkWZFm43DtHjEd28OtPltWTiKJE3a+52F6y/7mFW674+3X3/Lw3RscAikxTxPTsrBEwzxH+mHhPCyMY8BbtWJxmenPJ879hO82WN9irMNlmHIix0ycZ0LMZONJWRiXzCIZ2obGbTDNFuc3haNWraZQz1mCYkGtKbQzYnTPuQpvro6TBqHlhBmLZIcVR05LOTOWxjWExvPuTc++fVYY9xRVvr8/IhhuNspBqzNeTUHzS1fJE8zkOm2yDkq6TguWuFjbttWSipTn+alobUoLOWW1QGIwuRxWtEYwmVoFocJojSn5wypeqiUq9Uh+dDOPhawCMqs4XqFvUtjdM5oOqRoIMbTWYrC8ePmCly+e8dvf/oq2a1e5N8YQQyCmSIgKc58ejkUDXgYgxZRomgbfOJxzhVPI4Jwtzw/GlPs3Oj7Oe6eLHA1WDHOeyTKRnSFise2GZRZkI7z48pcYsZy++QOkE3NcmJYE58A4DrTnRLfVfO04TIznCcmauxVjGPqBaV74ZBKc32iTedeyTIaYIp1v1O2eJowJBEakHfDdHvGdut55YZoFExM2nnB+wUhDf99zfv2G4eGIFcuyRMZZUx8EHbj77t1APy103cDtztP5xDQvxFJYQBD6MRQCdot3GyCTUsQ4IdIwBvhuHDh88pLt4RZpdthmQ9O02FIUomVzlpR1ZotB1zpaDUtErBKBo2yntUKIrIyQeRVsyEnYuJZxzoQ4lgZrwbuOZ3cN5zffMC8jPmoueJgnHh56DvsDW2+16gmHpQCCVznVayu5fl5nAuW8jppcPT9R1sK1ugguMvFThPP49V9UyouQOevwXqv8xVpteuUS21rrdIFNsXSAMa7keECDQkpgbZAciocoyltzCQZXARURTJ5VORghZ9EKH7EgEINWpnSN49ntjcYHclkAUOtZNVb9vi3ua6yMaTkTQ+ChP7MsyxoXzPOs4x+cVpLklHDW4cqcFoCUIo0DsQlHdX8NxIjHESTTbIUXn32JJTJ890dOsYfZsLUWm4QxLZznQioVI/OUiPOMMwHnPeMw893r77AYmq0lhz1+0qbjZZ5YjKHxVomixXLqR3zT0W0PStyVwWC4fzdjSNxtZph6xulIYkOYE5Ks5iTHmWnW/tBxWLg/Dnx3f2YOia7zIDvmVpjmjHEttC2LOMi+0HMob1FMGeMa5iWxiIWu4+XhFX5/g/UbbLPFtR2mVAGpRKkaVqoQo2djHZWgk9esVWK1FbtYd/X7B/3u7hlv778m5xMimaZp6IeJFAOHZ3ua+wY7eCaxHKeJlCN3u+2qtN+XOahWc+3J5NIw8b46gGppc3l99UCl/t5PEc7/9X/5n5mnmTgHxBi8a2gb/e/bhhcvXvDy+Qtef/cdxhp22y3tZoNtG7z3eN/gfUPT6ig259UVtN7jSiuPNZojzEbZz+v3jFFrZKxZuxFUgA2S1EKnlEkh4YyhsYbPP/uMWPzrWvT+yPWp7rUIoTKfmosYW+vZNJYudyuypsKXSqySSqpFteQwjkyTkiznPJYDpoXjzmpfaQyBaYyYjHb0v/hcFdj0gNs0REmM84SJGRMzEEkhMZ8TYYpYk+kai7dbMD3DlDne94Bge8E5QwoLkhOnqK1j1jlOpzPOOYbuHaCpprQIX339jhwCfLKhlYlzPyDuwLJkZb4bFuIciXMsxQOBU3Fp55CIGbabSAhasE7KNO1Ox9tlq6uaBcmZKAZjPMdlRJqGbv8c227xzQbrGsS1iNXmaWN0f1IKl55aXX0ymv4SY4sBsOuevM/wVG/MWotg6PuBZhtLSabw7t09yMyz56/gJJAMU8i8Pj7Qbhp2rdNC9nJVQbrOEjwFgKqn9qGCmmt/EVhZ/35yzPkf/u2/JoagcaTmEjQtIdru0niH8w3jqIxkiKjVsgIUQSosA6YImrHq5jrnMNZqA60YjLP4IvRt29H4RuNF73GNK8iqpdJyaqeJwVnP7e0NNzc3/O5f/Aus84ququPzaMMuLsajnSyLfPlatWKk9oBiRA+QCG2xwjmrdm/GkZQS3aZwu6ZQuHki1mqPYspWJ5QtC9P5wOZwhyfgJDEOPWE4Yw3EZaQ/Hwl50ilfJpONMBihj5HB3jD1wAlOeaFtHd4KcV6QGEnLQofBWhWyYBaim2gaT/CGYUnIkiBGxoeeKfZM04JpDFOGtBTXLCVyjMR5hqRehkHwxtB6v5JrWe9WeLxtGpIYxkUHBmUDxm8YxdE9u8F0d+R2R7IdttXY1Fi1/NZpTjnnCNleAKC1gEaLyY21pUZViCGSY0Hp5QmWUfdbDOM4cTyeuW0WfKMhyjJHmo2n23ZEl5iS4aHvOc8zv/jsRWGI0Pep7Ow8iS/h+x1T1a19Cpqu1t2Y9egJfFQw4QeEc5mPxXro7PpqzQSBFIjLQgyDuiAlKjcAoczKBBCjExSLMlTSI1Y3Ja85oCJStqRflYTwAAAgAElEQVQmilJJSX+S1v0qhEkr/6rFOct2t+e/+Vf/iv/2v/vvcZvditrJ1cKu1RpXixKfIGs1gDer5r4ItjLQlUctFP1+05FjWkn9jPUa2yRtLbJOW6EAPLC9e4bNGZN1jPtawpUCYeoJYUJyYhpnpnEizpOyuA897c0JUmJshYlI6Gcaq3M9JUaWYeCALfQZe3KasSbTRoudlIs2WsuyZL47BuKoJXDtPpKMCkPKmUgGK9jG4SNsItzebEvrnMXZTMFksM5ibEZMKqHBzLREzjlz+3KP726w7R6aPa7bY7yi6MZYrNHjZwxkSSWvLKytYKbkFTNFkduCuhflW1j6qtt72auycVkIMV+5lKrYb29vOZ7esPSBsAhjTLw9nmi6lt2m05LA/HjA0bXVfCqU68+lhnLmkWWtl61pO1inc3/s+niekwIbl2Ev5LwKkZHCG7rCq1fx3CPINa3xARXsgis3QL/hJK4Lq6xn+rn2Z2rMG1MdvKgTnxAdKJPmwLtp5P/43/83+mnmf/gf/yetOOHizsp6m3K5Z5FHPv8FtHpsadcKooLgsioeKup0weGKShTrVwVxBXORMcSC+mIbklU0mBQQv6WVjBFoRNgjmJxV+NNCiqEQKAdiCizzBHEhh5ml7xnPJ8Kko+limMlxhhxwRi2bzTpqMdie49hj2z0hLYw5k9MCUbmIjDjwQjCRZVqIDtqdUlKKCN4bnJPV48nWqMuL4NsN52XgYVo42B10N0izwzQbnG8VzBE9qM6olRRb0XhtNK8ej1ZmlZjOubWoPKasQ6DkqihACh5RtyULZG3KVroQTW0JSsIW5kj/ZmJ6MPRTZhh7nj3faxopxe+lEa8BoKcpxe8V3dTz9J6fqcdVWBT+S1IpVXPVxGuFeVbIej2dV9X5lGRx+aMXzZFXq6PKUa6E8GK9KudKzpkQcylWLxOJRfOQrfNkYJ4XwlInFQv96cjf/X//L+eHd+zvnoFVDVYXKz8asEuBfq8f+Bo1pkr2+jvarpRXxV1drqsnpGqfCwO5IFKLFerfkHXWb+2WwZT5j2VsRC5odCztbGJbxLO62s5odZIh4YC0zJATc5n0vMwT5FT4bhKdb7BLYI4T09BjlkCaZs79kTEOkBemfiBMGjtrxc/CkM8sBIw4klHMAG/IJURZYiAJvB2PON/hN3sOe0/nWkzTIX6Pa7ZY75Xh3BjEakJeisYzxSMCKX2064asytwU1FrKObFWc5M5JdI6R7bu20UgUszEGAghkpJOMW/bjv32Fjk7lmD49vSAMXDXNriUCFfH4qkFlJIjv/6eTj1bDzxPr2shv2bkMLUa7QPXR4XTryX0snYGaKeLaFrl6t9FA+SVSlLF1qyzMC/6oiRhC11DlkKhkTMhKugQo/b4ZSP4oq2pI9iyzl6MsXa4lsFFKXB894Y///Gf+NVmg210OrMu8IUhwYiseUvyZZHXWOfq61xNfH0HuVjgy+v02VaFlSGX3lBT29Dq2PuqkWssVapF8xof6yaalNWiSp05WexJNujUWAHJJJRGUpwhx0Q0BQl0B22ULN5Bto6AIDbRkWiSIY0LGxZC1sGucZohLsS4EJaJZR6ZxjMpRgzaoxhD1HydKdhDXBimkXY7E7Es0mCMp/MO41rE6vQ2ISMpYUyE1StSIc2y9t+B1KoZRfRNyTVL8U4k13JBVqtZPbNaJpdK6CJGcYoU1e1VME9d+RwgHw0Pp5m3w5lXhx033tMCMwn3JMa8LmGtSG0VslVw67m4en3NaRYp0n3OunY6x/cnjmPg6syu1iNxgYevfVSqX14bYetrilMnF8tZSSAQo3yeqUyUComQLj+zrsE7h5dYNkD5Z3TYTbzEkuX+coycH478+7/9G0QMu7vnvHr5QgfGpsg0T+Sc8U2Lc62CUyWDWgX9EtJUX+FKOsua5LLgqQpqFmoxNlJGyaWs6RqRR+tYwQHtM6z1uHIBJ+tGV+1dtZGogsu59BSaMk+SQtGS1K0zuSboq87QwexzMoQrtsIpCkZaEpYomSwGY9Xq+pxoJJeCAI2NyZkUc/Hii+VICyEFtZ5oK1lMykXrsu5RSjqLchx65uHEPAViqfahzBlxTvs264hGtaCabzZiLwZgXY7MOA70w5m995RyIV3hK6sJYK2sxScZRffjFOnchnlxPDy8I6bIYbfB19CtvFVtml63PpdmbFvc8XJPIQQESsP/lcwUj1KuvnPtlF3XMr3v+oGY80K5kLiqGZRcxkqoldG1SeXQXZ+zYk1WS6pork5eSprATok5aMlZyrog3rnyUBnJgaiUrsSYWaZFff6CHq86qxzm4Xjk//6//k/+9l//G168+oxf/vJLXr64pdvqRK5A5vbuFa9efcFud6DxDSEkpnnGGEPXtTRdg1irRMdRD6bkrBUiplr6EudcHP2LEIpW9uj3FMxaN/x6g0Rp/qvGX2PjrJOsi97V1B91shZkKUMEpFRvZRVSVVJJZ0vKZftVUBM+STW/qxIwZZ+ThMuBqaBfhiyebC6WKKXL4cV6skkYrxbNrZiBNhqkQsmRUyQsNyzzSI7FSidlMkwxqmULkRBmQlqIobA75A3ZanO3MQpILjEh1uOt4/54j3GFgkTMpc8yS3n+iOSglUpRmMaAzxGZPf27meO0MJ57XrWeg7dlzcHJ47rZuqdAaX8rFjRfWcgCOq2hEKrEqhteFfO1Za1H90PXDwtn9avLH6nRl0qDXNHSlylNsLoWSX3XUhQgpGKhYs4sBe1MJb4Sa3GiFTu21rPGtDa35jIIJkZFQakW88nDpRh5eHfPw8OJP/zhT/ztv/1/2G0bnr+4xW875hjZtHv22xuNPXZ7jFjmeWG/2/Plz7/g088/o91ucE1DTJFxnDBAs2nZ7LY6wFWUAmOZZy3AtkZRSDHqeirGr/FyOfS6QSBiijNbKYl1XkhZUlViRdtkuVS8rAnfurllf2tEqxUy6UqR5mquy3tc0Oj6Hup5pFWYdePNussX812/vn6dFoNc3L/LgU4lbhWykisbg29aMg0mBrxcikVMtfI5obBSictTyWWnvFJ6pOIOJxHGaeTtm28R+5Ku22JKuFRDgIwgtgUahvt7rMxsm5Y0Cf195P5eR8Hfvrh71NNL2a9aZPAYGErFSyn1stTU4nXHxUUg689XmbrKHMgVHvK+6wdaxvJq9cpeULdtdTIkrw2x9TVKFMzaoaETmNQlqIc1iay5K1vylzXAi2W6cfXrwxI0r5Uf9+3BJS1SdVy15tqprjm3/rwwzRNJYImR1nq2rtFDFZVGP+fMzeGGvzscyEC727ApI8HDEujalpuXL/nZL3/O3fM79vsDBni4v9f85+6G7XbPdrvFOq+bGzPLokOJjDGKVBpVUqnC/2XtpOSFL1Uljwu49VLhNLl0X5SwtwoypobM6QpFp7h9XFDzq7dNxf/NGgitv1QNQC6Kt66umAw5lnW3jxLtuv8X5SHFpZfSULsqAOfKGpRZJWh7mBThqu+TTQVgCqWHqIvqxLCEQAoL9/2JYTjx+edfctjdXQ5qPXvSEBbHdArsvGGxwnCOpLnlfHzLtmvZdN16rmv6ZL2H/LhEL5NXlFiucQdqTHklnNdAkDzu8/wx10eFc5XrKyR2Nc/lYci5EGbplTIl/lBmsvoxlPhDxCgvjNECZimTmKqLIKiVVK+x8J2Gwor21CWAdTHWRS3xYoVRcsosudSKoiPmGyLGaGeCjvVSwfdEmCeOxwfefBvVauVcGrSFMSXEWe6e3XE47Gm8Z5kGWtfQ7G548eIFn33+GfvDjYIR1nLuz3SblsPhwP5wQ9N2JANRNHbMMSE4vOu0aqa4j5lITHVCtykF96zGUMqsjXS9FwJkywoulddcGAavCspz3VeNVXOde1eF7XoaG9dWMV8BMJd89vdST6uQF5f4kQyvJ+nqO1bvzhT+vHIvequy7mvOhSpEoPWOqT/zl9ffEOeF3/zmr2jaHVraWf6GsRjx9O8Gmq4l5YmYWsY+kELk9u4O75zWUsR6/1w9bxWBy9nLJZR7Ws4nyKMHfd/vP1qFK+F93/Vxy/nkF1eEiioUZRNSrlkIXbySAliioq8hqZW0xpagtDyE1FRK6bUsQ0vJ4J1jLiO6r/bwew/9vaD6ymLkHMiIxqpRG6dN1vsQV4bGZi2xU9ck4xw4p+5qPe9EpcpsgKHv+fr0wNvW07UNjS1JgQx/cpZ/3zT4plmroVJOtK3ncLjh7u45u8MBt/F0N1tCjiwx4l3H82evOBxu8d7TNA0ZrevNGKz1tF3p3EB7ClOEeZ7B2vWsqztoyen71ixLXS2gWuhy6HM2q+eijpKs/0USOZmLNX7EgPd4L55eJeIpkIA2TavBr0NrI2TlKDBlDa/8NBXGEh5cdIUUD07YdC0xbHk4vuNPf/gntpsdX3z5c2yzQYEyWcOtXJrHi/fM8eFE5x3btkVy0lu5mO3LA3BpD9Onv3y+CleGFbL6gLA9Ivy6cpV/snDGdLXwq6Kr0HDRuutGqJCFYimXEJiXgFZxOCy15K4giTWWqjddusPVMifGcSAVV1bdp8utXLu3lzit3uelKLnmUyNCRLtqVJvqgNgkUvF8rf1tLNar4OZF4zcjZm0haw2It4whEqaRKS64zQZnlQncpEAaJ+ZJVyeWipfZwvGbr/gKQ5aM3zV0dxumNLPkhIjn9uYZN7d37HY79vsdrmkJIeKsp2033D57xm53wLsGyZYlJB7uH2g6zSHu9nuapoNSxJCzutSmxPNSSI9NWaNcRuBd8nPqVl9iLlgtJtcVOBWIqy7dk/fhsZW53rP1EMWSLtGOsEJgWWo7BGrKjNUDz5fPa0wummrZ7fZ8+unnfPP11/zTP/4e7xs++fxLrLfqBudECHOhiInkHBnmnmnqeXV3Q+uclivW+1zvtYZuj5/pOo1SXQJT/q/A0NVzP82T1hEnP2bMyUeFM+gILzVypsaExbSXITGpzCOMqVpJHRGulRSaF3WUsrCUtIRJVAAlXbpPVJjUkZ6XhVRqGi9Ily7d91zaK4tdeWfWWEw0ixgyaz7QZXX6UtltI4It1spYW8oLy/sWP1Lb5BJGBO8MYhumKIzjSBbYbbc0BVGtcYipnliJf8kZSRFsRsJEGGZCntXlTzD173j7RpvEnbf4ptyT0eT7Zrtlvz9gnVdrYxwP9ycyhqbd8tlnP2O320PWERLGGvq+p3EN1lm22y3dZl+aCrTyJsalgC0OxCtTgANNR1Rax8KfU9xjKiq8HmW+L5xUa1IEKT/OfetVIHg0rInlfVLSGLhadSl7nsobqmteulUQxDgON7cYY/jTH//I7//+P+KalleffoFFgcwQAvfnE413NCZxPJ1wzrDbtFgBSQqjmdoOmQsyf6VkroXJWh0krO6trLy39bXruX0CBMGF2uRp9dD7rh/o57xYOJMvFi/lTMxKljVHHSoTS61rTDAn0ML3UqYmaoVShbrrNtXqF1jbsZaCyMrVA11fj3x/3VsVhlrPKI/j0JCy0magTAe56JiwJGwpunbO4azXuC4qSbWpXgJgEtgSxxojCiA5BSimeSZPE7vWa1O3gOQCcphqd0rLVgZi1DK8AEjJj62uWihaxUBeSHHSiVXWMI5nQnirfK054n3D+Tjy8DBgbcO3f/l7rFd3Wp9HxwQ2jXYEHfa37HYvaJqmDJ81LMtS1sXTtnsOhxvtGrIOEaNdOCkoiJcEZxucbdaYTkRz008tZHX1qpdV2Qx1nqaQbVWqUg2pglzVNacm8Ms5ofjxph5Zzd0qA7wq5O3uwCeffspXf/4zv/9Pf8dmu+Nmf4fL2u/bz5Fvj0de3W0YlpndtsOKlJi/eAgpkY29un8ePVc9bpccfr3f78ekVfBqdqF+/b6i+A9dP4IJQVu6qip0VkhYsnimBOOiFT/GqjYO86KpBVPikgoeUAsGLg+Zc7qwbcfMsoTLA1QQILOCCjxZgDUOMXIlmPW/qGCGwmIgCvvb4lpfXHaLNb70nVrmqhxEhcaW6qaiu0uRNlgMm7bFGcs4TRxTYrdVd9lyxYubq8tPuSshR4FkEAc5lq6HpGmrnDR571JaEVkpB3JeRkJYcI0lxIXMDAykFOh7bUq3HuYwX4qsRdvFvv3W4dwWX4WPSoysHoV1HdvtHucbRZytI2f1gHTQkKPb7GlbdZ+9bWjahnledHx7KWRvfEOu3UPVj86pFDMW5LfsUwU7tbjhyjIWgKqelDUtkuGCYqsPnEr8ibEcbu9IGf7y1df8/j/+B/7qd/+8rIHDmobj8cyzm4htrOZGH6Uyyt9NtQyCtQDhmtju6ZVzIot5JMtPjcp1LW5NCT31Nt53fdxyZnXpokAkaYJ+0+h8RdNxOk1MSQ99Yzy+sWQjpGFYtYriECU+zQr4mLXuFO3Ni4GwxKusjfZw5iKYhTcYodYfVaSGQiVSBLluZ3nomBQMQmqeTC2l9U55aIzGLgEpC2yYgnbzm0JXosBHXoEJUzBsC9hcqltiZogLfT9A19IYwRUwyACm0EEmKc30UYiLlB5IzWpaW2D2BDkZUtLhudXtW0LU4T/WYMSV51KKFf2d4m0o7Fji8HIABBKRGBdAWBaVDu88gihbewy8fi2AodtsdDoWqjDCkkg4mmaL91us8bS+pd22V9ytltZv6Zqtzg0RwbmGtmsZhzJxzFis9Wy3W8TagoIXgCtpMYLohJoV0U9XIJZQFFauPZ5Ojep6bByH22ekBN98/RX/8Hvtd3XO05iGJZ44P9xzc3ejDBcoJ5AiVZmKBufSLvjU0j2qRrt2X8u5lAIM8Vg2H11VQKtV/cmAkHLlZJIkmk3D5tBoKVS2nPuFfhhU64qOizOxACvWkYr1EfPY964CKgLOKoVICKFwTnD1uisLmfL3io1rMl1sXTyowWYtno9Jt1ZdPUvTeJrGq/mzlrZr1cKEqCTRKTLOExTXfaVgoTTXKtEt1tiS2jEsS8BbQ3IN4zDS9wNm09J4BzVjAStbuSnPsMwLIzPBKGVlJkNEkeRy4HKJwWNM65pZ6yjmCFNarzJVEZiCd+n7rTM7KpiBqhdty2INAcRkXFZ3PKVMDjOUjhEFgwJkQ1gWiD1TiATrmEalg4kxEUKG5AgLpKDP6ZynaVpliw/aSZKzsNvtaduWtu1K87QhhMiyBNqmo9tuONzc0G23GGe1cb2MdUgpFGVs8I2mn3TzS5+vCM/vbpA0c//2NfvNnsNOaV0swrs3b3j54oW2PtYzV/CFi36vZ/FS/CCiw35X1LYiuMXF1fdZEaw1Tr0Wyqeu7A+NLvkBtNYiNtNsPLcvd2AS8zxhTcPpdGSelYNGRCkcQwjakbI+ZWYtZr5iv4spYo3RsW+1dlF49GDrxxLnrhagWHP9L1Qk8RpN06A+qttsVAk0jWOz6eg2LTlnut2Wm9tbrBGWYWA8nfXjNGkuvqBqtloio8nwqvkgKataOeiNCHhPCAv9OIFYWu81jZrj6rbpyihbQpJSlFHi0ZykpC00lxdjLF0pGusaq2u4wvFl3Ywpjb9oXtTai1Cq66jKTbK6nhWUXY9FCSOMqBdiULe9eha6CRYjFqcAASYvJZ2zMI0TKWRSgGVWJdMAQyjzUTCcjn2pib7MPd1styqUIeBdg3Wert3Qdh3dpqNpO6y3hcbEMs0LIS1gDEuMdJsdn37+BU23KYKpVvf08ECKC/Nw5vX9A9NwZhx7DMrof3z3jk9eflobi9ejdx12XZ/Deq6MMY8aqp/GklWuc3r8e9cfv8cG/5HrB/KcHjE6zdg2mRBnup3H4NlsWsKSqdOgtbiktn9dbf2qhGqDdKn0yaloqxpjXhbo8cIUd4OacFdFoAfnA7ddrIe1arm7tmG727I77BGr1SW+a+l229X9XE4nhv4MMeDLiDmKUsyrxnuMusUcMfZSQNE2Du8s0zQrTw2GrvHYrJ0cGu9eXM2m9RhK/S6lBC7qoJwYE2JCcdsp1kKIxVXOV89aP6ashR7OuXJgCrJYGALN2jgjGCslfVWavY0WiSfl19LIwioZc0LpLHf7W6z1jP1AjAvOthifuf/6D4RhJC8LLmvHkvUNOeqIv7ubZ5yXiTiM5UhYohimMGkra0pIt8HmSIyBYTwz3j/Nbaq3EnPUSq+UiFn40z/+npAy52FYmzLOpxOgitmiNJ/n05HdxuOs5Xh/z8u7F4hU8KcKlxqDlMqA3Kv0x1ollNLK2PgUja2GIZs1oFsBpOv3qufnh66PCqd1liyROSyI3eoQnhBx1vHJpy9w9sj9ux7vlfdH6yI1bzSXVEi+cjNTRbJQEEApD0u9qDzWLo+vWhua1hhTChX/RUmtx/WSp5KMt5po3m82tI3HescULEsI9ONA17bMIbJEjbscEFKiKZYZoxq5ghdV2xhT42gtyDfFomerk8zmEBinGXJm4wGj/Dprd31RIE4sS23u5YIE1rVTvlNZXW1t6CjrUZUHSQseks4ruY6TrJVVyWAzmFSqlwyXkiMtBjFlJKJaUA0LwpSZZ5ii5/blZ/j2AE0kpqjM8UTmf3jD+f5IR8RJxiRIWakux34ibnXgkStj8DrXAqWOuvFq7V2573wpEa3MDCklTF401kuRVCdDZ+H05jXnaeKbb18zjTNQ8pCFUtNZrTwyRIITXNsSQ2Dse7rtoawzF89sLa97XJFWXVoRWevM68+uwR71QmwBOQu7g1QwS8AULzLXvfuJwoloAD5Pgf48s6XBOyUxDktUEuMctZm33bCEqZwrzzSNKxVDukZgr1Bbe6V9Uq0yeqJhqkZTBjx7mST2yGo+hq8ziRiU0NikpPw608hiMm13Q9vt6ceZsR8xmAsiKcWFzVWz6UY3jSvNHJeC8mvXRLudKgpcmOGNYZkX+jFAUr6aupnqdlMOWlzBiMqvtErTE0HVj1dJcDFYZwghrf2V1Wux1uh62VKQUcYbiKnuOoVPJxMXBeRUR+rAdC1pNMxDwrkbPv3k19ztfsEQLEYSSRIxBFIYeX7zM8ZvH3B5pjEJSYEUdVygZMc4LBjT0DQ6Is9br8ba2RUtztXzqkevKuyrPRYytvTOSmFwbK2BxtNYYYyhoPq6V1k0fwkZjDAtkcZrj+3xeOKm22tTxRW2kWIs57V4Z2XPa11sLTZYGzDK3lw6pS7xpHGWFNTNrTnRldVvfc6fGHOKWRQZi5bj2wlDg2xhGgfOxxkrLUhinIYSDyUtME/KV8rKdK3uQl7vqiZ1zWoxrg9gfTiuvm+dwzde70sqQlf5QS9+fYyxtHklnLF4AYmBHAx5FoiB/c0dje8YplH7CY1FEiXPWWpuq/WhyM5V/XDdnHpo6mFShZsxZM13No4Qg46/E0PXNsUKaxmEFjskMrGsmUNSglQLrsshEW3VUn6lvP5ZY8oBj+rC1VLINdFtLusoNZ40FiOOHGEZdYam5hud8vuGhbBEllFBnmlM7PeWT5850v2Mzx4bYQk61iCHzMF2bGyLTIGUNHaWoEUsXbdHRKlErVFwrtb8UgfKZlU6Zh0tX+tnLx7VBXPgguIrnIEzQutdAbRKCFCUVMVsYqak1pQLqj+PTDcTm6ZdhVOVXsk5l7W7Xr9VGLmAldfntiqYWlVmROlcYlD61Wuk9mJ8Puze/kBXyoSIheyZh8yDjBizwdmG/c4xT+pqhhA4PugoOfXPc7EepabEqAtVZa+iavVJ66dPOwLqZa3BN8rSV62ucHm/eq0aMKtVdtbgraWxlqaw54VpZplmfLNBug0hBPrTWQsPih6rlUZiRBumUSDLUAP66s6wHqAcC3hFScFIxlmDsw3DpPMpc1aB9U5dXysZrCb4pbhSqQhnnc5c5ihdFINcP2/CWkMo9+GcaO+rCNZpZKqurVk7gMja1xjnBAHSZFimyNSPzNNEipEcIcyQosZPiwzM7+5xvWCToTXQxgXbeTCJaTrTxkAyhpgzKTuarHSlrvbm5qxKL3OlYAoHumg2XXJewaoULxViGgde5bWrP5ipg+DYdq2y3i9xFWRWITZrM8Y4BwW7UuB0OtHd+UfCom1pSmT9vqsq7KfnLsaosaYxmgtfa5GLR3NFZfIo4/CR66PCqU3QhpACMRvGuefcn2gbjcHmMTPNWrxMAXhqslIK0mml/IwSHBvhck/5Eay/rr2RR6VzTeOLu5e1JG9FcbkIaIkbUhn37Up/aGMVNW28dtvHeeHh7VvazYIYSz8MnM9nZS7gUufppJZllQ0u9/8ox2UusV11n9QpTGsTsxFDbjzTsjBNEyZFzFbL8lRWQqkvrrGyIq61cOOyVlIO4yWGzFnBn9nMgHoXadF4y9hqAUw5IJYYhGmYSUsmzzCfZ4bTQJwTedFeW0VtLTaCKQOd0jjxl9//J/xi8EuiJWs1kxFwwpQDLgWisyRxOLStzZja46p7ZnLNUZfwptQeG1PmmJSzs2bBc11vpa65ZuFYEcTyaeM93mnNca4H4grIQxTnWOJMKCWMp37g7nCDvZSMFEod6h08FkaRddZOxRtqRgG0aMEC2RhyynoOrkK6qgCuh+teMy08vT4qnPeToJ0dtWAa5iUx9AGdNqqaWPNsEREthXLIqjVTSmshgFozTW6vLqyki2Cuq6ClBtZavL+me5KLoBTtGVeXOZcYKOBEcAKNgHeCdbK6QDYm0jgwJ7DOE5ZFhd0qvaRHf89K7b8QVTCXs0KKaSUs1q8vedVaHyyF61UKMmqyY0owhYxE6HLlf01KJVLiIytOFcPKil87/EHL1SzKdqAQubVO+0dzRAz4RjW3khOqglyWzDDMpAHilFn6SP8wYKKQIxBBUG7dlGJp+8sgURnmRZDxDMcJ+qVUDGXanLDeIfuOvG/pnWWCUpZJcVsNoUhHSUKsrXgZ7aXVihlNI2kYkRBxICXHmwrrXb6EQ1JOiRFwSWiNo3GO0SzF7YfKxa0AAApySURBVC0YR66pNlAqGYhpAW85DxPDtHDYdLhsCEmJAIxzyi5Zzty1pxcpNb1yudcUU+lqKpY85YIBlENdlYhcYtiKqH/s+jhvbUgXeTGXG1VttkZ6NWigxoC+jBbXE30BT1ypW7wsVjntlV376maVMd6vFTDVRTNc/HRt1NWEewqRsGie1VodXqR9ehcfXyra5hzKu3shUTYkJMW1YF3rLK87cC6BPfAoIf24FEut5YrgFZDDGmhbzxwi4zgS00K7TRiXiUnTBo5aweSpo+FyznrYy73o+lsNNwCy0DQtYdGRFc4qO7oVwYojLcJympiGmelhZjxPeGkhZlJMOGu1wQF1yZaiYIzNK5VILC6aE6FDsFGIKZKK9UwxaY1q0sBAW0MvCu1RLy5ZlXUJeyropsX8mvZJpW3tgpxeAWNUD8zo+L/y31ilmDlNQ1GW+vpUd69Yw4QwLwHv1XU9ns/suv+/vatZcuO4wR+A7iHpteQHcCrv/0J2pSqXnFI5OFp5tZwhZ7obOQDonlkpkis5WAfiYNEUKZLd+McH4GzCJTaqRJIYltyt5Ej+DaNAPAS2v24nC91raSPU2pfhgGMc+yX6Q8tz90T7R6qAGmwssw1lOuWEU8qotfbVBYyA2O3cDIxYc0+qts8i59wPhaA92AZoF5v6BbSYzF1NMfgekyRDGUTxF4CNZySvXTXLTJo76zNvekwA//ebzzLdubHt88HC47dpbw0iX2vHPuxrmghtrZivV1QlnC5kSCxW2NDjmC6gUK1WpjFfCayRQPOJzuHaikCbvS+8k4SMcqtYXle8PM+4zSvKvFknULbSRmP13tUKbYqcJ1uc1JnIBkxrTPRz0P85CZoKbiTQk4CyvUcd8sj7uBIuF6q9lBYTDTRc1mqJnJzGmccZx2ObbLGL7yI776FUEsHlcga9ePshDJIJjPwTYMK6tgpZV+TzhHmZsdX3OPkc5O5q+hTGjgLi0U4X9938T+pZ211uwDtdwikupSDqoMzBt4Mnv0RfF05f6UXx43SAjnX3wUKMnBinyToztNk4f8tcmpYzd6IemF+E8Bbex8y+LEn6BXSL4RcaRXiRBGqKdVugrWLKGVM24Uy+eCjgVwH/My1dIUoQtnGR99Ksp6/6lqz9ngyNrN9RIez/fl+fDUvNO+uuu9hYhHE5TwAVbKtZOxChcYNMhhbqPKAwzKzHMMqtt9aZkJpFExHkZMyTJUFIsL5uWD6tePnwiuffPmGSCSfKSJ7xFhEUta4YJkFxI8ScEMO0WrPMcwhWJUJLCZrEmslzRRVCzYyWBJwYyfx7NPcYahTv/awi4RYKTHsfqX52lkGRaQ6wx/7sDThgbuXZt4SvvQ9Yh+UkA7aHnVqrNbovqnhdFuR370Z2CcFv6Be3L1+FsulOlQ6X1RkI/eUwy2rGNeCA2ZX98fe8pT9gOV2DOJY0MiMRT2VhZGGcTyfbiek/WvyLgMagaIzf6gLHw6OFvf58PndB2l9MuNL9OYS+aBZnCiPvtn8JE8SZLAkj+QT4UgocKY4pGwJm04KyVneZ9+nuuKtgmiFwwRydSXaPw32PgdYNCk7Ue0Utu3jBfTWXnURRthllNZdPFJBQAl3bxiQ3g70CG+BnlkRAkowpVsV1vuHTxytePyzIyJBNcJITMtk6u21zjKqaa2slKu3uGjyuJiLb1wkATCgT4caKSgJl4CbOD8IomVDFxopQG1YuqM/P8TMy1hgzk0SOOFTgOKw5cXL3etdo7wyl3ktMLDifzljuHhe7S6yRPSOvmQM7PiW8XK/48ccn6+2ED0vdQfC6k7wzFBHi2fOjxh443D3ZvqDBJ6Nk839ga3u86C5FgLaFGDlbqYG1Igvjh5OByO/r2jUZyNA21kA7cIhxWQFNi8zkNE09Vt2/Nsom5DGtNz1gXTcs8+xWc7LCu2eJra5mgXfy5bn2mxqqx9LEhJwSppSh2waEQL053Dg/9qzYW8xl0JgK6Emqrk3sip2P+6D5U5qwls3dQUFZN9RtAiaf4xpvjUfqiRsht3KWuMrZti7fl4r59xUvH6+YX27Qu9qyKWTUewNn7/FQm9/KwjYGhpL32gzLou4pxfNKii3B9qigoAmjJVMiImSTJZhHcq8NhRyKNIaLN/XMMAEAQ2RYrEicvD3XBoWWI2rHPsax1jBFf7k84ffXGVSPHggQ3SPuIcBiaiXCst5x2+54ulz6mwjUh7B11xYAkw+1Nk02QrZ4V3z3zru29c0So/WgyENh/Tf65oCvaBpmGivYUwo3ylqY3j1dkAQo9zu0FGunEralqtodi35Y4TZ1JsBIAO0zWh33CNh0+P6ehvt9xc03fCVJXTCTj9Y8CmYamrvHk56soSg0j7JFuKfj+4XG0y9q+Hgc/x/ufiCkKOIrat0CAkAiAQlh07vtCGlmsUwIeRfAmEsWIIKUzEoSORSyENpGeHm+4flfL1he7zjJGa00XJfFSkuTWIJnVVs8RIAqwzLucTnulhF1j6ZrEmE0BgrUGuuT3UcOVwqe+InAi2m44HSMQcldTODoDb2N6T7jRz72QpZSvP5sZyWceteOauSG/RLjB3m91CZC2kjQrVWsteJ9TtBSPM9LvcmEeOB4miva6ATtPKBhRLQrefY49e10+D1//c8JobwDUDPbjggmLy00A30/XS5IQijrHVptVyYo5g/FJAQ2lyTacsYNQGGa37rz6TOtqT37NeBy9+WG12UBETAlm2Ag4c66xRSPO/duRu/mYA/wydLnNsmhIXuwbgc73NuRoDke9J7eCqbxgZd9lLw/0lcLNovtQOSQrwQgozGZxi+KJmqQQIYNJiNPcqUJTAmSCGW7oxYFKOHlww1//9s/cf94wyQTrrpa+aU2/PT+CSxewoCVCxKzu2a+iHZn58x9DubRPuolPCKRgB+qNx2pocEsoWCfGzXggyJ2l05H3BmKzxog7HU2KX6cc2sN5HtvWms9uUJ+ftoAhgCcsG3NrWhCzNIFGlD9O9lXhGrDuq5YUsLlxLguV/z1Lz9jW25oWzFcrKJbzOgqitqtsFgiThVaoxxIfUCa8JHv0D83FE/7qmAC3xxTMlATcfDRK0jEuJxPIGpY5tnHcxCYs4OVazeLUVwOLG1XNmqr2/d9bbXWjiqJrdPkl1RLwbwsuN1uPXGUWA5JHxHfr7ETnn3xt8PbXOPXak3MAJkQ8Eibv9XeRPyZ4thjL+O5VuroPw1r7RdCBHTElsc1QgwVW4vQquOCRUDJmdPj30g21ALU0vDv356hFfgh/4Rff/kH5pcbTioozQRGiHCeTshZ0LSAaHLX0s6hVhcoeCPzTkCjuF60oXjGloFesHexAsOGWvbMiypQKwoRIHxQquMMLTkSn9PRUB18gkP/brz/bcHeas2O6pKE+7phWW4+WtXu1wAFbJ09RN0RINiKv23brAQzz5iXGXJQVNr/G9bTWvN2GNlweTWggqHU4yRx4L2exf8KbK/z27cKoQ960IP+HPq2+D7oQQ/6U+ghnA960HdKD+F80IO+U3oI54Me9J3SQzgf9KDvlB7C+aAHfaf0HxoabB3keOKzAAAAAElFTkSuQmCC", + "text/plain": [ + "
" ] - }, - { - "cell_type": "markdown", - "source": [ - "## 1. Replicate the ViT architecture we created with in-built [PyTorch transformer layers](https://pytorch.org/docs/stable/nn.html#transformer-layers).\n", - "\n", - "* You'll want to look into replacing our `TransformerEncoderBlock()` class with [`torch.nn.TransformerEncoderLayer()`](https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html#torch.nn.TransformerEncoderLayer) (these contain the same layers as our custom blocks). \n", - "* You can stack `torch.nn.TransformerEncoderLayer()`'s on top of each other with [`torch.nn.TransformerEncoder()`](https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html#torch.nn.TransformerEncoder)." - ], - "metadata": { - "id": "nwmoMhW8IqSu" - } - }, - { - "cell_type": "code", - "source": [ - "# TODO: your code" - ], - "metadata": { - "id": "pmDd_YZ7VSrL" - }, - "execution_count": 11, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## 2. Turn the custom ViT architecture we created into a Python script, for example, `vit.py`.\n", - "\n", - "* You should be able to import an entire ViT model using something like`from vit import ViT`.\n", - "* We covered the art of turning code cells into Python scrips in [05. PyTorch Going Modular](https://www.learnpytorch.io/05_pytorch_going_modular/). \n" - ], - "metadata": { - "id": "MBWnDZao9w_5" - } - }, - { - "cell_type": "code", - "source": [ - "# TODO: your code" - ], - "metadata": { - "id": "NFXVZNCzVYgV" - }, - "execution_count": 12, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## 3. Train a pretrained ViT feature extractor model (like the one we made in [08. PyTorch Paper Replicating section 10](https://www.learnpytorch.io/08_pytorch_paper_replicating/#10-bring-in-pretrained-vit-from-torchvisionmodels-on-same-dataset)) on 20% of the pizza, steak and sushi data like the dataset we used in [07. PyTorch Experiment Tracking section 7.3](https://www.learnpytorch.io/07_pytorch_experiment_tracking/#73-download-different-datasets) \n", - "* See how it performs compared to the EffNetB2 model we compared it to in [08. PyTorch Paper Replicating section 10.6](https://www.learnpytorch.io/08_pytorch_paper_replicating/#106-save-feature-extractor-vit-model-and-check-file-size)." - ], - "metadata": { - "id": "aTKbje-e9118" - } - }, - { - "cell_type": "code", - "source": [ - "# TODO: your code" - ], - "metadata": { - "id": "R7iKYRAUVkA7" - }, - "execution_count": 13, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## 4. Try repeating the steps from excercise 3 but this time use the \"`ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1`\" pretrained weights from [`torchvision.models.vit_b_16()`](https://pytorch.org/vision/stable/models/generated/torchvision.models.vit_b_16.html#torchvision.models.vit_b_16).\n", - "* Note: ViT pretrained with SWAG weights has a minimum input image size of (384, 384), though this is accessible in the weights `.transforms()` method." - ], - "metadata": { - "id": "LH-vHr3m9_oH" - } - }, - { - "cell_type": "code", - "source": [ - "# TODO: your code" - ], - "metadata": { - "id": "dWxceTz3VmeB" - }, - "execution_count": 14, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "# 5. Our custom ViT model architecture closely mimics that of the ViT paper, however, our training recipe misses a few things. \n", - "* Research some of the following topics from Table 3 in the ViT paper that we miss and write a sentence about each and how it might help with training:\n", - " * **ImageNet-21k pretraining** \n", - " * **Learning rate warmup** \n", - " * **Learning rate decay** \n", - " * **Gradient clipping** " - ], - "metadata": { - "id": "ZLcCgRhS-OhV" - } - }, - { - "cell_type": "code", - "source": [ - "# TODO: your explanations of the above terms" - ], - "metadata": { - "id": "7HwonCSsVtnr" - }, - "execution_count": 15, - "outputs": [] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } - ] + ], + "source": [ + "# Plot image with matplotlib\n", + "plt.imshow(image.permute(1, 2, 0)) # rearrange image dimensions to suit matplotlib [color_channels, height, width] -> [height, width, color_channels]\n", + "plt.title(class_names[label])\n", + "plt.axis(False);" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nwmoMhW8IqSu" + }, + "source": [ + "## 1. Replicate the ViT architecture we created with in-built [PyTorch transformer layers](https://pytorch.org/docs/stable/nn.html#transformer-layers).\n", + "\n", + "* You'll want to look into replacing our `TransformerEncoderBlock()` class with [`torch.nn.TransformerEncoderLayer()`](https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html#torch.nn.TransformerEncoderLayer) (these contain the same layers as our custom blocks). \n", + "* You can stack `torch.nn.TransformerEncoderLayer()`'s on top of each other with [`torch.nn.TransformerEncoder()`](https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html#torch.nn.TransformerEncoder)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "pmDd_YZ7VSrL" + }, + "outputs": [], + "source": [ + "# TODO: your code" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MBWnDZao9w_5" + }, + "source": [ + "## 2. Turn the custom ViT architecture we created into a Python script, for example, `vit.py`.\n", + "\n", + "* You should be able to import an entire ViT model using something like`from vit import ViT`.\n", + "* We covered the art of turning code cells into Python scrips in [05. PyTorch Going Modular](https://www.learnpytorch.io/05_pytorch_going_modular/). \n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "NFXVZNCzVYgV" + }, + "outputs": [], + "source": [ + "# TODO: your code" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aTKbje-e9118" + }, + "source": [ + "## 3. Train a pretrained ViT feature extractor model (like the one we made in [08. PyTorch Paper Replicating section 10](https://www.learnpytorch.io/08_pytorch_paper_replicating/#10-bring-in-pretrained-vit-from-torchvisionmodels-on-same-dataset)) on 20% of the pizza, steak and sushi data like the dataset we used in [07. PyTorch Experiment Tracking section 7.3](https://www.learnpytorch.io/07_pytorch_experiment_tracking/#73-download-different-datasets) \n", + "* See how it performs compared to the EffNetB2 model we compared it to in [08. PyTorch Paper Replicating section 10.6](https://www.learnpytorch.io/08_pytorch_paper_replicating/#106-save-feature-extractor-vit-model-and-check-file-size)." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "R7iKYRAUVkA7" + }, + "outputs": [], + "source": [ + "# TODO: your code" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LH-vHr3m9_oH" + }, + "source": [ + "## 4. Try repeating the steps from excercise 3 but this time use the \"`ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1`\" pretrained weights from [`torchvision.models.vit_b_16()`](https://pytorch.org/vision/stable/models/generated/torchvision.models.vit_b_16.html#torchvision.models.vit_b_16).\n", + "* Note: ViT pretrained with SWAG weights has a minimum input image size of (384, 384), though this is accessible in the weights `.transforms()` method." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "dWxceTz3VmeB" + }, + "outputs": [], + "source": [ + "# TODO: your code" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZLcCgRhS-OhV" + }, + "source": [ + "# 5. Our custom ViT model architecture closely mimics that of the ViT paper, however, our training recipe misses a few things. \n", + "* Research some of the following topics from Table 3 in the ViT paper that we miss and write a sentence about each and how it might help with training:\n", + " * **ImageNet-21k pretraining** \n", + " * **Learning rate warmup** \n", + " * **Learning rate decay** \n", + " * **Gradient clipping** " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "7HwonCSsVtnr" + }, + "outputs": [], + "source": [ + "# TODO: your explanations of the above terms" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "authorship_tag": "ABX9TyOhoCjGZZxrecbm76R8UJZn", + "collapsed_sections": [], + "include_colab_link": true, + "name": "08_pytorch_paper_replicating_exercises.ipynb", + "provenance": [], + "toc_visible": true + }, + "gpuClass": "standard", + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/extras/solutions/08_pytorch_paper_replicating_exercise_solutions.ipynb b/extras/solutions/08_pytorch_paper_replicating_exercise_solutions.ipynb index c337d4fd..bfa77d70 100644 --- a/extras/solutions/08_pytorch_paper_replicating_exercise_solutions.ipynb +++ b/extras/solutions/08_pytorch_paper_replicating_exercise_solutions.ipynb @@ -1,3707 +1,3707 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "name": "08_pytorch_paper_replicating_exercise_solutions.ipynb", - "provenance": [], - "collapsed_sections": [], - "toc_visible": true, - "authorship_tag": "ABX9TyMG7TQ+zjNvXlWvwhTedWdi", - "include_colab_link": true - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - }, - "accelerator": "GPU", - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "f19a9bb425c6488e830d5600c129f22e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_22ea6b6a2899467bab284b86ea60280e", - "IPY_MODEL_2afefd5f072f41a6a9754b8b86885fd4", - "IPY_MODEL_899a3c7eb54744b0867b948b62425136" - ], - "layout": "IPY_MODEL_223758f1c0994fec8fcd2be8947f9f4e" - } - }, - "22ea6b6a2899467bab284b86ea60280e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ef69dccad93e40509855e3042fca66b1", - "placeholder": "​", - "style": "IPY_MODEL_ea0de57a136f4ee782d0a0b60f15120c", - "value": "100%" - } - }, - "2afefd5f072f41a6a9754b8b86885fd4": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_14c9f4e69c854a53a8e15ab5323eec94", - "max": 346328529, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_21000ae3a0ac49459ba4d66ce30e3349", - "value": 346328529 - } - }, - "899a3c7eb54744b0867b948b62425136": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f9d6180bf6e74ffcaaf5a8bbededb652", - "placeholder": "​", - "style": "IPY_MODEL_ed05f564f7e84d00881ee38a5b38c635", - "value": " 330M/330M [00:18<00:00, 18.8MB/s]" - } - }, - "223758f1c0994fec8fcd2be8947f9f4e": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ef69dccad93e40509855e3042fca66b1": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ea0de57a136f4ee782d0a0b60f15120c": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "14c9f4e69c854a53a8e15ab5323eec94": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "21000ae3a0ac49459ba4d66ce30e3349": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f9d6180bf6e74ffcaaf5a8bbededb652": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ed05f564f7e84d00881ee38a5b38c635": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b695c70e6147429ba217ba33e96d226e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cea652ed4443470bb0e7177ca97483b9", - "IPY_MODEL_c2d4e872f3a146088ec5a3befeb8fd12", - "IPY_MODEL_2df321077b244eae825466422ef0bdfb" - ], - "layout": "IPY_MODEL_31690837feef4696ab18ad72b363e6fd" - } - }, - "cea652ed4443470bb0e7177ca97483b9": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a812ad16865e42df8cc28512f6bf034f", - "placeholder": "​", - "style": "IPY_MODEL_503f290ef1704e8199c52fb3ab150bdf", - "value": "100%" - } - }, - "c2d4e872f3a146088ec5a3befeb8fd12": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_be6101867f2c47ca8b5450b2a2755702", - "max": 10, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_ab127b12615c45ed8b27a59584657bde", - "value": 10 - } - }, - "2df321077b244eae825466422ef0bdfb": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4298507389e2419ba787f316d2c09c58", - "placeholder": "​", - "style": "IPY_MODEL_1008a3eb2c1e444f8fc417fa2aabd3c6", - "value": " 10/10 [01:06<00:00, 6.83s/it]" - } - }, - "31690837feef4696ab18ad72b363e6fd": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a812ad16865e42df8cc28512f6bf034f": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "503f290ef1704e8199c52fb3ab150bdf": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "be6101867f2c47ca8b5450b2a2755702": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ab127b12615c45ed8b27a59584657bde": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4298507389e2419ba787f316d2c09c58": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1008a3eb2c1e444f8fc417fa2aabd3c6": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d1c7ef8be6974da1bffac9352f5bb756": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_69e851ff3c3344b3ba0dbad055a542ba", - "IPY_MODEL_c3f31ae0b1654d338a6d16600fd0ae7c", - "IPY_MODEL_7c07eac4cfb3485b81b301722b8ed256" - ], - "layout": "IPY_MODEL_f5a3786b73544319973f81cb502247fa" - } - }, - "69e851ff3c3344b3ba0dbad055a542ba": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f9fd5a5bb97f4f68978610975a864fcf", - "placeholder": "​", - "style": "IPY_MODEL_069a53cbbc6c489bb0e93920fe9c74e7", - "value": "100%" - } - }, - "c3f31ae0b1654d338a6d16600fd0ae7c": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4ae1ed5541474dbeb8946a87b97ed3b8", - "max": 347495889, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_1fedade3d325455fab7041a5ecdf7a24", - "value": 347495889 - } - }, - "7c07eac4cfb3485b81b301722b8ed256": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2163e30923ee4e98a0b524113055cbbf", - "placeholder": "​", - "style": "IPY_MODEL_8992a45afd2a42e48e655a12ba80291f", - "value": " 331M/331M [00:18<00:00, 20.0MB/s]" - } - }, - "f5a3786b73544319973f81cb502247fa": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f9fd5a5bb97f4f68978610975a864fcf": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "069a53cbbc6c489bb0e93920fe9c74e7": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4ae1ed5541474dbeb8946a87b97ed3b8": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1fedade3d325455fab7041a5ecdf7a24": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2163e30923ee4e98a0b524113055cbbf": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8992a45afd2a42e48e655a12ba80291f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "72415a3076c042bba10412be90a5222c": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f3eb5a1beace49cab6c1f9ec107e57e5", - "IPY_MODEL_1b5f49a68fe84812ae6f1c014d3348f0", - "IPY_MODEL_c33a10a3693340bc9b9477caab4d532a" - ], - "layout": "IPY_MODEL_267761bb9148406eafbf4fce8a35e731" - } - }, - "f3eb5a1beace49cab6c1f9ec107e57e5": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7ca1118a9dc54de5945764c9c5aba485", - "placeholder": "​", - "style": "IPY_MODEL_8c87a454a6d9410f90a1b657118fb794", - "value": "100%" - } - }, - "1b5f49a68fe84812ae6f1c014d3348f0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9e7268f207304961b8035122012f61b0", - "max": 10, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_ff69c66d4d3f4c17be9826da8319a3f3", - "value": 10 - } - }, - "c33a10a3693340bc9b9477caab4d532a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4224d3ad9ded48cea36a5984826af143", - "placeholder": "​", - "style": "IPY_MODEL_f92c3db1bd3b40bd9c3f93f35a2f41c4", - "value": " 10/10 [01:54<00:00, 11.41s/it]" - } - }, - "267761bb9148406eafbf4fce8a35e731": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7ca1118a9dc54de5945764c9c5aba485": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8c87a454a6d9410f90a1b657118fb794": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9e7268f207304961b8035122012f61b0": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ff69c66d4d3f4c17be9826da8319a3f3": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4224d3ad9ded48cea36a5984826af143": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f92c3db1bd3b40bd9c3f93f35a2f41c4": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - } - } - }, - "gpuClass": "standard" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "view-in-github" + }, + "source": [ + "\"Open" + ] }, - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "view-in-github", - "colab_type": "text" - }, - "source": [ - "\"Open" - ] + { + "cell_type": "markdown", + "metadata": { + "id": "zNqPNlYylluR" + }, + "source": [ + "# 08. PyTorch Paper Replicating Exercise Solutions\n", + "\n", + "Welcome to the 08. PyTorch Paper Replicating exercise solutions notebook.\n", + "\n", + "> **Note:** There may be more than one solution to each of the exercises. This notebook only shows one possible example.\n", + "\n", + "## Resources\n", + "\n", + "1. These exercises/solutions are based on [section 08. PyTorch Paper Replicating](https://www.learnpytorch.io/08_pytorch_paper_replicating/) of the Learn PyTorch for Deep Learning course by Zero to Mastery.\n", + "2. See a live [walkthrough of the solutions (errors and all) on YouTube](https://youtu.be/tjpW_BY8y3g).\n", + "3. See [other solutions on the course GitHub](https://github.com/mrdbourke/pytorch-deep-learning/tree/main/extras/solutions)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sf8ab9cyHTzU" + }, + "source": [ + "### Get various imports and helper functions\n", + "\n", + "The code in the following cells prepares imports and data for the exercises below. They are taken from [08. PyTorch Paper Replicating](https://www.learnpytorch.io/08_pytorch_paper_replicating/). " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "ChRaHUSJ8DYZ", + "outputId": "1267a93a-69dc-47ba-fdc8-9a202fa1f627" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "# 08. PyTorch Experiment Tracking Exercise Solutions\n", - "\n", - "Welcome to the 08. PyTorch Paper Replicating exercise solutions notebook.\n", - "\n", - "> **Note:** There may be more than one solution to each of the exercises. This notebook only shows one possible example.\n", - "\n", - "## Resources\n", - "\n", - "1. These exercises/solutions are based on [section 08. PyTorch Paper Replicating](https://www.learnpytorch.io/08_pytorch_paper_replicating/) of the Learn PyTorch for Deep Learning course by Zero to Mastery.\n", - "2. See a live [walkthrough of the solutions (errors and all) on YouTube](https://youtu.be/tjpW_BY8y3g).\n", - "3. See [other solutions on the course GitHub](https://github.com/mrdbourke/pytorch-deep-learning/tree/main/extras/solutions)." - ], - "metadata": { - "id": "zNqPNlYylluR" - } + "name": "stdout", + "output_type": "stream", + "text": [ + "torch version: 1.12.0+cu113\n", + "torchvision version: 0.13.0+cu113\n" + ] + } + ], + "source": [ + "# For this notebook to run with updated APIs, we need torch 1.12+ and torchvision 0.13+\n", + "try:\n", + " import torch\n", + " import torchvision\n", + " assert int(torch.__version__.split(\".\")[1]) >= 12, \"torch version should be 1.12+\"\n", + " assert int(torchvision.__version__.split(\".\")[1]) >= 13, \"torchvision version should be 0.13+\"\n", + " print(f\"torch version: {torch.__version__}\")\n", + " print(f\"torchvision version: {torchvision.__version__}\")\n", + "except:\n", + " print(f\"[INFO] torch/torchvision versions not as required, installing nightly versions.\")\n", + " !pip3 install -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cu113\n", + " import torch\n", + " import torchvision\n", + " print(f\"torch version: {torch.__version__}\")\n", + " print(f\"torchvision version: {torchvision.__version__}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "Y5H5P8EjCNGK", + "outputId": "99778a15-76a4-4329-9b8e-5b34b39ff6c4" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "### Get various imports and helper functions\n", - "\n", - "The code in the following cells prepares imports and data for the exercises below. They are taken from [08. PyTorch Paper Replicating](https://www.learnpytorch.io/08_pytorch_paper_replicating/). " - ], - "metadata": { - "id": "sf8ab9cyHTzU" - } + "name": "stdout", + "output_type": "stream", + "text": [ + "[INFO] Couldn't find torchinfo... installing it.\n", + "[INFO] Couldn't find going_modular or helper_functions scripts... downloading them from GitHub.\n", + "Cloning into 'pytorch-deep-learning'...\n", + "remote: Enumerating objects: 2579, done.\u001b[K\n", + "remote: Counting objects: 100% (18/18), done.\u001b[K\n", + "remote: Compressing objects: 100% (18/18), done.\u001b[K\n", + "remote: Total 2579 (delta 4), reused 6 (delta 0), pack-reused 2561\u001b[K\n", + "Receiving objects: 100% (2579/2579), 446.36 MiB | 14.08 MiB/s, done.\n", + "Resolving deltas: 100% (1448/1448), done.\n", + "Checking out files: 100% (184/184), done.\n" + ] + } + ], + "source": [ + "# Continue with regular imports\n", + "import matplotlib.pyplot as plt\n", + "import torch\n", + "import torchvision\n", + "\n", + "from torch import nn\n", + "from torchvision import transforms\n", + "\n", + "# Try to get torchinfo, install it if it doesn't work\n", + "try:\n", + " from torchinfo import summary\n", + "except:\n", + " print(\"[INFO] Couldn't find torchinfo... installing it.\")\n", + " !pip install -q torchinfo\n", + " from torchinfo import summary\n", + "\n", + "# Try to import the going_modular directory, download it from GitHub if it doesn't work\n", + "try:\n", + " from going_modular.going_modular import data_setup, engine\n", + " from helper_functions import download_data, set_seeds, plot_loss_curves\n", + "except:\n", + " # Get the going_modular scripts\n", + " print(\"[INFO] Couldn't find going_modular or helper_functions scripts... downloading them from GitHub.\")\n", + " !git clone https://github.com/mrdbourke/pytorch-deep-learning\n", + " !mv pytorch-deep-learning/going_modular .\n", + " !mv pytorch-deep-learning/helper_functions.py . # get the helper_functions.py script\n", + " !rm -rf pytorch-deep-learning\n", + " from going_modular.going_modular import data_setup, engine\n", + " from helper_functions import download_data, set_seeds, plot_loss_curves" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 }, + "id": "bE1AAH_uCjiP", + "outputId": "6a4f8e86-2157-4578-e295-cf2d72ee05d6" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# For this notebook to run with updated APIs, we need torch 1.12+ and torchvision 0.13+\n", - "try:\n", - " import torch\n", - " import torchvision\n", - " assert int(torch.__version__.split(\".\")[1]) >= 12, \"torch version should be 1.12+\"\n", - " assert int(torchvision.__version__.split(\".\")[1]) >= 13, \"torchvision version should be 0.13+\"\n", - " print(f\"torch version: {torch.__version__}\")\n", - " print(f\"torchvision version: {torchvision.__version__}\")\n", - "except:\n", - " print(f\"[INFO] torch/torchvision versions not as required, installing nightly versions.\")\n", - " !pip3 install -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cu113\n", - " import torch\n", - " import torchvision\n", - " print(f\"torch version: {torch.__version__}\")\n", - " print(f\"torchvision version: {torchvision.__version__}\")\n" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "ChRaHUSJ8DYZ", - "outputId": "1267a93a-69dc-47ba-fdc8-9a202fa1f627" + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" }, - "execution_count": 1, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "torch version: 1.12.0+cu113\n", - "torchvision version: 0.13.0+cu113\n" - ] - } + "text/plain": [ + "'cuda'" ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "device" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GmS5yuvxCpLp" + }, + "source": [ + "### Get data\n", + "\n", + "Want to download the data we've been using in PyTorch Paper Replicating: https://www.learnpytorch.io/08_pytorch_paper_replicating/#1-get-data" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "dm772wqgCzN9", + "outputId": "9cb1072e-1a32-45bc-ee1d-e92cef63a074" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# Continue with regular imports\n", - "import matplotlib.pyplot as plt\n", - "import torch\n", - "import torchvision\n", - "\n", - "from torch import nn\n", - "from torchvision import transforms\n", - "\n", - "# Try to get torchinfo, install it if it doesn't work\n", - "try:\n", - " from torchinfo import summary\n", - "except:\n", - " print(\"[INFO] Couldn't find torchinfo... installing it.\")\n", - " !pip install -q torchinfo\n", - " from torchinfo import summary\n", - "\n", - "# Try to import the going_modular directory, download it from GitHub if it doesn't work\n", - "try:\n", - " from going_modular.going_modular import data_setup, engine\n", - " from helper_functions import download_data, set_seeds, plot_loss_curves\n", - "except:\n", - " # Get the going_modular scripts\n", - " print(\"[INFO] Couldn't find going_modular or helper_functions scripts... downloading them from GitHub.\")\n", - " !git clone https://github.com/mrdbourke/pytorch-deep-learning\n", - " !mv pytorch-deep-learning/going_modular .\n", - " !mv pytorch-deep-learning/helper_functions.py . # get the helper_functions.py script\n", - " !rm -rf pytorch-deep-learning\n", - " from going_modular.going_modular import data_setup, engine\n", - " from helper_functions import download_data, set_seeds, plot_loss_curves" - ], - "metadata": { - "id": "Y5H5P8EjCNGK", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "99778a15-76a4-4329-9b8e-5b34b39ff6c4" - }, - "execution_count": 2, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "[INFO] Couldn't find torchinfo... installing it.\n", - "[INFO] Couldn't find going_modular or helper_functions scripts... downloading them from GitHub.\n", - "Cloning into 'pytorch-deep-learning'...\n", - "remote: Enumerating objects: 2579, done.\u001b[K\n", - "remote: Counting objects: 100% (18/18), done.\u001b[K\n", - "remote: Compressing objects: 100% (18/18), done.\u001b[K\n", - "remote: Total 2579 (delta 4), reused 6 (delta 0), pack-reused 2561\u001b[K\n", - "Receiving objects: 100% (2579/2579), 446.36 MiB | 14.08 MiB/s, done.\n", - "Resolving deltas: 100% (1448/1448), done.\n", - "Checking out files: 100% (184/184), done.\n" - ] - } - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "[INFO] Did not find data/pizza_steak_sushi directory, creating one...\n", + "[INFO] Downloading pizza_steak_sushi.zip from https://github.com/mrdbourke/pytorch-deep-learning/raw/main/data/pizza_steak_sushi.zip...\n", + "[INFO] Unzipping pizza_steak_sushi.zip data...\n" + ] }, { - "cell_type": "code", - "source": [ - "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", - "device" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 35 - }, - "id": "bE1AAH_uCjiP", - "outputId": "6a4f8e86-2157-4578-e295-cf2d72ee05d6" - }, - "execution_count": 3, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "'cuda'" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "string" - } - }, - "metadata": {}, - "execution_count": 3 - } + "data": { + "text/plain": [ + "PosixPath('data/pizza_steak_sushi')" ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Download pizza, steak, sushi images from GitHub\n", + "image_path = download_data(source=\"https://github.com/mrdbourke/pytorch-deep-learning/raw/main/data/pizza_steak_sushi.zip\",\n", + " destination=\"pizza_steak_sushi\")\n", + "image_path" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "r1ML2c-dCzCi" + }, + "outputs": [], + "source": [ + "# Setup directory paths to train and test images\n", + "train_dir = image_path / \"train\"\n", + "test_dir = image_path / \"test\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nNBZ_2h_Cy86" + }, + "source": [ + "### Preprocess data\n", + "\n", + "Turn images into tensors using same code as PyTorch Paper Replicating section 2.1 and 2.2: https://www.learnpytorch.io/08_pytorch_paper_replicating/#21-prepare-transforms-for-images" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "mU0T4gP3DJdF", + "outputId": "7d354ca6-d0de-4680-c356-23b372a74a43" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "### Get data\n", - "\n", - "Want to download the data we've been using in PyTorch Paper Replicating: https://www.learnpytorch.io/08_pytorch_paper_replicating/#1-get-data" - ], - "metadata": { - "id": "GmS5yuvxCpLp" - } + "name": "stdout", + "output_type": "stream", + "text": [ + "Manually created transforms: Compose(\n", + " Resize(size=(224, 224), interpolation=bilinear, max_size=None, antialias=None)\n", + " ToTensor()\n", + ")\n" + ] + } + ], + "source": [ + "# Create image size (from Table 3 in the ViT paper) \n", + "IMG_SIZE = 224\n", + "\n", + "# Create transform pipeline manually\n", + "manual_transforms = transforms.Compose([\n", + " transforms.Resize((IMG_SIZE, IMG_SIZE)),\n", + " transforms.ToTensor(),\n", + "]) \n", + "print(f\"Manually created transforms: {manual_transforms}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "W4vWgIprDJau", + "outputId": "15d080c5-bb82-413c-b69f-46a0f6621f78" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# Download pizza, steak, sushi images from GitHub\n", - "image_path = download_data(source=\"https://github.com/mrdbourke/pytorch-deep-learning/raw/main/data/pizza_steak_sushi.zip\",\n", - " destination=\"pizza_steak_sushi\")\n", - "image_path" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "dm772wqgCzN9", - "outputId": "9cb1072e-1a32-45bc-ee1d-e92cef63a074" - }, - "execution_count": 4, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "[INFO] Did not find data/pizza_steak_sushi directory, creating one...\n", - "[INFO] Downloading pizza_steak_sushi.zip from https://github.com/mrdbourke/pytorch-deep-learning/raw/main/data/pizza_steak_sushi.zip...\n", - "[INFO] Unzipping pizza_steak_sushi.zip data...\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "PosixPath('data/pizza_steak_sushi')" - ] - }, - "metadata": {}, - "execution_count": 4 - } + "data": { + "text/plain": [ + "(,\n", + " ,\n", + " ['pizza', 'steak', 'sushi'])" ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Set the batch size\n", + "BATCH_SIZE = 32 # this is lower than the ViT paper but it's because we're starting small\n", + "\n", + "# Create data loaders\n", + "train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(\n", + " train_dir=train_dir,\n", + " test_dir=test_dir,\n", + " transform=manual_transforms, # use manually created transforms\n", + " batch_size=BATCH_SIZE\n", + ")\n", + "\n", + "train_dataloader, test_dataloader, class_names" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "u7eLIFHyDJRr", + "outputId": "b923e138-6c5a-4950-8cf2-76b7359685fa" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# Setup directory paths to train and test images\n", - "train_dir = image_path / \"train\"\n", - "test_dir = image_path / \"test\"" - ], - "metadata": { - "id": "r1ML2c-dCzCi" - }, - "execution_count": 5, - "outputs": [] + "data": { + "text/plain": [ + "(torch.Size([3, 224, 224]), tensor(1))" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Get a batch of images\n", + "image_batch, label_batch = next(iter(train_dataloader))\n", + "\n", + "# Get a single image from the batch\n", + "image, label = image_batch[0], label_batch[0]\n", + "\n", + "# View the batch shapes\n", + "image.shape, label" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 264 }, + "id": "2yyNHCmCDbSR", + "outputId": "6d138197-ee69-42ef-b118-99201c6d43d4" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "### Preprocess data\n", - "\n", - "Turn images into tensors using same code as PyTorch Paper Replicating section 2.1 and 2.2: https://www.learnpytorch.io/08_pytorch_paper_replicating/#21-prepare-transforms-for-images" - ], - "metadata": { - "id": "nNBZ_2h_Cy86" - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAAD3CAYAAADmIkO7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9269v2ZXf9RljzrXW77Iv51J16uoqV9lu39pdstOOujshkZJwC1JeeAAklCce8gBShIQQPAWBQniAiD8AiQcuQiAeEDwEJAQPXALpbqe7HLft6nK1y3bZrsu57b1/a6055xg8jPnb53TT7aaLdLoQe0rbp3z23r/f+q01xxjf8f1+xzzi7tysm3WzPnlL/6Qv4GbdrJv1+6+b4LxZN+sTum6C82bdrE/ougnOm3WzPqHrJjhv1s36hK6b4LxZN+sTum6C8/+nS0TeEZG/9Cd9HTfrD143wfn/kSUif0NE/pM/6eu4Wf/o1k1w3qyb9QldN8H5CVwi8q+LyA9F5LGIfFtE/hng3wT+ORG5EJG/33/uXET+IxF5r//8vyMiqX/vMyLyP4rIhyLygYj8pyJy6w94vy+KyPdE5F/4R/cpb9Yftm6C8xO2ROTzwL8MfN3dT4F/Evgt4G8C/4W7n7j7G/3H/2OgAp8Fvgr8E8C/dHwp4N8FXgS+CHwK+Bu/z/t9Dfg7wL/i7v/5H8+nulkfZ90E5ydvNWACviQig7u/4+6//Xt/SESeA/4y8Nfd/dLdfwr8beCfB3D3t9z9f3D3xd3fB/4D4M//npf5x4D/Bvir7v7f/jF+ppv1MVb+k76Am/W7l7u/JSJ/nahyXxaRvwP8q7/Pj74KDMB7InL8OwXehevg/Q+JADzt37v/e17jrwH/s7v/T/9wP8XN+oexbirnJ3C5+3/m7n+WCEAH/r3+59PrXWABnnH3W/3rzN2/3L//N/vvfMXdz4B/kYC6T6+/BrwiIn/7j+uz3KyPv26C8xO2ROTzIvIXRGQCZuAAGPAT4NMiogDu/h7w3wP/voiciYh2EugIXU+BC+ChiLwE/Gu/z9s9Bv4p4M+JyN/64/1kN+uPum6C85O3JuBvAR8APwbuAf8G8F/2738oIr/W//uvAiPwDwjI+l8BL/Tv/VvA14CHwH8H/Ne/35u5+wPgHwf+aRH5t/9hf5ib9fGX3Axb36yb9clcN5XzZt2sT+i6Cc6bdbM+oesmOG/WzfqErpvgvFk36xO6fqYJ4RfvfdaLrFRdcQUlkX0gk5EhgUBdjVIquKCqjCmj6lhaWO3Afqf8yi99kb/yl3+Fz7zyLFNqUB+zHu5TliusGK1CqYK5YAjVgCYkRqxBmSuPrx7x6PIxabPn+z96yI/fX9HhlP2tMz73+qd4+d45k1xRLn9C8gvGDCllUMVEKK0iYgxZkeaUdeFqOXAxG6vtKW2HywBUaIW2HqjzY7xckGXlhRducfdOYhoTY54YphPS9jbs7pLGU7yBtUbKCaMhAuYNUWWQBGmgotTm1FZxN3Bo5nhzRDJZR1QzIgmn0mxlXRcURchYk7hXbmxToi1XXFw+YFkec/nhRzz6yY9YLz5ExLl9Z8OtZ0amXSKPe9AttRrLWrAmuCvWwF3JaWAcR3a3ztjdPmN7dotpe4bmCVyZr1bmQ2O5OlCu7lOvfkK5+AlaHqPSUK1s9gN5zOQpI5pxH0lpw9VVo9QB1z2kHaITpRUEqLWShy2b01sMu3OajpB3oAnNyjCOiAoOqDptnTkcrri6XIAN2/2zSNoDE0LCXLg8zLz19vf4X/7X/41f/dVv8P57D1lKw2mgjqtTrVJajb9zRfu9UIGkgghkSSRxVCopCahgOG4ODcwMsyBTg1N1HAURFHB3qjcaYDiYIQ6qytE00lrDzPnB4w9/r/78hwenqqAISRMugAtYfDj3BiK4g2H9AhQXZ0oKCrvNxJe+9Bp/7s/8Mq9+6iV2G0etsa4Vq422VmptuCWEARDc4z1d+kMRGEZl61sqwk8/fIhI5rOffYEXXvw0Z+d7hiTQrlgPl3hrDDkjCVwS5oqkxJgGzCIoBENTIueBnJxqibilGrdEHNFMHrYghlXj4eMD22lCULw1ihUSK2OumK+oKOaNZT6ACDkpw5gZhgEzx8xYm4Mo7uAWyWxI0HDcQBREHbOCWcG9Ie6YG0njwVYMrHKYr2jLJVcXD1mXC+arB6zzBe6Ou3G4OrBflHGbaK3hrVCqxXt7XE8zWNaCUDgfR4bNhnHakfIIkiLITEAHNCfSYPi4w9cNM5lSG+qFYXDKUlGU0lZIjZSduqwsh0qzgdIuSXnHUpylJjRlNA1sZECL4aWRJiXnhCGRuGpDUqJZo9VCXVfa6uADw7hBRfHYNYChopyc7Pj5L3+J119/nV/55V/hG7/2Tb7x93+T77/7fS7nK8wdb4YYoBkQrCsW0gNQIfYPITDjhpvS3MCc5CAiiDjuDuLg4LQIVAcRjT1BD0pJ8XoWryqiICkSxMepnIKRJDZS62/iFtmjuccHJbJKExBxqhgqznYSXvnUPf7ML3+VL3/h05xsDOoFdb2kLTNtXailYhYBHtVBEeOp/w9gmC2klBiHHc88s+e1W8+wPz3DACuPaetKXQ94OeB1Jm2FYZywlHBRNGUEIUuGVoFCShlNhkjPniRa37jugsiADA5iNK/MpXCYjWlKJB0RH8AzYoLViqd4iCqOJiVlxXHWusb9c8XJpJQRGWi1YbUg7qhKT34W97ZVrBZwi+C0qPwg8b31inp5SV0uSRTGbBx8weqMipA001pjXQrjnJh2Ts6KqYLHnmyN64okmsnbHdvTc8bdCWnYonnC0agWmmgIriNp2mHlFNKWKhlbFjBBaqXNjWEYkNQ4yIybsBanNJjnBihrBcu3OL/9LJvtFvKIoazVUKkUZnLOaMoYiltjXldaMbCEW9zbPOwRHRHNPTAcx8CNrImzkw2/8Atf5As/93n+4l/6c3zjG7/B//H3/h7ffettPrp/n1Irte9yJILR3HAa5o6YkTVSdmkNl0AZYJE0ezDTg9HFryuomSMYiIBb38WKmYfNyx2noUn/b7av/8fB2bzGBcTro5KQFFW0uSE4zQ3zfiGayFPmzp0TXnxhzy9+9XN87Y3PcOskQXnEfPkh69VjrMy41/hQLW7QMX+YQWtOzoJbpZaVUlfSuOferXt42tLcWNaHtLbiZcFbg9ZQGmlM5JxYa2E+HBi3OzZpjKTSHHXIKT52EkMExCUuxA3EUI183IqjObMZ9mw3ie1eGKYd42bHZnfKsDnBdKBJ3H7EmMYBzQMQCQx3WjNcAs64xcMUA8wRHDH69xoNo7UK1vBmmHOdwNyNVittuaAcHqE0NqOzemNQx8oBzVuEBGYsVys5Q84T4oaQkH6Pa62UFpsljwPjZksaNmjeIGnCEKxZwHCTa6gpAjbu0XGHXw0sxZgfX7FRQSzQVB5GmgieBlyUasLhcKC1wnZ3wt3nbrE5OUGHLYx7ZNiyNgm459aTlNGsYg6tGN6heCkNzRn1BCaoeASKxP0BQcRAIAnsdplXX3mOF174i/zSL3+dt7772/zvf/fv8ZtvfpP3PviAeV6ptV1XwkBPhvfnJknRNND8WEQSouBmEcRP3hwnnrekKKbNG+C9goKLXP+OH52UT3zRf7TgLBQwua6QjYCZmhPSoNWKu6MCkhTE8bbi9cBLL7zEn3rjs7z47I4sl9T2iLo8pC0BPXEQVwLKxo11BHdHRDCrWJ2pdaY1GDMUmyl1prbW32dBCKgdUMEYspBSBEYtKylndLON6yNFDElAP0Tj94msHfgjYNIwZvLJCfv9yH4/MGZhkwxVZbvdMWx2SBpovXKWWthuN6SU4355TzrNcJPeETREVqw26rr2LC/Rp6QEqh12C6KJFlkQb461FXeoZabMj8BnVOMZ4EZOSikFM0UGQbOwHFamTabMBfGKp0TSRGkloLY7KWdOTk44OTsl5QFQRBMi2itRfI7YcYA0nIwzgmdagXJZaLWgIjR3SrtktYE7915gc3rG5dUVFWWY4JnnX+T0mWewtIG8o+mIDiNSPILDG5BR1eivS8OagydaIxJFBa1CSglIsdE7VI/E68hxX1EQUaZBuHf3nGfufI2vfPlLvPuDH/Krv/Eb/OqvfYO3336Hi4sLagvkhErsC4lEmpKCRe8Yz/FY8Ryz1v+0jkQC8wmQUNxb5JvYWLg1RFMkbQPV9PGC09R7NlOsRZavVqBFRhMVsgR8SxIXm9y4e77jK194jU+/dJtRr2jLfdblAVYu8ToHAULCXTADs4ZZQzQ2h3uQK95WnMo47hEV5vKIYpFZkwfsNsv9Gj36EombmRKc7SYkJ7DKME7kacQ6nDRTUkrkZIyjMEwT2/2GYVCGYWC/2zFOGVHDfcWtMuSBpImUoyJIytR1IQ+JadiTco5N31oEJVEIrDpOve4xvFXEa69miqO0aqCJaj17i+Ceolq2lbYslPWA1QVlIQ8OrVFaobVKygO73SnrUnFz1qWQW6Wt0dsXVqo4SKIdoZcIojBMA+M0on1TSgAH3A1rDatBmJgpYgGzIeFNmS9XlodXZIuEayKQM3MVljWzHc/Z5FO0rdy+c8rZ3VvYONBQZBjQYYMhiBGQ3aCUwjidUlt0IceNbR4IpDaHpSLSGHMm5UAlWZWkiVrrtcXfsU7ARFUbNHN+tuXsi6/zmc++wl/483+G3/zNb/F3/89f4zvffYv79z9iXpZAM3i0FaUTexqEZRQRAyyC1WrPYYp5QF11+r1MHVnG9WhKvU+NAG5mHy84r8swkSlaz7ZoL9+iDBobSIGchPPTDb/w5c/yxpc+y8lGqMsjbL3E6ox4I4lQrdGM+KAeLJs5iAUOF3dKW6l1JeeASbUZ5mtAlmPeMo8sZg5WEauAogpJNRp7sYCvtKjyGXIaqAVcE8/uznEZkaRsNpk8KJtpYhynqN624jJQa2S5PG4609koZcFx8pRJmntlMeJ+HwkBJ4lTG6AWGdYqiYpo9Kfes6g1w116hg1CxEqhrQtlOTBfPSRpYxgq5i1YX3pik0QaJvxQcHXEBWtwOMyM4wisVAVNQhoGzBsGaMrkPKBJggDUY0bpH6dDTGuBAqiN1pOPGZRDZT1Uaq0RBDnRSkPGRGmNB48fk7d7tue3OL17G90OwWB6MC6DBjFnXmmd9Z+Xlfc/eITIwMnpbVSHCE7zDsmF1lbMEr5RJiT2zXXQyDG79I0caCSJYK0E8SbCZlRefP4Znnv2z/P1P/WL/Pbb7/Brv/7r/Oab3+Qn773P1eXjSOQefWa0l4qR+nvE3hMSooECW7PjWwbK1Kjudo0Og1eNWBWS/sFq5s+e5/TA+c0FJyqke0MsiBRzpXhkAJXKlIVXXzrjjZ9/iXt3JjILzQqtFGyFViOLNJTaWlxwh3NPduSMWMPKEv3ZMFGPLK4N4IZRaR5fWINqWK1kccRHhOgTXIQ8DgxjMLCahHEcSUlx3yJ5II8j7kYpB4QVTcGw1bICwcQaAjLiCLXUAE0S15zSgJNpHpunefBvbqA9ixoNEwvZxAyaxUdGqbUztZJQoo8KosugFtocxI+XSzJzJCB3As418EbylVoqdTXmywNMjazB/q4Hp2wdl4INCjWxkQl1i8ptisqIyACERCBUDKGUxro2WtPgCIigaLXgDVpJzJdGOQhUwRNohZSEpoWry4dsszBuB26fP8fJ2S0aRnJDdcQlqrWmjI9dhnDwpfakkkiakV6RvEGdG+YZUWE1B6/R9gwDOacOdTuD4Y4Gtr2WL+J/I8xEegJPxp3be+78qZ/nS5//DD/84Z/lm29+i1//9W/wzu+8w8XFY5Z1iaLi3qux4iaIRx+OG40WaENCrWj9Go5vKdfv3Kvq09//owbnWuOl4oFFHxJNc5BDqpExVIwxGXfvnPDVN77AZ157gaQFazPeFuo6U5ZovFv1DpG6DOMNw7EWNK0K1FKo5uRpi+Qp+joHkYxbiY3pAaOC2YwA1RRySEoTm+2OlAdyHhjGMbg8d1LKAV3HjItQW6XUFbMZPQaQJ9xBqFSbe48x4j7iKJvNjml32gkVDSbTO4nkGv25G6WUcHn42rNvJDwBrEn/eesacWTcWp1aDa8Vqyt1vmQ5PMTaAdVGykDtjGEz3AplPoQsVVbmwxW2roxDYrMZ0AJ1nXGprHOhlCv0ViINgntFBXLWAGsC0V4FGVJrjUru0XrU0ijLJWW9xFokz7oa62x4NSQLaeobrlSWiytME8++/CJn52eISOyblNA0YAwUM7wVpnFiHKMtQAdEJ6wlzAw0KuayNpYCLsqxZyhWKKUyjY1xzOSc47NoVNHr/UoKjTGBuF+3QhEfgcZUEycnW37u517j1Vde4ut/+qt897tv8c1vfpNvf/s7/PT997mYDywd4Yh0ye8amfa+udeZ43v0/PAEznZIyzVf8jGCs1NRiASWP/634OScg9Hzinhjv0186fOv8otf/QL3ntmTOGDrBfPhEct8GTDIBSPjqhgles4a2uA8X7HZbtCUKQZp3CDjliYZNIVk0Vrvd+LD12rR29UWOpkMTNOW/ckpm+1EnqbQPFVDwzLr/W2lrCvVWgQ5lcSKeMM6tGrNaC0IqGYCumHc3GGzO2WaprixIrjk2MAQG9qcJIpqVMtaF7wdguhCCM0lE8SLEsoaNGt4D4BWG9SV+eIRlxf3sXIgaUNzQEnNCW/BppZyRV0XWolgXufKaoWsgp1sGIsgapzcPkUlM4pCrZATSWGzGZmmARHHWg0dVjxILDtCSYdmeF2wchVyWJtppbKujbIa9OdCAs2OlkZl5Wy74dnnnmPcbAIlSVR0c6G1hqCkFGAR1Xi+IqQcRI+5UdZKKZVSHWPAvLPvEVmYVWprLEW7DKMBJ92CM0AQGqpKTkIegitRCdYVOnjr8aIibLbKyy8/ywsvPMPXvvYLvPPO9/nG3/8N3vzWb/H9937Mw4ePWJeAvFGUIy5UI8hNgsgLXftJAIqEBhoskf+swvmzgzPlfI2hQRhyvn5RkN7TOdtRePXlZ/jlr3+RT79yl+1UoS7M6yXL4YK6LN2VMnStSHBpUZEdvFTaurAqkCZ03JKmPWhUKiGgZuB2Cb3IPCSeHmA5CUMWplGZRmEcIWXD2gGrhmpksdoK3ip4xbySNG6o1ZWyLlhZSKaUUjErLHXGJbPdD0xnA8MQ/U9pleqKJO+yA9dESRyA52AWPUtd0U7T93Yds9DGrMtRxwdotWHLyvz4AT/50bssh0v2+4lhgDSESYGUSDJQW6OUQqsra6nBrmqmrI3qMC8HNjtldUfGwrQdyB22ezNIQkoAhrUVw9DWkDQC0UK06qzFaKVS5gN1ucDrQisz83xgOSzU1cmqiAulOpqCRU7TwPMvvsStu8/QUmatreviTm3WZRch50TzRl0ra6VD6Q7dvVHLEiQPGek98REJiUDrsk8xJ7UIDk0eLdBRLjMlKYga45jZTgPjqH1nHwOodbgaDGxKAZ9v3TrlK1/5Eq9/9jX+9I9+iTe/9W3efPNNvve9d/joo/scDnNHl0QraCHPhbRCkFTWruOoayk/MzD/0OA0GuGWSZ0oiOwuEjdfE6TUeO7eOX/2V97gy198hd1YsPWCuj5mnS9o69KZ19QvSrrYGxlUgM1mIOVTGlAlk6cNkoZemQOGuDu1RtVzi14zqTJNmWE3sMmZ/W7i5EQY0gHxhbpEZpQukbgZao3aA8Ztxb3RSqHWyrquaDPEEqVYGC+GxHSy5+zsDgxTmC9a9B7Neu/pTmty7fqp1WhrwVoBK3hrmDfUJbRjRsItIl06PzYkji0rVw8e8tMffJ8fvfsO0zSwSbdRz9TSQMGG0IENIKVrS5/nREtCFVDJCHC1Nvyqsq2CRu4gSUg4ogS513vXkM0UoWEu1BJurrU0qA2rwRZbW7FWOFxdscwL0gKduYaAmxqkQdmd3+LZF1/EUmatTm16zRBLUkQG8jAhKSHdfePNuiYdybisFWs1KElx3BpuFZcaPEhXe0SidjUDMUObXMfBUT+tLSq0IhRVclJyZKdrA8G1qE+nfCQY35SEs9M9n//c67zyqZf5+tfe4Dvf+Q5vvvlNvvPW2/z0px9yeXlBLWuQfg7a4fex5Tm+zxHSXuu6Hyc4RSPyNfFE7NUIW5GCqHN2uuGNX/gcv/SLP8+d8wmxC8wOlPmCshywWqF5r5zhtEAh5Z7BLeCfJMWbkIcNw7QL2cE6ld8sIFan9rGGKtw6O+V0ryiNjLGZBE0zVtfoYek3SMJ1U+tKa7WzoCu0gjS7hmfVvBM9A80SOo1sz2+zv/Ucsj3D0ggiver1h9lCIhFyb4O6UWBdwmzRCl4Na7U/NAlXjoC36E9Fw9RR14WL+w94/4c/4sc/eJeri0vS6Y7lULDWq0AWXJSmXPdug+5BJ9J4QnGjzMZuOmMaw36Yxsbd52+xu7Ul6RiyUnY0C7v9KcOg4V21GhonAXFLKb0yh6bhdUFaSGmYsc4zZS2kdpQNiGrrkKcdL7/2Oid3noE8op7YDCmSUYKsOcwRaei6cO/NzPHSaMsaFduclILbaM2CyMIQD3+Pa1TYZkJKQkKxax1FOuMsaG/HjmHn5lhzXJ+YAI7oRYJSpNMBvSeNz6ai7DcD+0+9wEsvPMNX3/h53v7eu7z5zW/zne9+hx/+8Ifcv/+Aw9XcWXi7DvT+IteIUYGfVTz/kOCMy5ROEIaQH810zpmzs5EvfO4lfunrX+L5eycMeoW3mbpeUJZLWplpde0Ga+kkTu9jUyKyVMW8hAAsE3nYIDqG9kUE41rW3q95CPldYxoGZcyC1wq2sBwWRNb+1eL6RcCsa2ita5ANrw1qRZoHqVEazYkeNyu7kzNO7z7D5vw2aXtGkS7Q05llpGfGyNZYQz1j3jpsbtSyol6jrDSoraEozUo8cO9ifxMOV1fc//BDPvrJT3n80UfYWkgOdW0s8wo6oYOy3e4Zd+GDzePEMAg5O1aDfHrhpdt4y5zubrPdnpCykkZj2GV0N5B06Fn9qP8prQW0DsIkerjWOrNMN2xYw1qN+9gMb7AcVqpZ2OzcSCgqgqhyeucOr3zmdcbdjjZMZDKYhuNJDE0DkEIDVqFVoSzhY7bSSa5iuORI1EeJSqJQNCvd8qhBEHEkGI9+16iMcDSah9nEOZIyidDauTbpaLc3xuaX66rnne29JngkiMtpSNy7e5u7t+/whc9/nh+992O+9e1v8w+++S3efvsd3v/gAy4vrkKZ4Pg6qQdrWAV/Vnj+IcHZqWwUtdiWaVDObp3w/PN3+Pznn+MX33iVX/jCy+zGitQDtV5S5gfU5TFeF/AauqDLU5cx4C11QXsFM1wSaRjJwwb38IaaH11I0ZOFt7cGY+uNBx99SLlyslbEF8RmRm2oFFSdlOXJ73bfhpt30/1CK4UyO2UNcZksMI7s97c4e+Y5ppNzSFuap2sYmtJR9lHMFLcgMYIMCEgm3pDu8yzrgvb+WKX7QHuy8G6Ir8W4/9EDfvSDHzJfXDKostttYDsyTCP7sxPG3cS0m9ifniBZkTyy2e7ZbEZEC9gl2Izstqh0WSE3hlHQ0Rk2jg+gyWmtRXLRFC4tqaH/EfZMPIx+oyguMQDRxPBVMO1eZc2QJnZ3nkVMqXUFMSQbMiVuP/8s+1vnSNYO2yUgmEn4icmkuEvRElSlFaWsheUwUw+H4Cdyv78pAtSvoWdAQrMWtlI0NPjrZ+3hRFNI0i15hIQVryDXCgTUa6nlGKnh5oo2TI/WS48A7xABsaCaJCXOz3ecnr7Oq6+8yFff+ApvvfU93vzmb/Hdt36bH733Y+5fPIzpLQuEEQ4kB/24sBZFNTNuBibN3L17ixdffpbXXn+Jn3v9RV5/7TYv3M1s84yUS9yuqOsjyvyItlyFs6JfjLfW3RXEBfYeqzbHSWieGKYt7kotjdpaaJnNwpfYHRuGkzR6tcM6U0ohSSNRmZKhU2LMGraqFqyjtYZ2t0dAzkpZK8vSePBg4fIgnNy6w61nz9nfPef87l3G7QmuQ7fUBdyiywydiYrgbBoMqvQHa+FAat08sMyHmHfRFFZ+i9cqc5AcrdYwd7SVPAjTbmQ7jWyniWEYGKeBYRpAIY8JPOxsKRl465a3ILiEimgLe2UqaBZkcFwajqM+RotJQCrpLKdZIYnF9IkkSCFJTGNms4nCX9eBdZOwssNrpZbG5vReJKlqXF4+5uLRA64uHyJqPPvqp7AckxzVAiF5b0+OjHDT7o6yYG5bbcyHNaaWujElCBZBJYdNtBN7htMsermoSH5NEqmG3TQ+swTvgHdrXRg0rkGuE3JgZ/OvAag8XUyekDfSZTM/yiZHzRQlqXKy27B99WVefOF5vvLzX+b7v/Mu3/r2d/j2d7/D93/nXd7/4COWeQknEYG0PlZwJh04Oz3lpedf4OUXnudzn/00r73+Anfv7Li1q9w6bYx6ga+PaPMjbH1IOTygLZdYWYNK9mO2jMwVo2YFcFpzahNENqRxj6QNpcO/o/dTNLB/tYp2V5KLXaOBakIxUHN0TKT9ju02Y7Ze907NC2LWzeQ9oxaoq3C1CFd14NlbL3Dv1U+xOR8hK9W7bCTpegNgAfmQ/pDMgqWNQoTVGkxyrdTlQF2XCFYBb9E/iYHXxnx1xTovOJCGkd1+w7PpGR4+ehBjb/uBzbSJTacxFWi1spQFGUbyMCLeaOUAPpN0RTWgafg6GpJq30SxuzpfQwp2jFoWLi8fI9KCydWjft1wolJlVVwEdhNyvot70edPX/7CtgePsSwzF48e8vjhfdb1wL0X7lGzUFtD0gAYy3IAgzFvqK1CShhhcmnVWJeZ5eoQzKx22Un7lwzhppFKVsPFw+roGi1TjykLaNKdOdILQSeH3HuxiK/wjD8VcEcju4dFT/Uo2x0DUK7JpzAUXNN54NplxkQSYTtlpnt3ePbOOV/4udf58Xtf5a233uZbv/Ud3v7eO7z345/w+OqKsq4fLzi//tUv8tqnX+ezr7/O8/ee5ex0YkiNrAubdIX6QlsfIuWCtl5g6yVtPeB1hdbwdhRh+7TAUYgnsKwabeEAACAASURBVHxrQrNEyhOWtjiZ2jx8pvS7gPasGP1E1qM1K2CG09k2YizHyahGlo2+TjtUK6CKZkVdqM3JwO3nbvPc/lle/PRrnNzZU3SlWOM4V0ptPUgD2liLPkFU+vgcHaoSo2EtSK66LiGhuHcDgtNKmCXaUijzTF0LkjODCmnI7PKW0mYuLy8oXpAWmyB1Mq650awx+glqDa8rDUhaehWNTYKFZECf/BHP8Sz6/KFqzKSuy8K6HNhMCWUIl684IqH9Rn+nuGofAtcetKnD2kxZY+5UFU6nU07u7KhlDcmmOWopzOiirFzRrNKqgHYCTbooZxVbZ9bDRbxvSqSc8fxkrKorxYgbSQQlqv71VhbtRpQebNe9ZuzDZoTNTyOg7XovdjLInzIH9K+o1MeHfH0FvV72CnrcgW740WDghoqgCc5Pt5ztX+PTr7zEG298md/5nR/w7e+8xXffepvvv/vDjxec/+xf+WWeffY5dtt9sKblAVIK231mTCu2XkC7ILUFKytliQ13nLDnWs8LOjo8jnTpwShFQbZo3lP7BmrNr6uiNQcVnBYUuPTM3zNpoJoQr7sxA2uNWg2h9FsW2e3ImQXTmZHNns1+4tb5c5zdeYlxv6WyUJv1rDmAa2cLue4/pBM6wbxG3rVmSAtThDXHWqEtC2INsRJun9ZY55WyrLTS+oOLxOF9P+ScOTnZU8vCOkdPnJMyJO1OozC8illMWtYSmTxLOGBaiOkabnu8CiJjTyzWyTRFTLsMlNluwuCf04DKEIHiUWKlm/VFFU3SbXRPTa14AZ9xKwiNnJTmDVcLm6MpKQ0hcbSGeyUGAAzN0hNL6gxt4fDwPuvFI9I4oNsNMTUUvxPDB+lJpVJIapgvMZsazXF8VpVrdOoSfIJItATNuo+5J/T4ndhzR50S57qdOcbqsXoqTyWLPhRyfUCAOyaNozVPjg/Wg7/ZbEdefOlZ7j13hy9+8XP8+Mfv8723f+fjBednXslIeoQwxxa3wqhwMk6kTiJob7xrWVnmQllbZy+jF7Mjg3a82n68Q62C2UAaR1xHqnVZQXrAHVk3B5F23StELdXrS3cpcTxKVqbs4J0J7U1+WKy8T4tJQKg0MZ2esjm7zXRylzydUtrK2tZrIzik3iNHpaEzkaEWBMwMh0tsPK1CWULyqCUsi2IrXmfqslLXyuHqivmwIKJst1vSOOGqVI9+eJTEdrulzFs+vLikuuN5gBxmfhWJeVGMti4wJJIOsQksBeeiESjeOlwy6zBOqbWQcrqusMOwYRgSKXdySFJn1Xtw9t7+6WoRxIh3DXch20prC60s4eoyp5WKkEKqcKO2wlpWai1xwoBGiKmGX9tq5erhA97/0btYLQy7Dcae3EfWJEkAAs8dWkbkKY2khvsYhaC3HhFzPch6Qu6zgtEDNyO7M0ivmtLpwg5pn2iScf1Ha2Onh4ND6RU/0rN2Yq31vds70W5HDf6wJ1acQYW7d064feuU1z/9qY8XnJM+7j8yocMA6mzGTE4LtVyFv9OFslbWZb4WqJs1WoFaHCEjWfFEH7+CGG5Q0AGXgdInVOhQ1K3GVugwLBr4bjCOGhzcy/HDDonz/ZbtCL4+DAnFw/d6tO7FsRShE06bU7bnd5i2e1wzSzuEAUGVnLdoHuLGcqTTQzIhQbcCARbOJgtfsLUOZZvTykpdrqAt1PVAnWfKvLLOC3VZERGqhLAdUykSsJTEoMrZfs/Fw4c8fnwB1SBnkgqaJGx5eeHiorA72ZOSU7uUkCUGC7IcCUWP1z3qw91ralgMtA85tFL1SDxy7KSObUW/0eJdLonv05ZoXewKqzNmK1ZW5vkCM6W1jMu2Tw0Za50ptfQwV1pt4daRRKuNth64ePg+lw/eY1AHdmHUV8guccZPgvCT575PCuKQPEXy1e70P0pdxtHzci2L0JPL8RSP1low8RFhvdJ10kmsw1nrvST93hxjvvex8OS1eZowopNKElY+D7QUygGh8YswbYePF5ytLORBQGpkT3VITp/XR0VZC1wdomJ66eyqWze293OA/Mh2ea+aYD4iecJTxiQyu3dqPKYt+gFKx+pJv++EDzVpTJnklDk53XB2vkfbzGoxqZ409yl8D2YsJ2RIbKct0/4cxg3FjVaWPqQM2/GEPO57PxKD5ObWIQ00KqWs1LJGcqjdZtYMawt1OYTHtRTqeqCVA2W+os4LbS1xdk0fdF5wRGFUiXlE+ueWxDSOnN864+rqinUJKcb6OJeIocmYhg0ihnul1dDozLqWZkKS3O/dQLOQRAYBb4FsSjU0jd0A733m0LvoHjOK2hKo9x5zjCGFsiBtgXrA20wrC7UcqCWuozGhusMlx++0wryULqVIH5w21KG0eMbLuvLgwUe0toSVowrUBGVAhwnxEbcYvSKlrl8fLZxdJpGGkK/7TDMQDUeR9k147Cf7YQt9wsQ7HO0cgxDB3nv4iG1/KjTpSeAYlccIDXPE7/Lk9RcID4NxPJjoCcfrTzy9f9TgPMwwSW/MAfeKrQtZHEhkzZgaDDs8LyzzEpCyn66We1WwTuBYg7o6tWoYRXXowv/RltU6lPVucu8PUqKK9tNDurkYpmlkfzJxfrJhGmC5fMyxsnaPGKbgmsnjlmGzZxg3uGRKaxFoffJiGDakvMF8oFR7YrD3bk33QlniBANvAemP84fejFZmyjxTlgVawcpCnS9DTF/W+FkDN+syUbiiUh4YNhPjkNEcZ/Wgyma/ZX+64cOrS+Z+aFnOSqtCbYltn6bHazeB9/OBurOlAaiSyHHf6wqjEgcSjoyjhv8UiHNz2jWEjDEyArR5JABhIUmCulCXS6gzvhbKurCsh3DvpG1/pseWoNEsnFfjNIZJXINUWmsDbZjBvBqNkWF7C2/xWqkckDXDMHWvbwSn6kgaAg21pcZhc1o74ZdCSxYhaQ8mayGluEA3SKgrPGXsT+mIyo4x553DiMBt/XSMp3/oWB31GITHqONJoT62BKpdIz32oPC73+/jBGerW2qdaJ4Zjh7SWgNikDBR0rhjd3tguz/lYdpwdf8DaAckBqk65yxh36tgLSM6Qdri3QkUAWnX/YJZEEa4X4vG0nsCJaDZOCjnJ1tOz/eMyfF6iBMGVPCUYgIijUzjFh03kCYkT1QSy7IGnOoa6zCMaJ6iwlhob1GwQ4MSwlVU1+U6MMtyoK4lmN/a8BLQztaZts7YujBfXrAeDqjToW/cD+uWrloqrazQKlmIyoJgKDokTs72PPzoPuWwhrGchHiMlS1LmOmVxJCjB2+tIaWhHgQQLvhaOhIhTkLA0FGCAOp/jzRE+slxFqy0epgRIuE7rVyFu2pdKPNlfL6LhcvLCz748H2G7Y6XXvkcqluqjzSPAFyWmWEYe4HpOFM1jO/esKY0V07OniGnkfnyI8rhAV4qvhxo6TGuAzpFz51kiD9zZpKBhlGt9APBau/7oiiIBlvq5t3NFa4nd6GuRh6V3x1zXVnwIN0CHUczK/3IzCfhdR1mR0/Ctd4afx1Q+DhgHSb+LgV2O+CxTftYwVnrwOAbtGdfd7qzBdIwRPthDZWBaTNx/swG95HLj36C+wHx0jNvVKDWFPOM5h2et9fjVt4a4t3OZ0Dr3kYJaOFGP0IjhN/NmDg/23N6umVQo6wHlssH1PWKcYoT4obNhmE6QXMQTsVgqR5D0Z5QUXLfNDHFMIQ8IP2henxmOmHRSsHK2uFq+He9FmqNc3ttXSnLQlkD6qk5rTbWJeZNpT881T4Vb2DZqGuhLStWlugB80jr84ub3Ybbd27z0U8+Iu5IDPhaMXxtNIUmYQNEIqirVVKLIyZVDKkzSVJofOqR6qtgXhAf4r5rVEfrxudwVfVTGbzixMTOcrji6vFjrh4/5uLhI64eXXGYDzw+XPDqZ38OYQQdg4XXKY7MrDVImON5U5rQHAROK3GiwrrWcDztz0g5c0Cw9RGlGDYfyPooYOZYkUHJEk6tYbNhGBOHubCUBZWEyYBIfiJ/dV420G4PUALG186wJw1qJ8lTRFBPlnSnesBfnrRYT0fo9d89GcJXkX4MZnSYx440Xp//98FZysKWHUA/66ef6WKO5JhcLzXmOVUHhumMkzsB1ZbLj5gff0BbZ8QUq05pAnkCnaiW+mYAMYd+jIi1I9uWOJ4xe8T4KYUD4/Rk5GQ3khXqesnh8UccLh/Fhjw9IW1PyLszJG9ibtAkjr3s2XscNwyaMCsxoWKGK31At0UA1EotFTGL40rWQluuKPMlrc4dupZ+LGdUiFZWzHp/LgnXxLDZUdbC4fKAt5gGcQ/2zga6uSeM3uNmw5A0jmz0RJKJO3fuMj9eOTw6QBOGIf6NQC8hWRQxqjVMMtM4kbdnSErM6wGphUwEqFsl+0rOAzUdSOPEMG76SQ4Wx4QYOJlmCfNEqU5ZCnVZw/3z8AEP7z9kvpypa8hixVbyNLLfnWN95sM0B4sssN3uWctMrWH8V/XrkxCaOWWema8uY8TMhTTsGfdOGzaU5RFejLRehW6rDnVAyQxpJI/KkEdyFjgUlrUGBBcL76yENRBRvMXYoIpgYqTeo8dxK0/YoCO7aiKdIe8HcHWt+smASY9O7+D2Kab3iVmhW0bxJ2RaT1Ahw/3B1r0/NDgPy32mWdid3O4sVEgH2mFD60i01UZKDU8JGTZsz++w2Q3k7Dz64P2YUWxxSoDKgOuAWzCg3n2ofsxaPZNcG92tXZ8POo0T56cnjEMwomudafND5stHlOXAdPsW25Mzht0pnicaORjbpKR+xKeZ9yodNygOcD5ORYSFzBrdgN3wWij1wHq4pC6PKctljJrVNXrJZaX0kTPEr4e73RKb/Qm2VabaSOOB+eKK9TAHJNVEziObDWEnPFwxTLl7Ykdyir445cx2s+XBB4+o3lhTxarGCQiLkreZ7ekZJ/tb3PvUp9me30ZzYl0OfPijd3nw0/dgXkhUhjKTkpCHAR1Gps2OnEesH0O5Vqc0pXlmLcK8VtpcqPPCerhkubzi8YNLylUj6YBmSGlgvztlu9tfT/XkaQIfEXFUGpSZw+FASolpGoOscxB35qsLrh4/ZBhGUh4Z8oZh3NLqGZePBup8Hy8rniy8z22COoKPZNmRcrxn9UyzOCittoJ6H6Z27azpcbasGzpoZI5avCHX8wzRl9IPrrtuJ/vJB/JUYB79RU+vTpl03oNedY/Be/yZp8fS/uDm82fD2uWCq0sYNgFFisdsJ5JxG7qbxBBt1FaAirSodnnas7vzMgynPP7oAcvDS6yNuA9Ic8wLRu1T8X2GjwQ5UZv2o/AT6oYnZ7PdsNuHnc3qQl0fU5cLyuGCtVWmW3fY33uOfHoGw0AzCx1WBrIMKCmOlNAgZMpxlrPrWGESuKKVIA/cYs5zna9YlwN1mWnzgXV5AHbAS6MucexK6qfWTdPItN+EsUAHqkUVas2x7RVpf4rff8zFTz9ivVqRVNlsC+OqpLGxXhlIJU87XBWqkHVgvz/F/SccDgvjuMHdWSsM20y5uOLOcM7rL32G/TP30GlHmiayGzKe8dH9mffe+SnZGykZU6psNhLwcBgZh0RKEufv2kBtI9Uy1YRqYXSwulJqpVSjFmjBvfRzWY39bsNmGkMaynGqXvXwz1rJ5GnL2CeZpnFCJAwn0gyfL/H1kpAsRtIwkIYNNpwAmUtxluVDvFU2dcHbY1p1vECrGdOCkxnyyDiOVCdmjmmoDzR+F4bsFS0FY9syWDCoAfvlCeY8zuqq9LgKWeXYpAY0Js5h8nCd+TEC+6glx8HwLp/IEe4eKzDyM5mhn+2tlegHy3IIQkjibBfRAUkTkuIcGwNaXft1daZLM3lzwu3tKfv9XT6aPuDhw5nawqsZ+N1x1y67xNgSmkK/7BatcUhM24Hb5yfstorXA1avaHVmnmdchLvPv8jJM8+im22I+tWvReCu4FBK7Sb7/m9ecByJCiaulZl5XbAao09lXViWQzcULCGflEZZlrApLpXl0BjHibwJiL3bT0z7iTTGaQ5r1QhOg/3pCbY6956HB88+4r0f/Ij56jGXtZCbos2RIviccYkNKiQMZ7s7Ybc/5YPH7wMrRqaKgClX1UmXC2nak8YtDP3fh3FhPDnj3kuf5s1f/Q3mhw/YqHG+F05PMnk7Mu6CzBj2G9K4QW3A1zgvVyXOn6hUSlkoZWVdYx5WUzCxZoUsyu3b52w2I+RoRbyujFPuMpqyGU7g5IxaKyklWovpnFovma8ekXxFLNHqTKkDaCaNE5v9KXCHxzaz1seksjLUmaElrI6sc4J8guieJBuGlMKU8NSzVw1i5kjCmcd0VTuqIP2ERJdwPnEkgLx2okeu2d/YSsq1KNOJhKel1Ki2TwmgEhb8Y45oFqN6x4r5tPLyRwpOUWWcJmqpaG6M/xdnb7Zs2XWd6X1jNmut3Zw2EwmAFEVRlORShaViueywy3oOX/g1/QiOqvCNXQ6rbEm2yix2IBLIzNPtZq01u+GLMfcBK8JiBUFGELgggIOz95xzNP///ZsdBNPANmdDFZXUS17QXGiAcwZbNumUJ+5uePfH10zPRz58fGQ+L+Z679NAg115xHn76zGEtfeN/W7kehyYXEHyQikn5vlEzY04bbm6v+Xu7Wc0H8lNTKF0uQV7vd+K+RONvC6Is8VzybnjNA1gXfMCxfD783xiXWy4YyQH282VlEjzildhnhdUbZEsPiEyoOoJYSJEh4+D9Vba8BKJYQINfPGDH/DHP/0Tjscn0vpCK2dSPrHkQpNMk5XJb4BglYl37K+u+PjNR3LJyBjwwfPjP/spn//oh8hmYrq+QeLY95L2vXAh8tkPfsSf/uVf87/9m3/DGIUxTIwhMIxbhs2O/X7HZrdBnScXsd3gYjtrmpH0BfNyXrywrhneRGhst1vu39wbWtML4iG1jCszlkVi198QJ9pgZWfNFa2V+XDg+PQR7xsxChAo1dOyTchD8MTtNVvNzC+VtJ6JcSVE1+kJ4EfBhY0dCjV+cqWaOYKORXndX/bVo++vobNZmnY7WO1iF1NpQ999vb5y9l8TOmgvccWp+Ytf8T0XAb37ncMnr+Xxd4fr0rN+z8NZYsBNo/Fm+hFX+Y7baR7jRunG5ejoP5S3/0/fd5WuttncXPP5NPHw8YHD44sBpV63LUbHRitBGsMA17uB7SAMmIoktRO5zVRtbK6vub1/x3C1p+Cp1dLJauv7TQUkIPjuejdm7GXu7dTI3NqqsWlLoqSl+zwrZV0hFzRnw2RWsyilZUW6Wsb2ZCa6EAq5LgQN1kc7NVSnlK6GyYQY8T7g9xPb2w1X60ir12hZeXl+4NO3H0m5EgejMbgw9MVK5e7NG54eH3l6fECdcvfZHV/++IfcvHvHdHXNsN2ZgdnX31HFCGHa8pf/8r/m/dcfWL/5FT6OxGFkmPZsd3dM+x1+MLSnUHGt4pzpZS9T6Vps4pxTMZ9ttU/fRXj77i3DZsIFI62XskJ11JoBR1FvJL3Qy321VU0tC4fnB2o6EQbQ4hnGEYkNQoVgJmwhMu3u0VaYD++Z1wx+QX1giCNGiO+2McWGhLUCXUqHf+0dnak4+otpLU6T7v/0Ae9sqo1c5HgXldBlwttPm3Y9t7u4WbruW77rOY38J98Nf/rBtUHVdzv037fv/L2H8zwGNtGx24xoNrtXqxkVwftglqnLC6impfXReKT2UdvN0GolzTOiymaaePvZHY7G88MjaV67+dfIbEMQYmjc7Cc2A9AWllZIaaFoYdptub27Y7e/oSGs1Wxc5quU/jIKTWzwESSSS6bk1X45HrONNdA+cS1pMTVPWtB1MS9mtpVRyxlSZU02mTWWktBKV/H1ZTtaXwHRrRbT1vou2ZKCc56iK+WinFEhpZlWM8E5NtOA94F1NQ5rU4Nf24pDGTeR+ze3nM5PIJX7N7ds9hvCJhJ3U5ev2SfdSjZxujNV1M1nb/nZv/7v+Yf/JeNkRcYBCXvceEvzE2tr1NYs7qDabtcLRG+7aWlQi7LMyXpFrPoYtoHbt29w49D7TP3OtYP1Vr63Kdr3hk4ctSy0mjm/PNDSkSbQoqPVkcDAZrNDhmgDPRUcI84puazk5RGXFVkrDAqDEPD9rbMLMUhlzWt3AVgy3KXMtD+0fmiqleku9jmDTZNN7NJfPuk2R2zN1Hd9nerge4naVzbymoDS1452PmxH3ye4vWe1KBL9fQ/n7z+c/9O//Z/5q5/+Gf/iT3/CTgIuzfgxWEnRQ2RUBBVb+NdSXneUr/uffqBzXqBUPI3gPTfXE44tT4+LIQZtR0P0juvtyCYUKIlcVopT/DRytX/H1c0tEiJnTZTaKe/qCG56LTzwFpkgYsqS1hKq3V3isMOTix3Ymmi5kNfMOq9oOkOxvVxJhZra6+TWOg5jr+ZmpudaC7UaeUCbvVY52QWGS8ToEczapT4aLM0b1bDlZL+mGtAslDWznjPBJ9yYEV+sQ26F2jJhxNYHU+D+s1t8FKbNiI89n6U1e/Fp4KtphFujOce7P/qSxz/7CU9f/ZIaIzLu0bAly9C5Ssnai8t6C3shWjFjekmVvFZqqowxIoNjf33DuNtBHGg+2EvtA6ijCrSiNn12Fi5VW7MgIqcs68x8ekFaQppATWhOuJbwJJy39RxEYhiYNhMSHA8flDW9UFdFpwBtsEGiGj1dW8a3Suwn5LImM7pD10tDJ9lbb2pzm2JrHtT2w/VA02SiBrVmy0kAF2g9ka7ppf9UXlW3l3aTLr6nD596L3qZgVx4Rd87K+XvfvMrDqcXbrcDf/r2HZoqITfCUBA3Egd/+Ve10bFzPUYP6yl7JojTxmaM4D100BZUpslxfTNxPCbSnInOcbXxTIOpR0peEC9s7q7Y7t8wTXeU4lnTQq5GY5+cN3aNM2N00dYbeGeZiNVuMNOLGrktrSu1WN9T80pZZmpK5ipZVjNLl0rLlVagZBvDO/8dp6a1y74K2/uaTrCX9faCBO9pdUV07Z/I2ndudis7rVaV6UheGvPhyOkl42SDGxZUzI1S00zJC6BsdyPTdsN2OxCj65NBi2N4+PSJ8+GJd5+/7W4V24EqkWG34cf//J+T1xnSStjukGjmdmOmGXFAq8HIShde1FJ6mV+7fNFsZyF6rm/fMO2vEG9hRCh4tczLXCtuCMRpwvJsLi+7lYHPTx9Z5hei1t7aZrTZhVzzihtSl1QGi5PwkXE7ESJ8+/UvybWQNTDKBM5iBLUZJK2lhGhEZaU5/90K5LuTcTk9BgRoF7yMonUm5wMuv6C6UOtKKRlUcET8eI2bbq3yEF4RNpfS+T9dtWCyQde1y5cJbf/ny++raf9zh3P2nt8+P/Hv/8Pf83Y/ci0TaVmYphU/XeFk4GKdcx6qlNcflFINoVhWvDP9YsP2aU4rUhOlzIRQuLufoA5oNqZsriYjDpsr9nd3hJsbUM9crUSuDQTP4DaE6AhhouKoxQoHKYWWC6pr31na7WdIEOujSrL9ZCum7tG1wFqp2aIYckrUnLsGUyhFwDW8N0fFWjo+MgHF4aKzHrUuSBxRVUpKON+Ioq8YDMVCa2unvwX1SGukU2I9rpSlkYdEXVZaCBAdqWRSWqlamcaR2+tr0+I6oZZsM11RjucDohmRbmuqIM0uUD9E7j7/MT/5F573v/yPuGCxBa5qV0JFU800oxeUmihlQUsiqBrkLTlaMqVVCMIwXRGHnb1w/TMTH/EhMmhP//ITuEDGkZtNRWnCenikrS8QCq32wNA8o3nCpUqcKoMUxCe8H3AxEKOH+3c0ET58/ETKnlr72gpn0Qs0XF0RqkUzymAVjQ+oGFHDd9mjXdhKyY2IAkdq+pq8fkN0i0lFc8HlghbjLLfjBg1XyHRN3L/DD29Rxte3057OXhJbp2qfx2Vi262QAl2xWr7f4dxtd4zS+HSe+dWHj/zo5o4Jh7Di6yNlHRniluBHXB+Rt4b1WrQ+hLEbSVBKTdSyIjUhLVHKuZtlE6fjkZv9DdOwRSQQhondlU0g14zxZ6r1LtoaMQ7E4AzihbNEqtoNQ9p1vZj6SGvu6p3VBh0l0VKmrCZU15xpS6IuMyXN5DxzIQa4YI4IF2BNKylnxtgT0qqhSUpqZK/EEXKBWAxWZiWTErzvcwihifV1tfNZi5qF6uXlxOHlRMqOGBbieDJ3zegpbcWySlemMXL/5tqGNxbyScmZsNvx5Q9+SFnOFglRIXqb6oo3t4YT4c27d3gtfPvVb1iXFY9hR1LKNM2guf+uW6feN4urX1YzlWM9/Xa/Y7vf9AAfq07wsSthLJyo9i8iYPpj7RSCmjkeXgwb6npB2FpvbbJFvUsl+kavJBHXyKXgg+fq+pqiwsshUQoGiyNS62pVhGuIGtECsfjH2qSLAQz9qdXWeGihkCgs5PKMK88MUruSyz4v77viq5ffrTySjy/U5cR0XQnbz6guos2qhtfV6mVKe/k2yu+8mBdBwu85f7/3cP53/82/hlrZe8fshMdUuY8NX1aGVmh5QMsVLV7h/QYuNbgmmhjGo5ZmqwRfoWVaXmhlpuYz6IpSKDWbxG1JjJtbpt01Lm7JOFKyMqhVew28sxQw172erQhrzjYTB1JeQbNFEnayX0kW415LIqWzDXu6iLt1gUFLK2VdLNqg2uEXZ+RzCQPR2e7xfLxY2b7LablwhAwmpl0xpXhv0+BcrM923jg4guleW1O0CkUdS6qsa2U9Z6QeTHMumbGNiFdQ64li9EyjszxRLUQvrHlFzzPDuCfsLOZeAUK0hbl0FYwmfIDbz+6J0fHbX/yC8/OLJXOnbJNWLTi1Mg418kGtlZTthndeaFSu7/cM20hzzWSTzlvwrox4N/BK3FO1y7AZ/tJJIC8z58MLNWUK4CVQJOP8wlBmVBe0zWgbiG7orqSKBO3A7AnnJmo9kIqyzoncX0Sp8rcHHQAAIABJREFUDamz7SWb4Ni8DsuKhu8cVpiMp+kKbkbLAeSI1xWPEtxoyinArDyGnxFXkTTDmsjzDC0y+S063SFcUC7t9XIH+oWVuZj/5fWwfldh/8GHkxJpLXAqoKKECpvgCR2WhWRSO+Nrw8mJIIEQBpy36WFrZuoVbUi9DBgqZbVyEmxKiAvcXH/B/uqeze4ON+yo6ki1L4ub0Ra8+66BVjXRcm4XtUVf9VSFWilakVp772qC9JIN/dGKGaZrWinL2Q5nWU1I0RrBWZZJKc0iC5w5cII3edm6nI2zmqEmJa3KZhNf1yuiVkqHXuGIduQKrfeYdCO3WMnXYF2q6ZarsJ5XXBTiKMTB2e6u5B6h6Prr0nBSacWGSkZGsLj4hpVgToHQ/ZoY7fxS4u7vb7mf33E4vLCsC7rYnldqNcRJTVYW4xFpXXK30rSwuZl494N3bK4mwuBQ73BhBGdpZV0RTS6pexm9DYn6d+AinvcNpAjqlOoqreu0aUZZ0HrGs8FLeZUGOizJzfvA3e09z8dsvtcqTGMkaEFaxlFxQM5POOfxMfYXWlHXU81RBp+IesS1Z5xb8dJs4FesMhI30Fol1wJ9lyo+4KNSkiPXSl0L1TWCq0RvSFYw6sJlBOV6RId1md9Z1H7fvPb3Hs7D04nWGttpwzQNLLXxvIDbbtAwdXqZQppxmok0Rj8Sw1WPLu8oETVOq7RETZnc+TjibA81bXaM0z0h3lF0R0sD9ZXf4xApuNCMCqdWal1KE2Pe9Abcni8bLDTrXy+vZU5rJxVUtCg1FWpaKKtR2VuHJUv3DWrz5GKyLvuW9yFRU5yLNpBYlfmUub6y9OpaFFfp/BxDjzlvJANUO6LU5GKtb8S1VfIKrTnEjQyDQG2keWE5eYbtgI8D/jJsa62rsCyKUWvCDwO5JfJ6sumws57w4oYwwbd7teTRg6lu3r7l7uWFXz4/k9NCPp/RnKDYXCB4u2xS6t5aLDz57u3nfPblG4btiAwBPwy21xZHvSQ9C70szmgTRCLRD7SizKcDebGLoInHX5Q4vRfz0g9PS7R8JoaJcdiZIaDZ1BsC2+1kr+nDkSUbUhNNuJ6KXquSciK6gB+2OKzV8K0RXSWwEOpM5ExwXc4pDucHWoVUMyEIziuBQqnJSI+yhUEoRKrbUbNQyXgpjFGYRk8IFypDR790PCcivKaqywV08j0OZ1oPlsoEBBEkeE5AXiuxCsPgGaMjaIF5NpbMMhN8IgxXuLixL3JaaeuCazMlHSlp7lAohw8ToiONgdwCFNdzSCremTXI+QHvGrXOpDSTu5U3uED0EyB9uri+cntaWSjZetxaV/tjKRbhXmq3aq1QLHGs1vpKuHddPyxiwm7X1y+1ZpoqJRfWpbIuytPjzGZauL4ecFHxo00AxfWwINRS1arJBq3Sc6/SwVYdaYF1sRStiziiZSvH83IJEO6fyZI4HU/srq/NW1oyEpJhM1ujBcXHwcT9YoZsxb/2Od8Z0YW42fHZF1/y/PjIbw5H1lxxuUHKZqr3tjdeU/kdf62w2U0Q1abv3swF2vEjtnJQs99hxgWDeNmkvBV4eXykrCsD1cQLXYjinWlda25Gza+Jsp7wfiSGEehWP2/rqOYifgyUWjktJ1IqaFsZtdlFWBXRmTQ/MY43xuOVQNCMLzO+fWK7tV0+MlAxs3vTXvo6yM1eYKce0WB5Nw2SOs7FdvpeHZTEN1//lodvv0Zc5Yc//IIf/uCPcG6A5q2S66sUHzsh0l1ogd/jcOb8gsNDqSznIwkTAw/ThjAIPnm8VmLNTCVxLbAVIbozubTXSZs00JooqwUctZo6zWDEB5PstQapZKQFI+41Y7A6CX1NYjeOgg2VUHC192+eVrKJCMqCa4tlgpbcD+clP6UDyNaC5opratTxCuua8cHkckFMiua9s/JbTdhfUkWaxSOcT8lK0Rr48O2RuzcDfhxo52xA6y6Gbq12/2/ogutqr3EXZ5QMy7FxOpxZzivevBI0zbiTMG6SRfR5R3SBlDOPD8/sr2/Zp0ScMi0tODfRNDHPz+zCDULsF4EpmLyLBvFCqF3b7MLA9dt3/MVfRcRFfvkP/0CtR5xYQHDOlabKsiRyLcQxst/tefP2njDE3st5O7iiiLedpuu7wBBsiFVahWZf8PU88/L0YC+Jt17VFvXa2bWWzWLKrYxUIy+oDMiwQyS+ru+Mgazs9oHbZcOnT4/d8md/L7PvFWo+UPORwY94zThdoRzwPNEWT24jeI8bBsQHSlf3+Gjfq5JXYx03KBlKhbkohyXz+PIVz8f/yOF44On9e07PT7SW+fndDbc3d+TU2Gz2nNYzIQZSLuyvr5mmDdv9FT/+8Y/50b/6b//ww3kzRav/y/m1hPXBW6xfsT1izYVYG0utpNa4HkaGEAhuZgwngjNHSCuNupxpZUWlINEbPS5EA1TViksrcbD4h+Bs+eycJTgvaeViptOGOUFEqS1RtPsR64m6npGSDZVfHWSlpd5DaTGESitWOnnL6mi1mXhCHAQL1L1w/lQvSVe2OslLIs+Vtig1KTkFjqfKz3/5wk/DF2ySop1PK6M58X204RB9fG8qHFvwl1VYDol0TLRVjYTe+iQRZRoz27Hg44QLkSKZ42Hl8eGJzfWOKyeEHfjBLrFK70ubXQwmXzZtr6Vy9Z9FrJ+XMLG5e8dP/ksb/Hz1d39ve0JxlLSQugAhDo5pM7C72bG52jCNO6IboYnZGUWpIpTmXuMRghsJoZG1GoomJ9L5hfPjtyiNtSm+VVvVNBuSIQnlbMygMhCHQGS2CD8E/J6swdRImsnFLpCrrWM9wpozpWZECo0VV1Y0LzC/J4Ye1NRWvCaUTGqVdU2ID0QdCdGyV1XsQrU1mud0WjnPC8tSeXo88837b3l+PnI6nTmdzyzriivm/4XAN49PvG+/esWg4PKrn1Scp6rDDxP/btzwN//D//iHH04vBjJurdoth6UjiYBUASq+NKKCLivrmjj7lewC3jnKMBK9vQS1FOq6IFTiZIoak8E1hEpqM7gKEoiD9X21ZhqXUNlkgxAbQ74OhCDTtFJLj0Pvse7Uau77UqBWWirUlvqrRncgeFSqlXoqHaqn3WNKH7ubNrekQi6mkCmr9a3rXMhrozTPV18vHJf33FwHPv9ix5v7iWkU4gBxaBZ+++qUN4VIrUJeldO5sCbtbCMDU3uxHd6ymHJpv4sMU8RtRuY18/z0ievDljA5toPr1UYmhi3SDKBNs7RvwRRdlzLT0V7RjoLlsF7fv+W/+Ouf4Rv8/G//lvU0k1KjpEJwgXEcCIMnDJ44RnxwOO9f82xKq1Qp+LjFY4v5wUfiYJ5ZrYrmwnJeOR0WK1+dpXi7gMGmq0MZEbE2QptD++sXpKDlaPpot4M2glwm08I4Ttzf3vGwJs7zkVpOaFvw+UyrnnwekO1EuzSuQWjSgdfdJLGuiXVJPf18JDerll6eDvzmN79lXlacn3j4+MK3X78nrytlzTbLyLmzirpf2A027W4VnNi8xJkm14WIiMM3mJ+O/+T5+/1lbbXR+rIm86x1CdIQ46uI2CsW2XZeaItN+OzV86SwEkNPby4ZL8I0jcQQGYcJ8PbCSKNidiK7DZc+6na45hBVk9ppYwiXgY15Sy1YNZHW2QjrtVhyc7WSqqYFV5OVkxW8Gic2tQ4Vy43SoPSpMNWoeLUVlNpVRjZ8qksjL4X13EirUrP9CgVHqgMPj4WXw5Hn5zNv32yZBtjvItfXjnEc8S4Q/EAIpnstRTmdMs9PKyWDqu9DJ8PAOBd6iG/r6c+F7cYxjhuWvHB6eWRzNRIXCzWWGCE05hclDjt8906KGy1+gNaB0/rKpAXB+QHxE7v7t/zkr/6alDL/4X/9d9SXM04iMQaGIdrBHAxEJkOkiXlkW7N1mfNGD/DeUZoNsHADgjeftMs8P83M58oYAl7a6+XfmpgHt1VKzrYzr9603C1CnWllIeuZypkqeyReEWUAP6AKt9c3uJL59eEjaTlBOVOWA0UdwzhRlmeaeKZpg3hPbd1F5EJHh/aKCkyCWSrH5yP/+Pf/yC9/8WtCHBnGDefTTDoe0FzwTQnZUDN0yrugnbAmeFUoigTwzgKdo3ZBypoZLjkSf+jhPKcZjxKpLGtiGiIxBFM4OGEaJ0YXkbVwXhvrUlhrQ0ohVPApE0TZetiOgXGamDZWEg3DaNNHxCR+YuNmbQnFON+IQIHQfI/VowOYu/WrgeZiH2bKvZ+zdY1FyC1GXK+1Dwculh9jl+pFuK5ilHhvF4Hv4FdLOmvk1YQGLQtaPSlVznNhLQ3E451xbUTBVaEl5fS8sErh9Kg8j8ow2GvvnIGjN5sN4DidVl4eZ/JqCJiaSgdTBcsSkWIXhTZiDMSoNDVawnw+cnx6IHjQbWLYbq0s1pWWVqbdDj9uQEMPBjLhvxP6rtZUT6busW/P1Wdv+Yuf/UvqnPn5//635PORMHpCtIMZYjR+lAs4P3T0qA3KvAgxRpx3/WBdHP+O4ALalG/eP3A+JTa3O2tNdO3996UPv8Q12uWoWihlNbFKyaQs5DZSZY+b7hm2b3Bi8RqIYxw80xB4OB1J8zOxrlzf3DENgtYFFyaDW4ujSqRmGMRCpoLzhGC625oq67xweHrk4cM3HJ+f8X5COZKWFVdNBadNIRVYM1UrTZxhRaWYVLPVbhkUWhCbplerREtOhPg9ubUvpyObYUBehQ9WQvgYGTY7hnFku93hm8NtrmB/YjktaFX8OBFVYT6DFra7id1mS4gDLkY7lGKvpvcNbZmW+43jG9KK9T2t0bJ90CF4o7uW3DmtxfCTaUWpiBpWRHu0fCsW9FovNg8VnAuosz2T0SUbkCxGoU8jc1UaxQ5wNX3tOldaFkpuLGtjLVYaqlRUM5vBEwdhO03sdpHNZDHnlyTu2uygt1I5zweQc9+nNaPfq6NqQaXiY0QGRWOhucxalaUs3MhADJGGZaauaeX0dGCIplmOvpfraod5ZSHqVRf8G38W7IUyk3+XgavgpJptzwu3797ys7/5G4Zhy8//7t/bqixY/KPzERVPk4ASsR7BVjci4VVXLc6M1rVaorfDUVPj6dMztSg5V4ZgxnjvnVUrxQQc8koOsL1oTjOlJBOSpMqalMIGiUfa1cKwu6VJIDcjITqBeVk4H2bur7dsr2+tz2sVakGINJTmbWdZmmPw0YbbUlFNrGnhdHrmfHqhVSNilLIiRMY44HFmPs+1r+BsKVKr7d2bCLXvRhElt0YqSsiFGIRxM1GK/bt8r8N5XFYrY8PA4B3qAxIswGapwvPjC8M5EeJArpCmiewC283I9vYtez/QHp9xL08mIOgHEyfUDu1VLb2XdUZjoxFCQ0n2RXOORrD1R7ZSrOTFHtW8ouvyql+E0tO0s+3QspVINEOeiIt999rHPdLh0UV7fokNhFSUXG2YUnJFS6Am2/ctayE3+2UXGuoUPwiff3nFZ5/fM24CQ+ygY7We3ZQgtqNVtS+m7b6EtBbWVBCxIB4VwQdPGGAYBXTAs1C1kltllMEkd16IfmQ9r5yfz3gsqiG4gA8TVDVSoGZ8MMaTxJ0ZjV0XQVzQhtp1j1VQ9TgNbO9u+fN/9V8h0fPtL/5fXFnYROPpDtMWxb7UTcE5iyus2N8q10oTxal20YUZE54/PfPwzUdSSpxO1psNQfGu4UKgNXnlGVkSecZnW0GVPm3XnKhLIuUD6hfqujAsL4Rph8Qt4kaubvZcXd0yH89sb75AhisKkHPtkfQVSqZKJo4bINoLiJnBc1p5fvrE88MnjscXYrRBTk6JMQ6URZmXxQ6lguIpCqlZJag9VDm3S8an/b3HGBmngSFGNtsNx/PCPx0A+J85nE0N8iRU3H5LdAF1A0sRnh+feXx+Jk4ju5tbdlc3uDGaQGEaOEeHU9hstoxVccUStSR41Jn7zjtsmFMLqn3wUksfIw4GCXbeSsxSUXcZHKyvH5YvtYuJbY9W0kIr5nC4mMS9C4ZWkQDdpeCdGPXPchqgU9FbhaKtI02Uku2fXZv9WLUphQYDePE4B2/e3PCjP/mCm/trhs3AMI2EwcJtnTPUSNOCDwaPaqWT4FQoHQ8ZB/vrRCDnTMpnhJWyHjk+f0DzggRvMYJ9sORdREvi9DIzjAPLaWHyI2FyplON1tuqX6n1ZKup3iO/Bv5o7XYzRYh4hs5agu3tlp/85Z8zBuX5/W9p69m4Qk1J64K0gA8RF0Lf3ZoSSbWC67mqakM1FL59/56nhwe2vjKNG2J0eGfR7JbRYqjVnDN5XXFO+8RZrLTvsO6ckrGMVMmpkstC3GyRYYePV3gG9vtr/vH4C75gY6+sF1SLBTipYtGMiguVXApFLM5Ry5nD0weeHt5zen6GUrm+ueb2fmZePhHiiLSB03FFiy1oa2s2x1Bed/StKlULwQvX13uurq744u1bPntzRyuV55cTSY9srm6+3+HMmdf1RSyOtsDLkmlVmJfGXEdyGainQpUz0xjwg6OR8bUyyMBY6SVkhBBMG8nFeGs2nIZFh7dmK4tcF5xTVKKVq8yAmEWnGHGg5AVt9bXhpjbbSZVEbRmkoWL7PcTo8gZi+i4UCC/0Ztf6zmpWjtIjABWoGpBxYLuf2Ihnd6m8o2ez3RKGwH6/5eb2hpv7O/a31wzbLcO0tQSvOFoJLoXm7SJoeYVmO9m6rtajOIBKWhM5O6Yy2sGdIpvtLS0t3WdqU2iaUooiEklL4fC8ohpRnRkK+Gkg+NiljwmCQ9QjLYJ6VAPqbHfcpKFO+q+iG4pVoWX2V5Evf/QlZX7h8ZsXRJWczyyzR8rKMO0YZIeKw0vsgcDZXC9hQF1EWmSdM48PjyCVt2/23N3uUO0TcLVKRbKgWViWxBB9d/JYVELVYqTE3ChZyLmhFETP6FIp5YgPG3w8ktvGrG86MC/CplrSWpOh27qMTuC8eUxrTowxkpaZ549f8/LpG5bzI61Wbq/vuN7fc3ipvP/2QO4SzbVqF5lAqoVMo3Tll4pdyOC4vtrxF//sz/n87VsGgYDy/rff8PHDE25zj7rd9zuc5ZJN6TznVSjNs66mAcU7wnRFnEyYveaCamZsHlczecksRGIRhmZ0t1wUguDFdIdVjOPqJL7u4y6oktpW+/A6zc/1PEzLNcmUPNNqwePMD1u6brdmVCywSLxNdkWc9VeWMQCC/fIuADAxwb6BrxtFG34MTPsd027P3dt3vHn3BcNmj4RgPaGPxHFiu7vicDxwOh4JQ6QNkZdccGXFHZOhM8aBuPGMu4kYI0U9JRXaeoZ0woJ+Da2Rc6bkzutJZhDQuiKl2GR5NZV9K/bnijkmjodEKkdaFcZc2FzvmELAe4+6ZEbkOqNaUAm0Fv4TeoLdWA0ld8xG7WJ7z9XNjru3tzw/foPvgww9vCDBQprqtOLjhhAnU0M12+HSrArxNsmj5MTN7RVv3l4zDGJxGGRaLixrpqJoCCyhMMSKcxVytcqDzg/O3ShfwHmHhX03SlvsZayJrDum6Zqf/eyvKDqSinFqcZYUhzNSkPfeUre1UFvj6eO3fPObX5HOL2wnz7vPvmAzXfH+/QNfffWBdVGUGa0mrKjNLpa1FpMWdpOBiCDelF4invPxzIf8NWWeoRZeXo4UHWhu4fmc/3/P3n/2cNYGEQ8y0diw1JGlFFQdm3EgTgNx9LbwLYvRu9eCpoZIJDAwupEskVUs99J3XqxWh1cL6LFbrXGJpddmEXatE7mtZ7NpXk4ZsACiWjqlvEJas/UNIoTRdnuIR/urqc5zCQu7IPa12iuJOBs05YoGz3S95/M//pJ3P/qSqzd3XN2/YX9zRxgHnAvEONHUk4pQ1TO8/YyrZWWZF46HI8+HB54+PvD04QOHw4H7L97y2Q/e8u7Lz9nuruznThVSQtMZbQnopXi3xGnNlPVMzYsJKHJBqnlWW2loVXIy07ePdrnNq8Ger0pDxeMHUxZ1xzktZIZhi/OTrVE0crmtpJjzwxwV9ippK1RsvPvm8zecju9Yj6ceXrTigyfPZ/I844eJOO2QEG3S5gJKozISnCOfFs7nA3d3V+Z9daCdFFC6Ib5QUW9REsFXGxi67iTo0/Naqn1OapWGyQJDN51nKykRYGKaNhyTJWdbl23CjryutFKZhgFxjpTOPJ3OfPvVr3n48IExwJfv/oj97o5f/fo9f/d3P+fxYSatarZDbVRVUmuk2shA7ZY87zytWWWmDZ6fDjxut0z3NxyPJ/KycjovzGUhuZVUv6d8L/iIcwOtOZoOOBkQb169aRNxwYTQwopQzEyt/RddVpx37KaJc7O+Zucj2zD0na8Bk0r3aDZnGZyttlfTdcm1H06BZtHkRsKrXVaVSEUpuXI+nfE+sN1vLX5erM90PW1MucSMN1spqDknqloV4EJg1YU4DPzopz/iT/7Zn3L17g6/GZAQyHKi1hckC7WOiJtYk+O8QJOB4LeEsCH4hmNmPmTe/+YjD58+0PBcXd8wHzOuJRvVl4qmhiYbgIgWaIZqEYBqaWXtIqIoDWm9zOvEwlwt8yOqww+RWuDjhxOlOMRFwhAopTDtN6jLEAte+pfUGxvYHPr2+0XsFrffjP08rZl4O4yRL//ohzx8+4HTyzO1ZFqyXXMrBSkruWTcMFkqWZgMCYNQBebjC60lbu/2OJb+GtKRlJFWlbI2S7DTStPMWmCI0ifBdOqEDdLEye8wj/tUtEITpahxiXM7s9TJrGx66fGtNUjnE5osjvFwOPD46YH3X/2avMzc/+iHXF3f83RY+H9+/mvOSbm6fUteKufTC8tyJrdKapC7HLJiaNemzuj1YnGOrcLz4cRuGllTZU2Fw5pJzdNC5Div3+9wDsHo3MuSafXE9soRnbCZHKMvnM4vpHImBOV6t+F6v2ecdrYaOGe2YcS7yHw8Mq8zOTWkwRi9HdBq+7bWVxdooa0JaqaW/Dosodm/ZFpSR4cUoxnkTM1GhUspsbvaA8ZusQ/PdTPwhZZnZazv/ZVN1sxQa9tzx/5ux7sfvmG6jjRnVjKqUe1FFjxCdRGYyG1gmR1ZB6btZ7RqKVcxTDg/MgxbtptrpEWcRryGLhfM5iVNycq2Yvs8p6WzbRpo6l7R9qrFtVfVHCy1KSVDWu0yHMXjZEvJmW++fqa0hvcwXUW8KH6IePH2+8NsYa12MgH2xXVi+93WTLPqAH9xHokw7fZc3RbOpxN1NTCb89/5FnO1//F+ssGfN0eGk8bLyyPDoLieimZUCBAfkGCqrlrM6aPe9tyndWUzeKbR4wOIN/SlYK1RQymt2j+/CTkJuUBqjawrVQLFBRzFrFviu21wQUthKZXT6cjTwwMvT088Pz1ZMp4EUnUc5kyWgZvP7nl79zkU5f1Xv+arr35NroXaEZmGzGqv+9qmEELEeUvoi9sdbrsjrYmndGQuUFUYhkDle5a1oqY9Tcvay8ZMiI6b3b1titIL0RWu99bgb6ctzm8odYN3jSs3sBcbz2uYGbtzYc4J7xpSW1f8SxeWL6TlbLvJUjtGAiiOtCTmw0wrPW9RaxcdOKR5ghuI3pRLcmGo9qwKwXWYUze6CtSOlq6qlNrMTCzC/mZLnIRcT6Slc2HUeEiwErwHzOfaZEuUPeICra1UHVCJuHEgbrf47ZatCNv9DSFukDD0iW81K1VJkJPtYzXRWuISzqutWpXQavc4fndJlSo9s8aRs5EBS0umKpINS0p89atvEVF+/NMvaT3mnqAQGo1iLhmxvtz10J/m4DuMhpWCHukCBsGFgd31LfvDkWWeTcOqgqMgzV4tHCbtGwbU1z60KTw9fkI10XS1F1BAvbNKSRwqvu+NhcpAYSClTForaW3EQfCxdWZ2xWsHsApIMedN04klBdYiaHBIkD7HKEDEBm4ZSkFb5TSfeH56oqSV/W7DZvojlnmmAo8vJ45LYdrfME57xv2O9XSyvhhbkg9hAG+Ok6q5H06b0bgQmbZbbq623N9dE3cjE0I+nMjeLti8JF51Gn/o4Syp4qJju9swDhMxOoYAEWPUvrvfM0ye7W5kGMyxnlIizcpYjdq9HTeM24CMG+hWrfl0Zl1OuNYYQrC9XZfgrfMBrT1TUcxXKS0wHxLnpxlXYRy8eeyit2FS7zXjMJpNShz40O1e3435nRVStJoNulS1L8QbS8o4XPcmNlJeMBaqWRGcFtRVAzeDDZ18xLnGNHiyt8OyVuuj425ke70HJ4Qx4ocJdSNNzPFwiXugK5tMNGH4FsFIerVkVC1G3oEppGqjVkcpUDpLd1lWlqUiLnQL0sD5eOIX//cHdpsbNuOESAWfzKY3NBqe5kxp1EM7UTXO08VrKGql9MUzq+II44bbN+84nk48r596uW1Cf7yiLuBKsyn6YFqvssycnp9AWwfBWXRBA5q3pDQV343QnqrR8CJxy3I6cDycGAeIozAOyjAocYCgpuIVURwRlZFUPBmj9olYJo8FCdnvmZLRkjkdnnl5fqTWwu3tNVdXO1pTnh6fAeG3X/+Wx6czS4LdXtCl8unjRx6+/WDCiRBxIRLGCR9NBy4ijNMW3IA6zw++/BKpmXU+Ma8L6jzbq1vW9MxyMizq985KGYeBcbtl2m7Z7feMY0Tzyvn4zPG4Mo4QnC3j/VrwcYPkRjuuDPGK7TYSxRHERNJ0NH5OI+fTmcPxbML01gjFjMM1nzvuki6E9nhG8imjK4apVDEFjXcUbEAVh4hz0WIFJaAEnB/xPnaXh6VmSKum5azZOLdVKNnSts1a5228v2aothNzLVucoWs4IhIczodeOkuPEPRdx+rwobHZbLi7vyP6wLgxOp0ScE7tAqmXwY4YLiMbSlJrtTKsM3VELuER3yFPalVK1Q7RNlfFOp+tMogR74RW7EL7v/6PXxOi44s/3oOfu3oo2ZBMopXrYcSFgIvdHI/4kLAzAAAgAElEQVSSloXz6cw0bNhsrm3I0l/UuN1x/+4LlnnmeDjZKss1WgN1kRCMEOG8cWDzOqMlE+NgXB61n18FCzcW84NekuxydeC3TJstqTiePh1ojzPjIGy3jt3eM209URsug3M2zcc7luKo3igTmnrvTOtTYWuZ8nzk8eMHUGW/39JK5uHjB3IunI8LKVWejydOpxXnNizPMyU3zvPZRCnN4WNg3Exs9jvefPYZ82zbg3effwkhMqfMfrfj+eO3HF6euh8ZaMo4jsyz2Rql/dNP5+/vOcUzhUgIA1U8WT1LajyfMmmdGUPjduOYbnbsrvdsdCQ1R0S58p5tcARvQUetWUYlQUy4cHVFToVPTx9YTmcmhCkIrtonpFUpJdsSu1Xa2vDqaKqkZIMN1yFXrQ84omoXBow4N9ghdXYgLJYhUzVR68Wf56kJToeFnFu3ixkwywcjxDsE1wc2PoQ+9fU4sRLW+xFxAyLmY/QhEAbHuNmy2e6ouRI3poyqzUThlz1jbYbutNCcHhCl3ixlDXP7dmjx6yCoXFKStfegFjNxOi3mbR3MSue76+Sbrx/4+/+zsb36KbdxRMQIgxJad39YZqkISLggYLRfDh3wVXN/8eEizt1dXfPm3TtO51+TlowLYoOcVqktIXXFe9PappwRH8woozalr/Tp+iWg2DlwntrsdxunPX7aMRaB4Ynjy4lUxQKegqP5QMQhodPag7F7mrNYeq21A7/s91eyMaTKOnN4+EjLK1dXt5yOJ56fH6m5MMSBWio5K2leMexBZu2QbicGDFcVrjZ7ru9vUBHyupCXmZIK55eDkS+ccEhn8xdrIZ1m5pRpBMZx5Op6i7jG+Xj6fofz+dMJ/JYxeLJzpObJuqH4a5pztDrjm7CVDXdxzzZuUR+oY2AIkSmCamJpZ6AQvX2BA4FRd1xXgz59Kt9Szmeac3iNuOZ+R+7m7PO7CLWlxy5kxakQnNKk0nLG54zXCRfG7rQIppChIR4bOtTU4xWADMfnhdPzmZQKbuNppVJLwTUFmpE9WjUPaI8/12YlIGLib8UjLtjP7iPihGHcMGx2bCr4MeDDYIOL3kc3daZFxS4c6YfBqALmhLlgO6wMFqMP1mYagVr7PtIOay42wLGE7Ia6hveOcRwAx3xK7BN41zpPCFuz0IzNa2JW1Nlk24mw324R5w2aJh5vykt76YLn6u4N+08Hvp0/GFjLeVJJ+Fjs9S8FnLOWIXYLlTpEGyE6WjXLofO9EvGKusiw2eOHrQXhDlum63tOx5N9dgwUJiojHkNyqjqqmAwPBFd6X906gV6VnAvrPHN4fmQ5vnBztefx+YXD0zPrecahbMaNKaW8De+WNDNshXEbCMNIygZOL1UI0ZHzypoyL09PtrcuyvlwRoJjf71jsxmYhsgYPcshk5bFWFTaaJoZx+F1zfwHH07cnjjcIv4a8RsaDhe2DFNEmhAqFvmeCukwM20HNpstxAgeki6clxeW9YBzjU3cMLnJ8PcxMG233L/1jDHw+O03sCbT4GqxQ+AKhr0QSg89ks7qybVDw4JHvVJKZXK2UnAh2MGUSy5j6y+NrWDMk6kszzMvD2fWOdO0UaMJmGkWfiRR+81LPxB2gAztZ/8xU65NaVU9zkV8EMbNjmlrIms3CCEOeO9tZXIJvbHdQJca5u577K9m69iPTnHTfiGVzuEtpVCK9p9LoIfd1pZxPhMn2O/3/ODLL3n35Z4hOtbTjGgjDlZheH/xsha0ms4X5w1m3Q3TYG4bAYNgN0G7DjiME/fvPufx5cD5fOwXquCcItFQkutaaARc3NJqAmwYo1oQX/BRcblXNU4Jw4642ZlqrJocMIwjYZrI54KLI8P2mqrw9LiSczHAmDcvsAvCOBnZwbsJusA/r4XjcWE+Z0QDLy9nnl9OaG5IsRXVnLOJB0IFBt6+3TNtY59We4bcyKmwZpvet3npCBYz2NfSSMtqatCy0vYb4u0tMQzQ96ClFXJOuL4pmMbx+x3Otz/8McN+j/qIi5OpaVSJoaJxwKkn5TNP6xE9L6y7wvUtyDiw1pVTemFOL6CJcfAmq4swOIdzZlEapoCTPeIbp4cn9LRQcsF3ZlFTxXmH5/JdVkMlJiWngmbBDUKcBsbthjCNXctqyg+pPawoG1xMSyMvjZeHmcPHs2ViqqUda4PgQ8dXWnntxPfsI7Oque6kMbF9I5cVJ4laQZ3HhxHXnCE8NxXvBsQb0tPsbMnkdBZpDWqkOUgIhkRxfQe7LpmcE9vNhlaVvNqXoxXrU0yw0REva7HhWU1s98Lbdzf/H2dv1mNHkmbbLRvd/YzBCA45Z1V3VbdaV3rR//8RkiBB0O2q7qzKkUnGdAZ3t1kPnwVLLxLQfCASSIDBiDhu5t+w99p8+/07vvzyNdOmoVnIsRKIUIWNpJTG2OGTYqpVcccoLe3Ai9G8//ZRRd6ETVValc9wczjw9suv+PsP/0FYVowd+uXR0FbIfMN0ILeZlC26G+MTclFIErYRWoJ1uHGiGSOGgdb6gU4YUzEbx3a/xY8Dcc08PnYXVOfRojRNZ6yV3alWI3jL69dveHg8sd3u+NO/fM//9b//bzw9PFFywimHrQbVDFnmhYzTxNdff4dzUOqMtSKIP5/WrvAC5wb8MBDWQFqTBC13CBqtktaVU86ENWGU2Axrk5Zht524Od6xXgOtfqYIYbg5SI2vtZCpGx2SXDGTx7uBej1zXS60FFli5X5Zad58AvVqlxm9xtDILXeIcKW2rkZRBeUUm5s93lnS45mlPolXrkgzX6tM9ESkq9DV4LtYvcZGSQ2vDdZ7UJCLWLR034nVXChxpYSFtC6cH2fuf78SzhldXdc4SP9mX7IrWp8Cdo6/mMur2JaK7D51NaAzrSaafrENyQoiN9DG4odeOpbcoVViaaMlVBMgVckrqoZODKzkLOofaGijSDlTUpW+uCrpLXV3rxjFrlje/3ai5MowNt6+u+PP//oNr9/u2W4sWgcxntRRHvgMOSY53K3TATuf1xiNMT14p8k+kkZPM09C1VONihVnjB94dXvH9Xzit19+IaVI1XKY/GDwfkPLGT1qdBlIVQQLTWlKuKBMD5fqT2LRmtQqush0tcSZHK84B8Nug5/EL2pcz/iMcoitNjKBpxJCInUPaGyNx4crMWemcWY+RT5+PLPOmcGKQIKqMMqQa8YPnrt3X7C9eQVNylZawVmDdxZnJZndeeHaLvNCmIOYNloVpzZV1Ge5klLDOS+OmybDw+P+yGF3YOsbu+3h8w5nMJZWCr4Jkj6XhButGElNkclsgrhUkglgCyotaO/QvmJ8ZtQaZQdp3LVAr5RcLmQUWWuKsRjV8FYzOYf3lueHJ8q1CfVMaXQHNtPDR401UhKpRmoda1kUqgi3p9REToLHKFFyP+I8E9eF5RIlHbkrO2hCOghz5nK+clwtTmcGZ3risQYtwOCcZWlsnKWljFYBrRdqWWiMpKrJVUn5q3pJ3Ao1iSZT1bWHBgnNr6Qe+1ByF+8XaqrEnEE3tNeiiFIV6y2DHTE4lG5oCzFl7DAybScePl74+s2BP/3pa7748o7twWG09ONKefGW9p1ijApVC74VrHLSBmCwehCjN0CTlqL1G18SmcV7W0qgOidRCUbx7ou3XK9XPn64SsyhF2qA0Z6IomqN1h5XsuSXWsdSsrh9qFTtKVZTtUeViq0r5EhcLsQQccOAGxxVa2LtKxmjyEXmB9q2l9mSXFxN8CjkKpmmSpNz4cPlynyeabVKFmi/i1MO5BZ5e9yhjeV6vWIHw1oM1/NZDNWpiwB7iTqvwhXK3YVSm7QkIq4wUAumyMtCK5kqbzdbbrYbBmcIrWHcZ745r8uMSln0rzlSS2RdxO3hbGNsUlqGkMVB3gNvBwXOKYZR6ORW9wFE08QsCpSSG2sqPK1XrmnBeMWtHzhMFq02eAohZeqaiUXi9az+x4NaWkNXueEleFfgW9aZ7lwQQXWrEJdAmFfC2u1kTTONI8404ipBPU2JAunD+w/cvvFiV9JyCNESeaiVJDeXJKQ/3y1bmZlWzqSmia0SMlxOJ3bDKNHqNdI65b6lmRovpPVKnK/kZRUifZY/7cW4q0BrLRNiVfHG4t2EURZdBXqmdBPBPxF05PW7Lf/yb9/x5Tev2R0mmsmiBtKamkVwISstgYU1lYlJBOdWFbwRzXHJojcW4Eav9ZSRCW4XMIgCUwZV3hs0E1989RWVJ2rbosepT38V87ISQ2QzDiLA1xpTpC9sSIJaKfS9pHhsc0nE5co6X9Ea3CB9W8qFpiQ4yk8jyipCFL+rfTE4NItWGqdEJVV7VGUtReIbsijPkpEq5LJcWULAeM02RB5PF7786si0mfpKpVDXjG1QqpTgVWViTOQsdrHyaY4gkkWFmMhLE96UUrDfTdwctnincFa+n8v54TPfnKcn0hK4NkFCat2X71az2TiMgSVXMk2wkhZyiww0vJ2YnMFrJQ9oq2SrWJUkWV3XwC8fPvLL/e/MdYVR8Wa35evdkbfTjvFux8Fq1vsLl6cLrWZGI857ZcBUQTG2qDFK3BfL9UpcZ+GmNnlwS27M15VlXlHIKsNajXeOzWhpW2nuw7oQ48rz/SOnhx3DsKVY0yPsrDB0tSall3IrEJrGjApdoelReKcVaqq0dBY9a6mUvEr47/oshzNciMuJOF8Icxdk6N6XYrHW4qzweLRWGG9QTcu0uEEp/0gT19ZQlpl3X458+813fPOHd0z7gWYKqPIp4DUlsasJjnRDM4N8Jnkl1YgnQZ3JNst+2Inb6KX9kCmVEemgWHlE2UTCaA+tstltef1u4nyFrD3KdoLgdugqnShChyrUAKUcuQRigBTkLfISebguV9b5gqIxbCYhPRZB0lQlrYObBu6+esvz/SPX04VaMrrJy8BYJ/JDVSlKxBs1SwtUk0zhVyDFwGVZUNZwd3vH7Zt35AaPzyfun05ysURLzbAGIThmXVApE1KhapFStt4GfAoDrLKfFnuk4nDc8u7dGwyZHK9403D0bNfPOZxzlzbJYESyFpVR6GJQGy+32X5L0AE3aKbJYR04K4OOMAeqsUxeourXqlhq5en5ys+/feD94wPn9UwxFZO7hC8nznnl9WbHzauRYXQUr7k8PBNrQbeC1xqrjCAhlJNygkpNiRK6FjVX8ppYl8i8BGpTjNMogngkNt17jXW2Bw3tiDHQWIlrIKwO522nCDjaJ5F4vx1zEveB8bRmqWqWQN2e9xlPj4ShEwnSQquBtJxIyzNxPrFeLuQYqUVWCX7wWOtACdTa9t7FvvBzi/BnUdBs7ZpVR00RO8Cf/vUr3rw5sLsZMR7QDePFGpXRGOeozYCdwG1RWrJtnFOUfCGEB2qL2FxwTqGaBYNoP7VEIbQeL9D64TR94lxSoTTZ1W62G3KDp1Wm5FppvPe0TRY9ca2CZonpE4spxYakYYvtMKeFMF8oJTJOI9DxH0p/KrGVRpRX1uC8YxhHnj4+UNciuJeKtBVVVio5S2hUTEUOk7bE0lhTZNhteP36jsPNXpKulWKOgVIVFcu0n6i5kpaVVjItrjKotAZlRLRflYRIl+5yQiEBUxqOtzfc3t2y3U2k5USJC2uJsgkw/99H8P8/AvB6hVIEAdIqcckoJbK5i1rRacAQ8KNlu/VMg+1KMC03ZVWUYphXWHQjq8hpWfj9wxP3D89c1oXcRCG0UZalBR5qI7TMc5h5M+1543dsXm2pqhJPV1pqpCLZmEaLLSylQq6JUqXUbQVUkemjwghQGaS37PK0RqHpLEM+B8Pg8dsNpYh9LKSMWaNM8BT4UcQBOUtgTkOjvaOlyrLOlJZI+UrMloZiVIG6LsznC+t8JqUrNc3kOFNToJUm085pg7EaY40MnbTtbiCgB7pKtaB6DIXqnCAJUjJesz/e8PrugB8NVSWZXDbZh6aSCOsqIgc90PRAbo5SHBWP9xucP5IXCOlBcKQ5iIjfKXJLVOqnpGytnLCPYpbxV7W0JlFgWkkfa14m3krWMrU1lPbYwVJipxmkynUJXK+rCPBLJcWVsFxYlwutJTbbCaU0KYt8scnSV4gOWsjyVTe899ze3qKr4uH9A2FN2G5FNErgbbk01pxZQiKjhefU5HK+uz0yTpIF0yqM2z3Tbsfd3TuOxzs+/v7A+9/eY41muZ4ZlIQgLyFhY8I1T0yZ1FIHnr0MIyubaeL169fstwMlSR+dUqD1dAEBdH3G4cwhY53BaLBai0uFilKFgYiqlWFQjM7hbEPVRM0NnMboAZSiVsPzNXO6nnleHzgtkXlOgnzscQWDNgx2wjtDobJE4aC2OVDszFE7bm/2vH59x/Nv9zz9dk+uFWssvtvPGh2xWDQtK1l4S3Y73gg/VCmRlKEVVYsTJlOgJ3YpZWiustSMD4Bp6BCIaWbauC6gF/yh1haTNOt6JVdx1OdkWYMc5hgWwhpJSyDHmZxmEWxrWdco21PH/D+I9vT/vvyRrb+YjDvuCmgY7Keec7ebOBx2mGHo/FUBoKF6tHppXVGkwDqKclQcBYdxO5qZqEbTXCR0Gj8qo9rKYKRErIBWrfNpczelly4OsdRq0NaTxV6Mzg2DE7FFNz4o62VqrlZqXZn7wZyXGVU1ac2s8yzpYyWyP26x3af6SYPS12gOI3a3muUzT0po/Mrg/EiYs+zFFRjrUaZhrYhm1hLINJy37IYR4xXDoPCmcHPY8ebuFu8G0Jr54Z7f/uNHLueZEBbqC/cYTW2KgmL0XnTevmCsYQ0rMUa5kGhsNhPD4BidJi8yBKTKqinGRGmfORBSvaSyRmHIbCfPbnIYVUDNGNewpuCsxhn5YuIkEdtNbYbrkvnwHPj4dOUcU48CUChtGa3D2RFvFGbwjNsNr+8OrOuFcHriuN3zZtqzcQ6N3KDKOfxmS1kzIVUqAW0lOUppA0amwjlWsu4UEq2xSJy4hL5ajLdY17Be4UYJGjJOsdkfOdxMbLcyqc4xUkoirLlHAfRJLDKBqxQqhlRWYtLkJKXNus6fPIROVewg6w+xs0kalzIGbQWb0joSUkTcmvpCUm+9fxau5ssajVIydlCMk8d6WYMITjB2U3IgrWLLehEWGDNi3ISxE6pNKD3QOvTM+FtseaKuse+Ju5G5VVoPdxL2TpOcmdpoudFyJmVxlmAGMWdp4fi0Jn8P5dHGkkogt0QIicv5zOl8IaVCXK7E68LldIZaOB73DH6Q+Ahj0E5+VzT591oRaWXJ8rPmJC6dsEiYkXweDaM1sYqDpCjFWjuVvgmVwSi42W5xurHfjbw6bPBa8fDrLz3Nu5LCCxFQwrFqq9TOomoddyIdsMwMvB9QSkkLUoW2sCwrOlSJViziNgprpBT1ksH1Xz+cx6NM4mgNi2EcK0bPWF3QVuBF1hmcFeA0rQuQlaIUy+lSeH+/cFkyKVucbgzWoAdZjzTksEzbgc1+z9vXX/LV3Vvy+YJ5deKr/cSN04xmQjVFWFbevjVs/IblOvPjD3+nLDPDOKCMYrOZGK1FV1guCyHKw7XdDUyjMEmNkcmfsRqt/yGMTjGitWbYTQLoMhZV4Xq9cj0/Mw57rLKUXEFJ6lZtCrA97UxM5N6JC8YY3zNAJMW7lC5J1KJhbUqcGXQmjbSyDVqEVkTBg+zyJBxYBjrGaDAZN1rG0WH9gPcHRj+CKuSUSXGVSoAqEsEiidOWDYoNrUvdaqsi6tcawwZn3lJModUnUl5hqUKP0Aatq4CfSyMFiVEsrUBRgodEof0O3JaGxRuJm8/NU5UnRpFNhvVKCGeenx4I80oOmeW8cDk9k0Lg7vbIdjt92heqJlEd0Lr9j85PiqR1peRESJplzVwuCwpLMx5jRTJ5mhcimSUF1pLEGFBhMwxMg2bcDNy82rGdBsoceH66kudF5JOpQazU/hwJupTeEkHV3cD/8mpPSRRfFEnQ7oPS54czzVum0bKdjvL56Ctrvwg/63DujBYYby042/AqIRE1SM9nRQlTS/vUCymUhKcWy/PpytPjTNMe5yaMHgTSnDK5BFCN3W5kt9tzd/eaabBQIt988YZvj3/mxhomrXFK8/z4zDJfOe72jN5iteH7P35HybWXheCclc80ly58hlxSV/WUT5xcrWVKVnIQYgOt7/NaV/kIvqNl0YCezg8Mo8aNHm2zQMlq64G50tdordAWWjXUprAMlJ6sRTEQ1D/AYyhxsfTcSrEHitgj50QuHZrdQWS5CCtIiIvyYQ7jyHY3MU07DocbjDGUErAOkfal+Olh1tbQ0MRcBLeJEXlc69C0kqlVFvolKoyyjG7q8X3Sl4eUusIFUu72K+TrFhRoS1GDlPgYEoamPChHbVJqx/XK9fTA0+8fmc9X4pqYT1cuTydKzty+OrDdTjLssboP4SQ5SNXek9cmu+EYBdWSGpfzzPN5xfuBzWbHYzixriuowJIKWTWWlEm1yMvACcrTe83N4cDgRQm1rIGyhE8ruJoh5daN1bJaE5Z0plBoppMPeg5tba3T62VSW4E1ikbgYbkyLpbLVV5mawewp/yZ01qfEztjGbaSUVhLRWcJ/FFWhACqrxhe+DcoSwjw8HTm4f5MKxZrJ2IoXFLsCU4NYwz7/cTt7YHBDSzPJ5ivbPcr2RXs7ZHd9ogpBkpkd3Rstjd4q7EKakn4rZESURvpyzriUXspB00DW2WSSyu9dxMeDS3L8MWJD1V030pE531/l2tC68a33/2zsLAogJStAj7TMq2rdKBTT9iqfPqgWqu05DDGChy55D5s1zKZNbIF1wok4k6JyRpNLvKml9K0iUIJ8Eoz+IFp2rDbH9DOiolbabQZ8eNBhmQpYIyBKgbgquXgtKYpTbSvJRUgk2JguZxZTidaPLOdDNvNIMKHyYp4OwViCjTVpW4YYCCjKdUSk6eakaodGE9B4hxTWonzM9enD5we3nN+fKaFwvn+idPzGdUqr45H9vst1imUbuQa5QFvMnwTR5DobYVD7Pqwq3C5rBhlRRIXEiFlyU/NhVAakUqsoiNWVRqRVBO73Ss2mxGjkRI5ZUKMlCAa4VqapOW9QN16+6FiRtFZVLpyOO54dfOK1hT3j0+8v/9AWiNYS0VzvH3D+eOvPJ7OjKPDW8sSArlWxs3m8w7noMFSxJ/X5JeFG4ixYqvEwMsaR8JCVdWkBPcPF+4fFnKUXmANVzKCOESLTnMzjmzHgfVyIV6feTVNbG4PlOWZD788c1Sa3TcDo96JjhMjflGtyTVTW4/3rqrjEvowQsvDrWkyMVYysaWzaoRFU2g1ifMf0xk+DaMlzq72vXvTBuWc9IU0+TtN8IfaCGJSa4/GUPuhqsheUvdqJYWAhKtbgZ51oHZrStwYWsubvA8QnHNkpVBN3hTGyB61FKHziQhdGEmtwbxETA5gJDxIF0ssjtJG0FYGMsguWBuBf4O8ATSKlhMpLizLleV84Xw/89uPP3H/8T03xz3ff/81N3c79q92mHHA6JGmGlqL1Sxny5wKWTnwO5rZkBlk7lAbJS+kcCVcn7k8fuS3H38knALXc+8xS+Hu7pb9boMxgsBMIYt31sh84sXLqlQ3gFYBRixz4OnxglaW/eGW0uB0uUiJbW03KQjR40WI7Kyj1sxut+d43KGRHrp1+gaYLlyXPtqNDu09RSmSGFYllkKDdrJadE4gd0opbo4b/Pgl909PzEvkfJ3Z7Q4c7u6YveN8OnFeEk1JMlxx/vMOZ02J6yVyCYWmxfQnAbOKUVXIghS0Rpb6znkul8DT80oust9ygxWFkVYULc241aBapoaF/dax323YO8tkoKWVtUQ+3P+C0Zo3t1+xcQes9ig9EDNQJZqt1IAQ2GQ4EUIU0YAVIoDGiE8R8SfK/5P2wGiD8ZZaIy0LYqKArHaUhIVrJ4bqUoLI1/A0IwOOihZPJx7vR5SBGAO5ZLmhlegoyZXaVnFxOAdNy+6tVRm3KzmoIhsWmJbRpl964gupquecKOQhqqof5AHtNhRk11oQqmFBU52W6DsK3grKU8zeUmpSFTVHKCs5XlnPz1yfzvz+80f+9pffeH565Bc+8tf/+0eGjeO7f/qa//a//E/c3N1Q+4QxU6l6wIxOyApmoKkR8LLDa4WwnEnzifnpkecPD8zPM+eHM9fLwjiM7I5HNtMoFjIRU8oulxfjjuyVtZGDWWujpMoyB56fztRumDZO83y+EHOmKmEJ1SYezNYkwNe7UVw5VnPYbRhGK5mtQVRadCsfL5zhWgXqVwprFqCXUoJuaTThkSuIIdBqwDuPdQPH3chm+yVryPz620ceT89MFrRx6GFinVf8MOC2I+f4mYCv5fGM9pZiFWsTa44Q2hrWNNGX9r3T4GEcNK1YhmHPMAjMuWmNtoBuXMPCfJ3Z+JGb/ZHtaPFWbGdOQ0uRlhKayrw88eP7hQ9Pv3C7e8txe8dmeMV2uEE1TU2ZkjKqIz5KFAJfKpVXd3coU7Gma+W1POj0FYVWHlRDKVH/iPg8d1Gk2KSakjQ1amZdey5LK1RlMU6mqdqM1GqoepAhAKkvyiV2gZhRGJzzgn3sBIZGpXuLO6xDSmqtZF2gkCAjBZ9Igy0JlY5WUU7ogaYniLnxlqIca0pgLDpFvN2iWyGGC2sJbKetTE+bRSuLKqmnsF1Yzo8839/zyw+/8bd//zunh5PQ45zDas0Xb7/gD3/4J46HG4wZsEbM5dRKbqMohLAUJbhQSQkLwquNM+v5mfPDI7///DvnpyuXyyIa0+ORcZRVhDIIhwhJPTNGLiO6Z7V2GFxOhXVZOZ0uaK3ZbLdoo1iWmZgiOVfW0EBbjB1IdRWHk+qyTjK3+z3baSCGlTDPlCB84da0xB6W1uMlGyonylIpHeuimkC9mumzg9ZwVmGVxiC5sLUmvJ3YvTpSK/z+8YGQJRpE9uMTfrvjcHfDev/756uOOjoAACAASURBVB3OV8OGJRcuayFXTXOKUCMoKWUrkVxbPwBB9o7WYRDzrHWe0jLzeqaqxDgNHHd7jrsNo1PCy8nitm9K/IKUwuAaIa3EtrKWM3E98/j0O6M5shluubt5y2AH4rKQzzPLeZbhjbaM2y01Spy5sQPPT4/kFNhtR6bJo71Elquek0Kr/69FcEMpefCccTgnUKhaLSmvLOlCa4rt5khKlcFvaFUW8gVRhogXUkFtpJL6G1t8qDVLzysrFT4ZypXq4LEizhjdw4hSytROUM+xZ4/Wiq6Ky/lK1YbNcWQ7ShYc2qK0R6uhu18iVmnIK7UZSgZlGiUGSsmkOBOvz5weP/LTD3/nL//nD1wfV0bn2YwDzisOtyP/+m//zHd/+Ao9WaoGbfs6THloHlU87cU83qRFoMiyvcSF89Mj73/6haeHZ5Y5sJm2HI9HrBNjuraKnjyDVro7Y4SSCDKsbaVKT7hErpcZGkzbDeM4soTIvM79YMlVJxpduiHfEIuQGkbnuHt1g6qV+TpzOZ0YjcPbobtwmohNiux2QSI4ak8LU8rQjCSvA91wAaZVAc3ZgnUjoxc6w2G35fH5mbCshBClFTLCbXq+XNkePjOO4c3kiMXysAQ+XFbOoZGNpDm17i6RCIRMrqJ51ErjkDJkmDTDxuBGxXYa8N4xmoYqgVQlhWnREt6qaAy6iY2Hhq4NnWVfqWygDZZrWvnp/BNeef7w9beQGqf3Tzy+fyTPFa8ln2R3c8CNA27Y8OHX37g8PXE4bPj6+y94/dUdm5s9bnKAyOBgkJKDTGm1g6ac4PtpKNdw1rN1e5lMa8cwis1ISCJGJHLayhK/yTAGMq1l/hHGK8xYRfukuipVFFJNy3qJCrnKYCvMKyXKsj8FYQWVXLEuQvOgI8bNKPdIMXswGxkwGSfm+BxBDdSihPSgPTlGmr6SlivL+czl8cyvf/vI3//6K3FJHPcbBqvRvjHtLV//6S23Xx3RoxKAFz0HpQFZyQPkHTVZ1txQWBQBVa+E+czzwyM//OWv/PrTL5TS2B8mtruRcRSKnkzNu/BCW6w1aKMwpk8+exxIU4oUM5fTlVIa292eadoQS+a6BpZYujRPyffQuhEdTUlZkrCpbLcbBquoaSEtKzU1KgblR1JaSVlEFlVpye2hdrtcg9IoyMFVClqWJLmkGy1EijdMW4VRkeX8SDmfWaOScGntiaX02JHG+XLl9t0rdsfPHAgd9EjWsB0O7MfIz/fPPF4XWm4sVdG0IpVCLoVa6MqWLqkaDMYMHPZbxk2X9RnpPWPK/fVfqUrgb1YrtOt7LK3JqXY6XmbWFYi0LOG3jpXff/sFUuX550eujzN5rZA0pYnBlz7ZK0H8k1o1/v6ff+XtN+/447/9iS+++5rtQeRhKCO+QiW8oiwd5SfBu1aVkhW2s4pqpfePSANL6XlIYmnLObIsF5nuKpmG0lJHXwq0S6xkVRwSKXcxu4YmBIQYM3FN1CAWshQyKVViTCjduF4C72KhqoFmJvTGiXJIO6gW44ZuPja0GGlElGqkHChlJc1XwmXm46+/88Nf/pN4DdzsdzitQBWmg+f7P3/LP/2P/8Tu7gBGJq8y8aTLAS25KnKjP3RJ9oElEsPKfD7zH//+F378+9+x2nB394ppGtGmY2NU1ym3htVW1Ggv6JQXZlKVcjbGwuW6EFNhu90ybXakknh6PpPR+GFLSvMnxi9N+E+hFUmEa1VeDuNIaxBDZF2jJI+R2RwcLSVev3uLdZ4QMpces1FyJScJNS6tfYpcKF3U4iykVDFGYbWD0iR4WjdaVsznE6d5lcunQwsGa9kMA+E6f97htMritaUahxsGNncTH82Jn39/IIREVIpII6NopeEaWKdxg8EPtjNzRNtqtIzFBa3R0LXKD10qxkJUlWygOMNaKgaFsxvG8YZxGJnGCWcck3PYnGkxcHm6J19W6hIoiwTcxCxKkEpPEcsFg1wa85q4zInzNZOL5Q9//o5p2533tQmA0orBuTRNLGLirsqKzK/L4ORSloY21CRR5gVoL+nMCcntWFAvSMYiov2Uwqfcxlolxj7FHs5bev7nGoVLWxrkRolCKS+5dZ1o4ekx8PS0ELMlt4HpqBi2Gb8BbSYKGuMGmrK4qZLWmVJO5LyQ5plwvnL/6++8//sv6FS5O+xkeEJi2A388V//yJ/+25+ZbncSgqTk99ky5CKukqxFDpgrLGERCWPJpBSIy8r7X3/lbz/8J+PgeH33Gq0M2r4whV88oqXHM0qCXKec9n2h6KNjylwvgWWN+HFis92TS+N0Xoi5oa0nxUKOTSqTvrMurRJbpS/QMEZYsylk4jUSUqaUhnaaNUam/R6/mxgHj51XjG54Z4S8d1m5XFZSihRkt26NxliHsU7Qo02xXBb6koWmCrkZvBFZas4Zr7LIEkslnK+UGj/vcPpxIzs8ZRitwmLZ3Hkm7TEfn/jtehWhr5Lx2uQHpo3HbEwXwCtiLNil4LwRZ2CDmjI1pM6mVaSWGUeLHT1bv+O43XHY3rDb3XFzfM1me8QaSytZAn3iyvXxA6f3F9KaKSFL8GoxrCGxFiG91iorCassxmh0UbTo+fBh5def7nn75Zf4SZwFzajee5Z+80IqlRICRjU5LD3Ds6GIQdQd0jNpVIMUZUClWsFomWansEoWZEzkECW+LiZyEU9hTZBiIfaAqJolH0Z2kA1VVWcXCU6ytEbpusSYA//H//rfydXw1R9lDRRTw/nItFGMw4ZcClY7qjbklIjzhevjiQ8//cpPf/k74RqY3CBkPDLNVm6/vOHbP3/H8d0deNsfbkFNNg21CCkQsyGFSkipy9AKOc7MlydOD/f87T9/YDuNDM6LikxLtKC8XSvWOowxGGNfRrN8Ak73UKl1XrleV9Yl4rzncDyilOHyfGZZI6lUyJGSao+P78M4BU0L8jTTsNay2WxAadYQJEEgIwdLW0Iq+I1iCZF1XdEpSWCzVvhpwFsZhD08n5jjSi5F4AHWoaztcsb6aTOglKbpKuBuJb1sqYWQE7lWdtsNEgPzmdxaPWy7H7FIJJvKaODusMH4gfH+kR8fHplbQ42O7XZk3HpwjZdFXwqFc45iy7IyhCZXVG7ixHeOaTNyd3PgzasbjrsdoxtwdsPgd7jmIWrMOFCbo+SVVhvGHGhtIhZNyEJXa60nizWofXqokMW8cR5lDeN2x+G4IQTF6Xlle0OnuL/ArGS9rOhi7y5ilpqmT0yV9C+liqxMG4UusSM1ZlL3a5a09LzQTJwD62UhBhH8l76rq0XJl84C8CpJ3o61KkqSfofaP9wGKNtlfqCbZV0zf/3LT2Adb796x5AaxWfikmhZlEUlBVKaicuZy8Mj7//+M7/+8DNxXtmOE8YYMWUbuHl3y7/8z3/m3fdf46YtsckwpqHQXvytJRkqDq1HKqsIB0xhua7kcCWcn/j1x5+oKbGdJpy1MnhDqgtJRpPgXdUB093nIyHKPTg3hMQ8r5Rc2e/3bDYbFJrT84nz+SKpdcagJG4Jo+QgplbJShFbIfdX8TCOTNNIiBGThVyQGtA0a0gimA+ZOovm1tQsLY2RCtB7zXY30YxCXzTrGgFxvMyrfL/CHI44a3FOPqemCsu6dvO1MLHoeu91nqF8ZhzD0FGBJckOyCgZGTut8T4zuju8Uby/XMiDQe8MdkL4jFUJQrIo0toItaB0Eb1nzjgyg9V4p9kYh02VdLpwDYHiBrxbKUMm+YAezgxj7w+bQleh7+1e3XI5vCKEAnWVh73rVUGAXLU01rQQcsT7gbvXt2x3By7XCx/uHzm8uWXSVj6EbtIuPbpe09CdfKABqqxDUlypSIhvKUk0lyWQo3BR0zITLmeolbAu1NzIIUt5GquE6ZQmQoqmRfpVWod39bdHk+gFyVtUXfhuMF7ChHWPUbBWE9bKv//3v/H+wz23NzccX90ybQ7Mp2esUbSauhXrmftff+PXv/0MubKZBnxfpBdtONxs+eP/8EfefPMl9KhCMUeLXxPl0HZEG09JipjoQVeFmlah9s8XPv7+G5fTmdF7vJO3Ys4ZVRXGmY58kd0tpYn1TQsmlCIJ1OsaCGGV4U+HmmulOD9fWK4X4TE11eMg5PJqL/EeRoQeuR8IbQy7zVYiLWsReWRFHCGlYYGcKkbnLkuUwKxqJWo459znEobN1qP9kdPpyjyvhCS0e3kVibkBrAy5tBJFnHNslSU1JShcbXh6euR2t6HEzyxrW5TodKMsTVec9hQdwYJORfJJ7B3bZ8+HtBAni5ostQmYtzbd6WICR865UPOKKeJ3CzF0PH4mXzSrNQzOsB0nrB6hfmQctmxvdoy7Ldp5/DDivANbGQ8T43HHGhaU0SyzxLM1LdPOVuleIznUaV348Ycz739z3L498PbbPfN8oiB2MfOyzqlFJp0dEiZJ2ZVWguhxU6CWlRiFWC+ojSi3ZypSwq6RGnMfJohIQpwTlRSF/p2K9I8pi2C95PJJD9vqC5Ky/x+jmaaBcTPy4p7vg0wZ/S+F6/KR9z//xrTZsNnuuX31iuNhiyZyPT9zOT1zeTpJfvU4oBUYp1BOs9mNfPXHr/jy268xgyfm1uc1itLbBO08zYzAIGL9JBDpnDI1J8L1wnx65vnhAUXDOovo3ERpmkulGYXVYn/TSvAvQmgwkjlaKimWPqxJ7A97drstWjXCslJzxBlFNdJbSiq2zCiqFmN5btJqaa1x1bLdbnnz+jWXywlrxECxptSHTpK3o5Vmt9myLleW+SJyzlxlV60E1masRRnTd7OWimJZ4if1mXaq67xFpKGMRtdMzlH6U20xnb2sW2Wz3WCmz1QIlYgwYK3pdXMQuJbSuKqEuN4aamvRceCDhqVKr5eaAj3ip4nBb6haUVKkxoU6XyAK2l5FBDEZKgsJ3xphKti2sD6uDMVy9+aO/d0Rtx8J+xE1Wqx35BLxe41fLK1KGaFsocVEjVWW7UaKJk3GW81ucuyPntsvJrZjZrl+JCXfDyboroctLyFCCj5FzLUrKc6yJ4wrJSR0k51XqYuELxVZmOfQWOfYAWNiO4qpEGNhDZWUoBbd805kZaAVfKLFdurBywfdWh+25O420TJwKLV1d4ij4QgpcZlPtN+f+fXHnzluB7ZOQ4kYGpMbGLYTEuKU0U4x7i13X93wxTdvmbY70CPKTKBlf9m6BLBpj7IjKVtSFwdQNSVFlvnM5fTE+fmZlgrKaVTtlUhtKCNe2FiymMmV2BGNFWWUxDAUUoosy0JKlc1mx/6ww3kp7amWwe1Zved0uhBiFbWzku8xa9OZPopxmIhJhkrT5PGjhyuEnEXqqIRnZRAfcquFNcihXXrkhRAzrDCLVEGbymYzMnqHUw07OHTJfafu0UZK8pjlQBtJhgKlMVZz+/qOy7JSamE3jhzGEV3y5x1OYY8jB1ArSu8XrPY0W4m1MhjNznvmBs8pErQi2xHjR4bxht14ZBo2ZCphPlOWE0krWjDU1dJyImfNEldUjGw0xGvGVY26ZGpUPF0z8eOZ/d0evx8x25F1VFQrD/J+v8drRx4TKSR2VR7+hpOFPxVrYRxEKrjdj/hJpHuX84MEItWKqpU+thJkpPgtuhY3U0vsobZrbxIlCqFVJO4+F5HPJQTpv0oJW0J/w/SVwLokUmq9qjAoo3FGdsS60eX3/c3SkRdV0ctq0ZyClMJohdFWPpsKrVih0bVCS5X5fMGOjsNuYDN6eVMZ1UUfCjdqXn9xy5fff82rN6+x45aiR1JzlKopVZGrpSmDbhalJO9Ea0Wz8rOlHJmvZ96//5WH338HlOwrUT3vRbzBqhpSypRSsNb2iw9qk91hCIHL5UwMkf1+z/HVAT+Yni8j7pq0BswA253HBjEtN6VItZFyoVIZxwljPM6Kx3IYPSUHbm9vyEXWeMv1KheilgjIWCsmZxHXK03KSYJ6W0QbSa6zXqOzw7YmidhK3EF0sBjqxRoh4oSSxaEC4JzheLxhmCIlJ7aDxZYi7pnPOZxGN4zqD0QXPLZm0FissRQl+8NBa3bGcmgQlYXpFXZ/i/V7StGsTSIRYoUQCzFlaszMpytpXtgMk6hBgozXmy2MwLZahqZxK9R1Jjwn9HGLu6vUrSbqwuoLSkOkYiYj5uncAIPzkzhnWkbphveGYfK4QUqQ0gItBFQVKZqqped5CpC6VsnLLD0RTAjsIhdsOaNf+DmpyCHMIoyOsUIz1AJaGcwgYK1G62IATVglOr1WmWqLdk9KSVWb/L0eky5gNbp2Non7pGM4VNOUKrI/GlglELBaMtYpBmfZ7SZ2+wnvZNlfWqVqgXXfvnnFV99/w/7uDj2MYL3gTKqnFDmUpUlYlCoWQiOnJkjLVoh5ZV4u3N9/4PHhnlbl4FUtPXHVgJOUa9U01hrBqaZISl1/XPtg5TKTU2J/2HG82Uv5aMWlglE4GtaC94o8WnJqrGshpEoOsRMIKlaJ9vj13WsOuw0hJcbthnmeSSGxzosQIY1itz9QcyY3uC4r+/2O440nLpnL5UosldqnzMo5YoPH8+UTuUL3veoLqV8jW7XSDeGgsM6y3e2Ypq2kW4cFFRo6R2mjPudwSuhUlTdHD5C11mE/OevFCe61YWNgVxqz8ujhiHI7ElYe1lJZ14XL0zPh+oyuCas0zXqULWg/iDXIVOnDmkZbzzR6dlozFo3JDbsqORSqMrSBZhpLjKymUHxj3I+ksNJCwTVNNRlrGtbIA248YKvkRirRy7YiqhIjxsbuVkWUPUWSpVtplNJjz0vP06xS0tceA19yl5k1AT9rI4fSWoOzsv/VRpwaMWbWJbEuhRAaKWeJ9ssFqgiqVYeWvSBLtBHNbvePUXovL0NQjXrJHu2zT6Mao9ccDxM3NzusE6iZtv0NS2F7PPD1H//A3bsvaMNA1Y6qLFU5MOMnVKVulpybOPeR7zPnTMwr63Lh+fGex48fULVIFaKNqKcUGO0AZMBShfbQaqVliJ0nVCvkVFiWmWka2O02eG9oqorWVsseVClwo8FZR7aGFBuxBtYlcQ2JUsE6Lzk948TtzYHdZuKHv/3A/f0HmQgrRQoRC3hvef36Neuy9ou3st3tMQoubWZZA84AxmBHSQovNROXhVIK5sUJ9fKbl0IGq6U/L00QMcebI4fjARqs88L1/MRhMyK6svp5h7Pp1h/EzmppgFKC6u92p4qMsL3S7I1j1p6UYb0G1hoxGFouXE9PXJ+FPOa9YtoM0ArFKsZxIpVENRWnDDlkmvUYPTI6y7AqlFFMdoKqSRfxZ253EwrLQ7kSxoYaPdUUlDOoaqT3rS82KyhitIQsJaXqxL6kREKoQcTptb85UyKGRA7ids9tFdtYkTeqWJA8RvlOSe8i9kEOotKKYRxwHlGPWJHu5WRI0VKKIiVZsseUSUHSvEU1JIDplktfP7Q+4SzQjKiZlJcpLiKEbxSaEgTldqO5vd1ye7tjGA2tZoE3KwVes9nu+OKbb3nz1bfYaSI11T2e+hOCQy7VhFaGl8yYWkuvKgJpvXJ9fuT+/a8s5xN9SUI3x0rVYpSAuI0MuLSS5l4ZOXSpVubLIpe88wyDE4VRQoKRm8Yoh2lKAmpr7CQEuC6Zp/PK4zmwxop2nnGYOt8os5xPfPz1F+LLtF3JfEA3cR15a3h8vOfVq7ecTxcm77lerizXC6GL6EtTjG7DzX5PyJF1mWX33+n+LzhMjeoXs5AKnRGsS2mKzWbHdrPl8fERZz21KJ5OFwanusf4cw6nkj1Nay/AKAREnBdU787QcrM7o5jQbNA8h0RcEudFYgssjbhcydcrpazopkn9LWY3Bkwht4iZNM5NpHblHCIbbdhqzTBOeLvh5vgF3ozEeWU5P1EeIvuDwR33PDSBAa9EmfaakRYrcVlEu1plDdSy3OIYg7e2l1SZOcgYvnX3CDUTlpW4ZPIKVENVAe+lT8w9G8NuBY4sYb6SPiXSNKlxhtHgB4dS8karNaOVPBi1gleKvZ5oCFGi5UrLjZwyORZySMSQBWlRFbEUwTf2g6KVFZAZiBxQB6at4t3bG+5ebTBWyPApy+WkjeFwe8Pbr77m7Zff4ne3VAQF0pqmdRN2VeIhTTn1RDsLqknSVw60EsnrzNOHDzx/+EgLUX5ua+EFIq7kUqnSD3XVj+yGa6s9+FdkdNM4cDzsmbYD2iAkdCMSURGwN7Fq9RyZ0uC8JB5OK3NQ1CaZJylVSkkYYDbyOalOfKhFKg/VNLoJjmxwnnEcuZyuODdwfvxIKZGiqswCtME58fOa2nBKi6Ope3Bzzp+gb/TkN20QTSqyQ9facD6feXp8wmgx2aM9WTVyX8L8lw+n1dDnC3LrNNGR1lxR9JwT02geSDLO9rVhcyLPgfV0JoUVqxqlZsIyU0qkVY11Ge81xqruFZWHJ9WKmkZSi9wHSf/FOb569Yrt2y84bl+hU+X028/c//g36scLkx64HUeaqtyXTMiJZsBVTU1SjmYLgza4LiNsMVG1TBRbKf2Da9QW6PJOUsisS6QmmVwoJR5MY2RcboyVXa6RD8wPjmEjFqhCAtWw3oqTXvebtcjBFVhIwxglLnt6+nbP7VBdd0oVBdEyR2qBNSRSSZSkuFwiYa4SYtQ02sCw0by+O/D2zRFnKrkE6YEo4DSHu1u+++d/5nj3jmFzoNlRJrGULqfTElCsCk47dhvBjEhgUiamQAoLOUbm8zMff/uN+XTBq4pygqtUpolIXnVkR+tVQKlSEWgRWixLYl5WjDPsjlum/SjAMqcEsqAkj7M2MdQrpVDG03Ij1cJ1rcwJSg8trp0IL4dRzOgv1i9xqrQ+fJKf9bDf8d0fv2cN0rot80ypFecd0+T7lNWRUyaEFWMMh8MRZRwxBubrtX/dl0Gd7v9GZU2rtEvG8fDwSC1JuMit4ceBm5sD1v4j3uO/fDhdz59ouo+EC1AqLbVOncs0lammUeic0NhzQUKEGCjrWUotrf4fzt7sSY4kOfP8qR3u4RGZiQRQZx/sJpvkLIX7ss/7tv//zs4OZ4fL7uru6jqBwpVHRPhhZqr7oBZZ/bKkEBApqRIUCqjwcDNV/fQ7SNFdFfLokiAJzhTxe9Y9ezatpDgQ9jtmWSjzQq1nbqeMXF8xPLtlVEX0zPb4lvnNkfLuxI49v/rsGVd5z9vtzGldOB2PPqiIspsScRgI1R10EFD1Q+J2GO2J9iUxd4+fHUEq21qYz2f3JrLGMET3KwruUavmHkCSorucR9+tSozuM9JTl93IK3FR6QbpYoDo3kshXIgeEQmKBCNKYLLEzcs9YhFt7hagFU6PhYf7mfdv7nh8nNkfJl58uufmZmIYOr+09X1oyFw/v+JXf/e3vPjil87+SjsqPQlcOtmkc4fpy3IzoRZ3BWy10oobax3v7/j+279w9+4drUd2BDGquZGyiwCcg6u1UZaCNGjVWEU5zxvH04wFePbimpsXV87HHqQnh4N05NTtQowCoIHzUnh3d+bDw5m1OhtNxPnaOQRSzOz3V+z3B6res8xnnwpVe8WuhBR59uyGF7fP+R//+m9s6wzJU8jHYSDsBlprhBAoZWPdVp49u+Hm9gUhjJyOR4K5EXoA1mVhW2dXrZix1oZIIkVXYx0fnXtsdGf74CPU1X76uMNp0X131GqfgRRdu529+BfgVUKpKq4pFKUsJ+rmUe0hNHIS4pBclBsESRBy8Bc3pu5H49XY48h9j6fBSfFNGt+c7rg6fmAYdrycdkw3O158/pwlKMfHO5a7hYTwi89fMLSBP394xd39xmZKC8bhemQ/XTMNAyls3oJ2ZwRrjsYC3Z3A1SExBaZDZFsXJAXOD0dnunSnaUtGit1ZIQYsSJeceYRBlEBDPWJe+3xizlUO3YPIRNzaJIbuhtBJB3KZWzsQEocuxwqYFEB49iLxyaI8ez7y3Tff8eLFgevb0dc+9BSxmCBkbp87Kvvpl78iTwcsjRCGzkjqyGO6eAp5DKBbbUbn85bSD2elrhuvv/+Rv3z1R+bHR5LQxQ+uJmnRCOr+SGqejbktFau9C1DldJ5RKzx/cc3tiyum/c5n1GTeSUVf4otIV4EktmKcTzPv3z7w/v2JZTOM2IVBzSPcYyBHp2Iuy9zzUN2wq3VBRBx37PYTu6trXr97y3k+c311IKdIcrsJ6rp0oll013yttFpZTmdKOdNqdeCuQdNGWQvzslGt+TomOGA6Xe043Ow5nR/cf0hgmU9YXRljIrXDxx3OJn7LzOcz63mjbUqXK3YXcEf/vG2CMApbVdbNbf9qdbezYXRLEHE7OVSMJn4z5zyh1dkkWjZohdJfbqLALrOmge/Pd8g3X7Edj9gXn/H5YeD5F7e0mz23j7e8/fYHHt49ou3E85srTnLL0RbOy5mSQM+Nu+PKbpcJY3qKkYsxIGbdVAuk2ZNcCQmElBhy4CZHYsycHh47Xc8vEcQTysSUqOphrMmfjahbZBg9QrB3CEE8ZFeC7ziJfb7HOsXXiQfeXrjrHik/HWoVx1wCkSHA/jrz6efX7A8JiRvOqE6oBobdxPNPvuTLX/0tt59+Sp4mVFzzaUSQyiVeIYSABg8qQqQbJ0cIA83czbBsjYf393z/l294/HCHWCPESA2CqrN0tFZSEzC3VFnXhlZhW5XzeWWuDbXCy0+veP78wLTPnU0UnDQSejWMbkxWtPJ43nh/N3P/4ZHTw8K2Gu7kFnpQkeLJwkqNgXmZoVWE1Y2ox9GrWUhcv3jBdHXFzeef8+c//QlLgWEanNpXHaH3ymZUqWjztPPjwz3n00JgcMHGVnwltG2UWijmpIgQ3ZBMgXmZWdeFtawojWBOFUymxDFi5SPb2rI2D2ydG9u5sC2FVoVt9Rcuxk7LA2oA2QmPFc7LzFYbFiLDODDskidQm/RWtiNckokhe3pABAulZ1woKkbIJkCJGgAAIABJREFUbh3ZApy2mVePG7oeKdt7wi+/4Je3z9g/f07abglm2DfG8WGGIvzi+QtkjNhPr/igbn9/XlceZ2+jU965tackQgrE3CVMtUHrfj0iFDOESJp2HMxBsHU++e3aPJfF1JBqsFWiGlG9XfWL3NUJ4DIp8Jc4BHGvoOiIpuCm195k4223XUAV94slSp9NXbC71cJ6dtf0YXKH/QsAIyIMh2s+/fK3fPnr33F1+wkWd0ifb5t1O0cJ/icKTybS7q5+affpDCGf3x7uH/nqqz/y+tVPvpKIgnbPIxW8zLeLEL/nolQHpB5PCw+PZ1pTXrzc8/z5M66vd+RhRCQ53VO6R21wna1Z5PHhzLffvuHufqWszT+/dVtOc42lqhNHvNWsbOvsEjjdiDExThNlXri6ueW3v/sHnn/6knNr1BCwAI/LEWmNgGKdb+u/pz+Dpp6eHoIxDm49oxhrcYVRdWMqpmlAxZ+v1srp6FTA0C/aqo4kNxHmefaC9DGHc/7gq4SyKG2BunllnJcCFt33B9hMWayhC5w71WvYjeQ8kHIgjU4abno5lP4gxcRlNup2k9ZrcOxFJsZEjh5WI9I41pVWZrb3D4R4Zn/4ez6/2ZPGyLMvX7jL9o9vuX84EwT+5tNb0hcDv//wEw/mVibz6UxooYtyeyULTo6WLqLV0LAgrFvl8fGeMUaudztSd6VXuSRlbx5PAISawZonWWXIKXi4TcJb/+piXMDjBU1RUU9Ik+QHVIKvIvTCUuovh3bzYnUgRFplWzfO57kDLpE0JMDZStqUlCc+/fxX/OK3v+PqxefE4QqVqR80b1M1KLFXCKfzFU+tFjfMtst6wBzwmOeZH398xV+++ZbzeXE+q3qCl+AtoUh4mnNbhVpc6nbeCvenM/O28uyw48WLW6bd3q1JY3aH+74SEgJopFbheJx59cM99+9mShHM3CTNzBUoW2uU6nYuuUc1mhmlFqI4GUBUCeeF6XDF3/z2t7x8+ZJmwvHhxBgHzqVCWxFr7lbYedmG+DtrQrMLl7nQbGHA2LTRAmiKPe3CA5a0FQ83av77SJcZuhuhbwW2UkGaM7o+6nDeFbZ1c+v4WimmrKVRCp6NGbzfX1U5X1qLw8TheiLEkRISEswX8Jck4laozcNiRUFUvU3WgonnfBJckBuCv7gpGjoYa6tsVSm2EN5v7A+Z/W4iT1cMh5Hr5zeUeUPXxvxwxIBff/EZ4+GWP7z/jlN9jy0bxRondXPrw2GPdi+alIMDGaZUg4f5kdIKu3FwSF+UkP3iIQd0yKznufvxBKoYMRpZA9T+RVVFkiBBfw4l6nvAoQ7k3UDS5AljPW5BDA/HNaE264cjEIOgFdbjB5Z5Rg2m/UTIyQ2tLVA24+5+5stff8bzT74gpLHnhgQkjrgWwMUBIvbk0+MyNvMhqlMZ3DvHiRpmldP5yLfff8fdwyNaG2Nwfm1DiS7UJCp9T+x6zG1tbKVw6uydZy+u+eRm4upqekK7a/XLSkSIRIIk1rny9t0Dr19/4HRcsRo9QFl9Rm9mFGvM2+yCacP9q1LyS7I1tAutaco0RT797EtqaXz1h694PJ0wDbR1Zqjqlf6iA8UPlPacGTUhpkRT2Eph04Vz2Wg+D9DM5dXWOj7TiSEBcTc/k26Z4tUYCa5W6drWjzqc69kP5rpVpyOJy8+0eKuDU7Cp2hkrKm6yNU5Y3tGjsrrjuoMmreECZG2kGHvCVD8T4cKGkU6qdukOrSdVW4XQmJvxamn812//QgiZf/78Nxxmox1naG7VGcWoD0fycM3v/uFv2X/ygv/nu3/hdHzFRmUz5VwLa/XVwM3VFbvDhAyNKo2lVpa6cHWYyCm4UkV8Ds5DIkrG1KvhfF46AAbWgoOxA75msoaYm3Y9We8Hn1etV0NNiiVFY8AFYvgqxYsJQqSurvQ3VZbzHWmITPs9kvoMD652GAd2N9fsb59hMbKWlTafGIiE3fQEoARyFwNf3O69/bbof4Y26VW2spWF83zi2+++5w9//oaH40KS4HY0IZAaqLh9qmUcFDOX9Z1mD/bJu4EvXz539k8U8uDItl7GnN5COpCz8cOrD7x69YFlrkg3YFNtlKaUVllbpYr5+g1lSInS4wVFfMwKCMTMNO2xEHjz9q37XTVnZOUYEFOSON0T60QPoGrrBuiOyu92B+ZlQ8TpnLVbstCrIh3Y00tsxsXeFOt0SusO/i7BCwGq9EyVjzmc21YotbFV5Ylc0/CbQaD1F6h2lkoM7pjmHqtGTq6Yv8SUt62xnD17MQ/JFS/0m7w5A8lQYrdCrLUhNApCteo2FrWwVWXTyHm9o/zxDxzvZn4Tr3mm2WPbcR2fFGW5vyO9fc/f/fPfEvfG//37wuPxHaA0ayy2MpfCsVUOVtntM2GIPC4bFgLjNDEoxNYTyYJ5QlgQRAMik7f2bK7HLJ3RI7F75Bqpy4RExb1Qk1eyrVRqVHKqbMHRY8GX/+7KF3qLB6fHI8u8spt2XF2P7K/2bk0aXTKGQh4Gnn/yjM/HiWF/7QnMtVLmM1UDyUZCHGlPHkA+IsYU0F5Z05Bx/L1hzVCrbLXw6vUb/tu//E/+/O0rWlWm3QRjQqOQg0ugalCiOVi4tcq6FuZ5YRwSn3xyy/PbPbvRPW3dt9T5uYIbaGnzMNtXP93x4+s75lmJYSClSGmFrTXv3KoLqolCTJ7Put9fc8g7ju8/UEx5eXvNi5e3LKW4+4Ypj4/3XSRy4Yl3HMC8UsaQO/DV2Koj4ikHUsremqrXQ7oJudcnJ7iIePdTmxeU1nz+vazqLmNckOBru76CkxA/7nCe5g0PO+1tDlBVKCq+11L6+sPLebbIINZnqYb2mbRqY1sX6rqyLQs0JfaXrpk98UpVKxKUtao7dgcf7ptCK5u3wl3cuogRrbGsH1geKo+Hl/z97Wc8SwMSI0NM1NpYysL9d38hj/Dbf/wNyz/8b/z3r/6Fh/k9i24eHX4+E48z+eHEMERurq+QIFxNPVpArEu4gnusBn/oKUZnnuwcRGhVKVac2N0asUQkSb+hIaj1/SGOWtMgNkJwYbeYOblD++yovYqZo4XjOHRVzUDMXq1UK0ZDYmJ/NbG/3rvuEmOthciGNKHaTOaemHcYyd3vY+4UTOlpXgMScZpcW7HqaOTj8ci//tsf+OPX3/JwWjEVlrLRVmU/JKYhkVNAVBFrtFZZS+3fdeHFixs3cc6JIQnW/YzN+mfFZ8NW4O27R3788T3nRTHxy3urG2utbM28RU/JVx4XAFwruzwwjSPsD0SMcTf5Zd8qtVZS6ill5o4Twcyd9ftvEULoJJjqGtvWc0ajuyKezme20jvILjKI3cDcGVqBq/0zb+FPx75Ou3QDgDk/28zpfSFEJ887yvARlbMJrcFW3bsGCe6k7fa50BzcqU2951ZHqOq2MLfKutXOOvS48NbF1cHEic9aWbfiSg11loZKo7RCHkcPFJKApMR2XrHN7TKt+UM3M84oTe8ZS2AIA7+crnkxDEgB3VaCVex85PjHrwkx8zf/y99x/i+J//MP/5X353esosyb/3/LeSPlxH5Vnl0feJlHOC88j8J19NAmwP1FzG0SpUcOpiGTmz/4bW0sS2GrK1UhDJkkgUR0GlqI3hrVglrFFxbmMYqC718vMQ3eZHG4mrh9+Yz99Y404KRwU5cuxcDhcGCcRqpVdPOkq0QiWfS4CFaaNVKdyMPB3e/FvW7VHICR4OuukCIhKrXOrOvKDz/8yNdf/4X5vDqqSmDd4K4UzmtjNzTGyU3cBKO2wrpV6lL45Grk9tl1d/lXID6R+bsdl+fKNDidVt68eWReFLWEiO9Ya93YmrKp4xAX0oZnqhSmFJiikSnuXwUgja0sXebXPN8G6a6Mjq5Kh8SjXNQ63jOU3sUN4+CRgtbcuULpGTjad9I9cqJ5OFZrRm199q+FGOCCn4cuqLgkAVyAq3/vx39AfM+oBop5W9swt54MgcqFCA1qPk+VCrpUHkrlDmGLGdd/GhIqWdxQqWzKei403Tx4Zt0Q7auZCFWVUlZCKIy7id1u4Hr/jDbANpcuD3pE8Bi6x2Z8d3ogiHA+Hvn7qxdcm5v/UlxQy7zw9o9fM+WBX/72M9796h/48F3jcf5AyxMEV+LVIXEiOmq4NZZt414rn+53fDFNxN7KKIqWRo7ZQ3AzpOazUzSQpizzxru7M+diTGNmGrIrGDrY0GrFaiMJTENkyoExR4YcSBHy4O1wGjI3t9fs9iMhOzDlIgTXero0bnQi/bo540qgtDODBUI1Ui6EEmi5oKrulDgm3zOTHDPoq67a1walbDx8+MC3f/4zy+nENAy0Aota74i8W1i1ILUwpEiKvV0vhazGYT+RMCjFg5Ri7I71PehJnTa+roXXP73j8Tg/IcW+dnIzsNY8HNcLZXFjMGAaM9e7yJQhh+q7ZzNPYzMhAjn7yk7VE8NAuqLKAZlqzhRrZmzNY/7cO8j1p9ZJ7t4Ou4BbxMXhl1WLKJzPM9YZVhcHwAvOEMRI3chMuiGe/DtV8z88nKdlc8i6Q8ngkeyqODIpgRSSW9RboDahrMajFh5U2cKKADkq+30i7ydAWOrC8WFmK97Otk5IDtFpgmoK0lO1a2DZjDBe8+Vvfkcj8PqHH5CHAakLrWzU0rijUk/veeSRuhZ+tbvmyhJBlWiKxkY7n3j8n//GdD7zv/7uF8RfC//t+99ztz5StFBq8VbThHVrrNlTqLezG1c9Tzv2Q+q7OAe71s3ldACSAnGIRDNGBiaFa43Uh80X2s5i9DWKibvYqWBipBZIAZcomasCVRt5DNy+fMazl7fEwVvhpkJt2oOORjeLrl2xEn3+b7YgwYkDKVdazaQ4PMnfSjOyha7+6fMWgVIvPNhGnWd++u477n56Qzbj2WEiWER0YX1ihUE1aJvv/ByQ9spyu99x2O3cDd0UaxFPvSg+r3k8G7VVzueF4+noB1N6VD103aSQQySlgSEPHYswrq/2PL+9IdQVKxuCX1qK/yVED2wKkd24I6bMPK+uUgmJUjdMjG1bfc4X2NRxlGT+nvtM6yCX6sXyMlC1IB18MfO2WJqbzHnaXkD7asu7V0fyzaT7HdW/am0/4nAua30KeXV+ZugSGW9RJISe0mzs0p5iG6dt4bwVzq2yipf1/QCHcd8PorAshdNxoRWeqGqmhpbLkO3GTVqar16KkeKeBeGXf/c7rj/9lPsfv+Pu9fec7t9RpXEslcUaa1mx6nPwL/Kea41kr/FELYyPD+jv/8IkkX/69Secbx/4lx9OPB5nViukZMRaaNtGLI047kgbrKJsWyMHP5YpiLu0q/ihVo8UD+IqkIR7/ohkxnjNMp+pzRE+QTpo5Myghr8YhL6E73aKEoTD9YHrZ9ekMaOhO/5Zz3sxIYQRzF/6i09v6CRwq2t/GRqmAxqarx06WFEtUS2yG3ErkOBPCjPqtnL/4R1vX7/CtpVDziRJ5JAJwONpZqlQ1dcIISR3LrQuyZKN3bhjl6LH7m0FCelJWiV4mFSt+mTaXKv1fXd2Eoa/eQzDwH4auDpckVNmXRbKtpCkUc4PZA1Ec4ZTktArmiApMnaijDXjcHMghsz7D3eUUt0QvRbP19RGM1/XAcRxR1MjjwNWPePGLWEMlcu2oh/KXol3045WG+fz9jMKK6GTT/xd9mp50QwrMXzsnrNd/gCHuC9Eb8yDh8gTxSZ248QwGMv5J6o2JBi5L3HtYuJkkW31vEM1cbV8dZSRpk+sGDN6YvYA+CJXZyPEiiyF89sP3D6/ZfryN5zujgzp5F4yPW/znJVX0ghx8QDWbeC6JbJEWjBUjLieOP/hK8L6Gf/06XP0+hesjwuv1o2yFNagWBKWu3tWArch8+zlc5alomVD65mXz6/9Zg+GBA8bUmt9peH6zasoDNHY7YU5ZOZZWTco3e7fF5qRaIFkgWT4Ir9zS8fDxP7ZFcN+Igyjk89b6lksUMpKXQuhGkQj5txj3xW6CqbZ2f8fMSqRZIUhZnTbUDshBFbzkNqQdiiBVgrLeuLt2594vPuANGVMiRSFnLLPjq0Ql8raNY+1L/JCfxGTCFNOvb3rFkDm+1ItTnRAxMnxTfxituT6xhj7uNQYorAfM8/2e8bkqWDZin9Ga+hqVBswCaQQyDmRg1/2Oblf7rZunph3f8dSCk1Xam3U6qhyw9jUq27Vvu4ImUIgKNBplqYe11HRnndzSYdzOxkzn/+JAStd29vbc+cJ+w7d82C7SPv/f5PyH8yc1L4Y73eYApLx+LuM2kDeXfGb3/0DVo/c/fENpcPIkUgKwUXZAsu80nR2B7bm2scg0eH65m0D+C7Um3Y36FX1Yf70cM+7H7/j7ZvX7Kc9Q85s55P7G9HhagFNgS3CcVDeyEpAEU3sSyQFIUVP5NZtYf36O9LDLf94e+B4+JTj6kCWugeHm0FXY4uVcnXN/WmBuoDOTLuRafAZaMiRwOAC3YvZMM6JHbrCIoZMwFtRiqLdXEo76OhAgbiELAq7aeD29hnTbuz85koYEkEi2hTt3q7aGjFlTCKU4i9BF3q3jjCrruz3GTPPszER0k5AEnWbn3SJIS3usL4sfPjpe96//o5tPpE6W6tZJEbB9kLbGlLPRKtsanSG4pOyJ0cYu3dr624ZEqDVwiUB3fri3wyGnDkc9szlzKZKiJnr/YFpTOyHyBAEbRsBX9e5Qkc7a6qg4pxlkUiIRhbcuKt4FGGphXlbqKastXVnfkfVqymlG5E57zl4UHR2b11VQ6IHdJVt7bxK6x2OV0a1xrKtPq50czbMu4Mg3WnDWgdn+zPK6d+dO/99D6HkQI/SNXUhgQyYJDYmLOwYp2sezjP3719xPK/Ma2WpjebIie8AW6NQ++JdvVr2aAMRj2vHtBOw/ZDaZTdI6JzTxsPbNxAipxBdeVArZm7u6xQpsBRYrPG2LGyysbaMsAc1DiY0gSKNEISpVOyHd9xW+N9/+/fEacf/+OEPPMyPSDD2cc/1kMkCD8czpaykoFiZubq6xvYDA0YK0pfVF46n+W5MobQVoXl7FwbyAGkt2Mk9Ty+3qZp5WxldobKfRna75B5Ga/GEq7UnPCu0Wt2is3pgbx4nJCYkZUJ3IP/+x9fcPn/Bs9uRRRoWN6yspG0hlpVht5Hq5vkdciLGAbHA8e4D3/7+X3n7/Z/RdSXIiKREsExUoUVlFxItREdom7oyRVyTq2Lu8N5pmn5goys5gIi/V9adApoKxEDKiZgio0R2+wO7cSRYo25rfwsd6Y69pTQLznlt3jk0lKab211KIFjqXuCNeV1Ze+RGUe37SHMbzRBRtF9mzuvdDZkcI1X1aesQYiYmdQJ73xFDFy2Y0urmnaV6Ze3cqw4A/ozUmrmbY7PWDc0/4nAauYcNuW9pjBOEEdXIsH/B3/7jP3I4THz1r/+Ddz+9Zi6FpfYsw4t0wi5kbk+R4rKQ5WfCNRfeIp06Rew/565mYzIHQYr7vCCtx6z6iyAhECQ560KdhraJ70IhMEVlQEiWfM84rwypsusWjcv794w3B/6P3/4TX9ze8N+//jdO84mgjaie4bGsK8dTYRwigcqbuzMCHJKwzwlwaNwLv1tdGoZFkJ4ylnMHOCSilrGjzz0B6yqZ4CnayZ9Nre6n6564HpHnK7VOLG/Vieq4t+wwTogGtPpOOjJQN0NbYJ4rkn39tJaVVKuHDQ8zMe+IyXM261L47k9/5ps//p719ICR/fmGDJZcjVMaUpunZ9lFIOCT1OpXJENPjlPzxW4z76bEcBK/CN1inGrOz21m7PcHQvL9azB1jx2xbvBtzn9VaE+zqvoB6xhI015dJdCkUps761XwvbkJc/HVSOjvtdml+NCpo94ehxjcKG3IhDRwPM/UUjvgZf3oaW9Qo3eCHaGVfpH4JaKO+Kp1mWBPz06BWT9SlVLV8xNjTOTkFVPNIw2++PXf8OXnL/n6mz/x/v2PnNcTj+vCsRZqVzFIdE2kv5D0/rq3M31X6JHrPLn1X/xyfAg1YvKWSsRomxOwra8yTOzJmwb8S3ctqEJKNAk8Am+p7MmEokxN2F2W+xOevK3Gw3ffcivwz7/5gvBl4f/99k88nB4dtWyNdXOPIzVjSHB/Wkkh0HYJmYLnMfZdl+HqFjOjYU+f/2fNpo8FQRsnW7ujuHrieY5YMM7zQmmVYUhOlNfWLTidGeO6TzfMUhPSIJRVSKOvrSQlPnnxEknZXQGDdVZKgeaIsdRC1kZqrsu1tvDhzQe+/fobTseZYF3BMzhhQciIueA8ipKigKYnEEjUK5EB0tyB3Y1J/fdp6p5TZhWViIZAMWFeG3d3j5zmzaMzpBIkkmPqVMLaCQuG5Ezs1EELxrhL7PPIVjbW7UwIvqYJ6mnWTSIaMlswTqW4LhNHgP1y8CRw60Ak4uPRWjYoxQ8SPt+GC9WxI/UXjEQv72q/mC40PbjM4Dz92qoQ8kij8eH+yHk+fdzhlJR5mvLFPIZAhXEYOH/4if/r1Ve8u/uJZTmxljNL3XDLY6+VtPrkbyPR492C62A9Bk6cJO35IxenALt8FlKMDLsdURrreX46sI5qGh2358L4B+uJ0cIY+yw6Zs5D5r41hkXQLWGrH86yNiaNDCET18K7r/7E+uZHhmcTL4Yr5nllaT6HTXki7P1LrW3jca6ksBFFMF25qZFxcDaJAwra18/0FOpIzs63LOKIoE0ZFObFP4sEYRgzUfpub1V3s+/PIoWESHIrzuY3uHZFyTKv5J2QnXVG3u3weHlDWnWgQr1t9qX6RohudB1iQ0JhOW18+6fvef/+iFgip5Fx3BPHa4g70ODmWUGJ0T2lJNAPqRMmivYXtrp9yjYIuxzdvrM1n1mjL/yXTflwOvPm7QPb5mZpIawMLSEaoCx+rIUnpYgWVy9Zfy2t/7um0MQNw6wpiejiboxNKjUKc9P+33Wnwu7C0Zq/RaHbgFZtnLf1Z78fwLbZLx1x6gT0eRm86kJfjzgFM1y4vZddp5g7ioSB89a4Px3Z6kZtHzlzNvzGaktxaLsZZoEPbx65f/sjjNBso9WZrS40AQvuahfEbTgkODUspsQw+HI9BEg5ksfkbZkqrXhcuapTujD3SJp2Htu2v3IHuDwOxJwguLIioOzyjkvc4zBEJAsxQDBBx+hpxjrxYs7EDxv2bqbNlVA2bCtIqISYaFJZ360sZSFfe+xhwdhPV5g1VjuzWiWkgfO6PLVaNg3EtqAtMw5dWdK/JAmClm6u1dcwObifa+qgiWrGREnJ3QNCZxBpfyFrraAbQSrj4I4BF8UE5jvB2oRSN1JR0tDzSOIKORA0ejwGm3Oas1dyVSOqAI1tXXm8P9M0MF09x2pzT6RxB2GkmLfaIUXGXUaXQOsa2FZ9vylmpBAdtW7GshSWjHcVMT558FZVzqXyzav3vL+fUTLDsHfztbpgu4SYy+jyODDmjK6lE0CEdduo1neOeEtcmrK2SlEnk6TORKpEijgPvBJ6JQtPBPcnvaq5o0GKDmBFcaWOdIqfq0c68ipdS9oql3Bf/74N0+oEB9Ue0tStUcwIMTEvKw/HBSddxr8qrf/Jw1k2916hudlx6IRosJ7EPFCtUrIQ88hVEkLMDEN2n6AMaYzkcSLGTApOJNOeHZGzc09NLtWlmyg/mSb33VW43FJdpoYbUIXgM14KkWCBQCByYXHUTqz26hKDwLMBvRaWMLO8KUxm2GpsrdBCoyShpREVJafEZ59+5msGrSyPD2zLwum4UkKgibCdfL4JqrBWti1xmCI50uMdhGSusBGspwv6dR9bJmlgkOZxhYYfompswaC5LaRq9IPXCmrKscyk6CLunLLvySRAX5Bva6VUpTVh2wrDbuxuC0IRo9VIGjIX+8sQU2dCKaUF9jfPGfeC6c/9mBH6rF8IEhj2E3Xbo2VGqqPTRT0FrXYry4KyVjidjSm58iMPHuwzN+G7Nx/46X7GmNxxsRpJDLHIujkMaQTC2jyzp1/cPr/C2il4Ltfyf163SsMZQSEnJEh3ge+a044mO2LRg5Qke/yhglvldEC1g26XkeSSjuadX/GuqHOgQ4jES0V260UHqrR58FTy9+VhnllmRUPAzBHcJ6XSf/ZwWr+FBBdDE/zmJBlhHLAU2aeBKScsB4bdwOFqYhjdCyZEnwsMf+nc6nFlPa+cy+YzZ/TkqXFIXB0ODMP4xJqoWqlVWZvTyUS6mrxujoIGCMGR1zGOXO0PDCnSaqGWlaoOG5kahcCiD8SixGDksXN0EZIINRq2S7DPWIaH8wfuz41jq11Zv7LSmAksm5t8bVtjkcLWYMtKqEqsgSLGGBO7PBBUaNWX4Gv1sKJWmgMaraO0zV39bG3UULEEYl6Bt1opxW9o65fVWiqCUylzdiBKQuzV0NOyERcOVzbfyaWIpQunV5GY+y784nuzI8YdKWW0iv+Z2mddl2O4QlEyab/HSoXNoC0dS6jeJrYGKh3AUzZpPJxWJHqanEjgWBsPp4LE0f2DgzCmxBADZV1Y1gXVRpSR3NFsF0b4kd3URdZVL8xjpxK67Uogh0RDmPKIiitMvLjQfYHcgVGh+8YOfTOQsW7H4ly10InqOJHBfFa/XITerXpRidL/i+AzNj7B+D6VxtIaW/HYwdb8XIVg/87R/A8OJ9C5g+pI4hAJYyCMkXS9Iw4DpEwYsvMRL3HzWb3NbZ5arOZ+K/O5sS2FdZlpa+mUri76jfCYH4jZF77OTVCH5gudFuXudI6EQRoCKsqQEyc2Hu/P7AYX20JPg1ZH8YI53zVbZNSBIUd2A6wxOGo7RFqGbWgc68yb4yOPtVJCoARhbY01BhYVpx2WyuECaElXVTRlXT2eYrOK10T/HJ7fCLGjdt6WdqDBHEArbUXXShii22d06hohIsR+8/vogAgWB2routL0MyQf0kBeRiXkAAAgAElEQVQTo9UO68dANiF2wUETQ6K79zdtbjOSwpOhFsQOXlUkuAu9/VWrHtKO6WBocf+hGhagIcWBkFjNxRFVPc4vBsJcOW6VtW2cLNAkd+KJdzqCUErxFQvGujo9TiYjxx6O1bwaeSqAOY3OjCpOITSMHBwAMhFOS2G/P/i6phWviNKZWR1xteYzY4xjb139FKcUaXV1kEmkI7SXzDen4AWJbsLWiwYCGgJVoTQ8J7Qj99rjALfWunN+HwPyx65S3LeDlBNpSOxuJmSAuEvoGD1BbH9gGEdK3Tg+PLKVjaDGum7+QKInac2z2+ZvW6VuFatKUPwG7i9nSoYFN3lul5IvdGBMuk+zeD4FngBWcTQ3xcAQ3QA4J9coShcWN+0tkbox8SDKJCO7FHhoymAwBlenn9aV47xw3Cpb89XAosqprMzdnzR3Cl4OMGlkkoFdiIxEokI0Iaq5hCoIgcAoqet5O6InHbVsBY+LdvOsUgpxNMI00CI9iiCiuHv9WjbyMDIMO8KQurlxc+9cQLpdn12AMqCpUBZlGHp4kEh/zr5qauLIakvNQbu+XM/j4P9eC6311k8NSV0vGz3Ve5FGRAmzEYoiFrvRlVFa4bRWNnHzr2EasTTw2WfP+eGH15StAP6SDmn0JO6UMG2UdWYthVJ7Je4uCG5O5mqookpLkeZxN37ZLCulvw/LujKOO3Ttulcuc6+zuELOtJZIaccwjKQoLPOZeZ173mvkSY9JJ4xof85dIWMIW23uDRwCTWMnN7ju1DogtG7FW/Xs7a92yuBHHU6GHbe3z7i6uSGPDpiUsNFwrWYpjfJ4Ym+eKiUiHO/PaGts29b3dN6rl1LcDKmnCmsTUEPXy+Cd2IL0D5d6xXB6lATrpApnbrh0y8nZSGJZfMaM0ghBGYfEMPgs4Wsae9qjBoE5Vo6mhNXYkdmP0fd+deNuPXqLZInjvLBs1V+Ay/5OjJ3Bi13is2nis6s9h5yfovuCGUOMiBRS7qC7SLfu8C8XpVPwIrVYp7N55SpaaavSbCPthifo3gId8s/k8ZphGCFoR6yjc+Uxd2b3f0QkuFQqOECxbb4wB3wFFekRjwMXP6ULuPGErPc5P4SOpvdWlwgp7DiEZwRrrKZPelTBx5kOh7Cashb1mAwZWYpxfv2eZauMeSCmQN7tvNNKif0wEBHmU2JZzqxbdbpj7CT0UrGe8WniI5dK6BMjLK2i5u6KS9kYxswuZzY6Ey309LYQiWnH1c0NIY5cXV2zGzNv3/zEqx+PrOtKDEpo3on9dfsq7kHjs3Dz98uiy+3yOBIjrOvsfNpeqc1+Ji54pxyfdqH/6cP52Cr1dHZ/IFGIbqfR8ATmECKkxNs3H8hDJiXP2ljPZ+bz7NYMdDOmWqkXir5Eb/WW1qMOcIsMPEXqMnNqrzA549U1BNDABcOXmDw4xpwudzENnpfWH2x2Rkm4MErU25NoaKuUpTJI40Biiom1Gffz5up5iSzFneADkBFGg6s88Nn1ns+u9ryYBqYgRDPUIim56DgGaG1GKO5uaQFp0pfjHV5vzbnF1U/sRWAdQ3SEfG3OSJqElho1JSxFxv2eIe+75xBYaM5M8gwyRF0LSgdLLhrNLofxUSL4M5Q4ImHENZaXhbnRWkG1c3xxho/vpQG7+Pt5YvMQAlng1FVIMVXiqsjiLWqN7jFVTKmlsjyeiXlgXZde143zurJVxw4OgwckBxGmaU8plbV68FRMGS2VrTY3RAv+uQLe4emFQohRrdFQEsoyn5l2O4YcnagfnIVlZOIwEmLkPM+8/fAB08K2LWylYGZsxWPoBQjWkO6xdPEdvmAyOQ9IGpGUOVw943Q6ITqT+/dZOmf30hrTDydPwNt/8nCelpXTsmIfDAkev0DyOctdyd1Vz8QDe0JwNozVjboVVPGZU41SnIJGf6miZAcoorg9fmf11bVyuaUuO6PSvI2y/nO1eZtwMVSPwfdsqo7aautu56rUWsnRneEuUXrWvNogcNoacz2yb0ZKvvOqTanimsCUjInATR54OR749Oaa293ATpSR1lHIiMpAiJFp2hGjsW3KthXvOJrQSt/Jmnb83qvKxczsUlkBovjaoTXzNdY0ksaMTBOp58bEEPyQxAjREKuY+OGUGH1kUCWn7A5yXXT45LIfotP9Yv7Z3Fr9MNKvxu431g+ndYkT9DaGEBIpRRcqmDHnI/PjRsiVEBZ0C2zbBttGVWNRDzEeQ3qy3qzVq2U1IzQHYVIeOB+PtM4V3h8ObM0oxU27JEqf9VxjKepAiyd9+QK0anXrU4OybYyaPRM0QBwH1qYc58J2Wqn6QEgDa1mRYFxd70k5sS7Q1toJJBFpFxT555FPxA248zQRhwMpuXfWum3u6ohSSgek7HIoHRO+HNaPOpxcAnN6v40KuihNjFmMFJUhVmLwCPlhHACh1Q7iqC+b1aBooPWFroSeFCz9BclOe7LWb2eCK9Wbv9CxQZVKSEKMPshL8l1UrEaObm0ZBG/PjK4RVbQ5t1dj7FWt6wFCpsRIDX5Dyrqw14xoQlplsMogxstpz+f7A893Ow55YoyBFMxBjAxpGt1ft9/YNknP7HBtYKpO49Lgyc6qQDNMXfYVQq9C5sZi2k2tI57PWZohmhjGA+z3yG7nHUFMHtYrHRWnOpGBvroJQjSIIXVNpF+uLhDoYmZPKOrghh/Q9lcXhEObrS/Vw9ML6UnP3ro2M+KQGW6uUAGNM3JaXd72WJk3ZVV6ipnPhLL1Z4472+WYoBbGYeSwv8XMOkLtfOwQE1GdbRUuByX03WJno4XmZmqIH1Ix4/H+njENBGBeVw7RO4TWAufjzLnHBk7T3i/YJpy2mfJhdQladHaUNndD8LzaCB3U69xFz+4MiZvDM5oax9ND59m6d5bRCJI95c6cJCMEz8T52LZ23I/O6jDrN3sEvQhhA1oqTZVhzA53b4UQE6bdzU07Z1LdvFiDo5SiPw/mbsdhPR9R8H6+w5L9h7da5tHplxwN8xyQFASNvtD3qDojpkBKPp+24Ae09aAiS8Ft91Miiw/s21rY1pUsHswqKuzjyCeHPV/c3PBsGEgIiT6H9fY87RJxykgOZGKH5z1oOEokEtzCordBar4vNomYOpJrAc+sFLfOtP5rpG/YxaAsG7k09nlEhsEpZV2KFwWskz4Un8Gtvzch9AN22bMiHRDynw8xO89X1AnZ/eA9sbTk5+cv4oE90nEALtOFOTYQcmLY77sqJHKqjfenI+etYRKJMZI7D/hCHxBcpaJFuNpPXO2v/aIVdafGrdM0cQaZV0nxrkG8AqWYcKO7nqwaArUUIr4nL6WSQnAwRhY82nD1/Wj/nKqVx4eFZdsguYAipuwukE07hbBwoSXFmEhJel6rQuOJPrgsK/N8dvue6vTFGMTXPNDzeVx+GeNI6vml/+nDef3slq2H2/h+rBGqsqwrtjU8Ks7JvDkl1rL16ufu7v4lx6cbLkbBrFDr1odjryCq3mp2Vu3PkHdnX1y8Pc08ZBWFoM5z1BAQ0b6Y91ZsyIkQfN8VxGgBd4PbKtumjCNkc1VYsEakoa2yngtxF/jkauTT/YHP9ldcp5+lXtLF5jEl9+GNBkMgjYkkI2XdWOeZogatEgiOguI8T/lrMKF72TRrXJR/iIcBIX4ozRydlqbM90emZzeM00TLsVMYL9OLEcTXRhbiE7GcGJ9MpZyMHftKJBIlcZk13dMHeqy2r7YC/v/SW2I1JUS4nHcHhbsmUbxy5J2vFYrCqd1zKoUmyemEMZIl0xTW7v8k0j9frbR54bRWjgi7ITEOmbLNbjzeD1FM0aV3OfpMqMpuHCiqrGUlRnfkjzES2mUa9OdZWqMtGxYzNy8+oRrM796gWllXb/9TDEga2O0mpt1Ea4Vti5zLRmk9YiN0IkInHZDc52iez6zL4l1GLy4uG0xPAUYivgcViYQwkOKOMX9kkNHzF59zOp19cO2JUyKR169f8bC8dbJ6M1SEOAwkcxmOr18yJK8oRWEt1W8aNVr1FjB01Yh1Q+qnD9Z/XNga0l/s2lyRoNV/vQNQThNstfUb1y+S3TAwRM/RKJvbctTqoFC1jcnUW9y6MqCkZOxS5Nk+88XzKz6drjkQSea3nCTPF1EMCw1/t33/6x6thVoKtWxIVY8ckvjzjR+iS6W6+l1FKW3FLGLm3jJdckKO0Wcb82oQDbZ14/Thnv3Njc/50edGr4bejYToqeD4CO4IcG8FDXrHQseVe/nrs5qI9HAqr4gx4M45wXeMwaQ7HogjxKId4eWJ3J+GgVaU+/PC6w/3tJA7p9f/Oyf8O+pcu1InihBUaevqcrqUQRtWjWkYIQTfa3aPKZXLvOuhtPtp4sPDETrjp2nvELrrQkxeBFQVBXa7kavra958+ECfqHG5YiOIG1NfHa7Z7Q6cz49gxhpcRIE4aUTNu6Pe6PXC4RzxFLxdjX2lpeKVOUbr3kN95AiRcdyR4kdWztNpZtsKIQq7aWKc9ozDxP3jibsPb7qaHSy4rWJsna9hQkqZGAdCGFibUU5n2uIBrb7wa0/+ttZRQH9zLpt2/+CXNsp9YqPPaL2q1Gq9akYuPnUO9iibNUiBWtznR81NmhTDqlIoDGMki5GDsk+Rm/2OF7cHXlxfM+LgEiZIzOx2O0iJao2iG4TmbY868mu1UpaVuvSYgm6reJFUmbjIu7UNC0LeZV83NW/PpbNNRJ2QTf+9XYYWSRKYjye208xuP6HRWTD0FZZ0n55I9PS9TlXTzkJR7a0h/Nw6O5fFK7dEYgQuzn/iM7ufanmy5bh8Md7UOMn/0vE8nhde//gTX3/9LffnFVLyFxgljxmx4E6LGEmEIQjT4DtiVBm7VMxVLs1NvIaRfR6Yt42lrKzr4jNmCOz3E/kizpCeLt1xjTGnixlIN/XWng9TeP36B07nGbPWee2ORgcJiAnzaUFJpDgwxIiW1bWzDhh4wYg/C8aNnnZg7rkcxZPOJAQPGInqER9PPZJ3IdM0kOL4cYfz+PjWGToWeDjeISGT847T6ZGY3NDLYiAMI6SBqhtmQoo4iTsEJAqH3YSG4O5m6+oRb7hd/9NS/vLVXw4m/QT22UEIpCTU2nqFkaflcO3VIfXoN1UoRXuCk9v7O4oXOk9Y/O+tcUhwlQLP9zte3Fxxtd8TYyLESEwj1i7lJCPJfXKkNZpWEk5N0eJ5ma0Ur07BSeKSM+Owo26Vps3Db7aNUhb/0sVj4iWqpyL3ytnUk7clhR4b5w4OtTYe7+4Zb2+9YkvELlaR/XCKSX8Z/ZKzfsAcjBMHN2rBtEInSaTk82ZIqXNHrc//Ptvp5TD2y1Okt8dPbTHc39/z56++5scfXjEvBWPoO8jqu86yEUOitkowI4XAkCLTODJG9xnC/CDFIOSUkJjIu4k0Tmz13r2aOuE9SmCZZ1ab3YakKYTovFoJ7IbRvWmbXwatri45M3c8DFbQbiptVlHzLqSWSsz+bqaUGHLi6uqaZTkxr126ZoL1lVWIIF3V4u7uP6/MLsne0leCKcVOtQQ1t0vxA/8Rh3Mt557t4Cx8JFLL2Zk/wfMlch4YpytizGztiBaPNjcxmvPu2I07rq+ugMDj45FlPaPNxWXWy6DIzwfur38ovhJQ8bTiFJI7pQGIW4Rot3I05OmQBgKlda6pQ6lcxvIkgTEYU4CrHLgdIy8OE88mR0Il+V9pN3lURMWBln4JBOkodHOCu6mh1dvSeJHG5cj+5oZPPvmc1z/+xOnxHrbZUVUKpW4oBYm1z3n47q5no6iCSI/F627iSWE5HWlbJR8iFjMWkj+I4ENAvFxz/Ua3vlJJIYA6k0WXlVYWRCsWI2lMBNmRonXFRQdLjE4puDCO/Blq93zyKudA15//8h1/+f4HyuYA3OXPLm1zkCxELLiZeLzQAFVp24buBm9Zu5A7DQP7/RW1KR/e37G0d9jT53NRxJgHUoxsy9Yveb9TItpTxN0hAukSOeuCjT7vBms/dwXmG4lxSIy7iduXL/n/OHuzH8uy7Lzvt8dzzr03bkTkUFlV3VU9ssWpm6IompANQ37QHywbfrBhvxiwYIAAAcm0QdFkN7u7psyszBjucM7Zsx/WvlFNA6KlrEahGllZkXc4e++11/q+32c3VwxuwKrK+aiZ5iMxB9Gb95L14lgB1QOY5J8gVU8uScQStUqocv+9um8Iy3xks/nAfM7DcelNistMSZQjCjFBowxGe4waaE0Ts5iBXbM4GjTJNozrzDDuud7tscZxPlnWdSElQRJWSgdAtZ42BUrpbqqWO4GqQrRzVsy2SmWs11zvtyxL5HheejjqpRci443c5O6mmuAOnWpMRrGxsLONK6+4mhzTOIq+0g4Y73t2Z3/on+4ZsnBayaJuqpWkLxW5XPaN7owiJR1EjMaNHjVXcjyjWkSp8qTASa0JhVAb8TDSTcW9I46W5GmtLV7DElbifGa6vekNDyOJaVpRLgP5y/7Wi5CnxkgqkCPkFZVWWpYoupY0Oq5U59CDRzkLxjyV412M+tSlagh6wzQRw68lc/dw5LyIkbtVeT2XlrMFnFZ4a2VkU6XbblVj8k6oA9aKtDNVjBvYbq85HI+kUok5Y5zHKMM4OK6vrmg0Us7C0G2mPxMN0+SkTCmjjZMpAIVcxSxtlRUYeqODzFU3DWgZ2VgZO13dPuPVy++RlplpMxFTYF2lrJaPuDtQGt1OLtrvqprMma2TjUApjO65ndr0966gFUpayfED55xrzP/4FxT9AewwJS1Zjykmcr/4lgso+KLDBFIIaB0YpoH9bo+3nnk5E8LCGhZCFDraxTMnOxD9kZI04idCghKxAEZzdb1jt92yrvHpqgqdcqAqqB7D1wqmiUpyNIqtVexcY+dhN1i204D3HmUtZnDd+Q9NVWl4tUprmtKkROaSCVJS7zIbKePdZXHKCRWWA19/uVJzRqsANqHIGK0YBo9RlvloCHOkpr6o+p0LZHemK2OMc2htWGJgOc/su6BfKojvvKMXg6/8MItSIk5oucjcsCZoGdWyJLtVZDyWM5EFtMIOrieXiUjhEkkgG478rY1iToEQz5yWhXWOlD46kE5lwzkNTTrmzlgp9Z7eY8NbjfdOpgFZdMvDaJk2A8pAKqnnxoiiyo8jL5/fcnOzZ54XDqdj94nmbovs9+vOkxUMSXv6Ga2PupSShoxBLGW6n4KlJpblSG7w0ac/4aPnL3jz1VcspzMU8HakZpFWXjZAYwymVdHtKkGSGucZxpGUhItbVKW2jFFanFJaeMgazTqHD1ucv9uN+u6oLoiTomCdQ3nDuq69I5b7QdM/7MsLboqmAtpEnJ9EFyprnZQTEEVp0dvygNyfVO+CIc+pSG8rzimGaeL25koYMin+TuEF9M5Zu5xeSCfXa5isZmcbOwtbq9l4y+g91g0YP2GHEeOMDLSb8INqQ8JPjZd5nnWkdaZmOZWdNXgniEwpDSuoSi6RmgLUzDDI6Ecbx+A91g5IuKPwcGLOXLamJrsgDSHoDaNj2GxZw4LRjrAsUiohZedF7C4jn37S97uMVqaniRVoGZrExKlW0J0oUGN+2vwqjbossjcYURspa8FaqrYkbTitgVgax1PkcDhzmmfm0yKzOy1oEaUk+auWJAA0BAjyBHUz6smRIcN5mV+OowFdOS1Hlhj6iSddZWdFUHH//k7yTIIsEqO+28QvaiapZDrtu9FTv3Kfq4uAw2JkwynyfVXVUNZgdeH+26/4+1o4Hh756otfEtZD/zmKkvuz1u/2zlp5PbVKV97LBi8A8Iw2DXtJRahZbHjKiV74n/jrn8aUoJ4qGpk3Sv0M4gDIqWC0iNxbE9+ju0SFl0ruM1JtpI0fc5L7nNL97z7kzak3Qy53zibsW68FP1Fk5mZMw5rCOFqudhPeSQez5iRNEC7jFyXteICaMa3idZNMDQ2T1my0YmMtkx8YhgHjHMZ7nB/7RiO7fAP8MDKNGyK9O62kVa+0RfWYAOOaNCNMpdaAQRZpLQnlKtvdiB9GEZsjapS8NrTTApLqrQNZUdIFfborewnHrYuURDmkp7GL6k2wS/MB/nGZpJTuM2UFJKSbnmWDrWJEzyH3XoEI7HPNff7a+jhAUbQhKcO5wtuHR05rlGtMkvm3sxZv5I5cL828VnuThKeGnL7oUbX83RVt0oTTch+riNxzjUHu+Z0O4awlxch8PkuVpeV0HJ0lKAk8Tn2m2GolhgBKMwwehUSAtNYEj6o0qqu3lnWmf5o4Y3G6cPftr/nqN/+PvAeVqC11A7qGPmG4NDPliiLPi3EicEk5Cbq0ZlnE6uIgkhl/rU1GUv+4xfKfvzjbpbz6Tm7Zoxf6iVZll0oxkWskZxm2h1xoJdE6ZElb8WgWVSi64o1FVxEubAZHSzLobR2Fj2poB1fPtqAbx0e5H1nd8M5ytRuYJk/JiXWRFGtnDfR2iFGXqDVJPzY0Bm0YukjbKY0zCu80zim0KaAjyiaUkYVuLlVDrt2RoalkMYcbixsGVL9PadXAZMzogEzLCVXAGEmO9pNns/PYobvkY3sa+QjCIveTSr58iY6TeSWtUUgyvum7Reu8VvidPncvbS8lrb4IY3/n22+19I6uWMRaaZLpmIW7U5oIxtcUSUVO8t7YphjLXBr3a+BhWQm5gpJxglZCWldaZo25yUmYLxHXWr6T2oTVWjpgLJaMt+bJgSTYz8oyB5Y1igDmIkZpjcEPeGcIZqU1RcqZnDKDdbQGRXd2UwO0ZGhaZ9lOW0peKR0fkkLEWoezCqc0pRhSznzny6nUPBPDLDpyh1RCtS+Z/r008TJ2HEl7mimnFCDnJzAZgLJO+MJtEVFCTvjRPFWK/8WLs48xO12sf89PzQH5hVoLOXccRG0ECrmsKCUPpjZdHG8gkdE1dHuZ3EsGa6iDpZBlnKAayik2VyO3H19jvGYcTsRlRbfKZhA0v1aNnDJaw2YaQdneoDIdESLChAi0nPFKZoVOK9FImop1FW2idN8MQnlQsunoqqFKKljJgax1DzIBFIzjSL6UawqUSZjBU1uklZWmBQ/prGWYPHawNMp3a6VnZsQUSDn1BkM/UZDIwIq03QuSvCY2OMFMtnop+2VhSuPRgMry3/c5Z7skohVJe34SO1wEJLk+lcExZdaSmUMg1CKISmMpQMyFU87MsQj7xhgJRNKKQQuFXmapPHXe6+XEVhfGjjwLVAmNKb13rZU8P3IdkhCkmDMojTXCptVa5INrkEi/WgshJWpraONwpuuxlebqek+Y56cx1KWX4b0nxUzJWYBpRu6A0+BlRqmNbIyNbkuU/+4y7bj805h+evZFIehLuT7RpAFq2oWQKBCxYdrLFUQfKXUll4Su5h+Z5P+LFqfc2y/H5mUnv6zSrg4pFVRHSBTZnbGCxKz930voiwadSbmrDHMj5pVaE8YoJufROqEG8FcDNy+v2d9uQTV8U9QwUlKQuIImTSetGpvN2E3Dllp1x0ZIuWy0Qlt5/YMCrxpWN1mcFwVMLRiT8VPBTgljBciVlkatMkf01mNN7kWjaLe87569dcF6j99ds9l5aDOLTaR1ZbzArazvC6T1aHJIVbGWypLLE6qRPgOTGUaRu7oeUNpjtATxZHOU9DStnhaCvng0Ly4J1XeQy32biqpJgnZypSVFjZCDOGdyysRUiFSSgTw6UhIXUK2KJUps/ForCRnD1z6G0OKJI+coCpheJalWRUiEzJWtlo5zLlIuO+OoWrrN2hhiisQSxGyuNE58gp0DlHFOU2om5UxIPYtEKUbvJQ4ETTzN1Na42l5JSWstwzhKmZ5k0xK1VEMCcA3eGLGiZdF7OyOxidUMEvykSnc9gUOoCVpgxNBkOlFoTxgZ1Z8p20nvKIuyowhyMGgzUlOkKRmnKfOB8j36LNNog0asWvlpscpfQrpuvRvWL+R9YaC7M70kqgWDg2pIaUVV3TGECVTFOsV0tWHYj+hR4SdLa1kWIYJjbEZYPDJqkFLWe0UMCyUnWr206WW215KUcQ4RyBvVsDScFm6Q7i19o8B7jRnBjxqDZ/WV032kUdG2ok1BI3JApZCGEw3jLHbw+M2WaTeQYsRli/cbBieZm62IiFs21v6ltsaaEql0ZKK67MPfFSZNAUZi+qZxxxoCqRaG3RblnHRhKVxu2k92pv496FZRtQgaMwRKCJQlktdMmjNhDYS0kkoBbdHbCWUV67pwqFGYN0lOVAEzt05X7F3kLjKtrfZTU/XGlHRjFdKVHIaBZze3xBh4PDw+lYLeOCmLO/8olUzRkojudB8RqU4ZpBFSFHmec+jW8aENUumRiFXUX/PhREkSfotSHXcj37v8pEbNidwKznuc9gzWkHLBNqBWjHU466govHVyDaDTIVUX37fvsmkvm9VTo6jLPpuxjNst2k1sttfEAvPXZ1ByHzX8p5tC/+TifPZsxFqPcwOtGubzyuk0E0PuYKSuIhH911MropZCVhXbcyeEVJZJi3TxjJIkYqUVVUvTxA2a65d7NtdbTuuJdT6xnPpCzLm70J2gI7KUZcaIUkPmY9DqdzM5CfKtshit7JimSXamrn3OxYX4J5uI3GthnDx+HKhtZn6IKKP6bC+hqgzUc4FhHNkNV5RaGHxjXR4I66PkhEwT3rY+z8rSg7lwUXMhh0xY1/45ftdgaFXGNqpBszI+aa0wn4+czydKiQzbFyIl7IWVpvb3LUog3ctZVSstJMq6kE5n0mkmnBfiWTJR1xBJNOzgpRusKu/OB94dj5xDplTFZS+WlHLFJVvSdtF764IQOZU6+VwbGtJZ3V9fSWOw3zmttpSW5Dkw4rmF3FUzXUygpalk+jyxIJttCFFYVcYCkiaWSya1gBx8stDn0xmlRCJ4Op2wxrDZbmkpUVIn5/XnoMREaFC7kggKRjVCCB2Po0XGN3pUnSnLLBDmcoQAACAASURBVK+/9g2xXF5f31qNNLlSEfi5REx4xC2ksUYWfa5BnFU5ftji/OGPnkN/cbUYct4xz5HT8czpuJBSIsXSa3FFSfVJeFxLI1FAK1zVpCg5iA3JRqxD7swgSSWbri3D3hDKiZjOpCCUOqpQytBibyqJHh94aTbIqEYrI4nEhf6wywNvlO6eua7C6Z+hat1R0Tt7KSaZR3mDHyfGwbJ/tieFR3LucQAkwXEajXVKaOPbgWVdsDqzrjPONry3jBuLolBSpJUq7oXSyElxXo/M51UURdrQs8nkc3s6BeVPNChyDMQ4E9YZpSt2GiiaJ77qpS301FBrDVUSLSbi6cR6eOT0eE88PRJX+exCziy1Uoxl8o6HFHh7fOT9PDPnQupWMwNPJvWLIkYjTTDdgVi1iRiBHrdglYxeSs0oLFCY50Dp91iKQNkaYl7INQueVC6pQOvwarlHpiLpcLXJe5Y5ba80aus5mVpmjlrJaKRJ4G7OXeyvJSNFHlXdRy7dDtZnoE9JYjlRYsMpIzH3TTP6DXUU4kRIC6VkdKf9XQ6mpw6uNlTVyHLwSxaqNpSC/KxhJNeE05D+v1qC/9zFOYyQc0JpmTH5wTBtRq6uLHHdU0qVC3aR1vB8mjkcZ5Y1i+G6NhGeawmCTVnyCbWRlr7OBaUCV9cDV88mmk4cT4+UJIG0uolf71LapNxYzpHzueskVWMYHNvdlpwaKZ27VExOReHFXEzEQmwT8LW4BeSu0INoa6UUWOeVxa9UqwmLhOOMGwmN1S2gtWIaR0qD1iIhnsgpEJaM1gU/WGH2WoEr07Q0zIwnO0tKC6klUlnljtYf7EtLoXX5l+rd11qzSAVzJuaAHT3TdivkAuia1IvHUu6qJSfKOpOOR+bDA/PxyDKfUTmhNUzXE5N12Fi4Owe+XRYOy8JhDcxF4MtwGQ+0vl3QRwIy6xN0h2yApfeYrJLvrJSMcUYaMDkzThtZ1MUQaoAG3nkKhWEcOfS74kU/sYYV1+9raIOyXv6cCiFLV19fBBd0j6RWOFSntMtrbSVjvcj85jWQY5RrmrG0LBWLjHX6Pb0/JzVFrLJy585ItEatDOOAcRobDMt57i4T/TRTVr1DXqrofLUWLIpzI7fPnuHchqYauZ2AgcFq5vMHihDi2rm1pvaHXsy4gzdMTjSdFyO0UopSrlhD5HhaeXg4cDzNpJSJsfWxSw8mbZqoItZXdteeq9uJQmKZ41NjoVWwynULmaZWzbpk1iC2s9Ya0+jZ7Ca8c8xlpaqEcbDbbnHW8fhwkJ2QJqhIBQlFNlBMT8VSDdtPhdFJHkw4B9aWiEFBG7HjBFWUIFYrNleTyAPpRLdSoUacNzhr0FpocQ1LwQi+crjCjjv0EFkjqDlDmqXaiJkSa7e/9c5rv7vUkshxpWbBLF5fX+HH8Wm61UrtC7pSaybHyHx8ZD09EOcjOQVJ7toOaEZhNBnpkmJF3fXucGJJhYhY2RRyPxe7Wr8mdImgfupF9U5yFeSj0Y7SKxXvXc8yqeSSQA3onkwdQkJhsMay3WxYY3xCqCqlhRZfK84J/DoVqKURc2HNEvzUlEQGiuE+o4yVzqxBsKpZbD7FKJHBWit3706PFuSoloV/+f+KJ1G9VhVdZQinaJQsQVbWGZzzonNWnvPp1H+/XC0UsjBblZIdM6AaXN88Y9pMtKr45JNPyOVELmIN3E03H7Y457O8eWsMWjeUyuKj7OXDZXdHieLeecO4GdjfDrz4aMP5HDjNkWXJrGsiBmEL5SpQ5v3tlqtbh9KZ+Ryf5ufi1ZQk5VZBYVHaUMrK+bxQW2W7HdjuJoZRxjKViNKFaRy4vt3inCWXhTDLWKcByjuGzYh1UAgURFCvtJY/zw0YN6KwggcB/DjhxoEcgWpAN3KJT26MZzfXhEWTotiALpiQnKV7l6pG+T3OPeN8htI0RW9QdkKpSknhCYSmtGBFausODWpvbpWen+nY7W9Q1vQuee00vMYSVpb5yHI8kMJZNgun2Gw2xFo5ns+EJTBtPLvNhvN54fXDiW8fA8c10XRXrKhObmgS62d1t8XxnSqmtSbNqi6S19ZgjOvaV8/gHaGsolOtctKO40jJ8j5LFT5SLdLtbMhMtFQJvB29xhlIKbGEwpIhPnFgZVuKJXfNd6fl9xFTyUniIXQ/iYG0rmzHQe6yfeSjlcb5SSR+tWCsKKxC6hkptaKVZnCWWKTLaK3DuQHvJ5wZaQVCWmk1i4/56VahyKUxGsm2ubu/Z54D0/YKmx0pRrTWeO1R7QNHKfNpFdSCkpzDhpDZjEEaM509o7Wg5b03bLYju+2GzejZbkduS2FZE2uUdn0IsQ+BFd5DLYFYIrV1qRji9LBGWu+tB70YY3DeYZxi8o6rK8+waWgvxIFhq1DGs/Ee5yKtBq73jrpxtCx5kre7LTfbCdcKdT5CXfss14EeqGZCa4+xA7Y6UmuMu1vRtZoGaUCrmdjuqaXh9IhSE4qE85WGIRVFw5FqIV2sSMpwPY7cH7/l+PBAC4maDLQBa50waFoni1NJOVCUKEtUrNLYaYphs8PvrijaCDt1zahcmM+PHI/vWOYDrRT211u22z2b3YjxhqIKz/Ke0+nEu/cPfPXugXePC+8PkTlB7pGLQncvXCIIymVC3umFRmv07yxSkbFdQpYaNzdifvbWUOvE+/fv8c7zyccvmZeVrCub3cDjw0yIiZQzTfeeRptRSrEZB5yGnIKMeTJCzO8Pvm7qCQfTdOvzUyHh55y4UBNqszLaqI1SI0uMSJyIOGNQlrlVfHUMbkDZQiRIx19rtFcY7Risoy4LisY4XaPslnF3w7SLVBT6/A6TNYRCiRVrtLCaut50GD0xrZQUGTaex9OBVjJbt8Flw8Ph8GGL8zSfoUkwUW082WAAWpFocNUd+7UkjK74wbDZDFw/23F9u8eOjmHSQhTPFe0tm62hpETKK0LRsxi+gzUp4566j6rzYmop+Mlx8+Ja/KKuYIY+AlEWazbkyQs6Mc3oppiGCT160ipR60opjqcjhMBQE9Y3atW90cCTQ8HYEe+v8LuR7bQX4XSWuZixmpojyipqWVjWB3HqFEi5orBYM1EpLKuU9efjW47vTyzHQF4DeTnT1kRNFbTrelgopYv/tRFfZRVBda6AcWz31xjnKb3LV5bI+eGB0+E963rPMBqu9iPTBvwGdtcD2mu0lZNJO8mmfHv3lnd3J5ZiqLjuAJLuhSxDab48dTVbjy/UPQio+0Rz17DSKrc31/zzP/kFOWfevn5NCLLIt9st37z+mjVEXjx/SalCwo8p4Qcnyd1z6PJLRY1RwqK6Eqv1XNJyOa1l/+r38+7e0dKFL0lkiVKqNpwfCDFBq1QtIoTSNFZZjHZkMrpKI6kZRUlrN2uLuEQ2JtM/c83V9UuuX3zOcUnk5Ygb92zIXFnFuhZSEDOBdZqUIyElptHz7PYlD/ePLGHhfJ7RBVzR2Ab5tHzY4oxdPWKNRLilVCWzsZvkS+kOci1G31zF+bDmhVM8cVxP7G93GG+lqUEDXSglk1vCOMGZCKBKo7plzBpLyXSciaKqSkZ0uePW4Z0WaZwVGkGOSRayal1WKFED3nla0cSqOC8zpxixLTPSaFbhm/Bqcq1QMqpEmp7Y7LZ8+umPCGtjnZOMCbTG2ow2CbO5whtFWiLaVKyF5SFyXjKowovdC7RR3N2fOB1nypyJ5UxcKy1X8rpKRLxAaeQ91tIVLkpUOalQUiWlSs7gdxu2Nzc0rUnLwvl04vxw4HD/nlpmdlcD46TRJtC6FE67inXmaUheq1ABc+9C1qaesj5Laz0i3Uh6Vjc/03rjqYml72m2WWofzaoOP1Nsh5Ht8x3hPPPVcmKYJtw0kM4La4rsb695PB8oqhJrYuNGFLDMZ2pMWCuZpRIgbAkl9meqz3+RzVr3Dr14XoWHlHKh5kTNEaM1g4fRjKAVrRkp1bUl1ALWM26vcTWhUpRRmBvZecvxdJAqEEPTnv3NR7zYbvni67dU5Xj+6jNejbe8/eo33L17hzI7CVTWlXOdqdXw/MWe+XzgcDiiqVxtJ0qFh9OZ5TQzNc04WVpKTB8650zJPCFCnPPEdaY204W7K6jKMCh2uxHnFDkJ5cAOFjc43OioqlJy6BpSEcOrS+fLdGKAcVhE2VNKwVqPwhLWQkrSUlcW6Eli1oqUq7VGipkUElbZJ9maMUYCkTCdWVRZl0hLicHIPSrmRrAQSsMVGafYVok1ckozr9+/RqsJpzzKKuHB2o3YvfyANxryzPk8Qw2UZSUliHElhMISC4fTQkkFVy1pScRzfGr915ol30MVnBv6gdBPj9ahWn1hVuMY99co55nXhfPxwOnhgcPjA7olnj+/YrNzojqpEWMM47SREKgcOJxOpFxADTwcZg6ngHIDRl+qBjG9S5Cx3Cml8SOnyGVEIyzgItplY+S11iabYGv8X3/91ygU53lGjw7nB47H01Op+frNa07nI96LSF4rxelwIMyrQNua0PKowpo9r4GQClVZtLFP/B7Re6vv0C5Nice2VEbr2GxGpnGU2ArlKEXUODkWjJ3Qw47p+iXh9EAMgY2zbPfXjNsr1i9+Q4kzxigSjqJGzHCDGVZKs1ztn7N/8TlxzVw/+4bT4Svc5Gkxo6PGENhsrshhQdXK+fDIb3/za7b757RaeHZ9zRWGMs/UNbCfPlAhlILMGCUjE841COpRadyQubme+OST51zfbFBKlEDKSFJwSIV5jeJE6WqSHMV87YxC69qvMgprNaoW6doZgx8sSjmkEXpB/MsmQX+MUTLHor+eWkD1L85YgzGWnEWLOa+BNSbJL0F1FIZmQDHnBiGziSIAd03UIw8Pd5K3aSeuNls2w4g1G6xxaEEjYKwsqpwLWot3spTE4d0bUgKtHaZZ8lIIp0BNItRuVXJeilIoqwhByl8FjKPv81g5zYrWoj66uiKVzGk+cnj/juPjA0ZVXrzYs7/ZMG4Mm90tGIMfBtBi0qq10pqlNUWIlXd3Rw7nwJo731aJkOASUlQ6O1gqBfvkgdSX+WNtaCvfg0JJJo2WxtO8rhwPR7TR3G5fUKl88smn0Br/8A+/IufIzX5PSlHmtzmTU88hbcIwzi2yrIGQC7lBreLaAemom04u0JquJYaSAkbB4B2b0TENA6U06W0YiZqo2uDsiPY71HCF9jtSmclomhWJ3ec//kNC1nz5q78hVNB+wg7X+M0NV9dJaB8hcHg88NlnP8SQ+eXfa1589Aw3TJzPB+7e/pZvvvkHTvfvO3qmkIfCMp8ZneV63LDJcHh3Dynx6tNPPmxxrvOKsZmPX408fy5t4ZIVm2lgf3vL9c3EtDH4IcnirIXSkrgbKNQ5kmJ5mle1orDK4Y2AncT3KO1u9MWRLmiLnDOpNlIva2gIb4cL3SD32ZvcGeQLBmedOFSagITnNbHEKCJsbbqqpg/mcqNFhYoVG6tkQZ4ip8c73r49cp4zSjn2mx2/99Of8Pnn3++k9Y6crAZjJrIKIuOqFmcbTs3EEHqn29KSw2nAFZxOhLx2ZUyl1UTOVSSPRkpKow2lFWLJYAd2Nze40bOElcPDHY+P96ia2N/s2F4NDKPCT4ZCIiyBlDPvHx9YQ+DmxXNevnzBvEYObw4sKbOmSsH1uZycihcrF4jIwPT7pZzudIVPxaiL/7LfT7Um5MS39+/x1lH6hbDmyul8osTE97/3Pf7Vf/UXpBT57Re/JS8BY+XRqyWgtMPbidwasVZCk9K7orCDR6OfNglR9DUu+ekahXdGeLetst9sGIaRu8cDIQS0SWgU1nicGzHDBr97xvMX38eakW+/PnEMR8wc+erNA8P2GeP2hrYsVD1RzIZqRp6//ITXv/2Sf/9Xf8kPfvpzxs9/yHme2dw8p45bst/w+fc+Y39zRa2B0SuW4wFnPNo4OYhypsXI1bQlWYUbRrbTf3oJ/v+4UhL7neOTj7e8erXl+9//QdeGaooyoDPGJPzQg3CVIZVE6C6L+dw4ZVF+aAM01Tt7AmCyVvSUUq40rBP5Vc4yc7roFelSu9Y6gLkPoUXyJfpGq8WxYZBfa0VI4daBcVJGXixk9eI8yCIaVyFj1kSzkXTKvHt/5Hiq0nVNK9/WB07Hle1+4uNXN5Qqyc2iQEmySxePsxarFFEpBmVYYySUQlWeVkUM7oeBZmBNQcoy1dAVccUomWsuKZBTpNGYdlumqw1rDDw+3nM6PJJC4PpqYrMb5P15RdON4+lAwxJzoJLxo8a5RkhnDscTX3zxhoeHE7kampYAV91ab0aVJ6HBJS6g9nL/4r1UVSIgaI3ddichtiF0f6sWN0sMqKYo336LHzw317cMw8A4Tjw+PFBiYfITWolXt7VF1FBaTuBcNVUZMBqDyN2ojdpEGkE34QsETBLTrbbQx2/jONJ699YYSypFFq6WK5FWhuuraz7//Idst1cYNfMPv/xrziGRq2az27N/9pLjmzdoP7G7umW7u+Vw95bT4UDJcHr8lrC+4NPvfcpm3rHUit1cUZThi6/f8P7uAVcb2+1OrmehSFZZLXz/k4+YYmF2lpuba0r9QIXQy1vNj358zecfT0ybQtONlAtryiJp0+BHyzh5rDXUIrpRVQ05ZVIUR4KzBj868XNUoRSsMTGYQWZrWoTyRiuxdYHg9RNiLcrSgKq1yV5ZK71VjOqSsUsmZ1WQckZ0Nx4Q8XvtbhCtNEY3EqKrVRUIkI8Js1ZOa2YNFaUmUhDRN1QeTgfOy5lSb2ReVzKlBFKtxCpMXYXGNynJjVWScrWuaKIArLTqw/8Brz2yKhNVnUkhSfpyNVANNWms9ex2W+n8hpV5XgR83RTj4ASOPTXsIJtcLo2b51egYGt2nZzYOM0z797di7IKg3WeUOgzZFEDKRmoyp0TLt2XPjaR+6bpxm1oaOfwdiRGEafUCjEK7bA0eU6efXTDj/7Z73P77Bn/6//0vzA/HNhPO7aTZ10jBU3MmopEZTjvyCUK2dB2eHONtCoUBf3U/3DsNluM1sRw2cgU+5tbSi08PB4oreG9w2Qr7G80ozUoA++//RLtLc9efcbP/vjPef3+HeflxN3DNzT1nO/94Gf83+/PaDuizECK8txpB/ubiev9yJvXvyKWwvb6lt//g5+Tquarv/+PLPf3LMcD1Sbs4Ei5YIxnd7Xn5mbPn//Zn/G3/+4vuR52DG7H4UMX55/9+WfstpZpU3Gukbp51GrwPe281cQ8p+5LUywhi5JnybQqdD7vR5yXDE1aI8Ys7pLSME52NeutoCQKrCFKR7hcohREMdSaEjRI7UnQ3RlQc+kG5K5RVQpjHNREiFGgx0Z3HEV34KMoTRFrg6QIcyXVSEoamuvqnMsnUdhfTYxbT1MCIK45ipm21r7pSLJzqZoYC0pZNpsJxcD9u/cMvTmmtdDatTXdEHBpcFRBa7Y+16x0/6Yirivz+cRyPpFjYDt5nDdoq7He4AbHYCy76z3DbiNVhVJ8/c03zPOCUpZp2PDRRxvOUXMIlbR244K0POU9PZmjBc95CYmqrUk2qpLPLdfC6XBkuzNY6/jk41d88/obEUZwKXYa++s9f/THf8QXX3xFCIGcCylHHk9B3Didk6SVFnNAFXvWbjtJqa06eaPIiKrVinMO6yyaJjrhIlVMRXE4HvDDKK8Bsd5bK6HBmkJJAbCowTKfjmxvIt5v+NGP/oj/8B/+kq+++oZ5nhl//FOuP/oUv7kl24Fv7o60XPDb5/hpx/F0z9u3bwgp8sMf/x7vv/kt0+YaVQLOKDabUeIgjKalQq6ZZiy/+MU/R1U43B0Z7MDot1T9oa6UlwprEtqIomHooOQ1ZBpSdrUqAt+UtTzssXE8R+ZzpFaNt5bBKpwV46xSGtvviBpwSnYzQCxpoXBeMmGtxFCoVRagswOqCuGvNv079AVJmdao7saXNnxtipQCuee50L2DKC3NktaIRVGUJoKUbM3RikE3sTJRZTTy7PnEj3/6MZudI7cg8rcmaM9ae5RfyZyXgGUkl4ZVDqUGlKrEHCkhoa2mpCokOTdgjCVEWJdMDpUcE7oVtLKSY6JV31wqKSzkKDwiP4wYq3o0gPghh2nEDSNmdBgrGs/ddsObb94wHwPKjGBuyDmKSZ1uQlYiflDtImnvN8+LqooOjc6VqhvGKLyxlAan00m6wrVRuvmhIc02bSzffPOa//7f/ltJmMsR6yRwN1ShIIjLTGOM6ioih3YDpfa4hqYk90QbRu/ZbTcA3D0+cDoeZcSjhVBYa+N4OuFCeHofrRQm56XSKt0RpQ3j1Q1FOZZ1ZV4DH338Q37eDP/xb/495+XM3eMdf/pf/3ds9q94PAXe3z3SSsa1n+B1gHKi1pWWFub715QXz/jm9Zd8++YNg9PsNhtSkGzaVMTm9pOf/T7/7X/zr/nf/4f/kflwZrO9RWvXkbEfsDg3OxFSC33bymnUKt7IQmjmYuc1nbpYCGtinZM0f7TGWUEDGvG8g7IYLZrUmpPsZBkiotE9nxbmY6AkRB3UNGjxZ4xWHoScEuvaTbddNmUQ0p4RPlTXdXbqGv3OpDrIunRKvLFIMp/uWEollrAuRlC6cHO74+e/+IzPP79Fq0zMQvXGSNldynfM2pIqa1yxZkdpXjrOrIi1o88L7XfYyTVmlrWglMfoTKrhSfdpRo8ePWhFCokSIy0nrFEMg5UH3ZoL0KBDoUVFpbWMpG5ub/jss884PJw4HANf3x9Y1zOqWawyEt1Or0poTyUr0DczZAFXOgW+K9OVfLexSMTi4XCSMZfutActCV25JH77m18L/V8rlBV1vNMOZQ3HxxMaxTQO3N5cs9mOHNczKcv4Zl0CcVnZ+IHb/TWD87y9e8f5PIum2WhRNYHwfRTEGMXLoxQtFcapf/zaYK1h3O7Y7m8JDGw2O3ZXt5QCf/BHf8bxdOTrr/6W87LweI7oqfLpZz/g8x8NvHvzluX4wK/+9q843f2aHE5QEt9+/WuO79+Sc2OcNmy2A6oVUs4UrVHW8fn3fsi//jf/Bmsc7756iyoKP0wobTuX6AMWp7Ma1RxULXI6pfFWo9V3JUkqldjn1VYpdEs4ZfGDCKC9dzK41j0KMCdyFy/kIjHq0p3xxNxY1sq8yr3VK4tzDmW0QLFSw2pH1eBcA6V7Oz4L7Y8O5ir54mtCnPZ03+GFhN7j6IqkPmt1gQKLFM10L6LVlhfPb9nvRkqeSVHjnKcgw/qGOCdaKygE6aGdB7XF6JF1icwx4YYBN1gZV1hDSEWqjFypTWGVpXahfFVKmKd+oFkrdLgm1MNcilwN5PKF0ubJWvZd3ITGWsOyrmhrePXpK+lU+4FgA6/fvaOqkYrneFqF+tfovOB+Viq5QpS+cFVXd6uO7lA9TKVUcX3UilAOancE9cZvrZJC7q0owrTR6I7gmcMCNTFOEy+eXeOcopXIbhjIzrGGyFzmzgPSLCFy93Dg/vGRWKpk16hOx++4JKvFNaWqIgURI6Sc+8Yo3eWMQtmR73/vJ8w58fzlK759d0+s8L3Pf8y3335FyZJgHZYzr7/8NeO04fPvf8Z++yM2ZuWv/o+vOJ8XSjrTckIDm2nLZnzFOgfCOsvs3Tmub17w8z/9U376ez/j/OuviA8nroYJ6wfMNAr+5kMW52XdDNZjMPIAd9N+wfU7qHQ+ay60LDhEe9UJewaZUSm4WPUu8XYXgza9AZFTZQmFNVRKNYxmZDtOUBuxFVKWbpdVUnJ673GDxxhFzYXT45GwRHJOT42Mi9XNWgdNi3CB1lPxJP9D656UVorkXHQBhFGmE79HllPC2ozPjTZtUMajmpNcEyxFSTNKW8fV7hnaXkHVnMN7qrEM00Zkaw3J/1GG42mBZpg2W1paWM9I5owf0JsNdrtFDYI3UUbQobqbkEuXzqVUMbl3nVPBV9C5ck6Zh8ORaTMyeM+L779knwrTIdG04XisvLtfqM0QH4/SzFIGSSHvpa6+yCl7Q0jxROOzRqI1FIplXak54O2AMY4XL/fc379jnEZurm84PD6QcxRkjIaSotjjcsDoxjgYvJMIR+8daMfD46FTGhJoQ0ZziplzEFRKQeGM76TASisFaywpZyZ6GFIR8HUtidQ14LVIVXT98lOm/XNuN1u0sxzOXxCK46c/+2e8+foLHt6/48t/+HtO54VLPtsvX33MH//hH3L39hvSKtZHgaRl0ZznyPl4j3WWHCOtVfw48cd/8if84k//lMF7vnzzLevDAa8UzTTUYPD+A0UIcWmEZWYzDrAZpDmgOg6xCWojpUwutUv7LKOzKOdkt69Z+C20Lp7WmG6yVT3GXBK6ijhXQiXFKmWmEtpAXAKxNUzTMiB3kGNiKYGqGuPo8cZxdbXDqIV5XoRVqzoftTcVVO82KhGXUFQvyWuGAqaCU1ZcAsri3JZxcKxL5csv73kZR54/R8KUfEek2ImkO+6zWlo2YEduX7wkBglQKnklnc7UqjqoSu7bSjs248ToLYe7k5RpuvNhe8S8thZdhXJX2+8As4yltColdlak4yr6W61xpbLZjoybDU1X8BqnLC0VbtzAz8Yt55Pm9dsTf/t3v+H93UFKK/1dFEaj/1lcTOuNgtxvn9I1u6LIGkmRQ3HxHTNNE9M0ifPCecGIlCw/T6mu/eyJ41qxLDPX1zu01tw/PDDPgdM8S1XhPVhHqJVzTCQUyhgKkptTESibMRY0op+NVWR9PbPQaFDaEkqlxkLVju31M549e8Y3b7/h4XiPmRWb0eH8jmGM7KYNuiXevXvNJ598QgsP/Lv/7X9mPc/oUnl++4J1tpwO7yk5YK1i8PYJYeKsY7Pd8vmPf8hPfvpjNI03X39FWheudnuMNWhvUeMHulLyUagFaxL1jFLqySAsLB2Fs/5JDK+NlFvf0bWVNHRUFSc9ssu1nhJcWqWkUzEwNwAAIABJREFUKjNAZBZklXz4tcBxDdSqqMWRisCQG42YI2FZhRh3WrDaMo0T3niiyYLmhI7HVNRS+r1DY5TEwkngqiIXqFFKIosVuaLRnUE7MK8r7x8X3t098L3nE5/94CM2OxHh21GTgGYVNEducDo8UJpm8iMxHij5RK4B7Sy5aRIG5Rxbu2EaDHE+sq4y69NWAM4VgUZpI51Gg3zh1WiSrpyVwLpjhuPjwrKeuL3d88J4RlvwynB1c4vWMra6nNhGGUak4zoeBH+i+mciTbLSPY2N1nR3M8r/aimy2KwTC14Vy1YpUaxYrcrptS4MRjNqQzidoBRpAmov0CtjmMNMbjCNE24Y0UpzOgSudpbBOu7TmZALynr8OGG0Yg1BZsGtpw0g15PvDM9K/KEd5OXHDTU3QozsdldsNlvyWvjokx9wdfuM++ORoDXTfsdf/MW/4vhwouXKx9//Cbv9DfP8CCZzOr7mi3DHq48+5fpqoqVIiQljJ1JtHGPG6S7a6Klyzji0c/z493/G7//RH/Dxqxfcf/War7/4JSnPGH2Fd47mKsl+oPBd9TJGKdmllNZd7Kz7BVwTU4Mm5ln5V6Ik0RW8NVhliSXKAm4K7dTT7zFGMTgrHVKgxQgacjaihUUzDhum3Y7WEufTPVlXjDcMCBq/ltK5O014LcbT0iJJY7VSVO2ReLLnF62xTdr3xlq8NehBYyRhl5wjYt/TxHUFoqieciYcV8JxYbSazMKaDPnCkE2JmjVWGR7vX/N2CcR1psQVYzQZMMYxuFHKx1KZTyfu7r7lvC60bgx2SjE6J/fpbjTODZJWBA2P68LbNwl9d+h2PYnuu8mK90XxUblBTzvs5JiswWpY49rF4hISPC+Bu/t3LGGVE7PyRI/TWpLG1IUD2bo1EPEoGtPEoudHIQWgiUkYsVs7Mg0j3hnSEplPR0qVRklTwlU6zwtzpwhoLZtgTjLLXFNgjZk5BaoCb60QJVKm9tQvYUcJZaD2+2h/mSzrSsmZaZikvGxVMjCtEPO3Bl68eMnx8EjSATuNXF/f8utf/QqDYzNuuL25ISx3fPHml2h1JoQ77r49cv/uG/b7PdYa0rzw2DTWD+z3VxI3MYwd4yJI2GevXvCn/+IXvHx5S8mRu9ff8PbrLygloExFOaimYT9YIWQl0rtr5iQ7RGlJ9OpWnRgzcrnUXeIlEj4JbpUPTuvG4Fw/eSGFiFK1Kz4aKVdqNJA1JVSWNbKG3BseC0ppnAO/9UyjI66R3KQDR5YZ3DAMlKJEq1mgNDGDX9wM0O9NpZJzxUSFcRU7ePb7HQbFKT1SShBJXcySdakqxmRcbegE+biwtgSbQvYZZbzMfhlpJXX6vUabhh80ocmISWkr0kLnMEpxeHjg7u4dh/OZh7iwqIIdB3ZGsUuWSGCJiZYyMUaOKXEXI+daOceKqg1rZAxRYuZNuMe9e+D27Vv+MGT+5f7njGZkv99R7t7SSkCRWEnUGkl1pamEdnxHBVRSTeiud9ZVTvDWLqeUIie5a3KR0hlxKVk7SMiU9aQYe4bMZXwm3eNYKsfziZQKm2nko48+wlrD48NKVZXTOvPtg0gMjfO4wVJKZplnYkpP/GSjpPlmO76ldkF+LY2n0C2lmDajfNfGkFLBuonz6cjotsSWWM5XLNsBlGJdV7bThuPjA+/efsX9u9+Q4wM1z6Qwk9eF5XwvADhjuNpe8/z2OR997/uEkHl8f09MK1ZXtvuJf/Ev/4TPf/AZNUfev/mGd19+yXo84FxDe8WaF2JQbPZXH7Y4H44r0zRiTMNY/RSdrqloJ2WppI1JkyVXiWRAC0K/9cV3AfQ+lbsXF8TFLpUzNSjyWjkdFualSHPEQiNAK0zaM20t49VIaYW2JlTTfbNIHE9nWtVP+MTaxLSt1AUArHqSmaBGWu6vNxXukwy/a0qilFENRZaqgYoqVR6Sx0ScFAOOEAvZJcwwYb0nKkNuEvZaciOuQjjAWpxxeDNwaYCdzie+vXvH/XzkIcy8DzNnVWlpZZpXdvYk6JS+LzYaoUSOJVOMJRkjjTYr6dZFyfxxbYU39zPn//PvmDbX/Nkf/yHv7060omUMpivOaYZR8+rVNVVp3OsH7h5mljmJdY5+V+9/ssjlpJRsTQKaLrpghYDOLiZx7wd2mysOD/fys5SWhHOpwTgej+ScsWj2uz0vX77icHwAYyi58ng8MseENpbtbst2M3E+HEkxCEROa6wWx5E2pr+OQuvPk7PmiZVbauq/10tSmtKM44jWmvV8BDuhauXjV6+otfF3f/N3cuqOnmc3V7y1hofDSqmxfwyNlrMA6ZTBqgRlJadVDBBGPqNx9PzkZz/h9/7gZ2x2IzUl5uOB97/9AtaZwSrsoKheoQaN9h+YbP3224X9lWLyBu/BOQmfMdaiTZWody30lNo9gEI1g9bDXuqlqaDkSwaN1Y6mNaFUcm7krIhRCG3LHKn/L2dv2iTZdZxpPn6Wu0RkZGZt2EECFMlumTQms5n5/39gzGbMerol9XRLpAgQJJZaMjOWu5xzfD643yhozIYyFmggiGIhEXHvWdxff5fqK9PLK7OvrCbdio1KYVlnpGQLo9Fmm+FansEGMZpr3KYH3GLTxX623wF1NV+aIGZcRdh8fKqLgBtdiCSUNhfa2QJYWzRFi+xGqjS6wSLh57Va2VcTpazmDFDNpfB8nnj79MDbyxOvpyOvp4mzKCUlR61XLtNq9pb6/tmp2UPQgqChmTJEsNQqtngGM+d6OE78H//nf+Mw7Pj6y48Yks9/NdB1iZtdh+qOvu958eKeP3//wB+++Z7Xbx6pTcwJ/mcmXqgSklVCrTVKLcYJxrjOqTOLmtbMoO0yTSzLZH2yWKjwsi4s82qkypzYDSOn44nHxxPnqfB4PDItKyKJruuILid7erQNLZLIsaPvOrpkgcG1NQfGbL2h6laszZF5TxTrOvphJA8Dx+MT4yEx9KakvJwvtFo5TxcOdwdud7fI+ppv+h0/LXYQCXYwaWsoWw8NbZ14ePsDks1T6nB3x9dff8nf/cPfcfvs3nyN2sr0+oF3f/wzzCs5CUTodgPpcCDkD0y2fvO2UOaFu33HOMAcVlJe2d/uLWl5DaylGYcTMeZObaxaCKHZaS2BpsYfdJ0utcB8bkyXSl0DaxGWdWWazdwrhmSMpJzo+8D+ZgfJchZTFrreogB0rcTU0XUjrVzMTzRwLZelNbZoAGPTiAmyBVqwWVaS+D6aDkXUTM3sG1n+RQpKFy3bpa6F6TgT+pUYKzUV2rIQh5UgYi72a6BPGQgsraHTSimVeW08ns+8OT7x+nTk9TJxCkpLhiqihiSv7rS/GTVLMGaNxIQGQOp1zGFb0nSY1vMYweHx8Yl//Md/4qaHTz+5JXeW95JypMvCfrSZ9c3Yse+SaVnPJ47n9XpoXeMh1Iy6THRuEQK1WtxjWVckdkDkeHricjpRloJGy8IMq6HrdS1ItayUPkfKuvLDDz/SCKwrrKuAJrrcMXbmaDGfz2ir/u/MdCmhTTkej/adBUI0vKO5iCCl5OG5RrOUaDN6FWGZFy7Fku4WSWgt/PjDD/TDSEoZAf747bf88Zs/sEyzjQODz5WpqBYQL51R0MJ8OSKl8vLlx/zmt7/hq1/9gv2tHdJaGzo3Hv70E6cf38C8kHYRIrQkhJwhfuDNeZkUrQtBTS+ZkpLWRqlP6NFuqYp5rIK4pUahSrWT1ckPtRkKKK4KqMXCauZZUc1mHVltYL0bO6KfkPtdT0hKSJGVCwExv1QJ5JBYVYgkupxpnc3nSrMEY2TL+HxvvSHudyTR7DIVnOAQrOdqjaYWEBxUCWrRDV0I5GQRbotFaxEa5AQSG2WdCPNEOV9ABoIMkHvWtbAuM8uycFlWjkvh9fnCj+cj75aZsyhrsn7d2Diw+e1u81jELUKS5ZMYIh5p4mbeiud0ejWgxodNSbhMJ06XJ0K8RYJlUtZqLUYQNVplDAx5B+0FD2/f8IdvX1tJqtHsKkOA5tnWV2e8jMSMVpPzLWVmfZzpcyaLRRs03yhBfJE26GLi5uYG0WojLwkUAnMpKJkYIYdoqPs6sa7uCeTVz+pkE+P/2qGUZKTvB2osCJW+z6Qg1GXlcqmEvKNPiXmekRQJseeyLMz1xAssFuJmf8enn35JHgbGmz2TG3ClGDE9lHg40yZAD65KKkgK7Hcdn376EZ9/8RmH2ztS19P3O7qQKO+e+Onb75jevSNoRXKmBBj7HlK20dKHbM51NQi91gvzmjnsOwYJ1KlQl0oBlmIjEzPht9O8YIQB3JWsNnVkD9BGWwvrstKq+DhD0BW61EGKhJAYhkzfd9RWmc4rixb2XTZHgctiaLBET1e2TZhSMhsVuf6ibbxithoBTyALphXUZpYpISSuSsZt3qeeQ3rVmTYWraa61w6pUKUQWoESCLERpkLg4o81Mq2VZS2s68q5VB5L5ad54d26cgYWsTySQLgeIJZctQW9N2fVBLs5XVcZxA2+Np8bT5AOIZJFud+PfP35K/7uN1/x9ZcfseuDSeaaxTWupSFqgoMskT4LH3+051dffcTpdOanN2eqWiVk4FYwp8BqIUBNLWcUEafKRQ9CsvYgbjeLe0+VWu35e7tQaiXmTOp6jseTBRI1S75OwRKuL5fFBA/Bvl/V5vxnjPerFZWESmQc7sxStU6W0SImoau1UOrKWhfWKrS28OzjT4j7O356+8hPb1+z292z28GXX35NHhTVI8PuwH53S5c7pC5WSaSMNrM7EWz9lAZDSHz6ySd8+eXn3OxGcozk1HM4PGMXMn/63Y88/vkH6uktMVZaH6hDjwwjpA6JH4jWarPh9+Qx60GgaSQn8yRVp89dzdclmfqDYOlVzfixrcFSilnUNzNlwtHUUo3pspkpm2ftwjIVLufJHnCrhNzY33ZcTguX48VpeVbDllqMrYRtyuCAiUiwyEJn1WySo6DmT97c/1az0PmIo7Vi5YuaC0NVYW1cN4s1Yv6SFFsMKLE2qq5Ao7aFpShTqayqXErjUhvHppy0MYsR7jf+Ktcb8z1oJrIN+ZMntQVHn9UXvsu4opXrCkRpPNsN/N1v/4a//c0v+fzje8YOtLpNjDugl9pMNSEmVEdgGBJffPkxx6lyWf+Ntw8TtURQJSe7jXHBQq3NrFJxJHwLTxIzxo7B3mVtaiR2r1JKazxdTtCUTsSRcws+7nLiZjeQQuTp+MT5cqHJFji8VRbN6Ho2tDXQMA8c7l9wOZ+YLlDrBYpZqcQolOXC6UloMtIdDvynv/tfyIcX/F//5b8RJPH49oH9+AzJidu7O9o4cDMOHPvM/d0tD08ztRhgqAI5BmLOkMw47dnLez765CX9LtFCQZIQc+ZwuOU2Dfzzj695/Ok161pIw8B4e8/u7hmhG9/bkX7I5gxiI+sgkVJMLSIC7BKxmW6y+ElaVUDqFZDZoPSgTsUpINU9UNXF0xI9/LF5SK6nEqu96GUpSFCIzW5VjUynibJUzArfkNXqpWyjufGUlbvb8D6njuRG4KLNTaCN0RRjIKeeftghGljXhbUsaJCr4qWIMAssqSHSOeDQqOBCX+MV24+urE05l8Jclak2TrUxlcakMImwBmO4gIudHTS7znzAZsLuyyobeVSMSLEhuO36+41x00rl089e8dVnL7nfJxIr0jbhejOuazTTazP5i8Sc7Kc1uL3b8dXXn3KcVqb/+UeejrZxWlMT129yu83uxTSDhmTaLsXPGpP3+exU3dytaOU8Wbbm2Wl8EoX721sO+xuCRN49nJiXZfu6bHGIqtVjD53jGwKxHxl3B+6ef4TKa6blAlrcshXL4ImVukzUELnJHbf3z3iqgcP9Cw5dZjqe+e6bbxhu9xxuA+9e/whlYTd25I9fUfXC0+OjgU0xMAyZm/0Nu13PixfP+epXv+Tu+cGM16VAhNhlun6gnAtv/vQ9x9dvqQT6YcfN81f0t89p3UD1oKUP2pytGTQQko0s1lK5LEo/dnRdotaz5WU4McGQ1/I+Hk5scN1KtXgGYzGbowF4dJ1nlijuNYRnrzTvU8U8a3OmLsp8qWi106a04qRsa420bfQwoIk78A2g0WlVlsmYEepiNiKynfLVMlC6YYeUxLxMoLDMzQSzKKsIFGGIkUWE2Cxy3ig4Ng9cS2VR5biunEvhshbm6rF5zhMtoh4Xh1cRfltiCDJi5bdc++btO237tzoIBOtaES3QFsYcePlsz00nJFY7GNVQuCBbqrTPh0VJXbZbQKuV/qLc3+/4zd98TimN3//+e07HyXxwwOiEMdO0Xj+rIFe2mDrE3hpuQm07rDaj/G1/NWpmo6pFv5shW+L1T285HmejMoqw5Y5ee3AUJBomkKNRBMVu1GEckQdTGpnrhdIw/bAAy3Rhni788ds/cFYLPo7AukwcTxMf7yKnp7f8z3/+rxx/+CNjJ/S7PeNDz/kYiKLkHLi5GXn24pZXL5/z8ceveP7iFovYrFhispJyplVhuSxcno6wruxvD+TDjjTukTwgMfuI6v9///3lzake9lq30klY1sB5agxdput2hmBWs65fqxpbpFS7LFszUnlQUjJbDMWiChr4rWAoYxNBi/mTGsph8H+MQj/2pJhZ50KdlbYqEq2PIVqZGp3IjuJeq77pxQ6N1hrqLvVdZ/b8qqamnpcFnVdy17Pf7xlvDsS14zKfKdpYLhdEYVmVuS0MWUiYI3qMVl42sVFJaZW1waWsTNqoYrQ7Ni6vpz7jpmW+8tjeUQAI0cEIP+TwWwiFuvWlnolVFWmFqI1uSOzHnpwgSCVgPTJNHCOzDZ9yMglVlwlOlZSgiBZyUl4+3/Prrz6jzY1vvv2ep/NkNprqNDX31MWzQbbNs82t1XtRxfAGg8dtu4a4kXDxrEx49/DI+XRmXcyjt24HiM/Gq9qzamAxEUHNHpXCfH7k6c1rDrcHuhQpzcvdYBdDaUYrLaXw9PCW/+e//hc+//V/pk8959PM+XxCY2YYM+fLAz9+/wdyORFH97jC1m4KkcNh4P75gRev7nj5/I5x9INNqx+Ajejl/rpWWCqX44l937G/PxDv93TjHk0dEkz5hF4V/X/d5gxBr9YgNkYLLEV5eJqJErndd+x2e3BxbCnKHIs5dQss1XidpvRXWhVzCW9GS6taLYU6meZurQbAhBxJUczqI5nJkypM54W6WkCS1kIMgeQ6TRsCe8J29ayMWmjTRGtGpA+iTPPMPF/QshjH1+dlrTQ/zZWbADElYs5G4p9ns1epwlIbU6kGCQgg5Yqq4reZilBDQuNmUPyeUCBOhUPNBGvLvd1W63bDbaE4V/IE+OJXL3PdRSAELAi2MHY9u91AypGUTKanqmbr2QKoCYBzzu4o0PnmEh8RVFKEsRM+ur9h+ewV83liWlbOq+lgMX2SfRs/R4NDU9smJVg7Y/vZnlPVRs6JFMwDWcA1s0ZTLB5yVf263QzHNoR42/wb4SFhpI02wZsf/sh8ORC1UlojR3NfrBXzl/JRU1tnHn76M5988glzVRodhMDts2d89vlLLucf2e06cjELmcv5zLrM5JS42Y28eH7g7tmO/a6zLBStNK/eIjYXjmLO+etaCA6EjX1/Le1NDYWj53/h2vyPNmdKboMvlidRwW8H5c3DkVJ77rRn7BOixqCQplcDpj5lxGdTZSmUxRKpUcXCZ03VEKMRyKmeq9F3jGNHisYHXaoyXSaWuaDVlnvTQuoDuTOdaStqjJzi7nAVihp7BCJdP5ByYllnpmkCbe4wF+mHEcEIAGWdeft2JmRDfde6GvigoBIJqYegFLXw00YzwEbsppDtYnBSg7hAeZsZ4n2wbc5KLUY7u7YCLtVqvri3PzaJ29bvGQSfQJofPML94cB+3JFicktIa6+lBVPbaCXnwcEmm1mqCiFWUwlVJWJA1H6IvHq+5+Hje96djizvzhSP1hOUFh3MwgAbbXbLiN+KV2FEMDOxmK09EW9hIsFE5359ioNh3mCaL61wpQ4aaylcZYdltRhAqcL09IYyPXFze0PUSgzRhPzViDKtWfuy248czyd++O4PpNzz7JMv2B/uIAuHfYeUzEcvP2Z5ihxPP/L6pzfUuXAYBu5u99zsRvq+u9rtmJ43eDuWiJIMS2mFdTrTKzabjoFaZlgSTBNhXAhqhIsP3pzZwQKwRd/EgmdQ0NYoT4W5LNzsOjoJSHEU0W1ArJcztzxLYN4efLWNkTI5Rlq1ALzNZLqpqelTl82o+XJhmlZnabxHM3OKxM7I9ZJgnQolmBlUKxX9mS4RbTQ1RFeCECTTdwM5dbYxi9HXaimmCSkNjdY3SYCUE7Ulct/TdZnLdLSDQpp5GZFoajdPE7stgm+24CCGjQU2MgQ2S2zmILGs5rmEI5sbqLJdrGbo7Kp2uJaPFmgLXY68evGCoevIkkhirnXrUq6KnBwHs4TxHJbNJSJFV6TUCA4AhQi7Q8fHnzznOM0ob3j7OFOLVRfqAt2UIunaOzmm3Yz7K5h4PcRIrcavJUYbTbmjgj8If86m+dRq8Rth05P6oC55SS0CtW6jpIBgG7XMR+dvJ2pR2lrtGbpLQ+4ieir8+MOfuLu9Y3/Ys+vhX/777yjH7/j8k4/pEZZmtrDLeWbfDTw7jG6cHolOXrGy2+b/5epNlbxVqyzLhawdISdqsHm4qsUzSiughY0f8EGbEyAmS/Eieonb1BlBxg56Ok2sZWWXEn2w5t6eoD1/g+99gxZDCWPIZnnoSFVrzU5tiabvLIXz+UJtasbQl0KrDo4EW6hD37G/GemyzTbbqu7MluirueYVdQMtgVIKyGK9mwoxd/T9SJBos7+tV24VxQJ9TRbqYx+sdJFqutBIpDTr++yKM0DJDLGw23Ir+7Jc565EHGW2eWUKkdQpOs0s8+pu79seFF+/No7aWED4MEW1EcRus/1ux4sXz2wziHgK2fuNlnKyAE0Hriy0qPnc0ETmARNDFy2EBP0QefnSBNDDsOfb797w7uHM5bxQS3FNrJVrMSTrv5vJybaf25q78zljwvpOPB2tmEY0BKof7BsizFb1uA43B2NoBZ97tqa+KbYcF1jXxcZrpbgpnDlo4DK4eTrT94m7u1seHx/55l/+kR+/jTy++4l//NM/8ubjT9nvzb2wQxlz5G7fcbPvGYZMHswextoGq/gQX794T++Hh9IMtDrccAxCP2S0j4Qcr2y168n/IZtzLQWV6H6yuOO6nYKlGKBDMM2kxI7YJeOQFkWSedyg4jSvSqgBiKSQEaIBRn6CG3hjZ2HRyuWyMC8mFaqec2r2jHaj3t7u2A29b6hmEeStek9ldC2KvUADTipNzVEgp8zQ70xeVpuDJVuP4zG2tXl/Z/9RFPWes9VKqSu12IKLG0nAE5FabV56K1ChNSQHmtMXQwxXB0AlEKK/PExs3q5jlU3FLGzkBBtD2aIQKkELQuFwc8dhP5KiP0f39u36gRQ7O2Sj+EglOjhk80pEEDGLFAOnIipKpTIQ+PjVHbth4Ga343e//zM/1LdcWvPQn8BalCqNvjNz59qKuybYRlLZQCyfVUq1DdjU3OYj18/cxPpwc7ZxPWsILsyOxGyz7apKmVfYzLw87iOoOdm3at9DMHBJ/TYLMROlUMuFp+MTU1KGUGjnidd/mmmvPmXc7Ql1Yd9FdmNHNyRSZ06HXZ/o+46+78ldR9f3DONgYUhiiDdimEVKPf3NnrgboS+k/Y4w9oQuIzG5Rc4Hbs6qUBeL54sJtrg/G4e4ZSIB1Ow6Uh6R5O4I2iiLoWWtipHZ1bxit42YCLSoxJRpNXjPEYitMi8L6+KBOi1ujC1ElLEfyDGxzoV1MQ93YyI171WEHJPfOtX6N3CDZNucKXov7Jtb3IVOvfQWp6w5yc+/c4VWWcqKoXM2FqDim9qjCpp5/liZGtCmZDIku0m02XxPg1EgYwzEHBgko7ra79mqHV/Q2xDFPmG1ERdmnDb2kU9f3bMfO7qcrrNAidZr2+1kt7tgN7ahvdVPeiGgtBBN6I6zerShUun7QE4jXQrousC68FZOnBdlro3qfkNlxZHNRNHyfi6qxt4qpThf2DZMso9EKxaeS7DnY0nVOEBm7z0lK2mNymiA01JMbljUnJREPI2s2QaNYeMp2fx9uTwSY8cD1mMrhZA2v6gMUVjqSjufYJ3oh0zqvXXKka7LDP1oVq/ZN+bQ0ff56oaoiiHbIRJSx/7uGd3tLWnXiIcb2N0g/QDRnBq2zv2v3pwp95QyG9WuibNChCjJTmHv/8qqXNqKLsakqNquadJmHuWlofjVoY0ULJyGDGsrNl6pNsyOWKJ1DtFczKpQS3MI3XSRtZhJGFVYy4q6pKmWaj49KiA2kqhqgwsR63eaNtZ1oayVdV1sY+IvK5ixV1ATzW5erSrRy1zjVeK/buldTqbXgmggh44sbvW5Fu+7IXQRyW7U3JQWMCsRFRdNR3JOpof0Q2FjDG1/iEBQS3WLotztOn7x2Qu++vxj9mMiuw+wiCHUtbVr7ql6lkwITjzQTe5l1mAajKrXxA6tGPG+UogKOWTSVx9xGAa+++4nvv3zG94+nVk0WC5ps2eRUrAWxTpQajGD55SihQqj/nwjooFyLdntO7atJxd38FEozSSCZalETaiarriURmjqHkXvT7TWhGGwzJi1FNZ1RmKAqiyXSp87bkYzZ1sFQsjE3LGsC7UsFnjVZ0KXiDmRuo6+H+hyTwqdlfHBqh6JzeibyeasirCulYsW+v0B8kDYd6TDLW0YaLmHlNC/uDX/I7G1v2DFEEXxRVKlGLvEbUBqrczrynoxdwMNdjNIstMwBCMxGApuBGpBCUGvcHsF+70aHERJ5BiQWSkCKdrJOXS9AzxCIFG1mJWJL2bbPDZOUaeTNUfVEAzBq40SDTmu1XpMtIA090//lNGIAAAgAElEQVS1EN60IZLBbpqNKGF9tLKu1UY3duTgRg5sxImxN2H4NFva2FILFEh+EpsdiB1k4jOyINZbLVvf5lXG+9vTJGwpKK+eHfjtr37Bl58+5/lhYDck4xc7emyKIO+JopWHBqrJ9eea6N3LcH8HqJBzZOgza2vECAlliMIY94y552bozQG+fs/DtBqm0Kx9qBKRZGMhE+WbtCw6rbK1du3ht2qsqLK24utCfC5sB7BhHOpjIyG2ikk7IEm0ktlHQltlt40zJAfWutJQk/2JXL9LF4S5AKljLZWiDVnO5CGTukTqO/JgfxqJ39haIpZYrQ6MqhZqWzy2whQypcDcKpVEtz8Qhw7p9pAyzVHrJltR/gGbs9UFoRJTJCdD5lorTNNMq9FOD6KfHubeZqJscxczLbQthKDWk6luXkSNtmJOWxp9nFBJwW6xWgu1GhEixG34HQlJ3W3B0WAXeItiFhnjwPl85nReLd5ctyBYP6Ou0Hd1/i3OGRa/SQLDuOfuzkJ6t7g7A2oa61o4Ph19LhcY+sHHLEYDbGU1mRORMQ3sDyOnLjEtF6Zit3VpBS1K7MziXzSgJVCD+GjDxym+CK9kDRpCZeyEzz95xd/+zS/48tOXHPY9Q+cbM0Wq28hEsSgMSwk3HKqZJaJzodt7vFDdud4B1BRM2pWajTeESghGDDnESEi3aITQwR+/f82748x5skiIViGL+TJt8zwr56vL82yUVEXdjM3TqSXQQvXhPzZyMy8ScLJ5cyldDHhCwLaRAUmoOx+JFOp6hpa9TDaesqhdKKnfsUqBNnnpbPLIfugY+p5xlxi8EknJGGbFq5UYrXpsbdMnR7rUk0MmhMhuf4vUkXaBoRvp+pGYsFYmuY+Vix0++OY0toPlaKQY6PtkpSFKqWYPkkQdRQuO2jlxJHiTGFzaVF19RHtfBrZGXY1FUjAuZKHYg092yvrk6Epah2Z9ojspVJ+vBYFx6Li9vWUYOmp7w/G8vkc43QyKK7vGyBU2VhGf+dlSrRWm2Qyct/FPa9UEw9PM+TJbTyOGUKfUQcx0IkyXM3VdScFiD3e7kZtDx2UeOV/OXKYzc1lpS6GtjZYN4ApJIAZjUyG0bcSkXnLXlSCNw67jqy8+5j//+ms+fXnPzZiMsBHNF7chPrqxQXx0JootWFOMVDXPJlHbwKjFL24ECsQArqRmVbLNL1WruSlIYCcdn6RnxE4YDz1//uGBH18feXgyS5FVIy1Ynk5wRBUxcK1L0aVfm/GbVUWGQdhYQqutk43CUZTrjb/hAsGjKwBEEiF0pNxRy0qQ1WeiSg4RYsfQ35oiJgRS3xNCZloW1mWm64zQst8n+j6Ss5CzGZrFYKUtwdqEtSxI6Oy9ubpmGPbXWfrt3T1Bb3l7fGdVVRC27tfIFJ5O4IfhB23O7YVe6/9aycnob6kJdS0kUfreEp1UQFultdVKDS8zN7ZHDtZj1mpeoMXhfi0V6krOATyNq8/JhtexmptZsB5jWYrv+W0+apsvRXPg2w2j8XBLQ9sjl2l2nmW7qjfEw41Eg/nR+MndsJvreJw4ny3zcQMimgcwgfWStZr4eyqVGGcgMgz9FdDIObO7ueHVq+eEUFjmict0scyT85lpvjCvC3MptLJQYzUEL1qUQUJoEqltRVolULjbDfz66y/59S+/4NXzO8ac0aYstSBhK2fNACunTJ87A1C2w00UDRFtRnIQHPY35Aq9An02yrmCfz6jFlzCFZU8iGWVxnu6PrHbj4z9W775rvH4eDEaXmms2MZMCv2YXJhQr+OUINtopaFqapnt329tlSXQ1aqQorcVBaVhEypB1Qy/curY726YJouusNAr86Ia8oHD/gVrXXn2/IZ1vRCicHx6IPfJnD6S0g+BfhBSNl2v+EGX0oAEobXC0+mJPBdCes4u9Oa15YyylHv6cUTawLAfubk7EHJCZfUxmO8t/9/yF1hCf3nO2QxRVFHm1SzmExu7JBAMpqQWvPztkGSD2hZM+Fx8tEAV1lBIKZG6bDD8WpHQiDkRq0l8aBZYE4IR7lXEA2kSxYngVezm3ggJMQS6nBkG60dFYTeOrDf2+eZ5tq4qmrJCN/4uYEN3s1DRhnMxTdgbnYtrekW7aUOwbJdlPvsiWg3MCWZgNvQdu93I7e2BLz7/nNu7G7RdqHVlnibmy4XpYpv0dDpxukzM88xSi4ULo2hY0ZhJAolG1wvP7+75+ovP+PKzT3hxa7H3onajxeT5p4j35k68cPDHwBI7XNXr1vCz8hI2tpChrNfNqoqE5rzYdl1MogpiXsD7fSTlG4ahYz+O5CR8+90PvH1czJnR5YRLbYSq5BSIimEPfpMH4epsX+vmMcV1Bqi6jcQqKUXwUQ8ijijb993tR+7ubpnmyTpzT/DKIXN7+4wvvvgFf/zuGx4eHlBmtBZamQnJZuzDkOiHQO7NbaPrLJ17I6sgylxXSl1Qtfl/7jpzUfD5fvSoDQnCsBtIfaKJPb8kZp95RSZEbLz2IZvzeJxMPZ6scw3ayEEYcrgCGlEqMTTQyjJdbIHkSD/2dDkjmFq+tm1wXI2L2SpL8XRqBAmuYsDg6FKrybyilcIE6MYOiZFlqbRpvd6adlNs1KlmwUKt0XW2UTauakzZypK1eI6KD47F6XTX3tRO7FqbCZMlONqc/t1MtPpc9ebmhl9+9StevnjJOA4Ouff0gwcZtUgthTiODIcD+3XlME9MpzOX44nT6cT5bCXvNE82cqiG2Pa7yFdffspnn77ixf0td/uRIRtSGLMxULaAoJytsdwI7q1VajVqmZ2yW6WBN9oYsCbRwo5VsKBjv8lofgAYfLPBaz5m9QOu0vWB22Dfexwy+13m//7nf4VTYWkG9oCRPST0/l59VW7zTafvGS/aaKIqNvoK0dDz4rmoqhb1SBCkuUImRublzOufZuPD9pHzZbHPGYXT9MAfv/s9j08P9D1oK5xPj7S60N0M9EOm7zNDn+m6RD+YG0fOHV3OdnEEJebM/mZgGO+4vX3Gbrej63tiyiaCl3A990OMlj8rSo6J3PVu6WLvxOxyPnBzXi5KDashb1HISVjVMiTvbke6qEAhOQo4z41SQKuyzGZCJRJJyWru2ioNZV0Xam20Zqd4rYVWVt8WxluM0YjzwXtaHAHuxx6V1W641gjNGvLcdYgE2lpNg7mYzjT3I6kb/MY0qlVtdmpurnxsC1kbkF2z6K4OxX6fzWft5hhSj+yEp9OJkCKff/kFf/f3f0/f9WQ/tMTOGaP+SfY4dzPVLsXGK/V+ZZkuTOcT56cnN7R64Hw8Ms8TiPLR81s+efmM54cdh13PbrBDL8RE6DpSn803KVg0Y1UfyDv5wsYmtmAkpPdbrDVPFnNifTMcGIm+eX0eqYY+mzZTUSlmPrb17CjSxErMmIhxT8qfsJYzb96eef125u27C0szMsk0zWg2wCkFc4LYUOkg0Yjj9ql8VNd8rRsTqlZXvgRhVavYUjAlyzQ1anGucTLEtUuZ2AVKO/LwdKGUSl2EdZop7cJu33O42bHrbUbcdT1935G7TOqMXhqTkJI5TcZs9p/9MDB0mSRClGjfh0gOyVF9axvMaSMQszGhgtP8gqO1fwkR+stoLeY+Xoq9vWluZFUoAmpgR5fsEJ4X6zUN+labQ2q9NrwBn6FV02nWZg8x5e0jqHnNqKNvYooEgEqhaCSQ3CNI6IfedIMOTNn0183GajVliDaWUmx0cuU/BvvZDvObKqWyFC+BkpXXIpGmxQgHooRsHFxzQDF38WHcMa8zwzDQX29KvNEXNn6toEja0GIro2sr1LpQ1ol1vuH29pbT4cBu6HmIkdOT0A+Rz1694P6wY++5J6YmMQ+f1Jslo4g9J1WzBQnb2MhL01qraTFlywSt1/lm87bjWlGU1dwVYnAAzUXzglmSmqTi+tftooj+cLohcBcG/vZvv+bh3YWHp8rvfvc93/75J86zVTTLqixUogZyzEQxc7PtEtlMwjcwqKlVZma+Fq19iuKHYKTRqG1laSsp2jyViFmGdD27XcdleuQ8PTKfZyiRLvSM+8zNfs+4GyzWY8jvvYW9PQsp2Jw3Qc6QspFY+pTJVxKBmXFvCQgxBLS4zK1Y+FTq7DPHGK/VmW5jow/ZnOpqDN8tiAMJ01J583hifxgJqrR1ZZ5X5qWxNtffiSKOkCpmzIWKMTqKlTlmo19IGbRs9bctCA2NkI0yFbJCiCZWLlb+1ra5zZn9iGhhXSdqUy5rZa6N07xwni52U6m6VMesS4JGhEidPWNTjazedGUtZkq9FjuJlWI2Ic7qyNHmrZ99+QX94YYWgVxtGC3b6MPBMLaZosHuKoLEilDIZFpNrHmg5B0p9QRt1PmEtJm7Z7c8e37HbteTcyBHtRYiRmLunJ9sKpyYzZc2qAvk/ZRWaVSMmBFw8XIzHKGp/39BCGRqWZinhW5IdNHS2VBFW3Fan7q2NCMtoizbHMZRXrtdsgQOsmfoe273Ezfdx/S58PtvfuS0NLRmGwoFMZmgVjKe+9mUUrcZb3Cwz/ixFctEpXnwr7/PiJEqSitosNzPhDHPcmfi/4d3j5yPZ1KIDF1g2Geev3rJs+f35NEAoa6zjbiNpGJvfOGQTJQRYySFjhwHd220+bSEhkShhkiLWxxJI0ShhQadqW8sHqQ5tdHCssKHRgAaSGKnsmDsfsV4jY+PF97dnLndR7RZhAFBnZNavR8N1+vdvGWLoa1i5YMAuq604ICD4KCOGl2qt9KkUFlmA5dQ6x+lGj1sY6UsrCjCZVo4zquZPjutTmKkS8GE0OtqbZPGK83LpwdG0G6VtRiavJbmY6PKPC+koUNDoFRDZG9uDnzx9VcUUTtEJFytRVDLJgE8nS2CxGvCmZ1DRmekFYImpBamnEk5cPfswMuXz7g53DAMvdHiUroyiUII7vzgKhuXa2izhRRSvD7/rZvfKIa6iZi9X0vR4gR3+5F+MNaMmWiJk9jb9SAUsZstiI02rArApFlqEYASI6Ezx4goFqtghPHMv/zbdzwdjbPdsM9c1RhJS7UMGHTb8xWa2oQzCTn2rqRx7rH7tIjT/CTZJhWMhZb99n94eMvpdLbxi0DXRW5vR549u+P27kDqBUJFpNAPyWSIOflIz8CdEG0ikVImxvfI+NXPiY0c6REJ6g4gtVnVmKLjAU6m8H9iUxn91ZvTMqXsB23xbzYKt/r+7dsjXbr1IbOHpnaBrHYy11a9b9huzGoMjxhIDWPgpASyMotSqEiM7Hcjh9tbVJ332iL00FYbY2x0thACIXVoWVkbPD0euUwzc1WUSJSOLvd0Q6YfBxqV4/GJy+liCDL24EXClTvZKrRpsYV2hb6tZB7HPUPXU5aFkBJ56NmySsRnToodGOkqH3KChrOk1NHF5kiA+BBborKq2WzmLrEb9+zvbGMOvdnCbMhgTOYdu/HdlGCOA2IAW0rpOvoJEui6jhBtAdemBDUENGIkj4bbmET1asYsalozposq778j6r6w9oxpgtbKdFlYWyX3mdxlU/VoIfV2+D0PO36tH9Fl+N03j/z09siqgbVteZ+R1f2IaDYvT+LiZaqZIfphswnSW7MyWVu7xkEiTk7wMcx5Wnn3eAQ1aVzXmZXlbozEVGk6+xhKSTmQsmeIOtd6OwjFJxRxS39zKZxtUke2MWRfJFGbsCyFsjRXFJlb4Gap0/wAeb/G/srNeX/TczwXLsVuz6YGeQvGpXw6rux2M/tx63FMUbF5/9gOMnAlBGOwSBBLnvY+qHNicU5mALVB8l02gkFrgVKgl3R14Zsno3nlmO2mq415Xng8XVivagnbUDEYPF/XQojCftwTiFwuhooqRjwfR+sbL+fZb+ZKEIP0k0Pkn3z6Gb/5m7/h3du3LMvK7nCLRcy9l3YJW1ZHfE8wD97rtm1eaH5GaHIEtUGrrPOFtUyMu57D3Z5+3AjVRsqIORNS9lMYr+x8g7q73pZLAjamwDdVbUZnvLYN2q6jBn6mGLE+0yqKZSk8PR0RUW5u9nQ5+sHYrr11Q8jOE316OjHUkUM26qPaByP3Vmq/ejESwyui7GjtO354eyJKT9mE5cGYYlZ622w6B947L7hqBoxKalW3kmNkyJmYNz2pknwTlWlhE2t3OXJzs+PubqTvA8qCYnERIYpLz2ztCm5c7qT9lBIh5+ss2lUPV2TcAC13o1xWlqnw+PDIspgnUqxC8odWdCObKiIfGAH461++5Mc3gW+//5FLsb4PjFNYRZhL4+m00HWjj1Zc/tPcTkM2u4pNLe+QuQMQxEoMnSGxKXIzjIxDbw21uUQZhaIaZJ8CNjYolgytGjhNK8fTZPrPKoY2+hzpeuKJiZq3mV7fjcTYcbmcWJaF6iqYGDNXD1nZUrBtgbXaeP36Nb/97W/51W/+kzGUop/QP3tmIUT/GRsUJxACVet1AwdnLNUNjWwr63Tmcn4EKsOY6fpE1ycrZ2Ok73r6fjAKG+rgSNh2qLF7kH93Em+D7lqNnrWJwLffsf3e7e9jtCxLK0wsaiPlDvPy2b6fgYGtmRpo+4o5G4JpFLn3ZaaquUXEJOx2HUJA28C6rFxOM09zQSWxYr2Y+uZTcMqcOhvMnQodeKou2O9Sos/ZPlezErfrO0Qil+nC6emEqDHcxrHn2Yt7Dvej+VMlIXe2IXPuvHWwHldCIHfdlf2WUialbCoWbxs2miVY5ETJK8fHJ5YZshysR00m1NhcJ678SBz/+FC09qNnkf14T8qVb/70huNsRl62Xm0w/HQ80/eBcd95KbApIF23KAldmpWjGJpYSzGsqlaSRO7ub0ipY7pMXC4Lh5sb0wRWv2XUHOTNr0XY9Qm6yHSp/HS5cDydXF+aiBi3dxtjbDrUQDQaoXW6lHV1ZYvV/dO0ICSibhCOWr+tYgQDhB9/eM0//dN/53/93/53djd77yPlWkLZ5jPgJ4hpWbfWyH79/QY1kMiSOGudmaYnpssTOQldn2wM5QsoeCm3idhQ10ciP3u5G2GC6ztge0/rSvEln3OyWyVYOcbmaqDvS3Pri6DvM7k7mPWoGsdWN0dGidRgP1UQxrEjxjsb30gwpYgEWszX59mwCMGbofLJiwPv3jzjmz+/4+xMsbpdjGxnzs9T4oLzgXHHQiNFRF/8gs14U2dqp6fjmbdvH2jF3BjGoeNwd8u4H83Nog90eXBk3srSEMQpj0bsMOcF8U2WvaVIlhXkTobb7SoilHWh1BOlCrf7PeOQaXUlBiF6ZMUGcqlsjLQP3JyHQ6TbBUjPaSJ886d3XKZGk0QTO93WUpnmQjdkXxjtKllq7gNjC8HoWbXZskpd4ubZntuPbtjdDbQF1scLp+lIl3oCwrrUq9LBUFkjBKQQaaUxnU9cLpMbwSVzWAhy7ZKrVmZPOU5jj1YopbLWwjQvrKvblrgmdZlXoxiq3SrN+0fUlP4Av//9v3F7d8/f/8M/mD+OzUu4et9ssDpOBMBtVVzr5xexRxQ0WltYlgvT5UirC/1oM9uUkwkKfCSjKGW1vl581MNWHLljgzn2tWtP3nwcYc4CLgBww+z0s5IsJKfuuQ2KnTdiAm0CtrMVWr1S61Co0q5KliSBVmzBmnE3V4KDfdSCBs/kjMqzw45ffPKKy6nww8OJWY1eWNjE2ZuHkn02xG9jV9DEYJzi4AcQvhYXVZouPD49UVolh8TQddwdbri/O9APPbFLxBzd5cP7RcHGVF492COznxtDuK7pEOL1zxiN2L9lyGzz2FoL03Qihp3zkf1Nhc0cfDs6/8K1+R9tTs2V3ZhQ51Bqq/zxT0fO04a2RRYNXIqwx4JaWzWmiQjXrJEooNIs9ruaAfVcKvp0Jo4jN4cDuRu5OfSc9K31YjSWYm4D0oI5bSfv1USYauW4LtbzdYKobSrriEBDYHVEcp3OTOvqBPdkLztkUrIFQdvS0ZS1GaCSonFKW1Ai5nnTpDEvE//zf/wPPv74Ez77/EskRUuh9pcjBKOmgTkD4hsBQbAbWLRRdQFdkLJQpzNlOtHHwK7v7LuK5cHEmJCUqKpkV/i0Zhsn+Jxtm1vaoeTUvJ+hntGFzNv8kALqfay4OMEEwps0zWIgEJCqVv1QfRCp19M+1M7mop6nstmE+qzmurhFTZVUdSHIQh8SKpWX+4F3t6YiqtdM1Xq9Pd0HAjOktkMhS8BxXhtFhEDT1cArEk2Tsa3mQhQlhcDt7Q33z+8Zdj19n+lytNDkCDlbKlmXomfMRGJyempI5NwTQyYQiZKRlpAmFosZIMSMkCwbFMt7rRq5nM+EaFMLTZmWFIlqQhDkOppSJ+7/1Zuz1sI4DjzrBkKY+KVmkLf86Yd3HC+F0uxlraVQVoeu1Xx4gvgQOxiNKWAvqFWPOijKNFdqC0DHOO6MnN0KgYLWSiSylmp6w2TN0DYYWNeVeVpQsRGD4LabukHbei05Si20Ym57KalZVQTPAbFrhNZwq83Mbr8ndZaOVot9jlob0zyzLCtPT0f+9V9/z8tXHxu1K8TrGbjdmKo2cjKNHzg4d/VAAqVVIyKs64VlvpCjybI2E6vtRBfBIxCqwfhhk7rF600XHLSSoO///bXSdePVglFVqavT3SS65cnmj+t/ka3nlKv1xvufp9efY27+6t6z7qjwcyJIMyCtLMUM3YBUBamBUoIZR88LqcG+67lMK2urBjgqV36tOtCyLWoTMfD+5gmRFgJVMU3oYu6KQaDvOg7jnucv7jjc7QkZcm8ZmtltW4ahM7Coy0Y3daom6uvB7VFyzObuv12D2DN3fAxBPDe0o9XoVNVtHuvvRpvTEx0TcTLMh23OdaUsC8MYubvdsxbls8/uSL3wp+8fefdwNKClpaudSHCha2vvEV51YKgPibLdoBKQFlkXYVkU3Rs9a8g91Mi6KG0RQrNTttZiLBQsbLeulbo60atZhmII8RrNAKbFvGII2HyuFgNSxAWOtZquM3eJ27tnfPHZL/jss88Y96MlppW6XRg8Hk9884dv+OmHn3h4eGBeFvr9DYiQHJjZAIKmjSYmyRI/UlS3U3IDggrrcma6HFFdzcUgml9T3gykfMNvhlJdZ+ICNiGzbnIxG3eEqEaEV6G17KCDIY8hmsZymw1vtD1baO1aem/PT8C9jnifaIYQNNJatds3e1VR6/sbPJgHcXGz7lDMdlOXiixKfVy5vDvz9OMD69OFrIExJD/sodmsx8eYVw7O1kXbphUzIi++llTMcG6ejZrZ5ch+HHj+6pkh37vkOaKBbkh+UG9GXdFnyMlKcn/+/9+NKe4VfD0XnK+tkpz0kenyyOHunsvDzPJwtJm6/KyaccDNzkv9cLH1dD7R6kIQ2N3ccthnY2HI6IPvwsPjmdZmyrrAsPN+QCzUVW0uGSXSxezi5WCzZYcNl7mwzgvz5YyWFZFIWQqnp5XTaSUEQRLQKl0yKF9dSS9q7u/bw9p6IfVNkkIyZUt7D3poq7Ti/dR264jNxl68eMHnX3zJs/vnROcl2hzUlC4vJfCLX/yKt6/f8PrNa1r79+DLtjGDKxS2v9et/3JLSPUTtNZCWWfqOttcL4VtB1wnB8ZMCc7vjO4SYH+qWn4H2/B/g04CXlbazHKtK6U2chKGrjd6nvf+G7NH4YoPGDnD3AVCEL9IFNHopZgjxHa9QLPRxnv/Wt9EtUItyFLRSTn+9Mj0NDE9NR4fTzw+nJkvK5WINCU7SaP4P18dJd6eb1P1iMPo44xkdq0tGpFhWdGyWu7orufF82c8f35g2HX0u46YA11nlNEYLf4wJSMXbPNM+98//3Uz4rqi/9HHUw4shhCQlCwtLCSW0mBaWaaZ48MjZZ2d1uptBKb0Alf3vIfA/rrN+eLZLcfjidPjo5UxIux2CWJvt01W8veBx4cLpcy02mOzTothMJ9V0AUkB4TEUgrTspo4OQczzDqfOclCFzNBI+dL4+FxZl4sUTkXoDMRdApKDJEuJnJMTKsPf/1Ua36Tmn7RZnBsfrfupWrjFSxo1ZEzlcDp6cj5eObmcM82UEbESjuMmtcNic+/+JJPP/3Md4FvFMcVjSXkrKj2XuXv08XrfxuAVE22VMv7MUsMVyQ1uC/OBtkHZwKpzy1bM7VDSM5WUU/XColaxcv/ylqwEl5AbfBpSqPrQWDl2XVmFxpXW/Zg/NUts8V4u80UIypo9bAptcVePJ4g6GpMoqaECvPThacfH5keZs7HytN5YlkbpTSW1iiIi5LtsEyOgqsfjHp9evjzDtQmlrXaxG7pWsgCh50ldr96dc/uZiT1mZgC3WBEBUnm2JGTlZtBxGeZmSDJCRmJmN7PNSVCSHiync9EJTg6vdFU7QJYl4UIPL57w+V8tOBnSVd3PgO7zENJ6wfGMazLRAr2Eh/fviWNIyFlugiHm4iEkRDMCmOZK7UVYnSHAxqrGje1NGMGgW3M2cirZjeIovOZmgbCrieQUTqKZmYFXaEvpkzRaqBMTEKXsxGKtb1H9pwOdxWJ+x6Qn51624bcOLnGNLGgISo8PR3pd0eed6MJyMF63mgjEoPsA13qrppC2MgZ9rdW4m+3CU4J8RtTG61aOts2sC7L6sbPLjlCruyUlJIREDaAJnC1E7U/mpMdXAomwXWb1h8tS6G0wDju6HK4WpY0Lf69nAWnthQ2TmvYwB+cvBCMm1vV49yDGYLIhvI20+aGIFSapfSp2g9fK9PDmfVppk1KXcwBY55XlqY0d9GobkkSwoY022eQ67jKqiVFPINFoSrrsiCtkUW42fW8fHnH/fMDu31nypQ+E4dsCG00/6Yg6q2AOOVyc86znlpXzHdJTNpFFDQ2cBZV3NhBXlltYOT9/T2tCGu9IDRqWYgZqwKMi7Uhd2gwJc8Hbc7LZWYYRnLquEwrp+ORMIyEnAipMo4BZA8qHB8vnvZr/qHNF+w2z2le2g3bTg4AACAASURBVG1rSjH+Ztc5w0bdbDqMxNhQyahsciGjk9Xa0Bih2Sbrck9kdnTYSo+6vUzMae5a64q46XNwGZRlfgTXOa6l8O7Na46nmctSGQ8H9l3vG89foG6zxPcwv9d3dhsFL3HVA2SD3Ubt+p1t5LFhypsDuGoj5mCnugNKwW1GtlI4OPpaq6nBg9ugWNL11sMEoLGs1r83Db55fJ7rN0II7j7hN3MUn8c2rLpQrlaaCldRd6Wh1bjGBhjZzK+VAtFuTJEVtJLUjDuD+9bW1cYapZkXcXFEW7fRTOAqYdOmVz+2Lelborhogfc3aDOWUyuNPgiHXcfLFwc++ug546EndhENFsuY1OahXc62OVFSav4czbALDMiZ5oWqC/sKMXbGm3ZvYvVD0IKlvBf2231dZ07nI1oiLCsxQu5M2aJOWLl+PyeQXL2t/trN+e6k7Fvl/iYiYi5z5/MJciL2tnj6Trg/DEirXE4rczPVe3HXNMR8bWoTemdzLOtC6COHux39vsc4WolG5HhZeDqeKaWQpAHFsikIqHa2SV35MYwD/alRioCY6xlit8L2lc3Gwm6A1sTCSiWRgnnIWN2/Oim8sN+NfPLRK3ZjjwR1T55MU8VYc21r6q6onr2i5Gisg/9+8osoapIQuz2bG3Vpg1q8zzY1h2KeR0GSUwJ9sZo3CFunE3wzWSmsIKaKsIMh+SK3w2Toe/pOgUorUIrQ5UTKGTAQaHtYASvxaeoz5WYVhccImrsdVo6rQNgAp9XyKXWBooiuROkhJjQXapwIqaPrKrMuOHkXMJ5uFIjqHkLYCCtgSHdVQ9LFjcbUh//aGrquUCs5CPux59WLGz76+I7DbU8cIpLFXAiajbW6kKx1CsG4wkldRWRaYNHk6P7KujbGQQjSEUPvrU9zR0efnYsJBlQdm6AxX04E2UFbKboamyhkmiaz4NmwkSDQwod7CC2rEij02SRTSGIt/297Z7ckR3Jc6c8jIjOrqoFuNBrAYDAaUmtamdb2/R9nzVZmqx9KM+Rw8NNdlRkRvhfHI6u5Zhwu50a8QNHEEQkQ6MoMD3c/fs7xC9t2wZ+MZVqYy5GSJ47zkXZxtstK7gmr9bpBq7vsMpNJZd4nDjcHXr44ibEyafMVwKePn/j48SO1VmKNZJhCJzkg1C4P1HlmPsxYedptNHZkOE30XknRB4xBfneNf+Q5OlPmo7JK+0J1bcJqrUbZA/QedLwYjxAVQY/5bR6sI32MKMeiTw2UXWWfPc8EArW8NWpb6b5haYrv4Lv6YfSAw45TLKQwg45e6flHmaUAMvFW1o37wyWZu6ybDlKTw4RApkCFTfNVtxb9qfrN5M+AKpzeZdA1wJOKZtrmDrmTF0h5xmvDU8UvxnzzkvbFafmJNmmUdegSv69bJYfFKHig8nqWKdJkx7Wbpo//opFcFqG3Nwvv3r7im/evubs/MR8LJvs/XWiWOSwSwpfhuMhYC5JJSZpS70ZF/O7jMXNzc2Sex6gs6lBQCzH+pfKIHLtgp8MN62qcq7TNKRzvzFIAWtHrj6/xCxShXwzOy6q1bVu3QMgMS412Xqmbs7GSi3OYj5QyU/JFxIPmlB69Z+u4Z1rurJcLrYq0fj4/8vmT8eJmZjndkFOmbZVPHz+xni/E4Ewgjxvb1tn6Sr08kYtxd/dSVK3ZwvUAsf4dESR6C7mbPIYUHR5Z1bW8dDqonHYntQtbrXz68pkff/hP7h9esxS5xo/aeidXWIqKYGTK+HFDdULwRLuPVTVjlHJ9ERJBV1ESjR3smcbc1GwPGlztQilpnyGHnTx72kMECzyTGf60XIkAyUhZwoPuFjYtKhlLGbrJkOPhcQAV7NYJV0XpcpPNwQsWQpv7RGubxh+bPKFS6lrDPjlWC4eblXWpLC8br14UXk0TjczPT0/8++//QP34CetQwxqFbvvs1MYzjBrY3CnWmQvcvjzx7btXvP/2Da/uX1IORloyaZbpFl2zUo1FZJCdhBaSs1wvSs6UPKnywZnKwrzMSgJD1BCAaBQz4iHnEi9eI5XjzQvyfADvPPYqQziTKskjZXY6FmyzPx+W/x/B+fTUyLmRcmWaXbSnvOC90tawqLTGujin5STYGUg4h2kitcTa627ORMrhxJY5bxeevjzStkp2zSQ/P575/OkTdVOtTnfSpFundig2033l/PjE1pq0eHPB00WH1dVwS93v+1xOinM9jgSYd2qrbLVTykyejuTpCesrtVZ+97t/49sPHzgeT0FTcT1glElHTtnDIkqVIOtxzTJ6kRIoR9/XQ+dXayCuAlFKOObJr0aiXAjuJhaUsbRfAHWrmM3kPDFWye9lcEoyW+7ad4N7kLXTTskrSa4U69roPXE6HgJ48WecYSf3GKcEZtBNjnmTmcgG3iFLHte6wQSpO5ahzI61TrokpvmR02ljsSM1FRqJS+vkeeHx8cznj59J1sk+lgqjP0/fSAQWtHahmLNMibvbhQ/fvuXDd2959eoF5ZDxybAp7bKuzHUMIt9jgWKWsphvKbHMMynWKNphieALfIEGnshMIe1T2i2x5yQlwbg5T9y8fEkqJ7w94cMozaKiSXKVHOR8MdKa5u2/JjjPK0wVbG2U7pSuXRQpzZTitL6x1Y3z50fWrXHI8l1p3ZmXhZMZj08Xnh4v4XBHGBvF6KF31vNFvj9t4+efP/L0eMaYyaHpUyYMgaonynSS28HTmW5fmOaZlLWlagwsDM3C3MdD6FFuOiQnmVwTcj5SyoEyHZjKkcvlkeYXPn36yE+//z2v718zLWUMP0QXC9+chAkgCmQ4RakyhCwBnMZsdfSgwVqKmSuNYDWFmLfIt1Yr+vKfSL+Go15KcQWEleR+AxBo8j5rTfHsgtSXYhlxShgylX5aL/z8x48cDgdOp6NYWMTK95jtkUJZFNe8KoT4D0kWo/oJkmhtc4Iapm2utihNnaXMnKvz+Ief+fR44WldOdfG2Z2nx0emMLVO+4THkG23hWuDsmZJzjIZt7cL333/lu/+7h1393fMh4meHc/hpJ6y1nokqUeSEc94wqyE17DIA/M8y78XD4AoMqRfkfMSwBk2MumoSqK/T4XpoLP09PmMd7Uhw0FyfAayq8+fVlN/VXDW5qLXpQnPxtNl1TuxTM5OmuQU0LaV87bJf+W40MxZDjMlC9jIGJdLi2Qi816fjNrOXB4vXJ4uNDoff/5Ea41sPb5AoK0Ww/Zm8s6Zb1i3xtNjpW5CF3celQ/Ra9rLW7m1D1OqsPrwjR4W+tO0cFhOXM6fWS9ywfvXf/k/vLh5weuHb5hPN0F+LrEcONDbgQx3ZyhyRnbem4rBMe3Pxjvxz9Y159vZIzjdN40YPdPaVf2gFxvlebxd93FtxBiguwTTanOCkZKjdHZxTfOYwcb8MDaiYXFwkrimHn1+Jl9RUh8AlP7uTIpNzj1whUKaIsABWt0laOuXMx9//AMf/+NH1qeVtW5ceucSF80sOAzpbTR3tpSoYeuRUcY+TplX9ze8/3DPd799y93DS/Iyxxf2aCeMYgpCJ8zEd5sQXZaWtYtn9JQ5mxzp9/FKjiolMm5WSe8jwOJ5WcxiFbTaDFCbfIoHX9Pjeek5j3WIabzFXxec561hj4/kJXMqC0am1X4t0UyUsdnkLO45htllEtyfC8tykDSrrVFqCiGcisTGl3Ply+eVzsbl6Ym2bVqos8r13FxB0Lo2Ue0sjjRDW6lr53oxRfZSLYH2Den392AsjWAxOviK9xW6VtcdlpnzltjWlX/793/hsl54+/Y99w9vefX6gdf3DyyHo9Z0eI/MENSsLupc905YDcRYwq4GZHQ5BkbflLpTXKQBob0qx2trWK4kbxBiYAXgYCONPlf9joWmNPkuFIsjTiwjSmOahCVpIy0Zy2Hm/vU907I8ExCLWzpMqMzKrsUd6dPiMvIxX6XiKTauROmncn3G+gq109YzfV3JHaYmBHUvIMyeZRCjmbyJB3AjpwaYU+Lu9sSHD2/58PfvuHvzgnwskGZqbCYrUdpLm5u1La03pjl2mGyVrcHNdKTkTI9pghDqa/kbfjIM9wPbCwkF5JiNjgvBo55yR+6PtUJUPG7EiC/GcIOwMAL91wTnhtHPK/bxC611DlPBm8X6BM0gh5wGS2ytsm3az+le8ZZ2WD/FbdNdkoicMp7F3nl61Eo968E3bZ1WN7JltjCaSjkH0KBSR7d2YeXqxK5GP4gCZFJv+0NIz9QAdIt9JpVeH+Wr2hvexWrx3rmsT/zHf/4rf/jpR06nl9zfv+HDt7/hu++/58X9HWUqFJKMkkFD+OaUyfAa/W9zraHo+vXWLvR2oV0eqefPtJ8/kx5XrDjtqdNiNqq5pL5Xc6GSHjNOCxLBICeMI+3NNW1h9J77aqf9UNjwGYpInRc5lPueMeMSIEpty7tZ8hgPufte0Oh5Dn8hIC4E1fYhpQpyvrdNz2j/fZ0J6JZ2P3mL0r+mmJEPQM0SKTmn08z7d/d89/07bh9uyacZzwmziWxgWRXW0BHjhm9O8kIJ8CblEAtMhbIcooIJz6vhchDx4kFU8NhhyqByRpIYgTnKIUfLeg3jdHrB5fGJ1us+g5Z0MF0pkc+E1399cLZOd+PL40pvne1wiGUtFowOsXVyVg9Tuw5RxzmvG22TG1w9K2um0EoOiLyEcLutFZLU6jmbdoj0TQFeFVA5p9DCSe2wTDJaal7F9N9vet38EaehKdWh69F/Rg2IedfB75XaNta6yc5TAxCxUKrx8eMf+fL4yO9/+okffvqB7777wJv715zSxFzDqMG1nqEPYkFt+NbxrUFt9FrZNtmQ1Hqh1QvrWWoULw61cvfNS/JSaOoK5Y7XKqVM0V82hrZxrAqAcDpoKqvzuAhhR+wtACUN2tM+1rHgDruJOuc2Cq3npVZk6ijjPdoMZUy/CguS3pG30YYMWHMc9k42mJLRknawmMcyZJyJ+Dk8LjvXeCajn3E+Fh7eveK737zn/s0r0nHCy7g4Ssi8tH5wKoXdZG0QLVLYxeSJUypMy8wSqxEHuCGwJ0OCHHaj6q87Y6atDiqseMb52Rlbcb6AaV5IeZKJWgB0O0KQ5BTSr/Kavz44z2vVwDpnLqvjfWOeRqAM6VanhK2/kcSDzkb3xrpVfOu0tWpLcVK55L0FLM7OQ8V932AsRFMvv6jBIbWgiMUNlnKIXUevNHBih93ZfLCDwkMmR49g7rK86BWtOsthuyEmTo6+Syih/kmFxy9/5F/++ZHPP/yOP7x8xW1ZOHRjdiNF8LSmwThbx6qypneZSHff8F7RaN9H+qHmxhevHG4mppc3GIluQlpr7ZRpJnuTitGr+kBTiTvmgGIiOdR2zZQ2giv6T5Nn6t7GjvI+5T0w9XsjSxD9ZKCdQqXlKGeGCODRKlgaPNcBKOla8Jxi76csV3owm3oSdbMDsRdAZ8P0f8W7KiQz8py5fXjJt9+/4/7dHdPNDHOh50Qj7SscDlOhTIUpgm48hxJaTRmJFTyJ2TSN9j0qB93rTjct8dLDuHroJsr+PD3KaAFDMKxIha6ziwoGad4DzItaJnybbR/F/dXB6WYxbnBKniOTynRYGTMg9A08fF+xpH0dZGrf2NbG5k6vHWsXzYfcBKBw9bzxpv6spCz+bNYCgMlyrIbvAfTEg/EmokmYcCXTXK/Hl+4eJRdBTWtS8VsggNhg6lRZZ1v8fRhTGpeNtliJzC4YPF2eaOvGxz9+oqeJQ4PiRgkQxnvTDkjPTD7mqzJETnF3Jvr+/WWSDLjQTo82AFIAWU2rKaa+JzEn4Hk9uYHUDAiK1oJUHaijRw9pQztoBMw/DoYusOerHAbVcqDdKUgPrXfpVH3MPWXRklKmmxDK0ZOP8tnLRD4cwiDraruS6ZQgR7S4hKX5FpMr4ZTDxIs3t7z57Vvuv33N/PJAOhRS7NtJTc/cEhGEoRXtME2ZXLRKIYfdCEmXhYdgu3MFHy1ZiDU8LnKPiz6erbP3mjaCPfpUBWmPAE5YnoLtNEDNAJCE8wvkiuz+q4IzTZm2Ns6XDbPEYSoyqtLTZKzB040BOr2uB9Blw7h257xJjO0GU544lSkoWzKgHrQ2PJGQ/0wyfc1ihhWTTMlVLjlDCExkYWKwa/vh6iFAHILY5ipTDb0oIa1aYTDF88sOixuFYAgF26eEsiQ75A5LcqbemLaKxSzOo2xSeRS9do9ISArMcVjjTcXbDg1kHoLcBK5lPTlnzXnH7Yte8HifyixCNbs9619cf6/E2lH+eoBEdsWS9e8p+lLioI23P4JUeEK83f2ARiyh9Q0enN02vCypbWXdKv1c1Xsejtg84zlsPkyjst6Fxs4W7wQpNyiJaZm5ebjl4b99y/1v3nK4P5KPEz6FcZvrnE1Fio+p6AKpbqxbZWtiQ52OS8w2ozUqhe5S5li38bgE4HWP8jozeNDJYhXHs0AaicWIigGnriulDDlbxi3vGdNszDqjxrMrWv6rgtOCSdF65+npTGLhsGTNw7puaHmjjplbD+DFqb1zWTfO68p5OK674dYoXZumPFBOMHy4O3XNmRLqOXB25r+kjCIgL8vEZo6tNfiz+nPkchbmxzZmZEAMld09OrdB7VP2TK4SesKY3KK114MsJKzDjDFZprjtiGtOVyaPJhcaTsupQz/XMDAZh9tj1uXmVDaaGXNe9sA1T3jXC9bNP2FJu1EFalzHK/uK+RSq+qFqeQYEwegtFWKDiD8MyFw/5CiAxy/uLYNzZecA13LMgsWDRjhM0Gm0TRfm09NKWxunMjGdXlBubrD5Mymv5KZ5b4k+c4wjkoFPiXI6cPvmFQ9//54X379hur9hulnIS+z9NFEQrRszSgSBvITcK++qN6HKGWIDW8qFHMqS3oWeYmg94XgGHoSatOPWO6g5xAnjOamiaKzrRaOX4NwONB3znUMbj1ruFN3ov7qsrSnULbKe+PL0hDNzysfglSoopahXbZ66VBhb7TyeN86rAnNshdpS58llhDibqGZUx5GUi5w4zEWB4dfxgHetR2+94SUGzSWTao4B9UgcA5ZXQBBwNwNljJ/Zo8iUs9yZ1pwU0OrkxpHCFKinOJzKqHNQr6JGpsQL8KgMFRoCRTx+W4msJ/pWvHvTd6jZsCUx38zkSUFrLeNN6n56wRhsFKHcKrP1XsYmrjF7xcJcLMCxcSFZZCYPf58hkRqlpHUTIPL8/bvjJrWJMmmGostDZ9j3WDYr8o11gzDVXpaZzZoutbs7LvevuPz+Z3i84LUKL3I5GrRwaSg5UW4O3Hxzz8Nv3nP73RvK3RE/TaSlYEHDEzIfgeIG4b6hcl2oKB5eS9NMmqboO0W904UVNMikhK/doBGMFh5N0XsOvoekZkFooRGEX/BKq094rXjTUumEKjZ8VB3CVTrsgf5Lde0vZ86ermhcHNTzudLaI4ejtjENRocbtK2zbo1t66zbQD+JcskCppYXqffK5tLg0cFTp1iRv+lx4pBnUredkZNzJpuxtU3ueduZusZODZ18xo4KNeVBCogD2EIl43GmKs5l25iSNkRttXLeLqReOZaFkmbtkTQXydoMUqGZAmTUde35P6W/oecQWIdL2zqeXyhARnlr1ii5Mt8UDrdHyiJ64/D6mUpsuQr4fZTiCpxQNFhUOKMZRfS75/Oz5zaO2NUaY7fCjEBOmNQiFhcb19407WhugCdmQAB7o0c118rI7kwNXtxMbHNlqo18d0t7+5rLx595Om8YnXYmFiCHHGvOTC8P3H3zwN337zi+e0W5XUiHiT5nZRkbcqtAY0xujJm8A29UWbHmksMpv8TFo3ZoZD6V6GNW61IG+ahEdiZHXPrPyS4jOANB7xW3yuOXzySbST4zFlhpZQZ7ZTCETL5fbr8yOFO8xqs+Un/yeqmstbGsG6fTgblohuR0trpxWavGKvi1cR6lQByanlybttCQt6eNnjuLLTBnpuVI6jE1CvpescyS4HK5cPnUqZenGGTbbg85KFX6V7wIdONp5b1Aot6N87ZJClYK21Y5rxdmb9zMC9PLl8zTYeeTzUmlSkpxGLIsU0rwhWWcbXJ0m0OWVCaVuaXE7E1fvzVt82rrE+fHP9Jtpbw4UI4zZVFv5EnrA0Ql09y4d2lls4cI/LlQdwBJxv68hij7eaDq/1eT7R7gmokimKPru5Z2RMUzyA5az6FRgu9zvz4O2+BbBk0O0/gs5Y1M5/bDO1pd+dgNfixcPj/BurIk47BMHO5fcHp3x8t3r5nvb/BTgUMWDyM1dAWW3SnictG26ONJe1iSFa1WbDDPsHWY5kwpQPCix0WVYr46lDt5L+v1a+N7ys82RnSjPDP2Ml/QhK7musWCqiIpXYqNYn3EYTJZokawRqH364JTi24i/Qq4ih4j07rz+HShtsoyz5QsNsbW2nWx6Vg69KxHEjB2VWlUoOVOnoESLJjDxHQ8YdV30XIy4VwlJSoGnz4HFWt8Q4EXY23gKNnUuCdI18wxGB6ejNU7a5XrezXdjr0U3v72t7x++AYm9XpTSvtcsJS8e+UMNYlUHxpK75ksZc1AU/SGHm1A3cjrhe3pE5d80d6WJZNm2TLK4yYzz5lpsqDAaVWCNV2aHr1KD8GxsmtcUFz9ZVvtUXUM6t9oQXRJ9CZP3hy9/O4CH73qTkwYLacFAh4GYaNEL5b0ayUANIfOhuE0k9tBuXvJ7d//hul0Iv/njzz+8Wfq+UwuieOLEy8e7ih3B+w40WejT4Ydwus1ifAmbyiV2D4rq5WSmCeNS3rT2cwFpg6p6MIcV/UuiI9yeIBhiZElB+AWWbpHq2HDImY8h4gJd7GLgmCwj/MGUSQXtThdKzHLCEp4xor6FcEJfferGd2nTto1C3Z3LuvKZikMo6UvGkqM626NMXsLxUX8wEJ3jZ4cmxe8JdK8kI4LpeuBtpBqTSkz5cSlNv0dpeh6DKqVw24+NdgmaT9oaa8EUswJR1nhBLOkd1Ke2Mzo88Ly+oE0L1hKTCQwMUlSybotEztY1VrDs4LITTdyi59LL2JkbbnWOZ1WEz7pdvWkZ2Emcvc8G8siS43mTt3CHc+KMqOb6JBJz7bWjVKuh0juesb5vDJNE8ec8XTdyzFKq9rHggff+2Z79nuGiyKW2Kp4v2WacTPO5wsp6RLpwwDbUTAtysMd8Z/dwJeFVBaOpwPpzStuPn/Gt1VytKJ5pi9GL3oenpFuNaeRvMVvDqhunqSkSWOnqoPomvoS2WwvZ0GuFxYXh86Bzrg8hz16wsKV4RslrQd+YAMx970abK3R25lDPsidP5dAYBupIKG9DyfIaxWzVzO/VpXigw7V045A9rhF5Ib+TCUxmtO40ffi0gddjH2wrZ8ueIrxIFPSw015Yj6eKMuRKcXt1gUUzKZVqZY/Q3KmKdOZtYrcTKBOUM2IMcmLmxOvXj8wTwe+PD6xrpXWNp6eHjlvj7S+iexsmduXJ96++5b3b97z+pv3pGWhF7kl9ACXdKi7iBBT9I84PQ3kU/Iv99HLZQjtZBqlEVKhDAperYMc38lIbJxNs1zz4At1ozbpNDMZ35fbdnLuUWpVCMUJz1oSH0i5XzNiGsqLAJvcZPFyJehf/3d0uTloORM7hmEup8SMkeYUaDq6tCcFipFIbaK6Ubsuh3Q0UsksNwd6XTEq3hstdTktBlMs6U4QcyxsQq5r3a8sKQmx47nKlSqkbYmU5n0T2MCvpCkGS8H0GaMiV6tFTByE6wUmEpe4qI7jONuePXtvZHdxeKsShhRNcSm3HIqgEVwxLfiF+PsLc87r/Es3VGHUMu5ju3GPYIgXZjGkGC85UESVemPfhcXMkRhmxwvvRplnjqcblsNRm6rcMBasS1WRemVrlda3HaAwu14a8ZNjwOm48OHDBz58+J5cZpQE1Bt//PgT//uf/xc//P53+FbJU+K79x/47//0P3l190BJMxQZOCkWE25jVCT38/HXeXxvlVUhV+vj5zAsIHvJsRwxdbSPY55mei1kG7Ik9qWsoRQmWWKaZvXgu68QOxI7SO6uE0Y3qSwsJZbDxBjmjGCz+M0p5ci2giuHY9PINcTIxIIcnjDyFEJuYC6TqIYpiQyfrhdYpWu79GEOZUsTAt3BmgKul0xvhd7C/T4WWrkRgagyOycxz4TQjY9c168vIErKPpwziDMnb6DBPuu9XvvE6LUHer/rVs3jgtuhm+jRPczLAuMoFobpUxh3O+t6VtuUjeUgP2ELuOa6+uEakr9U2f5icE5JUHrPhgcjZwzkU7gUpJjnaA9KUxZsnW7BQBlka4uMg+70Qe5OSRIdimHWORwmjocj8+FG4ITBId9IzkNjffrMp8czl0slxXq/3i22jukimNJQrR8o5Ybj6U4ARQQKJKbDkT/8+ANf/vAjlc4yH3h4957buzeUWYoFy3mfn1lOWJfhlyqaHjC6DoqsfExWlabSTtnwGRD0jAqXUoJpIi0zac2U1JmzMWXHTL1+CkBw9Fl5is1YRWwYuAZoD8AuTEoUASjbYVqFQM/Qs0y5SOBDtBDb36oQd3eYD0Zexq0ZATwuVFPPWUpkL0abEwuC0WgBNHv1SeV9x8lzJvmCMeNtxtqFVM/gg8Snc3LFGaJXTrqcd7qbjYtE51DgVtLowkS/y5PTrf3JXNhI+yile5cn0SC5jsza4robY6Y8klSXcwYimXhPUR05tBXLZ+r5Anlimo5MhwN5muhe6Qk2VGXQJN6XgunP586/sNk6luWMMibqAjPCIc12KY1+QQdR6T7FfMeDSxqACioVUpZXDYlAtp4NzlMOxo+yi6WJKc0kr3z++Scevzypv636k/VCldkf7l/zzdt3eGs8XS6U5YSVmbIs8ZJVah7MOR5PlDLRe+fu9p5X928oy5EyaVUdxL6ToKlFNbUfDD2TyNguPvFYc1hKfJcwfe5d3qg+5h/u8OvHjgAAB5FJREFU1LaqXLPrnHhkntZFC4wqGLMeLKKr9K3X6O9cz7BX8CLHA0MXZ4ucOrjMHaAFMb2HlClec2vO+UluEEcOHMsoCbkGaXxvZemxtCqAJndtNg/Z3AgKS50s6Y5odNHXlZ5p1eg5QbvgvkUpH0HnogFKO6vnPPpAfZ1n+so45DlGI7koy1fXucvx/q4rLgZBwKiRIPfRUmw01zfuexwY7FQ9i2DuLbCALt+lnBNba7QUQvlSuFzWqL5EssghAAEpf35VcMrLVGCwhqY9DkJIekz0O3cx+j0HeulXca4Hv9VS2lcTmEOrmw5ikvws9cRkEsaaGfOy0Lo2buVcsN7Zzis//PSR89r0o0fflFPidHPLu7fv+f67v+PN/T2Os7Uepd0hPGj18KVn7Cw3N9i0MKXC2/d/x20Ep+WsXjeGxnkM8yMY1Ue0OLSxu9K7bCzM97LWRvAWQjUiTryj8pRSmEvmkiygcNNNPlabx7YyrGm5awGtEYxhvyvT1aqXklKBhbjc7Kp6CFADAijqTaynvUmMg1IS8/FAbo0yaTymu0jvZPjg7L5ENoJV/9mjchoXOC4hdU6JKU30FC4QSXxVXdaTVgWSaJvh/aI/L2kln4cxeQ98Q6Xns6AE4obXqGuAQIO15j2qvfE14wym+PmcHUBT9vU9EEdfaVHxjfl2jwtYANPoObXaw4pI9701ejNyCV8pj/FJHvrcQIj/PHvvL6ydn2a54O2oFUGH69iUd8UgIDsGD7SxaMFub/oCo65LGBbkdEapkfSgW3NKkRJDUrSZ7IVcFpVeqWO50j2R5xNLeckyzywvjtw/vOH1w1tub19xnGeNPUzMk+jcGPzQFJdETs6rN294ef/AYTny23/4R17cvt79RVPcjClKNr0iDzBAHjzg18PSG9I2ugIoqSRzfDhL4kCa4qbsiWQzvik7teZRxo9SJGbDyXUpUimjn2dspB6gk1wrwKkNppGdRyfaBxG9/4lbYM4id4huFeXznFmyFsmO8QVdmWQE6Ij10Z8xjrOHtYxpBBPQXIBIYeJdjJ4G9q8AbZvKRIkcEt7XvefO9szoLI60xc2/Dz3yAMH0TAbQMn4GH2oms+d30f5eQQBUay3AzegNub7/MTIJ0+O9WdwjIAC3kjI1LoZpmpknuYF4V1bXqMavFdGv7Tkb8ukkbs6x7rwG5SnZAACiRwjCwS6NybbPA0eDnjDYwJpQR+2G7LuwtbWVra1Bs5pJoR9NZizTzD/84//g/TcfeHE8cXv7gukwkadZWSalUJToQKVSnt38eVSTgJOnAw/ffMc/kTkeD7x685Y8CzzpLpZNNukjBysk0fdAU39yLbPIhntlB2S7SicdioaVIb+K7GsGLUFecCusa2PbGkcPhDuAnh4AWm9VgTfJksMjLQ5anpKgZmmDiBHhHofAILN7C+FO7xuWOoVJjwxtq5buNZE6kd3GIdaZ6DEe2nW0UR5edaQ9qsxhqBaCgxKgmRnN205p84RE5DlDrIkU8lzjYjDGmgviQhCcYfE8Ld6t/tmCUqrCRubdPYkN5JGVe4zN9oAOgC1nNPslKJGoZfEm53tjAF9XDec43976jo3qmDm9bvrfdsDSrpoyCGrqn4/Ov7ifE9PtJeMwlyg3/tDRx5Qphx/UoCqpd7JkZD0VDb1dkFCeMzPLbpNpOUmJYGiHIY2cPTxVCwlijUDi4d3Cw9tvrjs0vcbhSIwBckKon+rAAFa4qjpSlKEvbmdevLxDjBr9ek6JHIdv52ASZ3B0t6aXZUPIrfeHkePGj7p/P9JF36lcI7c3h1zI5YbleEfbnhiqnEwQwL3Jf9fDKpMgIAx2DsQNnZgtyYY0VUjhAdv13HZ7k6Ga8VFyCx3G625W5qbVhE4s8OljNh0BH9WIEeqLvcwdvWfMtCM7jJ/bGH60fb9McP13LcBGgGKZVGbcE3XT1rCSRMaweC+t6gKapmkHxiJFSuUUmXM/E64dr7Emhp3aOc55ePoMBVMpBa+R2hytzNiqztzhCpK5dyWFIHj8v0u2cjFOpwOff/4kg4GRyMLpT4DfrwzObk1k5kBWLcs5TzMjlQoWWc1M2rgUpVe8GZ3TQKWUzlWKpQzaZuUBEMVeETprPdNpuzdoIbR4eyZShlajnxlqDYtDoNmggeX99wurCHAhyqocRa8luZvLtCrvW6z3bJ8FCKSsjNxbI6USJWFkK4syMtgrJPA2LoToXQYNzztkJ3nGy4FpuaHkRf1OyJbiKlRJ5JWcZ4EdXS0ESUdwZ6vg5CljZdrXCO5jKx/gUGTuLLZSil5F/bEu2N28Kmwch7O3EVaY8R1TUcB7kyPGIIjnQId7CAxKjNEUQp3nRyOH4qn1TS6EkV2nMsU5aWyXi/7cXPaflyiYr72v7WXqKLdbFz4igcBgBo1bCdQ7tn32u8fqAIYYge2hE3ZqrVgdQRzkhWjltKXc9z+rb6NPTZHp9e6HoHzP1r+QOe0vUYi+fr5+vn7+az5/njv09fP18/XzX/r5GpxfP18/f6Ofr8H59fP18zf6+RqcXz9fP3+jn6/B+fXz9fM3+vkanF8/Xz9/o5//C8bV164C8194AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot image with matplotlib\n", + "plt.imshow(image.permute(1, 2, 0)) # rearrange image dimensions to suit matplotlib [color_channels, height, width] -> [height, width, color_channels]\n", + "plt.title(class_names[label])\n", + "plt.axis(False);" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nwmoMhW8IqSu" + }, + "source": [ + "## 1. Replicate the ViT architecture we created with in-built [PyTorch transformer layers](https://pytorch.org/docs/stable/nn.html#transformer-layers).\n", + "\n", + "* You'll want to look into replacing our `TransformerEncoderBlock()` class with [`torch.nn.TransformerEncoderLayer()`](https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html#torch.nn.TransformerEncoderLayer) (these contain the same layers as our custom blocks). \n", + "* You can stack `torch.nn.TransformerEncoderLayer()`'s on top of each other with [`torch.nn.TransformerEncoder()`](https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html#torch.nn.TransformerEncoder).\n", + "\n", + "Need: \n", + "1. PatchEmbedding (turn images into embedded patches)\n", + "2. Transformer Encoder layer (this is comprised of alternating MSA and MLP blocks)\n", + "3. Stack multiple transformer encoder layers on top of each other\n", + "4. MLP head\n", + "5. Put it all together to create ViT" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YaQ-bihAEdsX" + }, + "source": [ + "### 1. Make PatchEmbedding layer\n", + "\n", + "Code from: https://www.learnpytorch.io/08_pytorch_paper_replicating/#45-turning-the-vit-patch-embedding-layer-into-a-pytorch-module" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "KzQW72LmGmzR", + "outputId": "be5f8e17-5e71-4bc4-ae12-36a276174431" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# Create image size (from Table 3 in the ViT paper) \n", - "IMG_SIZE = 224\n", - "\n", - "# Create transform pipeline manually\n", - "manual_transforms = transforms.Compose([\n", - " transforms.Resize((IMG_SIZE, IMG_SIZE)),\n", - " transforms.ToTensor(),\n", - "]) \n", - "print(f\"Manually created transforms: {manual_transforms}\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "mU0T4gP3DJdF", - "outputId": "7d354ca6-d0de-4680-c356-23b372a74a43" - }, - "execution_count": 6, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Manually created transforms: Compose(\n", - " Resize(size=(224, 224), interpolation=bilinear, max_size=None, antialias=None)\n", - " ToTensor()\n", - ")\n" - ] - } + "data": { + "text/plain": [ + "torch.Size([32, 3, 224, 224])" ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rand_image_tensor = torch.randn(32, 3, 224, 224) # (batch_size, color_channels, height, width)\n", + "rand_image_tensor.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "zS2GQSJT9wwR" + }, + "outputs": [], + "source": [ + "# 1. Create a class which subclasses nn.Module\n", + "class PatchEmbedding(nn.Module):\n", + " \"\"\"Turns a 2D input image into a 1D sequence learnable embedding vector.\n", + " \n", + " Args:\n", + " in_channels (int): Number of color channels for the input images. Defaults to 3.\n", + " patch_size (int): Size of patches to convert input image into. Defaults to 16.\n", + " embedding_dim (int): Size of embedding to turn image into. Defaults to 768.\n", + " \"\"\" \n", + " # 2. Initialize the class with appropriate variables\n", + " def __init__(self, \n", + " in_channels:int=3,\n", + " patch_size:int=16,\n", + " embedding_dim:int=768):\n", + " super().__init__()\n", + " \n", + " self.patch_size = patch_size\n", + " \n", + " # 3. Create a layer to turn an image into patches\n", + " self.patcher = nn.Conv2d(in_channels=in_channels,\n", + " out_channels=embedding_dim,\n", + " kernel_size=patch_size,\n", + " stride=patch_size,\n", + " padding=0)\n", + "\n", + " # 4. Create a layer to flatten the patch feature maps into a single dimension\n", + " self.flatten = nn.Flatten(start_dim=2, # only flatten the feature map dimensions into a single vector\n", + " end_dim=3)\n", + "\n", + " # 5. Define the forward method \n", + " def forward(self, x):\n", + " # Create assertion to check that inputs are the correct shape\n", + " image_resolution = x.shape[-1]\n", + " assert image_resolution % self.patch_size == 0, f\"Input image size must be divisble by patch size, image shape: {image_resolution}, patch size: {self.patch_size}\"\n", + " \n", + " # Perform the forward pass\n", + " x_patched = self.patcher(x)\n", + " x_flattened = self.flatten(x_patched) \n", + " # 6. Make sure the output shape has the right order \n", + " return x_flattened.permute(0, 2, 1) # adjust so the embedding is on the final dimension [batch_size, P^2•C, N] -> [batch_size, N, P^2•C]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "qi0XzMNzGtSp", + "outputId": "64141a1c-13f1-4a15-d44c-f73502ec4335" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# Set the batch size\n", - "BATCH_SIZE = 32 # this is lower than the ViT paper but it's because we're starting small\n", - "\n", - "# Create data loaders\n", - "train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(\n", - " train_dir=train_dir,\n", - " test_dir=test_dir,\n", - " transform=manual_transforms, # use manually created transforms\n", - " batch_size=BATCH_SIZE\n", - ")\n", - "\n", - "train_dataloader, test_dataloader, class_names" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "W4vWgIprDJau", - "outputId": "15d080c5-bb82-413c-b69f-46a0f6621f78" - }, - "execution_count": 7, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "(,\n", - " ,\n", - " ['pizza', 'steak', 'sushi'])" - ] - }, - "metadata": {}, - "execution_count": 7 - } - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Input shape: torch.Size([32, 3, 224, 224])\n", + "Output shape: torch.Size([32, 196, 768]) -> (batch_size, num_patches, embedding_dim)\n" + ] + } + ], + "source": [ + "patch_embedding = PatchEmbedding(patch_size=16)\n", + "patch_embedding_output = patch_embedding(rand_image_tensor)\n", + "print(f\"Input shape: {rand_image_tensor.shape}\")\n", + "print(f\"Output shape: {patch_embedding_output.shape} -> (batch_size, num_patches, embedding_dim)\") " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iX9Xo95yEYXJ" + }, + "source": [ + "### 2. TransformerEncoderLayer \n", + "\n", + "Can build a Transformer Encoder Layer with: https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html#torch.nn.TransformerEncoderLayer" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "yNWkedYJFtxJ", + "outputId": "52f4c0c9-9806-4442-fdfc-ef8b1eb9a60e" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# Get a batch of images\n", - "image_batch, label_batch = next(iter(train_dataloader))\n", - "\n", - "# Get a single image from the batch\n", - "image, label = image_batch[0], label_batch[0]\n", - "\n", - "# View the batch shapes\n", - "image.shape, label" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "u7eLIFHyDJRr", - "outputId": "b923e138-6c5a-4950-8cf2-76b7359685fa" - }, - "execution_count": 8, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "(torch.Size([3, 224, 224]), tensor(1))" - ] - }, - "metadata": {}, - "execution_count": 8 - } + "data": { + "text/plain": [ + "TransformerEncoderLayer(\n", + " (self_attn): MultiheadAttention(\n", + " (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)\n", + " )\n", + " (linear1): Linear(in_features=768, out_features=3072, bias=True)\n", + " (dropout): Dropout(p=0.1, inplace=False)\n", + " (linear2): Linear(in_features=3072, out_features=768, bias=True)\n", + " (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (dropout1): Dropout(p=0.1, inplace=False)\n", + " (dropout2): Dropout(p=0.1, inplace=False)\n", + ")" ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Hyperparameters from Table 1 and Table 3 for ViT-Base\n", + "transformer_encoder_layer = nn.TransformerEncoderLayer(d_model=768,\n", + " nhead=12,\n", + " dim_feedforward=3072,\n", + " dropout=0.1,\n", + " activation=\"gelu\",\n", + " batch_first=True,\n", + " norm_first=True)\n", + "transformer_encoder_layer" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "9Z_NREYbIZtF", + "outputId": "80ab032d-2432-4000-b8b2-e543fe779d66" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# Plot image with matplotlib\n", - "plt.imshow(image.permute(1, 2, 0)) # rearrange image dimensions to suit matplotlib [color_channels, height, width] -> [height, width, color_channels]\n", - "plt.title(class_names[label])\n", - "plt.axis(False);" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 264 - }, - "id": "2yyNHCmCDbSR", - "outputId": "6d138197-ee69-42ef-b118-99201c6d43d4" - }, - "execution_count": 9, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAAD3CAYAAADmIkO7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9269v2ZXf9RljzrXW77Iv51J16uoqV9lu39pdstOOujshkZJwC1JeeAAklCce8gBShIQQPAWBQniAiD8AiQcuQiAeEDwEJAQPXALpbqe7HLft6nK1y3bZrsu57b1/a6055xg8jPnb53TT7aaLdLoQe0rbp3z23r/f+q01xxjf8f1+xzzi7tysm3WzPnlL/6Qv4GbdrJv1+6+b4LxZN+sTum6C82bdrE/ougnOm3WzPqHrJjhv1s36hK6b4LxZN+sTum6C8/+nS0TeEZG/9Cd9HTfrD143wfn/kSUif0NE/pM/6eu4Wf/o1k1w3qyb9QldN8H5CVwi8q+LyA9F5LGIfFtE/hng3wT+ORG5EJG/33/uXET+IxF5r//8vyMiqX/vMyLyP4rIhyLygYj8pyJy6w94vy+KyPdE5F/4R/cpb9Yftm6C8xO2ROTzwL8MfN3dT4F/Evgt4G8C/4W7n7j7G/3H/2OgAp8Fvgr8E8C/dHwp4N8FXgS+CHwK+Bu/z/t9Dfg7wL/i7v/5H8+nulkfZ90E5ydvNWACviQig7u/4+6//Xt/SESeA/4y8Nfd/dLdfwr8beCfB3D3t9z9f3D3xd3fB/4D4M//npf5x4D/Bvir7v7f/jF+ppv1MVb+k76Am/W7l7u/JSJ/nahyXxaRvwP8q7/Pj74KDMB7InL8OwXehevg/Q+JADzt37v/e17jrwH/s7v/T/9wP8XN+oexbirnJ3C5+3/m7n+WCEAH/r3+59PrXWABnnH3W/3rzN2/3L//N/vvfMXdz4B/kYC6T6+/BrwiIn/7j+uz3KyPv26C8xO2ROTzIvIXRGQCZuAAGPAT4NMiogDu/h7w3wP/voiciYh2EugIXU+BC+ChiLwE/Gu/z9s9Bv4p4M+JyN/64/1kN+uPum6C85O3JuBvAR8APwbuAf8G8F/2738oIr/W//uvAiPwDwjI+l8BL/Tv/VvA14CHwH8H/Ne/35u5+wPgHwf+aRH5t/9hf5ib9fGX3Axb36yb9clcN5XzZt2sT+i6Cc6bdbM+oesmOG/WzfqErpvgvFk36xO6fqYJ4RfvfdaLrFRdcQUlkX0gk5EhgUBdjVIquKCqjCmj6lhaWO3Afqf8yi99kb/yl3+Fz7zyLFNqUB+zHu5TliusGK1CqYK5YAjVgCYkRqxBmSuPrx7x6PIxabPn+z96yI/fX9HhlP2tMz73+qd4+d45k1xRLn9C8gvGDCllUMVEKK0iYgxZkeaUdeFqOXAxG6vtKW2HywBUaIW2HqjzY7xckGXlhRducfdOYhoTY54YphPS9jbs7pLGU7yBtUbKCaMhAuYNUWWQBGmgotTm1FZxN3Bo5nhzRDJZR1QzIgmn0mxlXRcURchYk7hXbmxToi1XXFw+YFkec/nhRzz6yY9YLz5ExLl9Z8OtZ0amXSKPe9AttRrLWrAmuCvWwF3JaWAcR3a3ztjdPmN7dotpe4bmCVyZr1bmQ2O5OlCu7lOvfkK5+AlaHqPSUK1s9gN5zOQpI5pxH0lpw9VVo9QB1z2kHaITpRUEqLWShy2b01sMu3OajpB3oAnNyjCOiAoOqDptnTkcrri6XIAN2/2zSNoDE0LCXLg8zLz19vf4X/7X/41f/dVv8P57D1lKw2mgjqtTrVJajb9zRfu9UIGkgghkSSRxVCopCahgOG4ODcwMsyBTg1N1HAURFHB3qjcaYDiYIQ6qytE00lrDzPnB4w9/r/78hwenqqAISRMugAtYfDj3BiK4g2H9AhQXZ0oKCrvNxJe+9Bp/7s/8Mq9+6iV2G0etsa4Vq422VmptuCWEARDc4z1d+kMRGEZl61sqwk8/fIhI5rOffYEXXvw0Z+d7hiTQrlgPl3hrDDkjCVwS5oqkxJgGzCIoBENTIueBnJxqibilGrdEHNFMHrYghlXj4eMD22lCULw1ihUSK2OumK+oKOaNZT6ACDkpw5gZhgEzx8xYm4Mo7uAWyWxI0HDcQBREHbOCWcG9Ie6YG0njwVYMrHKYr2jLJVcXD1mXC+arB6zzBe6Ou3G4OrBflHGbaK3hrVCqxXt7XE8zWNaCUDgfR4bNhnHakfIIkiLITEAHNCfSYPi4w9cNM5lSG+qFYXDKUlGU0lZIjZSduqwsh0qzgdIuSXnHUpylJjRlNA1sZECL4aWRJiXnhCGRuGpDUqJZo9VCXVfa6uADw7hBRfHYNYChopyc7Pj5L3+J119/nV/55V/hG7/2Tb7x93+T77/7fS7nK8wdb4YYoBkQrCsW0gNQIfYPITDjhpvS3MCc5CAiiDjuDuLg4LQIVAcRjT1BD0pJ8XoWryqiICkSxMepnIKRJDZS62/iFtmjuccHJbJKExBxqhgqznYSXvnUPf7ML3+VL3/h05xsDOoFdb2kLTNtXailYhYBHtVBEeOp/w9gmC2klBiHHc88s+e1W8+wPz3DACuPaetKXQ94OeB1Jm2FYZywlHBRNGUEIUuGVoFCShlNhkjPniRa37jugsiADA5iNK/MpXCYjWlKJB0RH8AzYoLViqd4iCqOJiVlxXHWusb9c8XJpJQRGWi1YbUg7qhKT34W97ZVrBZwi+C0qPwg8b31inp5SV0uSRTGbBx8weqMipA001pjXQrjnJh2Ts6KqYLHnmyN64okmsnbHdvTc8bdCWnYonnC0agWmmgIriNp2mHlFNKWKhlbFjBBaqXNjWEYkNQ4yIybsBanNJjnBihrBcu3OL/9LJvtFvKIoazVUKkUZnLOaMoYiltjXldaMbCEW9zbPOwRHRHNPTAcx8CNrImzkw2/8Atf5As/93n+4l/6c3zjG7/B//H3/h7ffettPrp/n1Irte9yJILR3HAa5o6YkTVSdmkNl0AZYJE0ezDTg9HFryuomSMYiIBb38WKmYfNyx2noUn/b7av/8fB2bzGBcTro5KQFFW0uSE4zQ3zfiGayFPmzp0TXnxhzy9+9XN87Y3PcOskQXnEfPkh69VjrMy41/hQLW7QMX+YQWtOzoJbpZaVUlfSuOferXt42tLcWNaHtLbiZcFbg9ZQGmlM5JxYa2E+HBi3OzZpjKTSHHXIKT52EkMExCUuxA3EUI183IqjObMZ9mw3ie1eGKYd42bHZnfKsDnBdKBJ3H7EmMYBzQMQCQx3WjNcAs64xcMUA8wRHDH69xoNo7UK1vBmmHOdwNyNVittuaAcHqE0NqOzemNQx8oBzVuEBGYsVys5Q84T4oaQkH6Pa62UFpsljwPjZksaNmjeIGnCEKxZwHCTa6gpAjbu0XGHXw0sxZgfX7FRQSzQVB5GmgieBlyUasLhcKC1wnZ3wt3nbrE5OUGHLYx7ZNiyNgm459aTlNGsYg6tGN6heCkNzRn1BCaoeASKxP0BQcRAIAnsdplXX3mOF174i/zSL3+dt7772/zvf/fv8ZtvfpP3PviAeV6ptV1XwkBPhvfnJknRNND8WEQSouBmEcRP3hwnnrekKKbNG+C9goKLXP+OH52UT3zRf7TgLBQwua6QjYCZmhPSoNWKu6MCkhTE8bbi9cBLL7zEn3rjs7z47I4sl9T2iLo8pC0BPXEQVwLKxo11BHdHRDCrWJ2pdaY1GDMUmyl1prbW32dBCKgdUMEYspBSBEYtKylndLON6yNFDElAP0Tj94msHfgjYNIwZvLJCfv9yH4/MGZhkwxVZbvdMWx2SBpovXKWWthuN6SU4355TzrNcJPeETREVqw26rr2LC/Rp6QEqh12C6KJFlkQb461FXeoZabMj8BnVOMZ4EZOSikFM0UGQbOwHFamTabMBfGKp0TSRGkloLY7KWdOTk44OTsl5QFQRBMi2itRfI7YcYA0nIwzgmdagXJZaLWgIjR3SrtktYE7915gc3rG5dUVFWWY4JnnX+T0mWewtIG8o+mIDiNSPILDG5BR1eivS8OagydaIxJFBa1CSglIsdE7VI/E68hxX1EQUaZBuHf3nGfufI2vfPlLvPuDH/Krv/Eb/OqvfYO3336Hi4sLagvkhErsC4lEmpKCRe8Yz/FY8Ryz1v+0jkQC8wmQUNxb5JvYWLg1RFMkbQPV9PGC09R7NlOsRZavVqBFRhMVsgR8SxIXm9y4e77jK194jU+/dJtRr2jLfdblAVYu8ToHAULCXTADs4ZZQzQ2h3uQK95WnMo47hEV5vKIYpFZkwfsNsv9Gj36EombmRKc7SYkJ7DKME7kacQ6nDRTUkrkZIyjMEwT2/2GYVCGYWC/2zFOGVHDfcWtMuSBpImUoyJIytR1IQ+JadiTco5N31oEJVEIrDpOve4xvFXEa69miqO0aqCJaj17i+Ceolq2lbYslPWA1QVlIQ8OrVFaobVKygO73SnrUnFz1qWQW6Wt0dsXVqo4SKIdoZcIojBMA+M0on1TSgAH3A1rDatBmJgpYgGzIeFNmS9XlodXZIuEayKQM3MVljWzHc/Z5FO0rdy+c8rZ3VvYONBQZBjQYYMhiBGQ3aCUwjidUlt0IceNbR4IpDaHpSLSGHMm5UAlWZWkiVrrtcXfsU7ARFUbNHN+tuXsi6/zmc++wl/483+G3/zNb/F3/89f4zvffYv79z9iXpZAM3i0FaUTexqEZRQRAyyC1WrPYYp5QF11+r1MHVnG9WhKvU+NAG5mHy84r8swkSlaz7ZoL9+iDBobSIGchPPTDb/w5c/yxpc+y8lGqMsjbL3E6ox4I4lQrdGM+KAeLJs5iAUOF3dKW6l1JeeASbUZ5mtAlmPeMo8sZg5WEauAogpJNRp7sYCvtKjyGXIaqAVcE8/uznEZkaRsNpk8KJtpYhynqN624jJQa2S5PG4609koZcFx8pRJmntlMeJ+HwkBJ4lTG6AWGdYqiYpo9Kfes6g1w116hg1CxEqhrQtlOTBfPSRpYxgq5i1YX3pik0QaJvxQcHXEBWtwOMyM4wisVAVNQhoGzBsGaMrkPKBJggDUY0bpH6dDTGuBAqiN1pOPGZRDZT1Uaq0RBDnRSkPGRGmNB48fk7d7tue3OL17G90OwWB6MC6DBjFnXmmd9Z+Xlfc/eITIwMnpbVSHCE7zDsmF1lbMEr5RJiT2zXXQyDG79I0caCSJYK0E8SbCZlRefP4Znnv2z/P1P/WL/Pbb7/Brv/7r/Oab3+Qn773P1eXjSOQefWa0l4qR+nvE3hMSooECW7PjWwbK1Kjudo0Og1eNWBWS/sFq5s+e5/TA+c0FJyqke0MsiBRzpXhkAJXKlIVXXzrjjZ9/iXt3JjILzQqtFGyFViOLNJTaWlxwh3NPduSMWMPKEv3ZMFGPLK4N4IZRaR5fWINqWK1kccRHhOgTXIQ8DgxjMLCahHEcSUlx3yJ5II8j7kYpB4QVTcGw1bICwcQaAjLiCLXUAE0S15zSgJNpHpunefBvbqA9ixoNEwvZxAyaxUdGqbUztZJQoo8KosugFtocxI+XSzJzJCB3As418EbylVoqdTXmywNMjazB/q4Hp2wdl4INCjWxkQl1i8ptisqIyACERCBUDKGUxro2WtPgCIigaLXgDVpJzJdGOQhUwRNohZSEpoWry4dsszBuB26fP8fJ2S0aRnJDdcQlqrWmjI9dhnDwpfakkkiakV6RvEGdG+YZUWE1B6/R9gwDOacOdTuD4Y4Gtr2WL+J/I8xEegJPxp3be+78qZ/nS5//DD/84Z/lm29+i1//9W/wzu+8w8XFY5Z1iaLi3qux4iaIRx+OG40WaENCrWj9Go5vKdfv3Kvq09//owbnWuOl4oFFHxJNc5BDqpExVIwxGXfvnPDVN77AZ157gaQFazPeFuo6U5ZovFv1DpG6DOMNw7EWNK0K1FKo5uRpi+Qp+joHkYxbiY3pAaOC2YwA1RRySEoTm+2OlAdyHhjGMbg8d1LKAV3HjItQW6XUFbMZPQaQJ9xBqFSbe48x4j7iKJvNjml32gkVDSbTO4nkGv25G6WUcHn42rNvJDwBrEn/eesacWTcWp1aDa8Vqyt1vmQ5PMTaAdVGykDtjGEz3AplPoQsVVbmwxW2roxDYrMZ0AJ1nXGprHOhlCv0ViINgntFBXLWAGsC0V4FGVJrjUru0XrU0ijLJWW9xFokz7oa62x4NSQLaeobrlSWiytME8++/CJn52eISOyblNA0YAwUM7wVpnFiHKMtQAdEJ6wlzAw0KuayNpYCLsqxZyhWKKUyjY1xzOSc47NoVNHr/UoKjTGBuF+3QhEfgcZUEycnW37u517j1Vde4ut/+qt897tv8c1vfpNvf/s7/PT997mYDywd4Yh0ye8amfa+udeZ43v0/PAEznZIyzVf8jGCs1NRiASWP/634OScg9Hzinhjv0186fOv8otf/QL3ntmTOGDrBfPhEct8GTDIBSPjqhgles4a2uA8X7HZbtCUKQZp3CDjliYZNIVk0Vrvd+LD12rR29UWOpkMTNOW/ckpm+1EnqbQPFVDwzLr/W2lrCvVWgQ5lcSKeMM6tGrNaC0IqGYCumHc3GGzO2WaprixIrjk2MAQG9qcJIpqVMtaF7wdguhCCM0lE8SLEsoaNGt4D4BWG9SV+eIRlxf3sXIgaUNzQEnNCW/BppZyRV0XWolgXufKaoWsgp1sGIsgapzcPkUlM4pCrZATSWGzGZmmARHHWg0dVjxILDtCSYdmeF2wchVyWJtppbKujbIa9OdCAs2OlkZl5Wy74dnnnmPcbAIlSVR0c6G1hqCkFGAR1Xi+IqQcRI+5UdZKKZVSHWPAvLPvEVmYVWprLEW7DKMBJ92CM0AQGqpKTkIegitRCdYVOnjr8aIibLbKyy8/ywsvPMPXvvYLvPPO9/nG3/8N3vzWb/H9937Mw4ePWJeAvFGUIy5UI8hNgsgLXftJAIqEBhoskf+swvmzgzPlfI2hQRhyvn5RkN7TOdtRePXlZ/jlr3+RT79yl+1UoS7M6yXL4YK6LN2VMnStSHBpUZEdvFTaurAqkCZ03JKmPWhUKiGgZuB2Cb3IPCSeHmA5CUMWplGZRmEcIWXD2gGrhmpksdoK3ip4xbySNG6o1ZWyLlhZSKaUUjErLHXGJbPdD0xnA8MQ/U9pleqKJO+yA9dESRyA52AWPUtd0U7T93Yds9DGrMtRxwdotWHLyvz4AT/50bssh0v2+4lhgDSESYGUSDJQW6OUQqsra6nBrmqmrI3qMC8HNjtldUfGwrQdyB22ezNIQkoAhrUVw9DWkDQC0UK06qzFaKVS5gN1ucDrQisz83xgOSzU1cmqiAulOpqCRU7TwPMvvsStu8/QUmatreviTm3WZRch50TzRl0ra6VD6Q7dvVHLEiQPGek98REJiUDrsk8xJ7UIDk0eLdBRLjMlKYga45jZTgPjqH1nHwOodbgaDGxKAZ9v3TrlK1/5Eq9/9jX+9I9+iTe/9W3efPNNvve9d/joo/scDnNHl0QraCHPhbRCkFTWruOoayk/MzD/0OA0GuGWSZ0oiOwuEjdfE6TUeO7eOX/2V97gy198hd1YsPWCuj5mnS9o69KZ19QvSrrYGxlUgM1mIOVTGlAlk6cNkoZemQOGuDu1RtVzi14zqTJNmWE3sMmZ/W7i5EQY0gHxhbpEZpQukbgZao3aA8Ztxb3RSqHWyrquaDPEEqVYGC+GxHSy5+zsDgxTmC9a9B7Neu/pTmty7fqp1WhrwVoBK3hrmDfUJbRjRsItIl06PzYkji0rVw8e8tMffJ8fvfsO0zSwSbdRz9TSQMGG0IENIKVrS5/nREtCFVDJCHC1Nvyqsq2CRu4gSUg4ogS513vXkM0UoWEu1BJurrU0qA2rwRZbW7FWOFxdscwL0gKduYaAmxqkQdmd3+LZF1/EUmatTm16zRBLUkQG8jAhKSHdfePNuiYdybisFWs1KElx3BpuFZcaPEhXe0SidjUDMUObXMfBUT+tLSq0IhRVclJyZKdrA8G1qE+nfCQY35SEs9M9n//c67zyqZf5+tfe4Dvf+Q5vvvlNvvPW2/z0px9yeXlBLWuQfg7a4fex5Tm+zxHSXuu6Hyc4RSPyNfFE7NUIW5GCqHN2uuGNX/gcv/SLP8+d8wmxC8wOlPmCshywWqF5r5zhtEAh5Z7BLeCfJMWbkIcNw7QL2cE6ld8sIFan9rGGKtw6O+V0ryiNjLGZBE0zVtfoYek3SMJ1U+tKa7WzoCu0gjS7hmfVvBM9A80SOo1sz2+zv/Ucsj3D0ggiver1h9lCIhFyb4O6UWBdwmzRCl4Na7U/NAlXjoC36E9Fw9RR14WL+w94/4c/4sc/eJeri0vS6Y7lULDWq0AWXJSmXPdug+5BJ9J4QnGjzMZuOmMaw36Yxsbd52+xu7Ul6RiyUnY0C7v9KcOg4V21GhonAXFLKb0yh6bhdUFaSGmYsc4zZS2kdpQNiGrrkKcdL7/2Oid3noE8op7YDCmSUYKsOcwRaei6cO/NzPHSaMsaFduclILbaM2CyMIQD3+Pa1TYZkJKQkKxax1FOuMsaG/HjmHn5lhzXJ+YAI7oRYJSpNMBvSeNz6ai7DcD+0+9wEsvPMNX3/h53v7eu7z5zW/zne9+hx/+8Ifcv/+Aw9XcWXi7DvT+IteIUYGfVTz/kOCMy5ROEIaQH810zpmzs5EvfO4lfunrX+L5eycMeoW3mbpeUJZLWplpde0Ga+kkTu9jUyKyVMW8hAAsE3nYIDqG9kUE41rW3q95CPldYxoGZcyC1wq2sBwWRNb+1eL6RcCsa2ita5ANrw1qRZoHqVEazYkeNyu7kzNO7z7D5vw2aXtGkS7Q05llpGfGyNZYQz1j3jpsbtSyol6jrDSoraEozUo8cO9ifxMOV1fc//BDPvrJT3n80UfYWkgOdW0s8wo6oYOy3e4Zd+GDzePEMAg5O1aDfHrhpdt4y5zubrPdnpCykkZj2GV0N5B06Fn9qP8prQW0DsIkerjWOrNMN2xYw1qN+9gMb7AcVqpZ2OzcSCgqgqhyeucOr3zmdcbdjjZMZDKYhuNJDE0DkEIDVqFVoSzhY7bSSa5iuORI1EeJSqJQNCvd8qhBEHEkGI9+16iMcDSah9nEOZIyidDauTbpaLc3xuaX66rnne29JngkiMtpSNy7e5u7t+/whc9/nh+992O+9e1v8w+++S3efvsd3v/gAy4vrkKZ4Pg6qQdrWAV/Vnj+IcHZqWwUtdiWaVDObp3w/PN3+Pznn+MX33iVX/jCy+zGitQDtV5S5gfU5TFeF/AauqDLU5cx4C11QXsFM1wSaRjJwwb38IaaH11I0ZOFt7cGY+uNBx99SLlyslbEF8RmRm2oFFSdlOXJ73bfhpt30/1CK4UyO2UNcZksMI7s97c4e+Y5ppNzSFuap2sYmtJR9lHMFLcgMYIMCEgm3pDu8yzrgvb+WKX7QHuy8G6Ir8W4/9EDfvSDHzJfXDKostttYDsyTCP7sxPG3cS0m9ifniBZkTyy2e7ZbEZEC9gl2Izstqh0WSE3hlHQ0Rk2jg+gyWmtRXLRFC4tqaH/EfZMPIx+oyguMQDRxPBVMO1eZc2QJnZ3nkVMqXUFMSQbMiVuP/8s+1vnSNYO2yUgmEn4icmkuEvRElSlFaWsheUwUw+H4Cdyv78pAtSvoWdAQrMWtlI0NPjrZ+3hRFNI0i15hIQVryDXCgTUa6nlGKnh5oo2TI/WS48A7xABsaCaJCXOz3ecnr7Oq6+8yFff+ApvvfU93vzmb/Hdt36bH733Y+5fPIzpLQuEEQ4kB/24sBZFNTNuBibN3L17ixdffpbXXn+Jn3v9RV5/7TYv3M1s84yUS9yuqOsjyvyItlyFs6JfjLfW3RXEBfYeqzbHSWieGKYt7kotjdpaaJnNwpfYHRuGkzR6tcM6U0ohSSNRmZKhU2LMGraqFqyjtYZ2t0dAzkpZK8vSePBg4fIgnNy6w61nz9nfPef87l3G7QmuQ7fUBdyiywydiYrgbBoMqvQHa+FAat08sMyHmHfRFFZ+i9cqc5AcrdYwd7SVPAjTbmQ7jWyniWEYGKeBYRpAIY8JPOxsKRl465a3ILiEimgLe2UqaBZkcFwajqM+RotJQCrpLKdZIYnF9IkkSCFJTGNms4nCX9eBdZOwssNrpZbG5vReJKlqXF4+5uLRA64uHyJqPPvqp7AckxzVAiF5b0+OjHDT7o6yYG5bbcyHNaaWujElCBZBJYdNtBN7htMsermoSH5NEqmG3TQ+swTvgHdrXRg0rkGuE3JgZ/OvAag8XUyekDfSZTM/yiZHzRQlqXKy27B99WVefOF5vvLzX+b7v/Mu3/r2d/j2d7/D93/nXd7/4COWeQknEYG0PlZwJh04Oz3lpedf4OUXnudzn/00r73+Anfv7Li1q9w6bYx6ga+PaPMjbH1IOTygLZdYWYNK9mO2jMwVo2YFcFpzahNENqRxj6QNpcO/o/dTNLB/tYp2V5KLXaOBakIxUHN0TKT9ju02Y7Ze907NC2LWzeQ9oxaoq3C1CFd14NlbL3Dv1U+xOR8hK9W7bCTpegNgAfmQ/pDMgqWNQoTVGkxyrdTlQF2XCFYBb9E/iYHXxnx1xTovOJCGkd1+w7PpGR4+ehBjb/uBzbSJTacxFWi1spQFGUbyMCLeaOUAPpN0RTWgafg6GpJq30SxuzpfQwp2jFoWLi8fI9KCydWjft1wolJlVVwEdhNyvot70edPX/7CtgePsSwzF48e8vjhfdb1wL0X7lGzUFtD0gAYy3IAgzFvqK1CShhhcmnVWJeZ5eoQzKx22Un7lwzhppFKVsPFw+roGi1TjykLaNKdOdILQSeH3HuxiK/wjD8VcEcju4dFT/Uo2x0DUK7JpzAUXNN54NplxkQSYTtlpnt3ePbOOV/4udf58Xtf5a233uZbv/Ud3v7eO7z345/w+OqKsq4fLzi//tUv8tqnX+ezr7/O8/ee5ex0YkiNrAubdIX6QlsfIuWCtl5g6yVtPeB1hdbwdhRh+7TAUYgnsKwabeEAACAASURBVHxrQrNEyhOWtjiZ2jx8pvS7gPasGP1E1qM1K2CG09k2YizHyahGlo2+TjtUK6CKZkVdqM3JwO3nbvPc/lle/PRrnNzZU3SlWOM4V0ptPUgD2liLPkFU+vgcHaoSo2EtSK66LiGhuHcDgtNKmCXaUijzTF0LkjODCmnI7PKW0mYuLy8oXpAWmyB1Mq650awx+glqDa8rDUhaehWNTYKFZECf/BHP8Sz6/KFqzKSuy8K6HNhMCWUIl684IqH9Rn+nuGofAtcetKnD2kxZY+5UFU6nU07u7KhlDcmmOWopzOiirFzRrNKqgHYCTbooZxVbZ9bDRbxvSqSc8fxkrKorxYgbSQQlqv71VhbtRpQebNe9ZuzDZoTNTyOg7XovdjLInzIH9K+o1MeHfH0FvV72CnrcgW740WDghoqgCc5Pt5ztX+PTr7zEG298md/5nR/w7e+8xXffepvvv/vDjxec/+xf+WWeffY5dtt9sKblAVIK231mTCu2XkC7ILUFKytliQ13nLDnWs8LOjo8jnTpwShFQbZo3lP7BmrNr6uiNQcVnBYUuPTM3zNpoJoQr7sxA2uNWg2h9FsW2e3ImQXTmZHNns1+4tb5c5zdeYlxv6WyUJv1rDmAa2cLue4/pBM6wbxG3rVmSAtThDXHWqEtC2INsRJun9ZY55WyrLTS+oOLxOF9P+ScOTnZU8vCOkdPnJMyJO1OozC8illMWtYSmTxLOGBaiOkabnu8CiJjTyzWyTRFTLsMlNluwuCf04DKEIHiUWKlm/VFFU3SbXRPTa14AZ9xKwiNnJTmDVcLm6MpKQ0hcbSGeyUGAAzN0hNL6gxt4fDwPuvFI9I4oNsNMTUUvxPDB+lJpVJIapgvMZsazXF8VpVrdOoSfIJItATNuo+5J/T4ndhzR50S57qdOcbqsXoqTyWLPhRyfUCAOyaNozVPjg/Wg7/ZbEdefOlZ7j13hy9+8XP8+Mfv8723f+fjBednXslIeoQwxxa3wqhwMk6kTiJob7xrWVnmQllbZy+jF7Mjg3a82n68Q62C2UAaR1xHqnVZQXrAHVk3B5F23StELdXrS3cpcTxKVqbs4J0J7U1+WKy8T4tJQKg0MZ2esjm7zXRylzydUtrK2tZrIzik3iNHpaEzkaEWBMwMh0tsPK1CWULyqCUsi2IrXmfqslLXyuHqivmwIKJst1vSOOGqVI9+eJTEdrulzFs+vLikuuN5gBxmfhWJeVGMti4wJJIOsQksBeeiESjeOlwy6zBOqbWQcrqusMOwYRgSKXdySFJn1Xtw9t7+6WoRxIh3DXch20prC60s4eoyp5WKkEKqcKO2wlpWai1xwoBGiKmGX9tq5erhA97/0btYLQy7Dcae3EfWJEkAAs8dWkbkKY2khvsYhaC3HhFzPch6Qu6zgtEDNyO7M0ivmtLpwg5pn2iScf1Ha2Onh4ND6RU/0rN2Yq31vds70W5HDf6wJ1acQYW7d064feuU1z/9qY8XnJM+7j8yocMA6mzGTE4LtVyFv9OFslbWZb4WqJs1WoFaHCEjWfFEH7+CGG5Q0AGXgdInVOhQ1K3GVugwLBr4bjCOGhzcy/HDDonz/ZbtCL4+DAnFw/d6tO7FsRShE06bU7bnd5i2e1wzSzuEAUGVnLdoHuLGcqTTQzIhQbcCARbOJgtfsLUOZZvTykpdrqAt1PVAnWfKvLLOC3VZERGqhLAdUykSsJTEoMrZfs/Fw4c8fnwB1SBnkgqaJGx5eeHiorA72ZOSU7uUkCUGC7IcCUWP1z3qw91ralgMtA85tFL1SDxy7KSObUW/0eJdLonv05ZoXewKqzNmK1ZW5vkCM6W1jMu2Tw0Za50ptfQwV1pt4daRRKuNth64ePg+lw/eY1AHdmHUV8guccZPgvCT575PCuKQPEXy1e70P0pdxtHzci2L0JPL8RSP1low8RFhvdJ10kmsw1nrvST93hxjvvex8OS1eZowopNKElY+D7QUygGh8YswbYePF5ytLORBQGpkT3VITp/XR0VZC1wdomJ66eyqWze293OA/Mh2ea+aYD4iecJTxiQyu3dqPKYt+gFKx+pJv++EDzVpTJnklDk53XB2vkfbzGoxqZ409yl8D2YsJ2RIbKct0/4cxg3FjVaWPqQM2/GEPO57PxKD5ObWIQ00KqWs1LJGcqjdZtYMawt1OYTHtRTqeqCVA2W+os4LbS1xdk0fdF5wRGFUiXlE+ueWxDSOnN864+rqinUJKcb6OJeIocmYhg0ihnul1dDozLqWZkKS3O/dQLOQRAYBb4FsSjU0jd0A733m0LvoHjOK2hKo9x5zjCGFsiBtgXrA20wrC7UcqCWuozGhusMlx++0wryULqVIH5w21KG0eMbLuvLgwUe0toSVowrUBGVAhwnxEbcYvSKlrl8fLZxdJpGGkK/7TDMQDUeR9k147Cf7YQt9wsQ7HO0cgxDB3nv4iG1/KjTpSeAYlccIDXPE7/Lk9RcID4NxPJjoCcfrTzy9f9TgPMwwSW/MAfeKrQtZHEhkzZgaDDs8LyzzEpCyn66We1WwTuBYg7o6tWoYRXXowv/RltU6lPVucu8PUqKK9tNDurkYpmlkfzJxfrJhGmC5fMyxsnaPGKbgmsnjlmGzZxg3uGRKaxFoffJiGDakvMF8oFR7YrD3bk33QlniBANvAemP84fejFZmyjxTlgVawcpCnS9DTF/W+FkDN+syUbiiUh4YNhPjkNEcZ/Wgyma/ZX+64cOrS+Z+aFnOSqtCbYltn6bHazeB9/OBurOlAaiSyHHf6wqjEgcSjoyjhv8UiHNz2jWEjDEyArR5JABhIUmCulCXS6gzvhbKurCsh3DvpG1/pseWoNEsnFfjNIZJXINUWmsDbZjBvBqNkWF7C2/xWqkckDXDMHWvbwSn6kgaAg21pcZhc1o74ZdCSxYhaQ8mayGluEA3SKgrPGXsT+mIyo4x553DiMBt/XSMp3/oWB31GITHqONJoT62BKpdIz32oPC73+/jBGerW2qdaJ4Zjh7SWgNikDBR0rhjd3tguz/lYdpwdf8DaAckBqk65yxh36tgLSM6Qdri3QkUAWnX/YJZEEa4X4vG0nsCJaDZOCjnJ1tOz/eMyfF6iBMGVPCUYgIijUzjFh03kCYkT1QSy7IGnOoa6zCMaJ6iwlhob1GwQ4MSwlVU1+U6MMtyoK4lmN/a8BLQztaZts7YujBfXrAeDqjToW/cD+uWrloqrazQKlmIyoJgKDokTs72PPzoPuWwhrGchHiMlS1LmOmVxJCjB2+tIaWhHgQQLvhaOhIhTkLA0FGCAOp/jzRE+slxFqy0epgRIuE7rVyFu2pdKPNlfL6LhcvLCz748H2G7Y6XXvkcqluqjzSPAFyWmWEYe4HpOFM1jO/esKY0V07OniGnkfnyI8rhAV4qvhxo6TGuAzpFz51kiD9zZpKBhlGt9APBau/7oiiIBlvq5t3NFa4nd6GuRh6V3x1zXVnwIN0CHUczK/3IzCfhdR1mR0/Ctd4afx1Q+DhgHSb+LgV2O+CxTftYwVnrwOAbtGdfd7qzBdIwRPthDZWBaTNx/swG95HLj36C+wHx0jNvVKDWFPOM5h2et9fjVt4a4t3OZ0Dr3kYJaOFGP0IjhN/NmDg/23N6umVQo6wHlssH1PWKcYoT4obNhmE6QXMQTsVgqR5D0Z5QUXLfNDHFMIQ8IP2henxmOmHRSsHK2uFq+He9FmqNc3ttXSnLQlkD6qk5rTbWJeZNpT881T4Vb2DZqGuhLStWlugB80jr84ub3Ybbd27z0U8+Iu5IDPhaMXxtNIUmYQNEIqirVVKLIyZVDKkzSVJofOqR6qtgXhAf4r5rVEfrxudwVfVTGbzixMTOcrji6vFjrh4/5uLhI64eXXGYDzw+XPDqZ38OYQQdg4XXKY7MrDVImON5U5rQHAROK3GiwrrWcDztz0g5c0Cw9RGlGDYfyPooYOZYkUHJEk6tYbNhGBOHubCUBZWEyYBIfiJ/dV420G4PUALG186wJw1qJ8lTRFBPlnSnesBfnrRYT0fo9d89GcJXkX4MZnSYx440Xp//98FZysKWHUA/66ef6WKO5JhcLzXmOVUHhumMkzsB1ZbLj5gff0BbZ8QUq05pAnkCnaiW+mYAMYd+jIi1I9uWOJ4xe8T4KYUD4/Rk5GQ3khXqesnh8UccLh/Fhjw9IW1PyLszJG9ibtAkjr3s2XscNwyaMCsxoWKGK31At0UA1EotFTGL40rWQluuKPMlrc4dupZ+LGdUiFZWzHp/LgnXxLDZUdbC4fKAt5gGcQ/2zga6uSeM3uNmw5A0jmz0RJKJO3fuMj9eOTw6QBOGIf6NQC8hWRQxqjVMMtM4kbdnSErM6wGphUwEqFsl+0rOAzUdSOPEMG76SQ4Wx4QYOJlmCfNEqU5ZCnVZw/3z8AEP7z9kvpypa8hixVbyNLLfnWN95sM0B4sssN3uWctMrWH8V/XrkxCaOWWema8uY8TMhTTsGfdOGzaU5RFejLRehW6rDnVAyQxpJI/KkEdyFjgUlrUGBBcL76yENRBRvMXYoIpgYqTeo8dxK0/YoCO7aiKdIe8HcHWt+smASY9O7+D2Kab3iVmhW0bxJ2RaT1Ahw/3B1r0/NDgPy32mWdid3O4sVEgH2mFD60i01UZKDU8JGTZsz++w2Q3k7Dz64P2YUWxxSoDKgOuAWzCg3n2ofsxaPZNcG92tXZ8POo0T56cnjEMwomudafND5stHlOXAdPsW25Mzht0pnicaORjbpKR+xKeZ9yodNygOcD5ORYSFzBrdgN3wWij1wHq4pC6PKctljJrVNXrJZaX0kTPEr4e73RKb/Qm2VabaSOOB+eKK9TAHJNVEziObDWEnPFwxTLl7Ykdyir445cx2s+XBB4+o3lhTxarGCQiLkreZ7ekZJ/tb3PvUp9me30ZzYl0OfPijd3nw0/dgXkhUhjKTkpCHAR1Gps2OnEesH0O5Vqc0pXlmLcK8VtpcqPPCerhkubzi8YNLylUj6YBmSGlgvztlu9tfT/XkaQIfEXFUGpSZw+FASolpGoOscxB35qsLrh4/ZBhGUh4Z8oZh3NLqGZePBup8Hy8rniy8z22COoKPZNmRcrxn9UyzOCittoJ6H6Z27azpcbasGzpoZI5avCHX8wzRl9IPrrtuJ/vJB/JUYB79RU+vTpl03oNedY/Be/yZp8fS/uDm82fD2uWCq0sYNgFFisdsJ5JxG7qbxBBt1FaAirSodnnas7vzMgynPP7oAcvDS6yNuA9Ic8wLRu1T8X2GjwQ5UZv2o/AT6oYnZ7PdsNuHnc3qQl0fU5cLyuGCtVWmW3fY33uOfHoGw0AzCx1WBrIMKCmOlNAgZMpxlrPrWGESuKKVIA/cYs5zna9YlwN1mWnzgXV5AHbAS6MucexK6qfWTdPItN+EsUAHqkUVas2x7RVpf4rff8zFTz9ivVqRVNlsC+OqpLGxXhlIJU87XBWqkHVgvz/F/SccDgvjuMHdWSsM20y5uOLOcM7rL32G/TP30GlHmiayGzKe8dH9mffe+SnZGykZU6psNhLwcBgZh0RKEufv2kBtI9Uy1YRqYXSwulJqpVSjFmjBvfRzWY39bsNmGkMaynGqXvXwz1rJ5GnL2CeZpnFCJAwn0gyfL/H1kpAsRtIwkIYNNpwAmUtxluVDvFU2dcHbY1p1vECrGdOCkxnyyDiOVCdmjmmoDzR+F4bsFS0FY9syWDCoAfvlCeY8zuqq9LgKWeXYpAY0Js5h8nCd+TEC+6glx8HwLp/IEe4eKzDyM5mhn+2tlegHy3IIQkjibBfRAUkTkuIcGwNaXft1daZLM3lzwu3tKfv9XT6aPuDhw5nawqsZ+N1x1y67xNgSmkK/7BatcUhM24Hb5yfstorXA1avaHVmnmdchLvPv8jJM8+im22I+tWvReCu4FBK7Sb7/m9ecByJCiaulZl5XbAao09lXViWQzcULCGflEZZlrApLpXl0BjHibwJiL3bT0z7iTTGaQ5r1QhOg/3pCbY6956HB88+4r0f/Ij56jGXtZCbos2RIviccYkNKiQMZ7s7Ybc/5YPH7wMrRqaKgClX1UmXC2nak8YtDP3fh3FhPDnj3kuf5s1f/Q3mhw/YqHG+F05PMnk7Mu6CzBj2G9K4QW3A1zgvVyXOn6hUSlkoZWVdYx5WUzCxZoUsyu3b52w2I+RoRbyujFPuMpqyGU7g5IxaKyklWovpnFovma8ekXxFLNHqTKkDaCaNE5v9KXCHxzaz1seksjLUmaElrI6sc4J8guieJBuGlMKU8NSzVw1i5kjCmcd0VTuqIP2ERJdwPnEkgLx2okeu2d/YSsq1KNOJhKel1Ki2TwmgEhb8Y45oFqN6x4r5tPLyRwpOUWWcJmqpaG6M/xdnb7Zs2XWd6X1jNmut3Zw2EwmAFEVRlORShaViueywy3oOX/g1/QiOqvCNXQ6rbEm2yix2IBLIzNPtZq01u+GLMfcBK8JiBUFGELgggIOz95xzNP///ZsdBNPANmdDFZXUS17QXGiAcwZbNumUJ+5uePfH10zPRz58fGQ+L+Z679NAg115xHn76zGEtfeN/W7kehyYXEHyQikn5vlEzY04bbm6v+Xu7Wc0H8lNTKF0uQV7vd+K+RONvC6Is8VzybnjNA1gXfMCxfD783xiXWy4YyQH282VlEjzildhnhdUbZEsPiEyoOoJYSJEh4+D9Vba8BKJYQINfPGDH/DHP/0Tjscn0vpCK2dSPrHkQpNMk5XJb4BglYl37K+u+PjNR3LJyBjwwfPjP/spn//oh8hmYrq+QeLY95L2vXAh8tkPfsSf/uVf87/9m3/DGIUxTIwhMIxbhs2O/X7HZrdBnScXsd3gYjtrmpH0BfNyXrywrhneRGhst1vu39wbWtML4iG1jCszlkVi198QJ9pgZWfNFa2V+XDg+PQR7xsxChAo1dOyTchD8MTtNVvNzC+VtJ6JcSVE1+kJ4EfBhY0dCjV+cqWaOYKORXndX/bVo++vobNZmnY7WO1iF1NpQ999vb5y9l8TOmgvccWp+Ytf8T0XAb37ncMnr+Xxd4fr0rN+z8NZYsBNo/Fm+hFX+Y7baR7jRunG5ejoP5S3/0/fd5WuttncXPP5NPHw8YHD44sBpV63LUbHRitBGsMA17uB7SAMmIoktRO5zVRtbK6vub1/x3C1p+Cp1dLJauv7TQUkIPjuejdm7GXu7dTI3NqqsWlLoqSl+zwrZV0hFzRnw2RWsyilZUW6Wsb2ZCa6EAq5LgQN1kc7NVSnlK6GyYQY8T7g9xPb2w1X60ir12hZeXl+4NO3H0m5EgejMbgw9MVK5e7NG54eH3l6fECdcvfZHV/++IfcvHvHdHXNsN2ZgdnX31HFCGHa8pf/8r/m/dcfWL/5FT6OxGFkmPZsd3dM+x1+MLSnUHGt4pzpZS9T6Vps4pxTMZ9ttU/fRXj77i3DZsIFI62XskJ11JoBR1FvJL3Qy321VU0tC4fnB2o6EQbQ4hnGEYkNQoVgJmwhMu3u0VaYD++Z1wx+QX1giCNGiO+2McWGhLUCXUqHf+0dnak4+otpLU6T7v/0Ae9sqo1c5HgXldBlwttPm3Y9t7u4WbruW77rOY38J98Nf/rBtUHVdzv037fv/L2H8zwGNtGx24xoNrtXqxkVwftglqnLC6impfXReKT2UdvN0GolzTOiymaaePvZHY7G88MjaV67+dfIbEMQYmjc7Cc2A9AWllZIaaFoYdptub27Y7e/oSGs1Wxc5quU/jIKTWzwESSSS6bk1X45HrONNdA+cS1pMTVPWtB1MS9mtpVRyxlSZU02mTWWktBKV/H1ZTtaXwHRrRbT1vou2ZKCc56iK+WinFEhpZlWM8E5NtOA94F1NQ5rU4Nf24pDGTeR+ze3nM5PIJX7N7ds9hvCJhJ3U5ev2SfdSjZxujNV1M1nb/nZv/7v+Yf/JeNkRcYBCXvceEvzE2tr1NYs7qDabtcLRG+7aWlQi7LMyXpFrPoYtoHbt29w49D7TP3OtYP1Vr63Kdr3hk4ctSy0mjm/PNDSkSbQoqPVkcDAZrNDhmgDPRUcI84puazk5RGXFVkrDAqDEPD9rbMLMUhlzWt3AVgy3KXMtD+0fmiqleku9jmDTZNN7NJfPuk2R2zN1Hd9nerge4naVzbymoDS1452PmxH3ye4vWe1KBL9fQ/n7z+c/9O//Z/5q5/+Gf/iT3/CTgIuzfgxWEnRQ2RUBBVb+NdSXneUr/uffqBzXqBUPI3gPTfXE44tT4+LIQZtR0P0juvtyCYUKIlcVopT/DRytX/H1c0tEiJnTZTaKe/qCG56LTzwFpkgYsqS1hKq3V3isMOTix3Ymmi5kNfMOq9oOkOxvVxJhZra6+TWOg5jr+ZmpudaC7UaeUCbvVY52QWGS8ToEczapT4aLM0b1bDlZL+mGtAslDWznjPBJ9yYEV+sQ26F2jJhxNYHU+D+s1t8FKbNiI89n6U1e/Fp4KtphFujOce7P/qSxz/7CU9f/ZIaIzLu0bAly9C5Ssnai8t6C3shWjFjekmVvFZqqowxIoNjf33DuNtBHGg+2EvtA6ijCrSiNn12Fi5VW7MgIqcs68x8ekFaQppATWhOuJbwJJy39RxEYhiYNhMSHA8flDW9UFdFpwBtsEGiGj1dW8a3Suwn5LImM7pD10tDJ9lbb2pzm2JrHtT2w/VA02SiBrVmy0kAF2g9ka7ppf9UXlW3l3aTLr6nD596L3qZgVx4Rd87K+XvfvMrDqcXbrcDf/r2HZoqITfCUBA3Egd/+Ve10bFzPUYP6yl7JojTxmaM4D100BZUpslxfTNxPCbSnInOcbXxTIOpR0peEC9s7q7Y7t8wTXeU4lnTQq5GY5+cN3aNM2N00dYbeGeZiNVuMNOLGrktrSu1WN9T80pZZmpK5ipZVjNLl0rLlVagZBvDO/8dp6a1y74K2/uaTrCX9faCBO9pdUV07Z/I2ndudis7rVaV6UheGvPhyOkl42SDGxZUzI1S00zJC6BsdyPTdsN2OxCj65NBi2N4+PSJ8+GJd5+/7W4V24EqkWG34cf//J+T1xnSStjukGjmdmOmGXFAq8HIShde1FJ6mV+7fNFsZyF6rm/fMO2vEG9hRCh4tczLXCtuCMRpwvJsLi+7lYHPTx9Z5hei1t7aZrTZhVzzihtSl1QGi5PwkXE7ESJ8+/UvybWQNTDKBM5iBLUZJK2lhGhEZaU5/90K5LuTcTk9BgRoF7yMonUm5wMuv6C6UOtKKRlUcET8eI2bbq3yEF4RNpfS+T9dtWCyQde1y5cJbf/ny++raf9zh3P2nt8+P/Hv/8Pf83Y/ci0TaVmYphU/XeFk4GKdcx6qlNcflFINoVhWvDP9YsP2aU4rUhOlzIRQuLufoA5oNqZsriYjDpsr9nd3hJsbUM9crUSuDQTP4DaE6AhhouKoxQoHKYWWC6pr31na7WdIEOujSrL9ZCum7tG1wFqp2aIYckrUnLsGUyhFwDW8N0fFWjo+MgHF4aKzHrUuSBxRVUpKON+Ioq8YDMVCa2unvwX1SGukU2I9rpSlkYdEXVZaCBAdqWRSWqlamcaR2+tr0+I6oZZsM11RjucDohmRbmuqIM0uUD9E7j7/MT/5F573v/yPuGCxBa5qV0JFU800oxeUmihlQUsiqBrkLTlaMqVVCMIwXRGHnb1w/TMTH/EhMmhP//ITuEDGkZtNRWnCenikrS8QCq32wNA8o3nCpUqcKoMUxCe8H3AxEKOH+3c0ET58/ETKnlr72gpn0Qs0XF0RqkUzymAVjQ+oGFHDd9mjXdhKyY2IAkdq+pq8fkN0i0lFc8HlghbjLLfjBg1XyHRN3L/DD29Rxte3057OXhJbp2qfx2Vi262QAl2xWr7f4dxtd4zS+HSe+dWHj/zo5o4Jh7Di6yNlHRniluBHXB+Rt4b1WrQ+hLEbSVBKTdSyIjUhLVHKuZtlE6fjkZv9DdOwRSQQhondlU0g14zxZ6r1LtoaMQ7E4AzihbNEqtoNQ9p1vZj6SGvu6p3VBh0l0VKmrCZU15xpS6IuMyXN5DxzIQa4YI4IF2BNKylnxtgT0qqhSUpqZK/EEXKBWAxWZiWTErzvcwihifV1tfNZi5qF6uXlxOHlRMqOGBbieDJ3zegpbcWySlemMXL/5tqGNxbyScmZsNvx5Q9+SFnOFglRIXqb6oo3t4YT4c27d3gtfPvVb1iXFY9hR1LKNM2guf+uW6feN4urX1YzlWM9/Xa/Y7vf9AAfq07wsSthLJyo9i8iYPpj7RSCmjkeXgwb6npB2FpvbbJFvUsl+kavJBHXyKXgg+fq+pqiwsshUQoGiyNS62pVhGuIGtECsfjH2qSLAQz9qdXWeGihkCgs5PKMK88MUruSyz4v77viq5ffrTySjy/U5cR0XQnbz6guos2qhtfV6mVKe/k2yu+8mBdBwu85f7/3cP53/82/hlrZe8fshMdUuY8NX1aGVmh5QMsVLV7h/QYuNbgmmhjGo5ZmqwRfoWVaXmhlpuYz6IpSKDWbxG1JjJtbpt01Lm7JOFKyMqhVew28sxQw172erQhrzjYTB1JeQbNFEnayX0kW415LIqWzDXu6iLt1gUFLK2VdLNqg2uEXZ+RzCQPR2e7xfLxY2b7LablwhAwmpl0xpXhv0+BcrM923jg4guleW1O0CkUdS6qsa2U9Z6QeTHMumbGNiFdQ64li9EyjszxRLUQvrHlFzzPDuCfsLOZeAUK0hbl0FYwmfIDbz+6J0fHbX/yC8/OLJXOnbJNWLTi1Mg418kGtlZTthndeaFSu7/cM20hzzWSTzlvwrox4N/BK3FO1y7AZ/tJJIC8z58MLNWUK4CVQJOP8wlBmVBe0zWgbiG7orqSKBO3A7AnnJmo9kIqyzoncX0Sp8rcHHQAAIABJREFUDamz7SWb4Ni8DsuKhu8cVpiMp+kKbkbLAeSI1xWPEtxoyinArDyGnxFXkTTDmsjzDC0y+S063SFcUC7t9XIH+oWVuZj/5fWwfldh/8GHkxJpLXAqoKKECpvgCR2WhWRSO+Nrw8mJIIEQBpy36WFrZuoVbUi9DBgqZbVyEmxKiAvcXH/B/uqeze4ON+yo6ki1L4ub0Ra8+66BVjXRcm4XtUVf9VSFWilakVp772qC9JIN/dGKGaZrWinL2Q5nWU1I0RrBWZZJKc0iC5w5cII3edm6nI2zmqEmJa3KZhNf1yuiVkqHXuGIduQKrfeYdCO3WMnXYF2q6ZarsJ5XXBTiKMTB2e6u5B6h6Prr0nBSacWGSkZGsLj4hpVgToHQ/ZoY7fxS4u7vb7mf33E4vLCsC7rYnldqNcRJTVYW4xFpXXK30rSwuZl494N3bK4mwuBQ73BhBGdpZV0RTS6pexm9DYn6d+AinvcNpAjqlOoqreu0aUZZ0HrGs8FLeZUGOizJzfvA3e09z8dsvtcqTGMkaEFaxlFxQM5POOfxMfYXWlHXU81RBp+IesS1Z5xb8dJs4FesMhI30Fol1wJ9lyo+4KNSkiPXSl0L1TWCq0RvSFYw6sJlBOV6RId1md9Z1H7fvPb3Hs7D04nWGttpwzQNLLXxvIDbbtAwdXqZQppxmok0Rj8Sw1WPLu8oETVOq7RETZnc+TjibA81bXaM0z0h3lF0R0sD9ZXf4xApuNCMCqdWal1KE2Pe9Abcni8bLDTrXy+vZU5rJxVUtCg1FWpaKKtR2VuHJUv3DWrz5GKyLvuW9yFRU5yLNpBYlfmUub6y9OpaFFfp/BxDjzlvJANUO6LU5GKtb8S1VfIKrTnEjQyDQG2keWE5eYbtgI8D/jJsa62rsCyKUWvCDwO5JfJ6sumws57w4oYwwbd7teTRg6lu3r7l7uWFXz4/k9NCPp/RnKDYXCB4u2xS6t5aLDz57u3nfPblG4btiAwBPwy21xZHvSQ9C70szmgTRCLRD7SizKcDebGLoInHX5Q4vRfz0g9PS7R8JoaJcdiZIaDZ1BsC2+1kr+nDkSUbUhNNuJ6KXquSciK6gB+2OKzV8K0RXSWwEOpM5ExwXc4pDucHWoVUMyEIziuBQqnJSI+yhUEoRKrbUbNQyXgpjFGYRk8IFypDR790PCcivKaqywV08j0OZ1oPlsoEBBEkeE5AXiuxCsPgGaMjaIF5NpbMMhN8IgxXuLixL3JaaeuCazMlHSlp7lAohw8ToiONgdwCFNdzSCremTXI+QHvGrXOpDSTu5U3uED0EyB9uri+cntaWSjZetxaV/tjKRbhXmq3aq1QLHGs1vpKuHddPyxiwm7X1y+1ZpoqJRfWpbIuytPjzGZauL4ecFHxo00AxfWwINRS1arJBq3Sc6/SwVYdaYF1sRStiziiZSvH83IJEO6fyZI4HU/srq/NW1oyEpJhM1ujBcXHwcT9YoZsxb/2Od8Z0YW42fHZF1/y/PjIbw5H1lxxuUHKZqr3tjdeU/kdf62w2U0Q1abv3swF2vEjtnJQs99hxgWDeNmkvBV4eXykrCsD1cQLXYjinWlda25Gza+Jsp7wfiSGEehWP2/rqOYifgyUWjktJ1IqaFsZtdlFWBXRmTQ/MY43xuOVQNCMLzO+fWK7tV0+MlAxs3vTXvo6yM1eYKce0WB5Nw2SOs7FdvpeHZTEN1//lodvv0Zc5Yc//IIf/uCPcG6A5q2S66sUHzsh0l1ogd/jcOb8gsNDqSznIwkTAw/ThjAIPnm8VmLNTCVxLbAVIbozubTXSZs00JooqwUctZo6zWDEB5PstQapZKQFI+41Y7A6CX1NYjeOgg2VUHC192+eVrKJCMqCa4tlgpbcD+clP6UDyNaC5opratTxCuua8cHkckFMiua9s/JbTdhfUkWaxSOcT8lK0Rr48O2RuzcDfhxo52xA6y6Gbq12/2/ogutqr3EXZ5QMy7FxOpxZzivevBI0zbiTMG6SRfR5R3SBlDOPD8/sr2/Zp0ScMi0tODfRNDHPz+zCDULsF4EpmLyLBvFCqF3b7MLA9dt3/MVfRcRFfvkP/0CtR5xYQHDOlabKsiRyLcQxst/tefP2njDE3st5O7iiiLedpuu7wBBsiFVahWZf8PU88/L0YC+Jt17VFvXa2bWWzWLKrYxUIy+oDMiwQyS+ru+Mgazs9oHbZcOnT4/d8md/L7PvFWo+UPORwY94zThdoRzwPNEWT24jeI8bBsQHSlf3+Gjfq5JXYx03KBlKhbkohyXz+PIVz8f/yOF44On9e07PT7SW+fndDbc3d+TU2Gz2nNYzIQZSLuyvr5mmDdv9FT/+8Y/50b/6b//ww3kzRav/y/m1hPXBW6xfsT1izYVYG0utpNa4HkaGEAhuZgwngjNHSCuNupxpZUWlINEbPS5EA1TViksrcbD4h+Bs+eycJTgvaeViptOGOUFEqS1RtPsR64m6npGSDZVfHWSlpd5DaTGESitWOnnL6mi1mXhCHAQL1L1w/lQvSVe2OslLIs+Vtig1KTkFjqfKz3/5wk/DF2ySop1PK6M58X204RB9fG8qHFvwl1VYDol0TLRVjYTe+iQRZRoz27Hg44QLkSKZ42Hl8eGJzfWOKyeEHfjBLrFK70ubXQwmXzZtr6Vy9Z9FrJ+XMLG5e8dP/ksb/Hz1d39ve0JxlLSQugAhDo5pM7C72bG52jCNO6IboYnZGUWpIpTmXuMRghsJoZG1GoomJ9L5hfPjtyiNtSm+VVvVNBuSIQnlbMygMhCHQGS2CD8E/J6swdRImsnFLpCrrWM9wpozpWZECo0VV1Y0LzC/J4Ye1NRWvCaUTGqVdU2ID0QdCdGyV1XsQrU1mud0WjnPC8tSeXo88837b3l+PnI6nTmdzyzriivm/4XAN49PvG+/esWg4PKrn1Scp6rDDxP/btzwN//D//iHH04vBjJurdoth6UjiYBUASq+NKKCLivrmjj7lewC3jnKMBK9vQS1FOq6IFTiZIoak8E1hEpqM7gKEoiD9X21ZhqXUNlkgxAbQ74OhCDTtFJLj0Pvse7Uau77UqBWWirUlvqrRncgeFSqlXoqHaqn3WNKH7ubNrekQi6mkCmr9a3rXMhrozTPV18vHJf33FwHPv9ix5v7iWkU4gBxaBZ+++qUN4VIrUJeldO5sCbtbCMDU3uxHd6ymHJpv4sMU8RtRuY18/z0ievDljA5toPr1UYmhi3SDKBNs7RvwRRdlzLT0V7RjoLlsF7fv+W/+Ouf4Rv8/G//lvU0k1KjpEJwgXEcCIMnDJ44RnxwOO9f82xKq1Qp+LjFY4v5wUfiYJ5ZrYrmwnJeOR0WK1+dpXi7gMGmq0MZEbE2QptD++sXpKDlaPpot4M2glwm08I4Ttzf3vGwJs7zkVpOaFvw+UyrnnwekO1EuzSuQWjSgdfdJLGuiXVJPf18JDerll6eDvzmN79lXlacn3j4+MK3X78nrytlzTbLyLmzirpf2A027W4VnNi8xJkm14WIiMM3mJ+O/+T5+/1lbbXR+rIm86x1CdIQ46uI2CsW2XZeaItN+OzV86SwEkNPby4ZL8I0jcQQGYcJ8PbCSKNidiK7DZc+6na45hBVk9ppYwiXgY15Sy1YNZHW2QjrtVhyc7WSqqYFV5OVkxW8Gic2tQ4Vy43SoPSpMNWoeLUVlNpVRjZ8qksjL4X13EirUrP9CgVHqgMPj4WXw5Hn5zNv32yZBtjvItfXjnEc8S4Q/EAIpnstRTmdMs9PKyWDqu9DJ8PAOBd6iG/r6c+F7cYxjhuWvHB6eWRzNRIXCzWWGCE05hclDjt8906KGy1+gNaB0/rKpAXB+QHxE7v7t/zkr/6alDL/4X/9d9SXM04iMQaGIdrBHAxEJkOkiXlkW7N1mfNGD/DeUZoNsHADgjeftMs8P83M58oYAl7a6+XfmpgHt1VKzrYzr9603C1CnWllIeuZypkqeyReEWUAP6AKt9c3uJL59eEjaTlBOVOWA0UdwzhRlmeaeKZpg3hPbd1F5EJHh/aKCkyCWSrH5yP/+Pf/yC9/8WtCHBnGDefTTDoe0FzwTQnZUDN0yrugnbAmeFUoigTwzgKdo3ZBypoZLjkSf+jhPKcZjxKpLGtiGiIxBFM4OGEaJ0YXkbVwXhvrUlhrQ0ohVPApE0TZetiOgXGamDZWEg3DaNNHxCR+YuNmbQnFON+IQIHQfI/VowOYu/WrgeZiH2bKvZ+zdY1FyC1GXK+1Dwculh9jl+pFuK5ilHhvF4Hv4FdLOmvk1YQGLQtaPSlVznNhLQ3E451xbUTBVaEl5fS8sErh9Kg8j8ow2GvvnIGjN5sN4DidVl4eZ/JqCJiaSgdTBcsSkWIXhTZiDMSoNDVawnw+cnx6IHjQbWLYbq0s1pWWVqbdDj9uQEMPBjLhvxP6rtZUT6busW/P1Wdv+Yuf/UvqnPn5//635PORMHpCtIMZYjR+lAs4P3T0qA3KvAgxRpx3/WBdHP+O4ALalG/eP3A+JTa3O2tNdO3996UPv8Q12uWoWihlNbFKyaQs5DZSZY+b7hm2b3Bi8RqIYxw80xB4OB1J8zOxrlzf3DENgtYFFyaDW4ujSqRmGMRCpoLzhGC625oq67xweHrk4cM3HJ+f8X5COZKWFVdNBadNIRVYM1UrTZxhRaWYVLPVbhkUWhCbplerREtOhPg9ubUvpyObYUBehQ9WQvgYGTY7hnFku93hm8NtrmB/YjktaFX8OBFVYT6DFra7id1mS4gDLkY7lGKvpvcNbZmW+43jG9KK9T2t0bJ90CF4o7uW3DmtxfCTaUWpiBpWRHu0fCsW9FovNg8VnAuosz2T0SUbkCxGoU8jc1UaxQ5wNX3tOldaFkpuLGtjLVYaqlRUM5vBEwdhO03sdpHNZDHnlyTu2uygt1I5zweQc9+nNaPfq6NqQaXiY0QGRWOhucxalaUs3MhADJGGZaauaeX0dGCIplmOvpfraod5ZSHqVRf8G38W7IUyk3+XgavgpJptzwu3797ys7/5G4Zhy8//7t/bqixY/KPzERVPk4ASsR7BVjci4VVXLc6M1rVaorfDUVPj6dMztSg5V4ZgxnjvnVUrxQQc8koOsL1oTjOlJBOSpMqalMIGiUfa1cKwu6VJIDcjITqBeVk4H2bur7dsr2+tz2sVakGINJTmbWdZmmPw0YbbUlFNrGnhdHrmfHqhVSNilLIiRMY44HFmPs+1r+BsKVKr7d2bCLXvRhElt0YqSsiFGIRxM1GK/bt8r8N5XFYrY8PA4B3qAxIswGapwvPjC8M5EeJArpCmiewC283I9vYtez/QHp9xL08mIOgHEyfUDu1VLb2XdUZjoxFCQ0n2RXOORrD1R7ZSrOTFHtW8ouvyql+E0tO0s+3QspVINEOeiIt999rHPdLh0UV7fokNhFSUXG2YUnJFS6Am2/ctayE3+2UXGuoUPwiff3nFZ5/fM24CQ+ygY7We3ZQgtqNVtS+m7b6EtBbWVBCxIB4VwQdPGGAYBXTAs1C1kltllMEkd16IfmQ9r5yfz3gsqiG4gA8TVDVSoGZ8MMaTxJ0ZjV0XQVzQhtp1j1VQ9TgNbO9u+fN/9V8h0fPtL/5fXFnYROPpDtMWxb7UTcE5iyus2N8q10oTxal20YUZE54/PfPwzUdSSpxO1psNQfGu4UKgNXnlGVkSecZnW0GVPm3XnKhLIuUD6hfqujAsL4Rph8Qt4kaubvZcXd0yH89sb75AhisKkHPtkfQVSqZKJo4bINoLiJnBc1p5fvrE88MnjscXYrRBTk6JMQ6URZmXxQ6lguIpCqlZJag9VDm3S8an/b3HGBmngSFGNtsNx/PCPx0A+J85nE0N8iRU3H5LdAF1A0sRnh+feXx+Jk4ju5tbdlc3uDGaQGEaOEeHU9hstoxVccUStSR41Jn7zjtsmFMLqn3wUksfIw4GCXbeSsxSUXcZHKyvH5YvtYuJbY9W0kIr5nC4mMS9C4ZWkQDdpeCdGPXPchqgU9FbhaKtI02Uku2fXZv9WLUphQYDePE4B2/e3PCjP/mCm/trhs3AMI2EwcJtnTPUSNOCDwaPaqWT4FQoHQ8ZB/vrRCDnTMpnhJWyHjk+f0DzggRvMYJ9sORdREvi9DIzjAPLaWHyI2FyplON1tuqX6n1ZKup3iO/Bv5o7XYzRYh4hs5agu3tlp/85Z8zBuX5/W9p69m4Qk1J64K0gA8RF0Lf3ZoSSbWC67mqakM1FL59/56nhwe2vjKNG2J0eGfR7JbRYqjVnDN5XXFO+8RZrLTvsO6ckrGMVMmpkstC3GyRYYePV3gG9vtr/vH4C75gY6+sF1SLBTipYtGMiguVXApFLM5Ry5nD0weeHt5zen6GUrm+ueb2fmZePhHiiLSB03FFiy1oa2s2x1Bed/StKlULwQvX13uurq744u1bPntzRyuV55cTSY9srm6+3+HMmdf1RSyOtsDLkmlVmJfGXEdyGainQpUz0xjwg6OR8bUyyMBY6SVkhBBMG8nFeGs2nIZFh7dmK4tcF5xTVKKVq8yAmEWnGHGg5AVt9bXhpjbbSZVEbRmkoWL7PcTo8gZi+i4UCC/0Ztf6zmpWjtIjABWoGpBxYLuf2Ihnd6m8o2ez3RKGwH6/5eb2hpv7O/a31wzbLcO0tQSvOFoJLoXm7SJoeYVmO9m6rtajOIBKWhM5O6Yy2sGdIpvtLS0t3WdqU2iaUooiEklL4fC8ohpRnRkK+Gkg+NiljwmCQ9QjLYJ6VAPqbHfcpKFO+q+iG4pVoWX2V5Evf/QlZX7h8ZsXRJWczyyzR8rKMO0YZIeKw0vsgcDZXC9hQF1EWmSdM48PjyCVt2/23N3uUO0TcLVKRbKgWViWxBB9d/JYVELVYqTE3ChZyLmhFETP6FIp5YgPG3w8ktvGrG86MC/CplrSWpOh27qMTuC8eUxrTowxkpaZ549f8/LpG5bzI61Wbq/vuN7fc3ipvP/2QO4SzbVqF5lAqoVMo3Tll4pdyOC4vtrxF//sz/n87VsGgYDy/rff8PHDE25zj7rd9zuc5ZJN6TznVSjNs66mAcU7wnRFnEyYveaCamZsHlczecksRGIRhmZ0t1wUguDFdIdVjOPqJL7u4y6oktpW+/A6zc/1PEzLNcmUPNNqwePMD1u6brdmVCywSLxNdkWc9VeWMQCC/fIuADAxwb6BrxtFG34MTPsd027P3dt3vHn3BcNmj4RgPaGPxHFiu7vicDxwOh4JQ6QNkZdccGXFHZOhM8aBuPGMu4kYI0U9JRXaeoZ0woJ+Da2Rc6bkzutJZhDQuiKl2GR5NZV9K/bnijkmjodEKkdaFcZc2FzvmELAe4+6ZEbkOqNaUAm0Fv4TeoLdWA0ld8xG7WJ7z9XNjru3tzw/foPvgww9vCDBQprqtOLjhhAnU0M12+HSrArxNsmj5MTN7RVv3l4zDGJxGGRaLixrpqJoCCyhMMSKcxVytcqDzg/O3ShfwHmHhX03SlvsZayJrDum6Zqf/eyvKDqSinFqcZYUhzNSkPfeUre1UFvj6eO3fPObX5HOL2wnz7vPvmAzXfH+/QNfffWBdVGUGa0mrKjNLpa1FpMWdpOBiCDelF4invPxzIf8NWWeoRZeXo4UHWhu4fmc/3/P3n/2cNYGEQ8y0diw1JGlFFQdm3EgTgNx9LbwLYvRu9eCpoZIJDAwupEskVUs99J3XqxWh1cL6LFbrXGJpddmEXatE7mtZ7NpXk4ZsACiWjqlvEJas/UNIoTRdnuIR/urqc5zCQu7IPa12iuJOBs05YoGz3S95/M//pJ3P/qSqzd3XN2/YX9zRxgHnAvEONHUk4pQ1TO8/YyrZWWZF46HI8+HB54+PvD04QOHw4H7L97y2Q/e8u7Lz9nuruznThVSQtMZbQnopXi3xGnNlPVMzYsJKHJBqnlWW2loVXIy07ePdrnNq8Ger0pDxeMHUxZ1xzktZIZhi/OTrVE0crmtpJjzwxwV9ippK1RsvPvm8zecju9Yj6ceXrTigyfPZ/I844eJOO2QEG3S5gJKozISnCOfFs7nA3d3V+Z9daCdFFC6Ib5QUW9REsFXGxi67iTo0/Naqn1OapWGyQJDN51nKykRYGKaNhyTJWdbl23CjryutFKZhgFxjpTOPJ3OfPvVr3n48IExwJfv/oj97o5f/fo9f/d3P+fxYSatarZDbVRVUmuk2shA7ZY87zytWWWmDZ6fDjxut0z3NxyPJ/KycjovzGUhuZVUv6d8L/iIcwOtOZoOOBkQb169aRNxwYTQwopQzEyt/RddVpx37KaJc7O+Zucj2zD0na8Bk0r3aDZnGZyttlfTdcm1H06BZtHkRsKrXVaVSEUpuXI+nfE+sN1vLX5erM90PW1MucSMN1spqDknqloV4EJg1YU4DPzopz/iT/7Zn3L17g6/GZAQyHKi1hckC7WOiJtYk+O8QJOB4LeEsCH4hmNmPmTe/+YjD58+0PBcXd8wHzOuJRvVl4qmhiYbgIgWaIZqEYBqaWXtIqIoDWm9zOvEwlwt8yOqww+RWuDjhxOlOMRFwhAopTDtN6jLEAte+pfUGxvYHPr2+0XsFrffjP08rZl4O4yRL//ohzx8+4HTyzO1ZFqyXXMrBSkruWTcMFkqWZgMCYNQBebjC60lbu/2OJb+GtKRlJFWlbI2S7DTStPMWmCI0ifBdOqEDdLEye8wj/tUtEITpahxiXM7s9TJrGx66fGtNUjnE5osjvFwOPD46YH3X/2avMzc/+iHXF3f83RY+H9+/mvOSbm6fUteKufTC8tyJrdKapC7HLJiaNemzuj1YnGOrcLz4cRuGllTZU2Fw5pJzdNC5Div3+9wDsHo3MuSafXE9soRnbCZHKMvnM4vpHImBOV6t+F6v2ecdrYaOGe2YcS7yHw8Mq8zOTWkwRi9HdBq+7bWVxdooa0JaqaW/Dosodm/ZFpSR4cUoxnkTM1GhUspsbvaA8ZusQ/PdTPwhZZnZazv/ZVN1sxQa9tzx/5ux7sfvmG6jjRnVjKqUe1FFjxCdRGYyG1gmR1ZB6btZ7RqKVcxTDg/MgxbtptrpEWcRryGLhfM5iVNycq2Yvs8p6WzbRpo6l7R9qrFtVfVHCy1KSVDWu0yHMXjZEvJmW++fqa0hvcwXUW8KH6IePH2+8NsYa12MgH2xXVi+93WTLPqAH9xHokw7fZc3RbOpxN1NTCb89/5FnO1//F+ssGfN0eGk8bLyyPDoLieimZUCBAfkGCqrlrM6aPe9tyndWUzeKbR4wOIN/SlYK1RQymt2j+/CTkJuUBqjawrVQLFBRzFrFviu21wQUthKZXT6cjTwwMvT088Pz1ZMp4EUnUc5kyWgZvP7nl79zkU5f1Xv+arr35NroXaEZmGzGqv+9qmEELEeUvoi9sdbrsjrYmndGQuUFUYhkDle5a1oqY9Tcvay8ZMiI6b3b1titIL0RWu99bgb6ctzm8odYN3jSs3sBcbz2uYGbtzYc4J7xpSW1f8SxeWL6TlbLvJUjtGAiiOtCTmw0wrPW9RaxcdOKR5ghuI3pRLcmGo9qwKwXWYUze6CtSOlq6qlNrMTCzC/mZLnIRcT6Slc2HUeEiwErwHzOfaZEuUPeICra1UHVCJuHEgbrf47ZatCNv9DSFukDD0iW81K1VJkJPtYzXRWuISzqutWpXQavc4fndJlSo9s8aRs5EBS0umKpINS0p89atvEVF+/NMvaT3mnqAQGo1iLhmxvtz10J/m4DuMhpWCHukCBsGFgd31LfvDkWWeTcOqgqMgzV4tHCbtGwbU1z60KTw9fkI10XS1F1BAvbNKSRwqvu+NhcpAYSClTForaW3EQfCxdWZ2xWsHsApIMedN04klBdYiaHBIkD7HKEDEBm4ZSkFb5TSfeH56oqSV/W7DZvojlnmmAo8vJ45LYdrfME57xv2O9XSyvhhbkg9hAG+Ok6q5H06b0bgQmbZbbq623N9dE3cjE0I+nMjeLti8JF51Gn/o4Syp4qJju9swDhMxOoYAEWPUvrvfM0ye7W5kGMyxnlIizcpYjdq9HTeM24CMG+hWrfl0Zl1OuNYYQrC9XZfgrfMBrT1TUcxXKS0wHxLnpxlXYRy8eeyit2FS7zXjMJpNShz40O1e3435nRVStJoNulS1L8QbS8o4XPcmNlJeMBaqWRGcFtRVAzeDDZ18xLnGNHiyt8OyVuuj425ke70HJ4Qx4ocJdSNNzPFwiXugK5tMNGH4FsFIerVkVC1G3oEppGqjVkcpUDpLd1lWlqUiLnQL0sD5eOIX//cHdpsbNuOESAWfzKY3NBqe5kxp1EM7UTXO08VrKGql9MUzq+II44bbN+84nk48r596uW1Cf7yiLuBKsyn6YFqvssycnp9AWwfBWXRBA5q3pDQV343QnqrR8CJxy3I6cDycGAeIozAOyjAocYCgpuIVURwRlZFUPBmj9olYJo8FCdnvmZLRkjkdnnl5fqTWwu3tNVdXO1pTnh6fAeG3X/+Wx6czS4LdXtCl8unjRx6+/WDCiRBxIRLGCR9NBy4ijNMW3IA6zw++/BKpmXU+Ma8L6jzbq1vW9MxyMizq985KGYeBcbtl2m7Z7feMY0Tzyvn4zPG4Mo4QnC3j/VrwcYPkRjuuDPGK7TYSxRHERNJ0NH5OI+fTmcPxbML01gjFjMM1nzvuki6E9nhG8imjK4apVDEFjXcUbEAVh4hz0WIFJaAEnB/xPnaXh6VmSKum5azZOLdVKNnSts1a5228v2aothNzLVucoWs4IhIczodeOkuPEPRdx+rwobHZbLi7vyP6wLgxOp0ScE7tAqmXwY4YLiMbSlJrtTKsM3VELuER3yFPalVK1Q7RNlfFOp+tMogR74RW7EL7v/6PXxOi44s/3oOfu3oo2ZBMopXrYcSFgIvdHI/4kLAzAAAgAElEQVSSloXz6cw0bNhsrm3I0l/UuN1x/+4LlnnmeDjZKss1WgN1kRCMEOG8cWDzOqMlE+NgXB61n18FCzcW84NekuxydeC3TJstqTiePh1ojzPjIGy3jt3eM209URsug3M2zcc7luKo3igTmnrvTOtTYWuZ8nzk8eMHUGW/39JK5uHjB3IunI8LKVWejydOpxXnNizPMyU3zvPZRCnN4WNg3Exs9jvefPYZ82zbg3effwkhMqfMfrfj+eO3HF6euh8ZaMo4jsyz2Rql/dNP5+/vOcUzhUgIA1U8WT1LajyfMmmdGUPjduOYbnbsrvdsdCQ1R0S58p5tcARvQUetWUYlQUy4cHVFToVPTx9YTmcmhCkIrtonpFUpJdsSu1Xa2vDqaKqkZIMN1yFXrQ84omoXBow4N9ghdXYgLJYhUzVR68Wf56kJToeFnFu3ixkwywcjxDsE1wc2PoQ+9fU4sRLW+xFxAyLmY/QhEAbHuNmy2e6ouRI3poyqzUThlz1jbYbutNCcHhCl3ixlDXP7dmjx6yCoXFKStfegFjNxOi3mbR3MSue76+Sbrx/4+/+zsb36KbdxRMQIgxJad39YZqkISLggYLRfDh3wVXN/8eEizt1dXfPm3TtO51+TlowLYoOcVqktIXXFe9PappwRH8woozalr/Tp+iWg2DlwntrsdxunPX7aMRaB4Ynjy4lUxQKegqP5QMQhodPag7F7mrNYeq21A7/s91eyMaTKOnN4+EjLK1dXt5yOJ56fH6m5MMSBWio5K2leMexBZu2QbicGDFcVrjZ7ru9vUBHyupCXmZIK55eDkS+ccEhn8xdrIZ1m5pRpBMZx5Op6i7jG+Xj6fofz+dMJ/JYxeLJzpObJuqH4a5pztDrjm7CVDXdxzzZuUR+oY2AIkSmCamJpZ6AQvX2BA4FRd1xXgz59Kt9Szmeac3iNuOZ+R+7m7PO7CLWlxy5kxakQnNKk0nLG54zXCRfG7rQIppChIR4bOtTU4xWADMfnhdPzmZQKbuNppVJLwTUFmpE9WjUPaI8/12YlIGLib8UjLtjP7iPihGHcMGx2bCr4MeDDYIOL3kc3daZFxS4c6YfBqALmhLlgO6wMFqMP1mYagVr7PtIOay42wLGE7Ia6hveOcRwAx3xK7BN41zpPCFuz0IzNa2JW1Nlk24mw324R5w2aJh5vykt76YLn6u4N+08Hvp0/GFjLeVJJ+Fjs9S8FnLOWIXYLlTpEGyE6WjXLofO9EvGKusiw2eOHrQXhDlum63tOx5N9dgwUJiojHkNyqjqqmAwPBFd6X906gV6VnAvrPHN4fmQ5vnBztefx+YXD0zPrecahbMaNKaW8De+WNDNshXEbCMNIygZOL1UI0ZHzypoyL09PtrcuyvlwRoJjf71jsxmYhsgYPcshk5bFWFTaaJoZx+F1zfwHH07cnjjcIv4a8RsaDhe2DFNEmhAqFvmeCukwM20HNpstxAgeki6clxeW9YBzjU3cMLnJ8PcxMG233L/1jDHw+O03sCbT4GqxQ+AKhr0QSg89ks7qybVDw4JHvVJKZXK2UnAh2MGUSy5j6y+NrWDMk6kszzMvD2fWOdO0UaMJmGkWfiRR+81LPxB2gAztZ/8xU65NaVU9zkV8EMbNjmlrIms3CCEOeO9tZXIJvbHdQJca5u577K9m69iPTnHTfiGVzuEtpVCK9p9LoIfd1pZxPhMn2O/3/ODLL3n35Z4hOtbTjGgjDlZheH/xsha0ms4X5w1m3Q3TYG4bAYNgN0G7DjiME/fvPufx5cD5fOwXquCcItFQkutaaARc3NJqAmwYo1oQX/BRcblXNU4Jw4642ZlqrJocMIwjYZrI54KLI8P2mqrw9LiSczHAmDcvsAvCOBnZwbsJusA/r4XjcWE+Z0QDLy9nnl9OaG5IsRXVnLOJB0IFBt6+3TNtY59We4bcyKmwZpvet3npCBYz2NfSSMtqatCy0vYb4u0tMQzQ96ClFXJOuL4pmMbx+x3Otz/8McN+j/qIi5OpaVSJoaJxwKkn5TNP6xE9L6y7wvUtyDiw1pVTemFOL6CJcfAmq4swOIdzZlEapoCTPeIbp4cn9LRQcsF3ZlFTxXmH5/JdVkMlJiWngmbBDUKcBsbthjCNXctqyg+pPawoG1xMSyMvjZeHmcPHs2ViqqUda4PgQ8dXWnntxPfsI7Oque6kMbF9I5cVJ4laQZ3HhxHXnCE8NxXvBsQb0tPsbMnkdBZpDWqkOUgIhkRxfQe7LpmcE9vNhlaVvNqXoxXrU0yw0REva7HhWU1s98Lbdzf/H2dv1mNHkmbbLRvd/YzBCA45Z1V3VbdaV3rR//8RkiBB0O2q7qzKkUnGdAZ3t1kPnwVLLxLQfCASSIDBiDhu5t+w99p8+/07vvzyNdOmoVnIsRKIUIWNpJTG2OGTYqpVcccoLe3Ai9G8//ZRRd6ETVValc9wczjw9suv+PsP/0FYVowd+uXR0FbIfMN0ILeZlC26G+MTclFIErYRWoJ1uHGiGSOGgdb6gU4YUzEbx3a/xY8Dcc08PnYXVOfRojRNZ6yV3alWI3jL69dveHg8sd3u+NO/fM//9b//bzw9PFFywimHrQbVDFnmhYzTxNdff4dzUOqMtSKIP5/WrvAC5wb8MBDWQFqTBC13CBqtktaVU86ENWGU2Axrk5Zht524Od6xXgOtfqYIYbg5SI2vtZCpGx2SXDGTx7uBej1zXS60FFli5X5Zad58AvVqlxm9xtDILXeIcKW2rkZRBeUUm5s93lnS45mlPolXrkgzX6tM9ESkq9DV4LtYvcZGSQ2vDdZ7UJCLWLR034nVXChxpYSFtC6cH2fuf78SzhldXdc4SP9mX7IrWp8Cdo6/mMur2JaK7D51NaAzrSaafrENyQoiN9DG4odeOpbcoVViaaMlVBMgVckrqoZODKzkLOofaGijSDlTUpW+uCrpLXV3rxjFrlje/3ai5MowNt6+u+PP//oNr9/u2W4sWgcxntRRHvgMOSY53K3TATuf1xiNMT14p8k+kkZPM09C1VONihVnjB94dXvH9Xzit19+IaVI1XKY/GDwfkPLGT1qdBlIVQQLTWlKuKBMD5fqT2LRmtQqush0tcSZHK84B8Nug5/EL2pcz/iMcoitNjKBpxJCInUPaGyNx4crMWemcWY+RT5+PLPOmcGKQIKqMMqQa8YPnrt3X7C9eQVNylZawVmDdxZnJZndeeHaLvNCmIOYNloVpzZV1Ge5klLDOS+OmybDw+P+yGF3YOsbu+3h8w5nMJZWCr4Jkj6XhButGElNkclsgrhUkglgCyotaO/QvmJ8ZtQaZQdp3LVAr5RcLmQUWWuKsRjV8FYzOYf3lueHJ8q1CfVMaXQHNtPDR401UhKpRmoda1kUqgi3p9REToLHKFFyP+I8E9eF5RIlHbkrO2hCOghz5nK+clwtTmcGZ3risQYtwOCcZWlsnKWljFYBrRdqWWiMpKrJVUn5q3pJ3Ao1iSZT1bWHBgnNr6Qe+1ByF+8XaqrEnEE3tNeiiFIV6y2DHTE4lG5oCzFl7DAybScePl74+s2BP/3pa7748o7twWG09ONKefGW9p1ijApVC74VrHLSBmCwehCjN0CTlqL1G18SmcV7W0qgOidRCUbx7ou3XK9XPn64SsyhF2qA0Z6IomqN1h5XsuSXWsdSsrh9qFTtKVZTtUeViq0r5EhcLsQQccOAGxxVa2LtKxmjyEXmB9q2l9mSXFxN8CjkKpmmSpNz4cPlynyeabVKFmi/i1MO5BZ5e9yhjeV6vWIHw1oM1/NZDNWpiwB7iTqvwhXK3YVSm7QkIq4wUAumyMtCK5kqbzdbbrYbBmcIrWHcZ745r8uMSln0rzlSS2RdxO3hbGNsUlqGkMVB3gNvBwXOKYZR6ORW9wFE08QsCpSSG2sqPK1XrmnBeMWtHzhMFq02eAohZeqaiUXi9az+x4NaWkNXueEleFfgW9aZ7lwQQXWrEJdAmFfC2u1kTTONI8404ipBPU2JAunD+w/cvvFiV9JyCNESeaiVJDeXJKQ/3y1bmZlWzqSmia0SMlxOJ3bDKNHqNdI65b6lmRovpPVKnK/kZRUifZY/7cW4q0BrLRNiVfHG4t2EURZdBXqmdBPBPxF05PW7Lf/yb9/x5Tev2R0mmsmiBtKamkVwISstgYU1lYlJBOdWFbwRzXHJojcW4Eav9ZSRCW4XMIgCUwZV3hs0E1989RWVJ2rbosepT38V87ISQ2QzDiLA1xpTpC9sSIJaKfS9pHhsc0nE5co6X9Ea3CB9W8qFpiQ4yk8jyipCFL+rfTE4NItWGqdEJVV7VGUtReIbsijPkpEq5LJcWULAeM02RB5PF7786si0mfpKpVDXjG1QqpTgVWViTOQsdrHyaY4gkkWFmMhLE96UUrDfTdwctnincFa+n8v54TPfnKcn0hK4NkFCat2X71az2TiMgSVXMk2wkhZyiww0vJ2YnMFrJQ9oq2SrWJUkWV3XwC8fPvLL/e/MdYVR8Wa35evdkbfTjvFux8Fq1vsLl6cLrWZGI857ZcBUQTG2qDFK3BfL9UpcZ+GmNnlwS27M15VlXlHIKsNajXeOzWhpW2nuw7oQ48rz/SOnhx3DsKVY0yPsrDB0tSall3IrEJrGjApdoelReKcVaqq0dBY9a6mUvEr47/oshzNciMuJOF8Icxdk6N6XYrHW4qzweLRWGG9QTcu0uEEp/0gT19ZQlpl3X458+813fPOHd0z7gWYKqPIp4DUlsasJjnRDM4N8Jnkl1YgnQZ3JNst+2Inb6KX9kCmVEemgWHlE2UTCaA+tstltef1u4nyFrD3KdoLgdugqnShChyrUAKUcuQRigBTkLfISebguV9b5gqIxbCYhPRZB0lQlrYObBu6+esvz/SPX04VaMrrJy8BYJ/JDVSlKxBs1SwtUk0zhVyDFwGVZUNZwd3vH7Zt35AaPzyfun05ysURLzbAGIThmXVApE1KhapFStt4GfAoDrLKfFnuk4nDc8u7dGwyZHK9403D0bNfPOZxzlzbJYESyFpVR6GJQGy+32X5L0AE3aKbJYR04K4OOMAeqsUxeourXqlhq5en5ys+/feD94wPn9UwxFZO7hC8nznnl9WbHzauRYXQUr7k8PBNrQbeC1xqrjCAhlJNygkpNiRK6FjVX8ppYl8i8BGpTjNMogngkNt17jXW2Bw3tiDHQWIlrIKwO522nCDjaJ5F4vx1zEveB8bRmqWqWQN2e9xlPj4ShEwnSQquBtJxIyzNxPrFeLuQYqUVWCX7wWOtACdTa9t7FvvBzi/BnUdBs7ZpVR00RO8Cf/vUr3rw5sLsZMR7QDePFGpXRGOeozYCdwG1RWrJtnFOUfCGEB2qL2FxwTqGaBYNoP7VEIbQeL9D64TR94lxSoTTZ1W62G3KDp1Wm5FppvPe0TRY9ca2CZonpE4spxYakYYvtMKeFMF8oJTJOI9DxH0p/KrGVRpRX1uC8YxhHnj4+UNciuJeKtBVVVio5S2hUTEUOk7bE0lhTZNhteP36jsPNXpKulWKOgVIVFcu0n6i5kpaVVjItrjKotAZlRLRflYRIl+5yQiEBUxqOtzfc3t2y3U2k5USJC2uJsgkw/99H8P8/AvB6hVIEAdIqcckoJbK5i1rRacAQ8KNlu/VMg+1KMC03ZVWUYphXWHQjq8hpWfj9wxP3D89c1oXcRCG0UZalBR5qI7TMc5h5M+1543dsXm2pqhJPV1pqpCLZmEaLLSylQq6JUqXUbQVUkemjwghQGaS37PK0RqHpLEM+B8Pg8dsNpYh9LKSMWaNM8BT4UcQBOUtgTkOjvaOlyrLOlJZI+UrMloZiVIG6LsznC+t8JqUrNc3kOFNToJUm085pg7EaY40MnbTtbiCgB7pKtaB6DIXqnCAJUjJesz/e8PrugB8NVSWZXDbZh6aSCOsqIgc90PRAbo5SHBWP9xucP5IXCOlBcKQ5iIjfKXJLVOqnpGytnLCPYpbxV7W0JlFgWkkfa14m3krWMrU1lPbYwVJipxmkynUJXK+rCPBLJcWVsFxYlwutJTbbCaU0KYt8scnSV4gOWsjyVTe899ze3qKr4uH9A2FN2G5FNErgbbk01pxZQiKjhefU5HK+uz0yTpIF0yqM2z3Tbsfd3TuOxzs+/v7A+9/eY41muZ4ZlIQgLyFhY8I1T0yZ1FIHnr0MIyubaeL169fstwMlSR+dUqD1dAEBdH3G4cwhY53BaLBai0uFilKFgYiqlWFQjM7hbEPVRM0NnMboAZSiVsPzNXO6nnleHzgtkXlOgnzscQWDNgx2wjtDobJE4aC2OVDszFE7bm/2vH59x/Nv9zz9dk+uFWssvtvPGh2xWDQtK1l4S3Y73gg/VCmRlKEVVYsTJlOgJ3YpZWiustSMD4Bp6BCIaWbauC6gF/yh1haTNOt6JVdx1OdkWYMc5hgWwhpJSyDHmZxmEWxrWdco21PH/D+I9vT/vvyRrb+YjDvuCmgY7Keec7ebOBx2mGHo/FUBoKF6tHppXVGkwDqKclQcBYdxO5qZqEbTXCR0Gj8qo9rKYKRErIBWrfNpczelly4OsdRq0NaTxV6Mzg2DE7FFNz4o62VqrlZqXZn7wZyXGVU1ac2s8yzpYyWyP26x3af6SYPS12gOI3a3muUzT0po/Mrg/EiYs+zFFRjrUaZhrYhm1hLINJy37IYR4xXDoPCmcHPY8ebuFu8G0Jr54Z7f/uNHLueZEBbqC/cYTW2KgmL0XnTevmCsYQ0rMUa5kGhsNhPD4BidJi8yBKTKqinGRGmfORBSvaSyRmHIbCfPbnIYVUDNGNewpuCsxhn5YuIkEdtNbYbrkvnwHPj4dOUcU48CUChtGa3D2RFvFGbwjNsNr+8OrOuFcHriuN3zZtqzcQ6N3KDKOfxmS1kzIVUqAW0lOUppA0amwjlWsu4UEq2xSJy4hL5ajLdY17Be4UYJGjJOsdkfOdxMbLcyqc4xUkoirLlHAfRJLDKBqxQqhlRWYtLkJKXNus6fPIROVewg6w+xs0kalzIGbQWb0joSUkTcmvpCUm+9fxau5ssajVIydlCMk8d6WYMITjB2U3IgrWLLehEWGDNi3ISxE6pNKD3QOvTM+FtseaKuse+Ju5G5VVoPdxL2TpOcmdpoudFyJmVxlmAGMWdp4fi0Jn8P5dHGkkogt0QIicv5zOl8IaVCXK7E68LldIZaOB73DH6Q+Ahj0E5+VzT591oRaWXJ8rPmJC6dsEiYkXweDaM1sYqDpCjFWjuVvgmVwSi42W5xurHfjbw6bPBa8fDrLz3Nu5LCCxFQwrFqq9TOomoddyIdsMwMvB9QSkkLUoW2sCwrOlSJViziNgprpBT1ksH1Xz+cx6NM4mgNi2EcK0bPWF3QVuBF1hmcFeA0rQuQlaIUy+lSeH+/cFkyKVucbgzWoAdZjzTksEzbgc1+z9vXX/LV3Vvy+YJ5deKr/cSN04xmQjVFWFbevjVs/IblOvPjD3+nLDPDOKCMYrOZGK1FV1guCyHKw7XdDUyjMEmNkcmfsRqt/yGMTjGitWbYTQLoMhZV4Xq9cj0/Mw57rLKUXEFJ6lZtCrA97UxM5N6JC8YY3zNAJMW7lC5J1KJhbUqcGXQmjbSyDVqEVkTBg+zyJBxYBjrGaDAZN1rG0WH9gPcHRj+CKuSUSXGVSoAqEsEiidOWDYoNrUvdaqsi6tcawwZn3lJModUnUl5hqUKP0Aatq4CfSyMFiVEsrUBRgodEof0O3JaGxRuJm8/NU5UnRpFNhvVKCGeenx4I80oOmeW8cDk9k0Lg7vbIdjt92heqJlEd0Lr9j85PiqR1peRESJplzVwuCwpLMx5jRTJ5mhcimSUF1pLEGFBhMwxMg2bcDNy82rGdBsoceH66kudF5JOpQazU/hwJupTeEkHV3cD/8mpPSRRfFEnQ7oPS54czzVum0bKdjvL56Ctrvwg/63DujBYYby042/AqIRE1SM9nRQlTS/vUCymUhKcWy/PpytPjTNMe5yaMHgTSnDK5BFCN3W5kt9tzd/eaabBQIt988YZvj3/mxhomrXFK8/z4zDJfOe72jN5iteH7P35HybWXheCclc80ly58hlxSV/WUT5xcrWVKVnIQYgOt7/NaV/kIvqNl0YCezg8Mo8aNHm2zQMlq64G50tdordAWWjXUprAMlJ6sRTEQ1D/AYyhxsfTcSrEHitgj50QuHZrdQWS5CCtIiIvyYQ7jyHY3MU07DocbjDGUErAOkfal+Olh1tbQ0MRcBLeJEXlc69C0kqlVFvolKoyyjG7q8X3Sl4eUusIFUu72K+TrFhRoS1GDlPgYEoamPChHbVJqx/XK9fTA0+8fmc9X4pqYT1cuTydKzty+OrDdTjLssboP4SQ5SNXek9cmu+EYBdWSGpfzzPN5xfuBzWbHYzixriuowJIKWTWWlEm1yMvACcrTe83N4cDgRQm1rIGyhE8ruJoh5daN1bJaE5Z0plBoppMPeg5tba3T62VSW4E1ikbgYbkyLpbLVV5mawewp/yZ01qfEztjGbaSUVhLRWcJ/FFWhACqrxhe+DcoSwjw8HTm4f5MKxZrJ2IoXFLsCU4NYwz7/cTt7YHBDSzPJ5ivbPcr2RXs7ZHd9ogpBkpkd3Rstjd4q7EKakn4rZESURvpyzriUXspB00DW2WSSyu9dxMeDS3L8MWJD1V030pE531/l2tC68a33/2zsLAogJStAj7TMq2rdKBTT9iqfPqgWqu05DDGChy55D5s1zKZNbIF1wok4k6JyRpNLvKml9K0iUIJ8Eoz+IFp2rDbH9DOiolbabQZ8eNBhmQpYIyBKgbgquXgtKYpTbSvJRUgk2JguZxZTidaPLOdDNvNIMKHyYp4OwViCjTVpW4YYCCjKdUSk6eakaodGE9B4hxTWonzM9enD5we3nN+fKaFwvn+idPzGdUqr45H9vst1imUbuQa5QFvMnwTR5DobYVD7Pqwq3C5rBhlRRIXEiFlyU/NhVAakUqsoiNWVRqRVBO73Ss2mxGjkRI5ZUKMlCAa4VqapOW9QN16+6FiRtFZVLpyOO54dfOK1hT3j0+8v/9AWiNYS0VzvH3D+eOvPJ7OjKPDW8sSArlWxs3m8w7noMFSxJ/X5JeFG4ixYqvEwMsaR8JCVdWkBPcPF+4fFnKUXmANVzKCOESLTnMzjmzHgfVyIV6feTVNbG4PlOWZD788c1Sa3TcDo96JjhMjflGtyTVTW4/3rqrjEvowQsvDrWkyMVYysaWzaoRFU2g1ifMf0xk+DaMlzq72vXvTBuWc9IU0+TtN8IfaCGJSa4/GUPuhqsheUvdqJYWAhKtbgZ51oHZrStwYWsubvA8QnHNkpVBN3hTGyB61FKHziQhdGEmtwbxETA5gJDxIF0ssjtJG0FYGMsguWBuBf4O8ATSKlhMpLizLleV84Xw/89uPP3H/8T03xz3ff/81N3c79q92mHHA6JGmGlqL1Sxny5wKWTnwO5rZkBlk7lAbJS+kcCVcn7k8fuS3H38knALXc+8xS+Hu7pb9boMxgsBMIYt31sh84sXLqlQ3gFYBRixz4OnxglaW/eGW0uB0uUiJbW03KQjR40WI7Kyj1sxut+d43KGRHrp1+gaYLlyXPtqNDu09RSmSGFYllkKDdrJadE4gd0opbo4b/Pgl909PzEvkfJ3Z7Q4c7u6YveN8OnFeEk1JMlxx/vMOZ02J6yVyCYWmxfQnAbOKUVXIghS0Rpb6znkul8DT80oust9ygxWFkVYULc241aBapoaF/dax323YO8tkoKWVtUQ+3P+C0Zo3t1+xcQes9ig9EDNQJZqt1IAQ2GQ4EUIU0YAVIoDGiE8R8SfK/5P2wGiD8ZZaIy0LYqKArHaUhIVrJ4bqUoLI1/A0IwOOihZPJx7vR5SBGAO5ZLmhlegoyZXaVnFxOAdNy+6tVRm3KzmoIhsWmJbRpl964gupquecKOQhqqof5AHtNhRk11oQqmFBU52W6DsK3grKU8zeUmpSFTVHKCs5XlnPz1yfzvz+80f+9pffeH565Bc+8tf/+0eGjeO7f/qa//a//E/c3N1Q+4QxU6l6wIxOyApmoKkR8LLDa4WwnEnzifnpkecPD8zPM+eHM9fLwjiM7I5HNtMoFjIRU8oulxfjjuyVtZGDWWujpMoyB56fztRumDZO83y+EHOmKmEJ1SYezNYkwNe7UVw5VnPYbRhGK5mtQVRadCsfL5zhWgXqVwprFqCXUoJuaTThkSuIIdBqwDuPdQPH3chm+yVryPz620ceT89MFrRx6GFinVf8MOC2I+f4mYCv5fGM9pZiFWsTa44Q2hrWNNGX9r3T4GEcNK1YhmHPMAjMuWmNtoBuXMPCfJ3Z+JGb/ZHtaPFWbGdOQ0uRlhKayrw88eP7hQ9Pv3C7e8txe8dmeMV2uEE1TU2ZkjKqIz5KFAJfKpVXd3coU7Gma+W1POj0FYVWHlRDKVH/iPg8d1Gk2KSakjQ1amZdey5LK1RlMU6mqdqM1GqoepAhAKkvyiV2gZhRGJzzgn3sBIZGpXuLO6xDSmqtZF2gkCAjBZ9Igy0JlY5WUU7ogaYniLnxlqIca0pgLDpFvN2iWyGGC2sJbKetTE+bRSuLKqmnsF1Yzo8839/zyw+/8bd//zunh5PQ45zDas0Xb7/gD3/4J46HG4wZsEbM5dRKbqMohLAUJbhQSQkLwquNM+v5mfPDI7///DvnpyuXyyIa0+ORcZRVhDIIhwhJPTNGLiO6Z7V2GFxOhXVZOZ0uaK3ZbLdoo1iWmZgiOVfW0EBbjB1IdRWHk+qyTjK3+z3baSCGlTDPlCB84da0xB6W1uMlGyonylIpHeuimkC9mumzg9ZwVmGVxiC5sLUmvJ3YvTpSK/z+8YGQJRpE9uMTfrvjcHfDev/756uOOjoAACAASURBVB3OV8OGJRcuayFXTXOKUCMoKWUrkVxbPwBB9o7WYRDzrHWe0jLzeqaqxDgNHHd7jrsNo1PCy8nitm9K/IKUwuAaIa3EtrKWM3E98/j0O6M5shluubt5y2AH4rKQzzPLeZbhjbaM2y01Spy5sQPPT4/kFNhtR6bJo71Elquek0Kr/69FcEMpefCccTgnUKhaLSmvLOlCa4rt5khKlcFvaFUW8gVRhogXUkFtpJL6G1t8qDVLzysrFT4ZypXq4LEizhjdw4hSytROUM+xZ4/Wiq6Ky/lK1YbNcWQ7ShYc2qK0R6uhu18iVmnIK7UZSgZlGiUGSsmkOBOvz5weP/LTD3/nL//nD1wfV0bn2YwDzisOtyP/+m//zHd/+Ao9WaoGbfs6THloHlU87cU83qRFoMiyvcSF89Mj73/6haeHZ5Y5sJm2HI9HrBNjuraKnjyDVro7Y4SSCDKsbaVKT7hErpcZGkzbDeM4soTIvM79YMlVJxpduiHfEIuQGkbnuHt1g6qV+TpzOZ0YjcPbobtwmohNiux2QSI4ak8LU8rQjCSvA91wAaZVAc3ZgnUjoxc6w2G35fH5mbCshBClFTLCbXq+XNkePjOO4c3kiMXysAQ+XFbOoZGNpDm17i6RCIRMrqJ51ErjkDJkmDTDxuBGxXYa8N4xmoYqgVQlhWnREt6qaAy6iY2Hhq4NnWVfqWygDZZrWvnp/BNeef7w9beQGqf3Tzy+fyTPFa8ln2R3c8CNA27Y8OHX37g8PXE4bPj6+y94/dUdm5s9bnKAyOBgkJKDTGm1g6ac4PtpKNdw1rN1e5lMa8cwis1ISCJGJHLayhK/yTAGMq1l/hHGK8xYRfukuipVFFJNy3qJCrnKYCvMKyXKsj8FYQWVXLEuQvOgI8bNKPdIMXswGxkwGSfm+BxBDdSihPSgPTlGmr6SlivL+czl8cyvf/vI3//6K3FJHPcbBqvRvjHtLV//6S23Xx3RoxKAFz0HpQFZyQPkHTVZ1txQWBQBVa+E+czzwyM//OWv/PrTL5TS2B8mtruRcRSKnkzNu/BCW6w1aKMwpk8+exxIU4oUM5fTlVIa292eadoQS+a6BpZYujRPyffQuhEdTUlZkrCpbLcbBquoaSEtKzU1KgblR1JaSVlEFlVpye2hdrtcg9IoyMFVClqWJLmkGy1EijdMW4VRkeX8SDmfWaOScGntiaX02JHG+XLl9t0rdsfPHAgd9EjWsB0O7MfIz/fPPF4XWm4sVdG0IpVCLoVa6MqWLqkaDMYMHPZbxk2X9RnpPWPK/fVfqUrgb1YrtOt7LK3JqXY6XmbWFYi0LOG3jpXff/sFUuX550eujzN5rZA0pYnBlz7ZK0H8k1o1/v6ff+XtN+/447/9iS+++5rtQeRhKCO+QiW8oiwd5SfBu1aVkhW2s4pqpfePSANL6XlIYmnLObIsF5nuKpmG0lJHXwq0S6xkVRwSKXcxu4YmBIQYM3FN1CAWshQyKVViTCjduF4C72KhqoFmJvTGiXJIO6gW44ZuPja0GGlElGqkHChlJc1XwmXm46+/88Nf/pN4DdzsdzitQBWmg+f7P3/LP/2P/8Tu7gBGJq8y8aTLAS25KnKjP3RJ9oElEsPKfD7zH//+F378+9+x2nB394ppGtGmY2NU1ym3htVW1Ggv6JQXZlKVcjbGwuW6EFNhu90ybXakknh6PpPR+GFLSvMnxi9N+E+hFUmEa1VeDuNIaxBDZF2jJI+R2RwcLSVev3uLdZ4QMpces1FyJScJNS6tfYpcKF3U4iykVDFGYbWD0iR4WjdaVsznE6d5lcunQwsGa9kMA+E6f97htMritaUahxsGNncTH82Jn39/IIREVIpII6NopeEaWKdxg8EPtjNzRNtqtIzFBa3R0LXKD10qxkJUlWygOMNaKgaFsxvG8YZxGJnGCWcck3PYnGkxcHm6J19W6hIoiwTcxCxKkEpPEcsFg1wa85q4zInzNZOL5Q9//o5p2533tQmA0orBuTRNLGLirsqKzK/L4ORSloY21CRR5gVoL+nMCcntWFAvSMYiov2Uwqfcxlolxj7FHs5bev7nGoVLWxrkRolCKS+5dZ1o4ekx8PS0ELMlt4HpqBi2Gb8BbSYKGuMGmrK4qZLWmVJO5LyQ5plwvnL/6++8//sv6FS5O+xkeEJi2A388V//yJ/+25+ZbncSgqTk99ky5CKukqxFDpgrLGERCWPJpBSIy8r7X3/lbz/8J+PgeH33Gq0M2r4whV88oqXHM0qCXKec9n2h6KNjylwvgWWN+HFis92TS+N0Xoi5oa0nxUKOTSqTvrMurRJbpS/QMEZYsylk4jUSUqaUhnaaNUam/R6/mxgHj51XjG54Z4S8d1m5XFZSihRkt26NxliHsU7Qo02xXBb6koWmCrkZvBFZas4Zr7LIEkslnK+UGj/vcPpxIzs8ZRitwmLZ3Hkm7TEfn/jtehWhr5Lx2uQHpo3HbEwXwCtiLNil4LwRZ2CDmjI1pM6mVaSWGUeLHT1bv+O43XHY3rDb3XFzfM1me8QaSytZAn3iyvXxA6f3F9KaKSFL8GoxrCGxFiG91iorCassxmh0UbTo+fBh5def7nn75Zf4SZwFzajee5Z+80IqlRICRjU5LD3Ds6GIQdQd0jNpVIMUZUClWsFomWansEoWZEzkECW+LiZyEU9hTZBiIfaAqJolH0Z2kA1VVWcXCU6ytEbpusSYA//H//rfydXw1R9lDRRTw/nItFGMw4ZcClY7qjbklIjzhevjiQ8//cpPf/k74RqY3CBkPDLNVm6/vOHbP3/H8d0deNsfbkFNNg21CCkQsyGFSkipy9AKOc7MlydOD/f87T9/YDuNDM6LikxLtKC8XSvWOowxGGNfRrN8Ak73UKl1XrleV9Yl4rzncDyilOHyfGZZI6lUyJGSao+P78M4BU0L8jTTsNay2WxAadYQJEEgIwdLW0Iq+I1iCZF1XdEpSWCzVvhpwFsZhD08n5jjSi5F4AHWoaztcsb6aTOglKbpKuBuJb1sqYWQE7lWdtsNEgPzmdxaPWy7H7FIJJvKaODusMH4gfH+kR8fHplbQ42O7XZk3HpwjZdFXwqFc45iy7IyhCZXVG7ixHeOaTNyd3PgzasbjrsdoxtwdsPgd7jmIWrMOFCbo+SVVhvGHGhtIhZNyEJXa60nizWofXqokMW8cR5lDeN2x+G4IQTF6Xlle0OnuL/ArGS9rOhi7y5ilpqmT0yV9C+liqxMG4UusSM1ZlL3a5a09LzQTJwD62UhBhH8l76rq0XJl84C8CpJ3o61KkqSfofaP9wGKNtlfqCbZV0zf/3LT2Adb796x5AaxWfikmhZlEUlBVKaicuZy8Mj7//+M7/+8DNxXtmOE8YYMWUbuHl3y7/8z3/m3fdf46YtsckwpqHQXvytJRkqDq1HKqsIB0xhua7kcCWcn/j1x5+oKbGdJpy1MnhDqgtJRpPgXdUB093nIyHKPTg3hMQ8r5Rc2e/3bDYbFJrT84nz+SKpdcagJG4Jo+QgplbJShFbIfdX8TCOTNNIiBGThVyQGtA0a0gimA+ZOovm1tQsLY2RCtB7zXY30YxCXzTrGgFxvMyrfL/CHI44a3FOPqemCsu6dvO1MLHoeu91nqF8ZhzD0FGBJckOyCgZGTut8T4zuju8Uby/XMiDQe8MdkL4jFUJQrIo0toItaB0Eb1nzjgyg9V4p9kYh02VdLpwDYHiBrxbKUMm+YAezgxj7w+bQleh7+1e3XI5vCKEAnWVh73rVUGAXLU01rQQcsT7gbvXt2x3By7XCx/uHzm8uWXSVj6EbtIuPbpe09CdfKABqqxDUlypSIhvKUk0lyWQo3BR0zITLmeolbAu1NzIIUt5GquE6ZQmQoqmRfpVWod39bdHk+gFyVtUXfhuMF7ChHWPUbBWE9bKv//3v/H+wz23NzccX90ybQ7Mp2esUbSauhXrmftff+PXv/0MubKZBnxfpBdtONxs+eP/8EfefPMl9KhCMUeLXxPl0HZEG09JipjoQVeFmlah9s8XPv7+G5fTmdF7vJO3Ys4ZVRXGmY58kd0tpYn1TQsmlCIJ1OsaCGGV4U+HmmulOD9fWK4X4TE11eMg5PJqL/EeRoQeuR8IbQy7zVYiLWsReWRFHCGlYYGcKkbnLkuUwKxqJWo459znEobN1qP9kdPpyjyvhCS0e3kVibkBrAy5tBJFnHNslSU1JShcbXh6euR2t6HEzyxrW5TodKMsTVec9hQdwYJORfJJ7B3bZ8+HtBAni5ostQmYtzbd6WICR865UPOKKeJ3CzF0PH4mXzSrNQzOsB0nrB6hfmQctmxvdoy7Ldp5/DDivANbGQ8T43HHGhaU0SyzxLM1LdPOVuleIznUaV348Ycz739z3L498PbbPfN8oiB2MfOyzqlFJp0dEiZJ2ZVWguhxU6CWlRiFWC+ojSi3ZypSwq6RGnMfJohIQpwTlRSF/p2K9I8pi2C95PJJD9vqC5Ky/x+jmaaBcTPy4p7vg0wZ/S+F6/KR9z//xrTZsNnuuX31iuNhiyZyPT9zOT1zeTpJfvU4oBUYp1BOs9mNfPXHr/jy268xgyfm1uc1itLbBO08zYzAIGL9JBDpnDI1J8L1wnx65vnhAUXDOovo3ERpmkulGYXVYn/TSvAvQmgwkjlaKimWPqxJ7A97drstWjXCslJzxBlFNdJbSiq2zCiqFmN5btJqaa1x1bLdbnnz+jWXywlrxECxptSHTpK3o5Vmt9myLleW+SJyzlxlV60E1masRRnTd7OWimJZ4if1mXaq67xFpKGMRtdMzlH6U20xnb2sW2Wz3WCmz1QIlYgwYK3pdXMQuJbSuKqEuN4aamvRceCDhqVKr5eaAj3ip4nBb6haUVKkxoU6XyAK2l5FBDEZKgsJ3xphKti2sD6uDMVy9+aO/d0Rtx8J+xE1Wqx35BLxe41fLK1KGaFsocVEjVWW7UaKJk3GW81ucuyPntsvJrZjZrl+JCXfDyboroctLyFCCj5FzLUrKc6yJ4wrJSR0k51XqYuELxVZmOfQWOfYAWNiO4qpEGNhDZWUoBbd805kZaAVfKLFdurBywfdWh+25O420TJwKLV1d4ij4QgpcZlPtN+f+fXHnzluB7ZOQ4kYGpMbGLYTEuKU0U4x7i13X93wxTdvmbY70CPKTKBlf9m6BLBpj7IjKVtSFwdQNSVFlvnM5fTE+fmZlgrKaVTtlUhtKCNe2FiymMmV2BGNFWWUxDAUUoosy0JKlc1mx/6ww3kp7amWwe1Zved0uhBiFbWzku8xa9OZPopxmIhJhkrT5PGjhyuEnEXqqIRnZRAfcquFNcihXXrkhRAzrDCLVEGbymYzMnqHUw07OHTJfafu0UZK8pjlQBtJhgKlMVZz+/qOy7JSamE3jhzGEV3y5x1OYY8jB1ArSu8XrPY0W4m1MhjNznvmBs8pErQi2xHjR4bxht14ZBo2ZCphPlOWE0krWjDU1dJyImfNEldUjGw0xGvGVY26ZGpUPF0z8eOZ/d0evx8x25F1VFQrD/J+v8drRx4TKSR2VR7+hpOFPxVrYRxEKrjdj/hJpHuX84MEItWKqpU+thJkpPgtuhY3U0vsobZrbxIlCqFVJO4+F5HPJQTpv0oJW0J/w/SVwLokUmq9qjAoo3FGdsS60eX3/c3SkRdV0ctq0ZyClMJohdFWPpsKrVih0bVCS5X5fMGOjsNuYDN6eVMZ1UUfCjdqXn9xy5fff82rN6+x45aiR1JzlKopVZGrpSmDbhalJO9Ea0Wz8rOlHJmvZ96//5WH338HlOwrUT3vRbzBqhpSypRSsNb2iw9qk91hCIHL5UwMkf1+z/HVAT+Yni8j7pq0BswA253HBjEtN6VItZFyoVIZxwljPM6Kx3IYPSUHbm9vyEXWeMv1KheilgjIWCsmZxHXK03KSYJ6W0QbSa6zXqOzw7YmidhK3EF0sBjqxRoh4oSSxaEC4JzheLxhmCIlJ7aDxZYi7pnPOZxGN4zqD0QXPLZm0FissRQl+8NBa3bGcmgQlYXpFXZ/i/V7StGsTSIRYoUQCzFlaszMpytpXtgMk6hBgozXmy2MwLZahqZxK9R1Jjwn9HGLu6vUrSbqwuoLSkOkYiYj5uncAIPzkzhnWkbphveGYfK4QUqQ0gItBFQVKZqqped5CpC6VsnLLD0RTAjsIhdsOaNf+DmpyCHMIoyOsUIz1AJaGcwgYK1G62IATVglOr1WmWqLdk9KSVWb/L0eky5gNbp2Non7pGM4VNOUKrI/GlglELBaMtYpBmfZ7SZ2+wnvZNlfWqVqgXXfvnnFV99/w/7uDj2MYL3gTKqnFDmUpUlYlCoWQiOnJkjLVoh5ZV4u3N9/4PHhnlbl4FUtPXHVgJOUa9U01hrBqaZISl1/XPtg5TKTU2J/2HG82Uv5aMWlglE4GtaC94o8WnJqrGshpEoOsRMIKlaJ9vj13WsOuw0hJcbthnmeSSGxzosQIY1itz9QcyY3uC4r+/2O440nLpnL5UosldqnzMo5YoPH8+UTuUL3veoLqV8jW7XSDeGgsM6y3e2Ypq2kW4cFFRo6R2mjPudwSuhUlTdHD5C11mE/OevFCe61YWNgVxqz8ujhiHI7ElYe1lJZ14XL0zPh+oyuCas0zXqULWg/iDXIVOnDmkZbzzR6dlozFo3JDbsqORSqMrSBZhpLjKymUHxj3I+ksNJCwTVNNRlrGtbIA248YKvkRirRy7YiqhIjxsbuVkWUPUWSpVtplNJjz0vP06xS0tceA19yl5k1AT9rI4fSWoOzsv/VRpwaMWbWJbEuhRAaKWeJ9ssFqgiqVYeWvSBLtBHNbvePUXovL0NQjXrJHu2zT6Mao9ccDxM3NzusE6iZtv0NS2F7PPD1H//A3bsvaMNA1Y6qLFU5MOMnVKVulpybOPeR7zPnTMwr63Lh+fGex48fULVIFaKNqKcUGO0AZMBShfbQaqVliJ0nVCvkVFiWmWka2O02eG9oqorWVsseVClwo8FZR7aGFBuxBtYlcQ2JUsE6Lzk948TtzYHdZuKHv/3A/f0HmQgrRQoRC3hvef36Neuy9ou3st3tMQoubWZZA84AxmBHSQovNROXhVIK5sUJ9fKbl0IGq6U/L00QMcebI4fjARqs88L1/MRhMyK6svp5h7Pp1h/EzmppgFKC6u92p4qMsL3S7I1j1p6UYb0G1hoxGFouXE9PXJ+FPOa9YtoM0ArFKsZxIpVENRWnDDlkmvUYPTI6y7AqlFFMdoKqSRfxZ253EwrLQ7kSxoYaPdUUlDOoaqT3rS82KyhitIQsJaXqxL6kREKoQcTptb85UyKGRA7ids9tFdtYkTeqWJA8RvlOSe8i9kEOotKKYRxwHlGPWJHu5WRI0VKKIiVZsseUSUHSvEU1JIDplktfP7Q+4SzQjKiZlJcpLiKEbxSaEgTldqO5vd1ye7tjGA2tZoE3KwVes9nu+OKbb3nz1bfYaSI11T2e+hOCQy7VhFaGl8yYWkuvKgJpvXJ9fuT+/a8s5xN9SUI3x0rVYpSAuI0MuLSS5l4ZOXSpVubLIpe88wyDE4VRQoKRm8Yoh2lKAmpr7CQEuC6Zp/PK4zmwxop2nnGYOt8os5xPfPz1F+LLtF3JfEA3cR15a3h8vOfVq7ecTxcm77lerizXC6GL6EtTjG7DzX5PyJF1mWX33+n+LzhMjeoXs5AKnRGsS2mKzWbHdrPl8fERZz21KJ5OFwanusf4cw6nkj1Nay/AKAREnBdU787QcrM7o5jQbNA8h0RcEudFYgssjbhcydcrpazopkn9LWY3Bkwht4iZNM5NpHblHCIbbdhqzTBOeLvh5vgF3ozEeWU5P1EeIvuDwR33PDSBAa9EmfaakRYrcVlEu1plDdSy3OIYg7e2l1SZOcgYvnX3CDUTlpW4ZPIKVENVAe+lT8w9G8NuBY4sYb6SPiXSNKlxhtHgB4dS8karNaOVPBi1gleKvZ5oCFGi5UrLjZwyORZySMSQBWlRFbEUwTf2g6KVFZAZiBxQB6at4t3bG+5ebTBWyPApy+WkjeFwe8Pbr77m7Zff4ne3VAQF0pqmdRN2VeIhTTn1RDsLqknSVw60EsnrzNOHDzx/+EgLUX5ua+EFIq7kUqnSD3XVj+yGa6s9+FdkdNM4cDzsmbYD2iAkdCMSURGwN7Fq9RyZ0uC8JB5OK3NQ1CaZJylVSkkYYDbyOalOfKhFKg/VNLoJjmxwnnEcuZyuODdwfvxIKZGiqswCtME58fOa2nBKi6Ope3Bzzp+gb/TkN20QTSqyQ9facD6feXp8wmgx2aM9WTVyX8L8lw+n1dDnC3LrNNGR1lxR9JwT02geSDLO9rVhcyLPgfV0JoUVqxqlZsIyU0qkVY11Ge81xqruFZWHJ9WKmkZSi9wHSf/FOb569Yrt2y84bl+hU+X028/c//g36scLkx64HUeaqtyXTMiJZsBVTU1SjmYLgza4LiNsMVG1TBRbKf2Da9QW6PJOUsisS6QmmVwoJR5MY2RcboyVXa6RD8wPjmEjFqhCAtWw3oqTXvebtcjBFVhIwxglLnt6+nbP7VBdd0oVBdEyR2qBNSRSSZSkuFwiYa4SYtQ02sCw0by+O/D2zRFnKrkE6YEo4DSHu1u+++d/5nj3jmFzoNlRJrGULqfTElCsCk47dhvBjEhgUiamQAoLOUbm8zMff/uN+XTBq4pygqtUpolIXnVkR+tVQKlSEWgRWixLYl5WjDPsjlum/SjAMqcEsqAkj7M2MdQrpVDG03Ij1cJ1rcwJSg8trp0IL4dRzOgv1i9xqrQ+fJKf9bDf8d0fv2cN0rot80ypFecd0+T7lNWRUyaEFWMMh8MRZRwxBubrtX/dl0Gd7v9GZU2rtEvG8fDwSC1JuMit4ceBm5sD1v4j3uO/fDhdz59ouo+EC1AqLbVOncs0lammUeic0NhzQUKEGCjrWUotrf4fzt7sSY4kOfP8qR3u4RGZiQRQZx/sJpvkLIX7ss/7tv//zs4OZ4fL7uru6jqBwpVHRPhhZqr7oBZZ/bKkEBApqRIUCqjwcDNV/fQ7SNFdFfLokiAJzhTxe9Y9ezatpDgQ9jtmWSjzQq1nbqeMXF8xPLtlVEX0zPb4lvnNkfLuxI49v/rsGVd5z9vtzGldOB2PPqiIspsScRgI1R10EFD1Q+J2GO2J9iUxd4+fHUEq21qYz2f3JrLGMET3KwruUavmHkCSorucR9+tSozuM9JTl93IK3FR6QbpYoDo3kshXIgeEQmKBCNKYLLEzcs9YhFt7hagFU6PhYf7mfdv7nh8nNkfJl58uufmZmIYOr+09X1oyFw/v+JXf/e3vPjil87+SjsqPQlcOtmkc4fpy3IzoRZ3BWy10oobax3v7/j+279w9+4drUd2BDGquZGyiwCcg6u1UZaCNGjVWEU5zxvH04wFePbimpsXV87HHqQnh4N05NTtQowCoIHzUnh3d+bDw5m1OhtNxPnaOQRSzOz3V+z3B6res8xnnwpVe8WuhBR59uyGF7fP+R//+m9s6wzJU8jHYSDsBlprhBAoZWPdVp49u+Hm9gUhjJyOR4K5EXoA1mVhW2dXrZix1oZIIkVXYx0fnXtsdGf74CPU1X76uMNp0X131GqfgRRdu529+BfgVUKpKq4pFKUsJ+rmUe0hNHIS4pBclBsESRBy8Bc3pu5H49XY48h9j6fBSfFNGt+c7rg6fmAYdrycdkw3O158/pwlKMfHO5a7hYTwi89fMLSBP394xd39xmZKC8bhemQ/XTMNAyls3oJ2ZwRrjsYC3Z3A1SExBaZDZFsXJAXOD0dnunSnaUtGit1ZIQYsSJeceYRBlEBDPWJe+3xizlUO3YPIRNzaJIbuhtBJB3KZWzsQEocuxwqYFEB49iLxyaI8ez7y3Tff8eLFgevb0dc+9BSxmCBkbp87Kvvpl78iTwcsjRCGzkjqyGO6eAp5DKBbbUbn85bSD2elrhuvv/+Rv3z1R+bHR5LQxQ+uJmnRCOr+SGqejbktFau9C1DldJ5RKzx/cc3tiyum/c5n1GTeSUVf4otIV4EktmKcTzPv3z7w/v2JZTOM2IVBzSPcYyBHp2Iuy9zzUN2wq3VBRBx37PYTu6trXr97y3k+c311IKdIcrsJ6rp0oll013yttFpZTmdKOdNqdeCuQdNGWQvzslGt+TomOGA6Xe043Ow5nR/cf0hgmU9YXRljIrXDxx3OJn7LzOcz63mjbUqXK3YXcEf/vG2CMApbVdbNbf9qdbezYXRLEHE7OVSMJn4z5zyh1dkkWjZohdJfbqLALrOmge/Pd8g3X7Edj9gXn/H5YeD5F7e0mz23j7e8/fYHHt49ou3E85srTnLL0RbOy5mSQM+Nu+PKbpcJY3qKkYsxIGbdVAuk2ZNcCQmElBhy4CZHYsycHh47Xc8vEcQTysSUqOphrMmfjahbZBg9QrB3CEE8ZFeC7ziJfb7HOsXXiQfeXrjrHik/HWoVx1wCkSHA/jrz6efX7A8JiRvOqE6oBobdxPNPvuTLX/0tt59+Sp4mVFzzaUSQyiVeIYSABg8qQqQbJ0cIA83czbBsjYf393z/l294/HCHWCPESA2CqrN0tFZSEzC3VFnXhlZhW5XzeWWuDbXCy0+veP78wLTPnU0UnDQSejWMbkxWtPJ43nh/N3P/4ZHTw8K2Gu7kFnpQkeLJwkqNgXmZoVWE1Y2ox9GrWUhcv3jBdHXFzeef8+c//QlLgWEanNpXHaH3ymZUqWjztPPjwz3n00JgcMHGVnwltG2UWijmpIgQ3ZBMgXmZWdeFtawojWBOFUymxDFi5SPb2rI2D2ydG9u5sC2FVoVt9Rcuxk7LA2oA2QmPFc7LzFYbFiLDODDskidQm/RWtiNckokhe3pABAulZ1woKkbIJkCJGgAAIABJREFUbh3ZApy2mVePG7oeKdt7wi+/4Je3z9g/f07abglm2DfG8WGGIvzi+QtkjNhPr/igbn9/XlceZ2+jU965tackQgrE3CVMtUHrfj0iFDOESJp2HMxBsHU++e3aPJfF1JBqsFWiGlG9XfWL3NUJ4DIp8Jc4BHGvoOiIpuCm195k4223XUAV94slSp9NXbC71cJ6dtf0YXKH/QsAIyIMh2s+/fK3fPnr33F1+wkWd0ifb5t1O0cJ/icKTybS7q5+affpDCGf3x7uH/nqqz/y+tVPvpKIgnbPIxW8zLeLEL/nolQHpB5PCw+PZ1pTXrzc8/z5M66vd+RhRCQ53VO6R21wna1Z5PHhzLffvuHufqWszT+/dVtOc42lqhNHvNWsbOvsEjjdiDExThNlXri6ueW3v/sHnn/6knNr1BCwAI/LEWmNgGKdb+u/pz+Dpp6eHoIxDm49oxhrcYVRdWMqpmlAxZ+v1srp6FTA0C/aqo4kNxHmefaC9DGHc/7gq4SyKG2BunllnJcCFt33B9hMWayhC5w71WvYjeQ8kHIgjU4abno5lP4gxcRlNup2k9ZrcOxFJsZEjh5WI9I41pVWZrb3D4R4Zn/4ez6/2ZPGyLMvX7jL9o9vuX84EwT+5tNb0hcDv//wEw/mVibz6UxooYtyeyULTo6WLqLV0LAgrFvl8fGeMUaudztSd6VXuSRlbx5PAISawZonWWXIKXi4TcJb/+piXMDjBU1RUU9Ik+QHVIKvIvTCUuovh3bzYnUgRFplWzfO57kDLpE0JMDZStqUlCc+/fxX/OK3v+PqxefE4QqVqR80b1M1KLFXCKfzFU+tFjfMtst6wBzwmOeZH398xV+++ZbzeXE+q3qCl+AtoUh4mnNbhVpc6nbeCvenM/O28uyw48WLW6bd3q1JY3aH+74SEgJopFbheJx59cM99+9mShHM3CTNzBUoW2uU6nYuuUc1mhmlFqI4GUBUCeeF6XDF3/z2t7x8+ZJmwvHhxBgHzqVCWxFr7lbYedmG+DtrQrMLl7nQbGHA2LTRAmiKPe3CA5a0FQ83av77SJcZuhuhbwW2UkGaM7o+6nDeFbZ1c+v4WimmrKVRCp6NGbzfX1U5X1qLw8TheiLEkRISEswX8Jck4laozcNiRUFUvU3WgonnfBJckBuCv7gpGjoYa6tsVSm2EN5v7A+Z/W4iT1cMh5Hr5zeUeUPXxvxwxIBff/EZ4+GWP7z/jlN9jy0bxRondXPrw2GPdi+alIMDGaZUg4f5kdIKu3FwSF+UkP3iIQd0yKznufvxBKoYMRpZA9T+RVVFkiBBfw4l6nvAoQ7k3UDS5AljPW5BDA/HNaE264cjEIOgFdbjB5Z5Rg2m/UTIyQ2tLVA24+5+5stff8bzT74gpLHnhgQkjrgWwMUBIvbk0+MyNvMhqlMZ3DvHiRpmldP5yLfff8fdwyNaG2Nwfm1DiS7UJCp9T+x6zG1tbKVw6uydZy+u+eRm4upqekK7a/XLSkSIRIIk1rny9t0Dr19/4HRcsRo9QFl9Rm9mFGvM2+yCacP9q1LyS7I1tAutaco0RT797EtqaXz1h694PJ0wDbR1Zqjqlf6iA8UPlPacGTUhpkRT2Eph04Vz2Wg+D9DM5dXWOj7TiSEBcTc/k26Z4tUYCa5W6drWjzqc69kP5rpVpyOJy8+0eKuDU7Cp2hkrKm6yNU5Y3tGjsrrjuoMmreECZG2kGHvCVD8T4cKGkU6qdukOrSdVW4XQmJvxamn812//QgiZf/78Nxxmox1naG7VGcWoD0fycM3v/uFv2X/ygv/nu3/hdHzFRmUz5VwLa/XVwM3VFbvDhAyNKo2lVpa6cHWYyCm4UkV8Ds5DIkrG1KvhfF46AAbWgoOxA75msoaYm3Y9We8Hn1etV0NNiiVFY8AFYvgqxYsJQqSurvQ3VZbzHWmITPs9kvoMD652GAd2N9fsb59hMbKWlTafGIiE3fQEoARyFwNf3O69/bbof4Y26VW2spWF83zi2+++5w9//oaH40KS4HY0IZAaqLh9qmUcFDOX9Z1mD/bJu4EvXz539k8U8uDItl7GnN5COpCz8cOrD7x69YFlrkg3YFNtlKaUVllbpYr5+g1lSInS4wVFfMwKCMTMNO2xEHjz9q37XTVnZOUYEFOSON0T60QPoGrrBuiOyu92B+ZlQ8TpnLVbstCrIh3Y00tsxsXeFOt0SusO/i7BCwGq9EyVjzmc21YotbFV5Ylc0/CbQaD1F6h2lkoM7pjmHqtGTq6Yv8SUt62xnD17MQ/JFS/0m7w5A8lQYrdCrLUhNApCteo2FrWwVWXTyHm9o/zxDxzvZn4Tr3mm2WPbcR2fFGW5vyO9fc/f/fPfEvfG//37wuPxHaA0ayy2MpfCsVUOVtntM2GIPC4bFgLjNDEoxNYTyYJ5QlgQRAMik7f2bK7HLJ3RI7F75Bqpy4RExb1Qk1eyrVRqVHKqbMHRY8GX/+7KF3qLB6fHI8u8spt2XF2P7K/2bk0aXTKGQh4Gnn/yjM/HiWF/7QnMtVLmM1UDyUZCHGlPHkA+IsYU0F5Z05Bx/L1hzVCrbLXw6vUb/tu//E/+/O0rWlWm3QRjQqOQg0ugalCiOVi4tcq6FuZ5YRwSn3xyy/PbPbvRPW3dt9T5uYIbaGnzMNtXP93x4+s75lmJYSClSGmFrTXv3KoLqolCTJ7Put9fc8g7ju8/UEx5eXvNi5e3LKW4+4Ypj4/3XSRy4Yl3HMC8UsaQO/DV2Koj4ikHUsremqrXQ7oJudcnJ7iIePdTmxeU1nz+vazqLmNckOBru76CkxA/7nCe5g0PO+1tDlBVKCq+11L6+sPLebbIINZnqYb2mbRqY1sX6rqyLQs0JfaXrpk98UpVKxKUtao7dgcf7ptCK5u3wl3cuogRrbGsH1geKo+Hl/z97Wc8SwMSI0NM1NpYysL9d38hj/Dbf/wNyz/8b/z3r/6Fh/k9i24eHX4+E48z+eHEMERurq+QIFxNPVpArEu4gnusBn/oKUZnnuwcRGhVKVac2N0asUQkSb+hIaj1/SGOWtMgNkJwYbeYOblD++yovYqZo4XjOHRVzUDMXq1UK0ZDYmJ/NbG/3rvuEmOthciGNKHaTOaemHcYyd3vY+4UTOlpXgMScZpcW7HqaOTj8ci//tsf+OPX3/JwWjEVlrLRVmU/JKYhkVNAVBFrtFZZS+3fdeHFixs3cc6JIQnW/YzN+mfFZ8NW4O27R3788T3nRTHxy3urG2utbM28RU/JVx4XAFwruzwwjSPsD0SMcTf5Zd8qtVZS6ill5o4Twcyd9ftvEULoJJjqGtvWc0ajuyKezme20jvILjKI3cDcGVqBq/0zb+FPx75Ou3QDgDk/28zpfSFEJ887yvARlbMJrcFW3bsGCe6k7fa50BzcqU2951ZHqOq2MLfKutXOOvS48NbF1cHEic9aWbfiSg11loZKo7RCHkcPFJKApMR2XrHN7TKt+UM3M84oTe8ZS2AIA7+crnkxDEgB3VaCVex85PjHrwkx8zf/y99x/i+J//MP/5X353esosyb/3/LeSPlxH5Vnl0feJlHOC88j8J19NAmwP1FzG0SpUcOpiGTmz/4bW0sS2GrK1UhDJkkgUR0GlqI3hrVglrFFxbmMYqC718vMQ3eZHG4mrh9+Yz99Y404KRwU5cuxcDhcGCcRqpVdPOkq0QiWfS4CFaaNVKdyMPB3e/FvW7VHICR4OuukCIhKrXOrOvKDz/8yNdf/4X5vDqqSmDd4K4UzmtjNzTGyU3cBKO2wrpV6lL45Grk9tl1d/lXID6R+bsdl+fKNDidVt68eWReFLWEiO9Ya93YmrKp4xAX0oZnqhSmFJiikSnuXwUgja0sXebXPN8G6a6Mjq5Kh8SjXNQ63jOU3sUN4+CRgtbcuULpGTjad9I9cqJ5OFZrRm199q+FGOCCn4cuqLgkAVyAq3/vx39AfM+oBop5W9swt54MgcqFCA1qPk+VCrpUHkrlDmGLGdd/GhIqWdxQqWzKei403Tx4Zt0Q7auZCFWVUlZCKIy7id1u4Hr/jDbANpcuD3pE8Bi6x2Z8d3ogiHA+Hvn7qxdcm5v/UlxQy7zw9o9fM+WBX/72M9796h/48F3jcf5AyxMEV+LVIXEiOmq4NZZt414rn+53fDFNxN7KKIqWRo7ZQ3AzpOazUzSQpizzxru7M+diTGNmGrIrGDrY0GrFaiMJTENkyoExR4YcSBHy4O1wGjI3t9fs9iMhOzDlIgTXero0bnQi/bo540qgtDODBUI1Ui6EEmi5oKrulDgm3zOTHDPoq67a1walbDx8+MC3f/4zy+nENAy0Aota74i8W1i1ILUwpEiKvV0vhazGYT+RMCjFg5Ri7I71PehJnTa+roXXP73j8Tg/IcW+dnIzsNY8HNcLZXFjMGAaM9e7yJQhh+q7ZzNPYzMhAjn7yk7VE8NAuqLKAZlqzhRrZmzNY/7cO8j1p9ZJ7t4Ou4BbxMXhl1WLKJzPM9YZVhcHwAvOEMRI3chMuiGe/DtV8z88nKdlc8i6Q8ngkeyqODIpgRSSW9RboDahrMajFh5U2cKKADkq+30i7ydAWOrC8WFmK97Otk5IDtFpgmoK0lO1a2DZjDBe8+Vvfkcj8PqHH5CHAakLrWzU0rijUk/veeSRuhZ+tbvmyhJBlWiKxkY7n3j8n//GdD7zv/7uF8RfC//t+99ztz5StFBq8VbThHVrrNlTqLezG1c9Tzv2Q+q7OAe71s3ldACSAnGIRDNGBiaFa43Uh80X2s5i9DWKibvYqWBipBZIAZcomasCVRt5DNy+fMazl7fEwVvhpkJt2oOORjeLrl2xEn3+b7YgwYkDKVdazaQ4PMnfSjOyha7+6fMWgVIvPNhGnWd++u477n56Qzbj2WEiWER0YX1ihUE1aJvv/ByQ9spyu99x2O3cDd0UaxFPvSg+r3k8G7VVzueF4+noB1N6VD103aSQQySlgSEPHYswrq/2PL+9IdQVKxuCX1qK/yVED2wKkd24I6bMPK+uUgmJUjdMjG1bfc4X2NRxlGT+nvtM6yCX6sXyMlC1IB18MfO2WJqbzHnaXkD7asu7V0fyzaT7HdW/am0/4nAua30KeXV+ZugSGW9RJISe0mzs0p5iG6dt4bwVzq2yipf1/QCHcd8PorAshdNxoRWeqGqmhpbLkO3GTVqar16KkeKeBeGXf/c7rj/9lPsfv+Pu9fec7t9RpXEslcUaa1mx6nPwL/Kea41kr/FELYyPD+jv/8IkkX/69Secbx/4lx9OPB5nViukZMRaaNtGLI047kgbrKJsWyMHP5YpiLu0q/ihVo8UD+IqkIR7/ohkxnjNMp+pzRE+QTpo5Myghr8YhL6E73aKEoTD9YHrZ9ekMaOhO/5Zz3sxIYQRzF/6i09v6CRwq2t/GRqmAxqarx06WFEtUS2yG3ErkOBPCjPqtnL/4R1vX7/CtpVDziRJ5JAJwONpZqlQ1dcIISR3LrQuyZKN3bhjl6LH7m0FCelJWiV4mFSt+mTaXKv1fXd2Eoa/eQzDwH4auDpckVNmXRbKtpCkUc4PZA1Ec4ZTktArmiApMnaijDXjcHMghsz7D3eUUt0QvRbP19RGM1/XAcRxR1MjjwNWPePGLWEMlcu2oh/KXol3045WG+fz9jMKK6GTT/xd9mp50QwrMXzsnrNd/gCHuC9Eb8yDh8gTxSZ248QwGMv5J6o2JBi5L3HtYuJkkW31vEM1cbV8dZSRpk+sGDN6YvYA+CJXZyPEiiyF89sP3D6/ZfryN5zujgzp5F4yPW/znJVX0ghx8QDWbeC6JbJEWjBUjLieOP/hK8L6Gf/06XP0+hesjwuv1o2yFNagWBKWu3tWArch8+zlc5alomVD65mXz6/9Zg+GBA8bUmt9peH6zasoDNHY7YU5ZOZZWTco3e7fF5qRaIFkgWT4Ir9zS8fDxP7ZFcN+Igyjk89b6lksUMpKXQuhGkQj5txj3xW6CqbZ2f8fMSqRZIUhZnTbUDshBFbzkNqQdiiBVgrLeuLt2594vPuANGVMiRSFnLLPjq0Ql8raNY+1L/JCfxGTCFNOvb3rFkDm+1ItTnRAxMnxTfxituT6xhj7uNQYorAfM8/2e8bkqWDZin9Ga+hqVBswCaQQyDmRg1/2Oblf7rZunph3f8dSCk1Xam3U6qhyw9jUq27Vvu4ImUIgKNBplqYe11HRnndzSYdzOxkzn/+JAStd29vbc+cJ+w7d82C7SPv/f5PyH8yc1L4Y73eYApLx+LuM2kDeXfGb3/0DVo/c/fENpcPIkUgKwUXZAsu80nR2B7bm2scg0eH65m0D+C7Um3Y36FX1Yf70cM+7H7/j7ZvX7Kc9Q85s55P7G9HhagFNgS3CcVDeyEpAEU3sSyQFIUVP5NZtYf36O9LDLf94e+B4+JTj6kCWugeHm0FXY4uVcnXN/WmBuoDOTLuRafAZaMiRwOAC3YvZMM6JHbrCIoZMwFtRiqLdXEo76OhAgbiELAq7aeD29hnTbuz85koYEkEi2hTt3q7aGjFlTCKU4i9BF3q3jjCrruz3GTPPszER0k5AEnWbn3SJIS3usL4sfPjpe96//o5tPpE6W6tZJEbB9kLbGlLPRKtsanSG4pOyJ0cYu3dr624ZEqDVwiUB3fri3wyGnDkc9szlzKZKiJnr/YFpTOyHyBAEbRsBX9e5Qkc7a6qg4pxlkUiIRhbcuKt4FGGphXlbqKastXVnfkfVqymlG5E57zl4UHR2b11VQ6IHdJVt7bxK6x2OV0a1xrKtPq50czbMu4Mg3WnDWgdn+zPK6d+dO/99D6HkQI/SNXUhgQyYJDYmLOwYp2sezjP3719xPK/Ma2WpjebIie8AW6NQ++JdvVr2aAMRj2vHtBOw/ZDaZTdI6JzTxsPbNxAipxBdeVArZm7u6xQpsBRYrPG2LGyysbaMsAc1DiY0gSKNEISpVOyHd9xW+N9/+/fEacf/+OEPPMyPSDD2cc/1kMkCD8czpaykoFiZubq6xvYDA0YK0pfVF46n+W5MobQVoXl7FwbyAGkt2Mk9Ty+3qZp5WxldobKfRna75B5Ga/GEq7UnPCu0Wt2is3pgbx4nJCYkZUJ3IP/+x9fcPn/Bs9uRRRoWN6yspG0hlpVht5Hq5vkdciLGAbHA8e4D3/7+X3n7/Z/RdSXIiKREsExUoUVlFxItREdom7oyRVyTq2Lu8N5pmn5goys5gIi/V9adApoKxEDKiZgio0R2+wO7cSRYo25rfwsd6Y69pTQLznlt3jk0lKab211KIFjqXuCNeV1Ze+RGUe37SHMbzRBRtF9mzuvdDZkcI1X1aesQYiYmdQJ73xFDFy2Y0urmnaV6Ze3cqw4A/ozUmrmbY7PWDc0/4nAauYcNuW9pjBOEEdXIsH/B3/7jP3I4THz1r/+Ddz+9Zi6FpfYsw4t0wi5kbk+R4rKQ5WfCNRfeIp06Rew/565mYzIHQYr7vCCtx6z6iyAhECQ560KdhraJ70IhMEVlQEiWfM84rwypsusWjcv794w3B/6P3/4TX9ze8N+//jdO84mgjaie4bGsK8dTYRwigcqbuzMCHJKwzwlwaNwLv1tdGoZFkJ4ylnMHOCSilrGjzz0B6yqZ4CnayZ9Nre6n6564HpHnK7VOLG/Vieq4t+wwTogGtPpOOjJQN0NbYJ4rkn39tJaVVKuHDQ8zMe+IyXM261L47k9/5ps//p719ICR/fmGDJZcjVMaUpunZ9lFIOCT1OpXJENPjlPzxW4z76bEcBK/CN1inGrOz21m7PcHQvL9azB1jx2xbvBtzn9VaE+zqvoB6xhI015dJdCkUps761XwvbkJc/HVSOjvtdml+NCpo94ehxjcKG3IhDRwPM/UUjvgZf3oaW9Qo3eCHaGVfpH4JaKO+Kp1mWBPz06BWT9SlVLV8xNjTOTkFVPNIw2++PXf8OXnL/n6mz/x/v2PnNcTj+vCsRZqVzFIdE2kv5D0/rq3M31X6JHrPLn1X/xyfAg1YvKWSsRomxOwra8yTOzJmwb8S3ctqEJKNAk8Am+p7MmEokxN2F2W+xOevK3Gw3ffcivwz7/5gvBl4f/99k88nB4dtWyNdXOPIzVjSHB/Wkkh0HYJmYLnMfZdl+HqFjOjYU+f/2fNpo8FQRsnW7ujuHrieY5YMM7zQmmVYUhOlNfWLTidGeO6TzfMUhPSIJRVSKOvrSQlPnnxEknZXQGDdVZKgeaIsdRC1kZqrsu1tvDhzQe+/fobTseZYF3BMzhhQciIueA8ipKigKYnEEjUK5EB0tyB3Y1J/fdp6p5TZhWViIZAMWFeG3d3j5zmzaMzpBIkkmPqVMLaCQuG5Ezs1EELxrhL7PPIVjbW7UwIvqYJ6mnWTSIaMlswTqW4LhNHgP1y8CRw60Ak4uPRWjYoxQ8SPt+GC9WxI/UXjEQv72q/mC40PbjM4Dz92qoQ8kij8eH+yHk+fdzhlJR5mvLFPIZAhXEYOH/4if/r1Ve8u/uJZTmxljNL3XDLY6+VtPrkbyPR492C62A9Bk6cJO35IxenALt8FlKMDLsdURrreX46sI5qGh2358L4B+uJ0cIY+yw6Zs5D5r41hkXQLWGrH86yNiaNDCET18K7r/7E+uZHhmcTL4Yr5nllaT6HTXki7P1LrW3jca6ksBFFMF25qZFxcDaJAwra18/0FOpIzs63LOKIoE0ZFObFP4sEYRgzUfpub1V3s+/PIoWESHIrzuY3uHZFyTKv5J2QnXVG3u3weHlDWnWgQr1t9qX6RohudB1iQ0JhOW18+6fvef/+iFgip5Fx3BPHa4g70ODmWUGJ0T2lJNAPqRMmivYXtrp9yjYIuxzdvrM1n1mjL/yXTflwOvPm7QPb5mZpIawMLSEaoCx+rIUnpYgWVy9Zfy2t/7um0MQNw6wpiejiboxNKjUKc9P+33Wnwu7C0Zq/RaHbgFZtnLf1Z78fwLbZLx1x6gT0eRm86kJfjzgFM1y4vZddp5g7ioSB89a4Px3Z6kZtHzlzNvzGaktxaLsZZoEPbx65f/sjjNBso9WZrS40AQvuahfEbTgkODUspsQw+HI9BEg5ksfkbZkqrXhcuapTujD3SJp2Htu2v3IHuDwOxJwguLIioOzyjkvc4zBEJAsxQDBBx+hpxjrxYs7EDxv2bqbNlVA2bCtIqISYaFJZ360sZSFfe+xhwdhPV5g1VjuzWiWkgfO6PLVaNg3EtqAtMw5dWdK/JAmClm6u1dcwObifa+qgiWrGREnJ3QNCZxBpfyFrraAbQSrj4I4BF8UE5jvB2oRSN1JR0tDzSOIKORA0ejwGm3Oas1dyVSOqAI1tXXm8P9M0MF09x2pzT6RxB2GkmLfaIUXGXUaXQOsa2FZ9vylmpBAdtW7GshSWjHcVMT558FZVzqXyzav3vL+fUTLDsHfztbpgu4SYy+jyODDmjK6lE0CEdduo1neOeEtcmrK2SlEnk6TORKpEijgPvBJ6JQtPBPcnvaq5o0GKDmBFcaWOdIqfq0c68ipdS9oql3Bf/74N0+oEB9Ue0tStUcwIMTEvKw/HBSddxr8qrf/Jw1k2916hudlx6IRosJ7EPFCtUrIQ88hVEkLMDEN2n6AMaYzkcSLGTApOJNOeHZGzc09NLtWlmyg/mSb33VW43FJdpoYbUIXgM14KkWCBQCByYXHUTqz26hKDwLMBvRaWMLO8KUxm2GpsrdBCoyShpREVJafEZ59+5msGrSyPD2zLwum4UkKgibCdfL4JqrBWti1xmCI50uMdhGSusBGspwv6dR9bJmlgkOZxhYYfompswaC5LaRq9IPXCmrKscyk6CLunLLvySRAX5Bva6VUpTVh2wrDbuxuC0IRo9VIGjIX+8sQU2dCKaUF9jfPGfeC6c/9mBH6rF8IEhj2E3Xbo2VGqqPTRT0FrXYry4KyVjidjSm58iMPHuwzN+G7Nx/46X7GmNxxsRpJDLHIujkMaQTC2jyzp1/cPr/C2il4Ltfyf163SsMZQSEnJEh3ge+a044mO2LRg5Qke/yhglvldEC1g26XkeSSjuadX/GuqHOgQ4jES0V260UHqrR58FTy9+VhnllmRUPAzBHcJ6XSf/ZwWr+FBBdDE/zmJBlhHLAU2aeBKScsB4bdwOFqYhjdCyZEnwsMf+nc6nFlPa+cy+YzZ/TkqXFIXB0ODMP4xJqoWqlVWZvTyUS6mrxujoIGCMGR1zGOXO0PDCnSaqGWlaoOG5kahcCiD8SixGDksXN0EZIINRq2S7DPWIaH8wfuz41jq11Zv7LSmAksm5t8bVtjkcLWYMtKqEqsgSLGGBO7PBBUaNWX4Gv1sKJWmgMaraO0zV39bG3UULEEYl6Bt1opxW9o65fVWiqCUylzdiBKQuzV0NOyERcOVzbfyaWIpQunV5GY+y784nuzI8YdKWW0iv+Z2mddl2O4QlEyab/HSoXNoC0dS6jeJrYGKh3AUzZpPJxWJHqanEjgWBsPp4LE0f2DgzCmxBADZV1Y1gXVRpSR3NFsF0b4kd3URdZVL8xjpxK67Uogh0RDmPKIiitMvLjQfYHcgVGh+8YOfTOQsW7H4ly10InqOJHBfFa/XITerXpRidL/i+AzNj7B+D6VxtIaW/HYwdb8XIVg/87R/A8OJ9C5g+pI4hAJYyCMkXS9Iw4DpEwYsvMRL3HzWb3NbZ5arOZ+K/O5sS2FdZlpa+mUri76jfCYH4jZF77OTVCH5gudFuXudI6EQRoCKsqQEyc2Hu/P7AYX20JPg1ZH8YI53zVbZNSBIUd2A6wxOGo7RFqGbWgc68yb4yOPtVJCoARhbY01BhYVpx2WyuECaElXVTRlXT2eYrOK10T/HJ7fCLGjdt6WdqDBHEArbUXXShii22d06hohIsR+8/vogAgWB2routL0MyQf0kBeRiXkAAAgAElEQVQTo9UO68dANiF2wUETQ6K79zdtbjOSwpOhFsQOXlUkuAu9/VWrHtKO6WBocf+hGhagIcWBkFjNxRFVPc4vBsJcOW6VtW2cLNAkd+KJdzqCUErxFQvGujo9TiYjxx6O1bwaeSqAOY3OjCpOITSMHBwAMhFOS2G/P/i6phWviNKZWR1xteYzY4xjb139FKcUaXV1kEmkI7SXzDen4AWJbsLWiwYCGgJVoTQ8J7Qj99rjALfWunN+HwPyx65S3LeDlBNpSOxuJmSAuEvoGD1BbH9gGEdK3Tg+PLKVjaDGum7+QKInac2z2+ZvW6VuFatKUPwG7i9nSoYFN3lul5IvdGBMuk+zeD4FngBWcTQ3xcAQ3QA4J9coShcWN+0tkbox8SDKJCO7FHhoymAwBlenn9aV47xw3Cpb89XAosqprMzdnzR3Cl4OMGlkkoFdiIxEokI0Iaq5hCoIgcAoqet5O6InHbVsBY+LdvOsUgpxNMI00CI9iiCiuHv9WjbyMDIMO8KQurlxc+9cQLpdn12AMqCpUBZlGHp4kEh/zr5qauLIakvNQbu+XM/j4P9eC6311k8NSV0vGz3Ve5FGRAmzEYoiFrvRlVFa4bRWNnHzr2EasTTw2WfP+eGH15StAP6SDmn0JO6UMG2UdWYthVJ7Je4uCG5O5mqookpLkeZxN37ZLCulvw/LujKOO3Ttulcuc6+zuELOtJZIaccwjKQoLPOZeZ173mvkSY9JJ4xof85dIWMIW23uDRwCTWMnN7ju1DogtG7FW/Xs7a92yuBHHU6GHbe3z7i6uSGPDpiUsNFwrWYpjfJ4Ym+eKiUiHO/PaGts29b3dN6rl1LcDKmnCmsTUEPXy+Cd2IL0D5d6xXB6lATrpApnbrh0y8nZSGJZfMaM0ghBGYfEMPgs4Wsae9qjBoE5Vo6mhNXYkdmP0fd+deNuPXqLZInjvLBs1V+Ay/5OjJ3Bi13is2nis6s9h5yfovuCGUOMiBRS7qC7SLfu8C8XpVPwIrVYp7N55SpaaavSbCPthifo3gId8s/k8ZphGCFoR6yjc+Uxd2b3f0QkuFQqOECxbb4wB3wFFekRjwMXP6ULuPGErPc5P4SOpvdWlwgp7DiEZwRrrKZPelTBx5kOh7Cashb1mAwZWYpxfv2eZauMeSCmQN7tvNNKif0wEBHmU2JZzqxbdbpj7CT0UrGe8WniI5dK6BMjLK2i5u6KS9kYxswuZzY6Ey309LYQiWnH1c0NIY5cXV2zGzNv3/zEqx+PrOtKDEpo3on9dfsq7kHjs3Dz98uiy+3yOBIjrOvsfNpeqc1+Ji54pxyfdqH/6cP52Cr1dHZ/IFGIbqfR8ATmECKkxNs3H8hDJiXP2ljPZ+bz7NYMdDOmWqkXir5Eb/WW1qMOcIsMPEXqMnNqrzA549U1BNDABcOXmDw4xpwudzENnpfWH2x2Rkm4MErU25NoaKuUpTJI40Biiom1Gffz5up5iSzFneADkBFGg6s88Nn1ns+u9ryYBqYgRDPUIim56DgGaG1GKO5uaQFp0pfjHV5vzbnF1U/sRWAdQ3SEfG3OSJqElho1JSxFxv2eIe+75xBYaM5M8gwyRF0LSgdLLhrNLofxUSL4M5Q4ImHENZaXhbnRWkG1c3xxho/vpQG7+Pt5YvMQAlng1FVIMVXiqsjiLWqN7jFVTKmlsjyeiXlgXZde143zurJVxw4OgwckBxGmaU8plbV68FRMGS2VrTY3RAv+uQLe4emFQohRrdFQEsoyn5l2O4YcnagfnIVlZOIwEmLkPM+8/fAB08K2LWylYGZsxWPoBQjWkO6xdPEdvmAyOQ9IGpGUOVw943Q6ITqT+/dZOmf30hrTDydPwNt/8nCelpXTsmIfDAkev0DyOctdyd1Vz8QDe0JwNozVjboVVPGZU41SnIJGf6miZAcoorg9fmf11bVyuaUuO6PSvI2y/nO1eZtwMVSPwfdsqo7aautu56rUWsnRneEuUXrWvNogcNoacz2yb0ZKvvOqTanimsCUjInATR54OR749Oaa293ATpSR1lHIiMpAiJFp2hGjsW3KthXvOJrQSt/Jmnb83qvKxczsUlkBovjaoTXzNdY0ksaMTBOp58bEEPyQxAjREKuY+OGUGH1kUCWn7A5yXXT45LIfotP9Yv7Z3Fr9MNKvxu431g+ndYkT9DaGEBIpRRcqmDHnI/PjRsiVEBZ0C2zbBttGVWNRDzEeQ3qy3qzVq2U1IzQHYVIeOB+PtM4V3h8ObM0oxU27JEqf9VxjKepAiyd9+QK0anXrU4OybYyaPRM0QBwH1qYc58J2Wqn6QEgDa1mRYFxd70k5sS7Q1toJJBFpFxT555FPxA248zQRhwMpuXfWum3u6ohSSgek7HIoHRO+HNaPOpxcAnN6v40KuihNjFmMFJUhVmLwCPlhHACh1Q7iqC+b1aBooPWFroSeFCz9BclOe7LWb2eCK9Wbv9CxQZVKSEKMPshL8l1UrEaObm0ZBG/PjK4RVbQ5t1dj7FWt6wFCpsRIDX5Dyrqw14xoQlplsMogxstpz+f7A893Ow55YoyBFMxBjAxpGt1ft9/YNknP7HBtYKpO49Lgyc6qQDNMXfYVQq9C5sZi2k2tI57PWZohmhjGA+z3yG7nHUFMHtYrHRWnOpGBvroJQjSIIXVNpF+uLhDoYmZPKOrghh/Q9lcXhEObrS/Vw9ML6UnP3ro2M+KQGW6uUAGNM3JaXd72WJk3ZVV6ipnPhLL1Z4472+WYoBbGYeSwv8XMOkLtfOwQE1GdbRUuByX03WJno4XmZmqIH1Ix4/H+njENBGBeVw7RO4TWAufjzLnHBk7T3i/YJpy2mfJhdQladHaUNndD8LzaCB3U69xFz+4MiZvDM5oax9ND59m6d5bRCJI95c6cJCMEz8T52LZ23I/O6jDrN3sEvQhhA1oqTZVhzA53b4UQE6bdzU07Z1LdvFiDo5SiPw/mbsdhPR9R8H6+w5L9h7da5tHplxwN8xyQFASNvtD3qDojpkBKPp+24Ae09aAiS8Ft91Miiw/s21rY1pUsHswqKuzjyCeHPV/c3PBsGEgIiT6H9fY87RJxykgOZGKH5z1oOEokEtzCordBar4vNomYOpJrAc+sFLfOtP5rpG/YxaAsG7k09nlEhsEpZV2KFwWskz4Un8Gtvzch9AN22bMiHRDynw8xO89X1AnZ/eA9sbTk5+cv4oE90nEALtOFOTYQcmLY77sqJHKqjfenI+etYRKJMZI7D/hCHxBcpaJFuNpPXO2v/aIVdafGrdM0cQaZV0nxrkG8AqWYcKO7nqwaArUUIr4nL6WSQnAwRhY82nD1/Wj/nKqVx4eFZdsguYAipuwukE07hbBwoSXFmEhJel6rQuOJPrgsK/N8dvue6vTFGMTXPNDzeVx+GeNI6vml/+nDef3slq2H2/h+rBGqsqwrtjU8Ks7JvDkl1rL16ufu7v4lx6cbLkbBrFDr1odjryCq3mp2Vu3PkHdnX1y8Pc08ZBWFoM5z1BAQ0b6Y91ZsyIkQfN8VxGgBd4PbKtumjCNkc1VYsEakoa2yngtxF/jkauTT/YHP9ldcp5+lXtLF5jEl9+GNBkMgjYkkI2XdWOeZogatEgiOguI8T/lrMKF72TRrXJR/iIcBIX4ozRydlqbM90emZzeM00TLsVMYL9OLEcTXRhbiE7GcGJ9MpZyMHftKJBIlcZk13dMHeqy2r7YC/v/SW2I1JUS4nHcHhbsmUbxy5J2vFYrCqd1zKoUmyemEMZIl0xTW7v8k0j9frbR54bRWjgi7ITEOmbLNbjzeD1FM0aV3OfpMqMpuHCiqrGUlRnfkjzES2mUa9OdZWqMtGxYzNy8+oRrM796gWllXb/9TDEga2O0mpt1Ea4Vti5zLRmk9YiN0IkInHZDc52iez6zL4l1GLy4uG0xPAUYivgcViYQwkOKOMX9kkNHzF59zOp19cO2JUyKR169f8bC8dbJ6M1SEOAwkcxmOr18yJK8oRWEt1W8aNVr1FjB01Yh1Q+qnD9Z/XNga0l/s2lyRoNV/vQNQThNstfUb1y+S3TAwRM/RKJvbctTqoFC1jcnUW9y6MqCkZOxS5Nk+88XzKz6drjkQSea3nCTPF1EMCw1/t33/6x6thVoKtWxIVY8ckvjzjR+iS6W6+l1FKW3FLGLm3jJdckKO0Wcb82oQDbZ14/Thnv3Njc/50edGr4bejYToqeD4CO4IcG8FDXrHQseVe/nrs5qI9HAqr4gx4M45wXeMwaQ7HogjxKId4eWJ3J+GgVaU+/PC6w/3tJA7p9f/Oyf8O+pcu1InihBUaevqcrqUQRtWjWkYIQTfa3aPKZXLvOuhtPtp4sPDETrjp2nvELrrQkxeBFQVBXa7kavra958+ECfqHG5YiOIG1NfHa7Z7Q6cz49gxhpcRIE4aUTNu6Pe6PXC4RzxFLxdjX2lpeKVOUbr3kN95AiRcdyR4kdWztNpZtsKIQq7aWKc9ozDxP3jibsPb7qaHSy4rWJsna9hQkqZGAdCGFibUU5n2uIBrb7wa0/+ttZRQH9zLpt2/+CXNsp9YqPPaL2q1Gq9akYuPnUO9iibNUiBWtznR81NmhTDqlIoDGMki5GDsk+Rm/2OF7cHXlxfM+LgEiZIzOx2O0iJao2iG4TmbY868mu1UpaVuvSYgm6reJFUmbjIu7UNC0LeZV83NW/PpbNNRJ2QTf+9XYYWSRKYjye208xuP6HRWTD0FZZ0n55I9PS9TlXTzkJR7a0h/Nw6O5fFK7dEYgQuzn/iM7ufanmy5bh8Md7UOMn/0vE8nhde//gTX3/9LffnFVLyFxgljxmx4E6LGEmEIQjT4DtiVBm7VMxVLs1NvIaRfR6Yt42lrKzr4jNmCOz3E/kizpCeLt1xjTGnixlIN/XWng9TeP36B07nGbPWee2ORgcJiAnzaUFJpDgwxIiW1bWzDhh4wYg/C8aNnnZg7rkcxZPOJAQPGInqER9PPZJ3IdM0kOL4cYfz+PjWGToWeDjeISGT847T6ZGY3NDLYiAMI6SBqhtmQoo4iTsEJAqH3YSG4O5m6+oRb7hd/9NS/vLVXw4m/QT22UEIpCTU2nqFkaflcO3VIfXoN1UoRXuCk9v7O4oXOk9Y/O+tcUhwlQLP9zte3Fxxtd8TYyLESEwj1i7lJCPJfXKkNZpWEk5N0eJ5ma0Ur07BSeKSM+Owo26Vps3Db7aNUhb/0sVj4iWqpyL3ytnUk7clhR4b5w4OtTYe7+4Zb2+9YkvELlaR/XCKSX8Z/ZKzfsAcjBMHN2rBtEInSaTk82ZIqXNHrc//Ptvp5TD2y1Okt8dPbTHc39/z56++5scfXjEvBWPoO8jqu86yEUOitkowI4XAkCLTODJG9xnC/CDFIOSUkJjIu4k0Tmz13r2aOuE9SmCZZ1ab3YakKYTovFoJ7IbRvWmbXwatri45M3c8DFbQbiptVlHzLqSWSsz+bqaUGHLi6uqaZTkxr126ZoL1lVWIIF3V4u7uP6/MLsne0leCKcVOtQQ1t0vxA/8Rh3Mt557t4Cx8JFLL2Zk/wfMlch4YpytizGztiBaPNjcxmvPu2I07rq+ugMDj45FlPaPNxWXWy6DIzwfur38ovhJQ8bTiFJI7pQGIW4Rot3I05OmQBgKlda6pQ6lcxvIkgTEYU4CrHLgdIy8OE88mR0Il+V9pN3lURMWBln4JBOkodHOCu6mh1dvSeJHG5cj+5oZPPvmc1z/+xOnxHrbZUVUKpW4oBYm1z3n47q5no6iCSI/F627iSWE5HWlbJR8iFjMWkj+I4ENAvFxz/Ua3vlJJIYA6k0WXlVYWRCsWI2lMBNmRonXFRQdLjE4puDCO/Blq93zyKudA15//8h1/+f4HyuYA3OXPLm1zkCxELLiZeLzQAFVp24buBm9Zu5A7DQP7/RW1KR/e37G0d9jT53NRxJgHUoxsy9Yveb9TItpTxN0hAukSOeuCjT7vBms/dwXmG4lxSIy7iduXL/n/OHuzH8uy7Lzvt8dzzr03bkTkUFlV3VU9ssWpm6IompANQ37QHywbfrBhvxiwYIAAAcm0QdFkN7u7psyszBjucM7Zsx/WvlFNA6KlrEahGllZkXc4e++11/q+32c3VwxuwKrK+aiZ5iMxB9Gb95L14lgB1QOY5J8gVU8uScQStUqocv+9um8Iy3xks/nAfM7DcelNistMSZQjCjFBowxGe4waaE0Ts5iBXbM4GjTJNozrzDDuud7tscZxPlnWdSElQRJWSgdAtZ42BUrpbqqWO4GqQrRzVsy2SmWs11zvtyxL5HheejjqpRci443c5O6mmuAOnWpMRrGxsLONK6+4mhzTOIq+0g4Y73t2Z3/on+4ZsnBayaJuqpWkLxW5XPaN7owiJR1EjMaNHjVXcjyjWkSp8qTASa0JhVAb8TDSTcW9I46W5GmtLV7DElbifGa6vekNDyOJaVpRLgP5y/7Wi5CnxkgqkCPkFZVWWpYoupY0Oq5U59CDRzkLxjyV412M+tSlagh6wzQRw68lc/dw5LyIkbtVeT2XlrMFnFZ4a2VkU6XbblVj8k6oA9aKtDNVjBvYbq85HI+kUok5Y5zHKMM4OK6vrmg0Us7C0G2mPxMN0+SkTCmjjZMpAIVcxSxtlRUYeqODzFU3DWgZ2VgZO13dPuPVy++RlplpMxFTYF2lrJaPuDtQGt1OLtrvqprMma2TjUApjO65ndr0966gFUpayfED55xrzP/4FxT9AewwJS1Zjykmcr/4lgso+KLDBFIIaB0YpoH9bo+3nnk5E8LCGhZCFDraxTMnOxD9kZI04idCghKxAEZzdb1jt92yrvHpqgqdcqAqqB7D1wqmiUpyNIqtVexcY+dhN1i204D3HmUtZnDd+Q9NVWl4tUprmtKkROaSCVJS7zIbKePdZXHKCRWWA19/uVJzRqsANqHIGK0YBo9RlvloCHOkpr6o+p0LZHemK2OMc2htWGJgOc/su6BfKojvvKMXg6/8MItSIk5oucjcsCZoGdWyJLtVZDyWM5EFtMIOrieXiUjhEkkgG478rY1iToEQz5yWhXWOlD46kE5lwzkNTTrmzlgp9Z7eY8NbjfdOpgFZdMvDaJk2A8pAKqnnxoiiyo8jL5/fcnOzZ54XDqdj94nmbovs9+vOkxUMSXv6Ga2PupSShoxBLGW6n4KlJpblSG7w0ac/4aPnL3jz1VcspzMU8HakZpFWXjZAYwymVdHtKkGSGucZxpGUhItbVKW2jFFanFJaeMgazTqHD1ucv9uN+u6oLoiTomCdQ3nDuq69I5b7QdM/7MsLboqmAtpEnJ9EFyprnZQTEEVp0dvygNyfVO+CIc+pSG8rzimGaeL25koYMin+TuEF9M5Zu5xeSCfXa5isZmcbOwtbq9l4y+g91g0YP2GHEeOMDLSb8INqQ8JPjZd5nnWkdaZmOZWdNXgniEwpDSuoSi6RmgLUzDDI6Ecbx+A91g5IuKPwcGLOXLamJrsgDSHoDaNj2GxZw4LRjrAsUiohZedF7C4jn37S97uMVqaniRVoGZrExKlW0J0oUGN+2vwqjbossjcYURspa8FaqrYkbTitgVgax1PkcDhzmmfm0yKzOy1oEaUk+auWJAA0BAjyBHUz6smRIcN5mV+OowFdOS1Hlhj6iSddZWdFUHH//k7yTIIsEqO+28QvaiapZDrtu9FTv3Kfq4uAw2JkwynyfVXVUNZgdeH+26/4+1o4Hh756otfEtZD/zmKkvuz1u/2zlp5PbVKV97LBi8A8Iw2DXtJRahZbHjKiV74n/jrn8aUoJ4qGpk3Sv0M4gDIqWC0iNxbE9+ju0SFl0ruM1JtpI0fc5L7nNL97z7kzak3Qy53zibsW68FP1Fk5mZMw5rCOFqudhPeSQez5iRNEC7jFyXteICaMa3idZNMDQ2T1my0YmMtkx8YhgHjHMZ7nB/7RiO7fAP8MDKNGyK9O62kVa+0RfWYAOOaNCNMpdaAQRZpLQnlKtvdiB9GEZsjapS8NrTTApLqrQNZUdIFfborewnHrYuURDmkp7GL6k2wS/MB/nGZpJTuM2UFJKSbnmWDrWJEzyH3XoEI7HPNff7a+jhAUbQhKcO5wtuHR05rlGtMkvm3sxZv5I5cL828VnuThKeGnL7oUbX83RVt0oTTch+riNxzjUHu+Z0O4awlxch8PkuVpeV0HJ0lKAk8Tn2m2GolhgBKMwwehUSAtNYEj6o0qqu3lnWmf5o4Y3G6cPftr/nqN/+PvAeVqC11A7qGPmG4NDPliiLPi3EicEk5Cbq0ZlnE6uIgkhl/rU1GUv+4xfKfvzjbpbz6Tm7Zoxf6iVZll0oxkWskZxm2h1xoJdE6ZElb8WgWVSi64o1FVxEubAZHSzLobR2Fj2poB1fPtqAbx0e5H1nd8M5ytRuYJk/JiXWRFGtnDfR2iFGXqDVJPzY0Bm0YukjbKY0zCu80zim0KaAjyiaUkYVuLlVDrt2RoalkMYcbixsGVL9PadXAZMzogEzLCVXAGEmO9pNns/PYobvkY3sa+QjCIveTSr58iY6TeSWtUUgyvum7Reu8VvidPncvbS8lrb4IY3/n22+19I6uWMRaaZLpmIW7U5oIxtcUSUVO8t7YphjLXBr3a+BhWQm5gpJxglZCWldaZo25yUmYLxHXWr6T2oTVWjpgLJaMt+bJgSTYz8oyB5Y1igDmIkZpjcEPeGcIZqU1RcqZnDKDdbQGRXd2UwO0ZGhaZ9lOW0peKR0fkkLEWoezCqc0pRhSznzny6nUPBPDLDpyh1RCtS+Z/r008TJ2HEl7mimnFCDnJzAZgLJO+MJtEVFCTvjRPFWK/8WLs48xO12sf89PzQH5hVoLOXccRG0ECrmsKCUPpjZdHG8gkdE1dHuZ3EsGa6iDpZBlnKAayik2VyO3H19jvGYcTsRlRbfKZhA0v1aNnDJaw2YaQdneoDIdESLChAi0nPFKZoVOK9FImop1FW2idN8MQnlQsunoqqFKKljJgax1DzIBFIzjSL6UawqUSZjBU1uklZWmBQ/prGWYPHawNMp3a6VnZsQUSDn1BkM/UZDIwIq03QuSvCY2OMFMtnop+2VhSuPRgMry3/c5Z7skohVJe34SO1wEJLk+lcExZdaSmUMg1CKISmMpQMyFU87MsQj7xhgJRNKKQQuFXmapPHXe6+XEVhfGjjwLVAmNKb13rZU8P3IdkhCkmDMojTXCptVa5INrkEi/WgshJWpraONwpuuxlebqek+Y56cx1KWX4b0nxUzJWYBpRu6A0+BlRqmNbIyNbkuU/+4y7bj805h+evZFIehLuT7RpAFq2oWQKBCxYdrLFUQfKXUll4Su5h+Z5P+LFqfc2y/H5mUnv6zSrg4pFVRHSBTZnbGCxKz930voiwadSbmrDHMj5pVaE8YoJufROqEG8FcDNy+v2d9uQTV8U9QwUlKQuIImTSetGpvN2E3Dllp1x0ZIuWy0Qlt5/YMCrxpWN1mcFwVMLRiT8VPBTgljBciVlkatMkf01mNN7kWjaLe87569dcF6j99ds9l5aDOLTaR1ZbzArazvC6T1aHJIVbGWypLLE6qRPgOTGUaRu7oeUNpjtATxZHOU9DStnhaCvng0Ly4J1XeQy32biqpJgnZypSVFjZCDOGdyysRUiFSSgTw6UhIXUK2KJUps/ForCRnD1z6G0OKJI+coCpheJalWRUiEzJWtlo5zLlIuO+OoWrrN2hhiisQSxGyuNE58gp0DlHFOU2om5UxIPYtEKUbvJQ4ETTzN1Na42l5JSWstwzhKmZ5k0xK1VEMCcA3eGLGiZdF7OyOxidUMEvykSnc9gUOoCVpgxNBkOlFoTxgZ1Z8p20nvKIuyowhyMGgzUlOkKRmnKfOB8j36LNNog0asWvlpscpfQrpuvRvWL+R9YaC7M70kqgWDg2pIaUVV3TGECVTFOsV0tWHYj+hR4SdLa1kWIYJjbEZYPDJqkFLWe0UMCyUnWr206WW215KUcQ4RyBvVsDScFm6Q7i19o8B7jRnBjxqDZ/WV032kUdG2ok1BI3JApZCGEw3jLHbw+M2WaTeQYsRli/cbBieZm62IiFs21v6ltsaaEql0ZKK67MPfFSZNAUZi+qZxxxoCqRaG3RblnHRhKVxu2k92pv496FZRtQgaMwRKCJQlktdMmjNhDYS0kkoBbdHbCWUV67pwqFGYN0lOVAEzt05X7F3kLjKtrfZTU/XGlHRjFdKVHIaBZze3xBh4PDw+lYLeOCmLO/8olUzRkojudB8RqU4ZpBFSFHmec+jW8aENUumRiFXUX/PhREkSfotSHXcj37v8pEbNidwKznuc9gzWkHLBNqBWjHU466govHVyDaDTIVUX37fvsmkvm9VTo6jLPpuxjNst2k1sttfEAvPXZ1ByHzX8p5tC/+TifPZsxFqPcwOtGubzyuk0E0PuYKSuIhH911MropZCVhXbcyeEVJZJi3TxjJIkYqUVVUvTxA2a65d7NtdbTuuJdT6xnPpCzLm70J2gI7KUZcaIUkPmY9DqdzM5CfKtshit7JimSXamrn3OxYX4J5uI3GthnDx+HKhtZn6IKKP6bC+hqgzUc4FhHNkNV5RaGHxjXR4I66PkhEwT3rY+z8rSg7lwUXMhh0xY1/45ftdgaFXGNqpBszI+aa0wn4+czydKiQzbFyIl7IWVpvb3LUog3ctZVSstJMq6kE5n0mkmnBfiWTJR1xBJNOzgpRusKu/OB94dj5xDplTFZS+WlHLFJVvSdtF764IQOZU6+VwbGtJZ3V9fSWOw3zmttpSW5Dkw4rmF3FUzXUygpalk+jyxIJttCFFYVcYCkiaWSya1gBx8stDn0xmlRCJ4Op2wxrDZbmkpUVIn5/XnoMREaFC7kggKRjVCCB2Po0XGN3pUnSnLLBDmcoQAACAASURBVK+/9g2xXF5f31qNNLlSEfi5REx4xC2ksUYWfa5BnFU5ftji/OGPnkN/cbUYct4xz5HT8czpuJBSIsXSa3FFSfVJeFxLI1FAK1zVpCg5iA3JRqxD7swgSSWbri3D3hDKiZjOpCCUOqpQytBibyqJHh94aTbIqEYrI4nEhf6wywNvlO6eua7C6Z+hat1R0Tt7KSaZR3mDHyfGwbJ/tieFR3LucQAkwXEajXVKaOPbgWVdsDqzrjPONry3jBuLolBSpJUq7oXSyElxXo/M51UURdrQs8nkc3s6BeVPNChyDMQ4E9YZpSt2GiiaJ77qpS301FBrDVUSLSbi6cR6eOT0eE88PRJX+exCziy1Uoxl8o6HFHh7fOT9PDPnQupWMwNPJvWLIkYjTTDdgVi1iRiBHrdglYxeSs0oLFCY50Dp91iKQNkaYl7INQueVC6pQOvwarlHpiLpcLXJe5Y5ba80aus5mVpmjlrJaKRJ4G7OXeyvJSNFHlXdRy7dDtZnoE9JYjlRYsMpIzH3TTP6DXUU4kRIC6VkdKf9XQ6mpw6uNlTVyHLwSxaqNpSC/KxhJNeE05D+v1qC/9zFOYyQc0JpmTH5wTBtRq6uLHHdU0qVC3aR1vB8mjkcZ5Y1i+G6NhGeawmCTVnyCbWRlr7OBaUCV9cDV88mmk4cT4+UJIG0uolf71LapNxYzpHzueskVWMYHNvdlpwaKZ27VExOReHFXEzEQmwT8LW4BeSu0INoa6UUWOeVxa9UqwmLhOOMGwmN1S2gtWIaR0qD1iIhnsgpEJaM1gU/WGH2WoEr07Q0zIwnO0tKC6klUlnljtYf7EtLoXX5l+rd11qzSAVzJuaAHT3TdivkAuia1IvHUu6qJSfKOpOOR+bDA/PxyDKfUTmhNUzXE5N12Fi4Owe+XRYOy8JhDcxF4MtwGQ+0vl3QRwIy6xN0h2yApfeYrJLvrJSMcUYaMDkzThtZ1MUQaoAG3nkKhWEcOfS74kU/sYYV1+9raIOyXv6cCiFLV19fBBd0j6RWOFSntMtrbSVjvcj85jWQY5RrmrG0LBWLjHX6Pb0/JzVFrLJy585ItEatDOOAcRobDMt57i4T/TRTVr1DXqrofLUWLIpzI7fPnuHchqYauZ2AgcFq5vMHihDi2rm1pvaHXsy4gzdMTjSdFyO0UopSrlhD5HhaeXg4cDzNpJSJsfWxSw8mbZqoItZXdteeq9uJQmKZ41NjoVWwynULmaZWzbpk1iC2s9Ya0+jZ7Ca8c8xlpaqEcbDbbnHW8fhwkJ2QJqhIBQlFNlBMT8VSDdtPhdFJHkw4B9aWiEFBG7HjBFWUIFYrNleTyAPpRLdSoUacNzhr0FpocQ1LwQi+crjCjjv0EFkjqDlDmqXaiJkSa7e/9c5rv7vUkshxpWbBLF5fX+HH8Wm61UrtC7pSaybHyHx8ZD09EOcjOQVJ7toOaEZhNBnpkmJF3fXucGJJhYhY2RRyPxe7Wr8mdImgfupF9U5yFeSj0Y7SKxXvXc8yqeSSQA3onkwdQkJhsMay3WxYY3xCqCqlhRZfK84J/DoVqKURc2HNEvzUlEQGiuE+o4yVzqxBsKpZbD7FKJHBWit3706PFuSoloV/+f+KJ1G9VhVdZQinaJQsQVbWGZzzonNWnvPp1H+/XC0UsjBblZIdM6AaXN88Y9pMtKr45JNPyOVELmIN3E03H7Y457O8eWsMWjeUyuKj7OXDZXdHieLeecO4GdjfDrz4aMP5HDjNkWXJrGsiBmEL5SpQ5v3tlqtbh9KZ+Ryf5ufi1ZQk5VZBYVHaUMrK+bxQW2W7HdjuJoZRxjKViNKFaRy4vt3inCWXhTDLWKcByjuGzYh1UAgURFCvtJY/zw0YN6KwggcB/DjhxoEcgWpAN3KJT26MZzfXhEWTotiALpiQnKV7l6pG+T3OPeN8htI0RW9QdkKpSknhCYSmtGBFausODWpvbpWen+nY7W9Q1vQuee00vMYSVpb5yHI8kMJZNgun2Gw2xFo5ns+EJTBtPLvNhvN54fXDiW8fA8c10XRXrKhObmgS62d1t8XxnSqmtSbNqi6S19ZgjOvaV8/gHaGsolOtctKO40jJ8j5LFT5SLdLtbMhMtFQJvB29xhlIKbGEwpIhPnFgZVuKJXfNd6fl9xFTyUniIXQ/iYG0rmzHQe6yfeSjlcb5SSR+tWCsKKxC6hkptaKVZnCWWKTLaK3DuQHvJ5wZaQVCWmk1i4/56VahyKUxGsm2ubu/Z54D0/YKmx0pRrTWeO1R7QNHKfNpFdSCkpzDhpDZjEEaM509o7Wg5b03bLYju+2GzejZbkduS2FZE2uUdn0IsQ+BFd5DLYFYIrV1qRji9LBGWu+tB70YY3DeYZxi8o6rK8+waWgvxIFhq1DGs/Ee5yKtBq73jrpxtCx5kre7LTfbCdcKdT5CXfss14EeqGZCa4+xA7Y6UmuMu1vRtZoGaUCrmdjuqaXh9IhSE4qE85WGIRVFw5FqIV2sSMpwPY7cH7/l+PBAC4maDLQBa50waFoni1NJOVCUKEtUrNLYaYphs8PvrijaCDt1zahcmM+PHI/vWOYDrRT211u22z2b3YjxhqIKz/Ke0+nEu/cPfPXugXePC+8PkTlB7pGLQncvXCIIymVC3umFRmv07yxSkbFdQpYaNzdifvbWUOvE+/fv8c7zyccvmZeVrCub3cDjw0yIiZQzTfeeRptRSrEZB5yGnIKMeTJCzO8Pvm7qCQfTdOvzUyHh55y4UBNqszLaqI1SI0uMSJyIOGNQlrlVfHUMbkDZQiRIx19rtFcY7Risoy4LisY4XaPslnF3w7SLVBT6/A6TNYRCiRVrtLCaut50GD0xrZQUGTaex9OBVjJbt8Flw8Ph8GGL8zSfoUkwUW082WAAWpFocNUd+7UkjK74wbDZDFw/23F9u8eOjmHSQhTPFe0tm62hpETKK0LRsxi+gzUp4566j6rzYmop+Mlx8+Ja/KKuYIY+AlEWazbkyQs6Mc3oppiGCT160ipR60opjqcjhMBQE9Y3atW90cCTQ8HYEe+v8LuR7bQX4XSWuZixmpojyipqWVjWB3HqFEi5orBYM1EpLKuU9efjW47vTyzHQF4DeTnT1kRNFbTrelgopYv/tRFfZRVBda6AcWz31xjnKb3LV5bI+eGB0+E963rPMBqu9iPTBvwGdtcD2mu0lZNJO8mmfHv3lnd3J5ZiqLjuAJLuhSxDab48dTVbjy/UPQio+0Rz17DSKrc31/zzP/kFOWfevn5NCLLIt9st37z+mjVEXjx/SalCwo8p4Qcnyd1z6PJLRY1RwqK6Eqv1XNJyOa1l/+r38+7e0dKFL0lkiVKqNpwfCDFBq1QtIoTSNFZZjHZkMrpKI6kZRUlrN2uLuEQ2JtM/c83V9UuuX3zOcUnk5Ygb92zIXFnFuhZSEDOBdZqUIyElptHz7PYlD/ePLGHhfJ7RBVzR2Ab5tHzY4oxdPWKNRLilVCWzsZvkS+kOci1G31zF+bDmhVM8cVxP7G93GG+lqUEDXSglk1vCOMGZCKBKo7plzBpLyXSciaKqSkZ0uePW4Z0WaZwVGkGOSRayal1WKFED3nla0cSqOC8zpxixLTPSaFbhm/Bqcq1QMqpEmp7Y7LZ8+umPCGtjnZOMCbTG2ow2CbO5whtFWiLaVKyF5SFyXjKowovdC7RR3N2fOB1nypyJ5UxcKy1X8rpKRLxAaeQ91tIVLkpUOalQUiWlSs7gdxu2Nzc0rUnLwvl04vxw4HD/nlpmdlcD46TRJtC6FE67inXmaUheq1ABc+9C1qaesj5Laz0i3Uh6Vjc/03rjqYml72m2WWofzaoOP1Nsh5Ht8x3hPPPVcmKYJtw0kM4La4rsb695PB8oqhJrYuNGFLDMZ2pMWCuZpRIgbAkl9meqz3+RzVr3Dr14XoWHlHKh5kTNEaM1g4fRjKAVrRkp1bUl1ALWM26vcTWhUpRRmBvZecvxdJAqEEPTnv3NR7zYbvni67dU5Xj+6jNejbe8/eo33L17hzI7CVTWlXOdqdXw/MWe+XzgcDiiqVxtJ0qFh9OZ5TQzNc04WVpKTB8650zJPCFCnPPEdaY204W7K6jKMCh2uxHnFDkJ5cAOFjc43OioqlJy6BpSEcOrS+fLdGKAcVhE2VNKwVqPwhLWQkrSUlcW6Eli1oqUq7VGipkUElbZJ9maMUYCkTCdWVRZl0hLicHIPSrmRrAQSsMVGafYVok1ckozr9+/RqsJpzzKKuHB2o3YvfyANxryzPk8Qw2UZSUliHElhMISC4fTQkkFVy1pScRzfGr915ol30MVnBv6gdBPj9ahWn1hVuMY99co55nXhfPxwOnhgcPjA7olnj+/YrNzojqpEWMM47SREKgcOJxOpFxADTwcZg6ngHIDRl+qBjG9S5Cx3Cml8SOnyGVEIyzgItplY+S11iabYGv8X3/91ygU53lGjw7nB47H01Op+frNa07nI96LSF4rxelwIMyrQNua0PKowpo9r4GQClVZtLFP/B7Re6vv0C5Nice2VEbr2GxGpnGU2ArlKEXUODkWjJ3Qw47p+iXh9EAMgY2zbPfXjNsr1i9+Q4kzxigSjqJGzHCDGVZKs1ztn7N/8TlxzVw/+4bT4Svc5Gkxo6PGENhsrshhQdXK+fDIb3/za7b757RaeHZ9zRWGMs/UNbCfPlAhlILMGCUjE841COpRadyQubme+OST51zfbFBKlEDKSFJwSIV5jeJE6WqSHMV87YxC69qvMgprNaoW6doZgx8sSjmkEXpB/MsmQX+MUTLHor+eWkD1L85YgzGWnEWLOa+BNSbJL0F1FIZmQDHnBiGziSIAd03UIw8Pd5K3aSeuNls2w4g1G6xxaEEjYKwsqpwLWot3spTE4d0bUgKtHaZZ8lIIp0BNItRuVXJeilIoqwhByl8FjKPv81g5zYrWoj66uiKVzGk+cnj/juPjA0ZVXrzYs7/ZMG4Mm90tGIMfBtBi0qq10pqlNUWIlXd3Rw7nwJo731aJkOASUlQ6O1gqBfvkgdSX+WNtaCvfg0JJJo2WxtO8rhwPR7TR3G5fUKl88smn0Br/8A+/IufIzX5PSlHmtzmTU88hbcIwzi2yrIGQC7lBreLaAemom04u0JquJYaSAkbB4B2b0TENA6U06W0YiZqo2uDsiPY71HCF9jtSmclomhWJ3ec//kNC1nz5q78hVNB+wg7X+M0NV9dJaB8hcHg88NlnP8SQ+eXfa1589Aw3TJzPB+7e/pZvvvkHTvfvO3qmkIfCMp8ZneV63LDJcHh3Dynx6tNPPmxxrvOKsZmPX408fy5t4ZIVm2lgf3vL9c3EtDH4IcnirIXSkrgbKNQ5kmJ5mle1orDK4Y2AncT3KO1u9MWRLmiLnDOpNlIva2gIb4cL3SD32ZvcGeQLBmedOFSagITnNbHEKCJsbbqqpg/mcqNFhYoVG6tkQZ4ip8c73r49cp4zSjn2mx2/99Of8Pnn3++k9Y6crAZjJrIKIuOqFmcbTs3EEHqn29KSw2nAFZxOhLx2ZUyl1UTOVSSPRkpKow2lFWLJYAd2Nze40bOElcPDHY+P96ia2N/s2F4NDKPCT4ZCIiyBlDPvHx9YQ+DmxXNevnzBvEYObw4sKbOmSsH1uZycihcrF4jIwPT7pZzudIVPxaiL/7LfT7Um5MS39+/x1lH6hbDmyul8osTE97/3Pf7Vf/UXpBT57Re/JS8BY+XRqyWgtMPbidwasVZCk9K7orCDR6OfNglR9DUu+ekahXdGeLetst9sGIaRu8cDIQS0SWgU1nicGzHDBr97xvMX38eakW+/PnEMR8wc+erNA8P2GeP2hrYsVD1RzIZqRp6//ITXv/2Sf/9Xf8kPfvpzxs9/yHme2dw8p45bst/w+fc+Y39zRa2B0SuW4wFnPNo4OYhypsXI1bQlWYUbRrbTf3oJ/v+4UhL7neOTj7e8erXl+9//QdeGaooyoDPGJPzQg3CVIZVE6C6L+dw4ZVF+aAM01Tt7AmCyVvSUUq40rBP5Vc4yc7roFelSu9Y6gLkPoUXyJfpGq8WxYZBfa0VI4daBcVJGXixk9eI8yCIaVyFj1kSzkXTKvHt/5Hiq0nVNK9/WB07Hle1+4uNXN5Qqyc2iQEmySxePsxarFFEpBmVYYySUQlWeVkUM7oeBZmBNQcoy1dAVccUomWsuKZBTpNGYdlumqw1rDDw+3nM6PJJC4PpqYrMb5P15RdON4+lAwxJzoJLxo8a5RkhnDscTX3zxhoeHE7kampYAV91ab0aVJ6HBJS6g9nL/4r1UVSIgaI3ddichtiF0f6sWN0sMqKYo336LHzw317cMw8A4Tjw+PFBiYfITWolXt7VF1FBaTuBcNVUZMBqDyN2ojdpEGkE34QsETBLTrbbQx2/jONJ699YYSypFFq6WK5FWhuuraz7//Idst1cYNfMPv/xrziGRq2az27N/9pLjmzdoP7G7umW7u+Vw95bT4UDJcHr8lrC+4NPvfcpm3rHUit1cUZThi6/f8P7uAVcb2+1OrmehSFZZLXz/k4+YYmF2lpuba0r9QIXQy1vNj358zecfT0ybQtONlAtryiJp0+BHyzh5rDXUIrpRVQ05ZVIUR4KzBj868XNUoRSsMTGYQWZrWoTyRiuxdYHg9RNiLcrSgKq1yV5ZK71VjOqSsUsmZ1WQckZ0Nx4Q8XvtbhCtNEY3EqKrVRUIkI8Js1ZOa2YNFaUmUhDRN1QeTgfOy5lSb2ReVzKlBFKtxCpMXYXGNynJjVWScrWuaKIArLTqw/8Brz2yKhNVnUkhSfpyNVANNWms9ex2W+n8hpV5XgR83RTj4ASOPTXsIJtcLo2b51egYGt2nZzYOM0z797di7IKg3WeUOgzZFEDKRmoyp0TLt2XPjaR+6bpxm1oaOfwdiRGEafUCjEK7bA0eU6efXTDj/7Z73P77Bn/6//0vzA/HNhPO7aTZ10jBU3MmopEZTjvyCUK2dB2eHONtCoUBf3U/3DsNluM1sRw2cgU+5tbSi08PB4oreG9w2Qr7G80ozUoA++//RLtLc9efcbP/vjPef3+HeflxN3DNzT1nO/94Gf83+/PaDuizECK8txpB/ubiev9yJvXvyKWwvb6lt//g5+Tquarv/+PLPf3LMcD1Sbs4Ei5YIxnd7Xn5mbPn//Zn/G3/+4vuR52DG7H4UMX55/9+WfstpZpU3Gukbp51GrwPe281cQ8p+5LUywhi5JnybQqdD7vR5yXDE1aI8Ys7pLSME52NeutoCQKrCFKR7hcohREMdSaEjRI7UnQ3RlQc+kG5K5RVQpjHNREiFGgx0Z3HEV34KMoTRFrg6QIcyXVSEoamuvqnMsnUdhfTYxbT1MCIK45ipm21r7pSLJzqZoYC0pZNpsJxcD9u/cMvTmmtdDatTXdEHBpcFRBa7Y+16x0/6Yirivz+cRyPpFjYDt5nDdoq7He4AbHYCy76z3DbiNVhVJ8/c03zPOCUpZp2PDRRxvOUXMIlbR244K0POU9PZmjBc95CYmqrUk2qpLPLdfC6XBkuzNY6/jk41d88/obEUZwKXYa++s9f/THf8QXX3xFCIGcCylHHk9B3Didk6SVFnNAFXvWbjtJqa06eaPIiKrVinMO6yyaJjrhIlVMRXE4HvDDKK8Bsd5bK6HBmkJJAbCowTKfjmxvIt5v+NGP/oj/8B/+kq+++oZ5nhl//FOuP/oUv7kl24Fv7o60XPDb5/hpx/F0z9u3bwgp8sMf/x7vv/kt0+YaVQLOKDabUeIgjKalQq6ZZiy/+MU/R1U43B0Z7MDot1T9oa6UlwprEtqIomHooOQ1ZBpSdrUqAt+UtTzssXE8R+ZzpFaNt5bBKpwV46xSGtvviBpwSnYzQCxpoXBeMmGtxFCoVRagswOqCuGvNv079AVJmdao7saXNnxtipQCuee50L2DKC3NktaIRVGUJoKUbM3RikE3sTJRZTTy7PnEj3/6MZudI7cg8rcmaM9ae5RfyZyXgGUkl4ZVDqUGlKrEHCkhoa2mpCokOTdgjCVEWJdMDpUcE7oVtLKSY6JV31wqKSzkKDwiP4wYq3o0gPghh2nEDSNmdBgrGs/ddsObb94wHwPKjGBuyDmKSZ1uQlYiflDtImnvN8+LqooOjc6VqhvGKLyxlAan00m6wrVRuvmhIc02bSzffPOa//7f/ltJmMsR6yRwN1ShIIjLTGOM6ioih3YDpfa4hqYk90QbRu/ZbTcA3D0+cDoeZcSjhVBYa+N4OuFCeHofrRQm56XSKt0RpQ3j1Q1FOZZ1ZV4DH338Q37eDP/xb/495+XM3eMdf/pf/3ds9q94PAXe3z3SSsa1n+B1gHKi1pWWFub715QXz/jm9Zd8++YNg9PsNhtSkGzaVMTm9pOf/T7/7X/zr/nf/4f/kflwZrO9RWvXkbEfsDg3OxFSC33bymnUKt7IQmjmYuc1nbpYCGtinZM0f7TGWUEDGvG8g7IYLZrUmpPsZBkiotE9nxbmY6AkRB3UNGjxZ4xWHoScEuvaTbddNmUQ0p4RPlTXdXbqGv3OpDrIunRKvLFIMp/uWEollrAuRlC6cHO74+e/+IzPP79Fq0zMQvXGSNldynfM2pIqa1yxZkdpXjrOrIi1o88L7XfYyTVmlrWglMfoTKrhSfdpRo8ePWhFCokSIy0nrFEMg5UH3ZoL0KBDoUVFpbWMpG5ub/jss884PJw4HANf3x9Y1zOqWawyEt1Or0poTyUr0DczZAFXOgW+K9OVfLexSMTi4XCSMZfutActCV25JH77m18L/V8rlBV1vNMOZQ3HxxMaxTQO3N5cs9mOHNczKcv4Zl0CcVnZ+IHb/TWD87y9e8f5PIum2WhRNYHwfRTEGMXLoxQtFcapf/zaYK1h3O7Y7m8JDGw2O3ZXt5QCf/BHf8bxdOTrr/6W87LweI7oqfLpZz/g8x8NvHvzluX4wK/+9q843f2aHE5QEt9+/WuO79+Sc2OcNmy2A6oVUs4UrVHW8fn3fsi//jf/Bmsc7756iyoKP0wobTuX6AMWp7Ma1RxULXI6pfFWo9V3JUkqldjn1VYpdEs4ZfGDCKC9dzK41j0KMCdyFy/kIjHq0p3xxNxY1sq8yr3VK4tzDmW0QLFSw2pH1eBcA6V7Oz4L7Y8O5ir54mtCnPZ03+GFhN7j6IqkPmt1gQKLFM10L6LVlhfPb9nvRkqeSVHjnKcgw/qGOCdaKygE6aGdB7XF6JF1icwx4YYBN1gZV1hDSEWqjFypTWGVpXahfFVKmKd+oFkrdLgm1MNcilwN5PKF0ubJWvZd3ITGWsOyrmhrePXpK+lU+4FgA6/fvaOqkYrneFqF+tfovOB+Viq5QpS+cFVXd6uO7lA9TKVUcX3UilAOancE9cZvrZJC7q0owrTR6I7gmcMCNTFOEy+eXeOcopXIbhjIzrGGyFzmzgPSLCFy93Dg/vGRWKpk16hOx++4JKvFNaWqIgURI6Sc+8Yo3eWMQtmR73/vJ8w58fzlK759d0+s8L3Pf8y3335FyZJgHZYzr7/8NeO04fPvf8Z++yM2ZuWv/o+vOJ8XSjrTckIDm2nLZnzFOgfCOsvs3Tmub17w8z/9U376ez/j/OuviA8nroYJ6wfMNAr+5kMW52XdDNZjMPIAd9N+wfU7qHQ+ay60LDhEe9UJewaZUSm4WPUu8XYXgza9AZFTZQmFNVRKNYxmZDtOUBuxFVKWbpdVUnJ673GDxxhFzYXT45GwRHJOT42Mi9XNWgdNi3CB1lPxJP9D656UVorkXHQBhFGmE79HllPC2ozPjTZtUMajmpNcEyxFSTNKW8fV7hnaXkHVnMN7qrEM00Zkaw3J/1GG42mBZpg2W1paWM9I5owf0JsNdrtFDYI3UUbQobqbkEuXzqVUMbl3nVPBV9C5ck6Zh8ORaTMyeM+L779knwrTIdG04XisvLtfqM0QH4/SzFIGSSHvpa6+yCl7Q0jxROOzRqI1FIplXak54O2AMY4XL/fc379jnEZurm84PD6QcxRkjIaSotjjcsDoxjgYvJMIR+8daMfD46FTGhJoQ0ZziplzEFRKQeGM76TASisFaywpZyZ6GFIR8HUtidQ14LVIVXT98lOm/XNuN1u0sxzOXxCK46c/+2e8+foLHt6/48t/+HtO54VLPtsvX33MH//hH3L39hvSKtZHgaRl0ZznyPl4j3WWHCOtVfw48cd/8if84k//lMF7vnzzLevDAa8UzTTUYPD+A0UIcWmEZWYzDrAZpDmgOg6xCWojpUwutUv7LKOzKOdkt69Z+C20Lp7WmG6yVT3GXBK6ijhXQiXFKmWmEtpAXAKxNUzTMiB3kGNiKYGqGuPo8cZxdbXDqIV5XoRVqzoftTcVVO82KhGXUFQvyWuGAqaCU1ZcAsri3JZxcKxL5csv73kZR54/R8KUfEek2ImkO+6zWlo2YEduX7wkBglQKnklnc7UqjqoSu7bSjs248ToLYe7k5RpuvNhe8S8thZdhXJX2+8As4yltColdlak4yr6W61xpbLZjoybDU1X8BqnLC0VbtzAz8Yt55Pm9dsTf/t3v+H93UFKK/1dFEaj/1lcTOuNgtxvn9I1u6LIGkmRQ3HxHTNNE9M0ifPCecGIlCw/T6mu/eyJ41qxLDPX1zu01tw/PDDPgdM8S1XhPVhHqJVzTCQUyhgKkptTESibMRY0op+NVWR9PbPQaFDaEkqlxkLVju31M549e8Y3b7/h4XiPmRWb0eH8jmGM7KYNuiXevXvNJ598QgsP/Lv/7X9mPc/oUnl++4J1tpwO7yk5YK1i8PYJYeKsY7Pd8vmPf8hPfvpjNI03X39FWheudnuMNWhvUeMHulLyUagFaxL1jFLqySAsLB2Fs/5JDK+NlFvf0bWVNHRUFSc9ssu1nhJcWqWkUzEwNwAAIABJREFUKjNAZBZklXz4tcBxDdSqqMWRisCQG42YI2FZhRh3WrDaMo0T3niiyYLmhI7HVNRS+r1DY5TEwkngqiIXqFFKIosVuaLRnUE7MK8r7x8X3t098L3nE5/94CM2OxHh21GTgGYVNEducDo8UJpm8iMxHij5RK4B7Sy5aRIG5Rxbu2EaDHE+sq4y69NWAM4VgUZpI51Gg3zh1WiSrpyVwLpjhuPjwrKeuL3d88J4RlvwynB1c4vWMra6nNhGGUak4zoeBH+i+mciTbLSPY2N1nR3M8r/aimy2KwTC14Vy1YpUaxYrcrptS4MRjNqQzidoBRpAmov0CtjmMNMbjCNE24Y0UpzOgSudpbBOu7TmZALynr8OGG0Yg1BZsGtpw0g15PvDM9K/KEd5OXHDTU3QozsdldsNlvyWvjokx9wdfuM++ORoDXTfsdf/MW/4vhwouXKx9//Cbv9DfP8CCZzOr7mi3DHq48+5fpqoqVIiQljJ1JtHGPG6S7a6Klyzji0c/z493/G7//RH/Dxqxfcf/War7/4JSnPGH2Fd47mKsl+oPBd9TJGKdmllNZd7Kz7BVwTU4Mm5ln5V6Ik0RW8NVhliSXKAm4K7dTT7zFGMTgrHVKgxQgacjaihUUzDhum3Y7WEufTPVlXjDcMCBq/ltK5O014LcbT0iJJY7VSVO2ReLLnF62xTdr3xlq8NehBYyRhl5wjYt/TxHUFoqieciYcV8JxYbSazMKaDPnCkE2JmjVWGR7vX/N2CcR1psQVYzQZMMYxuFHKx1KZTyfu7r7lvC60bgx2SjE6J/fpbjTODZJWBA2P68LbNwl9d+h2PYnuu8mK90XxUblBTzvs5JiswWpY49rF4hISPC+Bu/t3LGGVE7PyRI/TWpLG1IUD2bo1EPEoGtPEoudHIQWgiUkYsVs7Mg0j3hnSEplPR0qVRklTwlU6zwtzpwhoLZtgTjLLXFNgjZk5BaoCb60QJVKm9tQvYUcJZaD2+2h/mSzrSsmZaZikvGxVMjCtEPO3Bl68eMnx8EjSATuNXF/f8utf/QqDYzNuuL25ISx3fPHml2h1JoQ77r49cv/uG/b7PdYa0rzw2DTWD+z3VxI3MYwd4yJI2GevXvCn/+IXvHx5S8mRu9ff8PbrLygloExFOaimYT9YIWQl0rtr5iQ7RGlJ9OpWnRgzcrnUXeIlEj4JbpUPTuvG4Fw/eSGFiFK1Kz4aKVdqNJA1JVSWNbKG3BseC0ppnAO/9UyjI66R3KQDR5YZ3DAMlKJEq1mgNDGDX9wM0O9NpZJzxUSFcRU7ePb7HQbFKT1SShBJXcySdakqxmRcbegE+biwtgSbQvYZZbzMfhlpJXX6vUabhh80ocmISWkr0kLnMEpxeHjg7u4dh/OZh7iwqIIdB3ZGsUuWSGCJiZYyMUaOKXEXI+daOceKqg1rZAxRYuZNuMe9e+D27Vv+MGT+5f7njGZkv99R7t7SSkCRWEnUGkl1pamEdnxHBVRSTeiud9ZVTvDWLqeUIie5a3KR0hlxKVk7SMiU9aQYe4bMZXwm3eNYKsfziZQKm2nko48+wlrD48NKVZXTOvPtg0gMjfO4wVJKZplnYkpP/GSjpPlmO76ldkF+LY2n0C2lmDajfNfGkFLBuonz6cjotsSWWM5XLNsBlGJdV7bThuPjA+/efsX9u9+Q4wM1z6Qwk9eF5XwvADhjuNpe8/z2OR997/uEkHl8f09MK1ZXtvuJf/Ev/4TPf/AZNUfev/mGd19+yXo84FxDe8WaF2JQbPZXH7Y4H44r0zRiTMNY/RSdrqloJ2WppI1JkyVXiWRAC0K/9cV3AfQ+lbsXF8TFLpUzNSjyWjkdFualSHPEQiNAK0zaM20t49VIaYW2JlTTfbNIHE9nWtVP+MTaxLSt1AUArHqSmaBGWu6vNxXukwy/a0qilFENRZaqgYoqVR6Sx0ScFAOOEAvZJcwwYb0nKkNuEvZaciOuQjjAWpxxeDNwaYCdzie+vXvH/XzkIcy8DzNnVWlpZZpXdvYk6JS+LzYaoUSOJVOMJRkjjTYr6dZFyfxxbYU39zPn//PvmDbX/Nkf/yHv7060omUMpivOaYZR8+rVNVVp3OsH7h5mljmJdY5+V+9/ssjlpJRsTQKaLrpghYDOLiZx7wd2mysOD/fys5SWhHOpwTgej+ScsWj2uz0vX77icHwAYyi58ng8MseENpbtbst2M3E+HEkxCEROa6wWx5E2pr+OQuvPk7PmiZVbauq/10tSmtKM44jWmvV8BDuhauXjV6+otfF3f/N3cuqOnmc3V7y1hofDSqmxfwyNlrMA6ZTBqgRlJadVDBBGPqNx9PzkZz/h9/7gZ2x2IzUl5uOB97/9AtaZwSrsoKheoQaN9h+YbP3224X9lWLyBu/BOQmfMdaiTZWody30lNo9gEI1g9bDXuqlqaDkSwaN1Y6mNaFUcm7krIhRCG3LHKn/L2dv2iTZdZxpPn6Wu0RkZGZt2EECFMlumTQms5n5/39gzGbMerol9XRLpAgQJJZaMjOWu5xzfD643yhozIYyFmggiGIhEXHvWdxff5fqK9PLK7OvrCbdio1KYVlnpGQLo9Fmm+FansEGMZpr3KYH3GLTxX623wF1NV+aIGZcRdh8fKqLgBtdiCSUNhfa2QJYWzRFi+xGqjS6wSLh57Va2VcTpazmDFDNpfB8nnj79MDbyxOvpyOvp4mzKCUlR61XLtNq9pb6/tmp2UPQgqChmTJEsNQqtngGM+d6OE78H//nf+Mw7Pj6y48Yks9/NdB1iZtdh+qOvu958eKeP3//wB+++Z7Xbx6pTcwJ/mcmXqgSklVCrTVKLcYJxrjOqTOLmtbMoO0yTSzLZH2yWKjwsi4s82qkypzYDSOn44nHxxPnqfB4PDItKyKJruuILid7erQNLZLIsaPvOrpkgcG1NQfGbL2h6laszZF5TxTrOvphJA8Dx+MT4yEx9KakvJwvtFo5TxcOdwdud7fI+ppv+h0/LXYQCXYwaWsoWw8NbZ14ePsDks1T6nB3x9dff8nf/cPfcfvs3nyN2sr0+oF3f/wzzCs5CUTodgPpcCDkD0y2fvO2UOaFu33HOMAcVlJe2d/uLWl5DaylGYcTMeZObaxaCKHZaS2BpsYfdJ0utcB8bkyXSl0DaxGWdWWazdwrhmSMpJzo+8D+ZgfJchZTFrreogB0rcTU0XUjrVzMTzRwLZelNbZoAGPTiAmyBVqwWVaS+D6aDkXUTM3sG1n+RQpKFy3bpa6F6TgT+pUYKzUV2rIQh5UgYi72a6BPGQgsraHTSimVeW08ns+8OT7x+nTk9TJxCkpLhiqihiSv7rS/GTVLMGaNxIQGQOp1zGFb0nSY1vMYweHx8Yl//Md/4qaHTz+5JXeW95JypMvCfrSZ9c3Yse+SaVnPJ47n9XpoXeMh1Iy6THRuEQK1WtxjWVckdkDkeHricjpRloJGy8IMq6HrdS1ItayUPkfKuvLDDz/SCKwrrKuAJrrcMXbmaDGfz2ir/u/MdCmhTTkej/adBUI0vKO5iCCl5OG5RrOUaDN6FWGZFy7Fku4WSWgt/PjDD/TDSEoZAf747bf88Zs/sEyzjQODz5WpqBYQL51R0MJ8OSKl8vLlx/zmt7/hq1/9gv2tHdJaGzo3Hv70E6cf38C8kHYRIrQkhJwhfuDNeZkUrQtBTS+ZkpLWRqlP6NFuqYp5rIK4pUahSrWT1ckPtRkKKK4KqMXCauZZUc1mHVltYL0bO6KfkPtdT0hKSJGVCwExv1QJ5JBYVYgkupxpnc3nSrMEY2TL+HxvvSHudyTR7DIVnOAQrOdqjaYWEBxUCWrRDV0I5GQRbotFaxEa5AQSG2WdCPNEOV9ABoIMkHvWtbAuM8uycFlWjkvh9fnCj+cj75aZsyhrsn7d2Diw+e1u81jELUKS5ZMYIh5p4mbeiud0ejWgxodNSbhMJ06XJ0K8RYJlUtZqLUYQNVplDAx5B+0FD2/f8IdvX1tJqtHsKkOA5tnWV2e8jMSMVpPzLWVmfZzpcyaLRRs03yhBfJE26GLi5uYG0WojLwkUAnMpKJkYIYdoqPs6sa7uCeTVz+pkE+P/2qGUZKTvB2osCJW+z6Qg1GXlcqmEvKNPiXmekRQJseeyLMz1xAssFuJmf8enn35JHgbGmz2TG3ClGDE9lHg40yZAD65KKkgK7Hcdn376EZ9/8RmH2ztS19P3O7qQKO+e+Onb75jevSNoRXKmBBj7HlK20dKHbM51NQi91gvzmjnsOwYJ1KlQl0oBlmIjEzPht9O8YIQB3JWsNnVkD9BGWwvrstKq+DhD0BW61EGKhJAYhkzfd9RWmc4rixb2XTZHgctiaLBET1e2TZhSMhsVuf6ibbxithoBTyALphXUZpYpISSuSsZt3qeeQ3rVmTYWraa61w6pUKUQWoESCLERpkLg4o81Mq2VZS2s68q5VB5L5ad54d26cgYWsTySQLgeIJZctQW9N2fVBLs5XVcZxA2+Np8bT5AOIZJFud+PfP35K/7uN1/x9ZcfseuDSeaaxTWupSFqgoMskT4LH3+051dffcTpdOanN2eqWiVk4FYwp8BqIUBNLWcUEafKRQ9CsvYgbjeLe0+VWu35e7tQaiXmTOp6jseTBRI1S75OwRKuL5fFBA/Bvl/V5vxnjPerFZWESmQc7sxStU6W0SImoau1UOrKWhfWKrS28OzjT4j7O356+8hPb1+z292z28GXX35NHhTVI8PuwH53S5c7pC5WSaSMNrM7EWz9lAZDSHz6ySd8+eXn3OxGcozk1HM4PGMXMn/63Y88/vkH6uktMVZaH6hDjwwjpA6JH4jWarPh9+Qx60GgaSQn8yRVp89dzdclmfqDYOlVzfixrcFSilnUNzNlwtHUUo3pspkpm2ftwjIVLufJHnCrhNzY33ZcTguX48VpeVbDllqMrYRtyuCAiUiwyEJn1WySo6DmT97c/1az0PmIo7Vi5YuaC0NVYW1cN4s1Yv6SFFsMKLE2qq5Ao7aFpShTqayqXErjUhvHppy0MYsR7jf+Ktcb8z1oJrIN+ZMntQVHn9UXvsu4opXrCkRpPNsN/N1v/4a//c0v+fzje8YOtLpNjDugl9pMNSEmVEdgGBJffPkxx6lyWf+Ntw8TtURQJSe7jXHBQq3NrFJxJHwLTxIzxo7B3mVtaiR2r1JKazxdTtCUTsSRcws+7nLiZjeQQuTp+MT5cqHJFji8VRbN6Ho2tDXQMA8c7l9wOZ+YLlDrBYpZqcQolOXC6UloMtIdDvynv/tfyIcX/F//5b8RJPH49oH9+AzJidu7O9o4cDMOHPvM/d0tD08ztRhgqAI5BmLOkMw47dnLez765CX9LtFCQZIQc+ZwuOU2Dfzzj695/Ok161pIw8B4e8/u7hmhG9/bkX7I5gxiI+sgkVJMLSIC7BKxmW6y+ElaVUDqFZDZoPSgTsUpINU9UNXF0xI9/LF5SK6nEqu96GUpSFCIzW5VjUynibJUzArfkNXqpWyjufGUlbvb8D6njuRG4KLNTaCN0RRjIKeeftghGljXhbUsaJCr4qWIMAssqSHSOeDQqOBCX+MV24+urE05l8Jclak2TrUxlcakMImwBmO4gIudHTS7znzAZsLuyyobeVSMSLEhuO36+41x00rl089e8dVnL7nfJxIr0jbhejOuazTTazP5i8Sc7Kc1uL3b8dXXn3KcVqb/+UeejrZxWlMT129yu83uxTSDhmTaLsXPGpP3+exU3dytaOU8Wbbm2Wl8EoX721sO+xuCRN49nJiXZfu6bHGIqtVjD53jGwKxHxl3B+6ef4TKa6blAlrcshXL4ImVukzUELnJHbf3z3iqgcP9Cw5dZjqe+e6bbxhu9xxuA+9e/whlYTd25I9fUfXC0+OjgU0xMAyZm/0Nu13PixfP+epXv+Tu+cGM16VAhNhlun6gnAtv/vQ9x9dvqQT6YcfN81f0t89p3UD1oKUP2pytGTQQko0s1lK5LEo/dnRdotaz5WU4McGQ1/I+Hk5scN1KtXgGYzGbowF4dJ1nlijuNYRnrzTvU8U8a3OmLsp8qWi106a04qRsa420bfQwoIk78A2g0WlVlsmYEepiNiKynfLVMlC6YYeUxLxMoLDMzQSzKKsIFGGIkUWE2Cxy3ig4Ng9cS2VR5biunEvhshbm6rF5zhMtoh4Xh1cRfltiCDJi5bdc++btO237tzoIBOtaES3QFsYcePlsz00nJFY7GNVQuCBbqrTPh0VJXbZbQKuV/qLc3+/4zd98TimN3//+e07HyXxwwOiEMdO0Xj+rIFe2mDrE3hpuQm07rDaj/G1/NWpmo6pFv5shW+L1T285HmejMoqw5Y5ee3AUJBomkKNRBMVu1GEckQdTGpnrhdIw/bAAy3Rhni788ds/cFYLPo7AukwcTxMf7yKnp7f8z3/+rxx/+CNjJ/S7PeNDz/kYiKLkHLi5GXn24pZXL5/z8ceveP7iFovYrFhispJyplVhuSxcno6wruxvD+TDjjTukTwgMfuI6v9///3lzake9lq30klY1sB5agxdput2hmBWs65fqxpbpFS7LFszUnlQUjJbDMWiChr4rWAoYxNBi/mTGsph8H+MQj/2pJhZ50KdlbYqEq2PIVqZGp3IjuJeq77pxQ6N1hrqLvVdZ/b8qqamnpcFnVdy17Pf7xlvDsS14zKfKdpYLhdEYVmVuS0MWUiYI3qMVl42sVFJaZW1waWsTNqoYrQ7Ni6vpz7jpmW+8tjeUQAI0cEIP+TwWwiFuvWlnolVFWmFqI1uSOzHnpwgSCVgPTJNHCOzDZ9yMglVlwlOlZSgiBZyUl4+3/Prrz6jzY1vvv2ep/NkNprqNDX31MWzQbbNs82t1XtRxfAGg8dtu4a4kXDxrEx49/DI+XRmXcyjt24HiM/Gq9qzamAxEUHNHpXCfH7k6c1rDrcHuhQpzcvdYBdDaUYrLaXw9PCW/+e//hc+//V/pk8959PM+XxCY2YYM+fLAz9+/wdyORFH97jC1m4KkcNh4P75gRev7nj5/I5x9INNqx+Ajejl/rpWWCqX44l937G/PxDv93TjHk0dEkz5hF4V/X/d5gxBr9YgNkYLLEV5eJqJErndd+x2e3BxbCnKHIs5dQss1XidpvRXWhVzCW9GS6taLYU6meZurQbAhBxJUczqI5nJkypM54W6WkCS1kIMgeQ6TRsCe8J29ayMWmjTRGtGpA+iTPPMPF/QshjH1+dlrTQ/zZWbADElYs5G4p9ns1epwlIbU6kGCQgg5Yqq4reZilBDQuNmUPyeUCBOhUPNBGvLvd1W63bDbaE4V/IE+OJXL3PdRSAELAi2MHY9u91AypGUTKanqmbr2QKoCYBzzu4o0PnmEh8RVFKEsRM+ur9h+ewV83liWlbOq+lgMX2SfRs/R4NDU9smJVg7Y/vZnlPVRs6JFMwDWcA1s0ZTLB5yVf263QzHNoR42/wb4SFhpI02wZsf/sh8ORC1UlojR3NfrBXzl/JRU1tnHn76M5988glzVRodhMDts2d89vlLLucf2e06cjELmcv5zLrM5JS42Y28eH7g7tmO/a6zLBStNK/eIjYXjmLO+etaCA6EjX1/Le1NDYWj53/h2vyPNmdKboMvlidRwW8H5c3DkVJ77rRn7BOixqCQplcDpj5lxGdTZSmUxRKpUcXCZ03VEKMRyKmeq9F3jGNHisYHXaoyXSaWuaDVlnvTQuoDuTOdaStqjJzi7nAVihp7BCJdP5ByYllnpmkCbe4wF+mHEcEIAGWdeft2JmRDfde6GvigoBIJqYegFLXw00YzwEbsppDtYnBSg7hAeZsZ4n2wbc5KLUY7u7YCLtVqvri3PzaJ29bvGQSfQJofPML94cB+3JFicktIa6+lBVPbaCXnwcEmm1mqCiFWUwlVJWJA1H6IvHq+5+Hje96djizvzhSP1hOUFh3MwgAbbXbLiN+KV2FEMDOxmK09EW9hIsFE5359ioNh3mCaL61wpQ4aaylcZYdltRhAqcL09IYyPXFze0PUSgzRhPzViDKtWfuy248czyd++O4PpNzz7JMv2B/uIAuHfYeUzEcvP2Z5ihxPP/L6pzfUuXAYBu5u99zsRvq+u9rtmJ43eDuWiJIMS2mFdTrTKzabjoFaZlgSTBNhXAhqhIsP3pzZwQKwRd/EgmdQ0NYoT4W5LNzsOjoJSHEU0W1ArJcztzxLYN4efLWNkTI5Rlq1ALzNZLqpqelTl82o+XJhmlZnabxHM3OKxM7I9ZJgnQolmBlUKxX9mS4RbTQ1RFeCECTTdwM5dbYxi9HXaimmCSkNjdY3SYCUE7Ulct/TdZnLdLSDQpp5GZFoajdPE7stgm+24CCGjQU2MgQ2S2zmILGs5rmEI5sbqLJdrGbo7Kp2uJaPFmgLXY68evGCoevIkkhirnXrUq6KnBwHs4TxHJbNJSJFV6TUCA4AhQi7Q8fHnzznOM0ob3j7OFOLVRfqAt2UIunaOzmm3Yz7K5h4PcRIrcavJUYbTbmjgj8If86m+dRq8Rth05P6oC55SS0CtW6jpIBgG7XMR+dvJ2pR2lrtGbpLQ+4ieir8+MOfuLu9Y3/Ys+vhX/777yjH7/j8k4/pEZZmtrDLeWbfDTw7jG6cHolOXrGy2+b/5epNlbxVqyzLhawdISdqsHm4qsUzSiughY0f8EGbEyAmS/Eieonb1BlBxg56Ok2sZWWXEn2w5t6eoD1/g+99gxZDCWPIZnnoSFVrzU5tiabvLIXz+UJtasbQl0KrDo4EW6hD37G/GemyzTbbqu7MluirueYVdQMtgVIKyGK9mwoxd/T9SJBos7+tV24VxQJ9TRbqYx+sdJFqutBIpDTr++yKM0DJDLGw23Ir+7Jc565EHGW2eWUKkdQpOs0s8+pu79seFF+/No7aWED4MEW1EcRus/1ux4sXz2wziHgK2fuNlnKyAE0Hriy0qPnc0ETmARNDFy2EBP0QefnSBNDDsOfb797w7uHM5bxQS3FNrJVrMSTrv5vJybaf25q78zljwvpOPB2tmEY0BKof7BsizFb1uA43B2NoBZ97tqa+KbYcF1jXxcZrpbgpnDlo4DK4eTrT94m7u1seHx/55l/+kR+/jTy++4l//NM/8ubjT9nvzb2wQxlz5G7fcbPvGYZMHswextoGq/gQX794T++Hh9IMtDrccAxCP2S0j4Qcr2y168n/IZtzLQWV6H6yuOO6nYKlGKBDMM2kxI7YJeOQFkWSedyg4jSvSqgBiKSQEaIBRn6CG3hjZ2HRyuWyMC8mFaqec2r2jHaj3t7u2A29b6hmEeStek9ldC2KvUADTipNzVEgp8zQ70xeVpuDJVuP4zG2tXl/Z/9RFPWes9VKqSu12IKLG0nAE5FabV56K1ChNSQHmtMXQwxXB0AlEKK/PExs3q5jlU3FLGzkBBtD2aIQKkELQuFwc8dhP5KiP0f39u36gRQ7O2Sj+EglOjhk80pEEDGLFAOnIipKpTIQ+PjVHbth4Ga343e//zM/1LdcWvPQn8BalCqNvjNz59qKuybYRlLZQCyfVUq1DdjU3OYj18/cxPpwc7ZxPWsILsyOxGyz7apKmVfYzLw87iOoOdm3at9DMHBJ/TYLMROlUMuFp+MTU1KGUGjnidd/mmmvPmXc7Ql1Yd9FdmNHNyRSZ06HXZ/o+46+78ldR9f3DONgYUhiiDdimEVKPf3NnrgboS+k/Y4w9oQuIzG5Rc4Hbs6qUBeL54sJtrg/G4e4ZSIB1Ow6Uh6R5O4I2iiLoWWtipHZ1bxit42YCLSoxJRpNXjPEYitMi8L6+KBOi1ujC1ElLEfyDGxzoV1MQ93YyI171WEHJPfOtX6N3CDZNucKXov7Jtb3IVOvfQWp6w5yc+/c4VWWcqKoXM2FqDim9qjCpp5/liZGtCmZDIku0m02XxPg1EgYwzEHBgko7ra79mqHV/Q2xDFPmG1ERdmnDb2kU9f3bMfO7qcrrNAidZr2+1kt7tgN7ahvdVPeiGgtBBN6I6zerShUun7QE4jXQrousC68FZOnBdlro3qfkNlxZHNRNHyfi6qxt4qpThf2DZMso9EKxaeS7DnY0nVOEBm7z0lK2mNymiA01JMbljUnJREPI2s2QaNYeMp2fx9uTwSY8cD1mMrhZA2v6gMUVjqSjufYJ3oh0zqvXXKka7LDP1oVq/ZN+bQ0ff56oaoiiHbIRJSx/7uGd3tLWnXiIcb2N0g/QDRnBq2zv2v3pwp95QyG9WuibNChCjJTmHv/8qqXNqKLsakqNquadJmHuWlofjVoY0ULJyGDGsrNl6pNsyOWKJ1DtFczKpQS3MI3XSRtZhJGFVYy4q6pKmWaj49KiA2kqhqgwsR63eaNtZ1oayVdV1sY+IvK5ixV1ATzW5erSrRy1zjVeK/buldTqbXgmggh44sbvW5Fu+7IXQRyW7U3JQWMCsRFRdNR3JOpof0Q2FjDG1/iEBQS3WLotztOn7x2Qu++vxj9mMiuw+wiCHUtbVr7ql6lkwITjzQTe5l1mAajKrXxA6tGPG+UogKOWTSVx9xGAa+++4nvv3zG94+nVk0WC5ps2eRUrAWxTpQajGD55SihQqj/nwjooFyLdntO7atJxd38FEozSSCZalETaiarriURmjqHkXvT7TWhGGwzJi1FNZ1RmKAqiyXSp87bkYzZ1sFQsjE3LGsC7UsFnjVZ0KXiDmRuo6+H+hyTwqdlfHBqh6JzeibyeasirCulYsW+v0B8kDYd6TDLW0YaLmHlNC/uDX/I7G1v2DFEEXxRVKlGLvEbUBqrczrynoxdwMNdjNIstMwBCMxGApuBGpBCUGvcHsF+70aHERJ5BiQWSkCKdrJOXS9AzxCIFG1mJWJL2bbPDZOUaeTNUfVEAzBq40SDTmu1XpMtIA090//lNGIAAAgAElEQVS1EN60IZLBbpqNKGF9tLKu1UY3duTgRg5sxImxN2H4NFva2FILFEh+EpsdiB1k4jOyINZbLVvf5lXG+9vTJGwpKK+eHfjtr37Bl58+5/lhYDck4xc7emyKIO+JopWHBqrJ9eea6N3LcH8HqJBzZOgza2vECAlliMIY94y552bozQG+fs/DtBqm0Kx9qBKRZGMhE+WbtCw6rbK1du3ht2qsqLK24utCfC5sB7BhHOpjIyG2ikk7IEm0ktlHQltlt40zJAfWutJQk/2JXL9LF4S5AKljLZWiDVnO5CGTukTqO/JgfxqJ39haIpZYrQ6MqhZqWzy2whQypcDcKpVEtz8Qhw7p9pAyzVHrJltR/gGbs9UFoRJTJCdD5lorTNNMq9FOD6KfHubeZqJscxczLbQthKDWk6luXkSNtmJOWxp9nFBJwW6xWgu1GhEixG34HQlJ3W3B0WAXeItiFhnjwPl85nReLd5ctyBYP6Ou0Hd1/i3OGRa/SQLDuOfuzkJ6t7g7A2oa61o4Ph19LhcY+sHHLEYDbGU1mRORMQ3sDyOnLjEtF6Zit3VpBS1K7MziXzSgJVCD+GjDxym+CK9kDRpCZeyEzz95xd/+zS/48tOXHPY9Q+cbM0Wq28hEsSgMSwk3HKqZJaJzodt7vFDdud4B1BRM2pWajTeESghGDDnESEi3aITQwR+/f82748x5skiIViGL+TJt8zwr56vL82yUVEXdjM3TqSXQQvXhPzZyMy8ScLJ5cyldDHhCwLaRAUmoOx+JFOp6hpa9TDaesqhdKKnfsUqBNnnpbPLIfugY+p5xlxi8EknJGGbFq5UYrXpsbdMnR7rUk0MmhMhuf4vUkXaBoRvp+pGYsFYmuY+Vix0++OY0toPlaKQY6PtkpSFKqWYPkkQdRQuO2jlxJHiTGFzaVF19RHtfBrZGXY1FUjAuZKHYg092yvrk6Epah2Z9ojspVJ+vBYFx6Li9vWUYOmp7w/G8vkc43QyKK7vGyBU2VhGf+dlSrRWm2Qyct/FPa9UEw9PM+TJbTyOGUKfUQcx0IkyXM3VdScFiD3e7kZtDx2UeOV/OXKYzc1lpS6GtjZYN4ApJIAZjUyG0bcSkXnLXlSCNw67jqy8+5j//+ms+fXnPzZiMsBHNF7chPrqxQXx0JootWFOMVDXPJlHbwKjFL24ECsQArqRmVbLNL1WruSlIYCcdn6RnxE4YDz1//uGBH18feXgyS5FVIy1Ynk5wRBUxcK1L0aVfm/GbVUWGQdhYQqutk43CUZTrjb/hAsGjKwBEEiF0pNxRy0qQ1WeiSg4RYsfQ35oiJgRS3xNCZloW1mWm64zQst8n+j6Ss5CzGZrFYKUtwdqEtSxI6Oy9ubpmGPbXWfrt3T1Bb3l7fGdVVRC27tfIFJ5O4IfhB23O7YVe6/9aycnob6kJdS0kUfreEp1UQFultdVKDS8zN7ZHDtZj1mpeoMXhfi0V6krOATyNq8/JhtexmptZsB5jWYrv+W0+apsvRXPg2w2j8XBLQ9sjl2l2nmW7qjfEw41Eg/nR+MndsJvreJw4ny3zcQMimgcwgfWStZr4eyqVGGcgMgz9FdDIObO7ueHVq+eEUFjmict0scyT85lpvjCvC3MptLJQYzUEL1qUQUJoEqltRVolULjbDfz66y/59S+/4NXzO8ac0aYstSBhK2fNACunTJ87A1C2w00UDRFtRnIQHPY35Aq9An02yrmCfz6jFlzCFZU8iGWVxnu6PrHbj4z9W775rvH4eDEaXmms2MZMCv2YXJhQr+OUINtopaFqapnt329tlSXQ1aqQorcVBaVhEypB1Qy/curY726YJouusNAr86Ia8oHD/gVrXXn2/IZ1vRCicHx6IPfJnD6S0g+BfhBSNl2v+EGX0oAEobXC0+mJPBdCes4u9Oa15YyylHv6cUTawLAfubk7EHJCZfUxmO8t/9/yF1hCf3nO2QxRVFHm1SzmExu7JBAMpqQWvPztkGSD2hZM+Fx8tEAV1lBIKZG6bDD8WpHQiDkRq0l8aBZYE4IR7lXEA2kSxYngVezm3ggJMQS6nBkG60dFYTeOrDf2+eZ5tq4qmrJCN/4uYEN3s1DRhnMxTdgbnYtrekW7aUOwbJdlPvsiWg3MCWZgNvQdu93I7e2BLz7/nNu7G7RdqHVlnibmy4XpYpv0dDpxukzM88xSi4ULo2hY0ZhJAolG1wvP7+75+ovP+PKzT3hxa7H3onajxeT5p4j35k68cPDHwBI7XNXr1vCz8hI2tpChrNfNqoqE5rzYdl1MogpiXsD7fSTlG4ahYz+O5CR8+90PvH1czJnR5YRLbYSq5BSIimEPfpMH4epsX+vmMcV1Bqi6jcQqKUXwUQ8ijijb993tR+7ubpnmyTpzT/DKIXN7+4wvvvgFf/zuGx4eHlBmtBZamQnJZuzDkOiHQO7NbaPrLJ17I6sgylxXSl1Qtfl/7jpzUfD5fvSoDQnCsBtIfaKJPb8kZp95RSZEbLz2IZvzeJxMPZ6scw3ayEEYcrgCGlEqMTTQyjJdbIHkSD/2dDkjmFq+tm1wXI2L2SpL8XRqBAmuYsDg6FKrybyilcIE6MYOiZFlqbRpvd6adlNs1KlmwUKt0XW2UTauakzZypK1eI6KD47F6XTX3tRO7FqbCZMlONqc/t1MtPpc9ebmhl9+9StevnjJOA4Ouff0gwcZtUgthTiODIcD+3XlME9MpzOX44nT6cT5bCXvNE82cqiG2Pa7yFdffspnn77ixf0td/uRIRtSGLMxULaAoJytsdwI7q1VajVqmZ2yW6WBN9oYsCbRwo5VsKBjv8lofgAYfLPBaz5m9QOu0vWB22Dfexwy+13m//7nf4VTYWkG9oCRPST0/l59VW7zTafvGS/aaKIqNvoK0dDz4rmoqhb1SBCkuUImRublzOufZuPD9pHzZbHPGYXT9MAfv/s9j08P9D1oK5xPj7S60N0M9EOm7zNDn+m6RD+YG0fOHV3OdnEEJebM/mZgGO+4vX3Gbrej63tiyiaCl3A990OMlj8rSo6J3PVu6WLvxOxyPnBzXi5KDashb1HISVjVMiTvbke6qEAhOQo4z41SQKuyzGZCJRJJyWru2ioNZV0Xam20Zqd4rYVWVt8WxluM0YjzwXtaHAHuxx6V1W641gjNGvLcdYgE2lpNg7mYzjT3I6kb/MY0qlVtdmpurnxsC1kbkF2z6K4OxX6fzWft5hhSj+yEp9OJkCKff/kFf/f3f0/f9WQ/tMTOGaP+SfY4dzPVLsXGK/V+ZZkuTOcT56cnN7R64Hw8Ms8TiPLR81s+efmM54cdh13PbrBDL8RE6DpSn803KVg0Y1UfyDv5wsYmtmAkpPdbrDVPFnNifTMcGIm+eX0eqYY+mzZTUSlmPrb17CjSxErMmIhxT8qfsJYzb96eef125u27C0szMsk0zWg2wCkFc4LYUOkg0Yjj9ql8VNd8rRsTqlZXvgRhVavYUjAlyzQ1anGucTLEtUuZ2AVKO/LwdKGUSl2EdZop7cJu33O42bHrbUbcdT1935G7TOqMXhqTkJI5TcZs9p/9MDB0mSRClGjfh0gOyVF9axvMaSMQszGhgtP8gqO1fwkR+stoLeY+Xoq9vWluZFUoAmpgR5fsEJ4X6zUN+labQ2q9NrwBn6FV02nWZg8x5e0jqHnNqKNvYooEgEqhaCSQ3CNI6IfedIMOTNn0183GajVliDaWUmx0cuU/BvvZDvObKqWyFC+BkpXXIpGmxQgHooRsHFxzQDF38WHcMa8zwzDQX29KvNEXNn6toEja0GIro2sr1LpQ1ol1vuH29pbT4cBu6HmIkdOT0A+Rz1694P6wY++5J6YmMQ+f1Jslo4g9J1WzBQnb2MhL01qraTFlywSt1/lm87bjWlGU1dwVYnAAzUXzglmSmqTi+tftooj+cLohcBcG/vZvv+bh3YWHp8rvfvc93/75J86zVTTLqixUogZyzEQxc7PtEtlMwjcwqKlVZma+Fq19iuKHYKTRqG1laSsp2jyViFmGdD27XcdleuQ8PTKfZyiRLvSM+8zNfs+4GyzWY8jvvYW9PQsp2Jw3Qc6QspFY+pTJVxKBmXFvCQgxBLS4zK1Y+FTq7DPHGK/VmW5jow/ZnOpqDN8tiAMJ01J583hifxgJqrR1ZZ5X5qWxNtffiSKOkCpmzIWKMTqKlTlmo19IGbRs9bctCA2NkI0yFbJCiCZWLlb+1ra5zZn9iGhhXSdqUy5rZa6N07xwni52U6m6VMesS4JGhEidPWNTjazedGUtZkq9FjuJlWI2Ic7qyNHmrZ99+QX94YYWgVxtGC3b6MPBMLaZosHuKoLEilDIZFpNrHmg5B0p9QRt1PmEtJm7Z7c8e37HbteTcyBHtRYiRmLunJ9sKpyYzZc2qAvk/ZRWaVSMmBFw8XIzHKGp/39BCGRqWZinhW5IdNHS2VBFW3Fan7q2NCMtoizbHMZRXrtdsgQOsmfoe273Ezfdx/S58PtvfuS0NLRmGwoFMZmgVjKe+9mUUrcZb3Cwz/ixFctEpXnwr7/PiJEqSitosNzPhDHPcmfi/4d3j5yPZ1KIDF1g2Geev3rJs+f35NEAoa6zjbiNpGJvfOGQTJQRYySFjhwHd220+bSEhkShhkiLWxxJI0ShhQadqW8sHqQ5tdHCssKHRgAaSGKnsmDsfsV4jY+PF97dnLndR7RZhAFBnZNavR8N1+vdvGWLoa1i5YMAuq604ICD4KCOGl2qt9KkUFlmA5dQ6x+lGj1sY6UsrCjCZVo4zquZPjutTmKkS8GE0OtqbZPGK83LpwdG0G6VtRiavJbmY6PKPC+koUNDoFRDZG9uDnzx9VcUUTtEJFytRVDLJgE8nS2CxGvCmZ1DRmekFYImpBamnEk5cPfswMuXz7g53DAMvdHiUroyiUII7vzgKhuXa2izhRRSvD7/rZvfKIa6iZi9X0vR4gR3+5F+MNaMmWiJk9jb9SAUsZstiI02rArApFlqEYASI6Ezx4goFqtghPHMv/zbdzwdjbPdsM9c1RhJS7UMGHTb8xWa2oQzCTn2rqRx7rH7tIjT/CTZJhWMhZb99n94eMvpdLbxi0DXRW5vR549u+P27kDqBUJFpNAPyWSIOflIz8CdEG0ikVImxvfI+NXPiY0c6REJ6g4gtVnVmKLjAU6m8H9iUxn91ZvTMqXsB23xbzYKt/r+7dsjXbr1IbOHpnaBrHYy11a9b9huzGoMjxhIDWPgpASyMotSqEiM7Hcjh9tbVJ332iL00FYbY2x0thACIXVoWVkbPD0euUwzc1WUSJSOLvd0Q6YfBxqV4/GJy+liCDL24EXClTvZKrRpsYV2hb6tZB7HPUPXU5aFkBJ56NmySsRnToodGOkqH3KChrOk1NHF5kiA+BBborKq2WzmLrEb9+zvbGMOvdnCbMhgTOYdu/HdlGCOA2IAW0rpOvoJEui6jhBtAdemBDUENGIkj4bbmET1asYsalozposq778j6r6w9oxpgtbKdFlYWyX3mdxlU/VoIfV2+D0PO36tH9Fl+N03j/z09siqgbVteZ+R1f2IaDYvT+LiZaqZIfphswnSW7MyWVu7xkEiTk7wMcx5Wnn3eAQ1aVzXmZXlbozEVGk6+xhKSTmQsmeIOtd6OwjFJxRxS39zKZxtUke2MWRfJFGbsCyFsjRXFJlb4Gap0/wAeb/G/srNeX/TczwXLsVuz6YGeQvGpXw6rux2M/tx63FMUbF5/9gOMnAlBGOwSBBLnvY+qHNicU5mALVB8l02gkFrgVKgl3R14Zsno3nlmO2mq415Xng8XVivagnbUDEYPF/XQojCftwTiFwuhooqRjwfR+sbL+fZb+ZKEIP0k0Pkn3z6Gb/5m7/h3du3LMvK7nCLRcy9l3YJW1ZHfE8wD97rtm1eaH5GaHIEtUGrrPOFtUyMu57D3Z5+3AjVRsqIORNS9lMYr+x8g7q73pZLAjamwDdVbUZnvLYN2q6jBn6mGLE+0yqKZSk8PR0RUW5u9nQ5+sHYrr11Q8jOE316OjHUkUM26qPaByP3Vmq/ejESwyui7GjtO354eyJKT9mE5cGYYlZ622w6B947L7hqBoxKalW3kmNkyJmYNz2pknwTlWlhE2t3OXJzs+PubqTvA8qCYnERIYpLz2ztCm5c7qT9lBIh5+ss2lUPV2TcAC13o1xWlqnw+PDIspgnUqxC8odWdCObKiIfGAH461++5Mc3gW+//5FLsb4PjFNYRZhL4+m00HWjj1Zc/tPcTkM2u4pNLe+QuQMQxEoMnSGxKXIzjIxDbw21uUQZhaIaZJ8CNjYolgytGjhNK8fTZPrPKoY2+hzpeuKJiZq3mV7fjcTYcbmcWJaF6iqYGDNXD1nZUrBtgbXaeP36Nb/97W/51W/+kzGUop/QP3tmIUT/GRsUJxACVet1AwdnLNUNjWwr63Tmcn4EKsOY6fpE1ycrZ2Ok73r6fjAKG+rgSNh2qLF7kH93Em+D7lqNnrWJwLffsf3e7e9jtCxLK0wsaiPlDvPy2b6fgYGtmRpo+4o5G4JpFLn3ZaaquUXEJOx2HUJA28C6rFxOM09zQSWxYr2Y+uZTcMqcOhvMnQodeKou2O9Sos/ZPlezErfrO0Qil+nC6emEqDHcxrHn2Yt7Dvej+VMlIXe2IXPuvHWwHldCIHfdlf2WUialbCoWbxs2miVY5ETJK8fHJ5YZshysR00m1NhcJ678SBz/+FC09qNnkf14T8qVb/70huNsRl62Xm0w/HQ80/eBcd95KbApIF23KAldmpWjGJpYSzGsqlaSRO7ub0ipY7pMXC4Lh5sb0wRWv2XUHOTNr0XY9Qm6yHSp/HS5cDydXF+aiBi3dxtjbDrUQDQaoXW6lHV1ZYvV/dO0ICSibhCOWr+tYgQDhB9/eM0//dN/53/93/53djd77yPlWkLZ5jPgJ4hpWbfWyH79/QY1kMiSOGudmaYnpssTOQldn2wM5QsoeCm3idhQ10ciP3u5G2GC6ztge0/rSvEln3OyWyVYOcbmaqDvS3Pri6DvM7k7mPWoGsdWN0dGidRgP1UQxrEjxjsb30gwpYgEWszX59mwCMGbofLJiwPv3jzjmz+/4+xMsbpdjGxnzs9T4oLzgXHHQiNFRF/8gs14U2dqp6fjmbdvH2jF3BjGoeNwd8u4H83Nog90eXBk3srSEMQpj0bsMOcF8U2WvaVIlhXkTobb7SoilHWh1BOlCrf7PeOQaXUlBiF6ZMUGcqlsjLQP3JyHQ6TbBUjPaSJ886d3XKZGk0QTO93WUpnmQjdkXxjtKllq7gNjC8HoWbXZskpd4ubZntuPbtjdDbQF1scLp+lIl3oCwrrUq9LBUFkjBKQQaaUxnU9cLpMbwSVzWAhy7ZKrVmZPOU5jj1YopbLWwjQvrKvblrgmdZlXoxiq3SrN+0fUlP4Av//9v3F7d8/f/8M/mD+OzUu4et9ssDpOBMBtVVzr5xexRxQ0WltYlgvT5UirC/1oM9uUkwkKfCSjKGW1vl581MNWHLljgzn2tWtP3nwcYc4CLgBww+z0s5IsJKfuuQ2KnTdiAm0CtrMVWr1S61Co0q5KliSBVmzBmnE3V4KDfdSCBs/kjMqzw45ffPKKy6nww8OJWY1eWNjE2ZuHkn02xG9jV9DEYJzi4AcQvhYXVZouPD49UVolh8TQddwdbri/O9APPbFLxBzd5cP7RcHGVF492COznxtDuK7pEOL1zxiN2L9lyGzz2FoL03Qihp3zkf1Nhc0cfDs6/8K1+R9tTs2V3ZhQ51Bqq/zxT0fO04a2RRYNXIqwx4JaWzWmiQjXrJEooNIs9ruaAfVcKvp0Jo4jN4cDuRu5OfSc9K31YjSWYm4D0oI5bSfv1USYauW4LtbzdYKobSrriEBDYHVEcp3OTOvqBPdkLztkUrIFQdvS0ZS1GaCSonFKW1Ai5nnTpDEvE//zf/wPPv74Ez77/EskRUuh9pcjBKOmgTkD4hsBQbAbWLRRdQFdkLJQpzNlOtHHwK7v7LuK5cHEmJCUqKpkV/i0Zhsn+Jxtm1vaoeTUvJ+hntGFzNv8kALqfay4OMEEwps0zWIgEJCqVv1QfRCp19M+1M7mop6nstmE+qzmurhFTZVUdSHIQh8SKpWX+4F3t6YiqtdM1Xq9Pd0HAjOktkMhS8BxXhtFhEDT1cArEk2Tsa3mQhQlhcDt7Q33z+8Zdj19n+lytNDkCDlbKlmXomfMRGJyempI5NwTQyYQiZKRlpAmFosZIMSMkCwbFMt7rRq5nM+EaFMLTZmWFIlqQhDkOppSJ+7/1Zuz1sI4DjzrBkKY+KVmkLf86Yd3HC+F0uxlraVQVoeu1Xx4gvgQOxiNKWAvqFWPOijKNFdqC0DHOO6MnN0KgYLWSiSylmp6w2TN0DYYWNeVeVpQsRGD4LabukHbei05Si20Ym57KalZVQTPAbFrhNZwq83Mbr8ndZaOVot9jlob0zyzLCtPT0f+9V9/z8tXHxu1K8TrGbjdmKo2cjKNHzg4d/VAAqVVIyKs64VlvpCjybI2E6vtRBfBIxCqwfhhk7rF600XHLSSoO///bXSdePVglFVqavT3SS65cnmj+t/ka3nlKv1xvufp9efY27+6t6z7qjwcyJIMyCtLMUM3YBUBamBUoIZR88LqcG+67lMK2urBjgqV36tOtCyLWoTMfD+5gmRFgJVMU3oYu6KQaDvOg7jnucv7jjc7QkZcm8ZmtltW4ahM7Coy0Y3daom6uvB7VFyzObuv12D2DN3fAxBPDe0o9XoVNVtHuvvRpvTEx0TcTLMh23OdaUsC8MYubvdsxbls8/uSL3wp+8fefdwNKClpaudSHCha2vvEV51YKgPibLdoBKQFlkXYVkU3Rs9a8g91Mi6KG0RQrNTttZiLBQsbLeulbo60atZhmII8RrNAKbFvGII2HyuFgNSxAWOtZquM3eJ27tnfPHZL/jss88Y96MlppW6XRg8Hk9884dv+OmHn3h4eGBeFvr9DYiQHJjZAIKmjSYmyRI/UlS3U3IDggrrcma6HFFdzcUgml9T3gykfMNvhlJdZ+ICNiGzbnIxG3eEqEaEV6G17KCDIY8hmsZymw1vtD1baO1aem/PT8C9jnifaIYQNNJatds3e1VR6/sbPJgHcXGz7lDMdlOXiixKfVy5vDvz9OMD69OFrIExJD/sodmsx8eYVw7O1kXbphUzIi++llTMcG6ejZrZ5ch+HHj+6pkh37vkOaKBbkh+UG9GXdFnyMlKcn/+/9+NKe4VfD0XnK+tkpz0kenyyOHunsvDzPJwtJm6/KyaccDNzkv9cLH1dD7R6kIQ2N3ccthnY2HI6IPvwsPjmdZmyrrAsPN+QCzUVW0uGSXSxezi5WCzZYcNl7mwzgvz5YyWFZFIWQqnp5XTaSUEQRLQKl0yKF9dSS9q7u/bw9p6IfVNkkIyZUt7D3poq7Ti/dR264jNxl68eMHnX3zJs/vnROcl2hzUlC4vJfCLX/yKt6/f8PrNa1r79+DLtjGDKxS2v9et/3JLSPUTtNZCWWfqOttcL4VtB1wnB8ZMCc7vjO4SYH+qWn4H2/B/g04CXlbazHKtK6U2chKGrjd6nvf+G7NH4YoPGDnD3AVCEL9IFNHopZgjxHa9QLPRxnv/Wt9EtUItyFLRSTn+9Mj0NDE9NR4fTzw+nJkvK5WINCU7SaP4P18dJd6eb1P1iMPo44xkdq0tGpFhWdGyWu7orufF82c8f35g2HX0u46YA11nlNEYLf4wJSMXbPNM+98//3Uz4rqi/9HHUw4shhCQlCwtLCSW0mBaWaaZ48MjZZ2d1uptBKb0Alf3vIfA/rrN+eLZLcfjidPjo5UxIux2CWJvt01W8veBx4cLpcy02mOzTothMJ9V0AUkB4TEUgrTspo4OQczzDqfOclCFzNBI+dL4+FxZl4sUTkXoDMRdApKDJEuJnJMTKsPf/1Ua36Tmn7RZnBsfrfupWrjFSxo1ZEzlcDp6cj5eObmcM82UEbESjuMmtcNic+/+JJPP/3Md4FvFMcVjSXkrKj2XuXv08XrfxuAVE22VMv7MUsMVyQ1uC/OBtkHZwKpzy1bM7VDSM5WUU/XColaxcv/ylqwEl5AbfBpSqPrQWDl2XVmFxpXW/Zg/NUts8V4u80UIypo9bAptcVePJ4g6GpMoqaECvPThacfH5keZs7HytN5YlkbpTSW1iiIi5LtsEyOgqsfjHp9evjzDtQmlrXaxG7pWsgCh50ldr96dc/uZiT1mZgC3WBEBUnm2JGTlZtBxGeZmSDJCRmJmN7PNSVCSHiync9EJTg6vdFU7QJYl4UIPL57w+V8tOBnSVd3PgO7zENJ6wfGMazLRAr2Eh/fviWNIyFlugiHm4iEkRDMCmOZK7UVYnSHAxqrGje1NGMGgW3M2cirZjeIovOZmgbCrieQUTqKZmYFXaEvpkzRaqBMTEKXsxGKtb1H9pwOdxWJ+x6Qn51624bcOLnGNLGgISo8PR3pd0eed6MJyMF63mgjEoPsA13qrppC2MgZ9rdW4m+3CU4J8RtTG61aOts2sC7L6sbPLjlCruyUlJIREDaAJnC1E7U/mpMdXAomwXWb1h8tS6G0wDju6HK4WpY0Lf69nAWnthQ2TmvYwB+cvBCMm1vV49yDGYLIhvI20+aGIFSapfSp2g9fK9PDmfVppk1KXcwBY55XlqY0d9GobkkSwoY022eQ67jKqiVFPINFoSrrsiCtkUW42fW8fHnH/fMDu31nypQ+E4dsCG00/6Yg6q2AOOVyc86znlpXzHdJTNpFFDQ2cBZV3NhBXlltYOT9/T2tCGu9IDRqWYgZqwKMi7Uhd2gwJc8Hbc7LZWYYRnLquEwrp+ORMIyEnAipMo4BZA8qHB8vnvZr/qHNF+w2z2le2g3bTg4AACAASURBVG1rSjH+Ztc5w0bdbDqMxNhQyahsciGjk9Xa0Bih2Sbrck9kdnTYSo+6vUzMae5a64q46XNwGZRlfgTXOa6l8O7Na46nmctSGQ8H9l3vG89foG6zxPcwv9d3dhsFL3HVA2SD3Ubt+p1t5LFhypsDuGoj5mCnugNKwW1GtlI4OPpaq6nBg9ugWNL11sMEoLGs1r83Db55fJ7rN0II7j7hN3MUn8c2rLpQrlaaCldRd6Wh1bjGBhjZzK+VAtFuTJEVtJLUjDuD+9bW1cYapZkXcXFEW7fRTOAqYdOmVz+2Lelborhogfc3aDOWUyuNPgiHXcfLFwc++ug546EndhENFsuY1OahXc62OVFSav4czbALDMiZ5oWqC/sKMXbGm3ZvYvVD0IKlvBf2231dZ07nI1oiLCsxQu5M2aJOWLl+PyeQXL2t/trN+e6k7Fvl/iYiYi5z5/MJciL2tnj6Trg/DEirXE4rczPVe3HXNMR8bWoTemdzLOtC6COHux39vsc4WolG5HhZeDqeKaWQpAHFsikIqHa2SV35MYwD/alRioCY6xlit8L2lc3Gwm6A1sTCSiWRgnnIWN2/Oim8sN+NfPLRK3ZjjwR1T55MU8VYc21r6q6onr2i5Gisg/9+8osoapIQuz2bG3Vpg1q8zzY1h2KeR0GSUwJ9sZo3CFunE3wzWSmsIKaKsIMh+SK3w2Toe/pOgUorUIrQ5UTKGTAQaHtYASvxaeoz5WYVhccImrsdVo6rQNgAp9XyKXWBooiuROkhJjQXapwIqaPrKrMuOHkXMJ5uFIjqHkLYCCtgSHdVQ9LFjcbUh//aGrquUCs5CPux59WLGz76+I7DbU8cIpLFXAiajbW6kKx1CsG4wkldRWRaYNHk6P7KujbGQQjSEUPvrU9zR0efnYsJBlQdm6AxX04E2UFbKboamyhkmiaz4NmwkSDQwod7CC2rEij02SRTSGIt/297Z7ckR3Jc6c8jIjOrqoFuNBrAYDAaUmtamdb2/R9nzVZmqx9KM+Rw8NNdlRkRvhfHI6u5Zhwu50a8QNHEEQkQ6MoMD3c/fs7xC9t2wZ+MZVqYy5GSJ47zkXZxtstK7gmr9bpBq7vsMpNJZd4nDjcHXr44ibEyafMVwKePn/j48SO1VmKNZJhCJzkg1C4P1HlmPsxYedptNHZkOE30XknRB4xBfneNf+Q5OlPmo7JK+0J1bcJqrUbZA/QedLwYjxAVQY/5bR6sI32MKMeiTw2UXWWfPc8EArW8NWpb6b5haYrv4Lv6YfSAw45TLKQwg45e6flHmaUAMvFW1o37wyWZu6ybDlKTw4RApkCFTfNVtxb9qfrN5M+AKpzeZdA1wJOKZtrmDrmTF0h5xmvDU8UvxnzzkvbFafmJNmmUdegSv69bJYfFKHig8nqWKdJkx7Wbpo//opFcFqG3Nwvv3r7im/evubs/MR8LJvs/XWiWOSwSwpfhuMhYC5JJSZpS70ZF/O7jMXNzc2Sex6gs6lBQCzH+pfKIHLtgp8MN62qcq7TNKRzvzFIAWtHrj6/xCxShXwzOy6q1bVu3QMgMS412Xqmbs7GSi3OYj5QyU/JFxIPmlB69Z+u4Z1rurJcLrYq0fj4/8vmT8eJmZjndkFOmbZVPHz+xni/E4Ewgjxvb1tn6Sr08kYtxd/dSVK3ZwvUAsf4dESR6C7mbPIYUHR5Z1bW8dDqonHYntQtbrXz68pkff/hP7h9esxS5xo/aeidXWIqKYGTK+HFDdULwRLuPVTVjlHJ9ERJBV1ESjR3smcbc1GwPGlztQilpnyGHnTx72kMECzyTGf60XIkAyUhZwoPuFjYtKhlLGbrJkOPhcQAV7NYJV0XpcpPNwQsWQpv7RGubxh+bPKFS6lrDPjlWC4eblXWpLC8br14UXk0TjczPT0/8++//QP34CetQwxqFbvvs1MYzjBrY3CnWmQvcvjzx7btXvP/2Da/uX1IORloyaZbpFl2zUo1FZJCdhBaSs1wvSs6UPKnywZnKwrzMSgJD1BCAaBQz4iHnEi9eI5XjzQvyfADvPPYqQziTKskjZXY6FmyzPx+W/x/B+fTUyLmRcmWaXbSnvOC90tawqLTGujin5STYGUg4h2kitcTa627ORMrhxJY5bxeevjzStkp2zSQ/P575/OkTdVOtTnfSpFundig2033l/PjE1pq0eHPB00WH1dVwS93v+1xOinM9jgSYd2qrbLVTykyejuTpCesrtVZ+97t/49sPHzgeT0FTcT1glElHTtnDIkqVIOtxzTJ6kRIoR9/XQ+dXayCuAlFKOObJr0aiXAjuJhaUsbRfAHWrmM3kPDFWye9lcEoyW+7ad4N7kLXTTskrSa4U69roPXE6HgJ48WecYSf3GKcEZtBNjnmTmcgG3iFLHte6wQSpO5ahzI61TrokpvmR02ljsSM1FRqJS+vkeeHx8cznj59J1sk+lgqjP0/fSAQWtHahmLNMibvbhQ/fvuXDd2959eoF5ZDxybAp7bKuzHUMIt9jgWKWsphvKbHMMynWKNphieALfIEGnshMIe1T2i2x5yQlwbg5T9y8fEkqJ7w94cMozaKiSXKVHOR8MdKa5u2/JjjPK0wVbG2U7pSuXRQpzZTitL6x1Y3z50fWrXHI8l1p3ZmXhZMZj08Xnh4v4XBHGBvF6KF31vNFvj9t4+efP/L0eMaYyaHpUyYMgaonynSS28HTmW5fmOaZlLWlagwsDM3C3MdD6FFuOiQnmVwTcj5SyoEyHZjKkcvlkeYXPn36yE+//z2v718zLWUMP0QXC9+chAkgCmQ4RakyhCwBnMZsdfSgwVqKmSuNYDWFmLfIt1Yr+vKfSL+Go15KcQWEleR+AxBo8j5rTfHsgtSXYhlxShgylX5aL/z8x48cDgdOp6NYWMTK95jtkUJZFNe8KoT4D0kWo/oJkmhtc4Iapm2utihNnaXMnKvz+Ief+fR44WldOdfG2Z2nx0emMLVO+4THkG23hWuDsmZJzjIZt7cL333/lu/+7h1393fMh4meHc/hpJ6y1nokqUeSEc94wqyE17DIA/M8y78XD4AoMqRfkfMSwBk2MumoSqK/T4XpoLP09PmMd7Uhw0FyfAayq8+fVlN/VXDW5qLXpQnPxtNl1TuxTM5OmuQU0LaV87bJf+W40MxZDjMlC9jIGJdLi2Qi816fjNrOXB4vXJ4uNDoff/5Ea41sPb5AoK0Ww/Zm8s6Zb1i3xtNjpW5CF3celQ/Ra9rLW7m1D1OqsPrwjR4W+tO0cFhOXM6fWS9ywfvXf/k/vLh5weuHb5hPN0F+LrEcONDbgQx3ZyhyRnbem4rBMe3Pxjvxz9Y159vZIzjdN40YPdPaVf2gFxvlebxd93FtxBiguwTTanOCkZKjdHZxTfOYwcb8MDaiYXFwkrimHn1+Jl9RUh8AlP7uTIpNzj1whUKaIsABWt0laOuXMx9//AMf/+NH1qeVtW5ceucSF80sOAzpbTR3tpSoYeuRUcY+TplX9ze8/3DPd799y93DS/Iyxxf2aCeMYgpCJ8zEd5sQXZaWtYtn9JQ5mxzp9/FKjiolMm5WSe8jwOJ5WcxiFbTaDFCbfIoHX9Pjeek5j3WIabzFXxec561hj4/kJXMqC0am1X4t0UyUsdnkLO45htllEtyfC8tykDSrrVFqCiGcisTGl3Ply+eVzsbl6Ym2bVqos8r13FxB0Lo2Ue0sjjRDW6lr53oxRfZSLYH2Den392AsjWAxOviK9xW6VtcdlpnzltjWlX/793/hsl54+/Y99w9vefX6gdf3DyyHo9Z0eI/MENSsLupc905YDcRYwq4GZHQ5BkbflLpTXKQBob0qx2trWK4kbxBiYAXgYCONPlf9joWmNPkuFIsjTiwjSmOahCVpIy0Zy2Hm/vU907I8ExCLWzpMqMzKrsUd6dPiMvIxX6XiKTauROmncn3G+gq109YzfV3JHaYmBHUvIMyeZRCjmbyJB3AjpwaYU+Lu9sSHD2/58PfvuHvzgnwskGZqbCYrUdpLm5u1La03pjl2mGyVrcHNdKTkTI9pghDqa/kbfjIM9wPbCwkF5JiNjgvBo55yR+6PtUJUPG7EiC/GcIOwMAL91wTnhtHPK/bxC611DlPBm8X6BM0gh5wGS2ytsm3az+le8ZZ2WD/FbdNdkoicMp7F3nl61Eo968E3bZ1WN7JltjCaSjkH0KBSR7d2YeXqxK5GP4gCZFJv+0NIz9QAdIt9JpVeH+Wr2hvexWrx3rmsT/zHf/4rf/jpR06nl9zfv+HDt7/hu++/58X9HWUqFJKMkkFD+OaUyfAa/W9zraHo+vXWLvR2oV0eqefPtJ8/kx5XrDjtqdNiNqq5pL5Xc6GSHjNOCxLBICeMI+3NNW1h9J77aqf9UNjwGYpInRc5lPueMeMSIEpty7tZ8hgPufte0Oh5Dn8hIC4E1fYhpQpyvrdNz2j/fZ0J6JZ2P3mL0r+mmJEPQM0SKTmn08z7d/d89/07bh9uyacZzwmziWxgWRXW0BHjhm9O8kIJ8CblEAtMhbIcooIJz6vhchDx4kFU8NhhyqByRpIYgTnKIUfLeg3jdHrB5fGJ1us+g5Z0MF0pkc+E1399cLZOd+PL40pvne1wiGUtFowOsXVyVg9Tuw5RxzmvG22TG1w9K2um0EoOiLyEcLutFZLU6jmbdoj0TQFeFVA5p9DCSe2wTDJaal7F9N9vet38EaehKdWh69F/Rg2IedfB75XaNta6yc5TAxCxUKrx8eMf+fL4yO9/+okffvqB7777wJv715zSxFzDqMG1nqEPYkFt+NbxrUFt9FrZNtmQ1Hqh1QvrWWoULw61cvfNS/JSaOoK5Y7XKqVM0V82hrZxrAqAcDpoKqvzuAhhR+wtACUN2tM+1rHgDruJOuc2Cq3npVZk6ijjPdoMZUy/CguS3pG30YYMWHMc9k42mJLRknawmMcyZJyJ+Dk8LjvXeCajn3E+Fh7eveK737zn/s0r0nHCy7g4Ssi8tH5wKoXdZG0QLVLYxeSJUypMy8wSqxEHuCGwJ0OCHHaj6q87Y6atDiqseMb52Rlbcb6AaV5IeZKJWgB0O0KQ5BTSr/Kavz44z2vVwDpnLqvjfWOeRqAM6VanhK2/kcSDzkb3xrpVfOu0tWpLcVK55L0FLM7OQ8V932AsRFMvv6jBIbWgiMUNlnKIXUevNHBih93ZfLCDwkMmR49g7rK86BWtOsthuyEmTo6+Syih/kmFxy9/5F/++ZHPP/yOP7x8xW1ZOHRjdiNF8LSmwThbx6qypneZSHff8F7RaN9H+qHmxhevHG4mppc3GIluQlpr7ZRpJnuTitGr+kBTiTvmgGIiOdR2zZQ2giv6T5Nn6t7GjvI+5T0w9XsjSxD9ZKCdQqXlKGeGCODRKlgaPNcBKOla8Jxi76csV3owm3oSdbMDsRdAZ8P0f8W7KiQz8py5fXjJt9+/4/7dHdPNDHOh50Qj7SscDlOhTIUpgm48hxJaTRmJFTyJ2TSN9j0qB93rTjct8dLDuHroJsr+PD3KaAFDMKxIha6ziwoGad4DzItaJnybbR/F/dXB6WYxbnBKniOTynRYGTMg9A08fF+xpH0dZGrf2NbG5k6vHWsXzYfcBKBw9bzxpv6spCz+bNYCgMlyrIbvAfTEg/EmokmYcCXTXK/Hl+4eJRdBTWtS8VsggNhg6lRZZ1v8fRhTGpeNtliJzC4YPF2eaOvGxz9+oqeJQ4PiRgkQxnvTDkjPTD7mqzJETnF3Jvr+/WWSDLjQTo82AFIAWU2rKaa+JzEn4Hk9uYHUDAiK1oJUHaijRw9pQztoBMw/DoYusOerHAbVcqDdKUgPrXfpVH3MPWXRklKmmxDK0ZOP8tnLRD4cwiDraruS6ZQgR7S4hKX5FpMr4ZTDxIs3t7z57Vvuv33N/PJAOhRS7NtJTc/cEhGEoRXtME2ZXLRKIYfdCEmXhYdgu3MFHy1ZiDU8LnKPiz6erbP3mjaCPfpUBWmPAE5YnoLtNEDNAJCE8wvkiuz+q4IzTZm2Ns6XDbPEYSoyqtLTZKzB040BOr2uB9Blw7h257xJjO0GU544lSkoWzKgHrQ2PJGQ/0wyfc1ihhWTTMlVLjlDCExkYWKwa/vh6iFAHILY5ipTDb0oIa1aYTDF88sOixuFYAgF26eEsiQ75A5LcqbemLaKxSzOo2xSeRS9do9ISArMcVjjTcXbDg1kHoLcBK5lPTlnzXnH7Yte8HifyixCNbs9619cf6/E2lH+eoBEdsWS9e8p+lLioI23P4JUeEK83f2ARiyh9Q0enN02vCypbWXdKv1c1Xsejtg84zlsPkyjst6Fxs4W7wQpNyiJaZm5ebjl4b99y/1v3nK4P5KPEz6FcZvrnE1Fio+p6AKpbqxbZWtiQ52OS8w2ozUqhe5S5li38bgE4HWP8jozeNDJYhXHs0AaicWIigGnriulDDlbxi3vGdNszDqjxrMrWv6rgtOCSdF65+npTGLhsGTNw7puaHmjjplbD+DFqb1zWTfO68p5OK674dYoXZumPFBOMHy4O3XNmRLqOXB25r+kjCIgL8vEZo6tNfiz+nPkchbmxzZmZEAMld09OrdB7VP2TK4SesKY3KK114MsJKzDjDFZprjtiGtOVyaPJhcaTsupQz/XMDAZh9tj1uXmVDaaGXNe9sA1T3jXC9bNP2FJu1EFalzHK/uK+RSq+qFqeQYEwegtFWKDiD8MyFw/5CiAxy/uLYNzZecA13LMgsWDRjhM0Gm0TRfm09NKWxunMjGdXlBubrD5Mymv5KZ5b4k+c4wjkoFPiXI6cPvmFQ9//54X379hur9hulnIS+z9NFEQrRszSgSBvITcK++qN6HKGWIDW8qFHMqS3oWeYmg94XgGHoSatOPWO6g5xAnjOamiaKzrRaOX4NwONB3znUMbj1ruFN3ov7qsrSnULbKe+PL0hDNzysfglSoopahXbZ66VBhb7TyeN86rAnNshdpS58llhDibqGZUx5GUi5w4zEWB4dfxgHetR2+94SUGzSWTao4B9UgcA5ZXQBBwNwNljJ/Zo8iUs9yZ1pwU0OrkxpHCFKinOJzKqHNQr6JGpsQL8KgMFRoCRTx+W4msJ/pWvHvTd6jZsCUx38zkSUFrLeNN6n56wRhsFKHcKrP1XsYmrjF7xcJcLMCxcSFZZCYPf58hkRqlpHUTIPL8/bvjJrWJMmmGostDZ9j3WDYr8o11gzDVXpaZzZoutbs7LvevuPz+Z3i84LUKL3I5GrRwaSg5UW4O3Hxzz8Nv3nP73RvK3RE/TaSlYEHDEzIfgeIG4b6hcl2oKB5eS9NMmqboO0W904UVNMikhK/doBGMFh5N0XsOvoekZkFooRGEX/BKq094rXjTUumEKjZ8VB3CVTrsgf5Lde0vZ86ermhcHNTzudLaI4ejtjENRocbtK2zbo1t66zbQD+JcskCppYXqffK5tLg0cFTp1iRv+lx4pBnUredkZNzJpuxtU3ueduZusZODZ18xo4KNeVBCogD2EIl43GmKs5l25iSNkRttXLeLqReOZaFkmbtkTQXydoMUqGZAmTUde35P6W/oecQWIdL2zqeXyhARnlr1ii5Mt8UDrdHyiJ64/D6mUpsuQr4fZTiCpxQNFhUOKMZRfS75/Oz5zaO2NUaY7fCjEBOmNQiFhcb19407WhugCdmQAB7o0c118rI7kwNXtxMbHNlqo18d0t7+5rLx595Om8YnXYmFiCHHGvOTC8P3H3zwN337zi+e0W5XUiHiT5nZRkbcqtAY0xujJm8A29UWbHmksMpv8TFo3ZoZD6V6GNW61IG+ahEdiZHXPrPyS4jOANB7xW3yuOXzySbST4zFlhpZQZ7ZTCETL5fbr8yOFO8xqs+Un/yeqmstbGsG6fTgblohuR0trpxWavGKvi1cR6lQByanlybttCQt6eNnjuLLTBnpuVI6jE1CvpescyS4HK5cPnUqZenGGTbbg85KFX6V7wIdONp5b1Aot6N87ZJClYK21Y5rxdmb9zMC9PLl8zTYeeTzUmlSkpxGLIsU0rwhWWcbXJ0m0OWVCaVuaXE7E1fvzVt82rrE+fHP9Jtpbw4UI4zZVFv5EnrA0Ql09y4d2lls4cI/LlQdwBJxv68hij7eaDq/1eT7R7gmokimKPru5Z2RMUzyA5az6FRgu9zvz4O2+BbBk0O0/gs5Y1M5/bDO1pd+dgNfixcPj/BurIk47BMHO5fcHp3x8t3r5nvb/BTgUMWDyM1dAWW3SnictG26ONJe1iSFa1WbDDPsHWY5kwpQPCix0WVYr46lDt5L+v1a+N7ys82RnSjPDP2Ml/QhK7musWCqiIpXYqNYn3EYTJZokawRqH364JTi24i/Qq4ih4j07rz+HShtsoyz5QsNsbW2nWx6Vg69KxHEjB2VWlUoOVOnoESLJjDxHQ8YdV30XIy4VwlJSoGnz4HFWt8Q4EXY23gKNnUuCdI18wxGB6ejNU7a5XrezXdjr0U3v72t7x++AYm9XpTSvtcsJS8e+UMNYlUHxpK75ksZc1AU/SGHm1A3cjrhe3pE5d80d6WJZNm2TLK4yYzz5lpsqDAaVWCNV2aHr1KD8GxsmtcUFz9ZVvtUXUM6t9oQXRJ9CZP3hy9/O4CH73qTkwYLacFAh4GYaNEL5b0ayUANIfOhuE0k9tBuXvJ7d//hul0Iv/njzz+8Wfq+UwuieOLEy8e7ih3B+w40WejT4Ydwus1ifAmbyiV2D4rq5WSmCeNS3rT2cwFpg6p6MIcV/UuiI9yeIBhiZElB+AWWbpHq2HDImY8h4gJd7GLgmCwj/MGUSQXtThdKzHLCEp4xor6FcEJfferGd2nTto1C3Z3LuvKZikMo6UvGkqM626NMXsLxUX8wEJ3jZ4cmxe8JdK8kI4LpeuBtpBqTSkz5cSlNv0dpeh6DKqVw24+NdgmaT9oaa8EUswJR1nhBLOkd1Ke2Mzo88Ly+oE0L1hKTCQwMUlSybotEztY1VrDs4LITTdyi59LL2JkbbnWOZ1WEz7pdvWkZ2Emcvc8G8siS43mTt3CHc+KMqOb6JBJz7bWjVKuh0juesb5vDJNE8ec8XTdyzFKq9rHggff+2Z79nuGiyKW2Kp4v2WacTPO5wsp6RLpwwDbUTAtysMd8Z/dwJeFVBaOpwPpzStuPn/Gt1VytKJ5pi9GL3oenpFuNaeRvMVvDqhunqSkSWOnqoPomvoS2WwvZ0GuFxYXh86Bzrg8hz16wsKV4RslrQd+YAMx970abK3R25lDPsidP5dAYBupIKG9DyfIaxWzVzO/VpXigw7V045A9rhF5Ib+TCUxmtO40ffi0gddjH2wrZ8ueIrxIFPSw015Yj6eKMuRKcXt1gUUzKZVqZY/Q3KmKdOZtYrcTKBOUM2IMcmLmxOvXj8wTwe+PD6xrpXWNp6eHjlvj7S+iexsmduXJ96++5b3b97z+pv3pGWhF7kl9ACXdKi7iBBT9I84PQ3kU/Iv99HLZQjtZBqlEVKhDAperYMc38lIbJxNs1zz4At1ozbpNDMZ35fbdnLuUWpVCMUJz1oSH0i5XzNiGsqLAJvcZPFyJehf/3d0uTloORM7hmEup8SMkeYUaDq6tCcFipFIbaK6Ubsuh3Q0UsksNwd6XTEq3hstdTktBlMs6U4QcyxsQq5r3a8sKQmx47nKlSqkbYmU5n0T2MCvpCkGS8H0GaMiV6tFTByE6wUmEpe4qI7jONuePXtvZHdxeKsShhRNcSm3HIqgEVwxLfiF+PsLc87r/Es3VGHUMu5ju3GPYIgXZjGkGC85UESVemPfhcXMkRhmxwvvRplnjqcblsNRm6rcMBasS1WRemVrlda3HaAwu14a8ZNjwOm48OHDBz58+J5cZpQE1Bt//PgT//uf/xc//P53+FbJU+K79x/47//0P3l190BJMxQZOCkWE25jVCT38/HXeXxvlVUhV+vj5zAsIHvJsRwxdbSPY55mei1kG7Ik9qWsoRQmWWKaZvXgu68QOxI7SO6uE0Y3qSwsJZbDxBjmjGCz+M0p5ci2giuHY9PINcTIxIIcnjDyFEJuYC6TqIYpiQyfrhdYpWu79GEOZUsTAt3BmgKul0xvhd7C/T4WWrkRgagyOycxz4TQjY9c168vIErKPpwziDMnb6DBPuu9XvvE6LUHer/rVs3jgtuhm+jRPczLAuMoFobpUxh3O+t6VtuUjeUgP2ELuOa6+uEakr9U2f5icE5JUHrPhgcjZwzkU7gUpJjnaA9KUxZsnW7BQBlka4uMg+70Qe5OSRIdimHWORwmjocj8+FG4ITBId9IzkNjffrMp8czl0slxXq/3i22jukimNJQrR8o5Ybj6U4ARQQKJKbDkT/8+ANf/vAjlc4yH3h4957buzeUWYoFy3mfn1lOWJfhlyqaHjC6DoqsfExWlabSTtnwGRD0jAqXUoJpIi0zac2U1JmzMWXHTL1+CkBw9Fl5is1YRWwYuAZoD8AuTEoUASjbYVqFQM/Qs0y5SOBDtBDb36oQd3eYD0Zexq0ZATwuVFPPWUpkL0abEwuC0WgBNHv1SeV9x8lzJvmCMeNtxtqFVM/gg8Snc3LFGaJXTrqcd7qbjYtE51DgVtLowkS/y5PTrf3JXNhI+yile5cn0SC5jsza4robY6Y8klSXcwYimXhPUR05tBXLZ+r5Anlimo5MhwN5muhe6Qk2VGXQJN6XgunP586/sNk6luWMMibqAjPCIc12KY1+QQdR6T7FfMeDSxqACioVUpZXDYlAtp4NzlMOxo+yi6WJKc0kr3z++Scevzypv636k/VCldkf7l/zzdt3eGs8XS6U5YSVmbIs8ZJVah7MOR5PlDLRe+fu9p5X928oy5EyaVUdxL6ToKlFNbUfDD2TyNguPvFYc1hKfJcwfe5d3qg+5h/u8OvHjgAAB5FJREFU1LaqXLPrnHhkntZFC4wqGLMeLKKr9K3X6O9cz7BX8CLHA0MXZ4ucOrjMHaAFMb2HlClec2vO+UluEEcOHMsoCbkGaXxvZemxtCqAJndtNg/Z3AgKS50s6Y5odNHXlZ5p1eg5QbvgvkUpH0HnogFKO6vnPPpAfZ1n+so45DlGI7koy1fXucvx/q4rLgZBwKiRIPfRUmw01zfuexwY7FQ9i2DuLbCALt+lnBNba7QUQvlSuFzWqL5EssghAAEpf35VcMrLVGCwhqY9DkJIekz0O3cx+j0HeulXca4Hv9VS2lcTmEOrmw5ikvws9cRkEsaaGfOy0Lo2buVcsN7Zzis//PSR89r0o0fflFPidHPLu7fv+f67v+PN/T2Os7Uepd0hPGj18KVn7Cw3N9i0MKXC2/d/x20Ep+WsXjeGxnkM8yMY1Ue0OLSxu9K7bCzM97LWRvAWQjUiTryj8pRSmEvmkiygcNNNPlabx7YyrGm5awGtEYxhvyvT1aqXklKBhbjc7Kp6CFADAijqTaynvUmMg1IS8/FAbo0yaTymu0jvZPjg7L5ENoJV/9mjchoXOC4hdU6JKU30FC4QSXxVXdaTVgWSaJvh/aI/L2kln4cxeQ98Q6Xns6AE4obXqGuAQIO15j2qvfE14wym+PmcHUBT9vU9EEdfaVHxjfl2jwtYANPoObXaw4pI9701ejNyCV8pj/FJHvrcQIj/PHvvL6ydn2a54O2oFUGH69iUd8UgIDsGD7SxaMFub/oCo65LGBbkdEapkfSgW3NKkRJDUrSZ7IVcFpVeqWO50j2R5xNLeckyzywvjtw/vOH1w1tub19xnGeNPUzMk+jcGPzQFJdETs6rN294ef/AYTny23/4R17cvt79RVPcjClKNr0iDzBAHjzg18PSG9I2ugIoqSRzfDhL4kCa4qbsiWQzvik7teZRxo9SJGbDyXUpUimjn2dspB6gk1wrwKkNppGdRyfaBxG9/4lbYM4id4huFeXznFmyFsmO8QVdmWQE6Ij10Z8xjrOHtYxpBBPQXIBIYeJdjJ4G9q8AbZvKRIkcEt7XvefO9szoLI60xc2/Dz3yAMH0TAbQMn4GH2oms+d30f5eQQBUay3AzegNub7/MTIJ0+O9WdwjIAC3kjI1LoZpmpknuYF4V1bXqMavFdGv7Tkb8ukkbs6x7rwG5SnZAACiRwjCwS6NybbPA0eDnjDYwJpQR+2G7LuwtbWVra1Bs5pJoR9NZizTzD/84//g/TcfeHE8cXv7gukwkadZWSalUJToQKVSnt38eVSTgJOnAw/ffMc/kTkeD7x685Y8CzzpLpZNNukjBysk0fdAU39yLbPIhntlB2S7SicdioaVIb+K7GsGLUFecCusa2PbGkcPhDuAnh4AWm9VgTfJksMjLQ5anpKgZmmDiBHhHofAILN7C+FO7xuWOoVJjwxtq5buNZE6kd3GIdaZ6DEe2nW0UR5edaQ9qsxhqBaCgxKgmRnN205p84RE5DlDrIkU8lzjYjDGmgviQhCcYfE8Ld6t/tmCUqrCRubdPYkN5JGVe4zN9oAOgC1nNPslKJGoZfEm53tjAF9XDec43976jo3qmDm9bvrfdsDSrpoyCGrqn4/Ov7ifE9PtJeMwlyg3/tDRx5Qphx/UoCqpd7JkZD0VDb1dkFCeMzPLbpNpOUmJYGiHIY2cPTxVCwlijUDi4d3Cw9tvrjs0vcbhSIwBckKon+rAAFa4qjpSlKEvbmdevLxDjBr9ek6JHIdv52ASZ3B0t6aXZUPIrfeHkePGj7p/P9JF36lcI7c3h1zI5YbleEfbnhiqnEwQwL3Jf9fDKpMgIAx2DsQNnZgtyYY0VUjhAdv13HZ7k6Ga8VFyCx3G625W5qbVhE4s8OljNh0BH9WIEeqLvcwdvWfMtCM7jJ/bGH60fb9McP13LcBGgGKZVGbcE3XT1rCSRMaweC+t6gKapmkHxiJFSuUUmXM/E64dr7Emhp3aOc55ePoMBVMpBa+R2hytzNiqztzhCpK5dyWFIHj8v0u2cjFOpwOff/4kg4GRyMLpT4DfrwzObk1k5kBWLcs5TzMjlQoWWc1M2rgUpVe8GZ3TQKWUzlWKpQzaZuUBEMVeETprPdNpuzdoIbR4eyZShlajnxlqDYtDoNmggeX99wurCHAhyqocRa8luZvLtCrvW6z3bJ8FCKSsjNxbI6USJWFkK4syMtgrJPA2LoToXQYNzztkJ3nGy4FpuaHkRf1OyJbiKlRJ5JWcZ4EdXS0ESUdwZ6vg5CljZdrXCO5jKx/gUGTuLLZSil5F/bEu2N28Kmwch7O3EVaY8R1TUcB7kyPGIIjnQId7CAxKjNEUQp3nRyOH4qn1TS6EkV2nMsU5aWyXi/7cXPaflyiYr72v7WXqKLdbFz4igcBgBo1bCdQ7tn32u8fqAIYYge2hE3ZqrVgdQRzkhWjltKXc9z+rb6NPTZHp9e6HoHzP1r+QOe0vUYi+fr5+vn7+az5/njv09fP18/XzX/r5GpxfP18/f6Ofr8H59fP18zf6+RqcXz9fP3+jn6/B+fXz9fM3+vkanF8/Xz9/o5//C8bV164C8194AAAAAElFTkSuQmCC\n" - }, - "metadata": { - "needs_background": "light" - } - } + "data": { + "text/plain": [ + "==========================================================================================\n", + "Layer (type:depth-idx) Output Shape Param #\n", + "==========================================================================================\n", + "TransformerEncoderLayer [32, 196, 768] 3,072\n", + "├─LayerNorm: 1-6 [32, 196, 768] (recursive)\n", + "├─MultiheadAttention: 1-2 [32, 196, 768] 2,362,368\n", + "├─Dropout: 1-3 [32, 196, 768] --\n", + "├─LayerNorm: 1-7 [32, 196, 768] (recursive)\n", + "├─Linear: 1-5 [32, 196, 3072] 2,362,368\n", + "├─LayerNorm: 1-6 [32, 196, 768] (recursive)\n", + "├─LayerNorm: 1-7 [32, 196, 768] (recursive)\n", + "├─Dropout: 1-8 [32, 196, 3072] --\n", + "├─Dropout: 1-11 [32, 196, 768] --\n", + "├─Linear: 1-10 [32, 196, 768] 2,360,064\n", + "├─Dropout: 1-11 [32, 196, 768] --\n", + "==========================================================================================\n", + "Total params: 7,087,872\n", + "Trainable params: 7,087,872\n", + "Non-trainable params: 0\n", + "Total mult-adds (M): 151.31\n", + "==========================================================================================\n", + "Input size (MB): 19.27\n", + "Forward/backward pass size (MB): 192.68\n", + "Params size (MB): 18.89\n", + "Estimated Total Size (MB): 230.83\n", + "==========================================================================================" ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from torchinfo import summary \n", + "\n", + "summary(model=transformer_encoder_layer,\n", + " input_size=patch_embedding_output.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4SkJzpgVHxiL" + }, + "source": [ + "### 3. Stack Transformer Encoder Layers on top of each other to make the full Transformer Encoder\n", + "\n", + "According to Table 1 of the ViT paper, the ViT-Base model uses a stack of 12 Transformer Encoder layers.\n", + "\n", + "We can stack Transformer Encoder Layers on top of each other using: https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html#torch.nn.TransformerEncoder " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "fc89oxs4Jgvp" + }, + "outputs": [], + "source": [ + "transformer_encoder = nn.TransformerEncoder(\n", + " encoder_layer=transformer_encoder_layer,\n", + " num_layers=12)\n", + "\n", + "# transformer_encoder" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "id": "BrR6TI6qJ2Ub" + }, + "outputs": [], + "source": [ + "# summary(model=transformer_encoder,\n", + "# input_size=patch_embedding_output.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MqYt173ZKMan" + }, + "source": [ + "### 5. Put it all together and create ViT \n", + "\n", + "We're skipping step 4, so that can be incorported the into the overall ViT architecture." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "Pb-_4DY5KUHz" + }, + "outputs": [], + "source": [ + "class ViT(nn.Module): \n", + " def __init__(self,\n", + " img_size=224, # from Table 3\n", + " num_channels=3,\n", + " patch_size=16,\n", + " embedding_dim=768, # from Table 1\n", + " dropout=0.1, \n", + " mlp_size=3072, # from Table 1\n", + " num_transformer_layers=12, # from Table 1\n", + " num_heads=12, # from Table 1 (number of multi-head self attention heads)\n", + " num_classes=1000): # generic number of classes (this can be adjusted)\n", + " super().__init__()\n", + "\n", + " # Assert image size is divisible by patch size \n", + " assert img_size % patch_size == 0, \"Image size must be divisble by patch size.\"\n", + "\n", + " # 1. Create patch embedding\n", + " self.patch_embedding = PatchEmbedding(in_channels=num_channels,\n", + " patch_size=patch_size,\n", + " embedding_dim=embedding_dim)\n", + "\n", + " # 2. Create class token\n", + " self.class_token = nn.Parameter(torch.randn(1, 1, embedding_dim),\n", + " requires_grad=True)\n", + "\n", + " # 3. Create positional embedding\n", + " num_patches = (img_size * img_size) // patch_size**2 # N = HW/P^2\n", + " self.positional_embedding = nn.Parameter(torch.randn(1, num_patches+1, embedding_dim))\n", + "\n", + " # 4. Create patch + position embedding dropout \n", + " self.embedding_dropout = nn.Dropout(p=dropout)\n", + "\n", + " # # 5. Create Transformer Encoder layer (single)\n", + " # self.transformer_encoder_layer = nn.TransformerEncoderLayer(d_model=embedding_dim,\n", + " # nhead=num_heads,\n", + " # dim_feedforward=mlp_size,\n", + " # activation=\"gelu\",\n", + " # batch_first=True,\n", + " # norm_first=True)\n", + "\n", + " # 5. Create stack Transformer Encoder layers (stacked single layers)\n", + " self.transformer_encoder = nn.TransformerEncoder(encoder_layer=nn.TransformerEncoderLayer(d_model=embedding_dim,\n", + " nhead=num_heads,\n", + " dim_feedforward=mlp_size,\n", + " activation=\"gelu\",\n", + " batch_first=True,\n", + " norm_first=True), # Create a single Transformer Encoder Layer\n", + " num_layers=num_transformer_layers) # Stack it N times\n", + "\n", + " # 7. Create MLP head\n", + " self.mlp_head = nn.Sequential(\n", + " nn.LayerNorm(normalized_shape=embedding_dim),\n", + " nn.Linear(in_features=embedding_dim,\n", + " out_features=num_classes)\n", + " )\n", + "\n", + " def forward(self, x):\n", + " # Get some dimensions from x\n", + " batch_size = x.shape[0]\n", + "\n", + " # Create the patch embedding\n", + " x = self.patch_embedding(x)\n", + " # print(x.shape)\n", + "\n", + " # First, expand the class token across the batch size\n", + " class_token = self.class_token.expand(batch_size, -1, -1) # \"-1\" means infer the dimension\n", + "\n", + " # Prepend the class token to the patch embedding\n", + " x = torch.cat((class_token, x), dim=1)\n", + " # print(x.shape)\n", + "\n", + " # Add the positional embedding to patch embedding with class token\n", + " x = self.positional_embedding + x\n", + " # print(x.shape)\n", + "\n", + " # Dropout on patch + positional embedding\n", + " x = self.embedding_dropout(x)\n", + "\n", + " # Pass embedding through Transformer Encoder stack\n", + " x = self.transformer_encoder(x)\n", + "\n", + " # Pass 0th index of x through MLP head\n", + " x = self.mlp_head(x[:, 0])\n", + "\n", + " return x" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "gbtX6suFQGPA", + "outputId": "1bddb9e1-af16-4ff1-d45c-4c8469d1c733" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "## 1. Replicate the ViT architecture we created with in-built [PyTorch transformer layers](https://pytorch.org/docs/stable/nn.html#transformer-layers).\n", - "\n", - "* You'll want to look into replacing our `TransformerEncoderBlock()` class with [`torch.nn.TransformerEncoderLayer()`](https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html#torch.nn.TransformerEncoderLayer) (these contain the same layers as our custom blocks). \n", - "* You can stack `torch.nn.TransformerEncoderLayer()`'s on top of each other with [`torch.nn.TransformerEncoder()`](https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html#torch.nn.TransformerEncoder).\n", - "\n", - "Need: \n", - "1. PatchEmbedding (turn images into embedded patches)\n", - "2. Transformer Encoder layer (this is comprised of alternating MSA and MLP blocks)\n", - "3. Stack multiple transformer encoder layers on top of each other\n", - "4. MLP head\n", - "5. Put it all together to create ViT" - ], - "metadata": { - "id": "nwmoMhW8IqSu" - } + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([1, 3, 224, 224])\n" + ] }, { - "cell_type": "markdown", - "source": [ - "### 1. Make PatchEmbedding layer\n", - "\n", - "Code from: https://www.learnpytorch.io/08_pytorch_paper_replicating/#45-turning-the-vit-patch-embedding-layer-into-a-pytorch-module" - ], - "metadata": { - "id": "YaQ-bihAEdsX" - } + "data": { + "text/plain": [ + "tensor([[-1.2707, -0.5487, 0.1726]], device='cuda:0',\n", + " grad_fn=)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "demo_img = torch.randn(1, 3, 224, 224).to(device)\n", + "print(demo_img.shape) \n", + "\n", + "# Create ViT\n", + "vit = ViT(num_classes=len(class_names)).to(device)\n", + "vit(demo_img)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "ACWzvkx2Utgl", + "outputId": "3b9ca82b-0adb-4cec-92a3-fad7e13165c0" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "rand_image_tensor = torch.randn(32, 3, 224, 224) # (batch_size, color_channels, height, width)\n", - "rand_image_tensor.shape" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "KzQW72LmGmzR", - "outputId": "be5f8e17-5e71-4bc4-ae12-36a276174431" - }, - "execution_count": 10, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "torch.Size([32, 3, 224, 224])" - ] - }, - "metadata": {}, - "execution_count": 10 - } + "data": { + "text/plain": [ + "====================================================================================================\n", + "Layer (type:depth-idx) Output Shape Param #\n", + "====================================================================================================\n", + "ViT [1, 3] 152,064\n", + "├─PatchEmbedding: 1-1 [1, 196, 768] --\n", + "│ └─Conv2d: 2-1 [1, 768, 14, 14] 590,592\n", + "│ └─Flatten: 2-2 [1, 768, 196] --\n", + "├─Dropout: 1-2 [1, 197, 768] --\n", + "├─TransformerEncoder: 1-3 [1, 197, 768] --\n", + "│ └─ModuleList: 2-3 -- --\n", + "│ │ └─TransformerEncoderLayer: 3-1 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-2 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-3 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-4 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-5 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-6 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-7 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-8 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-9 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-10 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-11 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-12 [1, 197, 768] 7,087,872\n", + "├─Sequential: 1-4 [1, 3] --\n", + "│ └─LayerNorm: 2-4 [1, 768] 1,536\n", + "│ └─Linear: 2-5 [1, 3] 2,307\n", + "====================================================================================================\n", + "Total params: 85,800,963\n", + "Trainable params: 85,800,963\n", + "Non-trainable params: 0\n", + "Total mult-adds (M): 172.50\n", + "====================================================================================================\n", + "Input size (MB): 0.60\n", + "Forward/backward pass size (MB): 73.83\n", + "Params size (MB): 229.05\n", + "Estimated Total Size (MB): 303.49\n", + "====================================================================================================" ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "summary(model=ViT(num_classes=3),\n", + " input_size=demo_img.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "vOXzwo9FT7uT", + "outputId": "7b84bd12-3f98-4583-f936-13b1c566657a" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# 1. Create a class which subclasses nn.Module\n", - "class PatchEmbedding(nn.Module):\n", - " \"\"\"Turns a 2D input image into a 1D sequence learnable embedding vector.\n", - " \n", - " Args:\n", - " in_channels (int): Number of color channels for the input images. Defaults to 3.\n", - " patch_size (int): Size of patches to convert input image into. Defaults to 16.\n", - " embedding_dim (int): Size of embedding to turn image into. Defaults to 768.\n", - " \"\"\" \n", - " # 2. Initialize the class with appropriate variables\n", - " def __init__(self, \n", - " in_channels:int=3,\n", - " patch_size:int=16,\n", - " embedding_dim:int=768):\n", - " super().__init__()\n", - " \n", - " self.patch_size = patch_size\n", - " \n", - " # 3. Create a layer to turn an image into patches\n", - " self.patcher = nn.Conv2d(in_channels=in_channels,\n", - " out_channels=embedding_dim,\n", - " kernel_size=patch_size,\n", - " stride=patch_size,\n", - " padding=0)\n", - "\n", - " # 4. Create a layer to flatten the patch feature maps into a single dimension\n", - " self.flatten = nn.Flatten(start_dim=2, # only flatten the feature map dimensions into a single vector\n", - " end_dim=3)\n", - "\n", - " # 5. Define the forward method \n", - " def forward(self, x):\n", - " # Create assertion to check that inputs are the correct shape\n", - " image_resolution = x.shape[-1]\n", - " assert image_resolution % self.patch_size == 0, f\"Input image size must be divisble by patch size, image shape: {image_resolution}, patch size: {self.patch_size}\"\n", - " \n", - " # Perform the forward pass\n", - " x_patched = self.patcher(x)\n", - " x_flattened = self.flatten(x_patched) \n", - " # 6. Make sure the output shape has the right order \n", - " return x_flattened.permute(0, 2, 1) # adjust so the embedding is on the final dimension [batch_size, P^2•C, N] -> [batch_size, N, P^2•C]" - ], - "metadata": { - "id": "zS2GQSJT9wwR" - }, - "execution_count": 11, - "outputs": [] + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(class_names)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "tylU60JINK_m", + "outputId": "a6faf647-ecbe-46cb-ef76-dbb79bc20c9d" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "patch_embedding = PatchEmbedding(patch_size=16)\n", - "patch_embedding_output = patch_embedding(rand_image_tensor)\n", - "print(f\"Input shape: {rand_image_tensor.shape}\")\n", - "print(f\"Output shape: {patch_embedding_output.shape} -> (batch_size, num_patches, embedding_dim)\") " - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "qi0XzMNzGtSp", - "outputId": "64141a1c-13f1-4a15-d44c-f73502ec4335" - }, - "execution_count": 12, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Input shape: torch.Size([32, 3, 224, 224])\n", - "Output shape: torch.Size([32, 196, 768]) -> (batch_size, num_patches, embedding_dim)\n" - ] - } + "data": { + "text/plain": [ + "True" ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "embedding_dim=768\n", + "class_token = nn.Parameter(torch.randn(1, 1, embedding_dim),\n", + " requires_grad=True)\n", + "class_token.requires_grad" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "evvdpuHgQiX2", + "outputId": "778f6fef-e7ae-4fd7-f05b-7a100987989d" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "### 2. TransformerEncoderLayer \n", - "\n", - "Can build a Transformer Encoder Layer with: https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html#torch.nn.TransformerEncoderLayer" - ], - "metadata": { - "id": "iX9Xo95yEYXJ" - } + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([1, 1, 768])\n" + ] }, { - "cell_type": "code", - "source": [ - "# Hyperparameters from Table 1 and Table 3 for ViT-Base\n", - "transformer_encoder_layer = nn.TransformerEncoderLayer(d_model=768,\n", - " nhead=12,\n", - " dim_feedforward=3072,\n", - " dropout=0.1,\n", - " activation=\"gelu\",\n", - " batch_first=True,\n", - " norm_first=True)\n", - "transformer_encoder_layer" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "yNWkedYJFtxJ", - "outputId": "52f4c0c9-9806-4442-fdfc-ef8b1eb9a60e" - }, - "execution_count": 13, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "TransformerEncoderLayer(\n", - " (self_attn): MultiheadAttention(\n", - " (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)\n", - " )\n", - " (linear1): Linear(in_features=768, out_features=3072, bias=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " (linear2): Linear(in_features=3072, out_features=768, bias=True)\n", - " (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", - " (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", - " (dropout1): Dropout(p=0.1, inplace=False)\n", - " (dropout2): Dropout(p=0.1, inplace=False)\n", - ")" - ] - }, - "metadata": {}, - "execution_count": 13 - } + "data": { + "text/plain": [ + "torch.Size([32, 1, 768])" ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "batch_size = 32\n", + "print(class_token.shape)\n", + "class_token.expand(batch_size, -1, -1).shape # \"-1\" means to infer the dimension" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "DigwJfXjOXXs", + "outputId": "f2383735-fa96-4dc3-884f-02a0225dff5a" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "from torchinfo import summary \n", - "\n", - "summary(model=transformer_encoder_layer,\n", - " input_size=patch_embedding_output.shape)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "9Z_NREYbIZtF", - "outputId": "80ab032d-2432-4000-b8b2-e543fe779d66" - }, - "execution_count": 14, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "==========================================================================================\n", - "Layer (type:depth-idx) Output Shape Param #\n", - "==========================================================================================\n", - "TransformerEncoderLayer [32, 196, 768] 3,072\n", - "├─LayerNorm: 1-6 [32, 196, 768] (recursive)\n", - "├─MultiheadAttention: 1-2 [32, 196, 768] 2,362,368\n", - "├─Dropout: 1-3 [32, 196, 768] --\n", - "├─LayerNorm: 1-7 [32, 196, 768] (recursive)\n", - "├─Linear: 1-5 [32, 196, 3072] 2,362,368\n", - "├─LayerNorm: 1-6 [32, 196, 768] (recursive)\n", - "├─LayerNorm: 1-7 [32, 196, 768] (recursive)\n", - "├─Dropout: 1-8 [32, 196, 3072] --\n", - "├─Dropout: 1-11 [32, 196, 768] --\n", - "├─Linear: 1-10 [32, 196, 768] 2,360,064\n", - "├─Dropout: 1-11 [32, 196, 768] --\n", - "==========================================================================================\n", - "Total params: 7,087,872\n", - "Trainable params: 7,087,872\n", - "Non-trainable params: 0\n", - "Total mult-adds (M): 151.31\n", - "==========================================================================================\n", - "Input size (MB): 19.27\n", - "Forward/backward pass size (MB): 192.68\n", - "Params size (MB): 18.89\n", - "Estimated Total Size (MB): 230.83\n", - "==========================================================================================" - ] - }, - "metadata": {}, - "execution_count": 14 - } + "data": { + "text/plain": [ + "torch.Size([1, 197, 768])" ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "patch_size = 16\n", + "img_size = 224\n", + "num_patches = (img_size*img_size) // patch_size**2\n", + "pos_embedding = nn.Parameter(torch.randn(1, num_patches+1, embedding_dim))\n", + "pos_embedding.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MBWnDZao9w_5" + }, + "source": [ + "## 2. Turn the custom ViT architecture we created into a Python script, for example, `vit.py`.\n", + "\n", + "* You should be able to import an entire ViT model using something like`from vit import ViT`.\n", + "\n", + "Let's copy all of our ViT model dependencies to a single cell and write it to file using the magic `%writefile FILENAME`. " + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "wSnv2g7kWLxv", + "outputId": "baa77072-c14e-4b34-b81a-3d7214b47df2" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "### 3. Stack Transformer Encoder Layers on top of each other to make the full Transformer Encoder\n", - "\n", - "According to Table 1 of the ViT paper, the ViT-Base model uses a stack of 12 Transformer Encoder layers.\n", - "\n", - "We can stack Transformer Encoder Layers on top of each other using: https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html#torch.nn.TransformerEncoder " - ], - "metadata": { - "id": "4SkJzpgVHxiL" - } - }, - { - "cell_type": "code", - "source": [ - "transformer_encoder = nn.TransformerEncoder(\n", - " encoder_layer=transformer_encoder_layer,\n", - " num_layers=12)\n", - "\n", - "# transformer_encoder" - ], - "metadata": { - "id": "fc89oxs4Jgvp" - }, - "execution_count": 15, - "outputs": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "Writing vit.py\n" + ] + } + ], + "source": [ + "%%writefile vit.py\n", + "import torch\n", + "from torch import nn \n", + "\n", + "# 1. Create a class which subclasses nn.Module\n", + "class PatchEmbedding(nn.Module):\n", + " \"\"\"Turns a 2D input image into a 1D sequence learnable embedding vector.\n", + " \n", + " Args:\n", + " in_channels (int): Number of color channels for the input images. Defaults to 3.\n", + " patch_size (int): Size of patches to convert input image into. Defaults to 16.\n", + " embedding_dim (int): Size of embedding to turn image into. Defaults to 768.\n", + " \"\"\" \n", + " # 2. Initialize the class with appropriate variables\n", + " def __init__(self, \n", + " in_channels:int=3,\n", + " patch_size:int=16,\n", + " embedding_dim:int=768):\n", + " super().__init__()\n", + " \n", + " self.patch_size = patch_size\n", + " \n", + " # 3. Create a layer to turn an image into patches\n", + " self.patcher = nn.Conv2d(in_channels=in_channels,\n", + " out_channels=embedding_dim,\n", + " kernel_size=patch_size,\n", + " stride=patch_size,\n", + " padding=0)\n", + "\n", + " # 4. Create a layer to flatten the patch feature maps into a single dimension\n", + " self.flatten = nn.Flatten(start_dim=2, # only flatten the feature map dimensions into a single vector\n", + " end_dim=3)\n", + "\n", + " # 5. Define the forward method \n", + " def forward(self, x):\n", + " # Create assertion to check that inputs are the correct shape\n", + " image_resolution = x.shape[-1]\n", + " assert image_resolution % self.patch_size == 0, f\"Input image size must be divisble by patch size, image shape: {image_resolution}, patch size: {self.patch_size}\"\n", + " \n", + " # Perform the forward pass\n", + " x_patched = self.patcher(x)\n", + " x_flattened = self.flatten(x_patched) \n", + " # 6. Make sure the output shape has the right order \n", + " return x_flattened.permute(0, 2, 1) # adjust so the embedding is on the final dimension [batch_size, P^2•C, N] -> [batch_size, N, P^2•C]\n", + "\n", + "class ViT(nn.Module): \n", + " def __init__(self,\n", + " img_size=224, # from Table 3\n", + " num_channels=3,\n", + " patch_size=16,\n", + " embedding_dim=768, # from Table 1\n", + " dropout=0.1, \n", + " mlp_size=3072, # from Table 1\n", + " num_transformer_layers=12, # from Table 1\n", + " num_heads=12, # from Table 1 (number of multi-head self attention heads)\n", + " num_classes=1000): # generic number of classes (this can be adjusted)\n", + " super().__init__()\n", + "\n", + " # Assert image size is divisible by patch size \n", + " assert img_size % patch_size == 0, \"Image size must be divisble by patch size.\"\n", + "\n", + " # 1. Create patch embedding\n", + " self.patch_embedding = PatchEmbedding(in_channels=num_channels,\n", + " patch_size=patch_size,\n", + " embedding_dim=embedding_dim)\n", + "\n", + " # 2. Create class token\n", + " self.class_token = nn.Parameter(torch.randn(1, 1, embedding_dim),\n", + " requires_grad=True)\n", + "\n", + " # 3. Create positional embedding\n", + " num_patches = (img_size * img_size) // patch_size**2 # N = HW/P^2\n", + " self.positional_embedding = nn.Parameter(torch.randn(1, num_patches+1, embedding_dim))\n", + "\n", + " # 4. Create patch + position embedding dropout \n", + " self.embedding_dropout = nn.Dropout(p=dropout)\n", + "\n", + " # # 5. Create Transformer Encoder layer (single)\n", + " # self.transformer_encoder_layer = nn.TransformerEncoderLayer(d_model=embedding_dim,\n", + " # nhead=num_heads,\n", + " # dim_feedforward=mlp_size,\n", + " # activation=\"gelu\",\n", + " # batch_first=True,\n", + " # norm_first=True)\n", + "\n", + " # 5. Create stack Transformer Encoder layers (stacked single layers)\n", + " self.transformer_encoder = nn.TransformerEncoder(encoder_layer=nn.TransformerEncoderLayer(d_model=embedding_dim,\n", + " nhead=num_heads,\n", + " dim_feedforward=mlp_size,\n", + " activation=\"gelu\",\n", + " batch_first=True,\n", + " norm_first=True), # Create a single Transformer Encoder Layer\n", + " num_layers=num_transformer_layers) # Stack it N times\n", + "\n", + " # 7. Create MLP head\n", + " self.mlp_head = nn.Sequential(\n", + " nn.LayerNorm(normalized_shape=embedding_dim),\n", + " nn.Linear(in_features=embedding_dim,\n", + " out_features=num_classes)\n", + " )\n", + "\n", + " def forward(self, x):\n", + " # Get some dimensions from x\n", + " batch_size = x.shape[0]\n", + "\n", + " # Create the patch embedding\n", + " x = self.patch_embedding(x)\n", + " # print(x.shape)\n", + "\n", + " # First, expand the class token across the batch size\n", + " class_token = self.class_token.expand(batch_size, -1, -1) # \"-1\" means infer the dimension\n", + "\n", + " # Prepend the class token to the patch embedding\n", + " x = torch.cat((class_token, x), dim=1)\n", + " # print(x.shape)\n", + "\n", + " # Add the positional embedding to patch embedding with class token\n", + " x = self.positional_embedding + x\n", + " # print(x.shape)\n", + "\n", + " # Dropout on patch + positional embedding\n", + " x = self.embedding_dropout(x)\n", + "\n", + " # Pass embedding through Transformer Encoder stack\n", + " x = self.transformer_encoder(x)\n", + "\n", + " # Pass 0th index of x through MLP head\n", + " x = self.mlp_head(x[:, 0])\n", + "\n", + " return x" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "id": "XbAJu1uPWRxl" + }, + "outputs": [], + "source": [ + "!python vit.py" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "MHPoMC0B90zo", + "outputId": "5874976b-3dfd-4a9d-bb6a-e65b7488456f" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# summary(model=transformer_encoder,\n", - "# input_size=patch_embedding_output.shape)" - ], - "metadata": { - "id": "BrR6TI6qJ2Ub" - }, - "execution_count": 16, - "outputs": [] + "data": { + "text/plain": [ + "====================================================================================================\n", + "Layer (type:depth-idx) Output Shape Param #\n", + "====================================================================================================\n", + "ViT [1, 1000] 152,064\n", + "├─PatchEmbedding: 1-1 [1, 196, 768] --\n", + "│ └─Conv2d: 2-1 [1, 768, 14, 14] 590,592\n", + "│ └─Flatten: 2-2 [1, 768, 196] --\n", + "├─Dropout: 1-2 [1, 197, 768] --\n", + "├─TransformerEncoder: 1-3 [1, 197, 768] --\n", + "│ └─ModuleList: 2-3 -- --\n", + "│ │ └─TransformerEncoderLayer: 3-1 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-2 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-3 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-4 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-5 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-6 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-7 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-8 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-9 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-10 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-11 [1, 197, 768] 7,087,872\n", + "│ │ └─TransformerEncoderLayer: 3-12 [1, 197, 768] 7,087,872\n", + "├─Sequential: 1-4 [1, 1000] --\n", + "│ └─LayerNorm: 2-4 [1, 768] 1,536\n", + "│ └─Linear: 2-5 [1, 1000] 769,000\n", + "====================================================================================================\n", + "Total params: 86,567,656\n", + "Trainable params: 86,567,656\n", + "Non-trainable params: 0\n", + "Total mult-adds (M): 173.27\n", + "====================================================================================================\n", + "Input size (MB): 0.60\n", + "Forward/backward pass size (MB): 73.84\n", + "Params size (MB): 232.12\n", + "Estimated Total Size (MB): 306.56\n", + "====================================================================================================" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from vit import ViT\n", + "\n", + "imported_vit = ViT()\n", + "summary(model=imported_vit,\n", + " input_size=(1, 3, 224, 224))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aTKbje-e9118" + }, + "source": [ + "## 3. Train a pretrained ViT feature extractor model (like the one we made in [08. PyTorch Paper Replicating section 10](https://www.learnpytorch.io/08_pytorch_paper_replicating/#10-bring-in-pretrained-vit-from-torchvisionmodels-on-same-dataset)) on 20% of the pizza, steak and sushi data like the dataset we used in [07. PyTorch Experiment Tracking section 7.3](https://www.learnpytorch.io/07_pytorch_experiment_tracking/#73-download-different-datasets) \n", + "* See how it performs compared to the EffNetB2 model we compared it to in [08. PyTorch Paper Replicating section 10.6](https://www.learnpytorch.io/08_pytorch_paper_replicating/#106-save-feature-extractor-vit-model-and-check-file-size)." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "7ADlBmf2ZVL_" + }, + "outputs": [], + "source": [ + "set_seeds()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 692, + "referenced_widgets": [ + "f19a9bb425c6488e830d5600c129f22e", + "22ea6b6a2899467bab284b86ea60280e", + "2afefd5f072f41a6a9754b8b86885fd4", + "899a3c7eb54744b0867b948b62425136", + "223758f1c0994fec8fcd2be8947f9f4e", + "ef69dccad93e40509855e3042fca66b1", + "ea0de57a136f4ee782d0a0b60f15120c", + "14c9f4e69c854a53a8e15ab5323eec94", + "21000ae3a0ac49459ba4d66ce30e3349", + "f9d6180bf6e74ffcaaf5a8bbededb652", + "ed05f564f7e84d00881ee38a5b38c635" + ] }, + "id": "sQgnfeY19_FD", + "outputId": "561afdfc-8f9b-4de1-fef2-4c86b98f436e" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "### 5. Put it all together and create ViT \n", - "\n", - "We're skipping step 4, so that can be incorported the into the overall ViT architecture." - ], - "metadata": { - "id": "MqYt173ZKMan" - } + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading: \"https://download.pytorch.org/models/vit_b_16-c867db91.pth\" to /root/.cache/torch/hub/checkpoints/vit_b_16-c867db91.pth\n" + ] }, { - "cell_type": "code", - "source": [ - "class ViT(nn.Module): \n", - " def __init__(self,\n", - " img_size=224, # from Table 3\n", - " num_channels=3,\n", - " patch_size=16,\n", - " embedding_dim=768, # from Table 1\n", - " dropout=0.1, \n", - " mlp_size=3072, # from Table 1\n", - " num_transformer_layers=12, # from Table 1\n", - " num_heads=12, # from Table 1 (number of multi-head self attention heads)\n", - " num_classes=1000): # generic number of classes (this can be adjusted)\n", - " super().__init__()\n", - "\n", - " # Assert image size is divisible by patch size \n", - " assert img_size % patch_size == 0, \"Image size must be divisble by patch size.\"\n", - "\n", - " # 1. Create patch embedding\n", - " self.patch_embedding = PatchEmbedding(in_channels=num_channels,\n", - " patch_size=patch_size,\n", - " embedding_dim=embedding_dim)\n", - "\n", - " # 2. Create class token\n", - " self.class_token = nn.Parameter(torch.randn(1, 1, embedding_dim),\n", - " requires_grad=True)\n", - "\n", - " # 3. Create positional embedding\n", - " num_patches = (img_size * img_size) // patch_size**2 # N = HW/P^2\n", - " self.positional_embedding = nn.Parameter(torch.randn(1, num_patches+1, embedding_dim))\n", - "\n", - " # 4. Create patch + position embedding dropout \n", - " self.embedding_dropout = nn.Dropout(p=dropout)\n", - "\n", - " # # 5. Create Transformer Encoder layer (single)\n", - " # self.transformer_encoder_layer = nn.TransformerEncoderLayer(d_model=embedding_dim,\n", - " # nhead=num_heads,\n", - " # dim_feedforward=mlp_size,\n", - " # activation=\"gelu\",\n", - " # batch_first=True,\n", - " # norm_first=True)\n", - "\n", - " # 5. Create stack Transformer Encoder layers (stacked single layers)\n", - " self.transformer_encoder = nn.TransformerEncoder(encoder_layer=nn.TransformerEncoderLayer(d_model=embedding_dim,\n", - " nhead=num_heads,\n", - " dim_feedforward=mlp_size,\n", - " activation=\"gelu\",\n", - " batch_first=True,\n", - " norm_first=True), # Create a single Transformer Encoder Layer\n", - " num_layers=num_transformer_layers) # Stack it N times\n", - "\n", - " # 7. Create MLP head\n", - " self.mlp_head = nn.Sequential(\n", - " nn.LayerNorm(normalized_shape=embedding_dim),\n", - " nn.Linear(in_features=embedding_dim,\n", - " out_features=num_classes)\n", - " )\n", - "\n", - " def forward(self, x):\n", - " # Get some dimensions from x\n", - " batch_size = x.shape[0]\n", - "\n", - " # Create the patch embedding\n", - " x = self.patch_embedding(x)\n", - " # print(x.shape)\n", - "\n", - " # First, expand the class token across the batch size\n", - " class_token = self.class_token.expand(batch_size, -1, -1) # \"-1\" means infer the dimension\n", - "\n", - " # Prepend the class token to the patch embedding\n", - " x = torch.cat((class_token, x), dim=1)\n", - " # print(x.shape)\n", - "\n", - " # Add the positional embedding to patch embedding with class token\n", - " x = self.positional_embedding + x\n", - " # print(x.shape)\n", - "\n", - " # Dropout on patch + positional embedding\n", - " x = self.embedding_dropout(x)\n", - "\n", - " # Pass embedding through Transformer Encoder stack\n", - " x = self.transformer_encoder(x)\n", - "\n", - " # Pass 0th index of x through MLP head\n", - " x = self.mlp_head(x[:, 0])\n", - "\n", - " return x" - ], - "metadata": { - "id": "Pb-_4DY5KUHz" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f19a9bb425c6488e830d5600c129f22e", + "version_major": 2, + "version_minor": 0 }, - "execution_count": 17, - "outputs": [] + "text/plain": [ + " 0%| | 0.00/330M [00:00)" - ] - }, - "metadata": {}, - "execution_count": 18 - } + "data": { + "text/plain": [ + "======================================================================================================================================================\n", + "Layer (type (var_name)) Input Shape Output Shape Param # Trainable\n", + "======================================================================================================================================================\n", + "VisionTransformer (VisionTransformer) [1, 3, 224, 224] [1, 3] 768 Partial\n", + "├─Conv2d (conv_proj) [1, 3, 224, 224] [1, 768, 14, 14] (590,592) False\n", + "├─Encoder (encoder) [1, 197, 768] [1, 197, 768] 151,296 False\n", + "│ └─Dropout (dropout) [1, 197, 768] [1, 197, 768] -- --\n", + "│ └─Sequential (layers) [1, 197, 768] [1, 197, 768] -- False\n", + "│ │ └─EncoderBlock (encoder_layer_0) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_1) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_2) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_3) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_4) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_5) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_6) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_7) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_8) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_9) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_10) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_11) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ └─LayerNorm (ln) [1, 197, 768] [1, 197, 768] (1,536) False\n", + "├─Sequential (heads) [1, 768] [1, 3] -- True\n", + "│ └─LayerNorm (0) [1, 768] [1, 768] 1,536 True\n", + "│ └─Linear (1) [1, 768] [1, 3] 2,307 True\n", + "======================================================================================================================================================\n", + "Total params: 85,802,499\n", + "Trainable params: 3,843\n", + "Non-trainable params: 85,798,656\n", + "Total mult-adds (M): 172.47\n", + "======================================================================================================================================================\n", + "Input size (MB): 0.60\n", + "Forward/backward pass size (MB): 104.09\n", + "Params size (MB): 257.56\n", + "Estimated Total Size (MB): 362.25\n", + "======================================================================================================================================================" ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Create ViT feature extractor model\n", + "import torchvision\n", + "\n", + "# Download pretrained ViT weights and model\n", + "vit_weights = torchvision.models.ViT_B_16_Weights.DEFAULT # \"DEFAULT\" means best available\n", + "pretrained_vit = torchvision.models.vit_b_16(weights=vit_weights)\n", + "\n", + "# Freeze all layers in pretrained ViT model \n", + "for param in pretrained_vit.parameters():\n", + " param.requires_grad = False\n", + "\n", + "# Update the preatrained ViT head \n", + "embedding_dim = 768 # ViT_Base\n", + "set_seeds()\n", + "pretrained_vit.heads = nn.Sequential(\n", + " nn.LayerNorm(normalized_shape=embedding_dim),\n", + " nn.Linear(in_features=embedding_dim, \n", + " out_features=len(class_names))\n", + ")\n", + "\n", + "# Print a summary\n", + "summary(model=pretrained_vit, \n", + " input_size=(1, 3, 224, 224), # (batch_size, color_channels, height, width)\n", + " # col_names=[\"input_size\"], # uncomment for smaller output\n", + " col_names=[\"input_size\", \"output_size\", \"num_params\", \"trainable\"],\n", + " col_width=20,\n", + " row_settings=[\"var_names\"]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "hUMnrLadXaFY", + "outputId": "3c9a7884-0d16-46fe-e8ac-a735334dff13" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "summary(model=ViT(num_classes=3),\n", - " input_size=demo_img.shape)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "ACWzvkx2Utgl", - "outputId": "3b9ca82b-0adb-4cec-92a3-fad7e13165c0" - }, - "execution_count": 19, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "====================================================================================================\n", - "Layer (type:depth-idx) Output Shape Param #\n", - "====================================================================================================\n", - "ViT [1, 3] 152,064\n", - "├─PatchEmbedding: 1-1 [1, 196, 768] --\n", - "│ └─Conv2d: 2-1 [1, 768, 14, 14] 590,592\n", - "│ └─Flatten: 2-2 [1, 768, 196] --\n", - "├─Dropout: 1-2 [1, 197, 768] --\n", - "├─TransformerEncoder: 1-3 [1, 197, 768] --\n", - "│ └─ModuleList: 2-3 -- --\n", - "│ │ └─TransformerEncoderLayer: 3-1 [1, 197, 768] 7,087,872\n", - "│ │ └─TransformerEncoderLayer: 3-2 [1, 197, 768] 7,087,872\n", - "│ │ └─TransformerEncoderLayer: 3-3 [1, 197, 768] 7,087,872\n", - "│ │ └─TransformerEncoderLayer: 3-4 [1, 197, 768] 7,087,872\n", - "│ │ └─TransformerEncoderLayer: 3-5 [1, 197, 768] 7,087,872\n", - "│ │ └─TransformerEncoderLayer: 3-6 [1, 197, 768] 7,087,872\n", - "│ │ └─TransformerEncoderLayer: 3-7 [1, 197, 768] 7,087,872\n", - "│ │ └─TransformerEncoderLayer: 3-8 [1, 197, 768] 7,087,872\n", - "│ │ └─TransformerEncoderLayer: 3-9 [1, 197, 768] 7,087,872\n", - "│ │ └─TransformerEncoderLayer: 3-10 [1, 197, 768] 7,087,872\n", - "│ │ └─TransformerEncoderLayer: 3-11 [1, 197, 768] 7,087,872\n", - "│ │ └─TransformerEncoderLayer: 3-12 [1, 197, 768] 7,087,872\n", - "├─Sequential: 1-4 [1, 3] --\n", - "│ └─LayerNorm: 2-4 [1, 768] 1,536\n", - "│ └─Linear: 2-5 [1, 3] 2,307\n", - "====================================================================================================\n", - "Total params: 85,800,963\n", - "Trainable params: 85,800,963\n", - "Non-trainable params: 0\n", - "Total mult-adds (M): 172.50\n", - "====================================================================================================\n", - "Input size (MB): 0.60\n", - "Forward/backward pass size (MB): 73.83\n", - "Params size (MB): 229.05\n", - "Estimated Total Size (MB): 303.49\n", - "====================================================================================================" - ] - }, - "metadata": {}, - "execution_count": 19 - } - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "[INFO] Did not find data/pizza_steak_sushi_20_percent directory, creating one...\n", + "[INFO] Downloading pizza_steak_sushi_20_percent.zip from https://github.com/mrdbourke/pytorch-deep-learning/raw/main/data/pizza_steak_sushi_20_percent.zip...\n", + "[INFO] Unzipping pizza_steak_sushi_20_percent.zip data...\n" + ] + } + ], + "source": [ + "# Get 20% of the data\n", + "data_20_percent_path = download_data(source=\"https://github.com/mrdbourke/pytorch-deep-learning/raw/main/data/pizza_steak_sushi_20_percent.zip\",\n", + " destination=\"pizza_steak_sushi_20_percent\")\n", + "\n", + "# Setup train and test directories\n", + "train_dir_20_percent = data_20_percent_path / \"train\"\n", + "# test_dir_20_percent = data_20_percent_path / \"test\" # don't need 20% test data as the model in 07. PyTorch Experiment Tracking section 7.3 tests on the 10% dataset not the 20%\n", + "\n", + "# Preprocess the data\n", + "vit_transforms = vit_weights.transforms() # get transforms from vit_weights\n", + "train_dataloader_20_percent, test_dataloader, class_names = data_setup.create_dataloaders(train_dir=train_dir_20_percent, \n", + " test_dir=test_dir, # use 10% data for testing\n", + " transform=vit_transforms, \n", + " batch_size=32)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "06lKpP4ecBak", + "outputId": "dd014587-4bec-4e03-d64b-64f8489ca0ef" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "len(class_names)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "vOXzwo9FT7uT", - "outputId": "7b84bd12-3f98-4583-f936-13b1c566657a" - }, - "execution_count": 20, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "3" - ] - }, - "metadata": {}, - "execution_count": 20 - } + "data": { + "text/plain": [ + "(8, 15, 3)" ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(train_dataloader), len(train_dataloader_20_percent), len(test_dataloader) " + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 228, + "referenced_widgets": [ + "b695c70e6147429ba217ba33e96d226e", + "cea652ed4443470bb0e7177ca97483b9", + "c2d4e872f3a146088ec5a3befeb8fd12", + "2df321077b244eae825466422ef0bdfb", + "31690837feef4696ab18ad72b363e6fd", + "a812ad16865e42df8cc28512f6bf034f", + "503f290ef1704e8199c52fb3ab150bdf", + "be6101867f2c47ca8b5450b2a2755702", + "ab127b12615c45ed8b27a59584657bde", + "4298507389e2419ba787f316d2c09c58", + "1008a3eb2c1e444f8fc417fa2aabd3c6" + ] }, + "id": "uaWLHmdRYwiL", + "outputId": "cbc0b8ef-401c-4a69-8b06-123478325ffd" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "embedding_dim=768\n", - "class_token = nn.Parameter(torch.randn(1, 1, embedding_dim),\n", - " requires_grad=True)\n", - "class_token.requires_grad" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "tylU60JINK_m", - "outputId": "a6faf647-ecbe-46cb-ef76-dbb79bc20c9d" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b695c70e6147429ba217ba33e96d226e", + "version_major": 2, + "version_minor": 0 }, - "execution_count": 21, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "True" - ] - }, - "metadata": {}, - "execution_count": 21 - } + "text/plain": [ + " 0%| | 0/10 [00:00" ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Examine results\n", + "from helper_functions import plot_loss_curves\n", + "\n", + "plot_loss_curves(pretrained_vit_results)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LH-vHr3m9_oH" + }, + "source": [ + "## 4. Try repeating the steps from excercise 3 but this time use the \"`ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1`\" pretrained weights from [`torchvision.models.vit_b_16()`](https://pytorch.org/vision/stable/models/generated/torchvision.models.vit_b_16.html#torchvision.models.vit_b_16).\n", + "* Note: ViT pretrained with SWAG weights has a minimum input image size of (384, 384), though this is accessible in the weights `.transforms()` method." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 692, + "referenced_widgets": [ + "d1c7ef8be6974da1bffac9352f5bb756", + "69e851ff3c3344b3ba0dbad055a542ba", + "c3f31ae0b1654d338a6d16600fd0ae7c", + "7c07eac4cfb3485b81b301722b8ed256", + "f5a3786b73544319973f81cb502247fa", + "f9fd5a5bb97f4f68978610975a864fcf", + "069a53cbbc6c489bb0e93920fe9c74e7", + "4ae1ed5541474dbeb8946a87b97ed3b8", + "1fedade3d325455fab7041a5ecdf7a24", + "2163e30923ee4e98a0b524113055cbbf", + "8992a45afd2a42e48e655a12ba80291f" + ] }, + "id": "6XrqQuzQ-Nlh", + "outputId": "a8d3ef47-0e36-484e-d186-4a91f21820aa" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "## 2. Turn the custom ViT architecture we created into a Python script, for example, `vit.py`.\n", - "\n", - "* You should be able to import an entire ViT model using something like`from vit import ViT`.\n", - "\n", - "Let's copy all of our ViT model dependencies to a single cell and write it to file using the magic `%writefile FILENAME`. " - ], - "metadata": { - "id": "MBWnDZao9w_5" - } + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading: \"https://download.pytorch.org/models/vit_b_16_swag-9ac1b537.pth\" to /root/.cache/torch/hub/checkpoints/vit_b_16_swag-9ac1b537.pth\n" + ] }, { - "cell_type": "code", - "source": [ - "%%writefile vit.py\n", - "import torch\n", - "from torch import nn \n", - "\n", - "# 1. Create a class which subclasses nn.Module\n", - "class PatchEmbedding(nn.Module):\n", - " \"\"\"Turns a 2D input image into a 1D sequence learnable embedding vector.\n", - " \n", - " Args:\n", - " in_channels (int): Number of color channels for the input images. Defaults to 3.\n", - " patch_size (int): Size of patches to convert input image into. Defaults to 16.\n", - " embedding_dim (int): Size of embedding to turn image into. Defaults to 768.\n", - " \"\"\" \n", - " # 2. Initialize the class with appropriate variables\n", - " def __init__(self, \n", - " in_channels:int=3,\n", - " patch_size:int=16,\n", - " embedding_dim:int=768):\n", - " super().__init__()\n", - " \n", - " self.patch_size = patch_size\n", - " \n", - " # 3. Create a layer to turn an image into patches\n", - " self.patcher = nn.Conv2d(in_channels=in_channels,\n", - " out_channels=embedding_dim,\n", - " kernel_size=patch_size,\n", - " stride=patch_size,\n", - " padding=0)\n", - "\n", - " # 4. Create a layer to flatten the patch feature maps into a single dimension\n", - " self.flatten = nn.Flatten(start_dim=2, # only flatten the feature map dimensions into a single vector\n", - " end_dim=3)\n", - "\n", - " # 5. Define the forward method \n", - " def forward(self, x):\n", - " # Create assertion to check that inputs are the correct shape\n", - " image_resolution = x.shape[-1]\n", - " assert image_resolution % self.patch_size == 0, f\"Input image size must be divisble by patch size, image shape: {image_resolution}, patch size: {self.patch_size}\"\n", - " \n", - " # Perform the forward pass\n", - " x_patched = self.patcher(x)\n", - " x_flattened = self.flatten(x_patched) \n", - " # 6. Make sure the output shape has the right order \n", - " return x_flattened.permute(0, 2, 1) # adjust so the embedding is on the final dimension [batch_size, P^2•C, N] -> [batch_size, N, P^2•C]\n", - "\n", - "class ViT(nn.Module): \n", - " def __init__(self,\n", - " img_size=224, # from Table 3\n", - " num_channels=3,\n", - " patch_size=16,\n", - " embedding_dim=768, # from Table 1\n", - " dropout=0.1, \n", - " mlp_size=3072, # from Table 1\n", - " num_transformer_layers=12, # from Table 1\n", - " num_heads=12, # from Table 1 (number of multi-head self attention heads)\n", - " num_classes=1000): # generic number of classes (this can be adjusted)\n", - " super().__init__()\n", - "\n", - " # Assert image size is divisible by patch size \n", - " assert img_size % patch_size == 0, \"Image size must be divisble by patch size.\"\n", - "\n", - " # 1. Create patch embedding\n", - " self.patch_embedding = PatchEmbedding(in_channels=num_channels,\n", - " patch_size=patch_size,\n", - " embedding_dim=embedding_dim)\n", - "\n", - " # 2. Create class token\n", - " self.class_token = nn.Parameter(torch.randn(1, 1, embedding_dim),\n", - " requires_grad=True)\n", - "\n", - " # 3. Create positional embedding\n", - " num_patches = (img_size * img_size) // patch_size**2 # N = HW/P^2\n", - " self.positional_embedding = nn.Parameter(torch.randn(1, num_patches+1, embedding_dim))\n", - "\n", - " # 4. Create patch + position embedding dropout \n", - " self.embedding_dropout = nn.Dropout(p=dropout)\n", - "\n", - " # # 5. Create Transformer Encoder layer (single)\n", - " # self.transformer_encoder_layer = nn.TransformerEncoderLayer(d_model=embedding_dim,\n", - " # nhead=num_heads,\n", - " # dim_feedforward=mlp_size,\n", - " # activation=\"gelu\",\n", - " # batch_first=True,\n", - " # norm_first=True)\n", - "\n", - " # 5. Create stack Transformer Encoder layers (stacked single layers)\n", - " self.transformer_encoder = nn.TransformerEncoder(encoder_layer=nn.TransformerEncoderLayer(d_model=embedding_dim,\n", - " nhead=num_heads,\n", - " dim_feedforward=mlp_size,\n", - " activation=\"gelu\",\n", - " batch_first=True,\n", - " norm_first=True), # Create a single Transformer Encoder Layer\n", - " num_layers=num_transformer_layers) # Stack it N times\n", - "\n", - " # 7. Create MLP head\n", - " self.mlp_head = nn.Sequential(\n", - " nn.LayerNorm(normalized_shape=embedding_dim),\n", - " nn.Linear(in_features=embedding_dim,\n", - " out_features=num_classes)\n", - " )\n", - "\n", - " def forward(self, x):\n", - " # Get some dimensions from x\n", - " batch_size = x.shape[0]\n", - "\n", - " # Create the patch embedding\n", - " x = self.patch_embedding(x)\n", - " # print(x.shape)\n", - "\n", - " # First, expand the class token across the batch size\n", - " class_token = self.class_token.expand(batch_size, -1, -1) # \"-1\" means infer the dimension\n", - "\n", - " # Prepend the class token to the patch embedding\n", - " x = torch.cat((class_token, x), dim=1)\n", - " # print(x.shape)\n", - "\n", - " # Add the positional embedding to patch embedding with class token\n", - " x = self.positional_embedding + x\n", - " # print(x.shape)\n", - "\n", - " # Dropout on patch + positional embedding\n", - " x = self.embedding_dropout(x)\n", - "\n", - " # Pass embedding through Transformer Encoder stack\n", - " x = self.transformer_encoder(x)\n", - "\n", - " # Pass 0th index of x through MLP head\n", - " x = self.mlp_head(x[:, 0])\n", - "\n", - " return x" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "wSnv2g7kWLxv", - "outputId": "baa77072-c14e-4b34-b81a-3d7214b47df2" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d1c7ef8be6974da1bffac9352f5bb756", + "version_major": 2, + "version_minor": 0 }, - "execution_count": 24, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Writing vit.py\n" - ] - } + "text/plain": [ + " 0%| | 0.00/331M [00:00" ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from helper_functions import plot_loss_curves\n", + "\n", + "plot_loss_curves(pretrained_vit_swag_results)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UGKYpI6_hRz2" + }, + "source": [ + "## Bonus: Get the \"most wrong\" examples from the test dataset\n", + "\n", + "Since our ViT model trained with SWAG weights performed so well on the test set (close to 99% accuracy), let's see which samples it actually got wrong...\n", + "\n", + "Code from: https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/solutions/06_pytorch_transfer_learning_exercise_solutions.ipynb exercise 2" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "ncTLFSKXhrgI", + "outputId": "fcd9a610-a291-4ae8-c296-036bb4d69333" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# Train a pretrained ViT feature extractor\n", - "from going_modular.going_modular import engine\n", - "\n", - "optimizer = torch.optim.Adam(params=pretrained_vit.parameters(),\n", - " lr=1e-3)\n", - "loss_fn = torch.nn.CrossEntropyLoss()\n", - "\n", - "set_seeds()\n", - "pretrained_vit_results = engine.train(model=pretrained_vit,\n", - " train_dataloader=train_dataloader_20_percent,\n", - " test_dataloader=test_dataloader,\n", - " optimizer=optimizer,\n", - " loss_fn=loss_fn,\n", - " epochs=10,\n", - " device=device)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 228, - "referenced_widgets": [ - "b695c70e6147429ba217ba33e96d226e", - "cea652ed4443470bb0e7177ca97483b9", - "c2d4e872f3a146088ec5a3befeb8fd12", - "2df321077b244eae825466422ef0bdfb", - "31690837feef4696ab18ad72b363e6fd", - "a812ad16865e42df8cc28512f6bf034f", - "503f290ef1704e8199c52fb3ab150bdf", - "be6101867f2c47ca8b5450b2a2755702", - "ab127b12615c45ed8b27a59584657bde", - "4298507389e2419ba787f316d2c09c58", - "1008a3eb2c1e444f8fc417fa2aabd3c6" - ] - }, - "id": "uaWLHmdRYwiL", - "outputId": "cbc0b8ef-401c-4a69-8b06-123478325ffd" - }, - "execution_count": 31, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - " 0%| | 0/10 [00:00" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAG5CAYAAAD/HsejAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3iUVdrH8e9JbxAICb0koSNIbyLCilQRBBGUIiBFdO1tcRd11V3Lyrrqq6KIoBQRRVFUkKaIFQgICoj03gKhhRDSzvvHM8HQA0wymZnf57pymZl55jn3JIPz3Dn3uY+x1iIiIiIiIiJFR4CnAxAREREREZFTKVETEREREREpYpSoiYiIiIiIFDFK1ERERERERIoYJWoiIiIiIiJFjBI1ERERERGRIkaJmoiIiIiISBGjRE3kMhhjthhjrvN0HCIiIgXNGLPQGHPQGBPq6VhE/IESNRERERE5L2NMPNAasEC3Qhw3qLDGEilqlKiJuJkxJtQY87IxZpfr6+Xcvz4aY2KNMV8YYw4ZY1KMMd8ZYwJcj/3NGLPTGHPUGPOHMaadZ1+JiIjISbcBPwPvAgNz7zTGVDLGfGKMSTbGHDDGvJbnsWHGmN9dn2trjDGNXPdbY0y1PMe9a4z5l+v7tsaYHa7PxD3ABGNMSddnZ7JrRu8LY0zFPM+PMcZMcH3mHjTGfOq6f5Ux5oY8xwUbY/YbYxoW2E9JxI2UqIm43z+AFkADoD7QDBjleuwhYAcQB5QB/g5YY0xN4G6gqbW2GNAR2FK4YYuIiJzTbcAU11dHY0wZY0wg8AWwFYgHKgAfABhjbgb+6XpecZxZuAP5HKssEANUAYbjXK9OcN2uDBwHXstz/CQgArgCKA38z3X/RKB/nuO6ALuttb/kMw4Rj9J0soj79QPusdbuAzDGPAW8BTwOZALlgCrW2g3Ad65jsoFQoI4xJtlau8UTgYuIiJzOGHM1TpL0obV2vzFmI9AXZ4atPPCItTbLdfj3rv8OBf5jrV3qur3hIobMAZ601p5w3T4OfJwnnn8D37i+Lwd0BkpZaw+6DvnW9d/JwOPGmOLW2iPAAJykTsQraEZNxP3K4/x1MddW130AL+J8WM01xmwyxowEcCVt9+P89XGfMeYDY0x5REREPG8gMNdau991+33XfZWArXmStLwqARsvcbxka2167g1jTIQx5i1jzFZjzBFgEVDCNaNXCUjJk6SdZK3dBfwA3GSMKYGT0E25xJhECp0SNRH324Xzl8dclV33Ya09aq19yFqbiFMG8mDuWjRr7fvW2ty/WlrghcINW0RE5FTGmHCgN9DGGLPHtW7sAZzS/r1A5XM0/NgOVD3HadNwShVzlT3tcXva7YeAmkBza21x4Jrc8FzjxLgSsbN5D6f88WbgJ2vtznMcJ1LkKFETuXzBxpiw3C9gKjDKGBNnjIkFnsApv8AY09UYU80YY4DDQDaQY4ypaYy51tV0JB2nzCPHMy9HRETkpBtxPqvq4Ky9bgDUxindvxHYDTxvjIl0fQ62cj1vHPCwMaaxcVQzxuT+EXMF0NcYE2iM6QS0uUAMxXA+Fw8ZY2KAJ3MfsNbuBmYDb7iajgQbY67J89xPgUbAfThr1kS8hhI1kcs3C+cDJPcrDEgCfgV+A5YD/3IdWx2YD6QCPwFvWGu/wVmf9jywH9iDsxj6scJ7CSIiImc1EJhgrd1mrd2T+4XTzONW4AagGrANp1lWHwBr7UfAv3HKJI/iJEwxrnPe53reIZx13Z9eIIaXgXCcz8ifga9Oe3wAzhrwtcA+nKUEuOLIXd+WAHxyka9dxKOMtafPLouIiIiI+AZjzBNADWtt/wseLFKEqOujiIiIiPgkV6nkEJxZNxGvotJHEREREfE5xphhOM1GZltrF3k6HpGLpdJHERERERGRIkYzaiIiIiIiIkWMx9aoxcbG2vj4eE8NLyIihWjZsmX7rbVxno7DW+gzUkTEP5zv89FjiVp8fDxJSUmeGl5ERAqRMWarp2PwJvqMFBHxD+f7fFTpo4iIiIiISBGjRE1ERERERKSIUaImIiIiIiJSxGjDaxHxe5mZmezYsYP09HRPh+L1wsLCqFixIsHBwZ4Oxa2MMeOBrsA+a23dszxugFeALkAaMMhau9z12EBglOvQf1lr37uUGPQ+9S6++m9BRAqPEjUR8Xs7duygWLFixMfH41xvy6Ww1nLgwAF27NhBQkKCp8Nxt3eB14CJ53i8M1Dd9dUcGAM0N8bEAE8CTQALLDPGzLTWHrzYAPQ+9R4+/m9BRAqJSh9FxO+lp6dTqlQpXfxeJmMMpUqV8skZH2vtIiDlPId0ByZax89ACWNMOaAjMM9am+JKzuYBnS4lBr1PvYcv/1sQkcKjRE1EBHTx6yZ+/HOsAGzPc3uH675z3X8GY8xwY0ySMSYpOTn5rIP48c/X6+h3JSKXS4maiIhIEWCtHWutbWKtbRIXp73BRUT8nRI1ERGRy7cTqJTndkXXfee6X0RE5LyUqImIeNihQ4d44403Lvp5Xbp04dChQxf9vEGDBjF9+vSLfp6c10zgNuNoARy21u4G5gAdjDEljTElgQ6u+7xOYb9PRUT8nRI1EREPO9cFcFZW1nmfN2vWLEqUKFFQYUkexpipwE9ATWPMDmPMEGPMCGPMCNchs4BNwAbgbeAuAGttCvAMsNT19bTrPq/jq+/TC8UvIuIpas8vIpLHU5+vZs2uI249Z53yxXnyhivO+fjIkSPZuHEjDRo0IDg4mLCwMEqWLMnatWtZt24dN954I9u3byc9PZ377ruP4cOHAxAfH09SUhKpqal07tyZq6++mh9//JEKFSrw2WefER4efsHYFixYwMMPP0xWVhZNmzZlzJgxhIaGMnLkSGbOnElQUBAdOnRg9OjRfPTRRzz11FMEBgYSHR3NokWL3PYzKuqstbde4HEL/PUcj40HxrszHn94n7799tuMHTuWjIwMqlWrxqRJk4iIiGDv3r2MGDGCTZs2ATBmzBiuuuoqJk6cyOjRozHGcOWVVzJp0iQGDRpE165d6dWrFwBRUVGkpqaycOFCHn/88XzF/9VXX/H3v/+d7OxsYmNjmTdvHjVr1uTHH38kLi6OnJwcatSowU8//YTWFoqIOylRExHxsOeff55Vq1axYsUKFi5cyPXXX8+qVatO7r80fvx4YmJiOH78OE2bNuWmm26iVKlSp5xj/fr1TJ06lbfffpvevXvz8ccf079///OOm56ezqBBg1iwYAE1atTgtttuY8yYMQwYMIAZM2awdu1ajDEny9aefvpp5syZQ4UKFVTK5ocK+33as2dPhg0bBsCoUaN45513uOeee7j33ntp06YNM2bMIDs7m9TUVFavXs2//vUvfvzxR2JjY0lJufCk5fLlyy8Yf05ODsOGDWPRokUkJCSQkpJCQEAA/fv3Z8qUKdx///3Mnz+f+vXrK0kTEbdToiYiksf5ZhQKS7NmzU7ZJPfVV19lxowZAGzfvp3169efcQGckJBAgwYNAGjcuDFbtmy54Dh//PEHCQkJ1KhRA4CBAwfy+uuvc/fddxMWFsaQIUPo2rUrXbt2BaBVq1YMGjSI3r1707NnT3e8VLlE/vA+XbVqFaNGjeLQoUOkpqbSsWNHAL7++msmTnT2Hc+d3Z04cSI333wzsbGxAMTExLgl/uTkZK655pqTx+We9/bbb6d79+7cf//9jB8/nsGDB19wPBGRi+W1iVpaRhYb9qVSt3w0AQHaq0REfEdkZOTJ7xcuXMj8+fP56aefiIiIoG3btmfdRDc0NPTk94GBgRw/fvySxw8KCmLJkiUsWLCA6dOn89prr/H111/z5ptvsnjxYr788ksaN27MsmXLzrgQF/9R0O/TQYMG8emnn1K/fn3effddFi5ceNExBgUFkZOTA0BOTg4ZGRmXFX+uSpUqUaZMGb7++muWLFnClClTLjo2EbmwE1nZbDuQRo71dCRnVzIymNLFwgrs/F6bqH2yfCejPl3FjyOvpXyJC6/DEBEpqooVK8bRo0fP+tjhw4cpWbIkERERrF27lp9//tlt49asWZMtW7awYcOGk2uA2rRpQ2pqKmlpaXTp0oVWrVqRmJgIwMaNG2nevDnNmzdn9uzZbN++XYmaHyns9+nRo0cpV64cmZmZTJkyhQoVnH3C27Vrx5gxY7j//vtPlj5ee+219OjRgwcffJBSpUqRkpJCTEwM8fHxLFu2jN69ezNz5kwyMzMvKv4WLVpw1113sXnz5pOlj7mzakOHDqV///4MGDCAwMDAy369IgJH0jNZtvUgSVtSWLr5ICt2HCIjK8fTYZ3TiDZVGdm5VoGd32sTtcQ45y9hm5KPKVETEa9WqlQpWrVqRd26dQkPD6dMmTInH+vUqRNvvvkmtWvXpmbNmrRo0cJt44aFhTFhwgRuvvnmk81ERowYQUpKCt27dyc9PR1rLS+99BIAjzzyCOvXr8daS7t27ahfv77bYpGir7Dfp8888wzNmzcnLi6O5s2bn0wSX3nlFYYPH84777xDYGAgY8aMoWXLlvzjH/+gTZs2BAYG0rBhQ959912GDRtG9+7dqV+/Pp06dTplFi2vc8UfFxfH2LFj6dmzJzk5OZQuXZp58+YB0K1bNwYPHqyyR5HLsPdIOku3pLB0cwpLthxk7Z4jWAuBAYa6FaK5rUUV6lWMJjiwaDaqz81HCopxGlUVviZNmtikpKRLfv7eI+k0f3YBT3e/gttaxrsvMBHxO7///ju1a9f2dBg+42w/T2PMMmttEw+F5HXO9hmp92nRkpSUxAMPPMB33313zmP0OxP5k7WWTfuPsXRzCku3HGTplhS2paQBEB4cSKMqJWgaH0PT+BgaVi5BRIjXziddlPN9PnrtT6B0sVAiQwLZlHzM06GIiIiIH3n++ecZM2aM1qaJnEdWdg6rdx1xZsy2pJC05SAHjjnrRGMiQ2gaX5LbWlahaXwMdcoXL7KzZp7ktYmaMYbEuCg2Jqd6OhQRkSLpr3/9Kz/88MMp9913330q1ZIixRvfpyNHjmTkyJGeDkOkSEnLyGLFtkMscSVly7cdJC0jG4DKMRG0qRlHs/gYmsTHUDUuEmPUDPBCvDZRA6cuNGnLQU+HISJSJL3++uueDkHkgvQ+FfFOKccyXDNlzvqy1TsPk5VjMQZqlS1Or8YVT5Yylo0uuM6Ivsy7E7XYKGau3EV6ZjZhweq4JCIiIiLibtZadhw8frKMcemWg2zY51S1hQQGUL9SNMOvSaRpQgyNKpckOjzYwxH7Bu9O1OIisRa2HDhGrbLFPR2OiIiIiIjXy8mx/LH36MmkbOnmFPYccfYWLBYWRJMqJenRsALNEmKoVyFaEyYFxOsTNXBa9CtRExERERG5eCeysvltx2GWuFrlL9t6kCPpWQCUKR5K0/gYmiU4ZYw1yhQjMEDrywqDVydqCbG5iZoaioiIiBSkQ4cO8f7773PXXXdd9HNffvllhg8fTkRERAFEJiIX63wbS1eNi+T6K8vRpIqTnFUsGa7GHx7i1YlaREgQ5aLD1KJfRLxaQV8Ax8fHk5SURGxs7OWEKX7u0KFDvPHGG5f8Pu3fv3+RSNSysrIICvLqyx+Ri7bvSPrJ2bJzbSzdJD6GpvElKRUV6ulwxcXr/0+VGBfJxv1K1ETEe/nKBbD4tpEjR7Jx40YaNGhA+/btKV26NB9++CEnTpygR48ePPXUUxw7dozevXuzY8cOsrOzefzxx9m7dy+7du3iL3/5C7GxsXzzzTdnPf+dd97J0qVLOX78OL169eKpp54CYOnSpdx3330cO3aM0NBQFixYQEREBH/729/46quvCAgIYNiwYdxzzz2n/FEiKSmJhx9+mIULF/LPf/6TjRs3smnTJipXrsxzzz3HgAEDOHbMuX547bXXuOqqqwB44YUXmDx5MgEBAXTu3Jlhw4Zx8803s3z5cgDWr19Pnz59Tt4WKWrys7H0fe2q+93G0t7I638zibFRfLpiJ9ZaTcuKyOWbPRL2/Obec5atB52fP+fDBX0BnNdLL73E+PHjARg6dCj333//Wc/dp08fRo4cycyZMwkKCqJDhw6MHj3abT8SuUweeJ8+//zzrFq1ihUrVjB37lymT5/OkiVLsNbSrVs3Fi1aRHJyMuXLl+fLL78E4PDhw0RHR/PSSy/xzTffnHdW99///jcxMTFkZ2fTrl07fv31V2rVqkWfPn2YNm0aTZs25ciRI4SHhzN27Fi2bNnCihUrCAoKIiUl5YIvb82aNXz//feEh4eTlpbGvHnzCAsLY/369dx6660kJSUxe/ZsPvvsMxYvXkxERAQpKSnExMQQHR3NihUraNCgARMmTCjSe7yJ/8nKzmHN7iMs2Xz2jaWbVNHG0t7K+xO1uEiOpmexPzWDuGKaqhUR71PQF8C5li1bxoQJE1i8eDHWWpo3b06bNm3YtGnTGec+cOAAM2bMYO3atRhjOHToUIH+DMS7zJ07l7lz59KwYUMAUlNTWb9+Pa1bt+ahhx7ib3/7G127dqV169b5PueHH37I2LFjycrKYvfu3axZswZjDOXKlaNp06YAFC/uNA6bP38+I0aMOFnCGBMTc8Hzd+vWjfDwcAAyMzO5++67WbFiBYGBgaxbt+7keQcPHnxyhjr3vEOHDmXChAm89NJLTJs2jSVLluT7dYm42/GMbH7ZdvDkbFnejaUrxYRrY2kf4gOJWhTgNBRRoiYil+08MwqFoSAugHN9//339OjRg8hIpxFTz549+e677+jUqdMZ587KyiIsLIwhQ4bQtWtXunbt6tbXKZfJw+9Tay2PPfYYd9xxxxmPLV++nFmzZjFq1CjatWvHE088ccHzbd68mdGjR7N06VJKlizJoEGDSE9Pv+i4goKCyMlxGiKc/vzc9z3A//73P8qUKcPKlSvJyckhLOz8m/HedNNNPPXUU1x77bU0btyYUqVKXXRsIpfqoGtj6dxW+au0sbTf8Pq5z8Tczo9apyYiPiD3AnjFihWsWLGCDRs2MGTIEGrUqMHy5cupV68eo0aN4umnn3bbmGc7d1BQEEuWLKFXr1588cUXdOrUyW3jiXcqVqwYR48eBaBjx46MHz+e1FSn6/LOnTvZt28fu3btIiIigv79+/PII4+cXMeV97lnc+TIESIjI4mOjmbv3r3Mnj0bgJo1a7J7926WLl0KwNGjR8nKyqJ9+/a89dZbZGU57cNzSx/j4+NZtmwZAB9//PE5xzt8+DDlypUjICCASZMmkZ3tzEa0b9+eCRMmkJaWdsp5w8LC6NixI3feeafKHqVAWWvZnpLGjF928Ngnv3HdS9/S8Jl5DJ+0jPd+3EpwoGH4NYlMGNSUFU90YPZ9rXm6e11uqF9eSZoP8voZtQolwgkNClCLfhHxWqdfAD/++OP069ePqKgodu7cSXBwMFlZWcTExNC/f39KlCjBuHHjTnlufkofW7duzaBBgxg5ciTWWmbMmMGkSZPYtWvXGedOTU0lLS2NLl260KpVKxITEwv0ZyBFX6lSpWjVqhV169alc+fO9O3bl5YtWwIQFRXF5MmT2bBhA4888ggBAQEEBwczZswYAIYPH06nTp0oX778WddS1q9fn4YNG1KrVi0qVapEq1atAAgJCWHatGncc889HD9+nPDwcObPn8/QoUNZt24dV155JcHBwQwbNoy7776bJ598kiFDhvD444/Ttm3bc76Wu+66i5tuuomJEyfSqVOnk7NtnTp1YsWKFTRp0oSQkBC6dOnCs88+C0C/fv2YMWMGHTp0cOePVfxcTo5l3b6jJ7sxJm1JYfdh18bSoUE0jtfG0v7MWGs9MnCTJk1sUlKSW87V6eVFVCwZzriBTd1yPhHxL7///ju1a9f2aAx9+/bl119/pXPnzlSsWPFkIna+C+AmTZrwf//3f7z22mvnvACGU9vzn62ZyJw5c844d4UKFejevTvp6elYa3n44YcZOHBgvl7L2X6exphl1toml/Ej8itn+4wsCu9TfzZ69GgOHz7MM888k+/n6HcmpzuRlc2qnYdZsvmgq/FHyhkbS+d+1SyrjaX9wfk+H30iUbtryjLW7j7K1w+3dcv5RMS/6GLKvZSoXT4lakVLjx492LhxI19//fVF7Ueo35nktfCPffx1ynKOuRp/JMZF0ixPYlYpRhtL+6PzfT56fekjOC36567eS2Z2jlqOioiIFGHNmzfnxIkTp9w3adIk6tWr56GILmzGjBmeDkG83C/bDnLn5OUkxEZyb7vq2lha8sUnErWE2EiycizbUtKo6uoCKSLib7zxAlj8z+LFiz0dgkih2picyu3vLqV08VDeu72ZupRLvvlEopYY5+r8mHxMiZqIXBJrrdeXnBSFC2BPldP7C194n/oL/VsQgD2H07ntnSUEBhgmKkmTi+QTdYJ591ITEblYYWFhHDhwQBdWl8lay4EDBy64J5VcGr1PvYf+LQjA4eOZDBy/hENpGbw7uBlVSkVe+EkieeRrRs0Y0wl4BQgExllrz9hp0xjTG/gnYIGV1tq+bozzvKLDg4mNCmFTsvZSE5GLV7FiRXbs2EFycrKnQ/F6YWFhVKxY0dNh+CS9T72L/i34t/TMbIa9l8Sm/am8O7gZdStEezok8UIXTNSMMYHA60B7YAew1Bgz01q7Js8x1YHHgFbW2oPGmNIFFfC5JMZGsWm/ZtRE5OIFBweTkJDg6TBEzkvvUykKMrNzWLwphTmr9/DL9oMMuTqBHg2VkOaVnWO5d+ovLN2awqu3NKRVtfx3ChXJKz8zas2ADdbaTQDGmA+A7sCaPMcMA1631h4EsNbuc3egF5IYF8m8NXsLe1gRERERn5aWkcWidfuZu3oPC9bu4/DxTMKCAygXHc4D01aSmp7FgJbxng6zSLDWMurTVcxds5d/3lCHG+qX93RI4sXyk6hVALbnub0DaH7aMTUAjDE/4JRH/tNa+9XpJzLGDAeGA1SuXPlS4j2nxLhIDhzL4HBaJtERwW49t4iIiIg/OZSWwfzf9zFn9R6+W59MemYOJSKCua52GTpeUYbW1eMwBu5+/xce/2w1qSeyubNtVU+H7XEvz1/P1CXbuKttVQa10gy4XB53dX0MAqoDbYGKwCJjTD1r7aG8B1lrxwJjwdnM001jA07pI8DG/ak0qlzSnacWERER8Xm7Dx9n7uq9zFm9h8WbU8jOsZSLDqNPk0p0vKIszRJiCDptv9ox/Rvx0IcreeGrtaSeyOThDjX9tjPppJ+38sqC9fRuUpFHOtb0dDjiA/KTqO0EKuW5XdF1X147gMXW2kxgszFmHU7ittQtUeZDbov+zcnHlKiJiIiI5MOGfUeZ40rOft1xGIBqpaMY0SaRjleUpV6F6PMmXsGBAfyvTwMiQwN5/ZuNHDuRzRNd6xAQ4F/J2uzfdvPEZ6toV6s0z/ao57fJqrhXfhK1pUB1Y0wCToJ2C3B6R8dPgVuBCcaYWJxSyE3uDPRCKsVEEBRg1FBERERE5Bxyciy/7jzMnNV7mLN6z8mO2fUrleDRTjXpeEXZi96TNjDA8GyPekSGBDHu+80cO5HF8zddSaCfJGs/bTzAfR+soGGlErzWt9EZs44il+qCiZq1NssYczcwB2f92Xhr7WpjzNNAkrV2puuxDsaYNUA28Ii19kBBBn664MAAKpeKUIt+ERERkTzydmqct2Yve46kExRgaJFYisFXxdO+TlnKRl/enm/GGP5xfW2iwoJ4ef560jKy+V+fBoQE+XbSsmbXEYZPTKJyqQjGD2pKeEigp0MSH5KvNWrW2lnArNPueyLP9xZ40PXlMYmxkUrURERExO8dz8jm23XJZ3RqbFMjjkevqEm7WmXc3nzNGMP919UgKjSIf335O2kZWYzp35iwYN9MXranpDFwwhKiwoKYeHszSkSEeDok8THuaiZSJCTGRbFo/X6yc6zfTLeLiIiIwJ+dGueu3sMiV6fG6PBg2tUuTccrynJN9bhCmfEZ2jqRiJAg/vHpbwyasIRxA5sSFepTl5wcSD3BbeOXkJGVw5QRLSlfItzTIYkP8ql/NYmxkWRk5bDr0HEqxUR4OhwRERGRAnWhTo1NE2II9sCaqb7NKxMZGsiDH66k37jFvDe4qc/MOB07kcXt7y5l9+HjTBnanBplink6JPFRvpWouRa/bkxOVaImIiIiPim3U+Pc1XtYeVqnxg51ynJlxfN3aiws3RtUIDw4kLvf/4Vbxv7MpCHNiSsW6umwLktGVg4jJi9j1a4jvNW/MY2rxHg6JPFhPpaoOS36NyUfo622rxAREREfUBCdGgtLhyvKMn5QU4ZNTKLPWz8xeWhzry0TzMmxPDp9Jd+t389/brqS6+qU8XRI4uN8KlErFRlC8bAgtegXERERr7cxOZWVc96DTQsZmdaPnIAQWiSWYtBV8bSvU4Zy0d6R8FxdPZbJQ5sxaMJSbn7zJ6YMbU58bKSnw7poz83+nU9X7OKRjjXp3bTShZ8gcpl8KlEzxpAYF6XOjyIiIuKV0jOzmb1qN1OXbCd467e8G/wfgk02TaqGEN13AtGR3rnOq3GVGKYOa8Ft45dw81s/MXlIc2qW9Z61XWMXbeTt7zYz6Kp47mpb1dPhiJ/wuc0tEuMi2bxfiZqIiIh4j7V7jvDPmatp9u/5PDBtJZGH1jI+/P8wcdXh6gepvPMLon9+wdNhXpa6FaKZNrwFAQb6jP2JX3cc8nRI+fLJ8h08O2st119Zjie61ikS6//EP/jUjBpA1bgoPlm+k7SMLCJCfO7liYiIiI84diKLL37dxdQl21mx/RAhgQF0qluWAXVDaDLvUUxgFAz4GIpXgLT98N1oKFkFGt3m6dAvWfUyxfjojqvoO+5n+r69mPGDmtIsoeg25Pjmj308Ov1Xrqpaipd61ydA2z9JIfK5TCYx9s+GInUrRHs4GhEREZFT/bbjMO8v2cbnK3eReiKLaqWjGHV9bXo2qkhMUAZM6Azph2DwLIiu6Dzp+pfg8E74/H4ncavWzrMv4jJULhXB9BFX0W/cz9w2fjFvDWhCmxpxng7rDL9sO8hdk5dTs2wx3hrQmNAg39y4W4oun0vUEtuX7ckAACAASURBVHI7P+5XoiYiIiJFw5H0TD77ZScfLN3O6l1HCAsO4Pp65bm1WSUaVynplNNlZ8EHg2Hvaug7DcrV//MEgcFw87tOEvfhQLh9NpSt57HXc7nKRocx7Y6W3PbOEoa+t5T/u7UhneqW83RYJ21MTuX2d5cSVyyUdwc3o1hYsKdDEj/kc4lafKlIjIFNyer8KCIiIp5jrWX5toNMXbKdL37dRXpmDnXKFeeZ7lfQrUEFosOD8x4Msx6G9XOh6/+gevszTxhWHPp+COOugym9Yeh8iK5QeC/IzWKjQpk6vAWDJyzhr+//wou9sunZqKKnw2LP4XRue2cJgQGGibc38/q938R7+VyiFhYcSIUS4er8KCIiIh5x8FgGn/yykw+WbGP9vlQiQwLp0bAitzarRL0K59iM+oeXYdkEaHU/NLn93CePrgD9PoTxneH93jB4tpPAeano8GAmDWnO8ElJPPjhSo6dyGJAy3iPxXP4eCYDxy/hUFoG0+5o6ZXbCIjv8LlEDXBa9GsvNRERESkk1lp+2nSAD5Zs56vVe8jIyqFBpRK8cFM9ul5ZnsjQ81xy/TYd5v8T6t4E7Z688GBl60Hvd51ZtY8GOrNsgd5bmhcZGsQ7A5ty9/vLefyz1RzLyGZEm8JvgZ+emc2w95LYtD+VCYOaaQmNeJxvJmqxkSzbkoK1Vi1URUREpMAkHz3B9GU7mLZ0G1sOpFE8LIhbm1bilmaVqV0uHzNdW3+ET++Eyi2h+xsQkM+dk6pdBze8DDPvgS8egG7/B158zRMWHMiY/o158MOVPD97LanpWTzUoUahXcdl51junfoLS7em8OotDbm6emyhjCtyPj6ZqFWNi+RYRjZ7j5ygbHSYp8MRERERH5KdY/lufTIfLNnO/N/3kpVjaRYfw73tqtOlXjnCgvPZHXD/eph6K5SoDLe8D8EXec3S6DY4uNXVtj8ernn4ol9LURIcGMDLfRoQGRLIa99sIPVEFk90rVPgLfGttYz6dBVz1+zlyRvqcEP98gU6nkh++WSilhgXBTgNRZSoiYiIiDvsPnycj5J2MG3pdnYeOk5MZAiDW8XTp2llqpWOuriTpSbD5JsgIAj6TYeIS9xL7NpRcGgbfP0MlKgCV958aecpIgIDDM/1rEdUaBDjvt9MWkYWz/W8ksACTNZenr+eqUu2cVfbqgxulVBg44hcLB9N1P5s0X9VNU1di4iIyKXJys7hmz+S+WDJNr75Yx85Fq6uFstjXWrRvk6ZS9tbKyMNpvaB1H0w6AuIuYzkwBjo/hoc3Q2f3QXFy0H81Zd+viLAGMM/rq9NZGgQryxYz7ET2fyvTwNCgvJZFnoRJv+8lVcWrOfmxhV5pGNNt59f5HL4ZKJWtngYESGB6vwoIiIil2R7ShrTlm7no2Xb2XvkBHHFQrmzbVX6NKlM5VIRl37inGz4ZBjsXA59JkPFJpcfbFAo9JkE73SED/rCkHkQ591JhzGGB9rXICo0iH/P+p3jmdm80a9R/stK82H2b7t5/LNVtKtVmud61lNfAylyfDJRM8aQEBupzo8iIiKSbxlZOcxbs5cPlm7j+w37MUCbGnE83b0y19YqTXCgG2Z05o6CtV9Ap+ehdtfLP1+u8JLQ7yMY1w6m9IKhCyCqtPvO7yHDrkkkMjSIf3z6G4MnLOXtgU2IOl8HzXz6aeMB7vtgBQ0rleC1vo0IcsfvVsTNfDJRA0iIjeTXHYc9HYaIiIgUcdZaXv9mAxN+2MKBYxmUjw7jvnbV6d2kEuVLhLtvoJ/fhJ/fgOYjoMWd7jtvrpJVoO80eLers8faoC8hxPv3AevbvDIRIYE89NFK+o9bzHuDmxEdcZ7tCNZ8BpsWnvPhlGMZbFuzl/9GBNKhXFlC5053f9DnEhwBLf8KxdWwRC7MZxO1xLgoZv22mxNZ2ZdWPy4iIiJ+4bMVuxg9dx1ta8Yx8Kp4rqke5/7mFb9/AV+NhFpdoeOz7j13XhUaw03vwLR+MH0I3DIFArz/OujGhhWICAnk7vd/oc/Yn5g0pDlxxUJPPSjzOMx+FJZPhLBoCAw54zzZORZ7PJP2BqKDgwncUMjljscPwcqp0HOss8WCyHn4bKJWNS6SHAtbD6RRo0wxT4cjIiIiRdC+I+k8OXM1jauU5J2BTQumu+COZfDxUKjQCHq+XfCJU60u0OkFmP2Ikxx2/o9X77GWq8MVZXlnUBOGT1xGn7d+YvLQ5n/OeO7f4Gz+vXcVtH4I2v4dAk+9zD2QeoJeb/7EAU4w/c6riPHE9WHyOifOyb2c7RTaPuYTibQUDJ8tyE2M/bNFv4iIiMjprLX8fcYq0jOz+U+vAmoBn7LZKUOMKg23ToOQy2hEcjGaD4eWd8OSsU65pY9oXT2OSUOakXz0BDe/+RNb9h+D36bD2DZwZBf0+xjaPXFGknbsRBa3v7uUXYeOM35QU8/9ET+uhrN+sGE/WPQiTOwOR/d4JhYp8nw2UUtwtejfqM6PIiIichafrdjF/N/38nCHmlSNu8h90PIjLQWm3Aw5WdD/Y4iKc/8Y59P+GajdDeb8w1m35SOaxMcwdXgLsk6kkfTGIPh4CJSpCyO+h+pnlhNmZOUwYvIyftt5mNf6NqJJ/CXuWecuIRHQ/XW48U3YuQzevPq8a+rEf/lsohYVGkSZ4qFq0S8iIiJnyFvyePvVBbDJcWY6fNAPDm2FW6dCbHX3j3EhAQHOWqiKTeGT4bB9SeHHUEDqhu3n21LP0itnLhPozq/tJ0N0hTOOy8mxPDp9Jd+t389zPevRvk4ZD0R7Dg1uhWHfQHgMTLwRFj7vbN8g4uKziRo45Y9q0S8iIiJ5FXjJY06Os/n0th/hxjFQ5Sr3nv9iBIc7iWKxcjD1Fjiw0XOxuMvqGfBWG8JSd7Kv60TeCR9E33eWs2RzyhmHPjf7dz5dsYtHOtakT9PKHgj2AkrXguHfQP1bYOFzMKmHsxG6CL6eqMVFsnm/ZtRERETkTwVe8vj1M7DqY2j3JNTr5f7zX6zIWKf00lqnFPPYAU9HdGmyTsCsR+CjQU6CM+J7SjfpzkcjWlKmeCi3jV/Mt+uSTx4+dtFG3v5uMwNbVuGutlU9F/eFhEQ6CX2312D7YqcUcvN3no5KigAfT9SiOJSWScqxDE+HIiIiIkVAgZc8Jk2A71+CxoPg6gfcf/5LVaqqM7N2eAd80NcpzfQmKZthfEenOUrLu2HQLChRCYBy0eFMu6MlibFRDH1vKV+t2s0ny3fw7Ky1XH9lOZ644QpMUe96aQw0GgDDvobQ4jCxG3z7ojM7K37LxxM1p6GIOj+KiIhIgZc8rp8HXz7k7I/V5b9FryV+5RbQ8y3Y/jPMuMN7koDfP4e32kDKJrjlfej4bwg6dY+02KhQpg5vQb0K0fz1/V94dPqvXFW1FC/1rl8w3TwLSpkrnFLIujfBN/+CKTfBsf2ejko8xLcTtdjcRE3ljyIicumMMZ2MMX8YYzYYY0ae5fEqxpgFxphfjTELjTEV8zyWbYxZ4fqaWbiRS14FWvK4+1enJK9MHbj53TPawxcZV/SA9k/Dmk9h/pOejub8sjJg9kiY1t+ZEbxjEdS6/pyHR4cHM2lIc66pHsuVFaN5a0BjQoO8cI+y0GLOfntdX4YtPzilkFt/9HRU4gFF9P8i7lGxZAQhgQFsVEMRERG5RMaYQOB1oD2wA1hqjJlprV2T57DRwERr7XvGmGuB54ABrseOW2sbFGrQcobcksdGlUu4v+Tx8A5nr7SwaOj7kXOhXZRddS8c3Ao/vgolq0DToZ6O6EwHt8L0wU77+uYjnOQyKPSCT4sMDWLC4GZYa4t+ueP5GANNBkOFxs4G2e92hWtHQav7nW6e4hd8+jcdGGCoUipCM2oiInI5mgEbrLWbrLUZwAdA99OOqQN87fr+m7M8Lh6Ut+TxxZvdXAqXfthp0JFxDPp9BMXLue/cBcUY6PwfqN7Rac6xbo6nIzrV2lnwVmvYvx56T4TOL+QrScvLq5O0vMpdCcO/hTrdYMFTMLWPsz+f+AWfTtTAWaemNWoiInIZKgDb89ze4bovr5VAT9f3PYBixphSrtthxpgkY8zPxpgbzzWIMWa467ik5OTkcx0ml6DASh6zM+HD22D/OiehKHOF+85d0AKDoNd4KFsPPhoMu37xdETOz3PuKPjgVigZD3d8C3X0Nw/CikOvCdBltLMx9ptXw7bFno5KCoEfJGpRbEtJIyvbSxbMioiIN3oYaGOM+QVoA+wEcneurWKtbQL0BV42xpy1T7i1dqy1tom1tklcXFyhBF3oti2GST2dzognjhbKkAVW8mgtfH6fc+F8w6tQ9S/uO3dhCY2Cvh9CRAy83wcObfNcLId3wIQu8OP/OaWYt8+FmETPxVPUGAPNhsGQuRAYDO92gR9edd6H4rN8P1GLjSQz27L94HFPhyIiIt5pJ1Apz+2KrvtOstbustb2tNY2BP7huu+Q6787Xf/dBCwEGhZCzEVP5nGn0+Dmb+GL+2F0TZh5D+xYVmAXmwVa8vjtf2DFFGjzN2jYz33nLWzFyjolm5npTgnn8UOFH8O6uc4s0b7fnVm+6/8LwWGFH4c3KN/QaapSszPMexym3qpSSB/m+4maq8RB5Y8iInKJlgLVjTEJxpgQ4BbglO6NxphYY0zuZ+pjwHjX/SWNMaG5xwCtgLxNSPzHt/+Bg5thwAwYMh/q9oDfpsO4a52L9MVj4fhBtw5ZYCWPK6bCwmeh/q3Q9jH3nddTSteGWybDgY1Oh8WsQtp/NjsL5j0J798MxSs6pY51byqcsb1ZWDT0ngSdXoAN852tC3YkeToqKQA+n6hVde2ltnm/GoqIiMjFs9ZmAXcDc4DfgQ+ttauNMU8bY7q5DmsL/GGMWQeUAf7tur82kGSMWYnTZOT507pF+oc9q5wOgw36Q8I1UKkpdH8dHvoDuv4PAoJg9iPw31rwyR1OK/LLnGUrsJLHTd/CzLshvrVT8ugrTSsSroHur8GW75yZzoIuqTuyC97rCj+87GwOPnSe04Jf8scYaDECbp8DBhjfCX56Q6WQPsan2/MDlIgIISYyhI3q/CgiIpfIWjsLmHXafU/k+X46MP0sz/sRqFfgARZlOdnOWq6wEtDhmVMfCysOTW53vnavhGXvwW8fwa8fQGwNaHSbM2sVGXtRQxZYyeO+32HaAChVDfpMPmPTZa9X/xanLf7CZ51mHn8poNnCDfPhk+FOuWXPcXDlzQUzjj+o2Ngphfz0rzDnMdj6g/NHkPASno5M3MDnZ9TAWaem0kcREREPWPoO7EyCTs87TSvOpVx96PoSPLQWur8B4SWdDoD/reVsJL3xG8jJX2OwAil5PLrHWcMVHOas6fLVC+E2j0KDfvDt8/DLFPeeOzsLFjwDk3tBVBkYvlBJmjuEl4RbpkCHf8O6r+Cta2Dnck9HJW7gF4laQmwkm1T6KCIiUrgO73D2fqp2HdTrlb/nhEQ6zTmGzIW7fnY6AG5aCJNuhP9rCItGO0nTOew7WgAljydSnQ2t0w5A32lQorJ7zlsUGQM3vAKJbeHze50E2R2O7oGJ3eG70c7vd+gCiKvhnnOL83u76m4Y/JUziz2+o7PuU6WQXs0vErXEuCiSj57gaHqmp0MRERHxD9Y6mynbHKeL36Ws5SpdGzo/Dw+udUrkoivB18/AS3Vgal+nW2BO9snDrbX8w90lj9lZMP122PObs5dVeT9o2hkY7OwLF1vT2Sdu7+rLO1/u3l+7lsONbzqleSERbglVTlOpKYz4DhL/4qz7/GiQsym7eCU/SdSchiKbtE5NRESkcPw+E/6YBX/5u7Pe6XIEhzklcoO+gHuWOzMHO5Y43QJfvhK+eQ4ObeezFbuYt8aNJY/WwuxHYf0c6PIi1Ox0+ef0FmHR0O9DZ4ZzSm84svviz5GT7fxuJt4IEaVg2DfQ4Fb3xyqnioiBWz+A9k/D7587XSF3r/R0VHIJ/CJRy+38uGm/1qmJiIgUuOOHYNajUPZKaH6ne89dqqpzAfrAGmfWJ64mfPsC9uV6lPqsH3eWWcPtLSu6Z6wfX4Wkd+Cqe50STH8TXdHZEDv9kJMUX8wm5an7YFIPZ61b/Vtg2NdQulbBxSqnCgiAVvfB4FmQdQLGtXfWi6oU0qv4RaJWOSaSwACjGTUREZHCsOApOLYPur0KgQXUYDooBOp0hwGfYO9bwRcl+lHdbuVvh/9F4Ct1Yf4/IWXTpZ9/1Scw7wm4ogdc95TbwvY65a6Em9+DvWucMrrsrAs/Z/N3Tqnj9sXQ7TW4cYwzMyeFr3ILpxQyoTV8+SB8POTiEm7xKL9I1EKCAqhUMlyJmoiISEHb+hMkjYcWdxXaeq7PtgRzz54ufPGXOU7JV4XG8MOr8GpDeO8GZ2PtrBP5P+G2n2HGCKjUwllTFeAXl0vnVv06pyPnhvkw66Fzz8rk5MC3L8LEbhBa3JlFazTAd/aa81aRsdD3I2j3BKyeAWPbOnsbSpHn8/uo5UqMi2KjWvSLiIgUnKwTzp5p0ZWhbQHtwXWavF0eB19THQJqQM3OzobKv0yBXyY6swjhMc6ebI0HOuWS53JgI0y9xSn7u+V9Z32cOJtSH9wK37/krDm8+oFTHz+2Hz4ZBhu/hno3OxuZhxbzRKRyNgEB0PohqNQcpg+Bce2g83+cvQqVSBdZfvMnosTYSLYcOEZOjmpzRURECsQPr8D+P5wuj6Fu2r/sPHK7PB4/W5fH4uWhzSNw70ro/4lT+rXkLXi9GbzTEVa8Dxlpp57w2H6YfBOYAGevtMhSBf4avMq1j0Pdm5yy0t/y7O++9Uen1HHLD9D1Zej5tpK0oir+ahjxPVRu6Wy/MOMOZ/sJKZL8akYtPTOH3UfSqVAi3NPhiIiI+Jb962HRi86FfI0OhTJkbpfHv3epde4ujwEBUK2d85WaDCvfh2Xvwad3wuyRTjfJRgMhtrozk3Z0Nwz83GlaIqcKCHDWmx3Z7fz8ipVz1qF9/S8oWQWGznfWtEnRFhUH/T+G7/4L3zwLu35x1iGWqePpyOQ0+UrUjDGdgFeAQGCctfb50x4fBLwI7HTd9Zq1dpwb47xsf7boT1WiJiIi4k45OU7JY3AEdHr+wse7Qd6SxyFXJ+bvSVFxTie8q+6FrT84CdvySbB0HETGOTNqvd+DSs0KNnhvFhQKt0yBdzrAe12dffKu6AE3vAphxT0dneRXQCC0edQphfx4KLx9rdOcJyDQ05GdKSQK6vZ0YvWzMs0LJmrGmEDgdaA9sANYaoyZaa1dc9qh06y1dxdAjG6RGPvnXmqtq8d5OBoREREf8sskJ/Hp9hpElS7w4c5b8pgfxjglYPFXQ+cX4NcP4bcPoc3fnItVOb+IGKc0dMYdznq0pkP97gLaZyS2cUohv7jf+TdcFKUdcMqW42o5a+rq3+q8B/1AfmbUmgEbrLWbAIwxHwDdgdMTtSItrlgoUaFBbFJDEREREfc5uhfmPQ7xraFh/0IZcubKfJQ85ldEDLQY4XxJ/sUkwJC5no5C3KFYGbh1qqejOLcTqbD6E1j2Lsz5u7NGsnY3pzFQfGuf/iNBfhK1CsD2PLd3AM3PctxNxphrgHXAA9ba7Wc5xmOMMSTGRbJpv1r0i4iIuM1XIyEz3WkiUQgXTJdU8igi3is0yplJa3Sbs63A8vfg12mwajrEJDr3N+hXKLP5hc1dXR8/B+KttVcC84D3znaQMWa4MSbJGJOUnJzspqHzLzE2UnupiYiIuMu6Oc5fuq95BGKrFfhwuSWPaRmXWPIoIt6tbF3o8iI89Af0eAuiyjozbC/Vhmn9Yf18yMn2dJRuk59EbSdQKc/tivzZNAQAa+0Ba23uTpLjgMZnO5G1dqy1tom1tklcXOGvE0uMi2LnoeMcz/CdX6CIiIhHnEiFLx9y1o20uq9QhswteXy4Q43LL3kUEe8VHA71b4HbZ8Nfl0LzEc42EVNuglfqw8IX4PDOC5+niMtPorYUqG6MSTDGhAC3ADPzHmCMKZfnZjfgd/eF6D65nR83q/xRRETk8nzzLBze7nT7Cwop8OFySx4bquRRRPKKqwEd/w0P/g69Jjhbayx8Fl6uC+/3gbWzIDvL01FekguuUbPWZhlj7gbm4LTnH2+tXW2MeRpIstbOBO41xnQDsoAUYFABxnzJEmOdv75t2p9KnfJqISsiInJJdi6HxWOgyRCofLZl6+51SsljL5U8ishZBIU6bfzr9oSUzU432l8mw7qvnD3/GvSDRgOgZLynI823fO2jZq2dBcw67b4n8nz/GPCYe0NzvwRXi/7NWqcmIiJyabKz4PN7IbI0XPdkoQyZt8tjtdIqeRSRC4hJgHZPQNvHnLW0y9+D719yNvlObOt0jKx5faFUA1yOfCVqviI8JJAKJcLV+VFERORS/fwG7PkNek+CsOgCH04ljyJyyQKDoXZX5+vwDmeGbfkk+GgQRMRCg1uh0aBCaYZ0KdzV9dFrJMZFai81ERGRS5Gy2VmbVqsr1OlW4MOp5FFE3Ca6IrQdCff/Cv2mQ+UW8PMYeK0xTOjibHyfme7pKE/hd4lagqtFv7XW06GIiIh4D2vhywchIAg6/6dQhszb5VEljyLiFgGBUL093DIFHlgD7Z6EI7vgk2Hw35ow+2+wd42nowT8MFFLjI3k6IksklNPXPhgERERcfz2EWz82lmXFl2hwIdTyaOIFLhiZaD1g3DPcrhtJlRrB0njYUxLGHedUyaZ4bklU/6XqLn2XdHG1yIiIvmUlgJfjYSKTaHJ7QU+nEoeRaRQBQRAYhvoNR4eXAsdn4X0IzDzbhhdEz6/H3b9UvhhFfqIHpa7l5oSNRERkXyaOwrSD8MNrzhlQwVMJY8i4jGRpaDlX+Gvi2HwV04jkpVTYWxbeLM1LB3n/P+wEPhdolY+Opyw4AA1FBEREcmPTd/CiinQ6j4oc0WBD6eSRxEpEoyBKi2hx5vw0B/QZbRrre5D8N9a8Oldzp6SBciv2vMDBAQY4ktFqkW/iIjIhWQehy/uh5hEuOaRAh9OJY8iUiSFl4Bmw6DpUNi1HJa9B6s+huIVoEKjAhvW7xI1gKpxUazeVThTliIiIl5r0YuQsslZZB8cXuDDaWNrESnSjIEKjZ2vjv+GnOwCHc7vSh/BWae2/eBxMrJyPB2KiIhI0bRnFfzwCjTo5yyyL2AqeRQRrxJazJlpK0B+m6hl51i2paR5OhQREZGiJycbPr8PwkpAh38V+HAqeRQROZN/JmqxuS361VBERETkDEvfgZ1J0Ol5iIgp8OHU5VFE5Ex+magl5LboV0MRERGRUx3eAQuegqrtoF6vAh9OJY8iImfnl4la8bBgYqNCNaMmIiKSl7Uw6xGn9LHrS87C+QIdzjJKJY8iImfll4kaOOvUtOm1iIhIHr9/Dn/Mgr/8HUrGF/hwM1fuYu6avTzUXiWPIiKn89tErWqc9lITERE5Kf2wM5tWth60uKvAh8tb8ji0tUoeRURO57eJWmJsFCnHMjiUluHpUERERDxv/lNwbB/c8CoEFuw2qyp5FBG5MP9N1FwNRTaq/FFERPzdtp8h6R1ofidUaFTgw6nkUUTkwvw4UVOLfhEREbJOOHumRVdy1qYVMJU8iojkT8HWNhRhlUqGExxo2Kx1aiIi4s9+eAWS10LfjyC0YGe3VPIoIpJ/fjujFhQYQOWYCHV+FBER/7V/PSx6Ea7oCTU6FPhwC/9IVsmjiEg++W2iBk7546b9Kn0UERE/lJPjlDwGh0PnFwplyMWbUwgONNx+dUKhjCci4s38O1GLjWTLgTSyc6ynQxERESlcKybD1h+gw78gqnShDLlh31ESYiMJDvTryw8RkXzx6/9TJsZFkpGVw86Dxz0dioiISOFJ3QdzR0GVq6HhgEIbdsO+VJU8iojkk58nas6HxUaVP4qIiD/5aiRkHocbXgZTOA090jOz2ZaSRrXSxQplPBERb+ffiVqss5eaGoqIiIjfWDcXVn0M1zwCsdULbdjN+4+RY9GMmohIPvl1ohYTGUJ0eLD2UhMREf9wIhW+fAjiakGr+wt16PX7nM/a6krURETyxW/3UQMwxpAYF6kZNRER8Q/fPAuHt8HtcyAopFCH3rD3KAEGElzVLCIicn5+PaMGkBirFv0iIuIHdi6HxWOgye1QuUWhD78hOZXKMRGEBQcW+tgiIt5IiVpcJHuPnODYiSxPhyIiIlIwsrPg83shsjS0e9IjIazfm6pGIiIiF8HvE7WqcU4Jxub9Kn8UEREf9fMbsOc36PIfCC9R6MNnZuew5cAxNRIREbkIfp+onWzRr4YiIiLiiw5ucdam1bweanfzSAhbD6SRmW3VSERE5CL4faJWOSYCY9SiX0REfJC18MWDEBAIXV4stD3TTrfB1fFRM2oiIvnn110fAcKCA6lYMpxNKn0UERFf89t02LgAOr8I0RU8FsaGfUcBqKpETUQk3/x+Rg1cnR9V+igiIr4kLQW+GgkVmkDTIR4NZcO+VMpHhxEV6vd/HxYRyTclajidHzfvP4a11tOhiIiIuMfcUZB+CG54xSl99KD1+1KpVkYdH0VELoYSNZyGImkZ2ew5ku7pUERERC7fpm9hxRS46l4oW9ejoeTkWDYmp1ItTmWPIiIXQ4kaUDXWadGvhiIiIuL1sjPhi/uhZAK0edTT0bDz0HHSM3OoXkaJmojIxVCxOH+26N+UnEqrarEejkZEROQyBAZDl9EQHO58edh6VyMRteYXEbk4StSAMsVDiQwJVOdHERHxDdXaeTqCk9SaX0Tk0qj0ETDGkBAXqdJHERERN1u/N5XYqFBKRIR4OhQREa+iRM0lMTaKTfvVol9ERMSdNiSnUq10pKfDEBHxOkrUXBJiI9lx8DjpmdmeDkVERMQnWGvZsDeV6qXVml9E5GIpUXNJY8UNwAAAIABJREFUjIvEWth6IM3ToYiIiPiEvUdOcPREltaniYhcAiVqLlXzdH4UERGRy5fbSEQdH0VELp4SNZeE3L3U1Pnx/9u78/C2yjP94/djyavs2ImtrLYTO3ESwhpiwhLKTstaOlAoMHRKS0vbKbRTOu3QmZZhmGmZzq87w7RQSukCpEBLm7JTli5sSVhLQoKV3VksZ7e8L+/vjyMnSnASL7KPJH8/16XL0tGR9ERJfHTrfc/zAgD2Y2bnmNlKM4uY2Y193D/VzJ4xs7fM7HkzK0+472NmVhe/fGxkK/dXb2v+GayhBgADRlCLC+UGNXFMnlYxogYASGBmAUm3SzpX0hxJV5jZnP12+7akXzjnjpJ0i6Rb448dJ+nfJR0vab6kfzezsSNVu98i0ZjG5AUVLsz1uxQASDsEtQTVtOgHALzXfEkR59xq51yHpIWSLtpvnzmSno1ffy7h/g9Ieto5t905t0PS05LOGYGaU0JdNKaaCUUyM79LAYC0Q1BL4AW1mJxzfpcCAEgdUyRtSLhdH9+W6E1JF8ev/52kIjMr7edjJUlmdq2ZLTWzpY2NjUkp3G+rojHNCDPtEQAGo19B7VBz8xP2u8TMnJnVJq/EkVNdVqjdbV3a3tzhdykAgPTyz5JONbPXJZ0qaaOkAa334py70zlX65yrDYfDw1HjiNre3KFtzR2q4fw0ABiUQwa1fs7Nl5kVSfqCpFeSXeRIqQ7TUAQA8B4bJVUk3C6Pb9vDObfJOXexc26upH+Lb9vZn8dmqt6Oj9Pp+AgAg9KfEbX+zM2XpP+U9C1JbUmsb0TRoh8A0IclkmrMrMrMciRdLmlR4g5mVmZmvcfUr0q6O379SUnvN7Ox8SYi749vy3i9HR9pzQ8Ag9OfoHbI+fVmdqykCufcowd7olSffz+5JF85wSwaigAA9nDOdUm6Tl7AekfSA865ZWZ2i5l9ML7baZJWmtm7kiZI+kb8sdvlfZG5JH65Jb4t49U1xFSQE9Dk4ny/SwGAtBQc6hPEv0H8rqSrD7Wvc+5OSXdKUm1tbcp17AhkmaaVFmgVQQ0AkMA595ikx/bbdlPC9YckPXSAx96tvSNso8aqxpimhwuVlUXHRwAYjP6MqB1qfn2RpCMkPW9mayWdIGlROjcUWb2VqY8AAAxFXUOMaY8AMAT9CWoHnZvvnNvlnCtzzk1zzk2T9LKkDzrnlg5LxcOsOhzS+m0t6uzu8bsUAADSUlNbp7bsbqORCAAMwSGDWj/n5meM6nChunqcNmxv8bsUAADSUm/HR0bUAGDw+nWO2qHm5u+3/bShl+WfPS36G5tVzSKdAAAMWG9Qm0FQA4BB69eC16PJ9LJ4i37OUwMAYFAi0ZhyAlmqHFfgdykAkLYIavspLshWaShHa1j0GgCAQamLxlRVFlIwwMcMABgsfoP2oTocokU/AACDFInGNGMC0x4BYCgIan2oLitk0WsAAAahrbNbG3a00EgEAIaIoNaH6nBIW2Pt2t3W6XcpAACklVWNMTlHIxEAGCqCWh+qyvZ2fgQAAP23tzV/kc+VAEB6I6j1obct/+pGOj8CADAQkWhMWSZNK6PjIwAMBUGtD5XjChTIMkbUAAAYoLqGmKaVhpQbDPhdCgCkNYJaH3KC3tovrKUGAMDARBpjms75aQAwZAS1A6guCzGiBgDAAHR09Wjt1mY6PgJAEhDUDqA6HNKarc3q6XF+lwIAQFpYt61ZXT1ONayhBgBDRlA7gOpwodq7erRpV6vfpQAAkBZ6Oz7OCNPxEQCGiqB2ANW06AcAYEDq4kFt+viQz5UAQPojqB0ALfoBABiYSDSmKSX5KsgJ+l0KAKQ9gtoBlBXmqCgvqNVbGVEDAKA/6qIxzk8DgCQhqB2AmdH5EQCAfurucVrdGNOMMEENAJKBoHYQ1eFCpj4CANAP9Tta1N7Vw4gaACQJQe0gqstC2rSrTS0dXX6XAgBAStvT8XE8HR8BIBkIagfR21BkDeepAQBwUHV7ghojagCQDAS1g6gO06IfAID+qGuIaXxRrorzs/0uBQAyAkHtIKrKQjIjqAEAcCiRxhijaQCQRAS1g8jLDmhycb7WbKWhCAAAB+Kc06poTDUENQBIGoLaIVSHQ6ylBgDAQWzZ3aZYexcjagCQRAS1Q5geLtTqxmY55/wuBQCAlFTXQMdHAEg2gtohVIdDirV3qbGp3e9SAABISRE6PgJA0hHUDqGqzOv8uIqGIgAA9KkuGlNJQbbKCnP8LgUAMgZB7RB611JbTUMRAAD6FIk2qWZ8oczM71IAIGMQ1A5h0pg85WVn0aIfAIA+OOdUF6U1PwAkG0HtELKyTFVlhVrdyIgaAAD729bcoZ0tnTQSAYAkI6j1Ay36AQDoG41EAGB4ENT6YXpZSBu2t6i9q9vvUgAASCl18aDGYtcAkFwEtX6oDheqx0kbtrf4XQoAACllVTSmUE5Ak4rz/C4FADIKQa0fqsO06AcAoC910SbNoOMjACQdQa0fetdSo/MjAAD7ikRjNBIBgGFAUOuHorxsjS/KpfMjAAAJdrV2qmF3O41EAGAYENT6qaqMzo8AACSK0EgEAIYNQa2fqsOspQYAQKJVtOYHgGFDUOun6eGQdrR0akdzh9+lAACQEuqiTcoJZqliXIHfpQBAxiGo9VNv58fVWxlVAwBA8qY+VpeFFMii4yMAJBtBrZ+qy7xpHbToBwDAUxeNqWYCHR8BYDgQ1PqpfGy+sgNGi34AACS1dHRp485WGokAwDAhqPVTMJClqaUhrWHqIwAAWt3YLOdoJAIAw4WgNgDVZSFG1AAAkNdIRKI1PwAMF4LaAFSHC7VuW4u6e5zfpQAA4KtINKZAlmlqacjvUgAgIxHUBqA6HFJHd4/qd7T4XQoAAL6qa4hpWmmBcoJ8lACA4cBv1wGoLou36Gf6IwBglIs0xjg/DQCGEUFtAKrDvS36aSgCABi9Orp6tG5bi2rG05ofAIYLQW0AxoVyVFKQrdVbGVEDAIxea7c1q7vHMaIGAMOoX0HNzM4xs5VmFjGzG/u4/zNm9jcze8PM/mpmc5JfamrwOj8yogYAGL3qGrzjIEENAIbPIYOamQUk3S7pXElzJF3RRxC7zzl3pHPuGEn/I+m7Sa80RVSHCzlHDQAwqkWiMZlJ08MENQAYLv0ZUZsvKeKcW+2c65C0UNJFiTs453Yn3AxJytj+9dXhkKJN7Wpq6/S7FAAAfFEXbVL52Hzl5wT8LgUAMlZ/gtoUSRsSbtfHt+3DzD5nZqvkjah9vq8nMrNrzWypmS1tbGwcTL2+qy7zvj1cu5UW/QCA0SkSjdFIBACGWdKaiTjnbnfOTZf0L5K+doB97nTO1TrnasPhcLJeekRND8db9G/lPDUAwOjT1d2j1VubOT8NAIZZf4LaRkkVCbfL49sOZKGkDw2lqFRWWVqgLJNWcZ4aAGAU2rCjVR1dPQQ1ABhm/QlqSyTVmFmVmeVIulzSosQdzKwm4eb5kuqSV2JqyQ0GVDGugM6PAIBRKRKl4yMAjITgoXZwznWZ2XWSnpQUkHS3c26Zmd0iaalzbpGk68zsLEmdknZI+thwFu23qrIQnR8BAKNSXbRJEkENAIbbIYOaJDnnHpP02H7bbkq4/oUk15XSqssK9crq7erpccrKMr/LAQBgxESiMU0ck6cxedl+lwIAGS1pzURGk+pwSK2d3dqyu83vUgAAGFGRaIzRNAAYAQS1Qaju7fzI9EcAwCjS0+MIagAwQghqgzA97B2gaNEPABhNNu9uU0tHN0ENAEYAQW0QxhflKpQTYEQNAEYJMzvHzFaaWcTMbuzj/koze87MXjezt8zsvPj2aWbWamZvxC8/Hvnqk6euwWskUkNQA4Bh169mItiXmak6XKjVWwlqAJDpzCwg6XZJZ0uql7TEzBY555Yn7PY1SQ84535kZnPkNeCaFr9vlXPumJGsebjQmh8ARg4jaoNUHQ6xlhoAjA7zJUWcc6udcx2SFkq6aL99nKQx8evFkjaNYH0jJhKNaVwoR6WFuX6XAgAZj6A2SNVlhdq4s1Vtnd1+lwIAGF5TJG1IuF0f35boZklXmVm9vNG06xPuq4pPifyTmb3vQC9iZtea2VIzW9rY2Jik0pOLRiIAMHIIaoNUHQ7JOWntNqY/AgB0haR7nHPlks6T9Eszy5K0WVKlc26upBsk3WdmY/p6Aufcnc65WudcbTgcHrHC+8s5pzqCGgCMGILaIFWV0aIfAEaJjZIqEm6Xx7clukbSA5LknHtJUp6kMudcu3NuW3z7q5JWSZo57BUPg62xDu1q7aSRCACMEILaIO1dS43z1AAgwy2RVGNmVWaWI+lySYv222e9pDMlycwOkxfUGs0sHG9GIjOrllQjafWIVZ5EdVGv4yMjagAwMuj6OEgFOUFNKs5jRA0AMpxzrsvMrpP0pKSApLudc8vM7BZJS51ziyR9SdJPzOyL8hqLXO2cc2Z2iqRbzKxTUo+kzzjntvv0RxmS3o6PNeOLfK4EAEYHgtoQVIdDWkWLfgDIeM65x+Q1CUncdlPC9eWSFvTxuN9I+s2wFzgCItGYCnODmjCGjo8AMBKY+jgE1WWFWt0Yk3PO71IAABhWdQ1eIxEz87sUABgVCGpDUB0OqamtS1tjHX6XAgDAsIo00vERAEYSQW0IqsPeAWsN0x8BABlsV0unGpva6fgIACOIoDYE1WV0fgQAZL5Io9fxsWYCQQ0ARgpBbQimlOQrN5il1YyoAQAyWF2D94XkjDAdHwFgpBDUhiAry1RVFmJEDQCQ0eqiMeVlZ2nK2Hy/SwGAUYOgNkReUGNEDQCQuSLRmKrLChXIouMjAIwUgtoQVYdDWr+9RZ3dPX6XAgDAsIhEY5yfBgAjjKA2RNVlherqcVq/vcXvUgAASLrm9i5t3NmqGWGCGgCMJILaEFWHezs/Mv0RAJB5VsXPw2ZEDQBGFkFtiHrXUqOhCAAgE0Wi8Y6P4+n4CAAjiaA2RMX52SorzGFEDQCQkeqiMQWzTFNLC/wuBQBGFYJaElSXFWoNa6kBADJQJBpTVVlI2QE+MgDASOK3bhJUh0NavZWpjwCAzBOJxjRjPOenAcBII6glQXU4pK2xDu1q7fS7FAAAkqats1vrtjWrhqAGACOOoJYE1WU0FAEAZJ6125rV46TpBDUAGHEEtSSookU/ACAD1TXEW/PT8REARhxBLQkqxxUomGWcpwYAyCiRaExZtnfNUADAyCGoJUF2IEuV4woYUQMAZJRINKaKcQXKyw74XQoAjDoEtSSpDocIagCAjBKJxmgkAgA+Sd+g1tkmte6Q2mNSV4fknK/lVIcLtWZbs7p7/K0DAIBk6Oru0eqtMRqJAIBPgn4XMGh/e1BadN2+2ywgBXKkQLZ3yco+yPUcKRDc93ogJ3478fohniu+36mdO7WmZ5O2v9GlcHGhNHmulF/iz3sDAMAQrdveos5uRyMRAPBJ+ga18lrpA7dKPZ1Sd/zS0yl1d0jdXQe+3t0Rv90ldbT08fg+rnd3SK77oOUskLQgR9Ki+IbskDTvY9IJn5VKKof73QAAIKkiUa9BFotdA4A/0jeojT/Mu4yUnh6pZ7+gt+d6p3Y0NeuqO1/QZ95XoQtnFUlv3i8tvlN65Q7piIulk66XJh09cvUCADAEBDUA8Ff6BrWRlpUlZeVIwZw+7y4pddqQ26DFHVN04fQjpOmnS2feJL38I+nVe7ypmlWnSgs+L00/UzIb2foBABiASDSmScV5KszlowIA+CF9m4mkGDNTdbhw37XUisulD3xD+uIy6aybpcaV0q8ukX58svTmQm9aJQAAKagu2sRoGgD4iKCWRNVlB2jRn18infxF6Z/+Jl30f1JPt/Twp6UfHC29eJvUtnvkiwUA4AB6epxWRZtpJAIAPiKoJVF1OKTNu9rU0tHV9w7BHGnu30v/+JJ05YPSuGrpqa9J3ztcevomafemkS0YAIA+bNzZqtbObkbUAMBHBLUkqg57B7RDLnxtJs18v3T1I9KnnpNmnOmNrH3/KOnhz0oNy0egWgAA+hZp9Kbx10wgqAGAXwhqSVQdDkmSVm89RFBLNOVY6dJ7pOtfk2o/IS3/nfSjE6VffVha82ffF/IGAIw+kYZ4x8cwQQ0A/EJQS6JppSGZSasbY4feeX/jqqTz/sdrPHL616TNb0g/v1C68zTp7d94ywEAADAC6qJNKivM0dhQ352OAQDDj6CWRHnZAU0pyT/01MeDKRgnnfpl6Z/eli74vtQRkx76hHTbXG9Nto4hPDcAAP0QicY0ndE0APAVQS3JqsOFWjOQqY8Hkp0n1X5c+twS6SP3SkWTpMe/4jUeefa/pFh06K8BAMB+nHOqi8Y4Pw0AfEZQSzKvRX9MLlnnlmVlSYddIF3zlPSJp6SpC6Q/f1v63hHSos9LW+uS8zoAAEhqbGpXU1sXrfkBwGdBvwvINNPDITV3dCva1K4JY/KS++SVx0uV90pbI9JL/yu9cZ/02i+kWedJCz4vVZ6Q3NcDAIw6ddF4IxFa8wOArxhRS7LeFv2rBtNQpL/KZkgXft9rPHLKl6X1L0p3f0C662zpnT94C2oDADAIkXhQqyGoAYCvCGpJtqdF/1AaivRXYVg649+8wHbet6XmqPTrq6T/PU5a8lOps3X4awAwOF0d3rmmW+uk+lc57xQpoy7apKK8oMJFuX6XAgCjWr+mPprZOZJ+ICkg6S7n3H/vd/8Nkj4pqUtSo6RPOOfWJbnWtDChKE8lBdn65Uvr9IHDJ47MgS4nJM3/lLcO2zuLpBd+KD16g/TcN6X513r3FYwb/jqA0aSnR2rfLbXtktp2ej9b4z/73JZwX+tOqauPL1JKa6SpJ0nTTvZ+FpeP/J8Lo14kGlPN+EKZmd+lAMCodsigZmYBSbdLOltSvaQlZrbIObc8YbfXJdU651rM7LOS/kfSR4aj4FSXlWW6/cpj9cmfL9Vld7ykX33yeE0pyR+hFw9Ih/+dNOdD0roXvMD2/Delv35PmnuVdOLnvPXaAHiLyXe1HThI7dl2oMC1W9LBmgaZlFcs5Zd4P/OKpbKZ+20r8S65hdLWd6W1L0jLfie99nPvKUoqpanx0Db1JGlctcSHZwyzSDSmM2aP97sMABj1+jOiNl9SxDm3WpLMbKGkiyTtCWrOuecS9n9Z0lXJLDLdLJhRpl99cr6u/tkSXfbjl3TvJ4/XtLLQyBVg5n0jP+1kKbpCevE26dV7pKU/9RqPzPmQNPP93gdFINP1dEv1S6WVj0rrXpJad+wNXN0dB39sdkE8TMXD1ZjJ0vjD9t22J3AV77stp8jr2tpfs86VFnzBq7dhmfdly7oXpLonpTfv8/YpmrQ3tE09WQrPIrghqXY0d2hrrIOOjwCQAvoT1KZI2pBwu17S8QfZ/xpJj/d1h5ldK+laSaqsrOxnielp3tRxuv9TJ+gf7l6sS+94Sb+65njNmujDgW/8bOlDt0tnfE1afIf0+r3SikekrGyp6n3S7Au88DZm0sjXBgyXzlZp9fPSikeld5+QmhulrKBUfpw08Yi9oeo9gWtswn3FUjBn5GvPCkiTjvIuJ3zWG/lrXBkPbi96P9/+jbdvQalUeeLeqZITjvAeDwxSJN4IawZrqAGA75Lant/MrpJUK+nUvu53zt0p6U5Jqq2tTdJCY6nriCnF+vW1J+iqn76ij9z5kn7xifk6qrzEn2LGTJLOulk64yZp41KvO+SKR7xz2R69wfsAO/t8afaFXldJIN00b/NC2crHpFXPSp0tUu4YacZZ3r/tGWd5gSzdmHlfuIyfLR13jRfcdqzxQtva+Kjbike8fXOLvWU6pp7krbk4+RgpkO1v/UgrdQ3xoBYmqAGA3/oT1DZKqki4XR7ftg8zO0vSv0k61TnXnpzy0l/NhCI9+OmTdOVdL+vKn7yiu68+TvOrfGzskZUlVcz3LmffIjWu8D7kvfOI9MebvUvZLG+R7dnnS5OPZWoVUtf21dKKx7yRsw0vS65HKposHXOlN1I87X3+jIoNJzPvXLVx1d65p5K0q37vaNu6F73pkpI3dbNivhfapi6QpsyTspO8viMySiQaU352YOTOrQYAHJA5d/CBLTMLSnpX0pnyAtoSSVc655Yl7DNX0kOSznHO1fXnhWtra93SpUsHW3fa2bKrTX9/18vauLNVd3y0VqfODPtd0nvt3OCNRqx4xPum3nV7H3pnn+8Ft6kL+HYe/urpkTa97p1vtuIxqfEdb/v4w+MjwudJk47hy4VYNB7c4peGtyU5KZAjTamVpi3wRt3K53uNTEaAmb3qnKsdkRfLAH4dIz/601e0o6VDj1z/vhF/bQAYjQ52fDxkUIs/wXmSvi+vPf/dzrlvmNktkpY65xaZ2R8lHSlpc/wh651zHzzYc462oCZJW2Pt+oefLlZdtEm3XTFX5xyRwueFtWyX3n3SC22RZ7xW4nkl0sxz4tPIzvSWBQCGW1e7tObP3qjZysel2BbJAl7QmHWeF87GTvO7ytTWsl3a8Io34rb2BWnzm94XMVlBL9j2LglQcfywTQ8lqA2MX8fIk259RsdXl+p7HzlmxF8bAEajIQe14TAag5ok7Wrt1Md/tlhv1u/S//vwUbr42DRYJ6mjxTvnZ8Wj0ruPe13zgnnS9DO8ZiQzz5FCpX5XiUzSukN69ylv5CzyjNQRk7JD3hcEs8+Xat7P2oBD0d4kbVi8d6rkxlfjHTDNa7aSuCRAqCwpL0lQGxg/jpFNbZ068uan9OUPzNLnTudcZQAYCQc7Pia1mQgOrTg/W7+85nh96hdLdcMDb6q5o1sfPWGq32UdXE6BN/XxsAuk7i5p/YveOW0rHvWmSlqWNy1y9vnepSSzO3pimOxcHz/f7BEvPLhuqXCCdOSHpVnnS1WncH5VsuQWeaF3xpne7c5WbwmD3vPcXr1HeuVH3n1ls6RPPTtiUyThn1WNzZKkGeP5uwaAVEBQ80EoN6i7rz5O1933mr7+u7fV0t6lT5863e+y+icQ9D4wV50infstafMbXmBb8aj0xI3eZeJR3kjbYRdI4+dwvhD65pw3BW/lY15Aa/ibtz0821tPrLeZzUDWIsPgZOd7y3VUxc9L6urw/m+ve0HaFiGkjRKRaLzjI0ENAFICQc0nedkB/eiqefrir9/QrY+vUKy9SzecPVOWTqHGTJo817uc8TVp26p4aHtEev5W6flvSmOr4iNtF3jd51jjaXTr6pDW/dULZisfl3bXeyOyFcdLZ/+n92+lNE2+tMhkwZy93WExatRFm5QdME0dV+B3KQAAEdR8lR3I0g8un6tQTlC3PRtRrL1LN10wJ73CWqLS6dKCz3uXpob4SMmj0it3SC/9rxQKS7PO9dZqqz5VCub6XTFGQtsuqe5p799D3R+l9l1SMN87x/H0r8bPcUzOeVAABm9VNKbqskIFA4xiA0AqIKj5LJBl+u9LjvSmQ76wRi3t3frmxUcqkJWmYa1X0QSp9uPepW23FHnaO6/t7Yel134h5RRKNWd7I201Z0t5xYN7Hee8roDd7VJ3597rXR0JPzv62Nbubd9/W1d8e+J9wTxpXJU3Ojiu2rs+2HpHi10b9wb1tX+VejqlgjJpzoXe+WbVp3nnPgJIGXXRmI6YzO82AEgVBLUUYGb6+gWHqTA3oB8+G1FzR5e+95FjlJ0p32rmjZGOuMS77Gm1/og3/W3Zw1JWttcaPH9sPCAlhqX2hJ+JwSu+racziYWaN8oXyPWmfgXil45mqTm6764FpfsGt3HVe2+HyjL/vLyudmn3Rm/tvV310q4N8Uu91xRk+2pvv9IZ0gmf9aY0lh/H1FcgRbV1dmvD9hZ96JgpfpcCAIgjqKUIM9MN75+lUG5Qtz6+Qq0d3br9749VXnaGfbAN5nojaDVnS+d/1+s0t+IPUuRZ74N+INdbVDuY64WkglBCcEq8L2Hbnvty3rut93n2ua9338T7cr01pQ4UsNqbpB1rpe1rvBCyI/5z/cvS3x6UlLDMRU7he0fgeoPcmCmp3xzDOa89/p4AFv+ZGMpiDe99XOFEqaRCmnS0NPej3mhpeObI1w9gwFY3NqvH0UgEAFIJQS3FfPrU6QrlBvX137+tT9yzRD/5h1qFcjP0rykrIFUe713e73cxh5BbJE080rvsr6t97yhSYpCLLvcaZiSO+gVypbFT9x2B6w1yJZVeEB1u3V1S0+Z9R8B21e8bzDpi+z4mmCcVl3uXmvdLxRVeKOvdNmYK5xwCaSzS6P2fr5lAUAOAVJGhCSC9XXXCVIVyA/rnB9/SR3/6in728fkqzh+BD/AYnGCuVFbjXfbX0+1NEdw/xG1fI635i9TZvHdfy/IC0P5TKXtH5/p7Tld7097gtSeEbdi7bfcmb42yRAWl3muXzpCqT08IYRXeZTRM5wRGsUhDk7JMqioL+V0KACCOoJai/m5uufKzg7r+/td0xZ0v65fXzFdpISMWaScr4I2UlVR6DTQSOSfFonunUSYGuWUPe9MPExVOTBiBi0+jbN6aMDIWP0+sbed+NQS9fYsrvHMBe0fBekNYcTmNPYBRri4a09TSkHKDGTbdHgDSGEEthZ1zxETd9bHj9OlfLtVld7ykez95giYW5/ldFpLFzOuOWTRBqjzhvfe37vDC254gt9a7vupZ6Y3Ne/fLLfbCVkmFN420N3yVVHo/CyfQxAPAQUWiMc5PA4AUQ1BLcafODOsXnzhen7hniS6940Xde80Jqixl9GNUyB8rTRkrTTn2vfd1tHjnmYXKWCoAwJB0dvdozdZmnTVngt+lAAASpHj7OUjS/Kpxuu9Tx6uprUuX3vGiItEmv0uC33IKvAXGCWkAhmjdthZ19TjVMKIGACmFoJYmjiov0a+vPVHdPdJld7ystzfu8rskAEAG6P3yj6mPAJBaCGrwtBmSAAAcrElEQVRpZNbEIj34mROVnx3QFT95Wa+u2+53SQCANBeJeq35p4cJagCQSghqaaaqLKQHPnOiygpzddVdi/XXuq1+lwQASGN10ZimlORn7pqdAJCmCGppaEpJvn796RM0tbRAn7hniZ5e3uB3SQCANFXXQMdHAEhFBLU0Nb4oTwuvPUGHTR6jz/zqVf3+jY1+lwQASDPdPU6rGmM0EgGAFERQS2MlBTm695PHq3bqWP3Tr9/QwsXr/S4JADKSmZ1jZivNLGJmN/Zxf6WZPWdmr5vZW2Z2XsJ9X40/bqWZfWBkKz+4jTta1d7Vw4gaAKQgglqaK8wN6p6Pz9epM8O68bd/011/We13SQCQUcwsIOl2SedKmiPpCjObs99uX5P0gHNurqTLJf1f/LFz4rcPl3SOpP+LP19KiDR6HR9rJhDUACDVENQyQH5OQHd+tFbnHjFR//XoO/rBH+vknPO7LADIFPMlRZxzq51zHZIWSrpov32cpDHx68WSNsWvXyRpoXOu3Tm3RlIk/nwpoa7B6/g4I1zkcyUAgP0R1DJETjBLt10xV5ccW67v/fFd3fr4CsIaACTHFEkbEm7Xx7clulnSVWZWL+kxSdcP4LGSJDO71syWmtnSxsbGZNR9SJFoTOGiXBUXZI/I6wEA+o+glkGCgSz9vw8fpX84caru/PNq/dvv3lZPD2ENAEbAFZLucc6VSzpP0i/NbEDHWOfcnc65WudcbTgcHpYi91cXjWkG66cBQEpi0ZQMk5Vl+o8PHq5QblA/en6VWtq79O1Lj1YwQCYHgEHaKKki4XZ5fFuia+Sdgybn3EtmlieprJ+P9YVzTquiMf3dsX0O8AEAfMan9wxkZvqXc2bryx+Ypd+9sUn/eO9rau/q9rssAEhXSyTVmFmVmeXIaw6yaL991ks6U5LM7DBJeZIa4/tdbma5ZlYlqUbS4hGr/CAadrerqb2Ljo8AkKIIahnsc6fP0M0XztFTyxv0yZ8vVUtHl98lAUDacc51SbpO0pOS3pHX3XGZmd1iZh+M7/YlSZ8yszcl3S/paudZJukBScslPSHpc865lPjmrC7qdXwkqAFAamLqY4a7ekGVCnKDuvE3b+ljdy/WT68+TmPyOGkcAAbCOfeYvCYhidtuSri+XNKCAzz2G5K+MawFDkIk6nV8rBlPx0cASEWMqI0Cl9VW6LYrjtXr63fqsh+/pLfqd/pdEgDAZ3XRmIrzs1VWmON3KQCAPhDURonzj5qkuz5Wq23NHbro9hf01d++pe3NHX6XBQDwSSQaU834QpmZ36UAAPpAUBtFTps1Xs9+6VRds6BKDyyt1+nffl6/fHmdumnhDwCjTiQa4/w0AEhhBLVRpigvW1+7YI4e/8L7NGfSGH39d2/rg//7V726boffpQEARsi2WLu2N3cQ1AAghRHURqmZE4p036eO121XzNW2WIcu+dGL+tIDb6qxqd3v0gAAw6y3kQhBDQBSF0FtFDMzXXj0ZD3zpVP12dOma9GbG3XGt5/X3X9do67uHr/LAwAMk7rejo8T6PgIAKmKoAaFcoP6l3Nm64l/OkXHVJbolkeW6/wf/lUvr97md2kAgGEQicYUyglocnGe36UAAA6AoIY9pocL9YtPzNePr5qnWHuXLr/zZX3+/tfVsLvN79IAAEkUicY0nY6PAJDSCGrYh5npnCMm6o83nKrPn1mjJ5Zt0Rnffl53/GmVOrqYDgkAmYCOjwCQ+ghq6FN+TkA3nD1TT3/xFJ04vVS3Pr5C5/7gz/pr3Va/SwMADMHutk5t2d1GUAOAFEdQw0FNLQ3pro8dp7uvrlVXj9NVP31Fn/3Vq9q4s9Xv0gAAg7Cqt5HIeBqJAEAqC/pdANLDGbMn6KTpZfrJn1fr9ucjem5lVNedPkOfOqVaucGA3+UBAPqpjtb8AJAWGFFDv+VlB3T9mTX64w2n6vRZ4/Xtp97VB773Zz23Iup3aQCAfloVjSknmKWKsfl+lwIAOAiCGgasfGyBfnTVPP3iE/OVlWX6+D1L9MmfL9H6bS1+lwYAOIS6aEzVZSEFA3wEAIBUxm9pDNopM8N64gun6MZzZ+vFVdt01vf+pO8+/a7aOrv9Lg0AcAB10SamPQJAGiCoYUhygln6zKnT9eyXTtM5h0/UD5+p01nf/ZOeXLZFzjm/ywMAJGjt6Fb9jlYaiQBAGiCoISkmFufph1fM1f2fOkEFOQF9+pev6uqfLdHqxpjfpQEA4lY1xuQcjUQAIB0Q1JBUJ04v1aOff5++fsEcvbZuhz7w/T/rW0+sUEtHl9+lAcCotyr+5VnNBIIaAKQ6ghqSLjuQpWtOrtIz/3yqPnj0FP3o+VU68zt/0iNvbWI6JAD4qK4hpkCWaVppyO9SAACHQFDDsBlflKfvXHa0HvrMiRpbkKPr7ntdf3/XK6praPK7NAAYlSLRmKaWFignyOEfAFIdv6kx7GqnjdMfrj9Z/3nR4Xp74y6d+4O/6L8eWa6mtk6/SwOAUaUu2qQZYaY9AkA66FdQM7NzzGylmUXM7MY+7j/FzF4zsy4z+3Dyy0S6C2SZPnriND33z6fp0tpy/fSFNTrjO3/Sw6/XMx0SAEZAR1eP1m5r4fw0AEgThwxqZhaQdLukcyXNkXSFmc3Zb7f1kq6WdF+yC0RmKS3M1a0XH6WH/3GBJhfn6Yu/flOX3fGSlm/a7XdpAJDR1m1rVnePozU/AKSJYD/2mS8p4pxbLUlmtlDSRZKW9+7gnFsbv69nGGpEBjqmokQP/+MCPbB0g771xApdcNtfNHNCkWZPLNKsiWPiP4s0qThPZuZ3uQCQ9uqiXsdHWvMDQHroT1CbImlDwu16SccP5sXM7FpJ10pSZWXlYJ4CGSQry3T5/Eqdc8RE/eyFtXqzfqdeWbNdv3tj0559ivKCmjXBC229IW7WxCIV52f7WDkApJ9INCYzaTrnqAFAWuhPUEsa59ydku6UpNraWk5MgiSppCBHXzx75p7bu1o69W60SSu2NGnllt1auaVJi97cpHtf2bsW26TiPM2Kj7r1BrkZ4wuVGwz48UcAgJRXF41pSkm+8nP4PQkA6aA/QW2jpIqE2+XxbcCwKC7I1nHTxum4aeP2bHPOafOuNq3c4gW4dxu8ny9Gtqmj25txG8gyVZWFvNG3PaNwY1Q+Nl9ZWUyfBDC6RaIx1TDtEQDSRn+C2hJJNWZWJS+gXS7pymGtCtiPmWlySb4ml+Tr9Nnj92zv7O7R2q3N8dE3L7y9Vb9Tj761ec8+BTkB1UxIDG/ez9LCXD/+KIPS3tWtWFuXYu1daor/7Op2qp02VnnZfDsO4OC6e5xWNcZ08oxSv0sBAPTTIYOac67LzK6T9KSkgKS7nXPLzOwWSUudc4vM7DhJD0saK+lCM/sP59zhw1o5ICk7kKWaCUWqmVCkC4/eu725vUvvNuwNbyu3NOnpdxr066V7T7csK8zdE9p6p0/OnFCUtGlBPT1OLZ29AatzT8CKtXWpqb1LzfHrsXbvdmy/+2PtnYq1dam5vXvPqOH+xuQFdfGx5bp8foVmTxyTlLoBZJ76HS3q6Oqh4yMApJF+naPmnHtM0mP7bbsp4foSeVMigZQQyg1qbuVYza0cu2ebc06NsXatjAe3lVuatLKhSfe+sk5tnV4QMpOmjiuIn//mdZ8sDeWouaNLsfa9oWtPmOoNVwkjXXsCWEeX+rNEXF52lgpzs1WYG1BhXlCFuUFNKclXUV6RCnODe7btueQFVZQbVHtXjx5+faPue2W97nlxreZWluiK+ZW64KhJKsgZ0dNPAaS4uoZ4x0fWUAOAtMGnOYwaZqbxRXkaX5Sn99WE92zv7nFav71FK7fs3jP6tnJLk55e3qCeAwQtM6kw1wtMvUGqKC+oySV58UCVvSdQ7RO0Eq4X5QUVyg0qO9Cvdef7dPrs8dre3KHfvlav+xev11ceekv/+YflumjuZF0xv1KHTy4e9HMDyBy05geA9ENQw6jX24Skqiykc46YtGd7W2e36hpi2tXauU8YK8wNqiAnkDLru40L5eiT76vWNSdXacnaHVq4eL0eWFqvX728XkeXF+vy+ZW68OjJKszlvzswWkWiMU0Yk6sxeSxtAgDpgk9uwAHkZQd0ZHn6jEiZmeZXjdP8qnG66cI5evj1jVq4eIO++tu/6b8eWa4PHuONsh05pThlQiaAkRGJNjGaBgBphqAGZKCSghx9fEGVrj5pml5bv1MLF6/Xw69v1P2LN+jwyWN0xfxKXXTMZBXx7TqQ8ZxzikRjurS24tA7AwBSBkENyGBmpnlTx2re1LH6+oVz9PvXN+q+xRv0td+9rW88+o4uPHqSrphfqWMqShhlAzLU5l1tau7o1nRG1AAgrRDUgFFiTF62PnriNF11wlS9Vb9LC5es1+/f2KQHltZr9sQiXTG/Uh+aO0XF+YyyAZkkEm8kwmLXAJBeCGrAKGNmOrqiREdXlOjfzp+jRW9s0v2L1+vfFy3TNx97R+cfNUlXzq/UvKljGWUDMkAdQQ0A0hJBDRjFCnODuvL4Sl15fKXe3rhL9y/2Rtl++9pG1Ywv1OXzK3Xx3CkaG8rxu1QAgxSJNmlsQbZKC3P9LgUAMACDX8AJQEY5YkqxvvF3R+qVfz1T/3PJUQrlBvWfjyzX8bc+oy8sfF0vr94m158VvAGklEg0pprxRX6XAQAYIEbUAOwjlBvUZcdV6LLjKvTO5t1auHi9fvv6Rv3+jU2qLgvp8vkVuuTYcr6dB9KAc0510ZjOTVgjEgCQHhhRA3BAh00ao/+46Agt/tez9J1Lj9a4UI6++dgKnXDrM7ruvtf0QmSrenoYZQNS1bbmDu1s6eT8NABIQ4yoATik/JyALplXrkvmlauuoUn3L96g37xWr0fe2qyppQW6/LhKfXheucJFjLIBqaSuwWskwmLXAJB+CGoABqRmQpFuunCOvnLOLD25bIvue2W9vvXECn3nqZU6e84EXT6/UifPKFMgi46R+2vr7Fb9jhat396i9dtatH57q9Zvb1H9jhbNnFCkS2vLtWB6mbJ475AkkcZ4x8cJBDUASDcENQCDkpcd0EXHTNFFx0zRqsaYfr1kgx56tV6Pv71F2QHThDF5mlScp0nF+ZpUkqfJxfmaWOz9nFSSp9JQTsa1/3fOaWusQ+u3t2jD9hat29ay5/r67S3asrttn/0LcgKqHFegicV5+tO7jVr05iZNLs7Th+eV68PzKlRZWuDTnwSZItLQpMLcoCaOyfO7FADAABHUAAzZ9HCh/vW8w/Sl98/UH5dH9famXdq8s1WbdrXpjQ079cTbbero7tnnMTmBLE0s9sLc5JL8eKjbG+wmFedrbEF2yoU5b1SsdU/42nOJh7LWzu599p84Jk+V4wp0ck2ZKscVqHJcgSriP8sK94bVts5u/fGdBj2wtF63PRfRD5+N6ITqcbp0XoXOPXKiCnL4dY2BizTGNH18Ycr9PwIAHBpHfgBJkxsM6PyjJun8o/btMNfT47StuUObd7Vq0842bdnVqs272rRpV5s272zV4jXb1bC7TV37NSbJy87ygltx3j6jcYmjc2Pyg0n9EOqcV2ti+Oq9bIiPiiWuUpCfHdgTvhbMKFPluHxNLQ2pYlyBysfmKy870K/XzcsO6IKjJuuCoyZr865W/fa1jXpw6QZ96cE39e+LlumCoybp0tpyHVvJQuTov7qGmE6ZGfa7DADAIBDUAAy7rCxTuChX4aJcHVXe9z7dPU5bY+3atLNVWxJC3OZdbdq8q1Uvrdqmht1t2r/JZEFOYO9IXHGeJpXka3JvsIuP1BXlZe/zmPYub1Rsz7TEbS1alzBFsaVj31GxCWNyVTmuQCdNj4+KlebvCWfhwtykB6dJxfn63Okz9I+nTdeStTv04NINWvTmJi1cskHV4ZAunVehi4+doglMZ8NB7GrtVLSpnUYiAJCmCGoAUkIgyzuv7WDho6u7R9Gm9j3hbfPONm3atTfYvftuoxpj7dp/Xe6i3KAmFuepOD9bm3a2avN+o2J52Vl7piWeOL1UleMKNLXUu10+tqDfo2LJZmaaXzVO86vG6eYPHq5H/7ZZDy7doG89sUL/78kVOnVmWJfVVujMwyYoJ8hqK9hXJBpvJEJQA4C0RFADkDaCgSxNLsnX5JJ8SWP73Kejq0fRpjZvamV8RG5L/Pqu1k6dUF2qyngI672Ei5I/KpZsodygLqut0GW1FVqztVkPvbpBv3l1oz5772saW5Cti46ZostqKzRn8hi/S0WKiESbJNGaHwDSFUENQEbJCWapfKw3EpapqspC+vIHZuuGs2fpL3WNevDVet33ynrd8+JaHT55jC6dV66LjpmisaEcv0uFjyLRmHLj/x8AAOmHoAYAaSqQZTpt1nidNmu8drZ06PdvbNKDr27QzX9Yrm8+tkJnz5mgD9eW65SaMOvajUJ10Ziqw4X83QNAmiKoAUAGKCnI0cdOmqaPnTRNyzft1oOvbtDvXt+oR/+2WRPH5OniY6fo0toKVZWF/C4VIyQSjenYyr6nCAMAUh9BDQAyzJzJY/Tvkw/XV889TM+806AHX63Xj/+0Sv/3/CodN22sLp1XofOOmqTCXA4Bmaqlo0v1O1r1kdoKv0sBAAwSR2kAyFA5wSyde+QknXvkJDXsbvPWZnt1g77ym7d08x+W6bwjJ+nSeeWaXzUu5ZupYGBWNzZLopEIAKQzghoAjAITxuTps6dN12dOrdZr63fowaX1euStzXro1XpNKy3Qh+eV6+Jjy+MdNZHu6uIdH2smENQAIF0R1ABgFDEzzZs6TvOmjtNNF87RE29v0QNLN+jbT72r7zz9rk6eUabLait09pwJvq0fh6Gra4gpmGWaWso5iQCQrghqADBKFeQEdfGx3kja+m0t3tpsr23U9fe/ruL8bF10zGRdOq9CR0wZw9TINBOJxjStLKTsAAuhA0C64jc4AECVpQW64f2z9JevnK5fXXO8Tp0Z1sIlG3TJj17U7rYuv8vDAEWiMc0IM+0RANIZI2oAgD2yskwn15Tp5Joy7Wrt1Jsbdqo4P9vvsjBAt105VyZGQQEgnRHUAAB9Ks7P1ikzw36XgUE4fHKx3yUAAIaIqY8AAAAAkGIIagAAAACQYghqAAAAAJBiCGoAAAAAkGIIagAAHIKZnWNmK80sYmY39nH/98zsjfjlXTPbmXBfd8J9i0a2cgBAuqLrIwAAB2FmAUm3SzpbUr2kJWa2yDm3vHcf59wXE/a/XtLchKdodc4dM1L1AgAyAyNqAAAc3HxJEefcaudch6SFki46yP5XSLp/RCoDAGQsghoAAAc3RdKGhNv18W3vYWZTJVVJejZhc56ZLTWzl83sQwd6ETO7Nr7f0sbGxmTUDQBIYwQ1AACS53JJDznnuhO2TXXO1Uq6UtL3zWx6Xw90zt3pnKt1ztWGwyw0DgCjHUENAICD2yipIuF2eXxbXy7XftMenXMb4z9XS3pe+56/BgBAnwhqAAAc3BJJNWZWZWY58sLYe7o3mtlsSWMlvZSwbayZ5cavl0laIGn5/o8FAGB/dH0EAOAgnHNdZnadpCclBSTd7ZxbZma3SFrqnOsNbZdLWuiccwkPP0zSHWbWI+/L0f9O7BYJAMCBENQAADgE59xjkh7bb9tN+92+uY/HvSjpyGEtDgCQkZj6CAAAAAAphqAGAAAAACnG9p1KP4IvbNYoad0Qn6ZM0tYklDOa8J4NHO/ZwPGeDVymv2dTnXP0nO8njpG+4T0bON6zgeH9GrhMf88OeHz0Laglg5ktja9Ng37iPRs43rOB4z0bON4zJBv/pgaO92zgeM8Ghvdr4Ebze8bURwAAAABIMQQ1AAAAAEgx6R7U7vS7gDTEezZwvGcDx3s2cLxnSDb+TQ0c79nA8Z4NDO/XwI3a9yytz1EDAAAAgEyU7iNqAAAAAJBxCGoAAAAAkGLSNqiZ2TlmttLMImZ2o9/1pDozqzCz58xsuZktM7Mv+F1TOjCzgJm9bmaP+F1LujCzEjN7yMxWmNk7Znai3zWlMjP7Yvz/5Ntmdr+Z5fldE9Ibx8eB4fg4eBwjB4bj48CN9mNkWgY1MwtIul3SuZLmSLrCzOb4W1XK65L0JefcHEknSPoc71m/fEHSO34XkWZ+IOkJ59xsSUeL9++AzGyKpM9LqnXOHSEpIOlyf6tCOuP4OCgcHwePY+TAcHwcAI6RaRrUJM2XFHHOrXbOdUhaKOkin2tKac65zc651+LXm+T9cpjib1WpzczKJZ0v6S6/a0kXZlYs6RRJP5Uk51yHc26nv1WlvKCkfDMLSiqQtMnnepDeOD4OEMfHweEYOTAcHwdtVB8j0zWoTZG0IeF2vfil2m9mNk3SXEmv+FtJyvu+pK9I6vG7kDRSJalR0s/i02HuMrOQ30WlKufcRknflrRe0mZJu5xzT/lbFdIcx8ch4Pg4IBwjB4bj4wBxjEzfoIZBMrNCSb+R9E/Oud1+15OqzOwCSVHn3Kt+15JmgpKOlfQj59xcSc2SOEfmAMxsrLzRjipJkyWFzOwqf6sCRieOj/3HMXJQOD4OEMfI9A1qGyVVJNwuj2/DQZhZtryD0L3Oud/6XU+KWyDpg2a2Vt7UoTPM7Ff+lpQW6iXVO+d6v41+SN6BCX07S9Ia51yjc65T0m8lneRzTUhvHB8HgePjgHGMHDiOjwM36o+R6RrUlkiqMbMqM8uRd2LhIp9rSmlmZvLmRb/jnPuu3/WkOufcV51z5c65afL+fT3rnBtV3+IMhnNui6QNZjYrvulMSct9LCnVrZd0gpkVxP+PnilOLsfQcHwcII6PA8cxcuA4Pg7KqD9GBv0uYDCcc11mdp2kJ+V1gLnbObfM57JS3QJJH5X0NzN7I77tX51zj/lYEzLT9ZLujX9IXC3p4z7Xk7Kcc6+Y2UOSXpPXee51SXf6WxXSGcfHQeH4iJHC8XEAOEZK5pzzuwYAAAAAQIJ0nfoIAAAAABmLoAYAAAAAKYagBgAAAAAphqAGAAAAACmGoAYAAAAAKYagBvSTmXWb2RsJlxuT+NzTzOztZD0fAAAjiWMkkHxpuY4a4JNW59wxfhcBAEAK4hgJJBkjasAQmdlaM/sfM/ubmS02sxnx7dPM7Fkze8vMnjGzyvj2CWb2sJm9Gb+cFH+qgJn9xMyWmdlTZpYf3//zZrY8/jwLffpjAgAwYBwjgcEjqAH9l7/ftI6PJNy3yzl3pKT/lfT9+LbbJP3cOXeUpHsl/TC+/YeS/uScO1rSsZKWxbfXSLrdOXe4pJ2SLolvv1HS3PjzfGa4/nAAAAwBx0ggycw553cNQFows5hzrrCP7WslneGcW21m2ZK2OOdKzWyrpEnOuc749s3OuTIza5RU7pxrT3iOaZKeds7VxG//i6Rs59x/mdkTkmKSfifpd8652DD/UQEAGBCOkUDyMaIGJIc7wPWBaE+43q2955CeL+l2ed8sLjEzzi0FAKQTjpHAIBDUgOT4SMLPl+LXX5R0efz630v6S/z6M5I+K0lmFjCz4gM9qZllSapwzj0n6V8kFUt6zzeWAACkMI6RwCDwrQPQf/lm9kbC7Secc73th8ea2VvyvvG7Ir7tekk/M7MvS2qU9PH49i9IutPMrpH3reBnJW0+wGsGJP0qfqAyST90zu1M2p8IAIDk4BgJJBnnqAFDFJ9/X+uc2+p3LQAApBKOkcDgMfURAAAAAFIMI2oAAAAAkGIYUQMAAACAFENQAwAAAIAUQ1ADAAAAgBRDUAMAAACAFENQAwAAAIAU8/8BU+I+ro4E0wkAAAAASUVORK5CYII=\n" - }, - "metadata": { - "needs_background": "light" - } - } + "data": { + "text/plain": [ + "[{'class_name': 'steak',\n", + " 'correct': True,\n", + " 'image_path': PosixPath('data/pizza_steak_sushi/test/steak/2144308.jpg'),\n", + " 'pred_class': 'steak',\n", + " 'pred_prob': 0.9924067854881287},\n", + " {'class_name': 'steak',\n", + " 'correct': True,\n", + " 'image_path': PosixPath('data/pizza_steak_sushi/test/steak/1285886.jpg'),\n", + " 'pred_class': 'steak',\n", + " 'pred_prob': 0.9951366782188416},\n", + " {'class_name': 'steak',\n", + " 'correct': True,\n", + " 'image_path': PosixPath('data/pizza_steak_sushi/test/steak/1016217.jpg'),\n", + " 'pred_class': 'steak',\n", + " 'pred_prob': 0.9988836646080017},\n", + " {'class_name': 'steak',\n", + " 'correct': True,\n", + " 'image_path': PosixPath('data/pizza_steak_sushi/test/steak/1868005.jpg'),\n", + " 'pred_class': 'steak',\n", + " 'pred_prob': 0.9997372031211853},\n", + " {'class_name': 'steak',\n", + " 'correct': True,\n", + " 'image_path': PosixPath('data/pizza_steak_sushi/test/steak/966174.jpg'),\n", + " 'pred_class': 'steak',\n", + " 'pred_prob': 0.9809446334838867}]" ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Get all test data paths\n", + "from tqdm import tqdm\n", + "from pathlib import Path\n", + "test_data_paths = list(Path(test_dir).glob(\"*/*.jpg\"))\n", + "test_labels = [path.parent.stem for path in test_data_paths]\n", + "\n", + "# Create a function to return a list of dictionaries with sample, label, prediction, pred prob\n", + "def pred_and_store(test_paths, model, transform, class_names, device):\n", + " test_pred_list = []\n", + " for path in tqdm(test_paths):\n", + " # Create empty dict to store info for each sample\n", + " pred_dict = {}\n", + "\n", + " # Get sample path\n", + " pred_dict[\"image_path\"] = path\n", + "\n", + " # Get class name\n", + " class_name = path.parent.stem\n", + " pred_dict[\"class_name\"] = class_name\n", + "\n", + " # Get prediction and prediction probability\n", + " from PIL import Image\n", + " img = Image.open(path) # open image\n", + " transformed_image = transform(img).unsqueeze(0) # transform image and add batch dimension\n", + " model.eval()\n", + " with torch.inference_mode():\n", + " pred_logit = model(transformed_image.to(device))\n", + " pred_prob = torch.softmax(pred_logit, dim=1)\n", + " pred_label = torch.argmax(pred_prob, dim=1)\n", + " pred_class = class_names[pred_label.cpu()]\n", + "\n", + " # Make sure things in the dictionary are back on the CPU \n", + " pred_dict[\"pred_prob\"] = pred_prob.unsqueeze(0).max().cpu().item()\n", + " pred_dict[\"pred_class\"] = pred_class\n", + " \n", + " # Does the pred match the true label?\n", + " pred_dict[\"correct\"] = class_name == pred_class\n", + "\n", + " # print(pred_dict)\n", + " # Add the dictionary to the list of preds\n", + " test_pred_list.append(pred_dict)\n", + "\n", + " return test_pred_list\n", + "\n", + "test_pred_dicts = pred_and_store(test_paths=test_data_paths,\n", + " model=pretrained_vit_swag,\n", + " transform=vit_transforms_swag,\n", + " class_names=class_names,\n", + " device=device)\n", + "\n", + "test_pred_dicts[:5]" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 }, + "id": "mKVRdY1Vh8En", + "outputId": "9a3a1429-c55c-4e5d-cc40-2869d3a4f723" + }, + "outputs": [ { - "cell_type": "markdown", - "source": [ - "## 4. Try repeating the steps from excercise 3 but this time use the \"`ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1`\" pretrained weights from [`torchvision.models.vit_b_16()`](https://pytorch.org/vision/stable/models/generated/torchvision.models.vit_b_16.html#torchvision.models.vit_b_16).\n", - "* Note: ViT pretrained with SWAG weights has a minimum input image size of (384, 384), though this is accessible in the weights `.transforms()` method." + "data": { + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
image_pathclass_namepred_probpred_classcorrect
25data/pizza_steak_sushi/test/pizza/2508636.jpgpizza0.801234steakFalse
22data/pizza_steak_sushi/test/pizza/1687143.jpgpizza0.999948pizzaTrue
43data/pizza_steak_sushi/test/pizza/2111981.jpgpizza0.999943pizzaTrue
24data/pizza_steak_sushi/test/pizza/714866.jpgpizza0.999935pizzaTrue
8data/pizza_steak_sushi/test/steak/3424937.jpgsteak0.999927steakTrue
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " ], - "metadata": { - "id": "LH-vHr3m9_oH" - } + "text/plain": [ + " image_path class_name pred_prob \\\n", + "25 data/pizza_steak_sushi/test/pizza/2508636.jpg pizza 0.801234 \n", + "22 data/pizza_steak_sushi/test/pizza/1687143.jpg pizza 0.999948 \n", + "43 data/pizza_steak_sushi/test/pizza/2111981.jpg pizza 0.999943 \n", + "24 data/pizza_steak_sushi/test/pizza/714866.jpg pizza 0.999935 \n", + "8 data/pizza_steak_sushi/test/steak/3424937.jpg steak 0.999927 \n", + "\n", + " pred_class correct \n", + "25 steak False \n", + "22 pizza True \n", + "43 pizza True \n", + "24 pizza True \n", + "8 steak True " + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Turn the test_pred_dicts into a DataFrame\n", + "import pandas as pd\n", + "test_pred_df = pd.DataFrame(test_pred_dicts)\n", + "# Sort DataFrame by correct then by pred_prob \n", + "top_5_most_wrong = test_pred_df.sort_values(by=[\"correct\", \"pred_prob\"], ascending=[True, False]).head()\n", + "top_5_most_wrong" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "EMPqhlcGiEIw", + "outputId": "3fb93aa9-e718-4d84-cb7c-0bf52076b133" + }, + "outputs": [ { - "cell_type": "code", - "source": [ - "# Create ViT feature extractor model\n", - "import torchvision\n", - "\n", - "# Download pretrained ViT weights and model\n", - "vit_weights_swag = torchvision.models.ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1 # get SWAG weights\n", - "pretrained_vit_swag = torchvision.models.vit_b_16(weights=vit_weights_swag)\n", - "\n", - "# Freeze all layers in pretrained ViT model \n", - "for param in pretrained_vit_swag.parameters():\n", - " param.requires_grad = False\n", - "\n", - "# Update the preatrained ViT head \n", - "embedding_dim = 768 # ViT_Base\n", - "set_seeds()\n", - "pretrained_vit_swag.heads = nn.Sequential(\n", - " nn.LayerNorm(normalized_shape=embedding_dim),\n", - " nn.Linear(in_features=embedding_dim, \n", - " out_features=len(class_names))\n", - ")\n", - "\n", - "# Print a summary\n", - "summary(model=pretrained_vit_swag, \n", - " input_size=(1, 3, 384, 384), # (batch_size, color_channels, height, width)\n", - " # col_names=[\"input_size\"], # uncomment for smaller output\n", - " col_names=[\"input_size\", \"output_size\", \"num_params\", \"trainable\"],\n", - " col_width=20,\n", - " row_settings=[\"var_names\"]\n", - ")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 692, - "referenced_widgets": [ - "d1c7ef8be6974da1bffac9352f5bb756", - "69e851ff3c3344b3ba0dbad055a542ba", - "c3f31ae0b1654d338a6d16600fd0ae7c", - "7c07eac4cfb3485b81b301722b8ed256", - "f5a3786b73544319973f81cb502247fa", - "f9fd5a5bb97f4f68978610975a864fcf", - "069a53cbbc6c489bb0e93920fe9c74e7", - "4ae1ed5541474dbeb8946a87b97ed3b8", - "1fedade3d325455fab7041a5ecdf7a24", - "2163e30923ee4e98a0b524113055cbbf", - "8992a45afd2a42e48e655a12ba80291f" - ] - }, - "id": "6XrqQuzQ-Nlh", - "outputId": "a8d3ef47-0e36-484e-d186-4a91f21820aa" - }, - "execution_count": 33, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "Downloading: \"https://download.pytorch.org/models/vit_b_16_swag-9ac1b537.pth\" to /root/.cache/torch/hub/checkpoints/vit_b_16_swag-9ac1b537.pth\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - " 0%| | 0.00/331M [00:00" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" }, { - "cell_type": "code", - "source": [ - "# Check out transforms for pretrained ViT with SWAG weights\n", - "vit_transforms_swag = vit_weights_swag.transforms() # get transforms from vit_weights_swag\n", - "vit_transforms_swag" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "Jq24y5GGetKt", - "outputId": "449ae01d-5f8d-45ba-9df2-d392795cfdb0" - }, - "execution_count": 34, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "ImageClassification(\n", - " crop_size=[384]\n", - " resize_size=[384]\n", - " mean=[0.485, 0.456, 0.406]\n", - " std=[0.229, 0.224, 0.225]\n", - " interpolation=InterpolationMode.BICUBIC\n", - ")" - ] - }, - "metadata": {}, - "execution_count": 34 - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOwAAAD3CAYAAAAewrhMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9e7Qlx3Xe99tV1X3Ofd87L8wAGGDwIsE3RUokQUpLsmJLK1IUP+LEUhTJtKPYy1leXomTFTuOHSvO8kOKvewkfkaxLSWyYsmWbTmyFUuyFmWREkmTAl8gCYJ4YzCvOzP3fc853VU7f+yq7j4XA+CShMnQmVoY3Hv7dJ+urqq997e/vWu3qCq32+12u319NPe17sDtdrvdbsdvtwX2drvdvo7abYG93W63r6N2W2Bvt9vt66jdFtjb7Xb7Omq3BfZ2u92+jtq/FQIrIr8gIr/3q3SvCyLyzFfjXre49/tF5IOv0Xf9CRH531+L7zrm/Z4RkQtfhfv8sIj85L/p+3yt2isKrIjsDf4lETkc/P39X61OvlpT1X9XVX/ia90PABH5cRGZ5TG6ISK/JCIPf637dbSp6p9T1R/6WvcDOkUU85jtiMgnROTf+xr15X8UkU+LSCsiP/wq54qI/IiIXM//fkREZPD520Xk4yJykH++/bjXvlx7RYFV1eXyD3gO+J7Bsb83uHl4tRv9/6z9aB6zu4GrwI8fPSFP2L8VCOc1ar+Rx2wd+NvAz4jIxtGTvgpr7YvAfwP8s2Oc+weA3wG8DXgr8D3AHwQQkRr4OeAngQ3gJ4Cfy8df8dpXal/WghGRbxORF0Tkj4nIZeDv3gquiYiKyIP595GI/EUReU5ErojI3xSRhWPe7/0i8iER+asisi0inxeRf2fw+QdE5Ify7588ggw09/evHjneaVAR+eMi8qSI7IrIZ0Xkd34543K0qeoB8FPAmwf9/LMi8iHgALhfRB7OVviGiDwuIv/R4LlOisg/zVbno8ADx713hu4qIn9ARF4UkUsi8l8PPu+g48uNjYj8niPHpyLygXzNd4vIo7lvz7+aNTpuU9UE/B1gAXgg9+MfishPisgO8H4RuTOPyw0R+aKI/GdHvmYsIj+d5/M3ReRtX8L9f0JVfwHYPcbpvxf4S6r6gqpeBP4S8P782bcBAfgrqjpV1f8FEODbj3Hty7avRMOfBU4A92La4tXaXwBeB7wdeBC4C/jvy4cisiUi3/wK178beBI4Bfxp4B+JyImjJ6nq2wao4I8CjwO/qap/eHD8m4GbmAYkf++3AGvA/wD8pIicO8YzvWITkWXg+4FHB4d/ABuvFeAa8EuYUJ8Bvhf46yLyxnzuXwMmwDng9+d/w+//eRH546/Sjd8CPAR8B/DHROS3Hj3h5cZGVX96cPxO4Cng/8qX7QM/iFnE7wb+kIj8jlfpy6u2bEF/CNgDnsiHfzvwD/O9/h7w94EXcp9+N/DnROTbB1/z24F/gK3PnwL+iYhU+fv/uoj89a+0n7m9Cfjk4O9P5mPls0/pfO7vp458/nLXvnxT1WP9A54Bfmv+/duAGTAefP5+4INHrlFMOAWb4AcGnz0CPH3Me78feBGQwbGPAj+Qf/8A8ENHrvlmDI6+7sjx0/lZvvcV7vcJ4Le/zGcXgGde4dofx4RsC7gM/NPy3Lmff2Zw7u8Bfu3I9X8LU0geaICHB5/9uaNj/Ar9uJDHf3j9jwJ/O//+w8BPHmdsMMX+88DfeIX7/RXgL7/K+rnwCvPb5jHbBD48WGs/DPyrwbnngQisDI79eeDHB+d/+EjfLwHfcty1nq/7SeCHX+WceGR8H8pjLsCfAv7+kfP/XvnOV7r2le75lfgD11R1csxzTwOLwMcHfrVgi/K47aLmJ8vtWUzDvqSJyHngZ4Dfq6pfGByvME39U6r69wfHfxCzxhfyoWXMkn+57S+q6p98mc+eH/x+L/BuEdkaHAvA/4mNWThy/rNfRl+OXv+WW530cmOT25/FEMEfGZz/bgw1vRmogRFm1b7c9mFVfTmENXyGO4EbqjqErM8C33ir81U1iUixxq912wNWB3+vAnuqqiJy9LPy+e6rXftKN/xKIPHRL97HhBIAETk7+GwTOATepKrr+d+aGtQ6brvrCIt2D2Z151r2i/8J5jv8wpGP/1dgB/iTg/PvBX4M+MPASVVdBz6DKZR/E204bs8DvzoYk3U1CPqHMLjcYhaltHu+jPsdvf4lY5bbS8YGQES+F/g+4HerajP46Kcw9HBeVdeAv8lXZ8xeBE6IyMrg2D3AxcHf3TNnYu9uXv65v5L2GEYalfa2fKx89tYja/atRz5/uWtftr2WLOUngTeJUdljDJoAHZHwY8BfFpEzACJyl4h855fw/WeAPyIilYj8h8AbgH9+i/P+DvB5Vf3R4UER+YPAtwLfn/tT2hK2IK7l834fmST6KrSfB14nIj+Qn6sSkW8SkTeoagT+EfDDIrKY/dovJ9b8p/L1bwJ+H/DTR094ubERkW/ABPl3qOq1I5etYJZuIiLvAv7jL6NvX3JT1eeBXwf+vIiMReStwH+KQdjS3ikivyv7w/8FMMVg9qu2PAdjTDZCvsfLIcH/A/ijeS3fCfxX9BGBD2Cw94+IEa5/OB//lWNc+7LtNRPYDD3/DPDLGFlwNMD/xzDK/MOZ7ftl4PXlw8xCfssr3OIjGM7fxCDa71bV67c473uB33mE3fwWzErcD7w4OP4nVPWzGEP3G8AVDDJ+6Et9/i+nZVj3HbnPL2I+749g8BLM6i/n4z8O/N3h9WIJI3/iVW7zq9i4/0sMqv/iLc655dhg5M0G8MHB8YJa/nPgz4jILkYe/szxn/wrbt+HuS8vAv8Y+NOq+suDz38O4wduYiTf7yroQCw68Tdf4bt/DEOD3wf8d/n3H8jXfkuGuqX9LeD/Bj6NobJ/lo+hqjMsbPODmG/++zHFN3u1a1+pyatA5v9PNBF5P0YqvRKL/NXqywXgA6p64Wvbk1duuZ9PA5Wqtl/b3limE/BtqvrM17grX9ftduD+drvdvo7abYH90tsWFsK43b609lewsbvdvoL2dQGJb7fb7XazdtvC3m6329dRO1bixD/5x/+bBiekJnL95g6TWPE9/8F/wtLaOpcuX+Xnf+5nuXn1eYK0vPe97+Nd7/5mfvFf/DzS7qEpUUJRMUbL6lCIbYtzDhFBVYkxduelpIhI96+0lBIppe73QZYICsSoOOfyefmclBBNRzNUiDHSxhZEUQVJnpQiGvM1bUPEcXFzmw/8xse4tr1LjA0aW1Q9iKNyDiH30wXqesTB7iakhrWVRc7fdZZRFZCkpNSiqaFyglOIbUOrLa1GSAmPI+FJOA6nDXHWMJ1OadtIk9RSYJxDgTbZc1TiCCEgIsSUSDHmn4mkedxEwIE4cM7hnadSh3PgnOC8nRKCpwqB4DzOORDBe48TwXlPqD1VcNTOU3mP9w4JjmpUUfkacR6pA2E0gpTY3bzJxeeeZzKbkvK4D+fSOUGx+XLO9fOoioj9HdtoayYlvDiC94xGIySAuhZtFZcqmgjbs0N+23d9J6dOrnPj8iWe+OzjVOqQNCVUkVYcqAcEb7OGd9leieK8w3mPOIfzjpgSzjvUC8HXOBdwzuODfe5DjUqFlHHKz1HGTqT/23vfnSfBgYAg9j35MxD+y//2f3rVOPaxBNY5GyycZ31jnavX97n4/DM88+GrPPHEU2xeucj+1lWCS2xv7XB4cEBsI3VeYEXAOgFUcJU9rAkeWXhtorxnTljLZJeJTSnZwAybCCmZINp5JvhoQvKCKUJervfBk7IwO3GkVohNa4vde/b3p3zm808wbSNOHCoe8ZCikhBcvUBVj3CqeJT9vW3QxNLSIg8++ABnTq2T2khqI0JCJSExkpqG2WxKM5vSxAZtW0gg4nHO87oL9yEI169vsnX9JrPpjBgTKQtujJG2bWliy3Ta2OLwAQmBgI2Ri5GUTCnZ+QlNJgyNhLyoFBtGNYGWgQIajL1iAr2wMGJ5PGZhVLMwqhkt1Hgv4ALeh7wABRdqfBVQAec8zIW9ez1yK6Vc/tYkJOmvU1vTOIEgEEVIYn1XVXwI7O7u4iSCQD0aQasEBZEZQQRx3pSzCN55XO5D/iUrXkGcIziHeAfeEUKFc5UJoPeIwxSU8wTvcd7js3CKcznBUDqD1AmzLWy891muPN6VEO/xXNNjCWwQh+SvrKuakydrPvqRX+fjn3iMne0DZoc7BGlYXR7xgX/5K2zf3GVtbYHgPUmks55lYpw4NGm2lmLaNluElwjiYCJVtRPaoXVW1DRjGi4AQRU0JTRFVBMxJlRt4QugneVvSak1q+OFhLJ/kHj0c1/gxc0btAkUwZE1tLQ4F5hGIWng7jtOc+PSs6TZIeNxzQMP3M+9F+6h9kLbNGhUxAm4hLYtcTajmRwynRzSNDOa6YzURpoE1cISd5w9S1XXLK+t4EW4ef0GzawxoW0iwTnG9ZgZDdOmYdq0TGYtKh7nK7wPVM4RgidQEZMJeNKEE48TW7iQUBKQEUm3aLQb23wi01nLdNZysDehDsK4DozHNcvLi6ysrrB+YoMFP+oWrjpBnSdUzCGbOc5EekUMdOhJxHWIwASq/+kk4QUoylMV8XBq/RQoHBweslBXrG6cYO/mLqIBpwJkg+FNQMU0Boiz9ZiPiS3CgbX1+FAR/Li73gQ2IC7ginX1vrOWSVN+Lo84+1k+E+fxvuqQpmAW+bjtWALr84CZcVTGo8DaSs107wZPf+EpZpM9Kq+cObXBHWfO8OlPfJz3vu/dSDDo1U1+aYotniNwaCiYL0eGdRo4f25azSBISkXgi8AqKUVSVFRNc5aWUiJptmreEWNZWDCbtTz+1BN85vGnOJjMcL6irkaoi8S2AVWiOBaXV3no4Tdw/dIL7O9tM64d995zNw89eD9LCyOERBUqGz/nwSspC2xcXKCZHDKbTJkeHtI2kUkbWT95irX1DaJG2BUaElo5RPOEo4YcgIDHecGHwKSJHM5aJtMpSadUWfv7YNZPqoDHoKjPYyf5f0rMfzuUl46/qpIUnHgiiWmbmLUTdvf32dndY2F7h72DQ86cO8fJ06cJzha7Dw4iL5lL+1u7RMZOkRfBVIgxdXCyQ1jeZwsYcGHEqB5x6uQGu/v7LK6dAoQYExHHhde9nu3re1x+4XmIFT41OFHwinjBeiAGdVXQYvlEQOgQgwliRQh1VhxkgXWI+A4OD2GxYC6Tc7YOxTvIwutdjXfBlJOAquBdOLbMHi/5P6ndNHfWkzi1scJb3/QgTzz2GGl2wGh1kQv33MVb3vIW2iYyqkzDq7qXTL4mcKKdgAw1ukHnl2rkIUQrQj6EVCqC686zf6axFSehOy8lsyOaEinZxKWk+OBIwHTS8uKlK3z80c/QJGG8sETlgy2cGNnfi7QYTDq5sYY2E158/mnGwXHfPXfxpre8kbXVFUJwpNgCQvAhWwglaSLWNW1TUdU149GU2cIiTdNSz1rO3XU344UFDif7TA4PmDUt6jwalKiKEoitcQFeBFFHCI4FFxBxTGYN0zbSpMQsJmTWkI2T+W1AJREnkhedzI1loresSRNoFljxINH83gwJvfNockz3Z+xOrnJj54AHmsSdd54DVfNzj+zRL/Nns57m5rY7JylS4HDRKgLBezQ4GC1z7u4H+I7v/A5Onljgl37pF9mfxIwPWpok1CsbfPe3fQ+fevRRPvmbH8HN9iHNwLWIy3dWwUmw5xDw2Up2cNa5bB0rnK+tHw6D/d6blXcF+tr54pzNywASz/3uClY15WmfvcYW1lwF2zUkZA0jiYfuP8/rH7yH7a2bPPDg/Tz00IOcPnUCFII3pz51QlgIJfs9iXZapfiUBp0N2+vgurKgesjU+wHl7wSI68+F4WAMLHgWdnUOSeU8R9REG5XdvX0+/uhnmU4TwQVIStKGZjohAdV4hIsjFhYWkWbCFz/9m6yMhIcffANvfPghVlaWshZWvK9xOAR7NoBEwntPqAJtCKRQEUYNsyZSq7C6sY4qTA+n7O/s0k5n0CpEgaxg2pSYzRoCUAezBDhYHNV4geDEiKpsiZ2AE8mEEubP5fEpttbl39PAGJbxVlVaFQ5nLU2KpLzQvBO82AL1kpg1e6T4FJX3BG9+oCtQ8AgqglsLrCl0JUYbpya2ZZJxwSOhQservOVd38qZ8w+xdeNpxivLtC4i0XiCFDy708TEVfz73/cDnH/oIT74//xTDvZuANNeGai5Bz77sC4TTkX4EOkEVpwHzMI673DBLOwQ0ncWdoAYeqF1nd9un1kXnHfZJXwNfdghHPbegRNi27K6vMgj73knu7u7nLnjDMtLS4TgaGZTUvSmlTKjidiisC90QM/cel8eWEjJzU2gLaoBYQVzwjp3ng7JKof3ZPJpfmGUYzZQEEkInsnBhI989FGubu4wHi3StA2Hhwe0sTUCxdf4ULO0PMYD1y+/wIn1Jd75jrdz773nGY9GOKI9HpkYUyAJPlhnoiYSgRg9CCTnkbZGq5alaoT3nunkgP2dbaYHB/iMQiRjsZZE5QMNDU3T0swaUwAhEIJnXFVUztFqQiQLTRbY/PS4TNbYWEivOFX63ZxC52cpyizCYdNY/5MhmiaCQ3GAd5mr0MRTTz7N+bvOGnHjzOUo5MqQOBTXz8mc0Cbt5qiNrbHMYr6tupr3fuu38y3f/tu4unmZGwdTVk+dZbSkSBtRifiFMcmPuXbjBvenxHd813cjs31+5Zf+OSl5nOF0RDzBBVuXeY1nqeogrogn+KpYKTP2XjqI7p2nX9YFErvsbhU/Ngsr5v8yYMy9lzlE+WrtWAKbiIgKThyOwoIZRX3XPefY2VlmZXkVJ44YW5rYMNudsrS8CA5StmKiksMXELwjacwWEbSwta7Q3AnnUnbgFSViVHkvrHOwOW+o6CF0tg4oSaM599Bdn8ceJaEIk1nDJz71GZ546lmS1gTv0NSyMBrRakWbhLpe4uTJU7i4z6UXnuH8Xad573vfw9mzp6kqC7F4mQ85lZCVx9sijYmYIk4qIzuqRNO2uLZhcbxA207Z39tmZ3uL2XRCShFxCklxXvFJkcox1pqpczRNQxtbZrHFN44qBJw4gqvoCNA8EpniQAYuiEjvcvgMPY0M0jx6NtdNNC4geGN/YzLFJwpJEoJDvCcBh4cT9nb3aKYzfJ2o/QgfzM8LefxTIQsH1ndIJEomIdvUdmE6xRH9iG/9Ld/Gm976IBem93IwfRuzyZSD3UMkzaiDY2l5OUNbx/LSMpV3PPj6N/DBX/tVtA2ItsTYdmEVY4wtolGUuHcOH4I9V7a8zuX15bIL1hFNRRizi6YWujPf1nXj65wHN1yj5t+KCO61FNiOhHACKXYwR1WpqgVm023ccm3Qsm2ZTRM721ucOHGS0cI4T7pDoqKSfS9nnKtp0kiMBg9SHOL7gC0BI1pSmiewCkyOMXaDVfra+bdlYCiQPA4sFhl+CV/84nN87F9/ModsGtq2sM8ebYRRVbO6usTyUs1zTz7Jvfee573ve4Q7zpzCe6GqHClFszbezwnt0P+OLiJROjdARAi+pRHh+uYmVy9fYX9vl72dPfZ390lta9flZ0+ZAJLsRyMu+7QWo540LQ6HlnFSQxJDK2twtvevClTrvX+yFVCbt0wCVT5A8KjDBCgmYhtBHMEJ47rGaUtdVcaOD8gtX4gZ7xHvqZ0jxcym+hzOc75o0RzHMT9aUZrGLPv2TLmyuU2LZ3eyT1TPLAWSq1nbOMH6+gp1FVBVZk3L1sEBo6Q0qjTJFN9CXVNVVQeDvfOdIjeUpzgnhBDMz80+q4i5NCUeLs4PLHGPALMOnPNduxjtEX/16LWvicB2jrP0ZE4JyQjC5PAQBVYWl9nZ2mJvd5ed7R02r21y59134fCkWOKdRW8XSj/PUNbokdQLFI6Uet/VuQEzLNIlYpRgdecbDSyvWZkSly1xvUKEJFSES5eu8aEPfoy9vSZrvEgbZzgXUCrqsMDq2irrG4u88MIXWV1b5D2PvIuzZ8/gRC0WqdqRXkdDUyWZYxhPLn0vlm26t8tvfOjXub55o4dVyWKnKMSiADJaUTBNP4zfqYXHIgLFTUMgaocmJI9JYWO7xSJGSPlMKrkcVikWWlW6RY4T1BmoST72ITGNxKZhVAcEqCpPHSoqXxFCRagCrqrwVRaQ1MN94y4KSyymdDAFD0JoEk2bmB3s8A9+9me5eO0qL1y6wvLqGm0TmU0b7jh7hgcfeoCNjXX2Dw7YvLbJza0tbmxeY5QOuXj5EidWV1heWswIKmUftedEhpyJy4IsJQLkHZIVoNL7vR1Z1c1D5nvKc+U4LQMB7ten3HLNvFw7duJEGUjNvpElOSS8Uw4O97h69SIry2MODrbZ391iOj3g4sVLLK2sE6raBFOThSU0mXYKmWm0oeoSAwpza9AswyQU21tdNJGzz7vnlLn+duSWph6ydFoss8UC27t7fOBXP8TVzW2Lj0miHgUms0iMppBW11a569wdPPnUZxGd8d5H3sed585ShUxCZNSQHZRsPUsIMyuNHGsufZsT4gALiwuc2Nhgb2efySRDYbGFoQLqHW3b0qYEknAi+NQvLiOYDPCWZJB+WIoCG66pnNHlpCOnvLd4uxfFOVOElTdY2LSJpommBzLZ5JwQRMA7vIPUzPCi5hpUgRAc4wVLLqnqmlBXhLpCgrd5TdLxgZ2Vz/MtOFRszsV5fA2uaRlt7/Ppj3+Yz3ziY9TjMaPRAtev3yC2keX1VZaXV9je2SbFxKlTp2hjywvPP8/qUsXZ0yc4tb5KPRplht2INhfIllI69WdIxOHFQi4WRzfCrltqmUgaCmyma+YgfiFJ5RYCa8/+GlvYchNLOCg3syQEJDKqPU9+8QkuvXiROni8h6XlJWZt4uBgRtTG4q5EnLPrNA9IeZgqVDjnCTkDqjwIWGBckqLJ/Giz8LHTgsbADq3qYEDyCA59yjJQewczPvihj/Hscy/gfAUqzJrEVCGqsYMrS6u87qH7eOLxz9JOD3jkkW/i/gv3UNeWtue9INpxFTm+XGB7D+8tdjrU3n2ygIqgOE6cOsXe3j5bW1tMDidoSkTVLuUyBEeQAbObejSiUmKo4HCkHFslHxvmGgl5XDKLXyprWRDKmGJJiqRIG0FUSCo5xUJzcoHBRoO7ZpVDVbO0NGa8OGI8HlNVFQsLS9SjMaGqTIirYAkrInjm+YgeQgsWH5cumcPjUGkJwTFySjM9wDllNj1ksnUN5z316pibl55ja3uLuqphZczOjRu0+1s0ssjS6Bwba6vGrJvJzGSWduyw64TL3CWH78mxjnAqy8oUnCvhnwyrNbtxczB5YI2HfvvQxTtOOx7p1IVXesjQNJbrOjucoNHhXc30oEFG4MY1PgRWl5Y5ffYu1k+c4guPf4HYHhLT1G7sLTczJWiblH2eGSITvPcsLIwJladnkxOo66yviP1UTXMDMHx46zddLLEPFXliTDz22Bd47LNP4kNF0kiKLd4HFEdVLbK6usKb3/R6nn36CXZ2rvHub3wnb3nTmxmPKpyzheqdy9ZK80KzJVesZ78g5zXqUHATMFpc4OE3voHz99zN7tYWVy9d5trVq+xs7zCbzYiFOdW8HFKftYWY4CoOzTl8SpuP5eNQRI0+zDWf36tGR2USyex1VIv1IoKzjEZKhhIYwgnBlMloNOLEqQ2W19ZYGNfUVc1oYYWqHvWWZpD9MzQqmgdJKYjSLLjPTnWM4KK5Bvu7ezRty9rqmnEbMSIoKwsLTPb3oGlxIaDNjNn+PkGVpSpw95nTbCwvU1WemBWWDPoxTIDoBCkVoUvgSujH5rgQmSLS5XRbQoSRTS8h0sR8YSd9mu2XIqxwTIFt25gJoUSTs2mm04a2NS3uq0VO33E3JGU2m7K7u02oodUpV69d4577X8fK+imCh73d62zfvM4kTc13CMbQVdUY56w7TdNw+eom43HNyuoyVRU6n0spPpjD2GPfQbo854OFUPwzbMA1GquZEo8//iQff/TTSKhwUSEqLniq0QpRK06euYMHH7iXxz/7KFcuPs173v0O3v62t7EwXsAH60PIVjLGspBtdTlnGTdlUQ9ha2FGUe1glzrwrmZ5xTGuaxZCwMUWYsPIC+1slvOBo1lEssuQ84YTEFVJapsAZk1LjGaJo2pWbGS3gg4y21f1MNDgNOQzM69sbkzhgcpjJjEiKYSaURCqyjMeeZaXF1hbXTHYGWrq0SLOhw6Pu0FSvGQHuV+zA4WHZjIqocn6XNUV49GIFCOV99x17hzOObZuXiepcted5xhVgf3tHdaWlrn3/N0EES5dvMjywoi1lWUWFsemcBKID3O8R+lXJ3wxgS/ClXkU73DehLVk1aXsC5tw5mSdLNw+2JrWkjMvfXy2Q4Nqrt9x2vEENiZmB4ccHhwwm7WIBJyvWVnfwFee7YPnaJoZs9mMpmlQH/ChYrxQc+PmdT79mcd4+PVv4777L6DpkI9/7MN87rFP50VrVnDWzBBNiHdUVc3Jk6fZ3t5ia2uPjY01QvCIi+YHe4MxBvdSJhRdHqgCpSEEE9iY2m7hIY4Xnr/Ch379UXb2phaKaB0xBuqFJZbWT3H/69/Am9/0ML/wcz/Lxeee5j3vfCvf8NY3s7g4giAW22TeUhZCIUYbfO+H4Z1M0mUhLaZvGDMGjCzKwtjmJJJRXRHyXB612mQfUMUsb0yJNiamsxlNY8kHilpWl2bGVSGpM8uUSSzIYRbNPrOmQawwg9IO8yeCd3gn1FXFuK4YeUuUGVee5cURS0tLhHqMcyNC6FnSlMfMe2/5vCWjn+FYCIgSaWzuokHIyoH3ytJ4xPK4QpzjxNoSVV1zYnWJGCMb6yuIRi4vLXBiY4WzZ0/hJdEe7LC8OKYaBaQyziSIyzFYZ+M32JwyZHahJHr0pJT9dJ2QppQ6P7bMd/FtO3eyy9zKrkT+HmPuX2Mf9vq1TaIFwkjqCKMxr3/z27nrnnv42KP/moNGCfWYlYUlSA1oiyZl2jQcHGyzuHWTqg4sLS3j3Jh3fOO7aVvl+ReeJromp5QAACAASURBVLUTShYIeStcbFpS6zixvsasadi+uc2JExvZz6CHHkPbIH0yxHx+shoz6gIxCdeub/NrH/4Y2wcz6mC1zqbOU43HLJ/c4Ld913fyyHvfw4//jb/GM088xjve+ka+8RvexsrKMiqChIAX7XYAOWd5p93WwUyOWfxNzSomg6dC3/cS01NNNmHZR6x8YGllmbP+ThaXl9jf2WU6mTCbTjt23u6VeYQc1+0zhCJ1FUg55GIhs36XkqX7F/ehwOTeL1bIKYmFubd+OynZSUoo1sM5qspT5W1ny8vLLIwXqUJlPqv33aJ+icCWBZp9wZ4xtawtL27O9XHiSUkZjerOPx6NRlRVxerqKqr22eLSIqury6xvrLO4tMTGxjprayuMF2uqyneJP5bhZOhOnB9EInqiaC5f/YhAiThcCDZ33jYQuJDRnjgLp5Ute5SURLLAZg2stkvMezeHEl+pHUtgq6rCq9K0icXFNe6+73VceP2b2Z81XDtQ1u68nzSdMfJAnHFz8wrN7BBNSlVV7O3vMJtNsyXyrKye5Bu+6b3sHR6wee0SzglV8GgbLUHC2WI8PNxnYWGR3Z2Gg/0DllfGDNO4ep/QJr4MhBTyMTtEpgWFnf0Jv/6vP8X13SluvITGSEpKvbLE2fP38F3f9Z28/nX38Lf+5x/l0V//IG974+t5zze+jaXFEd4DJflci5ach1O2tU+yxrUYXnKCat7tlAo8putnSoqmiM97gaKDalQTRhssrqzQThs0JpqmmdseGGMkxoa2aWhmM9tU0DTMpjOm0wlxNrU9t01Lm/eUaraqbUrmB6stLksACJTUPFN40RRBVhIm1jb23vcWyHtPqGtCXbO0vMTi0gohVFRV1YVFXN6yZnDQ/k6qiJbUvWzxi8L1DnUupydm5awCREajESsrK9R1jfcGX1dXV00RhMB4PGLjxAbra2t476hHNUtLSywsj3AhZ12FnC+cd+o4sUyxXhrpyFWbJxmsLekI07JTpxwHI6XMwvp5QddBXrG35KMUo42q+GOXkjje9roQ8L6ixnH2/AVGS8t84eln2J20rJ25hyuXrnD6zAan11eROOOZJz/P9SuX2N26jkgkzKZc37xKG1tELUSwdzilGi0T6gWcYDs7XAS1TeWxjajAdDrl7NmzpJRomhlV1Wc0zSVROGM+i4/W+SYJVB2TWeTRT36Wy9e2kFBbSKHyrK0sc9+DD/PIux/hxpVL/Ok/+pe59sJTvP7BCzzyrneytrJkKY4khJ6NljzJbdt0EMg5QaNNZoG/DkG8aV51qbNqKcYMnS2LSCWHWDqrB762VEhJylJewMUqK6ApMptNaJuG1LQ00ymzyQGTw0PS9JDZdMp0OiW2rSU4qFlg83czDeVCTmu0kEuo7G+bgzbvp21xxeAKuFAZ9+ADo1GNH43xoSZUtTHCdW0bHgYxShkkDVjYRm1sGCYsuJ6NzXnPBZEUyDoa16yvr2ZIauz0yspSVpLC4tIiZ06fYbw0RjVRhcDK6grVKOC8PZuvqy7WKyJdAkS51zDK0MHibAkRoW1bug3qmUQqWlgz6eTE5KZsoOiSVHzeJFBIqGxdjomIjyewMRoT6aqaw8mEmweXCQurnDx7nhc//xS723ucP3cXZ86cZXVxxAP3XWD35g0+/9ijbG6+yMHBAZcuv8jly1eoxmM2NjY4d/YszfQNrK4sc7C3zcHBLrGZolHQGHMmlLHR44UFvPdsbl7qAvpl4svAHmXchqxwbODFy1e5eu0mC4srrI4WGC2MOXXmFAsLY7RN/MOf+DGe/NxnCGnKQxfu5n2PvJuNjXWy6TYoTrItaj5g8da2E1Yw1jhnhhBTzFkxmicxC4iQE1DsO1W1ZFUS1bJovJaUQEE1gheiJnOjUk/SKIILFZUIMZ+btKbSSJSWJJGotjvFeSyzyKmFgzpCrsSSE140bx4wS9iS8OIt2T8vWuc96oRQj6hHI0Jd46uKUNX4MCKEmhBqIwpd2fzt5gTW4LFmxC3d/nZLjBHbjxp666WqtG0LNIQQOHHiBDHGbEg8q6ur3Z7r4D0bJ9Yzr6GEyrO6spJjxZUpFl+REhkS91avE6qB9HS+ZlY+3fpCcBmVDEM3qcyZyxvspaTyknOK+62qZZPf8D6v1o6X6eRCB50O9vcIC6tcvXyJxz73OJvXtjmxvsE73/ggp0+sW2qeJCary7z4wtNcvfoCKUV2drb4yEc/yu7BhPe851089MB9XLhwH+fvvpudnRs89fSTbG/foDnYZ7J/YHBMrHzK3sE+h4cHuEzezMUwVTtnv3w2F5DOC3N5eY33vu+bublzSEyRlZUlrl+5xqP/6te4+MxTpNkBC7Xnngvnedf7HuHkHXegzrYIWjZWtER3Y40o7OBczFcykBKLXQ6D5mW3TulXCHZsmKIoKeVggS3iFFOOr2rnY7Wx7ZSRy2mDSTM15B0SPK7yqHqcBrxWMAMXhbZpjd1Wn6mkTJq5XEQgKbG1HO6SgE/OrBLoLWUIiA+Q/7ngcJXBats7GjLbmpNj8r5czb6Ly6l9xW/TAeNdYDrOWd4yytDlCMGztrbGdGouVlVVrKys2Pg4IQTHysoysxhRkvnWK8ukvLlfJODDCKdY8gRiSmyOYOot4tH00uKPt7HfUHJ0zXkx16L8PcxoKiFwinLI6+VWG1q+fIGVlGFeRFRZHAUWK4dM9qlnB8y2lcc/8xjr73kX41EFCJs3rnP5+nUmDTQxECSgVU2Shqubm9xz792Mqpq6HnFi4zTj8TIpRfZ3b3Ll0iUuvniRre0bqAtcv3GTrRvXOX/XWUSNkIjR9j+W4L2IQ8VImOJ+lIFJLrGyWnNw9QZXXvgCly9dYnJwwM6NLfZubOFSy/JSzf0P3Mc73vVNnDh9mhAs/9ZLSaeEDKJIXdUK6SYmaTcTpkScaVYnOeHEaOWOmLLO0yVH6HBy3UBIXwY95JXOMGzkfSCFhE8J1QavCZsNITWt+YFuviaW5I39Rlq1KEpsTPg1M8v2nMbeumCsqpZqFQLgcerz4uszu8RJt5PIhzAHiW0HTu57CbZ2RBhosfzFpdBEDIHRaITTRFWH7Ec66lFlta80UlWBaiEg0yltNItcLS3ZhpNcUKEaZCWBZXgVpd+v+WLxeoVcEnUMMfRJKw4sXbNcn2PN3bMOjEx560cnrCXM91r6sKoNmqBtFKdWl+DBC+d58bnn8JJwoly6eplL169zxx2nCc7ReI9WFS6MWVhZ4OQd51haXaYKNUriyrUrnD97J2W/4epShThYW13lzB13cu6ee3juuWe4+NwzXH7xBVxSqgyBukElEyGppAX0OybKCUkVR+Jg+waf+8RHeO6Z52inU4NQsxkLNSytbPDg6x7ijW9+E+snNhAnVN72e6omW9R5cGMsSbomWGQra5xwP8FC2WPqQBL43ve2nGDNfm62qNlilokX1IR9GMah1+giYhsxXLHWtqsqhBpV8rx4gjS04mllShJv5XDKM3Tjpp0l8wjEhkRJR7XiBWW3SkmWcN1us1QkzJ7F0SXLu1xDqVjqfvHTEVzD4nv9eiND9f5ZVR2xMp85OKjqiqZpcF4YjUf4toVmhveOqq7Md5zZ7qIwsgJ73lkY0YhiZ8kogzEdWsm+L/MwuQv5SMkJkC4i0D1riTHnNmSejbjL341mqNwNzau2Y6Ym5sWWErFt2N/bJqXIuXOnqZdGTGYRN3I8d+kF9poZ3nm2d26wvLLMgvdsXr3CmVNrrKwscn1ywGR/h+eembEyGnH6xEmrjyM5PCkeFxynz9xBXQce++TH2dve5vxdFiSva3vj/NHdMC+l3SU/oBCbxJXnL7Jz7QaLoULFaHy/ss7aiZPcd9/9nL3zHPV4nNnGXBWQees29FWGydpDyFRGfrj5e3hNSsnqK6WXQiqzckeqQeYYakeIQL/v0hXyyhSKluMiqLNqCtHNDNKrknwLM4tHi4gl1uddMZI0FzrLFjimfruY0aaWOOHAB9txI9I/bz8Y85zC0XmxTCDbZvnyY2o3GiYYpJQIIVCPajR42qbpSC1jpM0vDiFQVVXHpHvvGY3GWMG50IfDJJcWYghboQsxDmLiviAA+rBdIZ2s76bMujh5Dnulwdx36zTzz/mbjDgbkFav1o5nYVPqoJv4xGR/h4O9XbxznD29zqxVvGs53N3i4sEhK6sbbO9ssb29Tbu3S5wdsHnpWSp/HtKUOIWD1pjjUxsnMgNriyNh+QD7O3v88i//C77w+Oc4vbHG+voapZTG0Fct/s0w8H0UPjrnOH/+PIsLC0wOJ6AWblpaXmFxeZl6NOoWecfkMcybnh/48vvQx+k/n9fQw9S0oXIpvm0RRNX5Uq9DgRVNOZ6Xd++qGmtr2DMvtGwNO3RhtYWieFsaKZFizpF1DW1ju52KWTDhLUkgOQzbpeI5W6/B46saX1eIeKut5Cw00vW7xMaPIAO7V0EfveAOW694JacMytw4e++pRyMLgwWPyyysrys8FZoheBHilBJVVTEejxkqFls/ZRNL2YVWIC9zcdOhMejDePP9NcXSf7dgfmwpryuuQP58jbNR0Bx7dLcYr5drx8slblvaNhKT4kNifzLpMmtCZVlPk7TFbGePhZWTvLh5k0k7RTVysL2N0ym7WzfYWF9jdXmFa5s3qeoRN27e5ObONhvrG0DOXY2J5154lg9/8Fd44vOfYmN1ibvvPMdoZGTGMBZ5dHEP21yyf3CsnznFWi5fE1PM/qUJZhwwyjaE2lXHKGRHabe653yIaT6p+ygCGBJm5WeM0Sxlhs0xpuwbK6RIioPlpp1IUOCphSiMvHHOIFqMBtldCAQ1NyTGxmKcIeBDS9M0xNhm5rkQPqb9fdb6LpNGeCvPIqGy0je+sgJvLuAy0VRCPWCuSBiMQUomsJ0CyxByDl0cGavh391uF7Flq3VNyLHpQnL15UOHm8ZzfrCEfGyw/zQTiJ1Aln+ZYS5sbp9AkZWJdGd283y0lvbcnGfikPLd2bKWSqElH/447Xikk82jhS1S7MqG0rbEZkISz/7hFMI2bTPjwoNvZGF1lf29mzyzs0U7aXGi7O7ssLpygvX1E+wfTrm5u8cTzzzDW9+yRhDH9tZNnnzqizz5xOe4dvl5Tm+scMfpU4zqEaGqOgJmCDfL38PqeuWzrv8ZPpaMFudDX+/IGTgrsT7V3tKo9ta8+64jVlyP9GlIMgyhUDm3fDbMJXUiSM6WatvWiLLCgOc0SCN/yBDKDcgu63fK2+VKH2xxlbpDI8Q52mZGkoBUI2Lb4nN8NmW2WrKwqpKt6qAYmQ+EeoQPAeeChXFyce2y2dt7b3WXZB5VdILnehhZWPXh5z1a6Td1zG30D8EIomz9Cstennk41pZYYoilrmuL9wpdYoj1RyikXfmOYSsF+/q/h0JpJW/7a+b3thp/UYoI0KE1MlIQyRllHd3yGlpYVTqLoyRwSgDUWZ2ilJSFhYB6T13Dxokl/KgmTSvWlpdofCIFy728fv0m44UVQlUxi5EmJp55/nmmhxPboXLpWQ73b3J6fZW1FUsdtMVNN6hlkOZgcOpzNDWTOXm7d07S73eCiH1pPpYnK+/x7H3JsodVB3sd9ZYLxA0WYtkK95LwkvQb18t3lc+cD8hAAThne19VE84FUmyRBK6SuWeOwwLdHRK1X0rFyhgdqp4QamIY2fxpa8Xlkr0tANWO5W5T6r6w1OW1Z8vFysXn2KqFcYr/5gsxFexY52d3C3w+XtmvLZ37WX4fsuZFIR8NufgQOjSkYGV0XL/PuBSVt8oRWenO7RTKpM/cICag39fMEO6/jGAPm4iUkLsp2OyqDJW+kYkthSi16172K+fa8QTW+U4ASvwKjd3zJXFIqHFhDJr4wuceQ3xlqX/a4mqDT6gjiqMV2NrdIbYNNzev8kTbUHuzAE5nnFxdsFKSGZpYEqrhQuccaCFg1GrgAppzE2wfp6LRktQ1V7fv/V06K6qDBSRg+1KLQOYsGy8u77IhxzwtuX8eBg8X3BBKFeEq6Yi2qyUlNShaJln7HR4maCkLW8qw3XeLpM0lY4aIoKAFcd5qt4jm4tk6UBwKo7pbqIX4kEzCpJw2GfNWwdwzW2DOQalyUeApA7hZmFM3XyXR+uz6kqr05IpNbezGfz4OaxNqc2GcgipdgoViCqkQOIWRl4qu3IymhE85NdK7no8go5QhvO39DYZsdp+xls/J89hxLt1z9KE6YZCLnV0WWxrZZ9dCTtHdS5gPKb1SO5bAXtncoh5VVMFRVSEnE1iJj5haFIe6ijBaZrS0iqtq7rjjHKsrK0ZEPfcMB4eHHBzu8ZYH38C5c2f5lV/+JTS2SGq5ee0Kq0uLrK0sMxovdH6DKl0CggXG7Z08ed2QS8Llgc9kQRkE53K92bKbRwhZ0EoVfMFZzm8e9PIeoAyU6Pwb1yMMywPt32bwUha5bEqY3wtZ+mzn95ZRpGjlgg56K1zWkveu83Wrquqgs4ixuah2GTuaiREjewd9IGX/1g+Ead6nLhDTEMqQEDMEkgYx33L98N0wt6pvNMyhFSmlVW7FO/SuxRBBmXIA1JRc+Z7U7VO1/pTyNd33ZgtcFElpbtCXl/rKw2SHXo4lO7YiNg52hzKHfR+G8LrMseS1ifTHSs70cBHI8eT1mLt1rm91exfrUU1dW3ZLihGnQj1eIBFZcgtM9JBqDG+/+x5OrK1z89oVnnjiCa5f38JXFVdfvEiaHbC3dYXgHIsLI87feZqlBXvNg4rmhaMdfhWxKouxVKrIGnX40CVI37ZtF9Dv6t4WS5Mnx4mjJMYeXTid5TkyoWUhV6HKv7syVZm77a+XDMOK9rU+FcOhnW+qmSUk/zwqRM657F/GDpbP+cqxhTRgIkuUBrMO5UVWJkT9Hs1SY6h7E4IagdhbbIOFQi5yVxhdmb9/78+/dM30sHE+5FYIp4Lhh6GcoYIbknJHv3M4Pr0Ap1w94qXCeFTJdP0YoKOjMLcoahluAi5zJWWm54mxo2jrqF9dWpmHGGMPyV9LSHxiZYlZY5uoUzNlGqcoJlgkkL09FMfh4QHia6rRmF/8+U3qULG7fZPD3S1IidF4zKVnZmxfHXP25CqjumJUWfUGSbYNLeYdHD477ikLb+cPONeRYJD9WDU4a1X4ygBIJwjkBR0znBTy9i3tfcYysAVqerGEBpsAOh+ZZNlUrkyEWBnXAqVVJNcLylBVzIVIqpaooHatk4HFyrOW3R06Cy2CBA8xL0RnhcPKm+qS2OQPWexu0dCzpj6TNWXddERSIYBS6mBrIUlKDqxTtR36WcCGGUEhhIEy6wWqwO4jDmI3XrdGfy8VsPL3S5MrbHxS6hFDjLET2LLz5lbk4FGW/ui4df3M40Tqk0pE6GKrrs+UeQnKGgpqzzAPiTgr21q+wMbuVmPy0nYsgX34gbto25ZZ0zCdTZk1M6aNvVHNNiNI9m0cUVs07jPb3ic6YbmuOXV2g7qygLZBF7N2HoXU5NKmZquEUnYlZ+DkZIFSqQAkb0vCSIYOYvU7OpzL1i/7Yyq9zzevecn+WrGVdAu3EFDDCUlt6jYiD5O+PZboXZQBZcFKEZ6e9SyooX9hUr5PKh5NVihFmES6BIYOrsZIK7bDKUZ7I16HQDXXds7oofczC3YYwtjcZ++73SP9Jvk+plzeqFDOL+0o4TYUts764TsYbAJrBdvsFS5x8B2eo4hnvj+9r2hv8iv9D2jenSXllSiDft5KAZQ2DCmV+93KWhb8VNJgUzZW3vXu1JBQu5Xl7u9bNouUn3n31WsJicVFRmPHaDxmOdaWrdNt2Had71AEyiCUdaa8wEhz7aGmmSBqg6siSItdXyrliwWvU9t29XYMRkachI7VLfs7y4IphdhM4w/pd/JeyyzkxT8R8OKJmjrL2z2viL3yIVrCQiEeymZzwN4jK/R/z0GvHvqWfODiO5XKiqpqwXXJbK8wuH4gTLnPHTM68EGTgnhyMTbrf9M0JMQKjXWbpgtRYlAZKTZq8MxOirNmz5otQHn1YsmyKu3oxosiXEehp5PQJebbuJLnON+re7a+1nVZS0N43MPkHk4Dc1yCF9skf1QxD8N+t4KoQ0Vf/raL6X6a0u3jsqq2eWqodI9+9/D3TtmWYebWCuLV2vESJ4qjrSUMUgZY0byLp4dllhDftjOURKuROIBYiBAAVwgEX/JnbT9j2Sni6FPxCs0fi18TY8dkFoHofatcB4iiM7TDYKp01tksB5mxjXP+kMErW9XzBbHLSGeloFIy+/LECaUG0TBG2Plpg77YKx+1q+RRcosZQlO72C4lP1CuJoj47GMqs8NDrly5gqqytb0NwLk7TnP69MluC1nU7C85392vpJymZN5+cdUkr6pSUqbsPe1cOUpnsi+e5yh4b7nbOd3OlEMuZ4r59gntU/bordJcQQC0Q1RFARclpxrnrC46SB+NMRcXMMKxe/evm68D/VKo2sfhyz0ttTAZJC5jQu6L0GV3DYXy5RTCvAUefkD2Gmysj9OO9/Y6LVYHnPdWVc9hoRQB1WgDqb0QlTImdOU2y98QXbBqfE5wKVvVrN1TtLdtW+lPW8Blr6LGvvpBTAUGClF7WG7W2nXW0EIypepj6vxGZ9JKqXRQrEWZzEbz+1eys5KyVrUaPGrQOAlOfa6YWHJ4+yoN5MWu2b9SB0JA8XQVIHOtZqDb3JyErkKDumBZOtkdFO0zblTtZdEf//in+OhHPooqHEwn4D133XmOd7/zHdx59g7OnD5lguKdjVUTcfltdzirtNi0rb1EpZ3Rh6NSx8w6nFndjGScWH0tVPrkdbWNIEJxYzKUcWTXxYS52Elf9FcqGwoMnVlILeX1ZIkYFrFqQD1epHuDXzJNnvurNqfaIhX9nOd5HLoxRZDMlYqQX1hm68t1/AMDIdSO0TOXRVPZ0Ro7BZDymzF6A9fdzNZmolub4oTygjMpceJXaccUWO206FBFiOtflVGsSckwKcZkuOezPJQPFeR39NhAWjBb8yJPpaBVHhwYsonl7x4uOWclP+ahENBp816RdP5oslzSo30fvmbDXI3+fay2tqz0pkvZmpLQ1JpAhQpVl8u95dc5UBI0BJUK5+1t3sVqeVFLpne2ML33g1c9ZDSR+xxjS4wNZbONE9jZvskXPv85Nq9eZpbfHt+kxMH+Lmk25c7Tp3jnO97O2bvOgnquXr7Cjc0bXLjvfhZXVmyeEGatpS2Kr1C1HNwupIJtSZMcxiOpcRVFMSVTbjZ/ue60kF8XkrpKFaJqhGHecCUpJ7c4y15KannT5Iowml/O5X2g7F4SsNBVLnLHIBOqkIxdWZsCsV1Xevkl0LPA22LBpTMemv/r39jQ8yPSuYGpKIjOcg+/c3BPs2yZyJz3a48qkldqx6w4EbsdBZrmSQDNkinQZc6kaIW/7F/sBgTylrOkmVrpfQDvPZq8vXCp1ATKxZ0LU1jehDdHCOT0sfKGsPJSrU5gky2gowRDScUrCqf0pXyv17KB3KozaIbzmploLemATju/xqWISo3mt4OLc7kSQ8BXIwgjfH7Bc0qRlBpSaq1MTGt1q7Zu3oA2sbG2zsH+PpP9PcajisXFBdpkAtvGhpgSCwtjdrdvcPedp9DmkJ2dPXZ39jk4nBBi4mBni52QuPjsF9F2j8XlJQ63b8DsAGbbtIctEkbgAge7N8EFXF2brzabZfhtSf6jYKmp4gKu8ojPMDZFJObXlJQFGm1sYtuQ2hmSEyR8IeLEWHQnWFWOzqlO9moQKfRbJmRi22UMDdxXhoxwPjKnkHtXhG5eYT7XuPiVfe/7tVF4mKN+dedb5/XNIDkHJKOyl5JPXUZWdic0K4XU9eHV27GT/5mjpbWLEfbVAi0LpwT1Y0zE9hbCIAZ7lH5nRaepMhzpsnhQNPYxyKMT1glgDksgkmssdSfkd9KkXLrDQi29j1hqxWaBVKz2EQXO2efFB08ZEjVa/D6B5AmVCSKhoh4tMRqNTUhDZZvKcyhmMmuY7E9omkOa6SGb1y5RBc/JE2s4jdy8scnlF15AY2J3aZWrl69x7eoV6rri4Tc+zOkzp6jHFe3MajeJNiwvjnjLmx/m/LmzbF7d5Plnnmdra4vDWUNILedOn+Dk2iJxssuMGSeWatzqGJcOaQ8afD2mWljk9MaiwWXvSQptm5jOGmZTK506cSG7KtkieI+vKot/YwXCg7faUK72jHOKYptaJgd7Vk1DUmdtTAE3WbgztEVy2dHMlWtCJWJ7bn1XXWOOXR+uLR0YgWGdX7m1sA7XkIgeOZaTG2SwzmDAdxQyM+V1Ip2ikVQYgXniqVhZyf56MTaa6z4dpx1LYGez2ZzZHjryw0R82/0Ru8SHNGRK8znee4vtSU9WJDeo4SODEEZibiNwedvwkByCvryGhYAKOZAJH5Huvacp+8Dl1X7GJvcbtYdMXnR0CQMJsThvEVznqRZGLNQL1OMl6mqRqhohzqPa2ntlJzMmk10uvXiZnZ0dxnVgNt1jcVyT4iFL4xGnFscEccw2L1NJy5pElu5YQURop5FwYky753niySdYqJXV5bfh/RIaZ1aAbTIltra/dnFxxMmNFXx7hs2R4+Klq+j0AGlnaDulaZXUzjgUZTqbUNcjQjUijMaIC1R1TT0aUY9H1FXNYj2GUUUTlcl0RjNtSEloZg1NjDhxtC4zzjmmnRS8Cyhiu4WwNNSLLzyLpJblpUXWVtc5feYsKysbjIMwm01JufqjkoiFfCtsteRUv5TyK0NS4eHm3KQ5K+j6zRFDN+6o0Pbk1ZHQj51MSmpFwwfwt/+eHNLUnMvcrZ8ejZW1Ogx7uSN96f3j40ns8QR2Ms2ClIcxm/YUjWgqcLhszO4haRaf1GtWTSnXpzWnPiXz9jQVvnuQnpY/LxNR6g4d1awiEFPTD3qpYaOqSwAAIABJREFUG8ygvwWWzEHj+dTC4fEmeWJOmscFQjViYXF5riqgamJ3Z5dZc8j+3jaz2YRmdshk/5Br1za5+OxzfPYzn2U2nbGyOGJhrDx4/72c3FhGlxaIByOu39ziic9/jrXVRe659y5cJYS6AqlYWgrce89ZqqD4OjA53Kf5f1l7zyfbsvO877fSjmef1PmmyQOQACExFE1JtD6wXHb5m/9WV7lctmxRZlkqqooWCQgccAAMJty5oeOJO6/gD3uf7r4D2xxaOLdu9Q0dTp9e71rvet4n+B4XBrJG23bsdiUhWKS3w8gMi3Adsm9ABLq6ZL1eoY0mimLatmWzWZPl2Zhn9BD1mOYZUZYipCLJJkgTkWQ5SRQTp4fFl+BdoO/tgEEg6bxnty+5envFarVls91TVu3wsxOBqtpxgJqiKOP49Cnvf/gJ/+wP/znpZDncX73F+x43bvreOrzrEGHYnMLY0RycEr+7wIfndvCdelij4gBePiqSw4HwUIDvsqkOhThY2r67GcADF/g+quMwthwfAyD6cMAdRk+DyP7RqT4u3ndQ73/k8b0Ktqqq77wwhx7dv9MSPwZ1hicr33lh7oXmYZjPHgp7QJnHjVWC8B7vB0tK8XinBPRoQv34GxzuAg+gwKFtOYwEhn97NzrDBzeiuwqt1DDGUXoEuhRxnBOlOUk2IYoStInxAcq6odk3dNWK7faWr778nOPj+ZC3o6CvO3bbLbffvubq669p717TVQ0i1qQnOVQTogm8/fIrhAtgA9vLt7SbhEkSkc8y4klG71usA987jAapBW1T4bsOiyRJM5wF7wJ1VaOFx7UNwVuUcOTx8L3sNmtC6AlSDo782mC7nl2/HQy4vadramzfk2Q5Mho6hSTPEcagIkOUJCRpgok0SRSjpcK2PYLhRBUuEGOZJRpZJCRaEBZTsiwnzWLiWBFcz2a7Zburef32LX/z129J8glPnz/HGE0UaYxWmCQmlnLccB19V9F3Db63+H7wrQ5yFAaMi/6AEQ0SysfKMh7ejmvBOTec3I9vk2NRukNioD+s9fFmfrgD+wDy4RAZ0gsfRW6Mj8NddbiCDU6Y9wj0CJwdXES+i638Y4/vWbDNfRt6KLxD8TnXv1s8j9qOoT14F+i5v7d6jw9yGA/dP/EDP9ePULlEjnC3FANV8MCPdQcUEMY7Kffk/eEHNoJKYgxAFmFEtbm/RwQhEX4g80ttUNkEkxUkcU4WSZz37HYV29UtCkfvPZt9idvc0pUbkkjywUJhVEVdtkRpilEBkwuiJ3OmxjOVlrurG4yUHBUZufCEekeMp24qRJBM84LeSW5vtpRNw5ELGKOpdzuCdeRRQlbMkFIh4wQHQ9I7ljw22EpQ70rq7RrflPiuITIjm6nr2d3cIZWgWa3QWhFHg6n23lsQkraq8Z1FB02/rfEESrMmmeSoJKVxjiSOMFISKYFRkjAmCkht0FEKQpMlCYsnx3g/GJ/nxWQYU/khyWE+WaJ1xMfvn/PNqyt2119yJWpUnGGSlDhKSeKYOIqJkgyTJIhJRjrqsF3b0LclwbXYtgZrByBrNAf0YggE13KI4RBCYMOhNEfZTFAHCHpAbENA+MOMWXA/E+eAOY0h2gP3497Ncngvfw84Pqz/w98fnep+wFAOxJd32vfx474n5vT9CrZt2/si/O4cCx4g9McnqRzHFIf3e9weHP6uJCgGIQE83E05ABuPRjeHYf7jE1xKec828sHdt9lyGLGOL9qouwtuuItKgyAGL9FJQhQlmOD59uXXLE3MNFK8/M3nhHpL01TcrTbkiUFLRz6dooRidfOaX/3i70kixSeffMh8scBI2G/WeAJ91+OsRwk4Oz0hkYquqjBBcvfmlsuuvXfxSKOM9a5mW3d8+/oV00VO33Qs5gU3l5e0VcezZ+/Tuj275oblyQlJlpBlGVp6OuWxkWDblFTlDtvUuK5jULMwtK4ClBdYLLYFt29BSeIsRRtD37TgA+Vmg5AC6yxRbNg3Fel0iokSuqZlV1fgevBjKrzzmDghXRyTFVPE6Kq/3a4RQmAiRW8t1b7i7voW7xxJErE8XvKDD57Q9tDWK5pyQ6MTKjP4Gps4QSUZcZoQJSlJEg9teZQQxQlCeFzX4bqWrq2xXUdwFh/cKPYXuBCQYhyuicDBvkod5hPjMg4DC2JYf4fT7r69Pfg3HzKbxo8Ya/+73eNDTTw8HoslDuv/McPpu5zmf+zxTyrYx8SCh8v6A0Pk8KQGEEjc3w2+m259L0hW4hGoNNAHhRijFDgU+gPn83CqujEu7vD1/LjLDs+HkQwQxkzTAXEMI9FDRTFpMsVEGTKKsK7n87/7W/7DX/0lxSTlT/74j9he3/HqV/+Z3WbF6cUTzGLK7eaGfFYwOzknjwLHiynO9dRVPQ77hxO5rEqqqsa2DtdZ6D2u7ym3JXvbDy78fY9EIYWioqTuHV5KApKutvR1z+Xuks3qDknE1198S+8dnsD1t68pJgmLxYzp2QkqiihiySbWVELQuqFzYdzgBm3mYymYoG36wd/YC5JcDkQB4WnaBikFZgQGu7ah3sB0oTHK4GA8MQVd19F1Q4KhTAvy2fAzu729YbfdMJ0WlLsdXddxe7Xi6y9esr5doyP45NMX/PD3PyFPc2zX4htP1e9wQhMlGdJEyAMIFsfEcUqapKRxRpSmxGlKEhdE+Zwcge1bqrKkbypC346btyeMJupinAWL8ddh/n9AnA/RkIfHfSF5HkKsHq3fx39+PO6B3xYVPKzjd8Gmx+/3GPH+xx7few77/0S3OnA7D7uNujdPHk82HnaWww6kRo/Z+083sl+GzznS9MKDCNmP76gPIbyHDzsUf3jMzxzuzQGBQwymaigUEd5WJKkiyzOstdTNmt3bFa+/+oLPf/pTbr/5NcnzZ1x+9WtSFdNtN1SrFV9stlzmCXGicAScToZ7r4nprGe1rfDrHd4PWtW2qem7nqqs6esOW3e0ZU1b1ngfsHagNKrD7h+GtjR4QCq6yvLm5SUieHzXoyPF9e01u31Jmg/3wWvhKCYpp+tzlifH6DjFlSW2aQl9oKkHn6aBNuiHjXFEOz3c0xO7zoJsUGYQeQcknR0Q/t75ERm3bDf78S4bEWlFU5eIEEiSjDjL0GlGbwd0vGkqvHfYvqPyDt9bys2G3WrLdrUBet7mmuViwtHFBVeXt7y+XFO1EHRMWsywwRNHmqPjJdPZlC5KaEzC3iToJMfECUmWkmUZeZ4TxSmzbEYsA221HzqNrsL29QBcMXbBh2yjR9cpYBQ/gHN2ZC6FEf2G4A+kiEGs8ECT/G1a4uOi/W5xv1PI4gEIdf7A6Pp+j39Swf622uXdAfXh6w7f1LveRQ9I7wGKH4s6DDTCA92Oxy/C+EkP9+UDC+kgM3tMWB9M+QZRgQ2CoAcPoizOCJ3j53//K05PC/ADivv1198SK0lkG94/XbJ9E9FsV/z685oXF8+QQGRiys5TVhYvNZe3JVG/pu89bdOxWq9Js5TIaLIkIo0EeIEICiU02/2Weldiq3ZAVv2Q6M3YBfjRaeKe4yk9nXWsu/2gRg0C2VRIo5kUBVLJIfhKCurKsrq8wzWO+fER1XbP9nZD13q6zt3f55USmEhDpAcHDoYwKyUGagLWorQgjQf01wqLkoLe9ff0UG00IjI4KdjWNc560umMfDrHxMnIjoLeWgRiTM+zdE1F6O1w3wwNaSyROiHPJwhpQGqyyYTNL7/h1Zs7ehRBG7x3RCLw7PkFn3z8IcVsRq8jlEnR1Q5lDHulMVFMnGUkWc50NmMxnaOjjCJOCMHStRV1uaNvGnzfggjY4AfLoBAeZTApDuiVGKt7QHEfF9ID4+3xmn487jnUymGtPz41761rOABd4X7Scvj/7/P4JyWwP+7T35VhPRJfi9+mWd1TusTBVOtB9YAIjz4/PLYKefxpDjNaHr0IwR9CfxnupkKBNMRJjklSTJwivKNq3/Dk6YIskrTljn/42Wf82//1r3BCMZ0WzIxiMltycrKAYKm2N/RtTdd2OC8wcUxZ9diuZntVst5VGBPTdj1aVSRGkkWapydHHM0ndLbF94G26ekaiwoK6T2ZiZgWM0QQuN4ixBCwZZ2najra3jJQq+XgQOEF2nsS7VFSY/tAsEP30Hlo6PD9mv2+oWo6ml1N14F3EnAj6DYgzb6zhMig9LDBaSGIECRKYYQk9oE0S4giM5hzpwlOQO0cNoBIc5K8wPYdm81m6GKCwIjR/kcI6nJHIBBFEV1XU+630DoUlvkswRcJcZpxfHaOMinWWRbTKR8+f8bd9Yrt7R1OSqx1RFLyqqsoIkHywfuYLMf6ntArQju0s602VPshOHp7l3M3mZNPZmTFhDTPMOmcWTbHdT1dvaGtK5zt8LZDjuwrHgkEHhP/H63++/X9+Ep3AJcO//dYqXR4n++K/Q+18923v/01/98f39+XeMS/70kNYZirCiTDBXGcX6mHVLDHBXt4eyhyGBU/I+f2vu0OjzaIw443mnq5EXHTIozEi8EjyguFijKSNCdJMhCKtmuoyx3l9gZtN2gadus9u7std2+uoO3YlC2rVUkUepazBK0Dz86P8Vj213akWkrKquNmt6cJgl0f2Nf9YPNpFMFbEiXIlGB3t+bFxRnTYkJqUrSHREoipZgt57z/wcccL5bUVcXN9SVaBer9lsgkrMqG19eXVH03zFn90JPpILCtJwjLOMlASkHfemrbYluHbALCRBiVYukG4E3oIZDqgHj2Qzyl0BJvh0jLPDEUUcSsyMknKb1tmc1T8ixHaYMFGtdjhaAMGgtEUYpeaDa7iv2uxgdNTEKWp8RJStcG2rqkqcrBX0uCVDBfTAhI4rwgmeTDZlBVFLnh048/QCL47PNfUjYtvbPMpjOm05wijzlaTsmnU2wYBPW+t1RNi+06vGuxQmKbPXW5Y7ddk04mZJMZWT4hywoiE5POT8imjqYq6eo9XV3i24ogPFiH1odTb5zey2ETCq4bi+DRnF4c/nw4dMbRThg3W3FY94cRkMe5w/p/uL9+V6L4OyzYcdZ6aGkP8y8O8ybPQdzAyKUc7pXv9vkPLbWAIEev2IdvEKFGtkwYQpN9P4ZBQT9IPoY0cjmsgqASZDIhzWboNGO/3fHZzz6j3K54dn5EkRtsuSH4Fudq2qrE9ZZpkfPBB+ccrSua2lHXW4RtaPdb6q3CSGjajoBCKMO66rnedDSM7B70IKIWAaMGQb110FqPd4LzozOmScRSaWxdEeuIxfKYSXFEtduzXV0xnSYkkaYVga61zJKYOk1IYwPKsNrscBasZ3D0Z1TnHIj2YRDOBAupKTg/e4/f+8k5X33zNdvdFqMN0zxnPplQ7/f0VcX2bjVIGBXEUhAHQeQDiXfEfctufY2rt7jJnL52Q2ZsojF5zDTN2LseEaXkWUGeFqA0cZ4ijKZ3Fms0bVMREBipQQZssChjoB8Wq+t76nJDpgqMH/AEYRQXT49ZHBUgJC444jQhSRK0VhTzKVmWDetpNNjr+kG2WTUdTWexrsN3nq6v8fWWbrehTCbEaUGSTUgnOXmWYZIZUTzFphV1taFvS7xth4RGBgmi82FMoxgYboJh0HBwNglS3DuKDCKHcYwT4GBAMJ6fiHvzhMPBJe9bYsajS36nTv6LC/bxjvAOjC3CKIV6FzX7Lir23ZZhmD8ddqVhT1Ojz5DSA1ASvBtfrBHVA7QQCGUgzlFJQTZZIKME7z315pa//qu/pGtKfvR7nzCbRATfk8QJXd3TdoOwW5mYxfEpOo5pNzs2V7fc3kHXlUziCOU8sTIkUcJ2XxH0kGaupUKFQcjuRECGgLGe2Almk5Tn5+fEkea952f85Ec/YBrHXM9n1Ns9fdsN4wgcxggunj6hDT3rzYZ929DXAytoOslJnUPHCVmac3lzR9+1qBHcw3s0ozQwhCGtzkSIJCFZLpk/fcJf/NE/Z71ZU+/2aASJEGwuL2lWa54fnxFsT9c17LcrtByydMpdTbnZDObwdUt9fYltLHGSMD+Z4boG03bE0qDHDbmYTtFpTJCBNlhc3+KaGuEckdK0Qg3OojaAswyungGJw+0rvFR4qenVQE90zpFmCSfHp8RpPHRT47qy1mK7DmuHDNwhfT0lMYYkHQgtzoP1gc56ms7RVluauqYu90gdEacJs+mcPC9I0ow4TpkkMd629E1JXW0JrkUGC8GiXBglb4PckxHgRBzIr8O4R4gxOlOIe3vToXt8uLd+dxz6uHV+3Ir/zgq2P4jNEfcv4iDg9sjAvdpmKGpw1hMkw6BfHMgKoNTYQvMumiYe85SdY4A4FUg9GF9LgzQx0iTEkzlRsSSYBO8D+/2Wvtxhdzd8/OyY6fQ5SgVsuyE4cL2jrmvatiXSmkmRkaYTJouCfrMiokOqmuATTpZzEqUJ1pIkKULUlGWJt5AajXQeGwJOBAyC1EOuNEdJxkdPLvj4hx/jfU1dbvDVgIbPF0vyrGC33VLtt2RZxGQ+p9OSrD7GO883v/6C7e0NoneYIDheLJkKSTafs7q+ptqsHyxyRtKH1pq0mJDOZszOL5g+uUDMZ2RPL8iePaHZ7pG2J7aeWT7h9ee/pLpdIfseX3e0u5ZeBkKikbLH9y1aKZQwNFWDFhovAQsmKKJ+iP+s24pWKcIqYnl+htAarwzBemzdEFxP23VDwYXB3dDaQEBi1BBf0VUVbVMhdxvmyyX5ZGBg4R193+DDECStlCJNh8DvrmlomoaqqvDek+cTkjQhiuLx9xAn6QK0raese8q6w7cO1wqaRuLKNfskJ5suyIsFySQnSSZk+QwzmdO3JX21xbPH993IOR/VN2JwHwmjAGIg5gxgVRiFKkIcsJmHwnwnvO2+JX4Ar/6/xkH/vwv2ndPxERlieOvGJzEyOcbEsoFYP458nL9/siEwKmYecXx5hDpzuBNovIgROiKKU/LZHDM5QZgEj6Dcb+n2K3y9RvY1sm9ZZJpyc8uXX/4GYwwX508HixLbY4RAeQe2wUiFTASpjBGuQCcWbx15miGtZ7dugUAWR+z2NQaN0JJICLwbhOCxkCQeijhmmmgWi4LFoqCsPPV+y+2upNnVLGbHBBnTdD2r2yu01ExmU5SJOD56wief/pD3P/mE1199QbPe8vblK1QUc7w84g/ef5+XX37F6vqaNE3pbEeeZdze3aKNYX5+RrZcMj27IF2eoIsCkQ1gThIlxD6g6gZfN+TTKVdff4N2nkRHxHFOa1taO6DRuAEtlVFElA5caR1JPArrAs1mS29bvJHoSU5Vb0hjyWQ+p0gS0igiVpLEaLZlTfDQtR2d9YTIjIkGAWs9ve2GEUrfMsT2eCaTgt45dtvBobNpGkwU0+UFJhoK0dqhiK1zrNcr4jomy9J7j2KtBsLOZlOzK1u63rM8PibNUspyx25zQ9VZiuUp06MT8mJBPl2QzpZEUU6cZMT5jL7aUm/W+H6geh4MBQ68gmHjPFTh8Nsf7rCM4Ol3Rj4PXadgAATftaT5nZ6wPgxJ3AcW0mGO9DD/HEgPUo5ppELd7zTOHeazj1lLg+3mvZv7411GKaSKCDpBpwXFbEkxnWOimMoKqv2etlzjqjXKldDucHYY+Let54tf/pp/92//HUoK/uSP/5iPPv542DjsnrLcUO9rjk+PiTNFXW5wvmY+z2hbi7AghCJNco4XmuXsmKb5JfumR1pLNM6PpVRoKcnzmOl0wvH5Kc8+eEo8S2lFR6IkLkgQhh7oAR3FtPuSm+0eLyT6eMHZtGBbV/QSnn3yCbZtefbpp+zLht6BUxqfJJx+9DGffPoR1zdXnJwesyu3Q65RMWVydIzOpog05/TpC/ow2MSEpiMVsKvf0FiHyTKevf8+5XpFYhKS5REuBGzfcXf9BukNUgukMeRFTtt2IANd59jutljXoIzEdwHjB7llc7ci9gLRgogSjouCiTRMVYIPguurayrnUCHgI00QYPXgHlGVJcE5mrIaoh+tJxnvqV4Imq4hcgHrAkob0jSjbew9KNS2HbbvaatyyCXCjxN4yevXN1xe3dG7wPMXz/n4048Hj7C+J1WCZvOGvtqwz6csj88pd1uyacFkOiNNM7JZgo4mQ6tcrvF9jwoOMYIGYmyNYbi/KqUHSd3B3XNUDH2XlguHU/Zd5dv3LdbvXbBCyoGELw4KCO5b4wPj6XAHfXzMH8jThyHzoFf87Sc77Epj4aoIGeWksyMmixN0PMEi2e8r6v2Gzc0bRL8lVRbEiLpIR9vXNKXn5nKFbaCzHTdv3nI0L0iSmG5/g7AlJgTadUdoJVFkMImhqjoM0HeWxewEpx3zxCJ1hDKGt1d37LY7yvV2RBQNaZ4zXc45e/GUpx+9TzRLIdakiwWRVJxdPKVc79nebtFJwna7QwSJa3uu314Secvi+VOqqiQoBUmCjCOOnk4xmx1Xb2/I8jl/9skP0HFMlGii0wVCQaoWw+JXESJKR/AtRSUpeZJxdvaUl198Qb1a0VtHPp1huhbleuLEYG2gSCfDvNp7oizhzTdfErqa0LUIG7DWYW2Hlh7vW7yw6MSQZDG+Hq5IXbPj9qYmnezQaQaLJWU3zG+NiUnLBm0dOkmJZwXeKPZtw3a3Q4XB5UJJjescez9Y5foAKjIYE6OjGKkN1nmCUMRJhnUW5yxJEuibit1uT9tUKAGRGjrA7d0dd5dX9NZB3yBsgzCG+XLOhx99SOcsXe9R2hL3O2TZ03Vr1tWGdrYkTSdEJiKfpSSTgr6uaHebAVV2HinDeE4+rN2DSuwwSXl8L32XHXU4Zb978v4OC1aKgUb3IFmS91YZh5mqfCccKIwG1kOLfP/vQuDuYw6GQF2EQAmDkxplIqLJgsn8mCSfYhFst9uBPdTU9PsVm6tvEf0eM0+RZshyDXiM0ThtWc6nvHhygXcds2mG8B191bK+ukLaBnwPCorllGI2J0sLjpZTbq/v8MpjbY9SEbOjY3yQqDjl7PQE29Ssrm+pdhUmSTB5RlxMOH3vBYsn54gkRkUxYYB1cR50oTnJZkTSsNusscpg8gleBpQUg8PEriSfLZFZxuJoSZolrO1vOHr/OX/6Z3/O8uyC1y9fsrl5y25/Q9eUZHk0yO2UIKgA0oHo2Gyv6boc6cF2O3pXkUwi0mRK4ytCc4dB09QWkwichzSdkBYR1zfXrG93OFsTWYdyAlvVKOlJUo00cqBaKk3XtigE2nWE1tKlHZP5jNgryrIEKcnTCWK3x3iL8ZDEHUpnlFVLqHtiFeN6N3h4aTDKYJ3D2Z5JnhPHGWYMcA5CDC26iUYyDbi+pamiwRXEeQh2NOfzpHHEydGMMBL3v/nqG6yADz58jw/ee0KRGJyRRInBRAJnhzu1txWtq7HRhCSbkuYFST4hSXKiJKPerejrLcE3BDuY6Ac5UD+lYIx+GYvRHxLqeDiUDgjteMj5EO4dNu79on4nBSsfEsmUHMKQDsDTMGUZFTXjOGdQ6ofBVOyAqoXxTisGUbINA8DtnSAYQz5ZoNOMz794Sfvr1wgp2Ww27HdbJmnMyWLO3ds3bG+vMKJndZRxclxwfnZMZCQ6StFpz5PzBZn+GCkCUaJwrqPd76j3O9rdDolDGo2KM7KJBhHTOYGIU7zTyGKGkjG6KEjijLSYsphmrG7fUsxylIyou4YgBel0RlxkdF2PUgN1TxrYrLc0VUtb1nT7PUezGc8+eMEsT7m7ekNvG7LFgjjLmC9P+Mmf/UucMWSTGZERRHFEud9R2Qa/uaGzNTpYEu/YXL1B5TEmjXAmIsoK4iilsyV9t8F6CV1PaHeY3g2nZdOhaZhPNNu6J55ovBh0p7ZxmChBzybc3jh6I8gSQ4rG9j3aWXoHsRbQW7xyOKtwTUfkBFiH6yqEMGgTg7ND8HIE3itcZ6nLNaLrOEkzMi+JpkecPX3G9e0lX776hkgbZtMCi6ASAzHEeYkeMlIGJFULtBnUON4HlNbEacp0Psd7T1PX41XMk+QpcZoQxwmXlzfcvXpL4wOL1Yabq0sm+cBTdrZnZzc0TYf1nnw+JzYefIsNLZUt6fuCOJmgk4Rp8gTbzNivb/FNhXA9iB4p/Mhae6Q4Cx7/XbXa6J4ix/nsg2XMO1fe//KCvc/mlGOk4P2pOewsBwd4KeX9nwdTMXUvAh4KmfEOLEFGeCHJ8znzkzNUlPI//5v/jZ/99D8jhGK7r9hXJYRAGhmKLEV5wTSN0DSsri32gzOmeUocK1TXoFCcHBWcLYuxfXfsyz2v62qY7zmHxJMkGmUD3b5h43aIKEHEBScfnvP8+SdcX68h1HgpePHBhwgcV/steh5YzI6x7Z66aWitp9pX6N4jO8v+bgtI6qahyAuarqHarVhffsu8KDiazjh+csrbt2+omoZECF48vWB5tKAXgsb27DYlCk+mBbur11y+ciRaM9OCJ0dz+rsU1zToEOjbNa19jY8i9CQHKWjqFl83hHKF7S0IQ+jBNR2+aeiaGp2kpCYnEorWBhrfMj9ZEu+Pudnc8M3mjlmSM8tiMh9Ttg2JFSgvaZ1DuoBrwRnNdHmMD4KdD3TXa7IoQhqHFQ0SsE1HuVrTVHtMFJPmOTKdkCjDxfEpzjtaZ8FCpCRJmiCjCB0bpAh0TcNB15zECUoZfAi0bUPTdETaYJIchxookd4iu4TYREgk6+3Dz76qOlZ3W7pGo5Wm7Sx3qy2r7Q6lJc/ee8EHGhbHp6gQsNWOurmlT2akkyXZZEGWzFAzg0srqv0d1lbAMAo6nJJD1/lg5ndoew+F+10Rze9cDzsERol7Jz0Q98JwKcW92fbjMCSkwgsxAlbcj28QCi8MwiQsj05ZHp9St45/85f/J3/7d39P37S0TUPbO+qqwnY9XaRpy4pEpbi2pYg9iRraJCkEdVnibUfX1HhrOTs9ZTKZcLuuCY7CAAAgAElEQVTa4nrLxfkZqRBs05TV5RVt3eP9jrIOqInDFIonH3/Mv/xv/wdmx+d8/vmvCc2attyx8pJJYjCzCTqR5FmE0aesVhvOiwV3mz3r7Z7t7TVlVeHdYBmapDFJHFEUE2oJlzdXfPPNV7x4/pyj03Ourm9xbcfnP/0pL7/6iuL4jMaD1pLQ7uiaHemkwCQ5r15+zS8uX7OIFSmCtqzptxVNOTxHoyQmi/EKXG8JrUV0NYO8QA0kj97hum4YbymJVBHo0U8reKaTgqcXz+knObtX3/Kq3HPZlRRCEwvFxXRBzKBgERZkLnBJzDWCfblnZiKK3uFtS4g0rb1DGk3oO5qmJdgGfXXDyfs5T07PCMbQ+cDF+QVWCPbbHU3XQoA0ilBpPJIOHL3t6dqe/WY9AJujILxpOkSmyIs5UWoxicH5Hm8HmZ1te4r5gjS7Yl9t2a73bLclWk2w0rG6W/OrX33J3a4kiiNAMZvPmRUFCosKYRQ6OXoZqIKlNxlSCFQkSYuCtoJyuxpALyFAHKSl3DuwPBbAfLd44bcJRr+Tgh2E55oBIBPooQoHSH38Ylo/RCX4MOwkchT5CiEJSiNURJLNOH7yjEkxA6H4X/6n/5F//x/+Gu88zX5L37cIqdGIIWajb+lch4k8KslQAibZhPm0wPUd5XaL6xrU6LrQ7WPe3t7w2S9+ibOB58+e8vTsHNlZym1F0/bUVpKZgrg45Z/92X/NH/xXf877P/wRl1c3RHnB+ccf4qzlzTcvWd+9RKcGJUCFkrISnF5c8PTZh1zdbHl9eU202dC+fk1bd6AFzdjyqCghzyak8yVtuSedTDl9/j4mn7Pdbrm7vKS8uaG+vCU7PkNMUnbbW9IiRkWGH/zwBzS7Das3PWXbUcyXTOOUSCXYesnq7St839C3LUEJJkmGF451O9i/Gq3Jc4MWUO+3lHtwnWUnWnojiCZzUhmxfXVJ2sHHZy9oO8srecVuu2NrA31bU+02nC3nGBQ2dGijudutuN1uEM5zlmQ8NTEnUiK0IFUxXgpaJBUQa400hq5t6duKLJlTW8fFkydsq5oiK7i9vaayNX1VYr3DmEErnUaGxBj2CNq2HzjWWjOdJmSTgkkxdlQi0PQttu/xzmPtBqSg6wfrnv3OU1YNp2dHGK1QpiSKY3KnmM5mnJ09I0sKbO8GDoEC4Ty2rZBRTNd42maFUmBMgm0Cd1eXvH75DbFWnJwck+QZ4cBv/w4A9ZhEBHzvU/WfXLDDyToaT8M4gxp0q0o97B6PxQFaytFQWSCUROoIaTKmyzNmR+fIKKIPgd12z88/+4ztaoXrevxoYja03QEjAloEIiU4mgqmmWdRxLx4eswkjynLQXOpXMBoSCNNvb6lbyyJA9t7+vWOVZDEUcrxxTOiYkHnJR/++A/507/47zh/72NMOsGHgW20Sw191xCk4eT8nI1sqNniQ4Wra3xQBAK7quH44jkXH/8InWa8fv2Kqqwoq5J9W+GCo6wapDDEWnE0nyCEwvWOH//wR6xuLnn11a8J1Q7blSyWUz75yU/YlRveXr3CScm+rDk6PsWogBKO1CSk0QQlI66//Rq33ZDIHO1aXHBok9KWLfkyGa4f3iMjzXy5QK7XpC5gnWR5/oxV3RElE+6uVyAlRZwR53Pkiw/JleISzfXdmto5rlcrdlVFHMc0XYd1DuscSZYyiWOqtmNtW5aTCR0BaS0SjZgUJN6BrfHO0+53vPnNb8iXC2Seoc8VyksmSUItVhhpaK1nv9vR4Oi9I50MwoNskpHkkmGCMoRdJ4kB7LBeBEQjM00wTAGUFmRZzGyWESUxeZFRLBcYpei85/eyCT5o8smEk7NzitnAWQ7OYoTCOk/verqwow9bnOvRKpCYBN/D7evXvPzV5/R9z83ZCU/ee8GTp884WMcc6uFdVdu7pyv8jokTxkRjwR7sQMciVQOVUNx/4fCAIIvR70YEhDHE+ZTFyTOS4giHorGOpm3YbLZU5R5cT2oU6IjO2pF04ci0II81k0RzcZTx/OkpsyJDeMt6dU3f99RVRS4kZV9Tb2+ZZRmzfMGz5Sl3N3f0qw1NkJBkpLMj0uMzjp99wIc//iNO3/8BQSdYFE2549ef/ZzN9UtOzk9Jp0uMitDzBZ16wjZYWrFlpiJMHCNNRNlZtHZkmebio0+HOzyOqm8pZgvqtsf74eowyQ1db1nd3LK/uyURjlPZs7t9Q/CBt+UK//Jr8iwhzgvqpuPy7TVFliGSlF21QeYGM5kQZVNUvUWtpwTbMMvndLbH94FIGDLZUdclbe+ovGCZF5yePuXqbs3q5pZcR8RGs7pa0XeWfLlgGae0XcufvPd7vHd8zN///OdcxQWv7+643axoq5ZdXdOLgNSGLE2ZT2bMixzTd7yYTJl6j9iV9E1LmioWL57x7Pl7rF5/Tbu9IYoNotzTE8i04fbla4LQdH1Pv9qhTSCapgil6b3FKYGKIozRmCTBewljsoPzjqatcFU/AKEMOIv3g0mc1oqjowXhow+4vbmlmM948f5zJtOCtusxaUYxX2C0HKxuYoENPVIoehewYlBJbTclL998RVV3aKkwAqaTiCKPoHeErublb77i8s1rOttxcfEE+ciE4VCYj++070pNv//j+7XEepBQHYyvQji0v+N8dvRgkiOKLNAgFEErVBSRz4+YH52j4pzeDW4FbV2y293xs//0N9DvmRcxWmosilwKtAqkBjIFszTmeFbw0ccXXDw9o2kbtus17X5Pdbeh3u+pWzsgmlWFmkpcucFgCK0lyzLaxtM7x9Pnx+jJApkmxEXOrizJJgaDQivDxx//kDdGc/nt5zwjYEXEarPGKEE8WZDmOb51BJGw3Zd4enTVcHv5LQFHMckRSYaZzpgUBcZIhE7pesvV9Q1NtQfrKIoJyw8+QKg/4dVvfsmr3/yK44tnJNOCYHvee/IRr7/6ivXbVzjRjU6BIIOkKveIKEYUU2YvXqBtjbA9mQvsbu6wrqN3Db3vBjBEOKquIjm5wNae7DTHBo9vdrhmIBi8+OATeiuod3uW2QQbr/nw/JijIubJ6ZTd/pjbzYp1U9ESmMzmxFFCtdujqjXTOOb0aMpEGdokoV2tsQiatiGLciZJjK4NUfD01YA5JFnCZrPC2YDvPW1dIY0i7Rbo5RRhIMoj4mmG1BHOBxrXglAoEyOCpmp6yrJBhBIlNWk2QWgDQRBHMflySWY088WUYrFgfnIytOahJJ1MiE2EkEMmkBeS3juUHbTazius97x8+Za/+U+fsdqUGBPjbMtyHvHpR094dnTOLCt4cnJG6zr2m1u6riKP5wg7WuW64Up4QIbFQes8lPIQ9/m7LFhtzAgkPXgvHcCnwfjZPUTDC4UQBqQhmUwolqdEkwVeamxvacuSar/l+s03vPzqV7z58guezDN6K3DBEKWD7+4sVUxjgXI1T04WzOcF+dGcKE0JWpO5QLurafYtzabGVi0meIwQlLsOKROarsYcQIAgyNIJ/+pf/WtWzrP3PXVT09sWYwawzJgUERsm+YRQ7lhd3vHs4w+pbUNbrWn3Ja7eoeIp773/AmslAjPOoB1tW7HZb4ij4fSqdhuqpqbzCucFzeaGy1cvWV1dcvHkKSdnf0E0mfH00x/RS0USx0RSsts33Hz7lt3VmmZb4foGmcfkccabr1+iTcS+rjB5QXF6Rru5Y7e6o9nXrLd7pHVkecHy6Ixyd0dvPWXTUr15zcX7P+Ds9Clf/+3fcLW9odpdkS9Oee/JKb/8h98gXcX2ek+3v2Oea5J4woVeIIVidbei8R4Zp2zqhl1Zc9N5rFfoKCKbHfHixQuk87TrDdXtHWXruFndYXcbhO3Z3WwJEkyeEbY7CALbWiRyADedoF6VaKkQKaA8KlHU1R7vB5ZQwCDTQJIV2DTFjQ4XaRwRx9GoMoowSoJtCL1hmRyTFTOUNnR2YNvFcTzw4xmSGLquIzRumI0yGK+tNiU//+lnvHl1yb7qQQjavuLNG8duvaP+OOCbht455sspp2dLcC3BdjTVnr4fbHSKSTGsQzUaCYqRojuGwfG7zNZ5HJD7juVLeJjDCq2wAayXCK2ZTOfMjs8JJqcPitA7uv0dv/i7/0hfbemrLVPp+PM/+JCqdvzqm2u++PaW3oOr9kznKcezBXkkOD9JyWcxfSTobTvYp7QN0oMWhnrf0TdDPMU8z5jkU6Q0mFSTaIkPdjDWCpaf/e3/hcsLls+esdvuiHdbknyKNjFZlKAIWOcxyYIkaOJJwUUR8e0Xa9abPTQdrWkoti1aRGTx4EColMSHmGS6oDg6QUQRIXiyNCEWESZKaE3gH372U7744gtWqw3T5QmLsyfoIiM6WkJrWd/c8u2vvkT2DsXAUa2rkvMk570X7/HlL37NZr3i7PlTphdPYTIhzmdcvXzNy6+/pW96Pv30U5q+o88mIGLK1Q1ZnHF8ekqaRaxuXnJ3/S2hr0mkoN1u+Nl//GuauiFSPRiJsi1CCKbzKbOjYzabLbEe5t2T+THZ/Jh4tuCzX/2a1ndI7/nDH/0E73puri+xQLvd0jcdbVcPbhdK0ytNMpkwPzvn4qNP2Jc1m7sNTVmjheD4aMHZ+Rn7rmFd3yFqR+PXtLbFRAa8xAdJ39Yo78mTDLKUpjeksUaNvsVaycFzqy4RMpDmBTpOOMSuKKWR6pAwwaBiKju6phlEowF2+5Jf/uYVX3/5DU0TBtcjEdA4Quu4vdzzmf8aHyxGO059TbFI2a5u0EohfIdrG8r9HiMcznvyyYIoTnGM1khikE+G3+Ud9nG//ViMjg8YqYYsVQRBKVRkKGbHFLMj0CleKLrWcnf1mtdf/Ix29S2ns4xiNmWRGPq64Zv1hmZ1y+2b11RBkikQW0i7DRcnKZvU0lMjkpqoieirFtkH4uDRAWIdEYQn1YLj4hgtNPtdRRcENQ7rW6KsQCQtd9dX2KpG5jmtjiid5/Wb18RxyrKY4duW954+ZXn+hL4dNLJp5Nhf39FZUFHO+YsfkE2O2K22xAYmccp+vyUrpkymE2SWs6vLYeapJMfnJwPlspjyr/+b/54//Rd/zny+IChN4wJCD6CUdzUiaHyQnDw554e///sIY/jql5/zD5/9lEU+5ejoBC0FkRDYpuE3dyt6F/jyy28ot1uUTrCTI64u31LXliKZklyk5HlKMitwoaXdXyF9SehrDIFYSXxbo/sGLR2uAyUV0+mcNC+ITUIV7TDOI6VDR4LZ8Rw9W/Dj5Z9wMpvTbfekJmK9WfHsecRb77h8+Q27coWwDbERXJw/o2lr8vmS8w8/YvnR75FPl+zLmuvLa+rdlnq7xk5mTKNTTDOnqe/YbC9ROHT3YEPT+i3Nek12dMpkcYyS0QCC6pGYP4rMURptksGb2naEIFFiMP/re8e+3KG0GQ6UuqLa7vHW0neON1c3vPzmLU3Z0HYWE8VoKUACZvBafn19jVcSgWW9XiFcwPWBZ+9VLBZLYi0IiUEGS1WWWBtYnpwhpRoymMaR5yGp4HdSsI9P2EMBh1HmJcaAJI8kSjLy+RFxMsGNcYZ929KsV/zdv//fWaaOH314QbVZIfuGPljurm/ZrzaY0JOKjt6NLQMaKQPKGKq6xUtI+56u6/G9J42ywdgswPuffAqd4O6bb7Gdp9yu2VflwIhRApVpWl+xKl+x84LZ8xd0fYfpW7RtafoGu1/TXL/C1zWr3/wDH336YxId8cXPf0G3X9MGyw//+F9QnJ4xSRa4xmLkNb7rqJuWsu0JkWWmDVoPOTTffv0lr1+/5vkHn/LJj/+Y+fKEpx98OsQjykEc7QAbPBKPmnvs0QXnz54TQmCHZ/32DZc3N+RJzl/95f/B0+fnPHn/A3xvebNZ83a95eXbK2y9o4gU00XBzz77exZHR+jpDC8DRsU4aVmtr6CrkPs1oh9iPAyK4DxKBKIkJs4V6+0e6wMCTVXW1FWHq3dMlAcJ3X7P6uqa1CusNHz99ob97R3BeubLGUkeIYVkNpsjQ8/2+i3S98McO8nJigQ0XFU7iiynOD9jMZszqSrq9d3/zdqb9ViWnWd6z1p77XmfOebIOStrYhWryCZFUpINdbesbgqQjAZ81b9G/gf2D+hLXwly2wC725pHUpxULLKqWFNWZWVGZsxn3vNaey1f7CAN+0YyUBeBcxNABHDOd9Ze3/d+z0NbbDGeIgonSOnYXC9w2uAFXs+KagtCX/bERU8gA0UYxFjnIeyN9PtmZznwAwBcW9GZHjQgvQArBEVdsdqs8JUi8Hw2yxVXp5e0rUbrjtW2pNiWmLZFWIe0pp9+CIdUglqXVI3FBQlRENI0htPnCzzhSLOQYZahlEJJgTUaT0JnWjbLRX9/juMbzOqXbK/7VZH+fwmI1jk6r6cyRPGAeDjFqQDtFAKFLiv0dsX6+eekZsNOlGLKNZ1u2GxqTjYFzgmSbMSdQx8lOk4Xa8CxO8rY2R2RpHFPWNew2sxxpiPwQ2zr4UUD0r0x+3cecvXsBf5wyOL8vMd/uN52Z/HRrehHQ4lPFMfs7u0iBLRNRdz1eWPXaUxVYjcF1+st5uKcsmzZ5gU7x8e88Zv/Pfsvv4JTina5Zrm8pq5LPCdwQjHdPyDOkn5g3jRkcUzgKaw2DLMRg2zU6ybEjVrz5v2RAhQexgqEUsiBzyRLUUJgtKYzLU+aAuX6raedowMa3fLkyVNeLC55vtySN5qhpxmmMavTL0h37jCOA1xTsqkKIs9xdO+A9eULytU1gS5xbYXnHG3b0tkOMAgBy2VB21lG0xldXbNYzHvAR9sQBhE6FoQ7E/Zv3WO4e4x1isvz5+TrHEfH7YcvY6Vltn9IlAyoijnN6jZPP3qfre6wriPfrNl4vakwahruJCnHdx8QCNDbDY/ff4ezxx8RSY9ZlhEIBSrFtJowTClWa5CGKFb4bYHYXuNUhJMBKIUnHXVd92OoJEUFAWW1xpqOznqoKAM/BNd3gblRc5jGsF5vWa1ypO9TtxrdNggsvifxnEV0/R44N2uBorP4ThAIibQW5QtG4xG+H6Jbg24tVVVRliWDwRA8yWp+zfz6mgePXu6DRNb0SJovq2B/Vaz/b00fCE9iVUAyGBEPJjgRYugxL3VZU+dbTj54h/nnHzBLBabQNH7KcrHl9MU1y1WB1paD3Rk7o4SHxzOOD0bkeU6WxoSBxBMWU7Zs1xta25vpslQhQ8voYMad24+Y7B1SO0GSJAxHQ148+Zx8u8G6Dl8FxMmANI0ZTcfM9vaY7e5QhwGds+iqwBcdQvdfLqKsoNhy/uQE58ccvvkWt7/2NaYPX8Z5cb87aixd27Cczzk4OGS8s4PwfaTyWMzPyKuSnd0Zb7z2Gl99823C4Q4oH2O7Prbm3E3ovQ+itNZStAbpexRlwSCMSX0f3/PZ2d1hOh3x/OOP8eOQ+XZLXtcsioqTF2d8cTHHKYWIYduuEU4QdTUXjz/uOVnWkASCPdmgt9f4tkEJi3Fd32zDp9aux810hnK9xr/5+x6GwDWgO/Aigp1D7r/5Jsntu7z09m+gwgGmcezdvcW9l1+mLipGsxm1aciSGCcDfKmRpiEbjnBVQZFvEIGPCwJ0GGBNy8mzp2gD4zRF1jVdsaVbvCA3IJIBTVGQDYfknaEtG/JVibAl3iQmCT1EmeMHBrwAGpDS4rYbNpdXeFHCaDqlLtY3Uc2QdAxeKgmjiEGaYY3pzQeeQrcdq/WG47v3kKEhWG/+n7SStei2I/B6moYUPpEEJTw80zJIPXb3UnZ2Jyg/oqgajO64vLxkPp8zm+2yM9uhrls2ec50OmM83QHVF+2XVrBCSnpF8Q3hnx58Jv2IcDDFTwcYqbBOYEyDqWvyzZbHH7zHZz/7PrdGIZWTLOcNe80uRaFZLUs6rRkmIYE0BNKghCMbZQyHER6SpqipNw0eoMuW1lqUH1KWMBxOiHduM7r7Cg/f+jp7D1/nk5/+mLX5GWPhEW0LTNtRW8Hxyw+5c7jL/OoFYZoQD4dMDw8ptKYrc9xmDdWWRCgGu3fI/Zb733kdf7bL9ME91HiEkwKwtHnO6eMP+fCd9wiilL2jO7gkYbGYo/OKq+UVg/GAL05OCQKfvf0jbH7JYLpLOEhwtmV5fc7V5SXTg0MGs306K0l8xXq7Id+sEZlBDcc8PbvgH3/wV/z8J9+HpsKZlvDilGVekQxG2GiHe/f36ExLs73mk9MXxB4UbcfubJ8syhBG4OuWq6dP8FzBKIuotcNYix96PYBAG3RnUNIjTCOkH7Baz3uvq/CwYUI0GDPc3+fo7kPGdx7iOslmsWQ1X9CWS5o85/ryivC5TxD6jMcDAt8hpYeWHsdfeY1um7NdbQinM5KDA5KdQ6zweH7ygu31FfXlC9rrC9r1JcIPqBtDeb1FOcFyvqLSBmEMxaLCtAWu7rA1iLAiSFNUltDR4UmL0y2JUmyqlrKy1DXkm5y2nTO1htRqVDfEWkFnWsqiIs8LtkVBVdd0nUHiiLwA42xvW3e919gKQc+YsAQIfNPiWUssQhLVc8o669B1Q75es7i44nq+YbFo2BYVk9GA7WrB2bNnCCeIxxOs8P6ZKvz/UbC+8voVItk7UqUX4qRPnI1RyQgnPMBDm4Zyu6Vcr/jog/f5xY++zyzosNZjnRsabbn66Am+6nGfcegRKIh9CP3eq6nrkryoaRtNta1QQkHXqxVb3REkHnEUYFTARmvUZsXOdk0jLEtnWErI9ve599our7/+NvN1zmgyhnJFZTSj6YS67khFyJ079/Bcx+LpY0LTsF1taUjY4jF59Q3kIKHxPELlI6xDr9dszs7Y5BWD3V3qxjC9dUiQxbx474T333kHbzDk937/97k9GnN6doGf7VLkBcoLCDrBxdMX/MNf/BfqKufBK6/wla9/kxeLNSoZ8Oz5CVfzKzzlk6QDfvbuL/jrv/yvXD5/gmcNtmm5e+8eb37tmzw7v+LixRUvP3qZ87MrLs/OuHj+lOPdMcJPGE8cQnQoNKkS2LoAWhrlEfoZQRJR52W/0+l5dE5jncNPBgRxQlOVOGOQvmQw3SFOR+hG89Ev3mO62CB8n7LIqcstpq6pywpnLDsP7tOUOWu9IhnEeASUpkEoiRhkYCUuG7N7/xXSncP+iWm8w+bsBcXpM06XVxipmB3cJhvuUG1LVqenNOs1uJ74GKmI5XrNtqvRlaHD4fmKdG+Cn/r9lpYHSEmcpoTpABnEGKFoV3O2ZU2pr9B2QeduCBbLLfm2pCprAhVQ5Xn/4bcaJS3g9VRQIZEK5E12WAiJR4evBKHXN2LbtiXPCxSO5XzOar4gX1Vsq2vKesWDe7dp6pLL81M8pUirGi+KvryClcL16E0h6YQPXkCYTfCjFOv6Pf+mrvniyec8+eRjzk6esb54ziQS3Ds+IA19njw7Z7Eu0MaQRpYojEnTAYE0RJ4hjRWdNsxXG+aXS7CSKEjpjEM3mk5bTNlhnMbb6anw8XTI2eUpn33vKadXZywuzqm3W77zzW/h377Hmaf47T/4Q24f7PH8o/doTcUgiakd2MpytHeHdJgxTYeU1xcE8YZsuEe2bbiuS+7cPgBET6+/XrB8egKN5ujeI9789iHWCYIkZHF9yk9/8Le8808/gcmUTWf499/9Dwx2j1BJyjhO8SO/X6GSsFgsqIoNb37ta1xfnfPjn7yDSIZMphP+4ft/xwe//CW/+z/8O37zt36LD977MY8/eJdBHJGmA4rK8MnjL3AyIIwTPvz4Iz795BNs1+KJgKtcw/mKaDgGZxjJjrKqMBjiMETEPrJT1GVFVfZYRik94iRGa8tk54DOOeqqIEr6veB7r77K6fMLlCexuqJanKPCgEhJOp1D3eA3fXCfaouuC1rbsllYxumEYDjAi1PS8YzZg4x0ekA62aEB8s2W1WpNXdVsq5oGj2S6j/Qk01t3EV1HsVkh2hqhLdumRfkhfpjQNhVt09B7fiq2VUM0iti/tUcwTBAYVBT2rOc4JfY8ZBTT1BXr1Zr59YptUWOMpCxqGm0AgZIe1SZHCAedJlI9jN2YDodFBYowCPpRlYFOW6QHcRwSRAG6M8i2BSH6g6esKLdb2kZj2hBfebgoxJOW5eKSoioZTmZfXsFaejentR4iiIiyCUE6BKmQFoqq4PFnn/Hfvvc9qvWSri4Zh3B4uMM0S5gv16w2BXmlAcc4UzhnWC8XRLJjsDdE1yVS9I8haRQhrAKnaNoK3XS0VYutQTuNLVuGXYfeblist2w2OS8uTtls1symM5baMBKSs6srxAfv8Tvp29jE49Hbr6O3W4wVRIOMNIqQHURxCtkQ5RSzo2N2VERues5TVZU0RUm92tC0LW1VE+LjxRltXvDi40+4ePaY5598ROBaalfxl3/9f/Hs9Jw/+MP/iTgMONqbYLOYJPCZzIb89u/9Lo3W3H3lNa42Obt37nNxfsb5+XNOnj3h4vwF3/vef0bQIXEMBkMmgyGhH2KsYLnK+ca3fpPzyxNO33tGNk356pvfpq1KivWSfLPiwydPWAwjXj/eJYo8fM/HOkFdtkjp6FpD5Ps4aWmaGlzPGfJ9SehJuiyErkaiqaoNe7sjJBLiGH84wiifOMsY7uwiug7XauaXczZ5RWcMQRiwLTa0smbnYB8XJ3hJTDrbJRvv0jlFlW9ZLhds12tSPyTKRsyO7iKt4fL6iottibKGsqkpFgtkZajrmqLTpLMpummYX16iG9MbF1YVTWcYTsYUpmPZ1oQTAdqhvQjpeSg/xlYNzkqU9NBlTUeAFB6drntCpxB9197rRzi+8oizEGs7rLMEYUiWRiRRiEBSFhXGdkRZTBgG/T6stVgpiZKELMtoGsNgNOT2vTvsHR3ijEa43gzZNSW69L+8gnWih0oLPyIaTPDCFLx++78zNW3T8NMf/ZCr81Nk11/AAugAACAASURBVCJ1SzoYMUljri8uKWpD4MeMR2m/L2lquqbFGpChgM5S1QWjcUaWSowWtJWlqTSiEyR+SiRjVqYgGY5pOseL0wu8TUEUxhTrNflyi3UCbeDTJ08oGsvu/jH/+MO/ZzF/yuu399mLFVYZrHZkg4BiNccJxWp5yfrsOdV8zfOTc+6++Sa7t+/TNC3Fcs1kMmY2HvPCPaW4satvVhuur685++KE/OKKwAom2ZB1HPDZyQnnl0/Y2Y3527/6C159eB9PayIn2d/d43BvnyAd0liP9brh88+f8rd/+d/YFhuatmaURayXV/yf/8cfg7YM0gFxMiCJE/wg5tnpGbpruf/oDufXz2naluvVFXVZ4llLEIeMxhOi0COXHoMgZpAmeK2hLkqEq28SQz2SZbVZY01LOhhStwWODkuDlAY8y2g6wll4fvKUW3uvYiNJJxWtHxKNM6RpMGXF2A+5PrvGd5BlGVE2o7Nl74WdXyJWSyamIy4aOi2wwuJLy3iY4XcwvHUXDm7hex47yyXXV1csnz9BOIHrDMa0vXR6NMBh8KSkxXF9cUXXdojOIRtLVWiqomRdFSSdBFVQONHbIHyPpm7oWoMSHnEY0KEIhgme16/5SdeRhTFKSrZVz3LycfhR2G+q+QFREBBHMVIIlOdRtw3K93vJuTY41YvLoyxl/9YRw+mMMIrYu33IbG8XiaMtS4KgxGiDaeovr2ArbVFhSjSYoqIMqXrpb9tUtHVJVeY8f/6Uqtzid/2daZhELK4WuK6j0WCNRTc1od83Osr1FpRAJQFVERClEXghyJrOGuq6oWsFmD5rmSQp/tGQjbW8eH7GXpyiWos3kQzSAW++eYtVvsEKy2K14PPPPkTalr39Q7abDR9/siF+dIdBoBC2Y7FcUrW9MSAZJFgk5bZknc+5/dU3MLZD+T5plhFGITi48/Ahk50diqLBYhlMRwzC1/jleslktsfjF59Rx4ratJzPn/O9P/sTnn/xlJ/99B8YqpCXju5xfHTE2dk5wlOczed8+vRZD00TDuE5Ag8GkzHDLGW92dLULVk8uEG1toyn/drXyfPPeXPvTeLBgHt7B2Rxwvvv/pzYV+imYr66xowHpJMxmyBlGKVMEokVElMVdE72kUI/ZnSY9aOLQCGzjEEa0+QhTteEwynEGavtBpNFbGnQdUeYjSmbFa2t6Yqc7XKN6zxG0xn7h8cEUULnDFcXn3P5/CmeJ1F1ydWLL9DuOdZ67O3vszfbo7OWRrfIMMYpyXh3n507D8g++5z67JxNaxDW0gnHIE0wgHEeSMetu8cI4bg8u6BtOlzjWK8LDB3OWcy6IIwTbF2ysdegPDrXkx48IfsrUtfh+Y4s8zGtxHeS2Jf9qd1JXNfRFv1Cvud5ONHRNgYnWoKbTL3v+wgp+9Pea0BIrN+PEQfTMaOdviudjMeoMML3+lCkJyW6bsnX2y+vYJ0KSUcTvDDBC3qXSV3V1FWNrgu6rmU0GnD6VKOcIUvGCCFp2waFoGtbAuEhPEckO4QvqVqBB7jOUuQlwotpzPpG1qTA1XTaouuOLBxgGo2RoLXGs46rk1M6X4GviAYDvvKN3+Ib3/kWTVfx93//N8yvLsnX16RRTFtrvElKEKVEgYfRBbP9A3b37yFkQK0LJjt7TMIBedVv2Yiw5wX5ccDV1SUfv/8BwkqOjo65++ghXprQAXI05Pill/ind3/ExWLD9WbD7QcvsW7W/MOP/56dwZjT02cc79/GjFLe+O3v8Df/6//Ccn5J21ZcLa6Zz7colYK0jGdj4qifEfoCrBSURU7T6t5nI+D+S/f51ne+zSrf8NZbX+f1195gMhwxHU6JfcV6dc27H/yUeDBADXfJceQuZCdNQXdY6RMGCYNkSDqaYp1FeT1BRPmKQRpRrlKO9ncpNVwWDeFkhzSLyDuNMSXlssK0BmscelsxGe8QJv1SgRYSFYdIP2YnvMNifsU4ibn/+quYNKa20NSaDg863QuilWK5XP8abuBazcmTLzBFweZ6wXa9pa4qyqq9ya9bhA9xFDIdDyg2K+qmoe0c63WOUL2N3ZiCoR8w8T0ulmsqY3FKgfL7cZhzBMoxmmYof4fJMMPWLa5qaIoGX0ga3aJbUJ5Ha1uEp/HTBN9KTGAJb+TZv+I4eaIX0ChP/noNMIh7455Qio7+d1QY4iuF8ho63X15BZvuHOFFEdILEELQGU1T13RtQ9c20GkePbjP41/+klgljCf7rMuScKhQVcOrtw4Js5DnFy9QGAIVEHohTV5hWs12ZeiMwQlDlKQEfoQSPs7rcLL/VlMqQFctyhimQcSmaSnqCi9NKNqGn3//L6k2J9x/9SHHhyP2ZiN8Yl5+6VX+4Yc/oK4GfPBpwrcfvcQkGzDe3cOLPMr5NfPLC+IgYPzgDhMnabTG5iXKD/D8kGw87hs8773PdDxGxT7cBB4IJLN7d9m7fZfZJx8zmg54US6RvmI8GPKNt97izy+vcDH86L13kEHK9OgRH33+At8TrHOD8GKEF6C7louLBZtNTpkXWGPA9ttRnh+wc3DI4b27/P7/+IfMdnZZLi8Jg4hBOkIIj29+61uYruHFiye0Xks2mFC3jnJdsmotYnKbIJlCW5MOx8SjKcl4RF6VvxZid7ZjZRrcVHGlQoQvCbwQfzAhCA4xbdljZusSRU1dF+i2ZXZ4zOzoAcYGLK5XrIoLwiQgCmC8ewvnLFpl+MmQTPnshCnaWJx2eEawuu6xPONxxvzslM9+9g7rp58St2XPa1IRUXQDnfdUP3LqOqqiwmGRvnfDs/ZoG4vsBL6yvUal8PAjn+xXmk3jaHRDpzTSk8RxxCiJesZyGlAtNuQXc7pOEyt3s2srMLWh68B4Dq8rSbTFH8ageiug7UAq1Yu2jAYjkZ5EWIvv9VgaJcWvdTNeGCIdCKkYBV/iHTZKBn1cUHp0RlPXDbqpadsa0xp0azg8vsXewSGxCnAqQEnD/XvH7ASKSFmiLCDMLNW67L+Vq5rG9nOttrOIUpMMYnCSyI/QkUUEHjq0VKVmu8lxfoD0Q3ZmA9Znp+RFSehJjHM4a3jyyUc4r8EqibUes0lE1WzZm0148eIZ71ZrJlXFW6+/RYyia1ref/cdTk9OePvttxmOJ5RVRTqJSOL4xqPaEQU+b779NY72j9nd3UMIDyyU2xInBGVec+/uS/xy9E8sKUhFR5DG+BI+/uRDBpMBVljWmyV/9dd/wfHhAy4ul9RVSZaOMLZms1zTmhbdmf4KEMfs7+wxiHyqsqBqNYd7+3zz7a9x++CQqqk52NslCCKEU0jZy6+WyyuUUn3wAti9dQt3S+GMJjrcRZgGYfqNG618cqmwsULyK3q9QziDbSrKrkNKSRjG1MbS6RrrHE7GSN/D04JQaboAVpuS2b2ILJ3hBRnOaDwlCH2PYTRmuVxQlB3n558znM64d39I03UoKQmikMF0yuToqA/kdBZRFZx8+AFBucWU/f1QKZ/BeEScZrRV1SemNktM15KGMXYM27zqwW3ihngiBXXbIrqOMIhw0uHallY3BEIxHGQoz0FVIKKAwGha3ZAoSTqdIIKYwmgckK9zqqpF123vwnWGOFa4UCG8G2LijZlQt22PkA2im5XUPjQjhey3dBwo30MJ2dMWw+DLK1gpg5vth/4faeuKpi7RTY1pW1ptqJsW3VnWyytGccr9/QmjbMxkHOHMhijyGNsM3wrKdYly4N08RigV4PDQrSAOPGxr8OhN334Q04mIVtRYPyDMUq7KDTIO0ds1+XyBpzxsq8hGPuV6zmB3QmNb1ttz2qbEdR6YhuuzDb/QLUOVMJwdUxiL9ALG011Gu0fIMCX0IlZ5STy6gac7R7EpODs5YzSaggzI85q6qNluSgbDIcPhhDBKUWHCdn7NcrVgonbwpaSwls51mMYQ+R51WdKakp2jGQe7b/Laq1/lR//4A84vnzOezTg4PGK7LXjtldd4cO8e+fyc+fUZ0lM8evVVdg72wZo+SST6PUrpCeIoYm9vF4RhMU+YxCGb7Ro5mXB09yHD4ZCmKtGNQCYKKz2E1++BCmTPahICJ71ewSJ9hLN02lBoi+caus7iVEAcjdHtlrbc0OUtvpcwmx7hVEjRdYRpRiQkTZWT5yWxHxDHAzZ5yc/+6V1+799/l7aoca7tU3Fd1TeN6LDCQ0l4cPuYT6xlcXZOEiUgBFoIAtsxCEI8BE1VksUpRivCKCANY0J/RWMM2lmccBhcfxeVAl94xIOIxPfphCNN+thrV+c44VB1hW1aVFuTRQFJMuRiXSGAIAjxMpgOPC7m11Rdr63smhoX965b74bMYk3fIENIgqbBl5JWawJj8IJ+FRDX4d1A+d3NROJLK1ilfIzWtE1DXdcY3eJugM7aGNq2pS4LNqsF0nQMphOOd/apNi0fX10Sx440FOwORwRCI2Ng2iGFw974V5rGIIWHNY68LjCtw5MxYZrghx5ZNkJlGes6pyoNe3cPyYXm6mrOIEnYnWQcHuwxHo+JkggCn6btqJucTvf3su3zay6F49Mnn7N35xHZ7hG37j0iGwwZ7+2D9OjqGl+V2F6agi5rLp6ekMUZ56enJIMR0TBhNBphneRquWT/YIdwMublf/UbvDL4N/zwpz/g3fd/ynyxYTxOCENF5AccHt7m9OyK56efsbM/IExatvkJv/Nvv83Hjz9jZ++Q117/Kp2D48MjBlmGJ1qS0Acp8HzFYrnA4UjihDLf4IzGCov1fTwpuHv7LvlqQXv5lLrYIKo1ma24le3yy88eU2w3zPZ3CZKwpzMI15vfnCPwk36RwwBKIToLdOhWY52l6/r458HRXdZXV6yLGk9b6soSj6YMZ3vktWa7yplvcoTteHH6lMPdHcbDDGUdL06e0LUlzXYJpiHfbFjNlzRlixfEBMkAJQROCQ7u3oIqJ/ADwmyAC8BozcXlGYOoF2nj+/08uDN4dAyzmMZ0NNay3KzoXJ8fRnqMZ1MmuzuUTYUTfSf7aG+fLz58H900yMYgyhrVapIkJAkDGr2iaEoi0TEdDxgmGUmqyMuSWmtaremqGt9LiYKIII6xnUFqhaW3IBKEBO7Gtt51NyIzr39c15pis2GzWn15Bdt1Ha3uiXum1f2Pvnk1BtsZAgGT0EdiuTfKUFXJ5bqhERo/d0wThVdvGCUh2ShkkCXsHOyw3W5Zr7YsFxuENTjrUZYNwnoEwwiVpBS6Ix5PuN6suC7XkHiMDkY8TO+SDELQFudari7OsNKw4+0QDwckvo8SrsekNA26LPliOSfNhhy/eMbbR7dJB0P8KAbRv6lRluJFMRJHkxf88p/e4eTTz/jWt77DFx99yGA649bD+6RB1EfXopAXF+fEkwlf+83f5mKe829+e0S+3HJ6/ZTzF9dsV3Neun+fr77+TTqrkMtzrMsRdFxd5KyuL9jdPWZnNOTO0QFh1Geih4MUbQ3D0Yj1ZsV8fk0yGFJXFUVZ4nQH1tJhyE3HU6M5Or5Fmg64ff8RO7t7+Erh6pyff//v+OjnH1AXJeko4Y1/9VXS2Qjj9Y2tMImxtsV3CiEFYRAjHWzqCjqD70fMpjPiwYi2bIijmDIZUGpDR0e4s4MfJ6SeoVn3o5yd6ZijW8egaxbzSwpTsd0sePrFp9w/vk2XF1ydn7FZrnFOkgynDFCEwyGLsmRweIDrWopNTjIYsrs7JV8vuDx5TmcqYl9R6ZIo8vvTrmuRUhBFIdJ2XC00YInSiJ07txhMx2SjFCqBwyMdDNk9OKJcFXR1Tb3dUi620HZ0XkujCsLQI1MRni/Z25vgW0sgEyJnKSys2gZpOqTtH8GTbIjpDE1dg9c3loIwxlfhzYHUoQJJ4PfEz85amqoi3/7LusTeH/3RH/2zv/TuB+//Udv281bdanTTd7Xatu3FRrqhyTeY9ZLDNOL2OCPoDFGS0HqSqtGkfsjeKGEyCiirLXESs7M3JYgUQliEtUhriaKEJMnwVEheaVwQszaGtW6QkaSVGht2VF3JYJiSxCGR6u+add1QFiVN3WBtbyMI8BBli12XBMYyzFKmOzOqWtPUDUo4fNUnV0SPAcBXvXVhfnrGh++8S7ve4JqG+3fvsLe3i0JiK81Pfvhjkizl4PiQbJAxyjLOP/mE9ckzZmnCeDpl9+CIy4sluu54/uI5FosKBK6r2c6XdIVhdT5Hti13D2+xN55wfXrK5x++zyQJMUhkEJPnJXVZ4fWLnuzNZoyypPfLNHUPZ9eGqqrxpM/h0R2yyYwoiXtUqNbgSYy1dMDe0SFRluLHCSpIePToK4BPVbV0naOzAmscddkQqpDxeIem6diu1ng4JuMRzvMQYcLO7dvs37mD5/vosoGbz8hgPCIIFMvrOVeXl7Sm5We/eJe7d26zO9uhLDVIDxWE3Hv0Cg+/8hajvWOUH7OdL9B1wXg87AMPQiJ1i7KaJPJQ0hH6AtvV+IEEafvwQpxS6x4St9msmU7H3D4+4uDwgK4zxGGAc47sZs+36yTCSxkPd2jyitXlnLaq6HSLEIIgjonTiMiXTJMY/wau3hU1pmwRwGA8ZDCdkE4mZJOeroLy8aOYIEoI44QgCPA8H27usuqmYIVwYHvt53d+9z/8z/9cLf7LdJO6wegW2xm0bvsRgzF0XS8Acp2BtmI3jThMIvzO0DrLFy/miCyjaRqORgnKl0hp8H2PPC8Iwh4dmkUhajZis9jgBz5tK1jmBaWVrNYL5m3N7Yf3iTOfgAnrCmrXUrY5Unn4WUgkU6wS5HnO6fNTnj15xq3jI24f3+KlO4/IXcjSOjwPitWaUCX87B//jl/8+Ae8+tqbTPcPCQYpw8mU+w8fsckb3nvnZ6RByPGde3z2+FNOTp4hfZ/VumQwGHHn4QMS38PpFhWkzC8u+OHf/Bl6s0V3HdnxIbdefpmnn19Q5Qukq7i+usQKi7AN+dUSs7VEVvDa3i1GQiKqivXFOddX5zwfJrz5m/8a6Tw8C6PBiMCTZFGILyzltg9KRH7AaDpD2w7lB2TpAE95XK+uaRqNC0Kyw0Oi6Yxbr5qefTRICeKIIE5AKKpGYVyIDFPaWtPoDukgHc0o1iuy0QTYcPL5Z1y6js18j73DW8RRwt7+Pr7nUS4XLM4uCYTP8fEhTkpWywZjFYPxHl7oKIuGclvTNo5kfMDeIKOsKwbDKeFkl6oydLVlOJpixrs0izOs1jTrJcv5FY6WOAsQxlDWNVjThyp0hcDdiNc6/EBysL/LbDYhVAFmW+G6FuMrPE+QBgHWeZyfXuL7MTLqG56e8MF5NE0DsiLxfJTzsMKh11sGyke3htAKJlHKJA0xsU80GCDTfpWvcQIVxXiqbwQKHLpt+5BFIGjbGrex/SHhHNKB+hcC2f5lBVs3dE3bK+qtwdLRif7VaUNbV1xdnDHyFXVRUDnLXBtO1jkqr0gUaJOxLS3b1YrxaIc4zKjWNVWxxeqWrm2QTpMvr9msDJfrmjke11KTzYbk5RUqGmBMjdIt4yxCJCkWj7ZqUXFANhlx5KBebagWS8JtSZQ3nD05YXcyYzAcEQYBy9WCixdfoHxFW7Y8/+RTVBiwf+82451DPj14iaLtc7avPXjIaDRit21YzOfk6w17ewe89tqrDCYjzjdLugDG0zHj2ZQ//I//kc/ffx/p4GK54c1X36JYl/zd3/5XOrNFqojlJkcXJaH28DvLJIhgW9FVDS+9+hovf/3rzOfXZFlCGKW9WPn4gLLKmV9ds94suH72OeV2SZRNiCe7BJ7CCUNTLtgsT7G2ojUGawVpNqJrOzzVu1SRfcopHo7Z3TugblrKqsaPM7IoJXMS5fnEYcQgjPj804+pnWO6t8fs+oJP33+P/PqK4uqSDsf1F48Zj0ZcXV5Q5FvS4ZjxzgGeHzOZ7vPS62/gnOOXH7/L9XzJk8dPeXT3K4z9gNH4iAgo64bL6w3VZksgBdr1sPP56TnzJ49p1tfkyzkNFhn4RELg6pphHJGkIdJZxtkQGSrCZEw6GiKkh4eirTuQijpvEK7DE5LAF3QO6mKJUjn5RtAVBZEUiDBBG9UvfdQNtoEgjrCuozUS20AWpnSRxKUh2heEUuJs3zhLohAviFG+h3MGa3XfKTY1Tad7HEwQQ9v3hazW6PZLTDp1RtPdNJlsZ7BGo3VfwKauOX1xysmLc2yWMgpDVuslxvMZZilWa6RryNdL7HiHnrHYITzL1dUVbVEwTFPKbUFT1TgihBJEiUdxNafCoG2HLmv2jqakaUTRbJCmIrYd8/MFi9NrUj9inKUknkdX1niVpixqHl99gsEjSFL8OOb+Ky8RTfc4mo5ZrxYkhxH5MkcFitlkSt1oPvnkE15//avsz3aYXy3oELz+jW+iuw5PetTbHNlq/uZP/5Th/oTfeeMP8D3JaDwmffQy9w8O+d/+039CxQPq9ZadbMDDW3f48MNrnl2csFptiKzhcDTk9v5tvvLgEfu7u9y7/4jxbA81zJgcHiKEQ9MP99vNkrPHn7BcLrk6e8H5s88Zjse8decldo5vYaTl9PQEpQS+r9DGxxce2lg86dFYjZI+nRX9Xco5mrphsViwLXKCMCSMYgaDEb4XIqVHqAJs25CNxmwrw2Cwy9FLX+FHP/oRxfULvvjifZQCFacI6VGXOabVSBWgwowoHvHt/+7fcXDnDs9Pn/Nnf/HnLFdLfvzTn3K0d5uXXwEVBkwOj/CkR1EVdNYh/ZDhbJ9udc1qMWdxfUG5uKKtaxokld4QS0ksQDrRJ4iyjCiJ0a5DKEmS9JmBpmoZZCFBOuFscYYruv4JxzlMBzbPwYvRjabd5gSdIUkidKfwQoUXKwx9fng8GKLLGutJlPJZ1zXSd+zuTCmalq6qCOIIlSYYAdJ1NLqmsxphdW+Dlx2+8uks1CbHaEMUBSRZ/OUVrNFtX6C6RTfNr191XZOvlpw9P0MbmBct67LBdA6pNT6QxT6hlEyGKZPxiHprAEfd5GhT4/s9PlXXGmf6eN5omDGcJcgk4fHlJZu6orWWzbkjPdrj/vFtlsWa+ck5dlVw5EUEVpLUGltv8DuLNZJBkPWmgeGE0dEhajhERiFVWVFvNcW6Ym0L0jgjihKcdiRxzCtvvMF3fut3+PmPfsJHjz+DZycwnnD3wUOsMcy/eMzV40+4/OTnROY226cfo/cPWC42/M1/+Qu+8vAB0zRlsc3RmzWUBfd2D7h/8F2Wm5L333uP/PKCN156yDe//huUVY0IA7RUNB1wwzFu6hLnKpYXz/ns3Z9y8tkTbt19yLe++W2uHz6kqBsefeVr+HHGulwxHE6ZTEeURUndVOAsAqiquh/+S0UUZ+AkrWkIw5DtdsViuWA8nqBUQFnW1PUGozuSKMbqBtNZBpMdGqc4XSxZNxUy9Pr5pjXESlGUBZ3TCAVFvuLqyac4AtKdQ+689DJ/+ud/yp/85z/Bcy0nz55xfX3F/u4lVsJwNiUMI6IwwA8TbOdIR1NWysPc9EiqskRrx0ZrGmNxvmI4HuL5MXgBnZU0taETjjhKqMuGuqloiookSohljENxfbHAWsP6coW0Ag+P3G5xjaZranwl8cOEIAzwkhCRKvKqZDDOmM3GzM8v8cMIP4iIvAF1Zwg8x6bYYmufzgl8L6JTik5YqnJ1Aw40lNstUkIURTTkFEVFmCaMJ/315Esr2N6y3mE78+ti7dqGpiz59KMPyVc9F2e+LbCdJlSKSECWBgzjAF0WhGqI5FdjHEeRr0jjiCyMca0l9xV0DtdporAjSRW7szvsTQY8Xy7JdUsWh0xFQLyt0bUmDVLivQle3WG7GiUEnQe+CjBNh5QBOwfHTO/cZbh/xJ1XXqOqG158/oR2veKNr3+DZ9dX7O0dcn12xnaxJhgrXn37bVwS8nw959Fbb/LgpUdsqpqLswu6tmVx8Yzl6aeo4oKnP/mMT3/xA8R4hvFiVvOGsCq4d+c2wzQjvzwj6TR50e+eHsZDwgevcCo97h8c40vF6197m72H9ykclG2DpzU0Hc8eP2a1OGFx9hlPfvEus+kehwf7jA9vM3v4GhJJ2zrWy4rFekNZOdrLLWmSIYSjLFakSUgSRSAUYTQkCGI2q5xfBWt0UzNI4l6uXJXQdpRVQ1GU3Ll9h2wwYGXmXJ4/I0sHWFOSDBKWizW57jDWIMyCOAmxN86bRnnkQtLWmtOrS975+c/44//9j7m6OmecRozGU7721leZTHepLSyWCw5v36UqK+brLcPBCKtbmrZFhSFOKoQXogQMQp9JlBBJyWwyJvIFySBhs12RevGN8CxG4GGNoakL2jKnNGumwz2k9ZjPr/B9DyUVnutxo0WxxZOWNB7gxwojoJMWZzXZIEYpyIsNQjniJKEoSqJ0QOSn1HlF5Byek5SLde/tTSK001TlmrIuUdKh65ogjmmr/tDbFiUqUD3JUXyJd9hfPQ4brek6jdXtTSxsy2oxR7nejma0xrkOTwqE1oSZz954gBh4VNslL040QsDubIKSkk63GOlhjUUqSZgEeHgkaUyc+ZR5zsgThAcH7N2/R355QbW8RqwKhkmIDH0O947ZXC9YzE9xUiHTG/6rMXhdxyhy2GrJF7885/SLTxmkA0ye02wWuPya1nl8fHrBZrHEdZbX7zwA38dLU/71d79LKHxGwyGbbU5ZVMzPz/vdYE8wHA1Y6ZyuzEmTMXfvHFIMHLG0iKbk/MkXbIqK6SijvjonGYwo1jnH4wk6iZmOBrzx1leJdmZ0nuCllx4hghBHr7Gtthsunr9A6Ir9vR2iJOHk4pTk3stEMqYzNb4X4sch/zdr79FsSZKm5z0eHjriyHuuzps6S2RX1VRVd01PC8yQQwwGwrjkH+DP4YJckGsYzEgYF6DAEMYhDLARGKKnu6dVVZdMcVNeefQ5oYW7cxE5gHHXi/oHx07EF+7++fc+T0vBOQAAIABJREFUT7sCafvYtovr9mibmrqs8W1BHPokaUkcjRmPdthsUtq2JV9tMGiiMHrzKgjatqYqcqLQZ3cyoi5L1qsFl2ev2RmN2Cym9Poxy43DMmvIqhJtGvYPPJCSvKxx7JDxjTEHk2OUFvzzf/4veHb6DAFURUp8eEBT5XhRwHabkhYZ2rQEoYelWtoyQ6oG13Xo7eyxc3wbx3KRrcY4Hoe3bmO1Ck8KVFMRxgGttHEtSbJNQHgYIxmPeoT+gLoo2GQ1fS9iMtpDVarbuhsLaVn0Yheja4yusFwL4QjqskbpBt/xifyApq4psoReHGH7Nuk0oVYtYRhRZwWOAeqGNitptMFEPqVQVHVO1VTgOujGYPe8DswmXRw3wLY9km3eqTu/rYI1xmC07lbav6f/65btZo0xCqFAVS3CtHieJLS69H2x3ZCuJZNRgNIWnusQhjFVUZJvEgI/JE1TtNJgg7Rs+uGIqD8EyyJNVjiW5PaDd/ngxz/kb/7Nv0KsFLY26LwiUxmJG1FWJbEf0ds95uY77+OHMV/+8qdk01e06RJdJlitwNOK0IGsXkGzoFjVHJ28i73f46UylFXD3u4++ycnCOkQ+xFVVnB2fk7RVIzGY+68+4D7D++zev0Rf/tn/wpHSI6jPuPJbeLeDkbnvHjyNSpP0FVBICCbX1NvloQYYjdg+vIZtw8PsCyYrpf0bYsnv3jEdy3J0VsPmC8X1HXJYHfAMW8xDGzOnn3OaruiF7oM+iGrZME6S/H8iKP9Q05uHlNUKdPpnCCMUE0GSuM7ktBzWC7WXF9e0LSQZynaNLRtBRhq6XV3grQgLULfJYwCdNvw/NlTXjx/RpGnrJYzRNuglaIf9bl5fItKteRFwnQ+RaG7CJsb8Id/9Kd88O6H/E//3X/Pb379KW3T4loCoRWeLbi+Oufh7/+QrTZgW9Rtw97uGIZ91heXvH5yysX5GUp6vPe9H/LNz39Ku10TxDHj4QChNGWWdakbPyK0JHWyxHE751PZdteKBgvPD/CbFqFrgjBkb3dCmmRUZdk1ioQk8COaUr1prCqqWtFgUKbFkzatarAsyPIUjaIoCywjWKQZplY42gVtIzQ024Q2T2gciXQtpAZdGxzbw/Viol6MjaEscrZ5wTpdYuTm2ytY3XaWa20M6g3TBqXIl3PspgIlkMKCpkWYhqqtOdifgKnYrhaoSnL31glawasXZ/RDH9MoNstrdnd30dpgADf0CIcxXuR100fDIdttSV6u+Mlf/TuWl68RZYHt2IRBiK0l6fIarSEKewzG+9y8+y5C2lw8f0a9OEeXOVWVsk4q/BOPQhhUm+LZLXm+wCoTjm7e5vz8mh//V/+Q7/2Tf4rjOFyfX3H16jXr1QplNOFw2E28+AE3j28x2L/NH/83/y2Xr16QpxmR26PaJJx+/VPqIuNqs8LxI46OTnjy1TfoQnE1e8nuZJemyCnjkNGtW4T9Ab7rYKmaMlljGcXOeIhGI+0jbt2D7WrGF0++oDfZx7Vdnnz1JZW2kHGIJSVVXRHHEdLuUfYqLi9eUW5WaKVZbzZstkvquuM4XZy/QrourWre5JkVbZYjLQ9L2jSqU32uNhlZVrFYLKnrips3b+L7Hl9//ilVWyEsg+s6tJUmDGLK/Jy8KLFdxbv3vsuPv/9f8n/8b/+an/38F1RVSuQKhpGPLzyGcZ+yqPDiPjvCwXFdkuk109mUJklYnV/w7JuvyJVi9/iA2w/f5XJ6SXnxmiiMaNqazfwapcCJh+wMRpSzc1xbgwtlldNo0K2iygokGmE0Ritc24Www+dIqTGqm0Cq64qmrHBau0sD1zXKaFTZsMgbbE9i2YK6bXE8lyItkEaSZwWmAakbLMvFDaPOPVx0+Bp3ZwiuT1ZWSMvqyCCd543NdstiuWZTKLLfjcH2O66w+u81750WXlgSoVra7ZLQtGjLpmxbIs8lEBrfhV7s0Qt6JGnnziyKhjzJSDcpgXSwLYkULlXRdk5Poem7Hn7PwfMttKghELgGTF5y/vIpVlEiDGg6LE1TVuimwrYdNIbVeslf/9Vf4LgeVpVjOR7bzRJdd7S7b758hCUFo6FPL5S0lsXlxWsWhWB0co+dd99jow3t5RUvnj1lf3fMya1D/CDA8bxuTtR02sbPf/MZ926/jbNzgzAuGPouX79+ymp2CVVJuk64984Rqmm5cXQL9/AO56+eky7mGEtTty03794jigc8fvRb6nKD06TMnn7JIkkxrsfhjZvEcUyyXqCMxe2771KVDYukgCBidzRmPNol2SZII0g2KzbrGW2ZYJru3KR0N9SvjEbQ0oVcLBzXwZIueV6AZRPEMYEfURQFPely48YJji0Z9COWiyuWixlxGOL7LoUrMcLHjiLIC+q65e6dtymyEs8NORwf87/8i3/J//mv/4zVeoVvK/ZHMXcO9xj1hpzceEAUjXnxxRPSoiRdzlCrK1YvnlKs1uR5iT8YcfTwXe68/wG1ZzO+c4dZmaEMWI7AiR3ieMz4+D66qcizNbLJUAhsy2AhKbIU01bdMQ6B4/hgZJdfdR1c7dPrDambhu12SVW3NLUBy6GuFFo1yBqKssX2JYoWDVhOQ6sa0AlCSSzlIKTXLWba4DoeQkCZr3G1wVgdFbGuKiwVYJkYEBTZhipPqCuLze9Ysb9z0+nvMaeWsBACHGnhSYHt2bTKoq1L4iDClwbXAKqhqcG1XeLQ6/CgBlzXwQBVVSEdh7ppaHWDG3Qa+1ZpmizHjw1xf4A2hjJJsZXCCIssL2haQVVrlGoRwsJ2bIRjc+vmIUnZkmQ5B8cH6P0Rjz7/FIqCtLomsAWWgTZVpK1E9kLu3XvIsnY5vvcO4XBCPNphtU156/3vEDoWp599xubyAimg1Yrp7Jr1Yk5dtNTTa2pE1zmfjHn21adU6xXUDabIUWnCy6vnJJuMIOxx5723ODa3+NXPf8o4tPmPf/OXRKNdhnHIQErOv/wMpMHyPbzBkJfT12Bs0rLmvbffY7x3g7pReDsVL6eXzGaXZJs1ZV6ysG2S7RKtSzANoecQ+D6NUtSNwTQaZWoQGiEktm1188O2Q68/ZDScUOQ5y2SNsGzKrIcIPa4vX9G2BXmZs91MgS4j7PUijOXiDyB0QywFr168oKkbPv30F/z05z8jSVKGPZ9JPOLh7RP2hgNOTm6zf/M+rt9nO11SFxl2sWT54hvUZk4/jNg5uoMaj8mMYnZ9xezsNT1dE0ddc6k1hv27t/F7Y6KdXcrNgooS22pJiwbPkp0nSVj4vkBqia1srFZTZTmtpVCWhR0PiPZvdLLvZItuSuo0ByNpNLQt2FohWpBKoWhxPQel66651oDEgDJgSxrVUpcVQRCgTYNULaKt8WSIa0ssSxN4Fv3IBSPY3x0Q+zabQhOkzbdZsP9ZmdfF7ATpdoWjG0LXpqhaWsvgqBpbQOBY+I5DW9cUeYalFDYWnuPiOi6WFDS1fpNaMAgJo16M47kYI3A8F9u1wVJIyzDoxeSBzzZ9g+GwLMqqwXYswigg6kW4gx5tm7FdTnGDGC01Tn+X7/zhn+Ipxd/+u/+Hej7FExD3hxyc3GZelrzz/keslYe3M2F6NUUEPns3b2Ch+flf/Hv+7v/+cwZaIZuCrEi4dfc2wWKB3pZ8fTFjnZdMdidknoOeTimXKwLbYSeMefz5bzm8dYd0ucJ2BEXTEgQuk/0JnmtTCcXxwQTHGF49OkW1CYOhjxN4hKMJdjhAuBF7tx8w3DvA9nuUTY4tFAGQbjYUVk6/1yPLt7SqRNDguha2b6MFtEqAcEFKbFtiOw55XtLWHRGuaRWr5Ute85qmKsmSDUVZ8flnvwBhWK6npOmaLM/QaFrVIB2H/miXw+O7DMYTQjvg0edfcHZ2yWY+5fz5c9wy4/Yo5oc//DFv3bzNXtxjejUlHI6Jdw6IJ/vcvnmP2etn2EnM+uILVAXuIGDnzhFPpjO++OwL+r6PbCp+9L3fI9jtY3ktbZNj2RrHtyjzJUU6x3YMwgmQlkdlLHr9HoEF5XKK0C1CC+osR4ga41q0biez7k32aLRitLtHOb+mLRvqRlM1qvPQ8iZVpgAhuyEMdGe1t7qjYF3VFNR4vo/UULQp2lRIB6gqXG2IbBvbkYwCj75ro4zgaGdA2w8oW0jrb7HpJIRBYxCWhZQWltCsri/whMa1BSjw+yECgWkrLEOXfrAEum4pTYknHcqqIB7ESCNRxnTeMGnh+d05RmkNUoIFbV2T1hW+9AGLsD9kvc2RngdKEEYh0BL2PWzfQluKbTLHqJyqNlyv5kz6E9xohOP4fO+P/4T5k8/JV1Ns16WQJZYveXV5Tmr3eHj/PtGgj0uLaCss2+Zo74AP3nnIq9/8mmw+J8s2PEsS8rphNN7nOx+8T6EN5+dnpFlC2zbY0sHorkmHNjhScnx8xGKVEGmLzfkUXwlC2VEILs/PuHN8o6M3IMiqFltYbOcLhhOHOB4xz3Niy2YQ9cnXORePTjk+3mXl95mtlkjbIQgjHMeiaQuM0NRKgO6mmyQSYWmMlLRCIKym+0+DGG0gSQqury+pyhR0TZnnJGlC01TYbqdbqZuKWjWUTY0TBLRJws0gYL5c8eu/+wvOnp2itxn59TW+atmxLfY8j13P52gygUYz2Nnj8O4DPvzRj1mVDYWxGBwesVhfkmxzVNFgSFk/fsSnj74m32yIxiNu3jxmPInIKwhwMVlFUyRs2xqlYbOco4DeziGDaAzizdBHnqCTnDRZgWo74J4raZsKpQ2OZbBQJKsZVZXjuAFNYFC2QZUtlm1hpKA1hrptOyWk6VJmSmksoQCDag2gcAOfIAze7GIsjKUR0oamwUcgjUGWDdVqgxYWnjT4jmTY86n5FrnEXdG+UcADtgCpayLHQpUNNgbPd8iyHN3UCMujLEtc2wZtaMuG0q6o2hJsgefbOFJi0X31HbcjOChMR/dvWmSj8aWNtloaZaO8kHDvkCjqc7B/RJFnbFbXCJ0Txh5J09K0JW7ogh/w9nc/5Ob7nzBbJOzEMU+LGfH+mCRbsE5X6HyDPzjg1XzGJ//4BwTDHqqpWU0TJsf7CARe2CPeOyA+OGR/f5/Z5TlFXXJy7y6//8f/kHvvvs98seTe7Jrnn/6G86++ZHN2hmi6UbiqVjw5fU4U99mdHLK6mnH14pR0MyevcpzRiLPZks31gigKuPPuh5w8fEAwHDBfLhnvTJgc3+quqhwfy1jYGKavXiHKlIc//BFxGHJ1dQmWxnYlruvTNA2OdEE0GF0jbBtHWDSiS6mARNoe9x68QxjGHJ8s+fKrL3j+4gnptkY4NsPhAKPVm+eaEFddcigpsi56qCwunr7ib/76b3l1+hQPIMuJlGYQxwSAV7Vcnz6HWhH0hnz4Bz9k5/iYoB+jZMHlq2tCrVmdLzjcOUL5AUVTc7lZ8/LVU4RqGcU2w50+y2SDH0eEozGFVqgypyw2Hejcdjh492OO7n6HxjhskpzNckXTSvxjH7fYYjUtxSpBGI1tavy+h+crFrPnrGeX6LbCHfaovR5V0eLZDoFrkRcpTd1SZgrTdHO/0hJI0cXnLNsi7MdkSUKpa3q2IBwMsB1oy5yyVTRZ1S16piLVLdkiQdkWvX6A54HrWl2tfGsFK/6z4t2WFhLwHYkT+qzyCqMUuqlxLNGZwAxoZWh1jYWFMN3WIQwipGd3XyBp4douju3guJKsyEnKjPHehJ7v4hpoi4pCtSi7R29ywN7tEVHYp6lb5ptXZLXBNA223/lUsASN0WjVcjG95PrnP0ELmHmCzfKMvEgQjkMUDbCkg7ezz8d/8qe8+8MfcT1b8dnPf8bh0X6HGrEkuzdP8FyHvC44f/wYe/eQP/z4uzz4L/4I7XjkSrAoDXs37mLVmnqTQqNYvD4j22aEvSE7hwc8e/6Kwdjg+A5KQl5VnD55zvCg5MPf+x6Wa6NDm9sffZ+bH39EBVibLbujIel6S70uiHqSOklw0MRhQFnXvPrmayZ7uxyP+mzSDVmedZR6RMdzrhPqak2rG+xgyPjwLkifeVHgBRHS9hDSwfNDwrjP9//gR/zH//hXFMkbpYgQFGnB7HpOkWYdOLxtqJuW2WzNcpawmm1wTY3tSELp0PdDItdnZzTg+PCQw+MbiCAk3J2wKgvGjt2pOcsCr05ZXM9ZrpYM4gjLU5RNxunrR8yKAl2XeIsZD6saXwlG4ejNPXEFUuJ6NlK6jCe3eP+P/hmDvRudCzevaIqKJkuoVjOqzZz5+VOmz5+j1itsUxOPXPyRzXQ1x5MZjScQ4ZCPv/N9LDfkr//9n2M1KZZsEIWFrrtdiVYK27aI4qDrnUhJFMcIxyJPE4q2xHcH2JEPQqO3GW1Zd8QMy6bdlDRWTYmmSDb0Bx5IEL737RWsQaDeWKNdy8KixXFEV3zSBlqqvMKRNsJYtGWLtDueDUYgbdkZAIV4s5UQbxT1Dp7vIW2BkN3Z1bEctLIw0qWqK7abmltvHTI4vEEtBLVx2Du5Q4OP7XssLr+hqCsMDbbTNcHSquDFkxwlXFzHw5EWFg6OEzA8uYdn+1SN4cH3f8zDH/8hVhDghCXecMT48AjLsjuMpu8wuHnCD3f+KVeP7vA//w//I3mSsfvRJ8RDj/NnL/nyN58S/N4HNGnBeLDDwSfHTA9f8OyLz2iTLT0/YLi3z60P3uPF6VOc8YRPHr7PdD5ntDMhHoyJRn2q2GP/7bdppEtbtzjSo6xqvvn6EQf7hyTrhM9/9WtGQcA77/8e/Z0h5y+e8+gXf4cqt9hBQLS3jyUNtaqoSgPlhuXFc4qmZv/OO9B21zRKGdq2JS1KSmW4ur7i8vIMmwZdZFRFSgWslkuePXnK6+cviFyH0HXYbjMiPyS5WqDLhoEUHA7HjHoDXD/mnYfvc3RyQhxHCGPAaA5ObnLjrXfI2pa4N0BoWF3PeP7VlyzOz9hMXyP6Lko2LOqCx1dX5Fg4fsi8rFk0NYeDPqLfQyhFIC2cv7c+ehFH999jdPsdLM/FFgKn6d4xoxRNnkBTcXB9j+ef/ZJXX/wSlVbUooZqQ12usS2obYc2CDGjAe+8/zGXyYpvfvUz3KaibgT93T66VoimxRWaMPLpjwcYofEDF8uBukkp65y6TAh8iev5xLGFVTTYrovr2FRV19OhLtmkW4yKwHWxw2+x6QTdsLQNOEZRpBsEHSDNcW3qAtAdneDvV1PLSCxhoYxCSEGjayQSKWx8P8Bx7TfngxbH9hkMB0gpcSyJLSSmNUyvlujWZna94mJVojyX3s4B3q6kf+ceW10SmYJyc0lTr7CKHEdLaiUwroclNAKFH8YMd4/5+JMfYCvNq2evUDjcfv8jZBBhEAwGfT747ocM+z0EGl0VlEVBWTeYssRzHXZGI+J4xHKxxvN97DbHUxXL8zOefvUpZ89PObn1Nm+//S4XZ8/IipTFcsHO0QnK9fHiISYp6d28S3TjNgbDqiwokw07vT3S62vEOuXqxTmb6Yzjk0OCWnGwMwEp6f/gR5x++SV+EGK7Hke3btNzLD77f/8CtU04vnWPVNeotkJKyPOU5PoKP+pTrTb8+uxvyOsGzw1JKs2nO59zfPsOtoBHX/6W2evnNMWWSimifo/Tp6fkmxRHGTylyKdLmqSgsAMOox433rlFGIf0XIfdvQNu3H/Ij//RPyMcjCnqmjRJmF6e0SjFwa07nSjblszPr7m+uOL15TXjMOAizchXMwaTIctFynaRo42DG4VUpuHlYskdy2JRl/T6A6K4h+e42K6HFw5xJ4e0joNjya4vYtPJkh2J5Y3AGLwgIklyZospm4uGdbnBSg0VIY3jMLp1h8MHH5Abl1VV8/CTP8BxbF58+ktaseDk8Abb+QpTldhGIywLN+r4yGHkImhp6zFlmlFmKRIIgwjP66auGmVAONh+H+oKUTSoSlDmCjdrUOW3mNbJk4TZ1TWmLJF1Rru+ZBw4hMEAq4a2KDqQlDJvGE1dJ7ltGxCg3+AzLafDU2rTYtv+G2aVRVHVBE1L6DjUZYGwbIp1is5zHHfIbLGijhQ37z1k7/gOt99+wOBgl8ZukXdvky+nvPzmZ9T5ChyLwOvhDw6wnYgo8lhsFuzdfQBewIsnj2mMAumS1TVD0XFlXbezf2vV8OTxI04//Q+srl/TtA2mKKDoZkrDUcho0CeZXvPs80+xqgxP7jLZnVDXFZOjffrjIX6vx/LqCsv1MI7DdLHkYr7h7Q8+hjBkvV7w4YcfsFnNUcmCSNX87N/8X9y4/RbltuDs6SkXn/6WwY0DQsfh8OYJTl3R9x2K9YrTl48pWk1oaeKDA+bXc5JtyuTGMenrjCB0CYc7XAsbWZZsX73k7NU5BoMtAzZaYI0vOXt9yunjx7z45muadE0c2Ny6c4fJ3gS1M4b+EO+WZPb8OekWtGtjmZb9vs/7d2/g+D5FmiDbGlsY1usVhbEwrsv46BDP65CtgedSlyXPvvmK2fkZ+7t7vPe9j+nLLph+/uQR6+mGdLbBqS2UrvGCGFyBiXq8XqxZpBU3Tlwc32Po+wRxTCsEaV3h1RVD2+4K9v+XLe1Ii8aPGd18wGGWo/0+VZEShBF+EHBwsM/O0U3i3UNmq4R0uyWKIt77/o8oy5pS/ZYodrBqSb5WRH6MF/UomoaqqruElOcznuyR2BuKPGGbdkzp0I9B2ORFRasNXhhiRCftDvwexmjytCat02+vYH/y13/N4vqa2Bbs93x6sqbWNnE/otcPqIsAR9jo1lBXbacf0KqjKzgS4QqEY+EEnSHb97pgr+N6OL7XMXCEhW4USZLTSod8k5FuMk7u3uHGR9/HTA64ff9dijzl+VefE59FLOczPvrBD9k/OmT3pxNePP4S23PYO7nPzbc/5OpyimpL7OkrUm1xudpytUkZ9fvEowmTwyOU0gjLoHWLZUFVlnzz9ZdY2Ny5/RZtkZBNL7Aj0CIiGI5Zvr4gX814+cVnHUirrnH8mMlkn+F4yGazxgiBO+jz3sefsG3hxr13+OAjh9lySZrn7B2eIIzFOBpwdfGKv/3JX4EXki/XvPfBx9y6fdLxfqqSYj7jq4szXFvi2IKL+RnOMEb7Lq7tEuwfYZRgdT2l3x8zDEeU2Rq30sR2QLpZUxRrqstz1vMFBgfV75NPLzhbrlhM58imYbcfs78zZMd1uPzmK5qi5vbJLXzXxQoCItfD9TykgFHs4JZbHGnw3W41zOYzfvvzn3H3vQ958N77RJ5Hawyr5YJZW+HZFtVqyqtvvuCg9wmBsHn8xddkyyXDXo+L81ck6ZbA9xl5PfrjCe4wJJzsk2qJLXywfbRWLGZTtssFZdUSDvZwvYBhGEEnysCYNyO1dFtn7Uh6R0fcDQPsnT02mw0nt+6glCHuBTiuT207OAMb6oZtkWNJh4P772J0jZq+IAoMKuuioa7vk9YtaV6RFxm9yMezXcLBECMMTZlTVzVCFzhugDEGbejm3W2BMvLNb7NoKkORf4tb4qePHxFYcONoj3s396FcE7uCIHDZ3RnTi3ykkRR5RZYWiPWWuunEQa5nYzkgpcF1LQaD+M1MZYjj+gRBjDSGpshoyhzRduQ+I22UtFjlGW8NRxw+/A5eP+L0J5+yfvGc0bCHE8cUdc75Zk4T9dm59za9fh9/vM+iVuSujxO6ROLkTXLniL3Dm8RxSDQYI6MIIUWHEc1TBv0eQeDxJ//onyC0jY1EpRvOP/0Fq4vXXF0tkbbm6vQF588fEXsBRVFgSw+jum1Yully9vQxbV2xf3RENOgTORE3jo74+S9+RdAb8NFH3+XV6Slf/N1vOOyFnH/5GD3d0JIQ79/i5aNvyJoGKR1G4wlXL17SqorjvQmWDW6d41RwcnK/i8NVFX3X4dXpc55sc/z+iKZIuXrxNaZYEQYe8+0CVxkoq64J5XnUeYbMco7CgFDGHO3uMOxHpMsNZDmx62GXNU1R0fdDtOPhWYrQtYikwZQpduBjWS6ibZjEEcKWLJ+dci0Ek8mEp5/9mvVqTl0VhIFHmaekl2c8/8wmtD1ef/45nisZTUZoF+TIJ7KGZHXLrft3KVBkdcvOfp/R3jH90S7p4pLVdE6ZbHC9kH48wtYKjP5PqZe8LHBspyP1YzDCoCU4wwH9GzfZigtMr49nuyirQ+W2VU0Q+uwe7EPbYpqGURxTrc5YJ+eIRhDFAbP5ik2u2BQteZYgdE1ZFMS9iMnOGINC+D511o3tNlVD02oaSrJWoZVms02QFjjaxrgGy3yLXOJhv4djGt55cJuDkU+bKXqhy2Rn3J0PfIc8KRC2pGwbRntjqqalqkqELXBdC0u0NFVOXVqE4xDbtfHDELQg3SToPMM1mtjzcWwbK/Jgf4T0JdOrV8zrmltv32e7mtHWOdm6ph8HuKrm2aOvUVXRUf6q7lqopiBvCyLHQ3gR450Dbj14hzePDyVs1BtebNvW+J6DbUsEFr4fApK6bJitNqyLivOra85fvSatnjLev40twBvu0D+KGewd0lQVVZZQJmvy1QJTltx+6y2uri5paguVNVw8eYRxfPpRjyDwKeuSn/zsU24NIizhEghJvUo61rOUDMYRoRuwe3xAnixYnj1HtCVOaNPWay7LDWVj2MzXpNMp169fIZwe977zXXq+y+tthqprirzCCJ+4P8EYG+U4DPf2OFaK1XaD0Ia2LPGEhU4Kyvmag509+v0+QlvkTcXdB++wivuUmykODf1BD7/fx4t7jCZ7tEZy584tkrzhm68e8fw3v2Qy6JHNLxFvKCVtv88mSQkth/z6mnVRsrw6xwl8nEFA7cLWtJQBxP0+ti8RlcLzPBzXZVtVXCw2RHaI1xvhuT7Hxyd89Af/ABkM0HQ2CaUVeZ4RBAGe5XXbZNENJljSJu4PkbMFs/kcz3WwhIUjLXRb4g56eI5DEPWylqDKAAAgAElEQVTJ1mtW6yllmeCFPulGkxYFRZ6zLUsKbaPbGmEamrbGC0NqDa02nTJFdODCNC3JlaIGWluilKZKM6QAt7GRQYdf/dYK9rvf+x6b69eYtiJZZYz7HuOdIZbd+TAb1WA5FuN43AUDhKQFsjwnyTYYOiC1axxUU5NnCX0vxLZtkmXG8mrGwO7a/a5sqeuCsOcS+BEKiaNzivU1sXjA7Zs3qXZGvHr9ApVtefXoESd37rAQAguXsq5ZTuc0to3newSBz97RPo4TYWQ3Fqm0pjQWSjc4psb1bDxb0tYNShsEEte2Wc+uWczmGMsHJ0JJj7JJGO7tgGXhRhHHd+8zHO5gtTWvH3+Jyipiz2W2mDGfzRBeyGo+Z3U+Raqawq54+eIUJwxoHfjj//ofMwxdfvW3P8GqWlQ/wu5H9PsDYi/CCwOKImd+dYEpU6rNgrjx2cxy3CDEciPyVYLJEga2xbbMePLlF/i2g2e5bBuNE8fs7PRpmpqDW3dopEVd15jliu/cvEuWbJldX6EbhWUEe/GYSAZUScXO0ZD+aMz+0Qm7e/u8fvJbdLHBSIug12M42WV8coNNmlO0JUY17I0i7HLLiy9+jVdssTAYaVF4Htu8wkgP7849pus1mVKM45CnVxe8Wi0JD3YYDnuM9w/RKKTQSKPJs4y8UggnpH/jBoN+H9e09Ma7tH6Mcjx4Ix23LEG/32M6m+J5HoN+H1s4CDpot+u4HOwdsJxfkyyXtE2FbYEwNeXGRQqL4XCHy+cvuPz61whdg5Q0RlBrg7Sd7srGCJQ2HZaVzs6QFgVNUVDVNVVSUG4LirqlFoJCa4zr0DQNbVNjWwJVKRxp46pvEST+D777PR59qlmdPcGOBMd7xwhdUyctrhvgSZe43yfLSoIgwCCwQ5/e7pAo7XdoTc9FNAWO0J0i3hiqLEc0Nboo2VQVypYUodNtYy0fXJfhZJ/4YIe+1+fl2SmOJcmrnMOjQ15fnLG4PmO0M6BVFsL1iff3aS3JNs3wvIDRaJ/h+AjX8QBBN1jW3SVrIajaFltXuDg0bYsQEkspqqKkynOOT47pvfcO9z96jxfPXzKfLRE1OIHHzsEuvX6PtigoyhR/EIIvGN8zDG7fQ3oBjhex/9ZHFOsN6WLGVmkefOddpKV59cUvqTd9npylvPvx9xHC4Xq+wJKCXi/EVg3onGKVsT5/jN5OEU1Fm3koaaMLRdy3kXWLGw7R7pAP3/kAGQ356te/QqVL0m3JTn+Hg5v30JZgMZ+TbFf4doAnU5aXl2zmC6SBwHU6zM1gD235LNdr7t59m+vL5+TbOdFggBIWRWuIHZd+3EdVJWcvTpG0DNoN16+uqPH5+Ec/5Nbb7/DVf/hLjG1x+92HbJYbkq8ekWw2LJZLZBQxunFEKhW/OT1l2xY8iA/Z39nBi3tUaUrc65GUOaUuGcc7bNOE5XbD7iDA8QNkHLOtGmyhEY55EwuxsGwXx/N5df4SdVZz6+QWo+EOQji0dUXg2hweHbHdrFkv56gqh1aRblcI1VAvrrl++ph88ZyetGnLirg3RsqIaGxYP3mJKzpyqJQGJ3ARrsAYjWkE6bYkT/OO2YRAuj52oxE4GGNoTY10XILYB6mo6vrbK9g6v8AVKTsDl6P9MWEQQGtwlI3IFNvpitzLsWyHtqgwSoNS2IOIg9190jhD1zXLyxVWU3N8+yZYFpbqfkEUexR1RV63nTFcKsrCRQoBwlDVOUXVYjsO621CkWYopfDCEGlpZvNr7J0bjPcO6O3s0gBuLyPwXNKswAsyXNfuBjqM7lQJAmxhOlq71jRaIz0X2whUnaDLHFvnZFlBf2/IoH/I+3v7VFnG5VdPWK5WmDJlm6zQZUmrWrzARTk9bu0eMBiMkV6AH/bIi5oyTXj81ef4ts3RyT4//bd/TrNe8fg3v2W0u8diPufo5Bau6xL6HrbRNHnO+ctT+qEDdUFTFeimojZ0VxbCoJKSqrWYTPZZLdZMdg9pMdw9GXH66Sk91zAKXGLXR1kOK7Vm0j/Acx36/pjTL76gzufs9fs4tqCuG4rFkngw4eMPP6TYTNlenOG1NXHcY3e4Q+J6hL2QzCiyzRZUSbtdsKgKygr8ndtcXU05vHGL8OAAJwq4/93vMb+aU7WCJNkw3y5pijWVI7hcLallw97RPsY2ZEXGdLWFquStBw94fTnDDsY4jk9dlaTrDW26IgtdhAHHCXDKhlpCFAZEfoQERsMB0jrk6ek3PP76Mw4Pb3Dz5j20aqjaFi8IiUY7DMYjFpdn2KZhu5lj6pJmm1AVKXW6ZlkUSGXwwoj+uEdZGJSpMaogCgRh6BGNe8SRS5XVGNumQJJXndKD7hNC3WqoO9qo0XRmADeganPSrPj2CnZ+9YSmXHJyY8JkNCL0AnTe0mQF5Sah2GQIryYeDCi3CU2WY3s+Q9vByKqDcrcl0rFwcOgFPSzbJd+u0LrCCz1QA1Rl8AODsmoauhifMtD3AxbTBYY33pnQo24tvMjHC0O8KGZycpvBZI9cKaTjcDwesZjP0GgcW4GpqFv9n0BqnudjlEa9AcoppbFQ2LpBVltEneGKmnVWA4K6KKg2K1S2JXA1qt6STNf40sFGMBwMaB2LYDyhUZrHZ2dstil/8IMfMzk+4uuvvsLdGfPw3fv82//1X5JfXnOws4vKW3q9AU1bIy1B6Dnk2w2Xsymu6ALojtHEQcjAO6YoSyw/Jq0hHAy4mi3Z2Tsmb2Cz2vDbn/2Etkposwuy+Rm6VSwuHLTwcfsjelGP4/tv4UR9Li6n7Gkfr79Du7hCOoZwEJPnNZau0OmSxatTytk1V4sFOi3oHR7hHdwgGPUZT/qcv37B8uUzTFUxv7oi7u/hScnVy5dsVhuEa9GgmC+uaXRLtDtm29bEwR5Pr59gbIfWMYwPJliBx2qzYbF+jWuHHIzGpJstVV6SblO2qw2hF3Hj8IDl9JzNfIEHDHyfQs3ZViWD8YST4xOiIEAIGPQH3L9zn2S1YLNes+mtSMuWli40XzcNvchHCIPrdvZ033dxxQDLdqiyjHozx0bTmh6uaqgKySD2qETBMAwII59gEKGFQstOD6IBpQ1Nozvif6VQuusKa2NojaEoa6wsp2orquZbXGG3V2vG8YBeOOh4QRq0asg2KdU2oxf1iSdDhJTUSYavDb4fEUkXrRQOLfF4iLszQmUlTd4AClNrorCH7wrMICAMxyhZIGzFcDzA9lyyWmPHA4JSs00XYEla18PrRUg/grCHjMfkrcEqK8qmptEtStV4nocXB1xcvuj+pEYT9Qb0ewNa1SlGpAHXFrieT1s1NEUGdYEDGGwC32d6cY2nW159/gua1ZTDhx9z/OAu6SZlO1vhxwMaN8DpR3ijMVIZHox3Wa/WZHWNV+RcTK+5eeOAv/yz/52Lp9/w8MFDlJIIHBZZRhRHVNrg+T6T0YgnacZkNMQzBdPXT1FNhSMFpbKxtMv7n3xCkmxZbEpGO/ssFxtoGtLpOapMoM0ZDydoIUhL2KyW9FyHvf0x6zrnrYfvsXYCHp6cMNA/4OK3v+D65Sl3799nenVFvllx8fIp6+kl0miapma2XNL0h0z2jxhODrhxPMGqG+zGInWnIALieACOi+tKivWMqt2gC8Wj3yS4QUytBVmT4w161GHAtsyZrjcski1Br4cf+ERhzP27t5CNZjWfsZxdE0QDlrNz1sZmd9itoEEY4mK4PH3C9PKS2rTsHR0zdCzik9tg2WgsBuNjhsMDRmnCfLHkenaNJbrnXlUFW8dBFTlt6EGTo7FwLInvd9NxuTKUTUqhSgQJPX+Xw8mAzK4YxQGu72B5gqJu0XWGqip0XWFpAwpQoku8GWhRKAPKEhRFRda2CGn4HbHEv2PBXm7pH/nQdqFzrSuS9ZqyyFBG0wt7RF5AlmUEjo+UHpZ0aOuGOAoxdUO56kLZpgVHuOzuHpDlGVg2tt9n7+Qt7r3/PX77xc8xVkMU+fi+x8uXL5kmOTKM8G0Lx/P56Pd/SDjcoa4Ns8UaN+6RtJo0TbAktG3FYpoSRRG1NGTZlp3JLut1QhgG9Hp9yrqlbjXD0McxLcvLM9aLNW2R0/MlvXBAUUtGe0cEfkC9vObi6VOsfMPOw+9y7533UBq2syVoSZLnHN46wUiDahW2tDuqve0wWy2QEvbHQ5Znrzja32P/zn1SZZMVBR/eOCFLUrJsi6gLXj97jG11Vx3ri4TtNn1DKpAIx2PQG3D67Dnzq3NA8OLRV3iuz62DCeV2wWZb4wcjBnsj3MgnzluOb95hUWdk5Za2UrR5xjsP7vPq9BkvTl/SpiWrdcpisSbwfFrbohEdYWR8cIOsNYxv3mH/3n3SRqEVnH51ystvvmZy8x7vfvIOr0+/RmuFwu78P66LqwKm56+hTKmrlLUSzLKCzXLORVtQa4XXmzCwQ4ajEWEUMpkMcGiZT6fMpjOk5ZBs5owGA+oKzv4/1t6jyZYlO7NbHuGhI47OkzqvfrpeFURBUhiNHHSbsfk32zhhkwbjDAQJVBNAAyiUfvKqzJvqaBE6wj28B6c4JgbvHxw7Zjvcfe/9rXX9jmdPr7CFTVs3ZMsFj+9fI6jR2YJREjEajfCTMVgSZcCyJGHPY2K7CNGxnt2w/nCH0S2NsQ5518DFloKSjroTWI4kHJ/QNi35zqapCxxhMHWJb9ngSGRnMHVFrWscL0QKfeg2SwvHdqjMoS9i2/ZhDms6OsyhOWuBFt0hU2v+f8vw316wiSvphx6+a2FLqPID4MsoDaIj22wp1juM/r1ezxIYaaE7g65rKApc0ZEkPbrAJS80bq+P9nqkNQRnTzn7k/8e++iYiWjZLO5I65zGwPDsnLooDtCsMMLxQ2arHU6uCeI+V89e4QQh96s5WbZHNRVdWx0CxrSkdcXJ6TFxlFCVCt+PqBqF50dY0iPdr/jw23/l9a9/xfnJFZeXT/CckG1aMzq5pD+e0LYNeAHHLz5F51scNwEc7MBheBnR5A37Dw8s5ivGJxMcz8EWhiiO6LRmMX/kJ3/wI5p0iesKPv78R8jBlF445NOzKVQF3ftrrCbDEYImtFgvF8zuLR6ub2i14fjolKLIGEwm4EiKNMMTUKU7irzA6feR/R6+Y7MRAmNbtBY07YETvNtlbKs97iDh5OwIozVx4BH4HnnZYssQNxhQ1w21rvACH6USxvIpYdTn/PSKq48/ZV9mJLZAVQX7fUbbCqLAJ8t2JIMeThTQCoeybrHQbFYls/WKrm3pX1yyFJJm0Gc6PubpyZj7x3vWywVmsaAqSgLfx7Rw9/CIKVukcTk5OSNTCl1XxGEf0ykcx0HaFvL3//OLZ89wpUI4Dvluw931W06vBE2r0aojSiIsKQkDD/fkmMjpyJeP5GlKawRKaaymwQs8mk4ReCFO0GNw+RLH73FhPqHcLtnPHzFpRpUVCN3RthW1KmiEJh6OCVybJnJxHSgbRYVN4PWQQUjTdbR1Q14VCNfh2ctn3D/cslnOkOLfVrH/poI9mjjYdkld7egaj7aoMNowHk/wfYflw5zlhwdCx6f1FEF/QNwfU4iaThWYssLxbLq6xulFOLHH3WbN1YsvePn8S+gfUyZDss6w7wyFATcIMKZlv1mSb1ZMRkMmxyc8Llbc3X7Akj62F2KMzeXzF0wnE5YPNxT5BlsemkpCdqi6pMxztts905NLXDcA4WA6cYBvhTG+62J3msmwz3g8IRqO+XBzQ2+coOqUD9cfiKOIn/67/4U6zXh494HFzR3RdIwbhmRpynI2I0l69McDfN+l04r1eoltWXz+xaeIruYf/svfMT4/5uKjTxDJJYQj6mzDh+++oV2vuH/9O54eJVCsaNMZ8iji7PKEh9sZQdJDmwOKtMlS9vuUdr9jP5+xXS1YOw7JaEw8Gh/gY6Khsw751Ui66FYTBz1efvkTjl5+xsN6x8N+zZMvPuLy5VPISv76f/2P6NU9vu8jrQ5bhcTxgMnxJfHghKLquL+f8/zFFZWqGYxGmFaTr+4o8hW2K+n7l1TSonUleVqyazuCoynCdKQWDJ6+4OT4iuUuY53uyIqcoirBOmSjHdtivdqglUsv7vPi+REy9Pjq+2959/odn336OdIWrDcbjsZjzi4uqIMAnUUI0aIti7xRLO5vME3Ncr5Aty1uGDA4mnB2+QQhBE2t8KMhn//ojyjrluXtHbv1ijiJUaY73M6iimK/x9I2x1HC6+2/0jWgy5o2zUB1lKqiURXaMVi2i+v52L5NOOxh/ACxbQj7J4T9MXWnyddbwjwnHvY4vTxltV3hhyHOD1mwTiixA4+us/nw2/fsH1dMz04YX5yguw43L7GCFUa3GGPRdhDEA3abDxTplq5IaSso2hrZNoSjUyzHYrFZchz4jK+u2KuW1eMtu+0cWygc18XULVmRozpFXhZsP7xjv9shlEa6ATIakxUVaV6TbWdU8zuWt9+zzzZML8/Roz6B75MvCgolSAYDwt4U25LQKWzAWAHPf/KXnL34HNNUJL2EfLtBioqHr/6F3YdbZrMZwo3YXLyg3NQsFzPwPOKTM46fPqc3Pqw5Op7E930EGlt2nD69IEtLOlXzt3/1v6HLjB/94Z8xefqSm9sloWUxSELqyYhf/Oaf2N69ZVcnqDKlSXcs5w5OMsQOLD7c3+Jio9uGpi6wbEOd76jKFE8KHGGwVE2TpkRRROd67NISIV1UsaOSDQQ+2+2O0zDk3E1YzldsmzsCV7K6n/Pk2QveZzuSxGGzmWOEi0Ay/3DNfrlCeiFlWfAoLcaTMevVjDov8MKWJt1gLAt8DxX32Gc1lpYk8RTvuc98dU+ZK56ePGH07BVv/u5vWD3c4DgOL168JAgTut8TOV3L5Xh8jDEdURxwff2WsqzYLBekqymBZePQ4ZuWZpDQd31W2ZyyWaLFQThezQTptUe2TzHGoIXBcgOWV8+Jw4SyKlHCpj+achT0ODp7yutvvmb9eM/JeMJwNODm/TfkszfUm4rlKmD2+jXF4h5RZHR1g+g0dV1jBFi+pPUVSuX0zq4wrkvsGTrXxQ9GBMmIsssON81egOPalOmW8XhIEPlI+QNuOjUaAiExxiJNcyxpk1U5eVviBSH94zG6rdD7PUVRU1Q5cZ7RNYa21NT7EkyDLBvIa6qsIpmcIA3cvPmK4PgCJ4rp6gJjOsq2wYiO2HWJ+gOU69C0DeV+T1vVGAPSOyQzXLtjPfvA4917dusFZZYRRQlBEGEJwfz2hipL6Z+cU2eX6FGDLQMUYFsWVV7gCoVnW2RFyird8/71a9r0gW63oF6u8f0QaRo+/Pqf8Z0+vuNhuw6BdGjrlqpVDKdHFFVJ0Wi8rsP1bVqtCaOQ6998hyPg7PyE0ahPme9ItzMW9zf0k4SeJ3n10QtcndLVKY4M8U1Llqb4wsMNegdBU9GAdFCtReDIQ663g66qqOuSaDCkMoJSK3zH4/R4Qq834P7tB7LVgk2eIxyLj/7wTxmePWG3WPL//O//idCCsqoIfA9tKppWkad7LGMR2ZIP332NtMGJYsbnF+it4W67RNqSQW+AFTlYWcv67i2KGeG5x2df/AlnTz6mShf8zd/+n+TaQkR95ps9a/09gevwo8++IIxjLMtBOj7TkxMc18exJZ7t0BlNZ1p++/VvsKWk1++zTzdcnR6zvX9Pt3rg7X7J0PV4vLnGtRscCUorqqamUQrddQhLoFqF5fgs339z+N2DEf7giLtvzhhevCIe9Pjo40/42fV79pstUehz/+GazfUbyk3Ffa6Y3X/AbXKkahFAUWu0PrjrA+FSlQ2ys5CdQTUlAkV/OMCR4UHh2R06xNIS5NkeZRquri5ojD587H6ogn2YbfC8Pg+LGwIEJ6cHIXBR5VSqpkoLoiQkr3J0aZC+Q6sNWdYQuAnKLajLPabSNOWe8v+7AqkOZ/LIw+17Tp5/xMn0GNXuWC5y1rsde9NhI9C2i9YCKS2kY2P5EdHoiCCKMCiy3ZyuLfF8j1effobf61Ebg3QFk/6IdDmjsRw8aVMVKbP5Eq1beqGPqAqKfEM2u6Xebnjx0WdMY480LWjUHkxBT7ooVSCVIUoG5FrjB8FhG2k8pnc0RguBLxxcVxxOcCMIbDBtQ7PfIIWmKPd8/91X5HXH0eQE16rYrzbUtiTsRbz6yY/YLm5p8z3KdWnKmtALcfyIIPGoGkVVlKgdtG1LNBgxGo3RVc5y8UitWkqlUbnA8iXz2zsyb40uKromJxCa4vGOb372N7z687/EtTURmuMwoRn22TclFjFtp2iEi21AdYe0VpWtEa5ku5nTPzqlVIZef8TZxSU67vP005+SrbZ0tcZSkqQ3pnd8zt3td9h+xPmrH7FuDNu6Jm4qXj5/RuB4lGVF18HV5VOOzy7wgpC2VQg0dZmT5VuEDePpBMcS5Ls1rcrJl4940ma+XbClI91v8WxJHEcYo2lVTdtWYB2eR6YF2/fIq5SqyjHjY8L0nH9KS85e3tGbjHn1+cdQpSyW9/iiok23tGVJpzuCIOD86pJ6M0dnGY7lIUMwwj7oLVVFU5W4HawfH+kcC+N7jE56OG7EdHTO3ft32I5LladI1dDrBUSuwJOSfyNH/N9WsKvVlrPjBmEMD8s5SS9ikAyBjmyzZ7tY0WBhqhLXlmghkI7H6OyK1fwee3SC08RoVWJ3Da3QFF3HIIqptGKz3xGlGSfHE6S4RLQFq7amUw2dFmhLYlyJtEPG44SzZy/xe32Wixm7Iqctc/qjESJ2SSKHZDghV4YwDhFaEcZHFKphMBjxMLtlt91jdElFjV2mNJtHrDKl3u25rxek+wpLlXRtg/Q92k5Q1YqiBqk70lqRuC7S88jSPfGwR9gPCH0HVW1YzpcURY2qakyZMn/3La7UDMdTFDa1qSnrjKrI8KXNdr/Ftix6fR9nNMDrh7hhzH6+BiVwPYk/GPLy7IK3b99yfDJlv1yQbpZ0RiMdC+k6SGOoypLQ6rG8nyMti1VVE4YBw+mYrC7wXE2zfMfj25jJ6VO+/PJz3n79ms///C8YPrni9c9/znr2SHT6nChKcDpFE4esb97TFgWe57LdZQe4wGbN7P6G4ZNXTE5OSE4uEZZhOD1jObvjbvHAfP4OJ06YXD5HNgo3ywhD/2BVd0N0e5hhX55fMhxPQTp0xmBoyFOBZbV89OoFvcAj2+/xXZvH+YwIQ2BZqCzDdg7Uh9Orlxhs2qqgylLIdgjdYguQvsByLbSpkTRYqqIrUvL2kcem4RrN5ubXpLNH6jTjsVpg8i1R1Of0eEqdN7hHR2wefOrNBlW0uK4gHowpm4a7hxva8hCsUNscGUdEvQH96SVt4xGEIUZ1hLY87CMYF1sYis2Skhavl/xwBRt5Pk2aEXsux5+8xA/9w6BfdZBXRMbG1A2m1jRKIX1J2O/jDceYOKRsciY9H9cxZPslyoDfGxCOjrGGE4wNeb7j+s0anc7ZXF+zWc7wApfhZEppSVoj8N2Is4snXL34iM1+jxP4pNsMpTVOlRNRovYbtvmS5OgCu3UwtsfgeMju+jW3b7+j+H3QgHZPWW5R+zUq2+N0CscSfPjuESMkQiaE8RAviqhKKCpDMp0SnZyiiobO90nLEl2WrG4V9ZstVb7i+uufc79M+W//x/+Zx9s7VL4lDhxqbVimGb3hEeEwOugckwTaBsf3EMZQVHucKIRW4hgbt9WorGKxmmEXORpD4LucTad8k6dM4nPS1YJqW1GoFt0oHD+iE5Lh9ILzyRGz2zs6aZhcXLJ5/xpXGISpWNxd0ypwlUstbbTjojqJsSOKpmN8dMSzTz4jGg3pf/SSb/7p57hNi9Q1jzdvOBpEbDcLXn//HZu7t/iBzdMvvuCb9294fP89xlLUpqIyBuP18RqDNxphhDmM0/oDPvnkc2xjmAz7h0UH26FS3UGHKRyEqnG6hk9fvGASx9zd3vE627Pb74kc9/fkIhtlHC7Pn/Pxlz9lvtogOo0ucuoso8myQ2+FhkpXJF6AW2zoVIuNQZqGxZtfEw0T3u8/YJRCmo55eo8WkqB3yief/5jvvn1LlW3pn5xTeiGL61uiOMaNE0Dw+ekp33/1C5p8TTw6Znx+hQh6HE8vuX1/z3p2T75Z4scukSfpqhaqjjTNybqGqfcDvmEDx8alI3JcfFcCHU1VY5UKXdSU+8OwWKsW44W4QYAf96k7wasv/4hVvqM3ium6HGe7wLIdbD8A20FJiW5zTLXh8e6GNz//J4rt6nCVcWwcy8Ltj0E6WK4Ntma9vKWqKjy7pZYgtIC2IF+/ZX77NY60iKfPsJNTovEJio7lwzWWVohWY7U1utrh09FuU4bJgCjpsd1vScIDfrU3ec75qy9ZLdfcvrnHTSL600vOP/0M4/sYYzN/PJDqK3J2i3eky2vy+9ccDZ/QD0NGn3zKZvmA7dqsshQlwIuHCMcnjBIi36MtC9psS7VfYawAzz2EsMOpj3BcyvWSWpXUVcrjzXuCIGJxf8t2u6EfD/D8Pu7II0xG7NIMHJ94dMTps+cEypA3hn26Zb5JGY2OmYwHhKMhaSsotyVFV1I2OfVuxZv5ksCWNNslr29eky1nHD1/hR0EVELy/JOX/Oof/zPD4xO0KnHimOjoiNPpJWcfveC3998zK+Z0ukYLwyrfYbs+pjj0LsJiT288Yjq9YDS9orM8xoOYJPIxbUNb5vh+SGdZh5CGZVPVNUf9AY7u+PY3X5HOZqjtBmvQB9dFdYZOCSwC5u+uKYoUANd1CYIAy7LolKIzFap2oHUJpEOZrjC6oW1qaHIcfIxls9otCKTEsgS2E+AKKLIUW9qESYQuNFgCbAGio9INMupz9uQJdZ2zmd0gfI/pxROytKFe72nWMzrV4HYZwoSopkbXFVIKfCHRwhCKH7Bgh73woMsrMrRtCJMYx7XRXYpfkV8AACAASURBVE3btIfkxqCPVi2lhrAX06iGslK0WvOHf/HnVLrizdtvCcdnCAuUMWDZWMaiKXbM0xWrD295+P53dE1DMhrgxhGb5ZKT3gjPldii4eHd78h2G+I44ezqKbbQWI5NgkVndxhqdosVTVkTjAtMlR6IF+kGVRXosqGrGyxz2PEs9zUYHy/yyKvDYNuRNqPxmKpuWW4r/P6Enp/g+i5lWVG1iqcvXuE4Dg/ff8Xy3bfcv/01qlrjWIqjfoIDeH6I7o+Zb9dYXsQgjhkdn6ItjzBOEKZDGUGbbWnaBl9KTNscxjdWhxsF6NpnPB2x35SUaUOVdUjfZTQe4VgRwgga20MOPJ5+eozfH/L0k0/otOJn/8dfUbUKOwg5Pbtg+fCIY/fonD4uAqEkfuAS+i6/+Lv/m8Vixx/89Kd0+Qa9XbBoCrqmpnd6hWcL8mxDvlujTIuqC4RjIaMejQz41bff8aubX1GLgsFoiNsbkJUSU9UURY0bwdmLFzx5+oLJ8TlJf0hZNyhjaFXL7ZtvWM1mfPTZFyTjY6pWU+cZ+XZFVxfMbm/Zzh6QbU2AwhWHTSctFFK4pJs1q/ffopscy/UIkx7JcIi2HRw/xDYBPpLO8gjsEE9A0xZkeU4UBGAEdVlRFQVuHCJdnyiJcFA83LymUSBFR9eUxL2Eqz/9Mz68fs+uavAwFFmK6wUkwyN2dYHWmjZNuZvPafM1fuAwjMBYLY2usG2D5zo4lsC0Atl0P1zBWpZChuHBtuW42MJhn2UErk2JQscOw9Njem5EnhUoq8Z3FMIJiWMby6nZ7Zf4vYSuNVg2vweI+4gWnKakWj2QLh8piw1dZ3h29gnecEw0PsZyXALPp82W3H37S7aLB04unhEnCTIaoY0iT3OEloye/gTlP1A3DarKWN+nNLpDtBVWW2NrBZWibTuyqkZrw+PDPY9315xdXgBQpzW/+5d/oPOO6R1/ztnVM2YP79m8/grz+i39q6dYnWF++47rf/kZm+9+garWeKHHaDqBuuD1V78kHk7p9fpY6uBadWwf2/JQwmazS8n2G3RV4GiF6/mU6wckDUhzyAi3AsvxIHJxmgAvFASeTVNXVLXC6/VBWEyPjpC9MYOTJwwGY+r9nn/4q//EV//8X/j05SWO57HdZpQ1rDYFjn0Ath8Wzw0/+cmf85t//mfaSLOezckKTRD2GQ4SstUjXq/Pj7/4lF/857+FtqaucqQlDjlWLMKBxy9/8SsW2x06ssnzkv3jHNt2ETIgGp7z9NM/4os/+kueXF6y2aZ0qj5gY7qax/kd//jXf8X2/p58/cgXf/k/4MVDst2CbHVLvn7k9s07eq6BOMQJrhgNJgRuiBsK9ssFq4d3mDrDdV1cx6FrG7q6QkYejhcj2g5XgvEbRHfgGQvbg85FyRalLWxlGAQ9XEfgxxGfffklb756w3a9oatbXCFolCA6Oufs1ZfcXK8Ruxl6OWe9WWCkJI4HJNMTTKvQ+YZ8do9nG2rh4oY+tguBJfBDHz8IMcKiW66xyh8QERMlffwgRhvJ9f0jeZaRJAEvnj4jk5JOSro8pzGCOA7oOkWeLrh68hFuu+f1v/w9ne9iRT1s6REmUyI3xov7tErRpGu2bUGQ9Dl5/jFxr8/x8+eIIMD2QxzPJQh9jO5x8epHnFy9ZHR8id8fY0uHcr9Gdw2WgNH0gCmdzeY0VUmnG3RT0VUloqoRusNoAUiyTUnouAQdqP2OxZ3AH4zppId0YtxoSjQ6Q9sRTjSkj00SDRmfX+H5ETdpxubxAautiKUgcA9ESVtoHNGxW864v35H0h/Qnx5jdR37xZxO2vTHE8an54fUkWOxvH3LbrtFOi51W1BUBZ4MCEfHwIHq2GQZrtVy8+EGSzicHl3SKkXgOTjSgrrg9vUKq6l4MvC46XL2778lGR/hDad0osWNxwghSaKI3W7D/e0NljFsi5rBySVtp0nGxzTbBVWeUxcFVfDATaXItyXxeEoQSwaDHmWWU9/e0wrB3WbFLs8pKw3pns1mw9F4Sn8y4Pj0in/37/8DcZSwXC5QSiEAx/OIHZ+71QZVFBSbJa9/+XMGR8cML67Yb2cU2Yr9Zk5T7tF1TRglXJw+YdwbIRqFygvKfUlbtShq4mjI8OiYKArAdFjSJQwj2gNeDExLWxfY/kHPaTsxWimqVmN3muFoiupKhOcyHJ1SVl/R1i31NqPDOgTUzZIP19fkWUYY+OSrBU2VYTsO4+MT+klMWRQY0yI8gbEMwrXANkgHbMehLhU4hg6FslqKpv7hCrbCZT7f0XQ2aS1Y7VueTc64zRSp5VPmNenDLT3fYxyFjPsJRljMHl9jZmB5DjJOiI4M+Am9no0fJBjPJ7Mqdk1NqTvG51c8/fhHuEFEUVcoNK7vItA0ZYZ0HIaTM7wgRPoRaV4QdBX15hHyFSpd8fXjW3w3IJAulpSoriF0JXmu8VyfIjsgQPNa0eiAplYEgceoH9FaLrbbIx6d0etPefLqJ9jJKY+zOWEQM0oOzaJomJBMj/jvLv49sp3x279+jxd4eIlHBwcRcddR5jWDJOHo6AgjXbLdDtXW2I6FrEuaIMGLh2jhY4RPUQl8N0RYICX0kgEy7BH1Tsi9nC0zbKGYXL2gLFo6GTAZRXz/u9+gOoMM+vQGE5Z3t9TvfovscrLFnjJLGRoL2esduph5SZPnlPst24dHHm2P6bOP2FYNn//4D7BVw83v/pXN9bds72/JVxuS6RXhYETW7DGOR2UU72f3rHcbHj68Z5mW7IqaToKoFU7n0GQtK7Nhcl6wXq7Jdjmqzgh9n66pWMxy6mLHbrnm/OwM8i1VW7B5uKZoc9piRZVuaMoM1xb40mZy9pLPvvwLBkFIs92yXyyQtku627Jbzugsi7JzCGSIZQ43FwsbJ4qI+33qqsAqUmyjsZWma2swHfu8xLZtktBmt11S6pbe+CmXn/wxTudw85uvMLsNerth/3DHLR6OLbE7Q57mtHmKJcCqWtrsMO7EVgzHPZq2xAs96rI4dKmlhUJjSxfH9+mToH7IeN22lnz3YY30E4T0aPwR3z+mWLM9nm0TRyHLfUujLLQu2O/26E6DZwilg8jALHbk91ucaEj19pEWsAYDemenRJ6HiBLsMML2QtI8p9UaVwpEXdA1FS2G/nByAL3tCgLHpl4/4EqNLBbofE69maGyPZWRDCfHWK3C1vUBlKYVTaOoC01veIaoDfGLM7wwIts8Hk7HpqPXu2QwesJmveE3P/8Fp88LqqqCJqduMrabFdNiA7cRJ2cTwp5/eDu7HXmbE0YJcX/E2ZNnOLMdTduw3OwYHocEEpbrLQJFOn/E9iKmp09xjo6IDCTCxW5tbCfGd0JEZ9gu1ziyRxAErISNkQ4//Z/+A+/e3tLr9ejqPYu7G47HI46Oj3n5xcf89fvvaQOH5PyMfjXBsnwaYyMaUEWD7flEkUeXW1weTSmzkiRKaGTDNs1AtaRly/ffv6PdzJgMR7z4/Mf0zs/47usV+7sHbsuUr67fEk0myDjm4vIZ3iogigJ6vcPWkhAW67pm+/jA//s3/xdXl5c4Vkfgu6iuQ7UtSRThC00QB4wujinzgrYtqFb3mCZH1dWBMBj2GQwSPvvj/4anH/2EfLlgnWVI3+Ps6XPaVrGdPTJfLOlPjtBo6nKPpaArK4JkzNHZBdAxe7wHpXAMNEVB29Q4IsSxLaoqZbct8IKANO1ITj/h44++oCkd3v3Tz1BlCeWexksIoilFnqKajk4JurZhtZuzeZxhpCY+ihn0Tw8md12jVY2REm0sWhS2A2HfJxqENGn+wxXs42LPNm3Q2Z4oGVC1LWm2IwpcJnGE3/M4Gh4hXYFSBa7nHox3tiAvcqQG17g0acP+dolqKrzAQUmH4vwctz8kGA4Onc3RlPl8zm5b05Z7VLGjyXbEoYvnQZbtDzlDnWLtt6yzDbLNMfWOareiK3Kk9Mm2NpZlo7sDnqNVClUqysowdEN8x2NTd7i+hTc8pWwqjDCstzVVO6drKoqmIkoOKJvlhw/sZtfsN3Puv/41MulzOx3Rbu+JdIcoanCgsSo26xXlt9+S5YrLy0typZg/3pNnOwLPJYl9kJrN4p6b2S1vW4XneFjGxp+MaVqLaNA7CIdNR6c0buxiOwd3aVrWtEj8uMd29UDiu5SbBWth81Y4HB+f0h2P0ekGu2nI0op6k4MRWK1mtbrGHE94fHxA1oI0b3F6X+EdHeGOx+zykuHRlE++/JLf/f3fsV6v+ObNN/zFq2c8e/aE7776LUVaMpqc8umf/pRhv8fD9Q3r1RzHtjC/twom/R7EPo/7mrytuPv2KxzbEIQBwgYhDbUfEbguUvz+Sug6FEUBtUB0LXQSNxhycf6S6fEV8eCY3WLO/etvSR/vUWVB4Mf0hmNUZ/CjhC//5M9YLB7Zzu4IHAfL9nBcG0uC5wWHk7asMK0i9EOMVsQdpKslDx/esZsv8QKXf/3Zz9DRiFjGGMehFhaqU9i6pd4t8WRApyriJMCKPUzTsLi/p8wypG/oGpu62OOEDp2l8RMfAo+sKsnaln4S4o/6OJ1BdD9g00lVFcejEVnZUuYptmUYhx6Dfsh02EMVO9piz/T4HN/xOXItRF0h2xpLwmqzwBUukZvgSQcagdQ2oqrIv3tD4busQo/th7e8/PGfkEQJabrHbTN6Vse23EPVsczXBIGDKnI2uwVOmNDUBW1bo+sW3YHjelw9fU7eatI0oxM2li3pjTxEZGEWBetdiow9nr14xouf/AFlnnH99g35PqUpSrJig6MNgeeQpytsYVOnO7qyZOA7VKt7Yt/CbzzqKodOoZTCkhLXtGzurjGLnLKGo0HE01evkEnCw/U1+zQl7vXpRz6bm9ekszvqosCyXZL+FNezEcMxF68+YbVa4bghYZCANhxNp2w3c+7ffAPCY7WSDJKYq7MTNg+31GnK9Zt3WGGfZ0+fUkuPPN3QaZtJPEDlGbOb9+iuZSkaBsMRq/dzTsdTqs2aZNgjkTalbRMORySvPkY0BbrMePLjP2Y8mTI3HYNnz3n2p39GPDnGDSNu3/6SfHFNX9ocD4c83N/hhyGi2mLweTW9QCYTlqs12+0SW2hsaSNMia9tLAWN0AdzoeVgOrCFQUofJ+gxnV7woz/4S1Qj2c4fWbz/HrNdkt/fHOBxR2eIMKFTh1XArCzRls3w5JTIcbEtG+O5pNsVuZRI18EL+lR5iek6hLZRVYPrOYSepPVs9usFd+sFdhDx93dvGJ+ccXQxYVMtSfMdQtegt4SRTZTEWAKE7ijbHWnakAwiBpMeWIYGhReGtMJg+S6600RxiJPEdNJG1S1V80PqJhsFRpN4krZMMZ0gGQ6Iw5i6qch2a7bbLX5g8eRyguNb+L5HnaV4novnSJaPM3KxJ/Z6SDugKTtMXVMXBbbv4I5iStNya/8ajcX0aMjReMx6dkOAxjIK1SoWsxvaqsDxY5LJGYEX0RiB1Rn8iYPRNbPdHmybzhaHzKRqcaWP5wSElWY0OWKd1Xz3q3/km9/+K9FoysnlU8bHJ0jA7jTb2ZLOEtRNRas6Qs9jcHLOw91bvCikrHLyWc1wFNHvf8xsfo0RGldKRtNjlAmYL+dk89e8V2vi8Qm9Xp90k3P93SOqzLDqjH7sUBiIk4iXn33KsuhIxiPKNEW3NXHSIxomPH77HdV+w+lkzPevXzPoS1S2YpNvCANJZkPQ7zF69hmrrKXc72iyjE5pev0ep2cXzO7uaKqCrq2ojIXrBWghiAcJma5o0w2ruxtsL2R8es43d29J2wZHNbz79it2TcPxi2ckZxc8+eQzRuNjFrcP1KslXbqgk4J9vcXKc7o6o6hKcsvmFJuB6/PRk0vWvYi6LuhQaCUIgh6WH1GZFmMUtjEE8iBLozP0+2MuLl8itMV6vuS7X/2S7PEdVlmyfZyTRDGWEZR5TpQkHD99ghIwPBpjqQppDLbt0OoKpRu0sXDchDAIUaqhbaETNg8P72i3c3yrIwwDhIoo8z1S7fBJmAw9PqwrjDT0hgmBY4OVIT0fLwqxbImFzbQ7oV9FuK5NELnsyz1SejRWh3FtpBcSuRF+5GKEoGkaVF5S/ZDECdcN2O+3JF5CGHjgBGSVRngGq9M4QYRfNeznW9pRnzaSeIGN5waYVhH5IQ95Tbbd0fg5UeAjpYVRhrJqORleoLSCumTi2yw3OyhsluWSpt6RZcvDG0Ab6iwDrbGw2d7dILweMojxAx8nCjGmQekSVINjgekOfOTdZsFmtqVIa2YPtxR1iyVDBtMrYtdQphs6pfBdn66u8CMfLTrKrAB92GvVtmR8/pSuSmnqAi90GCYxbbMn9hLydMM63+JFKUlkE4kd87dvkY99RmcvsZ88QdRbRFMQ+Q4y6tM0NY7tIP2Eu/kKLxmzmz9y/fprbNuwGw4xumNxe4fnJ+y3Uy6unpFEAR+++4rtww1+VyAcg3Dh2RefIG4XLL79NV2bEwcBVuAeGni9Ib1zQb5ZITsYj4/xvugdvvjSQ7UN799+x9MXn2BZFuFwxPnzZ2xe/46m2NFVGZZSBI5LmeWopMJxBKH0SNyAOl1Q7reUu5K2qnFcByeJEPs1+w7qbI8bhQxDiekMWkR4UUTQH9H9/sOq6wrfk7jSQWiLOBqgypZ59p7Z22tWN68Z9yOqtuP46iVZXlIJCcKQTI+Ix0ckR1Mwiu38Hq0aoiQiX+5JejHYEtvz0UKwLyumx6cM+hN0vuPrD9+wTXc0aY6DpGwNkg7Z1uSbGel2hu20hD0LS7coYbBsgRGCzkg6HMIkwJcdeb5ln5U0Vocf+hjbQjoOcdxHG4ERzaEJ6UqaoqJtf8AusVYNQeBTN83BDlambIuK1XpHZClePDvh6acvaIqS3XaPZSmC8zFpnmEZGAQRp6fHfDv7mk1RI/oRUejhuT6VqVnMPhAMe7iErBY3rNZrtut3uL7AsRWq2aNVjWMf2DtNB01WUqscS2YEcQLWMZbtAxqrA9MYVK3QTY1qa+ptiq0VjuhoygxbOhyfnzA4mtKohmq7IN+sMNYBkB5FEZbv4PcDulr9Xh7VEEoPN4wJXIc821Ld3uNaDVarkFrTtA23736L5zlYZo9jH1jJ5Tpg60mcICSKEnAD4tGUcDBkv9rw+OEWyxhOAkGdr2nLFdpo9uWeqqqxLYv5IuXpaELie9x8+x0P128R9Q7L0bieRWcr2nrHxZNjzK5HsVVYliAaR8TjPpOzkNmHRxYCppNj3ry9Bsvm5MkTkDZlmbFbrllttwSLJUnco2iHbJMh+WrH0NjU6Z4037NfPuDTcnv7iLFDeoNT1ukGqpwu31PsM7wgwHckajWHfAflEms8wk4isC1cx8IXEkoLx4kIbQe/P2S9nIFr0+sdIbSh3KeoPGNga8K2Rm3ho48+x08G/PxXv2L69CnYHYP+8EDbFxZ+EJO6AZb0CPpj9GqGFcT0j8/weyPyrCCoO4Kkj+4agthncnbKw41GKwtP2gS2pE7XZLstghLRbJBWTWVyVFWjWk2gQ+yqBGyMBsf2ybcbtvs1Vi/g5OUVMgmo2wZhBG1VUlYNeblHtSW1KynT7AAu/KEKtqxyhGUTxD2EMhTpnjwvsIxhOAjxbY3rtOyrNQ/3M6R1DidTHOlQ5Bk6CBgdTxgfT1jfL6hUTSR94kEfbdls9imiKon6Mfcf3hNEHtK2CVwHrVvoNGiF0i1aWezShg6JbQkiGxLvEBjXbUunGlRZ0hbV72eumk4bPOnRWhXSPbhXnCBiOBlRVjVFWmEhaXQHng3CJx6GdFaH7bgI28GpDRoH/BBph5T7LcKNaLIGISCUAVYIwq2pugptUmy7QEoL26kZDhzi0KMVNv3xCdOPviQ5ukD2RmiluHi8Zf34nn4o0HnA43WJqRqksLlbrxhMj6i1oRdafP/rn1Pvd8Sy4e7uPfFRH6UabM8i390xHSeMJyFCp2gjEI5hvZ3hyxDT1fi+T2cM46MjskZx8fEnRJMJr7/7ing4Il3uuL25ZjDuY3shJy8/pbE/YEsPVwhEtmO1WVFMRjS7HbbwOD15Svn4jqKaI5oaz7KQAroqo9ooZOBh2j2YGq2nOFGCJwSWMpT5Fs9r8eMExxZsH27xpMDXNmE8PiCGVjPy1SNWumKRlkjHJ5peMr16xvjsirLcs0+3FLUiOZrQmRZLWghxWG+0jCbdbyCMMH5IPOxzRkex3bLZb8mrgv70BCtIcGWAKgp8G8psx5tvfk5ZrJCmomtKdrstXdOhm5a6rg/yN0uimpbQj9hu1rSi42x6RdjvkzYldVVT5jldt6eqGwQdpmvJOkVTVYgfMq3TGUOaZqyyEi/qYRD4rkfgWvQiyXgYkiQObe2RbhzQLW1Rok11OCXyHMeyuHz1BG26g5UdCyVd7ChhFPVwfQ9huxjVYgkbadk0TUvXdXRGYoxLXXXss4a2lbRa0OvFdLqjLBWef7C9q6qhKVpk59JWLZblYIRN2RTUqsVyLfwgwPI8OgSb1R5qjW4VSb9PqxWOAN0qLEvSlDVWZxG4HpfH5wRRzPt3b7H9GM/zqSwLoQqM3dL7r6y9SZNt23Wd961i16fO8tavxnsgIBIQSdmk6FAw1GRbEW5Yv0A/Sx03rbAl00GFJFKkAJogQKJ4eOWtb2bezFPus6tVurGv3Fbj9bKXEZlr7jXXnGOMrzpjnkoGGp6//jVBpAQJLhrWhxtacqanD6hWC8rTE0Q1xaqMEAVOS9bNntu7DRmGajnHtT3NZosPhmfPvkRmE158+xu6fcvmzWs+ev+Ui1UB7oCMjmglr779R4zvSHxEaUGIAusNdnAM3Y5u2xJcwsEahM4QItAOPbMso5gtmS6WFCrl5s1rnBuwISCj5uNPf0Bb1xzWG5rNmm5zy4vf/BKVVbRt4JMnF7zNK2oXUElGmUiciEQZcNGCAYskpp73vvcB1fKc425DLkqsr9EhgulphwbsKIY4xBQW40DmeHvF3bdfYrsjk9mMvt+SmCW/84MfkGQ5MsL25hUyUUzmBa9ePkcJT1WWbDY7XLulP1qOxw2b29fcu/8IXESFgFKS5dkFbV4hK8fjh0948/RrzNDx8MOPOPQ7rr/YQO9ot0f62hHeXQZu6MmTkZQ49D3Relz05LMJRVmw3WwYvGPoOg6bLcYEsqxgOpnSdA2m73HOvMtZ/I4KljSnr1tWZ+dM50uiUNzevqXKE87PFhjTI8g5XZ2grKBMcmLbs769JZlmCCERVYEuUh59+hG3L68wnaVzDuMj0+mUYRjwYQT1WhcJxhGwgCP6SPSK3ljaztA0LcMQcM6zOlvSWoEcLBFBIjSJKLDG470gRIXQiroesN6SKQXWoJWjq48UWuJDAJUghEcF0C4Q2g78uCt0/YDdt7z5/JfMlgvuPXzE3fFIb8dkxtb1CF3gkpy6PZDOMvLFKb7bgAxURcr28BZZzHl8+iHPvv0lT99es3r4MdnsDNO3HDavMcMRJSSimON0ip6eUk5WzNMcfdiSpAXIlEpJyuoh3jegI13bQfSkRUnwPbv1WxJdglRk1QRdlPR3d4hoyZVnfzgSZIL1AlXN2d68ZrJaspjP2b5+hY+W+aqimhVsN1vauiGJkr5rMMcdx7pDBsH61SsmkynPvn7OzW8E/fEtiJx0OkOnGqEFIYHAiK8QqiB4RX/omBQWjOBmfU1V5QgM3ll8sKwmU0hz2t2G0HY0XU/fHJEyoZivePLpR+TVHBsE9fU3SJXhwwgZP3v4gDRRED1De2Q5KbBdTbe9w5ojQUv67Rv62xesTh6yPH3IdLYiSxLysmN/aEBotFJs9zuyLKPKJ7jOY2tDV1tcD9YHYgyIIFAIiGFM+A8BWWWs7l1yPB45HI/4OEadmtYQg8D5ARM1vvckSUaSpfjov7uCrXuDSHOMj1xd3+CsQRJYTicomfD86Ss2dxumeUWz2XK+mKGSBFpHHwLFbML6cGC5XDKdT/CvAnhH1x5pjv1oc1KKoRtI5hW9HRAxEqVFSkGqkzFKMnXIJKMqDN4LnFQ8ff2KfFLxw9nHSKHwJjC0Fq1LMp0ikAz9Dj9Eone46NAiQydQ390hSMnLkrZvaQ97lNLY/kja1iRVgVAC+p5he0e/37N7M/Ds87+jbQeyNOfk7JykyNFRIzLJZDYjm0lU/oDQVbTbG5pmg1YRb9d89eu/wamKrN9x06yR2YSkyMiLkURvfUpQFb6cEdIMJlCWS5L9GhkiIUTqeocMKfbg6QdFkClD13KalESV4aUmqSqSNCdojU00qszBDCRWMUmhPR7wNpAkilw4jutbyukSESJSRrJSYWwNvmeWJiynJW2zZXFyyvrmLSeLc2J/5Pbptwx31/Q40iolmywoJgsQgbJKsXY0eQzejQAuO/D6639kd/MUITPquubs9AQxmeCVRkpJlqV0fsC2NcJ0yChItaa8fEQ2m3P64DFtvaV++4Ld1TcY66lmK6rzh5TFHD8EJsWUY9+TiIQqLWjCGCYgvAHfMljD2qegZyzvnVJOZ+QT8OGGly+ecfvsGYerFzQvntHtb+nWe3zXYHqDtx7nIyGAiOMKSggwXiA1rE4WpJOCN89eMBxbpNbIJEEG8C5guh7XWqTWFFlGMS3Iqu+QwH4cLE3bc709jBNNKRAhYHxgc6jZHSxKZZR6BNe2ZmCoD6jBI11KGAIkHqUlm+2W29stldBE2RB8oNnvAAVaU5xntK4lOCgWK3SekyhJIkH6SDkXuK7HDp666RDbHafLFd70WBRd3dLuO0LYs5ifIaXm7u2aoe9QicCjyIslWha0zRgi7rwlYkm1IMSA8ZGu0dAHzs9WJFoynS7J04zBGHorWFxMEGlKNZsSCEymJdNpQTdsafZH8mpCebIkqgJZJ/ihJlGa+nBLkFtSLTDDxEQKZQAAIABJREFUkagUVkt6oVlcvEdSnSHzCq8rhCwg1aTFgmx6grQWawbEbEU/tMTpHHVygfIjAKyYziEryCYzRFYRsxKpEhI8/eGA8WHcfyYSlado6RmGhv3tFdtjAzJDuIHziylFKTk2not7F6SUDH2LyhWzk3MujOPFV19RAMlkxUrnBCnIZlOyaoY1lv3uDtxoMsiyKZ988CG7w5amWdPUN/TNGiUSMkAMB4Yw4KNEiJTJfEGeV9hiQCtNlU/Q+YzF4h6qmtAOB14/e8rhzVfgBjob2BQLFq0nTabksw0okDbw/MtvERFEVKhsgixSYpqSz86QyYyoEzo3kPqxk9NJSpnnHOsj9b7mWO8JrkUmGccajI1gIQZBcAIRA0PsEanApoLV5Smrx/fxznPcHQghkFUZ2XzKxBRsNztA4m0coW1dTzHLx4vhuyrYenDYCB5BcI4oFVWRs95uodBMqimbuwNhsJwuKowdKLRCRIkUmnq9w5eRfaIJA0QPTklUBIlgfzhijOfswUOQCT5qVFqgp5cU8yWpBoYjylnUO8kbDFQh8uT8nNgP1LcdqUrABkLf4UxkQNL3PfXmmiR1IxpxssJk59RdwGnB8vKCalrQHN7S7W7p+p50UjE5eUA1OWGzXhOHQJWdsros6bqGjz/8jIuPPubYNhzbmq7ZMisTcu15e1UTTMbJ6hGPv/d9rt68YP/2G8z+huawwXlLXW8IQpGVc4wwRNPhe4mNcPnJGTLN0eWMGBNkniElzJZn7N5eM7hAujhjNZvRdYfRjjcMuL4nL3IcHgcInWF1TqIS0mDJVEprPHZwkOQIVZEEwSRJMKanKKcUheKw3rO9usPNCpI0YbpY0LUtrauZns6gSPgnf/LHrO7d4/VXX1DKSF4UJEXJ7bZmdXrByWrJr/7x51RFQlqkSJVCNWeajF7pxWyK6faIGJDRk2iBty3ORqrJAhk8s9kFic5x3tMPnulkznR1yrHv8caA85i2R3iDkDm31xs684xoA+mkIptMODu/pN0fiSGSJRWOjNP3P2b5+MmYKaYyvPUM3pNkBd4EJlnKbFFihpqXRYbZH5jkmsPmmm9/84+EmzcIOoLzOPw45IyWoiyoVjNOnpyjq4z6Zk0gkk0r0tUCl2qCiKTzCukE9B7T9PRthzhI+vgdrnUOnUFJiRCa6MfUfhEcBMdx16JnU/B+/GI0A1p6jtZQ6IxcSdp2QGlNu+uo0gkyaAbrKCcztIKhNe9M7xXHZkAXFYuTC4rVPfR0ifcDIUi03xGcARfQIuK8RbmB3XZHKsfgLo1AR2jrhuvdfgzgji3IBOKM5cVnfO8P/5RidoqaTJBFSde0fP3Lv6d9+jlue0tjPB7JZz/+A360POfL33zB5uo1B9dzNAPvXz5g8fB94npLOulZ32lQPcbuKZRAa4XrBkRImc0fUeZL+s0LrvzPGXxNKR3IfvSCBoe1DcicXbNl0vfkZUBGgdBjMNdkMsN0La11OKlIs5zJySmhKWmbhrSE1HtCcIR32AcZBCoq8JEoBKBIkhxigCwnhASd5ghn2O6eU5YtSSpgqNEkxLbH9h0v19ccjjvy5Tmze4+5eHhGVqScXM6J7pLN1WuG0DG0lsViTts2SK2ZnV7ywUfvc/bwPk+ffosfegKeLM7IihnHWDEMW7R0KBEQEnzsiUNLTMdhTZoqyjzF+4Hu+JZn9RrvIJWj4KI6fYK3hhAlx7dPqV+/YLu5ZXpywur8kvcePyG7d4/tdkde5pRFxuXjjykvLhFZSYwSmQoKMY580lwgQgSX8+kf/U+cPH6Maxy72zuK69fYmLOpvqS9fUnfNcS+JwyByTRjeTlHThOSYkSTWBHJF3PSIget6YzFDYZUK0SEIALWOXpvSHw5olK/q4KNKsGEgIpxlBYGg+06qionkyneOPIkIVWaoe1JyxwXFftji0kj1bxEGKiHhrpraeoeJQXDYNF5TlFOQErq5si0OEPJjCStkKokypwkKXEepOnxwQIpUioihiQtWC40ONACmv2OpjkSo8BFgcwSgirxUqOLE4rVY67rwO//k0+pnUNWFbMTzYUbcYDPdnc0tuPvfvVzvhk8/+u/+t/4Z3/2Z4ihY/vqOZ//7Kf81X/8vzn5xc8pqxWPHo1ICZFJDnVDv9sgvKM9tvxD09NZWE4nRLvH+shg/ZicoQei8mipkDojzRek8yUiyUjzMfRaZ5qIoG1bJIG0LIhKQJphhWR2eoHOGmzXYdpmFAVIhUIiEUSpccbQmZbjds/QdCQiI6sqMl1io6Debem6li9++QvmixnTxYIiLRmcp+/2EGvssKWiQoSGb377Mw7HjqY+4rsW6Qx5EHSHnkhGFCn7pCArJlw9e4Uq5sSg6NqG/eZuvAFVgVQzTu8vMe2BYI8I05KicNbTty3DcSDNFJNpgZLQ1FvMYFEyQ0+W6LRkfvk+9bHBdR2L5ZGr19/QNTsiAa1HRlFaTdFZQpQKKTWb9QaX5cxOc7xS7074GCSOECghUIlGqCmTy0uG2tBHTV6tOL18zMuvHvLsi59THO/o6zVdvWY61SQTTUgjxndEC14JbCKx1iJ6iReC3lg6M5CLBOUFxlqstyRpxnQ6+y4LViKFIDpHjBElFcF5RHjX3gY77huFwjtDDJIsLQleYG2kOQ6kjNEnvgmjLFEEssaQqxSJoO8HJlVFsA4Sz369QYeER8tLEq3Ybde0+xEJWBZzUp3ifE7TrwmJw7qO3WEHIXL28CEqyxmCIGY5RkR2my3nn/wOH/3ej/nLn/ycfDrl4sFDCqF4dn3N/nDHLnQcdKQrEk5nZ8yKjNdff87LX/ycB8sV65fPcc2BiWlwV8/YxVe0L7/h3uMHfPKDT3i+v6buDGGokWJPu18jdcHdbaAoE1pn8EGjhUalHl0mCF2BnpCW5+TTe6ispDc9WdLTmZbgR8yEUhCjHdMmJbRNQ+b8eCMEC8IjYWyL7YAUIxqCGLBdS7PdMOz29K2jnFvKk3OWJ2ds33QoBadnp3iVoBYXuLwkxsBidcrm9mv6Zs3d7Vt2x45DO5BkBUoqdBZBQdwfoT1y+2bDo4fvc/f6NX66pLt9S4x6NIX0Nd1+S288pxePKcoJ85Mpa+cIwRH1yOWNwo14RudABmzLGDIXHCEayqJiOp8SkgJhAsl0gXCGNFU4tyfLEjrjSRLJ9c0Vk8WAyjKcdTjbcHu4pdjdcu+DlnJ5Pn4cxSiD1Ho850IIhEpIi5x6u8VFw+r0BOYLjt5T3HvI5sWvWD/9BX0t0bInxB7vPGOQSUJAYAWYYSBBIJTCu8hxd4SsJImaEEEoRZIlCPUdxpwOZiCRmuAcUkCmJalORg5skiCjQyk1OmKsozn2pInGuYgKgsb2BJGRJAnOwDAEkJGhcxzCEYYBoQRlVdGyQyvwMdCZwI1KefLwPrqpaW+uCS7gZ4HF6pIPPv5dHjwy7HdbuuOW3fqaaHtm8xm9j8yWZzz57IdcfPIR/9f//m/xeM7PF9xfzfCHHXK15D//zV/x01//I43dc2huObk45egiP3zvCVkf+Ml/+D+ZE7lSCukCaZJRTnO8M4Rhj+k33Ng7bH2Fi4bh2GObA5NCI5BoLRFS4mwkS3OUXhGTI6qyWCDICfnkCcXiMTof+avg6LsD1gUSnRCFZPAGISIIgTc9fV1T5AVFXuCGAWd6iqIEIUh0grMWLRXeDrjjHtfssU2NPRr2w0B9XNNsXoFpEFhIZ0xW9/j0D/6IZ89eUBYZjx9fcvjbHXa9xnYG7Ue1zrSaju/WJGHoO5r2NYOxDO0RdzzQ3N6wubpClRNm55ejt7fUzKSiyATf//ABVzd3vHn6Fdevn1Pkkum0JAjGaaqQEAdkIpFZikoTRJbgO4UqS0KWQKLIswTTdzTbGhd7zh5ccn5xiZR6BFNFh4+ONMlJMo0KnuOh5va6YXPYMz29x/n9J0zmJyilmE0rxDsFQ4iQ5AXLkyVdfaTtd2iZMlmteHTyEb9q77h+OsYTRR+IYXySMKh3ooiAUJoQDbYbkEITbMC7iJOR6D1EKCYFeZkTxHe41iEEfHR471BCYInkWYL1AY+EGEGA9wGExPmAtR2EQCJSgghjrk8a8X3EeRAI2rbHNg5pDWmaAILJ5QoRHakMWN/Tr695tr2hFA7d1DRtjx8CzcHgrGQ2WyLQJElBmo07x7e3d1g05cljrq83HM2XHLc73r58xl//+/+DzSFSZzWvX73ir//hp9x2e5pwJC00t+stxfySViToSpDMUrRpEYRxin1ygqpOmBea3dVXDLs3dPWOl7vX6DSjyDU6aOpDC2lOLBKKyQKpYVJIgjCEpMCnDVZq0uohxfJT0vkjun6gd45UDwTrEGiCAGcNyAgEBAIfQUuNCQGCx8dIQIBK8EKQFhOKzIJ3HHeG/e01w2GH7zpynTDYGnuo2dRXlEVGns0ZAjx59ITTB48wcTTQv37zCpEUrE4fcTzsqJuGuu1ohjUyTVidnCClIBRTmLQ8/mRKLhKyYof0sLw8ZXVa0R1rjptbtq9f0puepwruNms2Vy/p+5rV6YJMXiLTFJ2XaK0gzRCJhiwlZhkxRrKiROYTBhER0VKUOcF7ED06jcyLU6YnpxR5SdcP6DQjrQpEIpF5SplqDqbFWw8i0jYNt7dvEXlOlmVsD5aiyAGBUmo0IMjxpu3rA65vMMOAFnOCNSDAGoOK7l0BRqwz+L6hD+CcI7oATuDCiDRNdQFR4azDOse8nOOCGbOsv6uCjUJifCAISQyBXIEUAi0FIY76WUQkU5JEaHwUeBcgSoLyKBXRQhGcoHfjclkLhbMAghgkISi0SBGyYOgipq+ZL+ac5Yrnz5/TSUHoPYkqWE7n3Kw3pMOKq998zXG9RSaa7N5DPvuDP+QXP/0J18+fEvuW04cP+C9/8e9xxztKFVDtFu1zHr//Ab969i27Y8OLFy9pQ89kNUXlLcPNLW9urvnjH/8h//yf/wvszR3Dpma73dOKiof33+MP/uif8sv/+ue8/IcjbnODVJG8SHjy5DF16Lhra7rBMZ2vOHv4hN50yNBihCUvMkKQyBDQOkWlKVGAylP80dINPVqmaC0xpicEh0ICkeAjWmqSREPosMYRVYoLit4YtIBEKWaLOX3bMU5zLMJ1JMIh0xQXJXhPkVcEL4gBHj08wze3/Ld/929pdluc7eit5cn3vs+T3/8jjseOX/3dz/jm67+nb16iMskH3/uIi8tzSBXz8xnN1Q3pNCVkDhpP/eoNX9m/YRgaQrujPWwI0XN48wyhBJIepGBo9fickZLFckm+WpLOJrgIKs0JQuK8pygnJFmJD4yYFTegJcxXK7KiIERJXs2wxtMZS6ol3g1kaUZeTVFpwb0HC/q+xTqDCxHZHeivn2GlHDcEWUExmXNy+YC0rNgf9rR9hxKBwTa09Y6X3x7Y3r1EBIuKEdy7nazS+MHRDTXmnfgnDo4QBSFKovNkY+OPY1x1itQBFs13mJooxIgj8BGUkPg42oKyRFLkGineYeCtI8ty8BHEaLb20ZEiQUh8HBUvJoaxRYhjeqJSmnI25+T8gvN7j6iqnDevntPua94agwoOhCIvcoa6wdY7CmG5e/0lKjhEt8Y2ki4EvspLHj28z3F9xfr1S0R0ZL7nkw+f8Oblc158+y2nH/0IVeR88oPfI1st+fO/+H/4yc9+gpADDz84oe5qhnrHi2++5mU1YxoTynLKZ/cf44l0ruO//af/RDzWzM4ekT0YAUvD0GLSCcX8gnM8wjkyqei6ht4OJFpjRMT3llyXmGODCZaYD+RJQCpFqlKMdUgxOqGc90TBOBThv//9A93QE0MHSpOWixGr6ML4fwgD0VtkFCRCUKQJ/bs0fK01Wkm8cdTbPcPg+OR7n9Fvb/nt3/+/9IcDl6cn2GHcb37dweByLj/8kPsffcbnv/otXb9jUhQMUfL3X3zFYX3Fo+kUfazHHXk0CCWoD3te//oKZ3omhUQJh0oTEglCS5TOKecLytWKZDbFBU8vIrkSo9xQSNJqgtAZKZKsKEFKpHUI5wjGkE8nEGFyEhlcpCjmmM4yxADR4rqeYAQuSHRimc2X5DLF9xvqt68IzkL0RECnOUFmJJMVoms4u/8Abw4kypMlOb5pCG3L7uo1sTm+s25GRJCEICBGogv4zmB7N75pQyQIhffjjEEpQQgBqWFeTaiqlDTRBPcdTomV1mOLJiTE8VAEIApItEKnarQhRZABnPdjUbtAjB6pJTZEBBHjLC4GHAEXIzoGyiznZLVkUlVMptN3QgZJ2/bj7wt+dMJgkDiCbVlNS0Qq0TKlSAPbt1sy07D/5kuEf8CH3/8ev/jJ3yGdwx62HDJJ0xqKk1M+/vQHvDkcuNvWKDy/+/FnHHd7Xr59zbPfPmeyGFMJbt685Is043/53R/z9Ne/5kZrPvneJ/ze7/2Yn/3lf+X22XNkmfDP/uWf8uC9D7n+5im77RUnZ2fsDlusO+LcQN3WeCnpfUKal6N2OKQgcohz3JBiekEUEYkmlQIRPMhImmZjx+LDiJyIYYzfweGMJckTzhYrZvMzDvsjk7zk9vqK7e0a5S36uMV1DTEEiIFgB0xvOR5aimzC+XyO2W349uuvSNOEe4sZHz56wN12T2YEj37wIy6/9zswm2E8fPajPyALnro/8p9//lP+y89+iux7PloueH8+5bRIKbIUhUZVKQ/PFhzrHeu312RZwrSYML+4x3S5pLGGyWqJTzXZfMq8yol4JifLMelSaYxIUElOMV2QZAXD0BGVQXiPJxLSBIInz1JkknJ69ojQO6KA9rAGH+nahv44UFSWPGqa9o5695y755+TCY/GIKRmfn6P4xCo3z7n6+unbO7dQ88nZMWSkC2ILiIGi91umOkMNTll++qKXAliFPjoiT4gbCQO489KSGL04CNKa5CMmV5KcX65YDLPCVKxr/vvrmB98AgieZqiYxhJaSrigsNayMuMQidowPaGECPGudH9QiSNowhdSUmIHiEjIVg8glRLyjJHJ5KqylEK2nZgWlbYLmLbnjxLqIqMIBWzRY40fuTTBsHZ5QkueqLekwyG2UTRth0n77/H7PSMw5sr3NBwYxyinNAOgqYZ+N7HP2Ty1Rf89D/+B6JO+dPf/zGv9x/y7/7iz6kPhrwKtF3N51/8htNE011dMYTI59dvaK+vqXdbllXCdr/l2d/9lC//9qd0w0BeZXz00Yfs13u6QSCyisWDC8r5FO89Xbcj+J68yPCdZ7K8pDp9yNGB9w5EoOtrjOvw1jCdr4hOIIRESoVzFqkVITh0VlAUU7wNvHn5GjcEqnsFmc5ouoHY79m9+ga3vUPEgFaSoWvo2pYyK9EKNm+vuKqPVKmmShOOx1tevJYMXtOrkt3xyGwYSJqOSqU8uv+QbrvDGEez6/GkpPMJd8YyaQ3dbk8lYDGdY62H5Zyz0xOaQ005mbJYnWOdYF8P5MsTkmKO1AKdFnhGY0aSl0RnCAjarkMLRTqJ2L7Hh4hUCcYHnFRYa0cyfd8jgiTrehgCXinyxQLbD0gMYhiIsadrt+w3N5jjFmk7skQglB1zpPbgjSX0hn4jeXOdI+fnLB98TDZ/iB0CnR/ofUfwjkm1wlnJYANRCpxz2N7gek8Ywli8WoIYW3gtBJ5IkmhWyynVJEdIgZTj8O47K9jgDJmWiOBHTomCLNP4vicIgUoEiRbgPCEGbPQEASpR48gcxnYhOLSK5KkmU5oy0ZwupsxmEyaTDCEcm+s3WGMpk5ToIyoKqiShSjN8XhB7z9WrNxhrSRYVq/sPIfMkxRHb1nhvaduO7aHlhz/6fb40f0OzGSjmSy4//JRvr9b85u9/xu2bG45vvqasX1GrgnQxQTjD48fv8fmzb0jrltViytvbW/7h819zL8nYvV2zdmMwWnW6IM0VZQj0T79iU+952x5YXVzw9WpGSEqK5SnFxTkyS7F9g+3XvHr5jGPbcP7oQy6ffI/3P/odYpIRNzuGoePi/JSnz77AxQ4fDF1fkyQThJRjS4NCijEZPwLNseX2ZgNBEnyk2W5IlSZ0HeG4xR82hO6Is6NKLJj+XSh4zeAO45c/WKJ3vH1xTd8PrJ9fofIll+99hrvb8MVf/zXWw2ANIXqkc/THjifzU15PV2SzCQwtHkOeJ6TdgGkH9oca1zZY44kxpWkD7rZmebpiVs6YTBcIoUgTRSo1RVFgvGVoB4SGEAPBO0zXcNjcglAEod6xg0GmOcFbgpI4YxG9Y32zRpKQVDOKMhnRMb1j2L1lf7dj93ZDX98SzQ6lNWlV0tgDbTdwXN8hrCEVARU9zoEcPMzOcHpC7wRWOCiT0b4nMhJdMNQNAYtzjmAizkRs70FAFAGdKKKI6EShEsmkLMaBWfT4IEnSnG6ov7uCVXi0FKRCkUqBxpFqQTafUGSSJFXk+WiN6weDl5GoJEqMSEctRzeDkoL7985ZzRdkUSCj42Q5J00VusjGVqF35Ara7QYtJc3xSOhbhvaIWuS4XUuz3qF1Rhc7dndHOtPSNg1CGI79dtT3Hhs2XYtIHGkJXjm8tPzwR5/yt3/5V/jdc/rtLanWeG+4ub1BTRcsVnPy65TD7kBVFqhqypuu4fz8fDxQ6x3TR/c5u3fJk4f3uX3+nObuLfOTE9Q0R2eS61fPuPj4dyjPFxzx2MOe5vaK/dUXHNZXkGSAovOKl2+3LJdLnDUI59m9vUUYh3AW7DC2hoUkhhRIicixFYwCgWDoOmzfUe8PeGMx5WTcmXdH2LxEbK+JbUNTN/iuIwxj5I0RmtN7D3HWENqG3eaWYbuBIRAYUBnc+af0+5bTy/vvhoiOdF6yvl1zXO95MpvRPXjMb7/9Gp0JilnK6mRBZRxXz19DlmGkZN10PHr8EeeXD0YVlhqpb94blJdEJ2l2R4KfgJIkWYrxkSzPmc2m9MNIawiCEXbFuL+UWYZHolVOkhfjTaZyUpUjpWTwjiSfc3m+ZFidI8RT7p59xeHuDbgd6t1OuzOjjhlSsjwfLyYCXVeT9Y65TtntNvggwQ145wgBOtMzqWYMhy3OgPMCnMIaT3g3JEzkmCEVJajsv1Pj1ZjtnRTEKBks3G2/w9TEaZmP/j9jcTYwnxXkecK0TFE4bHTvclYlSZkhTcB5h0KglURKQaIki2nFbFqRRM9wbJgU2bg3PT0DLemt4bjbwODRIqHKJrzdHzBmoJoVJL1GDwFhLLb3eOfYXL0lKTSh79Dao9KAdD2yPXIwDSa29P5IplKO7Q32+kguD4T6gFYpvjzhk09/j+LeE15sN7zc3fL9zz7kV7/6nOdPX6IzhZQgs4zf//Qz1GyCeHiP6vweRiZcfv+HbHYbqiyjurvDdHdkkxnJpMCrcehm+hrX7Oi3d+QiMFuueO/xE+5M5PrNFdvbt0RviC4QrUEpT5a/G9C5Hq+ycc9tB4TMsNa/u3EDICiyDJ9qBmdo6w3eB8LxSLi7Jmu2YAyHwxHXtWANnQ2QVWyfvyQvMiYqMtietEixwoPIWJyfM5mveHP9imOzIYmaZFJimVFkimIx5cuvvmFe5Hy6OOHQ78mUJBAIWYKeTVmtTjg/OcUNgZPzByzPL9ls1jTtjqpIUBqs67AxEmQkCznWQeIisSgQaUXUmkzn/3/4uHOBYCxRB6JQREbFXJ5mqDxlsTylrw3ROmKQyKDJ9QQ9mXDvUhLWd6zNQHNY40XAmI48yUh0gs5KTk8vRgaxs7T9SC/Y396xqXu8GIHdqQlYB13XkmUZaZKjtaKuDwghkEqSqgSh4pirrRndOCKSCg0+jH/vUhKRmGGgG77DPez5fEbX9LS2JQJCSvJJiS407z95RJ5pXN8RjUNujhy7t/TdniAFIkaUj2PkBgKz2+GcQTqPDRXHEMjyjKhAakWGYn+scUJSzOek0ylqKJBI7GCwNuCFJE0SCq0xm1tiocdHQprjpcT0NTkL8iyj3qeItIAksrl7MSIbYsRK8M7hleaDP/wXHFqLePacZLcjLSsu7z3ixbPn2IMhRsfz/iWmbfng/SdcFAlfrV/hd2vuLZecXzzCpROWHz3iuL9DiR7jHcXQUxUV+XKF7ztO1KfIJGV6eo+Dl4RgcF1Ld7cnDEf6diBJEtIyJykSisWE6Ads34GKEBMsAV0tyKcLhqahae7ojzVJFHRtix0GRAzErubQdNS3e4TpSYhopUEm3FnDzc2BTWPJ84RP75+wQpOnGi0F1eIeIp0gZMKyrFi/fknoDLqaIdZz5hf3aY4DWiWcnpxyUuTsdilJITCDIV9UfPj9C+7ff0y9rcFaom3Zr1/gnEVFQ4pAkeKwOBxnFw9xQSAipElOvrggm5+AUkxKje87ggs4H2j7lsEZXBgvieD6MTWzk+wOPbYzJDoDKWnclvXba4wxhGbP9uoZpumIvSB4i8cSllNUMhnltPWAJpBKgZQQ7MDu+hWmDwihMDpFqfFjWSSKkGpmqxNSrRnMK7wPqCDJtCDJFV56EI5ECYJ3xAg2OIKM2CBJRcHQOP4HdRP/gwT2oaVrG5QSZHmGUJ7tfs3l/Y85OTuj71tiBONahFJMJhW0Hasip0wzojUEZ/HWMp/PcM0RISxmGBfG+9stQXiEhNBago84qdjst+STgpgFMpXQ9IfRnR883gd61xEaQ7EoSBYF6IRiUqGyAiF6FJqqSGFySTItUYli8+aG4Dq6rqFIU5p2TyIEx82BN7/9lqTuOS+XmHzKrUrpxfgWSfTIE3r2+gWt68mEo8IRkyc03jGb3uNf/tP/GbKC+nDF11/9Ej8EEj2mE67OH5I+fEhrPV4mtIFRZpimaJuPCAvjWBUTiJKm7jDOISRE7zCxxVjwuuDebEEiI533+BBQSlFvt2y2m3c4ioiQEj9fkaYpV0+/IVeC09mS+XzJL/725/z62Q0cDDzZAAAgAElEQVROZGSZxrrAD0+nYzAcHtNHFILr/RrpDP1gUXiKdDzkzd2aspxRXlwg05R+b5llKV13JE0g1xoz9DTHA/3hjmmSsL66QmiNLkvK6QxnHbHrUZkiuIjrAsV0icoy8qLkZL6iOjlDJhoRB1pnxrmFTlhdPmRb79ns1qNE1guaY4NvOjZtS56kJFJizEDTNjR9i+9qohkw9YFIJMknuGFcUTpjWS4L1usd65trFpOSSaGJbiB6gZQSYR3WBEyISDXuvCfzBaHrkC5g7UAqNShBMIZEC7RSxDhGFJm2R4pR9GJxVKuKrCxJqxJtLeU0/+4KNmJIc8Hp6oQPP3iPLFNkaUQpwb7eoqUkyxI2NzVNvUdrwYPLEybeU2YZRTqn3tc450gYkw4E46TzcKjp2hatBFpD8AIXIirLGExPNalQWUqapMhkTi96BtvSHWpCMMgkkiMp5wtkItCpJssFKnUY25OonrSs0NWU6eKEdmfYbhuUkCAMOnG8fvkVSXpCuVhybjuScsJkfkqZZLy4ekUxKxApdEONDYZmaPGZQGWKXXS8fPo1Hz9IuHrzCr084eRkxfz8HiIv6LzEDIE0KfFFgS5BSY3te2SEIqsoTs+Zn97DDZbmWKMlxKHhxYtvMF2DZDwk12/v6CPw858xWZyQZnMWsylDW4Pt2Rx2JMnYJr7Z7viTP/lj3rx8Tr/dUZQT9OqUL1++4pv1jqPQeKEZguabu+PYjp8sWTpIY+RkVlEmFWboeP93z9nevSS4gSSJmOOO4AMiyzEhI42RGCJIyeW9Cw5DDyEw9DXN4Y7N2zVme2AynyNPVog8RQmPMx1FmqM8dG+3RKO49+F740Gva/bdwOAN+/UVpj9grEHognK2ZDpfMEtTetMjkoTQ9ygZ0Qq63S0menADoa0RbYPo9ljjQGZ4mSB0SpIkWNPgh45me0ezWWO7Hi8tNiT0xz06yFELbCPKRezgOLYt20NNPzuQ6JSuHifv4t0wUItA8IHgIlpJAmqcAUiB8x4jAmfTGcm0ICaK2VnBg+Q7FE588sn73L9/nw/ff5+L81OkCigCEYdONGmS0jct9y7PePHNU3w3UASB2B/w/UBvWqIboLMc+ztctMhUIZJR3mgGMw6oGNVUKk2ZZpqsSJguKooqZzCWJEuxIaCiY1ouMaYlCk++mJAUBWmmkNKTpJGm2eC8I0sEq/mMTnRcv/yW4bgH25EoN+pNYs/zr37Fn/3rf8OLb35LkkTu3q6x2jEpch4+fEA6L7i+uyHLS9zRsr7bs17fMp+mBCv57OHHfPbp99leXaH2a45vBK3rWTx8jChLopQorUgnKyazKcZbsr7He49CUJUTIoLj4QjbDVevX7Le7vnNsxdcv3rOtCyYL+ccjkde3bxleX7B3A7s1t9QZjnLxZTL8yW//OI3zGZTbAxcH/ZUXy64uboe0x4k7G+uuL69RlY5cd9CiNjgEfL/Y+1NfizJsju97167NtsbfYw5cqqhq0g2SywSksCdgCYJQRAE7fTHaSVo0RAkbRoCBLRIQKSkYlfXmFU5Z2REuIdPb7T5jlpYQFtxkTsHfON4/o7da+ec3/cJrpqeMs74k8tnzE/OoSxxxpDOcj7+03/FF79z3L75iqE/YpuRsa7Jl2vGPkKMhiKOiKSk2+3R3uKjiEQlPP/oh/z26h8RXhKLiMgZ8tiTKcvoBV47dDcyGtg8bLC2YbGueHOoGRHEWcLQbpFyEl9bEbG9fUVWFDx++oyAAJWQCIOqcsgSCJax3mN0jxt7EjxjlOJVjJMZWTGjLDP8WHPYWnCGvj5i+xYVAsGMdLpnbAf60eDHQKpyEpFACGwPB0zT0RpPWc0YmxajNUJGhBAAB9ITHMj3NMU0KTDWTJ1vwaTsiCRxlpAmFSrPv7+C/flf/idcnJ+RZzFG91g9slpUSBGRFxNPp1rO8SFisz9w9eoNu276oE5PF7S3dyAsIWhUCCRZTH66wAVJGDVRFNHVDdpookggVITFI2SgKFPyWcosKXEaskVCLCPGYaBvm4k7LAIqlbhgyNIYpSTOj1RlTlVmJIkl2EDiWnIMmsBgHX6wjMcju/p33H/5R8zQcb/fs3nYsDED97pDVjlpmNOPI+1xaqw8e/SY2AtiAqt0yY9efIKpG467A8HUZGXKyfMXlLFi/cFLRm952Gxx7wkDKo4o0hTrPQSBFXICohUCDNhizyEIruqGh35kZw2FMxybI1aAqQ+8ftjw0x/9jBdPnvGbX/8HfvP7X1K3B2rb0+uRxemaL77+HCkj0izh5vCA61riXLJazzhuD8QynZZbkDgluDWWcxUhRMB5y3xW0HU1v/3sj3RNS1YtKJKcnb+ljEvKxQI1n1E/bBiPB477DTJRpPM5qkiosjlnl4948uGOh29fsR16knRADT1iaFFZyYglmafEVhLalsPtNxzvDDio1qcoUmZywLsB1/dEKoKh47DXhG5DVs4pl0uiOMWpgiTLKdZLRjPQHw84L6iKOb7MeLY6Iy1KCJ6h2dPZgUyleBTCu/frsxo7GLR2BCeZlSv2mwOxNORxCs5hhxGvLVEWMfTTK4N2DimZloqEn342FmfsFNcTYur/xBKlFCb4aSFJClSsEET/f2X4Ly/YNI3puoam1lg7MpsVtE2N1iMn4RRkwqvXb/jF//Nrvvn6FXoYSaRgkSUYAh+9fMbhzRs6O5BEkriIUUVCMZtzNlvy4sNPePXNt2zuH8hUYHf3Dh8cg+4ZdUepMlzQxFnE8mRJlmUcD0cOOwgu4J3D+nHq+GUVWlv6vkcIiJOYwUxANmUDkZOs1k+4PTZs728RLoDS/E//43/PO2t5t6v54Sc/Ytjdcveu4aHekXjN6ckZr796RS4izKFhWeZUKibvDOP9LdZ70kiQxxZvLX1zxPQjCTFt23O5OKGaL3l4uEe3HceuxQUBUpEWM2bLgvOzS8r5isXpCc3Yoso5sqxReYKLYFGWbLd7tAPvI1brE7aHPYPVbNsjKonohcNETGRBPVLOJ0fP6A0Bh3OOTvdkqULaQIgiZJqg4hiXJrxuj+jgsUWP0CVKCGQSI4NCJTM++cmP+d1g6Y8tCY7VrCSMHbreUxY5WV5Qrc4IWcn2dk/fjJTVAvnBx2SrOSfPL6d96iylqkpUEmjbGqznk/Ixb7/+A2NzIEsUy2xF3+8wuqHrj4Q4RqUJpm9x2tFqjViO4AxJWeLVSJh5ZCSYrRaYccBEU1Df2pinz17izMibV1/RHfbYYWTsA9bCerkAHxjamn40zGcnzGfLiUmtE+xgGEbD2Nb0/QBBoOIULyVxWSCCR2s7rSK+F315Z8iSmGAtTviJOJEpkvdIGOcDThtiMaJ7+/0VrBlHgtM4p1FxNBH4rSPLcvrO8sVXX/GP//RL7u4OGOvJkoysyMjLmLgoMEnEiz/9MYebG8bDgSzJSGc5yawkmmVsdUP1+By1nNNubnm5+Jjt2zeYoeH66g0qgxB5ZrMcFWcM+ohKHKt1gR0seDExi0M6pSXsdAWBCGcVWgf0YDCdxbuYkFSIPONt8w7QLOaBT7/6FPH4Ec9//qe0IWJz36HxzNdLglAsZ0uqbAb9gLKOl+cX/OjZM07LDNF3+GBwiWQ/DsxWJ3gB9bGl3h7I4pTNu3ua/Y79YUeSZygB1niyKiVXEbkQJEJwe2j4wxefcdg3PH7ygs32ARFPMmBnNdYF8jinSBI+//xLXrx4zp//xc+pVhWff/UZ88WS+WJBlmYU8wXr01OCt2zvbzBdzf7uHuMc5ayi3fXISBCpmCjNyZZzmr5h39YkbUfv7vjk5UsiY4gcpGnGsWupThcQLFJB19UY21NUKVoG0jgB6xmPLaPzyLFlvz+SLU74+X/215x88iFRNTUAj5sbvGsxd28J2hDFkiiLyY1ADwdur/V0KgXDMLaIJMHZFFxABIWUCVImiKAwgyMkA30HSEmqMsrlkpCV5CpFdYb9/fXk5rm5AgT3D0f2+5okiSnyEhVlZJlDqcBicUaelfSuo5oJbDzSHfcgJEkaI0SMlBFeTA/ds4sz2q5j6DVZHtN3NX1bc3q25v7hBm80cZ5Qziu0dOwPB8Q4IGRMLY4T9+z7Kthu16AyB5EnSc+QUQWRx3jD1Ztv+fz3nzIc9pxVOVmWECvB6dma09MZq9Wc+bwiUxHLR0vG2+8YG8PoBYOryYRidBFxUmIji8hjhLHIIPAOdK/ZPezJihilBIO2eB+IRCCKpgheLBJiJdkdRox1yCgmcgl+tPT9QCQKbK8ZtMeriNG23O82JJkAVdIMA8/OL/ngxz/l5rDlu+srbr67IgjF+cUlVTaj8oK//eu/Zhx6SgU/+9EP8ccGP7SsV0uc7pmXObt6ix4DcjTM0ERhxDmPcyMP9w/M5gVxMg3+wZFFnjKXGFvz5qtrDp0lT1P+5t/8Df/0T3/PN198hkxjejuB1KtFziJf0NWWvrdcPHrB5eNL3txu+Kv//Cn/5m//C/7h7/89V9evmeUJzg2kiWQ+TxmVQXcJcpwjdIQ1EqMN1kwd6bIsccZhhEdWc9pmoFyvWRQJm6tvSUVB30qKzFOdligUURooVjmdtHRuul00m3u0mUDe25ue0TqSOJl6A8sznl0+YXYyR6cx27dfkhYVNtHUY4+cldhRYVqNMyMqVsgoQqoI/IQhciIjXV0gijXq7BFZWYLTyFjiBDgRIfOSXBWYpieOYhaJZ/P2NQ/Xbwnecvn8I272r/n8u1cs5opYWE6riFjBarlGSoHpR4TTSAxxbEkzyNMFUiwZB0c/ONT7kEFQkKwWaNWRzhcUZxc83F7j4kkRKgLESYJXgn3dcux6ZBSTqBjd9cTiewywf/nta6pZTDXPSJMFSnTEFkTsyBLBi2cXPLm4oCgq8jTF2pG8yji/OGOxKEnSDO8d/fYO7BlxrpGdg0RRDy3aWaoykMcKIUfefPsFftcQBwlxxNAzxdBcye5mQk2mCSTCotuBiBgjwIcIZ6aYkx0s3kpa3bI8qYjTFBtBvppjpODpD5+RpRmbzYYQTf9oTcd5Ivnx+gm/pWdbjzxapJyfnmJby+nJmh/99F8RxoHbb77FtQ15ouiONYmSGD2llco8J8sTxt0d968+o+kH2r5HSI/eJ8RZgoxjBmOp45TNbcEQIkzI+OAHP+Vht+fX/+GX/Mdf/IK8SEkWBdIb7u4OZGmESySLR+f86Y9/zgcvP+Lk/Iy/Xa85O5vz7/63f8vd3beEMD3tg0sILqNtW6T3hCAwg+b40NHXPcF52lHjiXFOcDIr6TAczEiE59XVFWXQDIctnT2Q5xbnDKkXCJkw9i0RkkzFkAbavgVrySKJNQ6sIE9zyjKja3YsvAXjuH59RVHFZHmJxNL10/dAzZY4009pLmdRWUpVViAC4ziCA+UilufPOH3+CbPVGU3TIPGkWUFalnRDRz80eKHpfU/veqRVlNWCe1VQlAXri2c83jmE/mdk7zCdJ5SzCdSXWIZ2i+8dMRArSZQIvBeoSDGfL2g7g98eGfsBaR3OaYgi0ixDJQnlrKRuD4xjx+xkPUUMVaAfR5z3ZHmBiFOcC1jlGMbvUYb1x6/fMCsTPvrwCbO8xY2aSDhCMAza4oTCioCIM+ph5Pr6iixPMMFRlC/JyohIZTjOGMxAkANRpEnThGxeIhBY7Tjuthxvrwm6R4WADAEVp6gkI6+WeKc47mtSpRgOR2Z5RDCeIANexSRxRqlijvuasZmu73laEUlJ0zYsz5ZcvjinHnuSIuH+fsfu4Z6A4cWLS6QKk4/VBxafPOLhOHC726C1BqfQWPq7JYWK8PWezAeUE9zd3XN2fgZphohiTk/O2bdH6u0D+/t3ZHlB33cELGmR4yXIJIYoRkYKF+cMUY5IFrz59kuSosL0DbptkMEhZSAYQ5GnlKkijTOKsmJ5uiItK+4e9hRFwedffsa7629QskebliSPESHQ1h129MzKiio3PPQbtpstiUgo8hxtPXFeoaKYKEqo+w7RNayyki442vsNydBTpvGEr40ETiiMs3S9QQlJqlKEk1OowTqMnVhF56sLdu2B2bLk8unZNCJMIvS2IQQFSU5RlEg9MHZHLAEZJcT5CsyIUBJZVeR5Rh4CkQc9GMrlOeV8QZSkJEVACjDvUzL7wwHvByIMUeSIhcQNA13TYKxAGsnb19e4tubFumKZO9ZlThILbNB0Y00cFGN3JEiBqnKkivGRgSyGLCJJJFVUEjaWxEmiYBmGjiydIYMnIrCaz6mPBoRA5YpBtwy2m97zT84QaU5vHMMwcjwcvr+CfXu3Y1HmZElGjOB0XdHVR24edrx56LAWhl6TpjmxijHWUBaKRhus8/zkJz9mvq5IKsU8jtCHA7JuEN7hugY3vichKkmWFMh0jjADwTnKRc7Tl5fMlgtev7qCOCItCqxrMVJQLmZoPYXlD7sdmUy5f3eDUILLk0csVivuHx5o6h3z0wyJwQ4tm/t73j0MNDrgzIB4e8/JMmMxS6lShck8eVLy9OKSrgm8e7uhu7sj+vADjvcHxocNy+Up+MCqWjArZuAl1XxBJGLa3RFteow19NG0SOBMh4wjVJ6RFvnU3VYKNVtiVYmNerphxEUpxfvIoulbwtGwmFXMVUWVJhAiijzBDA0P9+/YHRr2hw34A7GATEmitCQYwdvbWzbbmjzNWZQDruuIohgZxcyrBQIoS7h4+ozrq3u0HtHe0bc1Ki9oBJRVxTDs6L0g1Z40UYhYEWcZGZMbRltDVZQEF8hI8AOoNKE1A3GRooqEN1evMPWRqEhIi4zZ7AlaTtgXaTTJ2CLLBdvrN3C4g6EFpzFxTJJXlOUMJSWnSUYUZ/go4tAfcX4i61vnEMZhQoe3PUIGVCSww4iuG3a3d1RJRpHlHDd36Id3PJvFlHHOcOzonIEywiSeIqhpXKMCQRgSnyKUwGDQ0pDP58hMEQWHEoJj3+GcBGKGtkP0LSFYlLXYMJIWMSQJgx/IZxWr83OicoaXin7ULNvu+yvYwQZ8PfD23QPrRU6RSZp+4N39kZuDBKEIIaPXMSqkhJAw9A5/0yK5oapWfJwviMuMNFYIqZBpPi2jAzAi4sCh6UFlRElBUJ6slJxcnBBlsG3uafSB9eIMLwKaQJJkHF2gqGb4YSRJU/pjg0oCy4sVZ8/XeCDTihfnTykXJdZ77u8PbDcN90eDqpYESppOoXXHu9tbfvazH1Euc7KgCCGlUgmXxSk3d/ccr6/Q/Ui73bPpLXGacfLkMfOsxAWPcIH9zQ2xsyxnMxyB7f6IcwFn4f7hntlqiXAOrTtiCenQMagCmy4Z255d7/jyq6/4zW9+SbVMeVo942xWkooMqUd0N5CPPf32hgiP8AarjwzNFuUlujbEqqAbA6vlBc9f/oS+bTlfL/jst7/h9PyC7V2D8YE4EkRJzKg1q/WCoa1xIbBvaqr1Cb97+4YfnZ9z9ugJ9e6WRZRjCSxXJ3jreXR5ynH7wHG3QUWg0piyTBGHmm4csTaQ5xW7hw19NyC7kVeR5/mLpzRVzMXHP8FnM4ahQ1YVj568oHn8gjdf/Z7N7RXYAYLDqpyQz8kXS6qipK5rrDVo4TEEvBDEVUmSCBKTsLtpCSGwmC3oXE1v9lycnrC920HfEtojw+YOe9xTB0nbtZRnC6RLMVGHDQI3jMSpom0HDFAs5yTv5+qoCBcAHxBaYw81PkRoHRgHzdGOpHlMVqU4NxDFHudH0qpkcXZONp8hspwoycm8o5yV31/BWgTSC6ybOoo2OIwPjAbMhHFCxQmoGOJ4SpFYw3H03O8G/vDpV0iV8vjlU8p5RlxWU9IizUizgv5wRPcDy/OEaN6jk5idHYizlBBF/PGLL4lihe56XO9IVY4Qgn4MvPzwBxyOLcp1BAXaHikXc0QiqV2HiAXVRYlMI+phoO4Ed4ceFwqCOzAetjTHkZ0QpKmnWliMH0nnChlluEGx39bs3+7J45T7VzdUy3NePvuQb7/4kvlS0Nct3nryLEH2BqNbFJbD/o6smjGLYrJiRliccnrxnCiR1McNY91h3MjQtqjVGUYHjgxsO8P1uzcMY8dpsZhSTCLghxZfH9nfPtBnO2bOoscaHynmRczxrsZ2nu1dQzHzVCdnfPzRD1mcnvL27XeYbo9KBZvrPW3f0/txAoZFghBnpCrj9HTN9nDPuDccR02C4vPdhjBLWUiJcQ4VSbQdaPY1x9t7Yutp6z2dCBR5zmp9QqEEQzOSWI+tLZFKSKKCZydnjN2B3Xc1xne4SJGdPiFNY+ww7aqvTy8RKiaulhwfbjC6B6Xw6YJk+ZjBB466JThJIMFHEVk5Y3X2mGFo0Md7pNoxNHsyNAQYg0Sg0IOmftjSN0e884zaMrQN+EBaJ+AMVjo0EMsI6WMiIkYdSCykImK3r3EypjnUdLcPmG2Db0cCkrHVaG8Y7AhkeDHgYxAevPScPH7E/PwcmeWIJCUQEM6Rxt8j+T8Q/r/Bb5DT/mVWzpHJEetahAhTHtFE5DgCAu8lfZA81Boz3mPt7xjHnp/++Y+J8ooonV66RdaTqGjq/mlLf3+N23tEHOjMQH17z7uHLXGsKGPJfDWnPdTkRUlcZBx3LW3TEeuesW4hBJSKKGYlu8OOh/0Dq3lJVKSocsGbN+949W7Hs0c/IFItoTuQ2EDXdUSVID3LOdR7VIioSoXuDvS7Dd3DhtFFE/LF74kXCVk2o2s0ItqzPFdYbzncfIPCEEWBVg9YqXDvVyeffPADeuco04onnzzmN01Hu79naGvGesTkK6Lz52RlzsnFKcNwZFbmpLHieNiT4xiODfvdnqIKJGPPWMNsOZuE06bnuDswtBNjK5/PuHr9NXcP76adYd0zXxTU1weMMQQHBIcTAf1wT1nMsKbDO4NE0vU98XLF9WGPuW/402XJTV8zTyMO2zuCcfh2IAvRZITwhjFNGZqWLC9wfUeR5sgkYmhqxkFzKy3z8xIRFQz1Hd3uGhVnVNWcq2++5MYOnL38iNMPfsh8seTm+oq63oOAs/NLzKg5bneIpARnqfKCrh+Zr86Zrx6TDT352SUxgduvPuV4OBKGgRDF1KMnXqwZjMP3HWk1x4wWPQ6o4BmtxreaIANKOuK8QMqYSCqcdzjt2W0P3NzfYYzFNAP9oUHva9zoMS7gEBjp8UmElxMwP5IeHwTLi3MWjy7JFiusDwQp8NqAM5PN4Psq2KmgJkqh94FI5QjU9MeFgOn6KaAeoG1bkjRnVs4ZjMaHaS7rtEeMBmc1KkAIgihSqDwBPyCMo+6PKKmR0qJiibVhWlfTjiopKZKI9rjHjgFhPUWS0/gNfdvQ7XfoocfjiPMFXSfYHTcI56C32BAIomTz0HN9dUT331EmDtd22N4g/cCiqrg8XxMns8navjkw3DYkQhAFjesscZRh+z0mX5Eu1lQebHdADD1tbxDEFEWGEB4jY16+/BCE57tvv+Z49SUnl884vntHYjyn1RnLbEYzHjlqzW0/OUd1EuMjx3Keo7TGNh0PTUsWJ/S7gbw8pTo/I1mdcOhbdL1H9w3W9nRdzTAMyAT6Zk9sO/o6xphA19asqgLhDYtZweHYMxqHUgl6MPTdhjpVzPOCWCaksWK9XlJcXmC+/YpOdyR2JNYSYQLCB6JgiYgmEiETu9oMNbayU1AEiyAQB0+lHKG+ZfX0I4w1jMc9w2HH0xcpszTHH468+/pXyG7Dajl9vienFzgUAk+RFdT1EdcdKRcLum5g7DV90+CcZbfbsVzOKU8W6HFEa0PsHN4a8uWa/MkF6+Ul25t33L35ltDUlIcjS9PTbN8xHneYrpvwPG5EtyM+HElNCpGgcx6Dh8HQ3m3xg0ZrQ9sb/OhxLhAEpPOKaLGmOjunre/JVD+F9l88Izo5R+UlkbOYoUdGjhACZvweETGn6zVj00xPY+eniJA19G2H0B7pwZjpd1LFeDdi9AGlIpIcMhmznKdcPj4jSicMDMFNNDlZoEoFQ0teGoaxY3gvqHKjpUglcRKTlQJrBprdkUgkyEyi2xYzjuRpwn7s6fqG2WqGEY4sjkjLnHHQHI4DeVQhnWSsG/rjnvthJD6pKGLwkSHJBfNlxtlyTWxixrqhq2vs6Li4fIrVsHu3RaKIbMzZ4wuMSmjubzle36Cae84fPUacXOIYGf2IUBl9iBBWEEcZ427H1W4PUtHfXVEu5yQqopQCryRtCq/urrh6M6LiCFvXdMCgLdv3p1YsFIvFGRQLoiyh3z9gTEeeKA5NjcGTzSYZ9bFriZ0GYnTv0GOHbmrSIiNEU3JEivdrcy6Ah3EwNLbHBQtB8OTxY9r9njFM4XEvIobREIxH+EASiamTjUCKiCwrsNbStQYpYox2ZCJQFdmU+XWO5v4atZwhrGafXiP/QhJyhXUD48Mdd6ZDqIzLDz5h8fgZC0YOhz2vrr7G9x192zDWO7S2mGFE6xHjDU4K3inJ60jQ3L3DdwcSOXHFkuKcj3/yZyg5w4qCoxHMqwo7atJgaO6vOd5ds7u74d3rV/SHDcoNRKZj7DSRioje+3EiKWn7BmscrrOMLmCsx4Xp1Ezigny2Jq1KjGw4vzxn9eKC6PSckM8QKsFLyzgMIATWe/rv84TNYkVaVUTBos3EwX142NA1LcLF4MXk3REe4xzGeZSHPK0o40AROS7OFyxOF8R5jowmRhEyw8uEoByxKklFyn7zwPD+y2O7jjJPEKkiCMswDKgASkpM3xHyEuEs/dAxmoFqOaNaziAVtH2HC9PDZXvo2F/d8ei5JeiRMg5EQYMeiBJFNU9Iy8DypKA7HHF9iwwebS1kCVpFUGXMz5fofTfdNnTDenXJm9+/xeqO/eBp33pWxrE4m7M6OZ0WQOIMieN0fcHd62nlbr+Zto2Cf0Q6m5FmOWSKPpHMB83r7RZUjGk0Q9qqHj0AACAASURBVN8TzzwyjoGUi6cvEEnMoGKacSDJEupmx927a+yoyWcF9b7mWDcsVgXzLGa1WGIyx/27nlHrifInwDNF86SQxNHEm7bvo4syVszKGcE6TNcxtAONN8TvGbwKSSQUToCRE8pHqRQjFVGeIQWMbgJqx9lECqyPW2TmCLlFCU2lIob6wObNK4ZiRyEcyzKm21xz9Zt/5PDmK+Znj+mMRSjFMPbYcSC89wNZHzDjiPMO7ads62gtx6YlGkciHEZ6iCXReGB7/Q3NEQ7HDh8cZ8+e0PWaMA44MTWuRJITxRmbN99iDg+gNdJHSGL6esAYA0z4GusDuje4cTIeuhAAaLUh1h22GZmdZqyfX5Cslvi0IEQxATlhUWWM9iO9MYzfp1snluClRHhJ03YETun7HmfNe3C4w8kILwJCCuI4IlES5QdWRcWHzx/x4sNnqDydoNfGI6QgyhKEKid6uhpxXlKsHpNXd3S+QVtB0I4kEnjviIOagOXGU+YFBI8zhlhFzFczsjJndBrTWUY3ohKFR3BsexAKM0wn9moWk6qCKk9ZLguSmUQkmrRI2W/27N/1pHnKyZNz8pMlsiyw0XZiL8cRtW/55tNfsXi9xu8PjC7w7M//ArVY8u6X/0zd3FHVS/Kzc4JxrJcrvri+Qs5OOXv8CP32NdWspBsn945IBMiITz7+iPMo5diOzNdnvAoxX37+GQ/7K0yc8uRlwcnpI1aPznl33CKjgSRR9G3Lw8NmitrZkcGPZGVOkqYIGXH/sGF7t6M/HlkvKza7LaPRJFmCJEwAbOfeI1Ym9KWKEzabDf/nP/wD5njkcZIh8xyjR2ZpTpHlSCmxup+uiSphuT4lz0piFZEmanLk1C1eSEZryIqcbC7QwdEOHdKMlDj2n33KZrBEpsW5AS804/1r6Gqau2s646iWS+Ispu86UAkhzwhi4lj54CfKvx3xo0GMI9F7qiJIvJd0fcfr168QzGg6zU//7M9Yr9e8+8MfkaZlv7kG3YF0LM9OEK6jU2DrbiJ9CmgHix71xBqTAu/cpJ0M4EIgShRFVTLalnGMWJRrzh8vyeYFIp/GQtY5AtO+MQi0dlgvCOJ7BIknSmDc9N7ZNC3GWKQU4B1KTHwnHSYDWfCOJARmScSqjHh8tuTFyxdERY6TkmANMkiE8AjXkRSKSGUIlRDN14TTpyyfd5hRYlVGc9gQ9Q7lA6b1ODeRKcoyY4g9y/mMLI+RiUJEgmZ7z7FuKasCKQTjMKLSCBVNnWUhDOtVhiBFqYgoU8RpPOFCjGNwBlLJ4w9fUqzmhFQhkphyMadpBlSRsrCBw6Gj29yigiBKFT//r/6Oq/2R29//mua4YzSamY85fb7gZrPj0Uef8Pb2lteNxZTnXD5/ht3c0rU77jcPRGnC3ae/o3GCaH+kHjxGayyBXmtG7Tjs9gTn+Ku/+iv+h//l33K6jjk8HAnOsagqsjRlu98RxESrzIpJ/fn27Q3tsafMEkZrcW6SRSWxAuGwRqPdiFKSWMV47TF2pHmYZuUlUFQZf/KTP6F79wrfNKR5znK5pK4PpElMmqREUYzKUqQUOOFZnq0IWcbd7YY0qZhVFeUiZasbOu1pu5G0PlDXHcOxRkpP5zusH0i8x/cRpmtpu4E4jOhY0A2aIQiO2nLx5DlpkqNUQggRQkZYoXHvUTUqiliuVqRFTrE4I83PmC8fc3V9w3EYaV69xhyP9Lef023eEQVQcYo1HqGiaVwkBXoKUeHzDJkmeG0xw4CQUC0XGOexbcvp5SnzRYX2A4vTgscvL1lcniNnS3yaEgIM/ZHwXpBk9DiRJcN7rvH3VrBS4kXAS7DW0DYtJ+tTLs+P1M04PXkcjNqSRpLz5ZyikDx/fsIPXj5nfX5OVMwYfCA3FjtqvNEkKkE/3CDinHg2J53NydfnPPvXc6rTS9JvvuTu9Xfo3RZ7qDHxSEgF8SxHnS95/PSc+TyjbQ8Y63B4vMvohwPea/I4wclAmsf0rcbXBxAjUSrQg8aHmG1zRHWC5arA+4jF2QmnlyXWB66urimWC9YXJ+SzOfFThW9HCDs67dBKI7wjBf6vf/c/c/7hD1mcnqNjxWI2pw8xo4nIFnPWzx6TX17y7uHI4+cf4szAru2g24M31LsdRki63hG2DW/rnmtvMD4wXyxYnF0QRMR3337NL/7vf+Swe+B8fYEZB+yoJxkMUOQZKk2pdy3XV1dsd1uWy3P+9c9+TL3fcdw9kCUpH3/wIUJEvLn6hjSbcTjULGYLpIfbqwesE5SzCt3ULCLFerHk+u1bVNsQ6XHy4wnJxcUZVVFy2O7Rw0imFN4b8jSiPXT4fY80BmkM29sdw5hTnJ9QLRbkywWb3R19GDFdiwiw7wbKRUW5mjG+Z/suigw/dgxtDyhkiDneb7BD4PLiGY+erDipKkSak2QF1jnq45HlfM6iqgjWIYJnsIEsk6wXCVdffoq+30BTM2xfkUiPFBEyneMtiCAJIkLmKXmVMSsLWq0py5L2WHP79g1ZLFldXDAYjegz1pdnZGVKlAYsPbUbUE5QxAt8pOiGPc1xhwuBOM7oR8PYDxht8e57LNi8KrChwVlP8IG66Xl0uaKcLXD6gPCC0VgyARdnS549PiUrIp59+Jyzy0tCrDDWoTR0pqfbPdBsN4xNjXees0dPOHn+AoFBlGvi2YyTH/2AxYfP+KSuyUZNe3fHMAzT0DqJKMoUaxrMcGB+OmM0lr5ryKTjSZGC90RI9pstygSUHfHGvOfxKFyAph2QUiKBcdQkiQIEmgYzeNp6UmHkcUaaZwQV04Ru4kfFk6JQSU+RJXRvv+XzN9fEcUFWLGh9RJJnuKGm8S2/f/iOcrHktgk8+fAnVHnJ45cfcpMIkvmS8eYaZw22OxKEZDUvybOU3WiwsaI8KdFG8Pabb6j7DltEPJSSse+xdqSa5VhvyfIUhERry8PDhkdPzrl89JjVyYLLJ4/47a9+Rdve8e31t3zy0ScUVcHZ2ZrLRxcslyvur2+o90eO+x6MRjpPliakicJ4x/LknEqAtiOrR5cE49nuDrR9R1WWrB9d0td7IjfSbzeozpDImGEcOR5qhnFkdLAQMVU1w2mNlwanQNhArmIWyQzlUtrjHhGgWCSk84LrXY3znjzLSYWg3m6pdw33dxsunzyhXFZE+Yyf/OyvKedr3n77FbfXr9lfv8a3e6wNZHlJhKfd3EF9xLU1uj+CUsg4mZSXGubVjHB6yjgOIMFGAqSndgMGy+PnT7Bjgxc9QzCUl49JLx+x399SCcXdQ814/8AzMp6Va5KqQo+esR/xPmCUZxgtXdvTdz38y15h/2UFe/HsKe7Na/qmIXio2550f+T2YUOkHbGUxGlENSv58KNHnJyUlGXJarUiSBjGDmV74gjM2OP1yNh3HPc7RAiUVUFZzyZbmYggtwQVQSKJ5jn9XqPOV5RKEqU5cVrgvaM9bomGgkwF9HZLLtUk7ho7vLN0/YDIUxg0CVPyJ3iJ0TA6y3bXMisXeOeIo4ix8/ihpSxnZHHO8tGS2+t72ocD6ZmiHVtMsMQJyCiwmM+QEZSzGUGmNH2ApKJ3EWlWcnK+5t13n+NMjzGaP/7zBnHygjibMZ+VuKBJl8/50V9+gow8/fHI/uGBq7ff0bRHXr99xVnwvN7esnn3mvtNS9dCuVjy5IMPaZodox7JipSsTCnKFV3Xs9/XdF3Ls+fP+PjjFzjv8d5MJ0GS4FPBYl6yqzcg4PbdPYv5jL3dcXF+yeGhZrepcdaRRdPSxmKx4IMXL/GDRRyPrHPJix9+wte//iOLsyUzNS3VnHzwAcGNtDfX7G/upgkCDuMlT158zP31NfXDkcFZjmYgrmJG40nSbGowJg67r9k2U25YiIDe7Vi/fMS8LLnZ1dxcveN2eyAp58hI8rvf/Yo3r7/mBx9fEKVzkmjGD376c2w7cry7xxz26Id77DAwhClk4seWYAbGrka8J3+miUIKg7ca52OiNCJNSnAePQ4sT095c/WWTEY8fvSIzc23QAdeI5KYqFywu3pLPww0rcWE6aTf3L5h6S7R2jF0E3UCBcNoGPqRoR8mY9/3VbDPP/gYhOTmzZtp1GEc797dsN9sWeU569MTklRxcbHm8vKUOBXESoHRHN4H3YssxpuBNII4zxGxYn1xgdeG0UwC5KQYcOoIdiAE8N5jhp6+OQKedH5CnlXYIBFRjKxOiIqSsTvi/ZH9viWJYpyM6IaG3jSQBPJFhdUGJwKRiLGtRoaIcl6w2xwosxynBcNBMzqD7GJm65QkUWQyRrc9tdoR4oAZOlQI07VtNkNlESKNuT/0fHdzx+i22ChFRBFD2BOFbtJBCE/o9nzyZ3/B40crPvv6K7Jqwcs/+UtmTz5k+WTNqz98zjxdYkTGrL5jHFvMWONsjqg9ap1zSD2Pzk/xQ8N2f0ekAnGmCDLQjT3HroVIMD+tePL8EdoYRBBI4Ykjyc//4uf84pc9l+tTSpXz9ps3bA57UpmgfMzrzVu2myPZrMI5R+wdceR5dHHB3/w3/y2//vQP/Op///f8d//lf40NhsunH7EqYl6/+gaHpJUCSUxISqxIGW3PYn3CerFmvTghWLi+u2ZsNF1XY3uLtj0fPnuKcI5ut6O73xE6PWFcpSSJ5oy9hrRk9DHXdc1hCOSRZ73KmM9K9g/vuE1rXjz/iF//H/8rb//wW548eYo5HpgVC0zWcTi2CB8I2k1eo6GBYJgtc0ZnSdOU0Y6IRBBiN71uWJAoqvkSkRd8/PGPOZ0t2F+/IXjLcl3gc0k8FwzthsN+y0Nfc7JeUM3nOOP58rOvWJ3WJFnJsT7ig6eYzwlSIlREUIpBm++vYE8fP8c4MNrh/BVD05DnGVmeUVU5q2VJkiqqKkUbjRMR/eD49ttb9ocDWZYSi4Abaj54esHy4oRyMadIM4J1jOPkHfWjobUPJHGMNw6rpwyoxRGlCmTAWINAEt7PD32QRGlFefqIIQTq/QNpUlBEEJxmcAMqU1gzaTS6uscHixSeqkpw5v2VN47p6p7YOfb7B8JooTPQjnSmnoLrpSKSntF65rMFxaLC+JHBjjxsH9De0TkmPo8K3NY3zILBA+1+us59+unvuGoajDPk7ZFuc4d/fM6rP9ywudlyvN3gupp5VbKYlxz3R05mOVm14PWm52F/wxdf/JGnHz+iyhJELIhThYojjPNESYweRuYnc4ggEhEPNw/U9cDJ6QVSQDUrJl2K1axmcwqREXzE4b7m7vaOtCy4fPmI3faWZOyYh8Du+mv+4y/+nv/07/6O3avP2N68YnG6YNO2fP6715wsVuggSGcV1hrKMidRCitBOoPuW77abokSRXmx5K7Z0nUH5qvZ/8vamyxJkl1pet8ddbLRp5gSkZlAAoXq7mJ1NZsUbijc9IoifAO+H5+ASwpFmguypFuKrEIRjSkTmYjMiHAPd3M3M53uzIU6SrjEIlf6AnpVzz3nP9/H7BPHacR2a2zXMp0GlNAoY1FthzeWbw4j42ni4xi57TPjLJBTz/E8cNlqvvzsBV2TeXq4QwXNn/7pe05/3HCxvyZVK0yIkDLTMFKUQuRF8pbyokjJuSzL+ZeXnMeBl9c7ZK15990t+4sXDC6jhkC36iBDfz4idcG0ilWjUXXgw/0HpMgsFimBKBI3Bm7vPnH36chuf8U4TiDhMhVM1yxpJykYw494YNvdNRchM04zbp7JaUGNdG1N01ZUtUGqvECmnMJNkYeHE998+4EYM9ZoRJq56Cy7jafZRupNYZgc1lia1QZtDPM4YWyheHBToKSCqapnEmK9NAaKI8wBhF6YSGKRamEM6zdvqfeXuKd70vmetvbMp4lcElVlF6saBasUQhZCili7mM1jUVglUbLgppHzfWF8OBJdYL/d4P2Z6RDRnUXv1xSt8DHy6f4To3OMx4DJNdM0I8pI1QpKk9ldrrno1oTrl6xfZjZvv2JMiU2tOB3u+O4f/3eOH39LlhItG7bdmuay4+Ond5zHM3NMgKJRhtjfI1Lk8dM9643h9ZevEGYBvKFgwQ5bVN9TNxVaKKbjxN37O56ezkipePH6msv9BZ22HD/c8/jpDi1q7u9PHA9ncsy8/eJLfvL6Na0KpIfA2s2syplPv/t7Dv/6FXvT8+H3f6Q/rJljpH8405SRp9PAy9dv0MDTp0/IONBpaEiEuScTqXY71i8uCIfEZl2jrSHmyMlFzv09FoFHsrm4pGjLfT9x93Tibpo4x8wsNHME7yKEQBXPrN9ecPP2DUUL3r37iC2Ci1VFnm9RLiLSisFpJj8zjmeqzRZlDVpVJBdxOROEgFzYdStqpeidw6WM7tZUuwuOd0/suiU++aATcX5kvTaLd9YYhBJ0deHFy0umccXpdEI3NXXXsttecv/4yN3HW5xf5HC2qbExoKoKKRWIH5HpZFc72hC5vOkJ00j0jvPhgaZtqJoKpSVCwjR7Hu977h5HHgdPPxe6bk2WgrmfsRp80qQEw6mnCMV6o1FWknwgerc0nkTBmhapDJWtMZVFCb10l11AKYuQZuExSdBaEVALPW/TUbdbGC+ZDxsmlxlOB6SSyFzoNmvCEChxXsDOqXAaBpwJlK5CVRrV1pxPIyoKZIKhTCgjkUYQ5oQUi+NmrhwoQyiZ4ziTpOLuPLNCcXN5wXWdoJ8wzZp6s2Z9s+e/+w//Iz4Ljj/8gT/86pHz+YF8mDG6JiE5nSoetUGv13z+xc85Dmc+/uk77t99INw9IE8jlMz3v/kOlQov3rzAbA1123J0Ayl4mq5l1dXIIDlPJ6bBsd1uWa9bbu/eU0rC50Jxjsv9jg/vHzj3Z0KKvLi+4q++/BKtMlPO1KuWi86wsYmOE+/+83+E0yO7rWKzLbS6we8bkivsdMt8+Mg4O8o0YXVCGEFwM0lI9jd71LZiDmdWK4NpDf3kIWTGmEAa/vjpnmlybLzicRi5O42cQkY0K6YsKCIxzh4tLRZNoyzzNBCmM9urK4zWHO4+cbV7zcV+A2lCSMHk4PbuAZ3g/CwkRxV0XSGaQteukd2W+2HmxcvXPBwe8KHw5S//Fl8Uf3XzBYc/fs10/5Egeuq1oF5d0+4vGN2IRNPUhd57BjfRjxNZKpqYl0pBGo7nE85lqqZiOg8L90kvmeYcf0Tyv7YNVdOx2uzZX1wxHR+ZzydKDBRRiCVhkDw8nvj2/RNjMGRtadYdpmooOWHqjpQDD4dHri4WUp1t1wvmNC33q1SWIf56s6VZbUg8ayqzQkbJ2Q34EPBuUV9KoTCVxVpL164QlSUgFo2j3cC+sI6R/L4wuwmlFLpqkHKmoEhxQgsIrsc90xuVVtTGILuGNEXSHDlNM8YrbGWQlUKeHcE45slxSjO354nHaDnMPfepMJzOfPHigi5rptsn3t0eef3Tn+I6z6//+f8mFYt//IAWhbYRZOHouoreDQibMW2FA5xXdKuXvL6G/uuPvDQVQ57IEVzIHL79RJkSF68vkFrSdBWBvCzIIympkEKmrmouLvZkEZmcpz/0dErx9vqGWlaUrLm7P/LyJ69ojWU4PVHmnjok9tbyuuu4WUmadUM49dRGETTMJbAVBlVrpNGExxkRE4RAphAqTcZwujvStSsaW3N/eETWYFVmPh6QqqEpmu9uHyn1isOQULblh6cjvQ84qUlGkhLECFN0FLl4hUJKrHdrrJnZrBvwA+50QIqCbmroNPNwpndnRGrYdQ3TUw/eE3NAGMnqYo1YG1S3pt5eMR9H7g49kmqZz+uGFy/e8PGP33H77nuqNGP1wKpd0W5a0DVhDIi8EBNjiUx+Bq14PB55OvesN1sKAq0Nzgdygv480KRIVpKUJX+hHvYvFTqD0RVVs6Le7Kh2O+zhnuhmQkhL0gPN/dPMGCS6WaHrBikVQsAcEnPImLxkLs/9QKQioanbjpDiIsZVCq0NWRoymqI1kcR0PqF94PsP9/z26+94eBwoKJSSvHpxxeubK169uGZ/fUW1XhOA2SVghbn6ip1dMT7dEoYDuAmRFyJCPBaEkUgNyWeCi8xaU0xGa4VsNZiMG2ZC8MSckU5gqFHSkVRmToHT48jjPNOnhSDhwszvv/2e9vVLdKgwxXF6fGDTvOLdP/894+z54u0bYspYveL+cCD4TJaS2i6ANSIIWejvPvLdr3+FjIFOGzoyDqAIpvOEFI9UxlBVFes3e3abDSc/koNmPvfUyvDm5pqqqzgMT+xvLlgri84LcuVweqSuN3z2kzfLKDdGspT827/7b4mPd6T772joadqKoi2Ppxk3eoyOXPoKuys0TYMhMYeBceyRSUOQqNwQwsScE/vtiiIFTx8fuHl9jQT8aaDatVR1y+PpB1RQnA5HlBSsN2tqVRNjIU4D2Rgmv+BptbWU7LBpZi0Lry86pBacTz1WSup1hw+Jw6On+EiZPFddhYiG+dwABVEmSIIcapILaFNjhObtV3/NP/zDP/Lick+Miffv3lFFxzf/6f+gnB4wNtDuGtrLFtVIXJgZfSImwTgVclJcXt4wu8Dh4YAPntnP2KZmZTdM8cjTqSfljlzkstieMvLHDE4Ini10xlKt1qx2F6y3O2LfE1xPzCBQ+CTRtsOnvPB3lUaIzOw9IUPSmmH2jJNDWUndZJL3uFIoFJRWCydoduQoEHWFqBSlZB7u7/mnX3/Nr37zLVMQrDcXaK04Drf88dsPXO5avvjiM376sy+4fHGDlgqUxVQVpqqQpsJJSZYH/OQoaqTdtZTi2KaOuXdoIRG5QBb/v1jb4v7MsLiDhMCfPaWMtNuWMidWquYUJ/QcQChUJXEh8N3DiZ2UdFpRxUw1OiotceOB+FRzf/+0LBb0EZM1rz57ycfDAd9/oKiG9faCVWs5KE1sO4bHMyut8SmRcyb7jHs4Qtchuppqv8ZsVkSRiCkiSGhTUJ2h7SpQG/Lk6WyFEZLhPPD4dETJmb/6xb+hHwfubz8uq3pu5HrdECaLHCMpZr59/5H7o0dKzcuLBorEdA3KWESSZKMWt9EYKF4wT5HgErZpUI3G5Yl23aKrmkJmjgKrK1xI5Jy4XDfItGIezlx0ljRGvn/4hKwqSl5csC4kspLUVrCqDKtast92nMYBW9dsL7Y8PBzoh4H3Hz8iY+aibtEpIcWa1c0VImVOjx9ojeHh6Yj0kMbCSu3Zv/wKY1vGyfP5Z5/x7Tff8s0/fkd4+gFdEmZVo7cNar1iTpkQAqdh4tR7+pNDCI00FfPkaNqaWtRIo0hyGXtJLZicQwq98IiNQAYP0v6IB/bPEGQpUdpQtS2rzY7xcGCaRg7HnovrjiwN4+wIYoEjl1xIyS+lrhD0w8ATkuNKU1WGQQ6kGFltVlR1Tc6RkCPj/ETbrGjFDpIizoF3P9zx3e2RbNf044hMClUESRaMKAwfjxyOZ24/fuRnP/+CL3/xV3T7joBA2TVmFSjREwq0WVKEIa0SiidijGgpkRFImRQSJRacd+SYsFJjtMVHj8gFMSdKWbAoLnuMtXSiUESmrRtmETmcjtwKyUkpvnpzTWxqBu9ZZ00+zpzCHY2uON4eyFNASks6TaTHnixGQoSnb78noljZlk/3Z2ppWdsW54cluJ8LTV3xtqmR44R79wGtJJt1jROOLD3V2mKVZR4ca1PhJwdzxJXMOM5cvXqFmyLKGt7s3/L06Z4ynbn9/T8RpePVStM0mnn0PNydOE8FbTRuZZlC4uE8sl5pOl1jui3VSnDsn5jHiZKgd4ksI2d/5nw+YdoGtKYfJnKzJkpDSDPzMBCHA28uOuRlxeA9F5uW7+4K690OVyQP4xPGWNquRaRI9BMlgMiFw+GR169e0rYW55qlEWoMd3f3yK1iZTS6mnn9+RXONaTqguH0kZwOcE6IEKlfasScyKNnKpFyFQiPj6h0JmWHriyTUJRS0dgdT+cnjueeh0PPNEfmOaKlpp8feTqdefHqhmb1582oQjGSpmvZrD0UScgJGSR5dKi/LEr8Fx7YZ5FmERKkQmpL1XbU7Qp5PnEaBsZ4z/3jicGL5yX3DEagpVosYWUpZ85zIqFJSRBcIPmZeTiz2W2xdYXLGTc7UvCL+V0ZHu6P/PFPt3y8e8IXgzIVIWaKVvSjw2hBoyzxNOLGd0xjD0j++t+uMd2GiMSsLqgry2wrhLb4DMo4upiYnGfOE2VOSCQ5ROZ+pkSQQiCUwlSGSFj2gfOCLXWxPA/XBTebjpVx2JyJdUUUkVNKHENCP40M3tHlnrfrLek8cXqaqLoNuQoE5xnnzG9/uKU8e3SWFcZMj6Fa7anrjqfHM7vtltEvAfkqZ17sWy6tYL1bc5aZ890npN9gG7hq17iY6Y8Df/in36CD4CdvPqPZdWQj8atFaambitP5xNDPxDkxnB84PHlevdkjskXVZmFTRwcZ9ts9lak4Hj3n6YntNvL5q4a2WVGMIwlJFpK6qha1pZYUVVhfrqnXax5PJ37zu2+JorAdZuqm4XJtYT5TbKZdtaQieDj3WGuRSjMPDmMsWmmyj1QlctlU7IxF+mWZHB9otcTut0QhudltmQ8DqmgMmjANHJ/uSPot/+F/+p/53/7X/4WHd7cwB67ahng48f/+n/8X4/HIerPidHdHnk/sdppx0Awh4Lzi2u6gumB+HHh/+5EUoWlWVM1iRJyyWLhYfqYSFaa2aLO4bKsWqi4yTR6fFinh3I/E9CMynZTWaG0wtsLUizxX2QpdNVhbMXrH4enI5CMxLfzYnAIxRLarBucWMbHKEIri6Twv5jg8KQysVjWCzHq3w2oD4hmXiUKIinfvbvn244HTeSALgzE1/TxjzcLeaNsGodTyokT44YdPtN03bLZbfvLVV6h6TS4SoTrM5sVC7y+CMJ6oUqGZAt4FUkyUVIgxopQBlo2MECNjcSxbfwWe1/ZKBlGgpIRVEpc8cYoo3adOOgAAIABJREFU2bJvVtydBh5mT4yZsDb88mVHLIUQE27wDGOkubgkpkIsGSMts5tIPqKeZ4VKC4QUVF2LqiuUVezyihWGN5+9JudMt94QKCghqVAwB54OZ1bbHRrBw+/fMb8/0KL5/qGnvt7y6udfsNuseffhluk04dSJNCeqDCsp2dcV5plmefALvfD6pkOdApuVIcwTddPQ1FuUKHz6dMeu3S6IUb9Ij8+nMyFHNhcNTdsgGsHsHOM0orQk5by4WEOgVpJVW9NUFc57uu0Fp48/0Kx39JMnFpBKEXImz55GZq6u9mytpIyOGgOhEKODnFmtVkwa3r68REWFEYLKaKane2Zd88OHd8zzSJwdZZh4uv1A35/BWl5e33D98pKUHeutRDaFq5+84pt3d9SbC0y34TwFsjCAJuWIbZplZdHPbKoOrwRCLvgdVdXoquN4njmcHY/DYhHQKiOsZDr3xL9sDPuXHVipJNoYTGUxqcbWS9e4alqaumYKHka/iIDyIslKgBGKECJ1XZOnsHTREDz2jpIObBrFqlZoudgETsczVVVhmmW8YuuK06PjTz984nGIxCJpqhrvwwLnDgFUIeVENBlJQRPJteTu9sDvfvVPNFZy8fan2GaNUBVJaWSBrbVMT59ISLoA2WdO/oHoZ4RepLsxLaKokguJTBFLA04IgVKSUBY1ZokCYyRFgBcF4yNGAXOADOPsGFVG6R22a2E1M7pla0Z4T9ttl463VZimJqbINDlyKazaFpcS0zzSdC3SFF5tLtjsGqISvD+c+M///GvmJLFdy8tXN1xdV7xaX5N94vT4xGtVc/36DTJExsnx4eMD3w0Dl1++4aptuRseqQEVI29fXLARho1MiOCYU6TdNFRtRdV1fPnVnvOx53QYySFhZMvw9MRUMnqXiC4wDj2NtHg3Iw1Q8tIgS4aiBau25tXNntkvIZgQPB4BRYFucN5xOnvmYnkaA3fHM2iNajqKAFtXxOmEJi+0ibNnfXOJ0jV933O1X4PMRN/j55HPbt6QxgmZC2nqyfUDv/r1f0RZz9XNJb4/UWRBVZ7t1Zr1lUY3nmE4snvTkkUhjAm73aPbFbN3+DKhtKZtO8CREczRk6Sg3W64bCzBT+jKkLLkfBi4e+i5PzmepkSMBasiTcoIpeh09WMeWIWtLFDIYsGC5v1MHgey65lioBrcMi7JEcgIIYghcAoTtqqxVQtFMYwnhJ/JTrOq91hbkXIhp8LkJsZ55qp9gVaKDEze8/HhkafBEbIkz56clwXiHPPzjuFM8hGBhAI5KjbNzHQ8Mh4+sb25RtYtuVgSBtVuULXBaI2WGqNqdJZMx540eUQsYDUgiSGipEILBbKQ4/Nfl4LQEmU1aEV5llxn4RFJQkiYAiJElBRoAeN55CQlL26uKUVwuD+xbVourq44Hk+EksmUpXoRC+fKSIlIhcpajFZkGdhcrJjCiafJ8zAHXLVmztXSrfz4yPvvf2DT1Hz19idUs6MVgpdffkZjNfPseffhia/vPnD/26/ZX11xWTTXVUNbZy515KJrEG5iPE/E7GgsnL1HtSu08TSVpHSC2Y0Ed0+JjhwLOTgEhWkacPOA1pKuM/h5op8S9aal3jQ415P8BCEjUaRpJsyOLA3zceTh3ON1zeMQ8KZD1S1zcPh5IglBVJKGiM+BalXT6IrLV6+IqmA3G1RbczzdYxrJRjaYpuBjYT7NaNPQXRjoBq5eXKGmFj8f8WFGWoWqDXIVCZXDWoVtJC4UhpOjaMPxdEK5gd2+o0iJ8zOPT088Dj2bqz2bywtkXVMbhfYL6+p4HHh8cpz6yOBhLgopxfP+uMZWAvljbuvYypAEVGoJSWghkEURw9IB3oTM5ALD6Ux0EwlDykBxCCFw04x3AWRBlIwRAl8Ufch05XnGNkYKBW0E42miJEU0A0/TQIgBXAQUPucFBrfoSCFFYsqLKxaFRZG8ouSGuu5Q2i5SXSK5RIQCg0ZLSywSqyo2u2tKguPpEXJi+nQix0zRBcFSZieZEUCRmfg8NGurBqnFUoFISYoRmRa0ijWKF2uF7GdqI7mxhjZI4uPMcQA/JmSWWKmZ+iPR9+SSKBKoDdv9ipwVITjyEAmjpDILnP3dnz5xd37iIQicaUAorMh0XUVjJTGyeEzPJy5Wiuk4EoLixfULri8qrirNm43m9vGINA1Ns1r4ytst5AnXn6lFoLMKaJhPjjk5xOnE6e4D24s9UknK8wdtu7skuQgIZj+jtCCkiCzLXTaVwjCOBBIueXz2+BjIRZKJUArmWcnhgufxNGIvNggVQURsZchCkFPBaIkWCVsifh4I+0uuXlwTdc3jcCR4z2E8s2oUq82eWhuSC7RtzdPkafcb1tsaVKLEA1QSYRS1bBC6II1C1RLbVYRiCSXjfQDj8WXA47GqJhm9oF6U4nQ+Io3l5s0bTN0yZ0GKGVmgPzvuPp25Pzl6n5mSIqVMLQuttZQEUwgo+SMeWK3t84u7LNu2nURKsyzeBs/sFpSJmx0+ZvoxUsoCpFqq5IIoCZEzQgkQklzKsnCcyzNEXFNY7ndPxzNCWXTJaC14dXPJ1H9iROJzwcdEKZmSBaIAQpASKJHoasW2Uxhd2FzskfVSYsbo0XVFCpFUIm448sPv/8CnHz4Qs+Tq+pLXX/yCe1ERHLjjGZny0gCShZIyuaQFOaoUOWViTuQpobWixKWqMFJgjKVUmsuqBuHp6oZ9bcmDwyN4yjM5RHJKvP/ue0ylURaklqy2K0qOuHkg5sQ8TMQpk4KmzJKgE7E4nA8ovcK7wOgDFIHJNUZUy/aQihyPR0zRiOAY+8L9beLF5Q4tHK+2NdbPpASVLswxUstCs77m0c30w5m2Es+Il5p5mBElklNh7M9IY9DWLKbAYUYLyRSmxZMqluRbKTBFj4uBJCCWjIiJmAqlyGWRXkqUVHStpRhD13T0WfJ+nDn2J2ZlEFVDTouUraJm3Vh22x2rrgFd8emp5/Dde6aQOJ2PbFeKf/93v8SYwjidKSnSNiuqLhGINF2FscvdswhBETXKCHJefhpIiXOeORWSkriYcCEwuxltDd26o1l1+Jjpthu2V5cIqdCVBSFRSpGNwYeZ+8MTH2+PC0Io5aXCo1BVGjCM0wyicH159eMdWCHUAgUjoBAgJbrA+uKSFBwhBoKfcd5RiuTweKKfHJMPpOcXmecPSMmLwDkslxtSymxWHXVlCSEgjMBWFamAFRJRMl0lWdUKkQUmAykSBPz5VyuERCNZaXixbXhzs+Htl294+fkb1pcXSK2J3lMYAFAkzudHvv/TH/kv//x7UqrRpuJnX77hq8+/IgvN7dffkPoJigSRkVmS08JBElIiUeRSljRRzojn+65ScjF750hXa9Suo7WWtgjc0RF8WoLnRUBastA5BkyS2LrCzwGZJcM4UijM5xGZNDlL5ujYvNyyUgYzwOA9ySX85KiqluE8MI8Dp7OGybNpCj+5fIlMhtgPnNzARb0gR3f1hhWR4TxSk2nrmtPDA7tmj0qaUx9Ic0aZQi3lEu2UYsm9IqAIZJH4aSAOnjAHattQfGEaJ1zv0EIjhaBqK+q6JRdwPuG9x1QVJS3EQFGgkDGVYhwGKqM59w9EH9hebumdR/iE8B6RIslJginMlaC3mnnqORyPqGrD42GmrvecBjimkeF8RMuCCiOVtUxPJ27eXNOtdiAUwlh0u8V7TwyO+/sHzg/3IC3CVqiuYhhmDqcTp3FAOk3VtoQQSQWUtWwv98DCyXIxII2mIPARTqPjPDkGB1POFDJWSbyCYc5IWbh5ecOrL7/68Q5sLqC1RhUW47WQ6CIwKdPtLtnNE24eGPozbnZclkJdWwYX6PvxOUr4PCIRBYvCaEWKEWtWaG3JReJ8JseIjxnrIzF43DyjBWxbiwqZ8+SIImO0euYfs0DEhKJViUYGGpNYryy60fiSSG4mpoKJEWs0qURKChijCT5wPieaVvGHb37g4uqCn/3bv0Mbw+233xEnh4qZ4gO4QMmS8hwjU2J5eaNf5rglLXd8N02gwTQKW1fIksl+puRMfDbzLeOjpeKIY2L2Ge08YhxBs6xdlYwVBjc7Ys4ICylPSGtpKs1pCgvoLQaUiaQQmMcZPwpaJdG1IvuRTWsxlcKISFtbrN5QZUvUBl8KaZzQQqCj5P0f/khOjjwlvIxUjSLgyGIZAdlKodC40eOmQI552arykeIEyWWm3i3y6hIxlUZkjVKaVPISzWO5l0uhlnANYimRQ8RNPbrqUD5w2VS01hJOPcJHNsZSKYEpiUZK5nHiQGSzaunaBt005JKZXeDbP92hFcxT4ObqkuR7qnVFZTJJLbNhXdfLqme12M+9D7goePfDHTELXrx5TVMbYilkIZHGYO3ycfch4lJCKEm32RCewXUueEQSxBgZpoXGMvnM7AtRgFTLB38Zc2ZevHrBF7/8Gz7/xc9/vAMbQkAKsYwahCAKgc6ZZC2mrmk2G1a7C3ZXV/SnI9HNGCVorMJsOs7HnpLzUqcXqJRCPMO/hBSczz3n84CtKmyjUFaR83K3zTETnGPVNuRxxo0RYZeZcAhx+SNrSW00V5uO631FVSuUgRQ98zyipEbIwKoToBXee6TSXL14wc9+/nP+n3/43eKSUTW/+91vubza8bf//f/Ap5+954+/+S88vPse5GIxyyFSEgQXEFIghaT4pfyrq5oQJ0L06KJJc0DXmlLy0hGuNLIUsk/ktAh+U4zL3T4VvEuIkEEWpJYIKYgkRFkUGKYT1K3FS0ljK2o50SqBaCuUhHpdo1SNUJlGghYT205ytW3ZNC2CSNVYbOmwWTPPCeEczkUKkVxACdjvtpwe7xFSMp090QmKBVUbEhmRMiUuuKAFj1qQUZNyIXjISVJQz2IxsYDKBIBEKoMQMLkZWQolL1LuIjJVK5CiIHPgslGs9hccziNtDKxthTEGLRfXTy6JKBJ9ApsFtlkR0szV1Yb372/54f09Uihm51DmgjBNRJF5/WqDNBrMc/RVaFL09NNEP0wIbdF1y/HhiYJEIjHG0m02SNtQNS3r9YZEIc4TMS2Nx2mYECUjisDNE8EHhmFgHGe8X4TiWRaEZJk8CMHFi5f88m//jq/++l/x8rPPfrwD68YRRUEbs4DMSkEIKCVRBGizpJ/Wuz2b3Y556DEhkHJAysJuVRN9gJIxWmO0Yt3WVJXFu2Xl7XzuWaEwlXqebcLh4cTxcI+bIjEIjBBc7zekIujHiQBYLVmvGrablsv9auneEQg+4IaeGpBVs3zFn9mvSgDKsru+4efCcjqOfP3b3zOeTrhO8OnDLS9/9gu++K//G7YvX/Kb//T33H3zNYwzRSwvqFIaESH5BApiToubVipS9KSyBLvRGiU1qAz1kg9OLLHCIuVzFrsgslzu4yUhREHJjNKSIDLKKLr1mvWuxiXHMET8mGi0Qa9rnp4JlmslqK1EaditLS9fXHJztaJrarTWVPWGqjYIUZESlFVF/foSP82k2XM8HPFz5GH8RNIgZbWIzoYZmxVWQPaLP9a7gOD5I14klayIYsnWKlET04R8Jm36MSB1Ij9PbowxyLQchpAywXmsNaQUMVZjK8Wr69WyVFIcF5uWjF4sgDEiVhuGaUJbSw4ekkGXSI3Ez45Vt4bnxudTP/Dp8ZH9puWp77kp22XRfg4Y2ZBToOAJIaCUpqoNL1+/IQvNuT+jjEJYy3qzZXVhl/AQkLzHGosoSyLOh0ARDqEN2fkFfRMjMS79HCklS1+poJRkf3nBX/+bv+EX/+pvePGTz2m32x/vwJ6fHlECJMuI57kwJsWFuOecI8aAEFA3DVXVEJ1booZp6Q7b2hD84hxddx21tf/yxwbBZrsj5YwUkjAHXApM48w0B9zsqUxLVS2jmJgWgoNa19R2iTlWlaBuDLqqQFU4nzgfT0ipiBmk1Lh5Uf+t1ivquqa1FqMt/+7f/w1dVZj6ExdX16zWa8aQ0UJy+dlb/jUZLeDw/Tumpydi8Egpl9U+IShCEedloaCpDHVdM3tPmiPCZoRVxJSBhK40tW6Xhf1QmGfPMHpKeu7QPXOXlxoUhIGqNlSNJZEY55nZwzQFTucZ1TbLSxsjupJcbTesNhVCOLqVQdcS2RqQmmQVetVR1Q1FKJoXF0hpELHg+n5xBHn48P6e1U3gT19/zzhGJBqCoJTlaqOlJLq4pI5kIcXMnEZCXJp/UuolQYUg+UKYl+BFlgVpJYjl0AqpGE/Dkot+/vBraxCVZko9cXbsNi39nDnNCU8h2IqkGnxTcQqBcZr5+PRIKwqvGsnaKJpVh7YVicIcO2J2mHqDFoLHc8+lu8AJSaUSShuC65ftJpYPrzaaZt0xnHumYSRNM6rL1GtDLplpmhcvbFkyACEEtNaEEMh+mRKkEAk+wnPgQySeP8SSzXbDT3/+c778+S+4uHlJs96g6+bHO7BuPNMrSaFQ1d3zVzUve6ElQXSkeWDuz8zjAAKk1thcUVDEskhstdWU4JB5aayIIpYXWYCy+nmGu1jBQSCkpK5brLHY57+7lksMsanA1stqXcgBVVnWN1dIrcklI5VYhEVTQAaNNaBlAlE454hzFe1qhdCG7fWa/+rf/XJpgNgV66vXtF2NLJC1Yf/5T/kpUG3X/PD17yifDoRxJhaP1npRNFhFiBmRAk1dL+VRTogUKbFQckAZhTYS21jUwh2knjVSgp+XlyUhyRK0UUgJTSNpWk0unrn3uJhIWHwJTCTc6Eiyoa4V1b6huV5hWoGyFX61JuxvWN+8QGuNEQLb1qQSiC6giiamQpIwVQ3nOWKqivZthTpO/Kxp+cOvv8aahhICyQ1kPyFVQRYoEQa3rIvluIC1EZARi8lPaEQolCIoYbkCMC+OmnbTks1SbSBZFvCNQrWa8zRQUqLVCukyQ4qgDQ8+4CuDjpmMZsyJSQhEzFRSkEJBtxKpA6pSfLo9MM+e/X5LLg7VaoIWDBjaak3EoDKcD2fWqw4fHZPzKF3RbVc47zmdeoouNCqBXCq942FkHGeEEtimWp6VIYyOGCNEBRiCByEVyEAui5eqsprr6ytevn3L5uYl7XZHZSuqvzBM/JdFE6UgRr/gLcQSUYTnL8fziCaEiJsm/DRCDli18GpyASx47ykpk5D0k3s+kMsWTEgBbTR1VRFC+JdnLnkpn+rqGdyc/yVpJKXEKMV6sybmxeaOlEilGMeZprbLnz8ljAVBRlcV4dlZi1SoyS1/agm7/ZaYCqrdUW82IBePkMsFiWD/6nOkrmjWFxy++4bH21v6x0eK86gSkApyAJ8i+c+8ZeQCljMSU8xzZNNT9BJXU1JSdR31qsW5slAHpFjmxsljpEBryTCcyLMjkYn5z4chL8vXdoPjOR22a5C7NS++eMWLz15j2zXFGLS1KClQFFxwhOHAuT9TQuT993e8vz1wHhyzS7gQMUZzvVrz1fVLvvjrn9H3Z2LIbOo3fP+H3yFKoUSPjwXbrnGTW/y3z0seuSSKkGipiSX+C4c35UgumeAT0idEKVhtySLS1PVy2HNkngekFBhtyUKgkiQ6xRgL0zSjs0BIQ0QQM2j93BgymqQUmczUnxZ3q868/OyK9a5dYqyrBtPtUfWa8iz8ClEwzovVYnJLo0wKi6kaHm7vgMy6XRGPE5Mr3H184OFwpGpqbl7dUNWGIjJKKooSi+Q8LaAYJQpaZKwUyMqw3224urpkf3HJarOhajps3aKN+fEOrHczShtyXHwgMWWsMRhTYasaU9UobZdxhxRoyaLjKBrx/CcRQuDmZUqSyKQscCGT/EQ/DKzXHUIoTFMtGdMYEBSKZJmVSUWMmVoZQvAEF5bVN6BqG4zSnB9PVE1DW1fE6XmWuGoJdUTmjhLjsuIkBX4O+HmmUQWVHTk4tG3ZbAzaVghjQUqE0mRA6prdmy+5ePmW80++4Ptv/sD9++85393ij2fyNCP8Il4qJS8NhpKRzw0GIQVaq+ddxYUFtLvYYyvLPCe8F8+Jr4QS4KeB2mrOpzNnNyKzZL3f0RlDjcKsWi5Mw7e3J06n80L73wh+dvML1p/9lLTaMWlN1TZEKYglEd2MwmKqDe1eMRxPfDqd+f13tzwcAvX6gkM/kfLMxh5o2jW/+OlL1q5BlJrh0SHbFamfmWdHiCwA9rhoR/NzmMU+N4iEFChT0bYdQinGeXH25BIpZRlvGW3IUoAoSFVIJdE0FqEUBUMyhuQcx5PjGBegdwMYU3AxElJCSIUr4KqK5nLL2hbwM0aPmDBi2kKz7Zaqr65IyjD6iBCKkArCmMXhm5fsQMgBpQSr9Za6W3H3wwca9UTBMAU4PPTcfjpi7IQQFltrYnk2GzQNUkNMCUlGlrSAB62hXrVcXl5wcXXJbrejW62x9aIGUfpHPLDnp0eUlMvcSigoBZ8SxmhsVdO0K9r1lqpdUzUtOTiWEfSi5FhuqWK5ohVBLoEkJEppvItL1naaCSFjtX7uLmZijAilcT4yuYnKVkuIvEhEfE6gCEcpivE0E2Pi5tULhn7mcH+LUYVKSNq2Y55GfIjYqoYQMbFGi0BUiXHqicGz2dfkAjFF9KLYA55LfwlSV+SY6N58ztvNjvryGnd64vjxjuHxidPDAfon0jwRgsPIpcmSnq8P/nmGaxqL2XboXYesKtbKkouiZJiGEVKkSw2qZLItvNkaitZsrq6XJYflqss0J77++BEpA21n+eJnn/HTv/qKzdUVWVVIpdBWkVNcGkSVQRaNcIsqYo6PuCRIRfPUj8ThCSdZUkXAr/74HauN5ovPL2nqPaaduL+9ZwiPtNuaw8MTbpiWDLkQaClZrzqUErRNvYylumaxzSMxjSHlQA5+CS3IZQ4tjUYZmOJETAl0oetaxhnmnHkYJh4nxzlrimBRtOSCj5koCgVBcB7wVI3kulGsl78GbdcQs2Ny/XOTCeYpIZWGvCxuxHlmdA6p9HKIvUMITy4CYVqGMfGn/o66XjOEwunsCHFR1Hz69ERVSWY/sr++RCizCK5SxgVHyZm2adBVS7vZcnVzw/7ymu1+T9OtMLZaGph/Dir8GAf2eH+LFtAVUHLJ+IqcQEJlLOvNHj/NjP0J7xboGUMPwpNi+pcXX7BswPgpcR5nmlzQxqJ0hZsnDk8nrNVc7beUDEoZYiqcB8d5nPn/WHuvJrmuZN/vt9w2Zbqqu9EACNAMx51zrtH3/x56UChCutKZGRKmTbntltdDVoNzpZdRBMFAEOwIooHaO9fKzL8rdeF4niFG9huZbUMqjE9HdBEz8PGyoFShpsB23TK4C1mL6ZVuClVplDaS+VkT5+FCDgspRfptIgYP04COBde2lKhpGktVilSvfyZj6fc3fL/+N9K8MP00MJ9nvv7yK+X0xOX5M9P5GRU9JQRyTFRjKBoxk9vv2X78wO3DA6kUoVamwqpfsXeOEgKWQo2ezTxIbIRtqN2Kdr0mxURYZtrzmR///IHvcPz400/86U8/st+vsc31JieioqeGBasVOUaCD8zjSI4Ll/OIM5a+b3Gucnx5ImiNblu86cW69cuB3ftbbj/es7lboZs1n/+Pf8Dkyf/338j++nuHQPQL/apFU1A6oShgA1kpus0GlS0xFOZLZNU5aDWYSrtpySqyRMOqb+X9QZNV4bJ4hjkwh0hUkKikFHBLkIPLGaG0Fni8eOZ54Pu7NX94+4bb9Z6mr9QchIdcM7ZWtGtQOotQJVemyVNxGBpeng6cLxdSjPT9mrDA00WKum0VIVeGGNG2wRihSy6zpwJGO0lkzJXzMDJMC67vaboNrl+ze3jgux//wLuPP7C/fytphM6hK/j5d5TXPX36B1rJKWq0RfUV3TiyFu1r1694eP8BY+ScMMZwfPpCMBdyCCRVURRJ+64aSss8Z47ngdVKLEJKgRQDl8vMqu1prUIpKAWG0fP4ciGUgjOGlbWEmNm07hpUnAlLJKaEjYVaAq1TmMZgJk8yF8wSMG1Du4qs1mtp2VRhmj0xLHSNo5TCPFzIVaG7SgwL696SYiHOo8xcTYdebVBtSwwZjGP37j2be8PN+x9p0sh8eWI5PXJ8/BU/nJmHEYXGOEvT9bi2x2y2fDrNnIcJ72dKSjSN4/13H7jf73DO8umXvzONM6vdjt2777G7e7KyqFJoSoKvf+cv/0uDaVd8eP+e/W4NWuYyTcZpBUXCgo+nM6eXI37xuNbSGEujLG9ubzG6oW0tf//HF17OC1OGvmkZhon/9X/7v6hW0d9+x49/fM/3t/fc//Uv/PK//5/EtSGejqiYZBTIke2qlTiK4DHWsL5b0W83NKs1cwjEeWH/sKLmSCBTdaHfrVBOkWpF24Z5WricFg6nF16OMymLJSm1iMSx1t9ohEq8QcBANQyp8mWIFI683xX2a0NrAyUkdNuwVj0VJe4mGIbLmS+fTyxLxuiGw9OBYRhIKWLdQEyGw3GhVIX2E/maMnd3u6dtDCQv6e1dS9M0KG04XwaO5xnTrFj1a/qbW27fvuW7H3/iuz/8lfc//MTqZodrW6iVFBb8NP5+Bfv117/J0lsyluC2UmovUI5xaK3pV2s+fP8HVqsVb959x6e//w8ef/0bw+FAtCPWerT3aC0StVJbci2chwt929F24g3sfeB0urBqHW3bUFB0bUfbCP+2VshFEWIlWLDVUFQmKE0yjqw0q/WOfiX2G8pYnG44n0dcn9HaEa1nyhlTKxpDv9pgrSScVa2oFFqgaoWPlVSDGIgrTTGOFRFde1SupGpJWoNesbnbYtQGe9PT7Na43Zo0ngjjxPl4hKqoaCKKl6/PPD2fSVXjrKJxmlAiTy8HhuFCSZGXwxNWK277DU3RdLolYFBGkfNMf/fAj2/e0a42tFajuc7+RaFzYPELw/nEMo784++/8Pz0TOMavv/+Pc16i0qFOM98eHvLw9sdf/1//BJqAAAgAElEQVTzD1zGyN+/HPj7pxdCdVireX488be//4PV/T37N+/ovrvjz3db/vBffiYcDxw/fybOM2EemM4n9vctq67lZrelu/mnXUCBeRjQSEzk7D260WxvtyzJ431G6YbL9MhlnglJLIOMKaIdfd04y3ZDOORF3qdcEo1tMbph8JEcBqZh5q7XvNm1dENhd39Lu85QIsoKC+rz5wOPh4Vx9GjlSKESvLDwlE/4FBmT8KDd9VDXwBKDBJIbhVFOuAHjgq2K02nEtmtubu+5f/+Rtx9/5OHDB+7fvufm/j2rrRRrLYoYPGGaCPPvGOg8PD3xdBVqSwKcZlVvafsVVmlyDCQUbdexf/jI5u49+3ff8/7LLzx9/sTTp1+4PH9hGQ746Yy2CaUqqEKm4KOAzNtO1C/z5FmmkZvNGuss285S92uOw8Q4BZRS5KoIGdTiUaqirYOi0V2PW6/QNuOcEDxiKOhqSUsht4kxnPBaNtBN14OWB5HHhRAWlvOJ1fpE1zUseUGViK4KaOi6LbVobDuy3m0wJlHjiWE5YG/fQdfhtitca+j7nvnwlZFH3BX+GcaZL1+f+Ns/HjmeAz5r2q5lv+u4v93ILV4rS4rYxolZ+35H07dYjaSaV6hO4ZRAQlVrSk7EuEAMqJyZzxdOxwu//PIrT4/PvLy8kGLg4eGBOAbGcKHWgqZws11hGodRhf3thvuHHauV4XIayCHQmcLly6+8/G3L2mpqt6Yqhd5o2ps3fP/9Aw0Q5wuHL59xRtF1LaZpJDOngqmakgv9MhNzJOXErTHkKlBbmSY6Gl6eznw5feLgDYepULKiMYrOKkxSGCSZrghpjlwqRoMqBVNmOuPIuZJqZa6ZM4rVSpIKl5BQlxPNasPx4nl+mTmcPc9LoVTBz00nxm85BXQphJQJFGH3aeHUe78wLAub1VbwbSrTPDPkE33IuG7Dux9+5v1PP/P2xz9x/+4Dm+0t69Waplvj2oZSJP7DT5NIC39Pm9PxckHU25aKvdLNqpDX15V4lQZVVXFNy6pb4xrLdrPm3Xffc/zhJx4//YOvv/4nL0+fmU9HtB0wzmK1ISyeeVo4TSNd2+FcwzwuqHGiaxvWmzXrvmXJhcknUi3UlGR97xNWK1zTscTINEycLmc2vePd3QZlHGEWsrnSivNpQKmMIdO4hvUmk5PEcpAj43lgrjC1F1arhpIWao7EUKi1QZsO2zl2dze8ff8Gt+rZ3lraWlFhpNprASWPouDc1b9qmZmmha+Pz3x9OnEcAn/78sKSHf16zefTxNsp8HIwfNivef/2lj9+eEuz2tBt9uh2hWsa2qZF1YIxCj+ciTmQkZe3ZI9KkfPLC7/+7ReOxws5i7nd9mZL33c0zjIMJ+zNjnolow/DmW6zkvnTNbQrzX/8+5/xS+Tr508MxwPjdOZ0+Mr6a0e32oh8zijapqHrNtRuhW40tdUcx4GmBrZ2R9e/xXY9+apVdjlhUkSVjCkT3k9M08ScRqbxwt9+/cKnlzOHY+RwXDBALoXGKBqStNHXHGJhECkxLtCVjdOsGoTvnQutVXStRhuF7VsKCr9kJj/y9TjzfA4cp8hxTnSrNTUKbq5KluxXICmFz5WqNClVzFX8UCuylCqVUjKpVHRVuG7NT3/+N3788195/9Of2L39jm6zw7kOZxu0ttRaWfzCPA0k76Fkcv4dE9hziEyXAaVfi1Vu25IimUyt8sqEGGlyRmmNbRq0dTSrDe16y839G/bv3vH517/x+I//m5dP/8DoAYdm0gatDedp5rJ4WmtxTUfVilTEsgUENnBdh48C0pdcIIu7Q8gVnypLzEzBMy4KHxfe7W9oa2W1EsPxSmYaznSNYbWSB59C4pIT55cXGlVZtQ3Oaabe0ThNLpnTaWSaKuiW7c2G4TxwOZ0xjebD9x/Z3OzJCrQq0DSomkHJrZdzks8nRC6Xkc+PB57PkVAdpyWxmEqZE8f5iZ/erOm0Yr9b89PtjvXdG7Jtqa5FW4NRgRIWluHC8PyZ83CmGs1qs6FpHOfjC4+fP/H88kSKle32hrbt2Kw3GKtY5on5dCFEz7LMXC5nMIVqqkASGmpO3N9tKUXRd5r//B+eZRmZx4HL4YUaA1+/fmGeRlarFd16x+3dPXe3N1RdGZeJ85QZF88maG4e3kHfU5wjJYPRjhoWxikS5sD5OPDl64HDy5lfPj3yeBz59Oghwn7VsrGWeLmwNhmlDF4BqZKrIlMwNbOxlruVo9FV7HWxtI1hu+3Z3azZ3PTkXJinyNPxxMtS+HyZmRJkZcTMfB6wNWOzp3llMSHWQzFXjMo0zqBQWNdINIoVu931ZkO7u+XHP/07f/iP/8rHn//I7s073GqLbXustRL0lqVOvJ+JyVNyIHnPeD7/fgWrKpSUmM5nmcNyIfmFkiKxZLhNqFoxrsMXGcr7zRZtLcb0dKbFuBbd9nTbPbv9HU+7W55//ZXT169Yd0G7hWKs4HvLQikItlshJkkHX3xAu47WGV6OJ4KCRoEqImtrWktUkSVE8aU9XVClctM4+X819I2hlkpKkGLh/HIGNMN5IC0Lu3WHLYYUEhpF79bigawzpUSs6ZnHSE5n/CJwwfnlyPuP7yXy0Cis2ZBCEDIBhWEcuJyOfPr0ldPxRI4Zvyxo5Sgl8Pj4GWUcfVtxZebGZt4/bDidTtTO0e1v5bTPET97luMBfzkxHY7y2ViDUZUaG5ZJWEK7/Y6uXdF1K7SRl8r7hefDE2GYeffwwM3NFqVkc22d0O5qSQLhlYgxjv3tDvXzH3j6+sg0BF54wZ9nHj9/5fn5iTdv3tCtJuI44+p3uMaw224JMZJj4fzlb5Bn9HZLdq1g7ShqjESfuBwH4TCPHj94LocLh+cTL6fA2jZU1WAMbHojbS2aOWZ8ycSiSICphfuu427Toqv8+a2V9vXNwx3aQMyJlOHL85lPjwOnqDjETNIGqwsxZhSgc8Ilj22U2BBdIa6KIsVMUBFzNS1Aa4oqaA2r7Zrv/vAHfv73/8aHn//M/t17mn6NdR3aWsHjSyHnTAiekiPkRJgnptOR48vL71ewxhgq4MNCOhWxZ8lCEPDldUOYWW13WFZkH/BqxLVCrLDWotRKHNuNxShDY1v69Y52teLx118o+ghK0RrDpGCaJsYlsFn3ZGVQtQKK0+lEVo6CQl95vKVkyWptLOuuwxpN8AuUgveBS05EZ+itoaYqhO1F2nqtFZfLyHSZZJNdDQpH22rG+UJI0HUtIWpCVLycjlhVuN1veH4+sMQLymj297ccjwfoepQC0zps61C1pdtuiCGwvdkQQyElkQUuBYy2fPIXrIXWGdIyktJaZGLRsyqREGdUFcP28XzCXw7keSIXKUzTtvgQObwcqTGxaleU6sVqlsqyzFirWZaJnBOn84WSMvd399zdv6HpW0qp0i0lUe2gPM51KOtwXUvTrUn+wnSZCaMnLZnGrjmdPE+fX3jqv1Bz4uG7t/TrFa1pmPIAeeLy/AtmWhOVxTYdzlgRws+RHBIlFEiVMHmsMoJbHmdK9mjVsu4djWvpk2YOhV4bplqYUyVphVWZvnFoBHMvKeKsFtWThsUv+BAoOJ6OA2efWIoV6FCJPtoYTcnS3hrnQBdqVjTG0lqE/FMqtWaMU2Aqs1+IKnJ7u2WzW/Pw4TvefvyBm/t39Os91jaiH65KomiSJ4VMXAIxirXr5fjC+emJp6+ff7+CrVc/FvFp8lxOB3KOpCKawByiODLkymoLumpqydQcxRGvX2Ndg3ItuoLZKbRy6Kah6EJWBYOiQTNbjbUKbS3z4hnnwLJ4Vm1L3/Vc5sSSMkWLoL0oQOkr3huwTcO2aymN2KsqEeKKFM4oUepUxDl/9uRcuZwnSlU0rmOKEM8jSglZ/ziMVx6zY5orx+PI27sbnO1QwbO9uWe7u6Pf3OC6Do3chDmKN3O3XmNKJvvA/V2kxMw4jLzbd3SbLeep493WUFVDKIn72xs+PNzSr3tubveAZh4WXG9YQsAvCWd7jK0EnRm9p0ZJADy9nOiMRY5XATtCkNZ3nie6vqFtG+7v3zANQiQZx5nJe3yMrLYrnDNM00wuBdeKmbmPkXmZGccLjTOQC8M4kzHMfsEpaID//OVX9Kbj3XbDNM4sS0DliC6ZNEfQLcpFdNuijBaD+XnCx0DVCuMsrmtZryIP+xW2KnY3LV2vsanisqEQqVWxIAbvOIN1lkhmWAq5FIzKlCKpfuM04lqL047BV4ptWCj4UjFVsXKW7a5nCZHTNbeoX61pFDgXiKnQWSda7lJQJJrOYawmzDPGFdrecf9wx8P7d2zv9vTrG9p2hTUOSiWFQPKLtME+4b3gxcPpwPn5kcOXLzx9/fI7FqxWlJJFeaAUJSfG84kQAvMSictC9oEURLWTcqRtO8gN1QVySnQr4Uu2jcMojTIa3RiqUhjtaHXLi/0VdXxBWeEEG2uY5oVpWpj8SNM09KueZVzIuVCUKEAiFa2Ek9xnRVMVq9ZhlLs6HSqckYxUpeo35lUplewjWoPVVoj8JYsfj5bUPZ8L2moohbZr6NcO6zQpB1abnt39jvu3D+imEZqbUt9+71KEihlSpl+v8eOEsYb37+5pG0l1n+Mt8acPGGvptmKo7pRive1RzlGUJVdNmgOL9+SQcdaRcaRqCEsG5LA0yjFcRrQG4yyXy4FpmWmswerK5XihVIXVHbbRTB7mKMIMqJyHQr/uWMYBaxU3+5boPdHPOFPRWixzkgKs4nwe+PL5mbcPt9y9u0PpyjgMTMNA1YZqNClYnDJXBlmlqAIklBYO+hQCU1gwCrKpuFZzf7eibzUqQ9dKS+yVopBpnSalQiITiiIVRYrga5LkgZCwJbGoxM6s0drQ9yuyKTxfDiyxkKrCp4RVgqsrkHT4EHHG4WPGtQ0ZSYBwVuZWrQWCa1tD0zjWfcvdvuPt23u++/iBjz/+wMP7d6hmjdaN2AhdnSzCsuD9wjLNTOPI5XhgOD1zfPzC0+fPPD8+/n4FW65zqdayHaNWaq2EeRLzspJROZLiQoiBXQzc7Hbo3FG6jM6FXLLYozYObRRN16D1HqssTrc0rsP0Hc3XFaenR5Q5YxuLMUKJnJfAsEwShaFFrlRKJihIWmR5plRcydSc0dVgrVibSBFVlLIUVaglY7QcPs5pajXknMilUIsGhPdrrWG12tI27ptaqF9bdCnE6mlsw2rTySESPD561queXBXNakPMkVwT1EIIntP5QtM13NxscU2DdZZbe8uyTDSto92sAcV4Gsg5yQtey5WOKH+vnCKnaYRcOB5H1FXKVUthWWaG4cx6s6IpcDxPzN6z6Ry32xXTEvn165FxLvTrLVU5ak2M00TXtGgbaJqJjS2sOwN4QizUIoYE+9sdRUkIlW5ainaEJTHNM89Pz1gNplY64+hvtsSUKF7+XNpa1KqXGJGl0LteLHYwaNuJfpRK02gxu4tKjNyplCIb2op0PTEmYikkLD7K1w2FGBP3656mGkypjEum9QXtC7okFh+IMUEBrcA1FgycLhKGppQGrQgxMxEoOVFqxhktSqfG0q06Nvue2zdveXj7jo/fPXD/Zs/m7oHbdx/5+NMfGRc4vZxlh5GCECP8wjgMzMOZy/HA4emR49NXDl+/cHh65HQ4/H4FK5rV335drylztYox1ojgnSkXYs7iG+wDeb+nLwrbK4rSpFxIqcE1Da5pUVjUWmO0wl0J0ut+JWyir18YhwtKGZqmZVk846QZpoWUCk4bYk5CmC/guIrK6xVyqgUKGKOg5H9yzDAySyuFURqqkmDpAsfjiWma0NqwWm3YbFcYa9BGY6zoODfthmUcmZcZ1chhEEIAC7UWXp4eaVcznV/EwC1Hkh/RubLb79DX2dt7jzYa5yypNGAdVVuiD4zTKIB6ShTT0LQ9KJlFx8sAKVNi5OmLhGgts/B5G6dBJVKIKG2E160tSlVOF8+nr2e+ngL/49cDbT9j256qJHtXe3k5W53ZmExvFVofWa8cb/c925sejHxuzlnapqMxLa1puAyDqG1qxpiGMAfgwrzM+HHh+PSMbRr2373HrLfkpIhVy7OLCFlhTpSsMLpFNZaSNZfjmTCPwoJLEds6StVENKEgRVsVRgvEMufCoXp6o3FUlrQwlgPbObAx4myhckaVSqMVjTGEeRYBvdNY20BVV7M58b02RmOoNCvLarPm9v4NH3/6kY8//5mHjz9w//YN7z98RLuOn//0b6SqKdNZ9gUxEP2MXyb8PDOcjoynZw7XmfX58yeOz0+yl5jn369gtdbfbtla6z8VL1AryzSJuj5GUhKaYPKeFDzbkGi3mXZVcE1DLYmcJFxJlD6tUBo1GCexDFVLoJD+/AlnzjRuonHQOIW1lmGKLFGWX68RlboqmrbBWUUlE6I4CdYEzhiwhhwlIU9pcewrumCsFcfBxtGts4jdjcY2Fq5zljVStF3b4poGrZVsx5Uil8I0TdjGklIgzZWcMjEEYkqk6FEl0VhLjMKSaW2D9wt6WehXK4oy5Cya0ZQyCs35dIZhoGpH2/YUKjln5nEkzAth9jw/XTi8XFDaXP/usF43DNNCC8yxEmIhaYXG8PVl4eQ1ur9jKJU4ZtbbDT4ZUVehqaql5sDz+SQsK1/pdIPWgWbzW6dRS2WaBiHToDmdBhFxpxPjvNB3lhhmjHJcTlfMfb2mQZOz4uLPpJJx1krrmCRCNNWMsQ2rtWWZPPO4kK6WOpCxXUvXaqyaMTniUGgFjTUCO+ZMQlRDORbSsGBdQ9NaNAYNOFUwSqNzpJZM3zYY68ToPknQWC1FkAfj6Ncd27sb3n38np//8h/89PN/cP/+A+v7e9x6i725FYvWYvj8j194eX4ihgVdC9EvTMOF8Xzi8PLE+PLIy+NXvn7+xOnwzHg+E5eFb0Zhv0fBvt6w9bqpFbbT9dYtcrvm6BnOiZTFhSL6RX6GyCZGckm0fU/JDsqKmgvUinEObQ1tv0H2dSJ3ck2H0YbT0xeGkxS0thZlHMYG7OQpJROLWLY4NFqL+77k/2hxBwiB6kDnetXLXm1aasVaTdagamW4DEzjSFUSMIUx+CgbU6s1qVR8EovRHCOmabBNy+IDTehISdz5SYHhMmGbFmMMjRNvozFO+JghZ1rXkEJk1feEmDFtRzWZTmvSEhmHmeAjqWSmeaHr12hjrwdAZB5Ggo8Ml5HH5wMVy3a/x+jCeRhpHDy8f0O72oLKqFw4nRdOY+YUCrQdq6bFp4ptHUYbpmkk5cyiDTrOJJ8gJ/ySuOk6jIWb1mJdZQ4LGkXKQmK4XC48P59Y3+wJKZPTxI8f37LbtMTkmUZJlgvek4YBHwvLZSKlQN91aGMxRt4DXSshJnJI4v+kNblElDHyXJWiUYWVk+emrBw2VitiLChrcFq6tnJ9N0uIBKUISaSLq9aRqox6yjqaVpRFOWV0EQjRGEPbdPRtz/buhrc/fuSv//W/8ce//nfevP2JbrXG9Q3FNngfqKXwn4cD8/nIPF5IKZFTIM4zw+nA8fmJw/MTw+GRw+Mjx+cnhsuFFLxcOP+aWOdfK9h/Llop3P/53zLbFnKKnE/PV9tTT1wmlnHidp7Yx4XNbgfrHpUztl0BBZ0aTNOg0TSrNTdW4dqOxq2wpsG5BowmHwHvv4nUG2cwBiYvW+SSIiEWctUUo1AJGqPRtiOhqLkiaq5MVWKvmcqVkO8cthWnwZIS1jrQApbnXFC6Usj4mAWjrNJ14DP+Ucy6jFakHNC1ElPE+ULTNJTGsiwL1lpSLeiqWZaAnxeGYWK1XtOuE9U5Rr/gx4k0zdSUCSVTqmHxEVRBGU1VEoRdWHBN5P7NWw6D59PjgbZ1bHpLlzU3c6LrFRpFiELYGJfAZYGcIu01aOx0PJBjJAWPtoaKRuVIzolaKmGZWTlFii3aKOZpkeVP29L2sgB0rmG93VFNT1UwTIFPTwPaOJwS5U3bdcLGolARwkpJmfPxIqbwxjFOC/PiCUvAGsvNZk27XhFyoaKv2UmJGAOdMzTOYZxYqcbgyTlhjHiGaa1RGLlTUmEsku/rGklV1FWRBWIgxUS8phZopWg60Xj3qzW3+zs+/vFn/vRf/hs//PnfuH34jrbb4qx835qSUHOjJ8wT2Yu2ehou+HFgHi6cDy8cHh95eXpkODxzOh4Yx0H4ylcjh1p+xxtWayWzX63fTi25bau0arWICyIVhWIczqQYqCkSQmBcJqZl5I1/S97vyetEmzIpeUlEzwlrW4x1mKZlvbvDaodBYZSi6kpWlfPpBbnjBT9z1tAvnsFplsnj40INYJXGe8F0nXEYY69KoiqOf7VQa0YXi0GIGdaIg4WzVlbxqVKr5H/GmOj7nsY5gTusY1oW6lRwVmO0xRrIOaG1GI0bo3BWEuJBoV3FOIEGxvOF6AOqwrxEtrmgGksoBVUqcQ7EJYC1NG2Dtg0hSbJeVeBjBNuwv7/HdIEvp184T56+SouudCuHwpdHodClxLIsolBWiilGxnhGIdlHulZ0FTePqsQkDGPFzzkWDsNAbxJda9nd3dD0ItQOXkKqqhJdyMt5YE4wz4lcC203su/FYNtY6RDyIublKWfiUhjHhcXLYTsvAR8StRb6RiiH282KvIVx8oRSyakSqiGWJOqxeu2qlEShVqVJKPHPvqpMxaImC2/ZampO3wy/Q8j4LC1y01i6tsF2Pd1my/3DW3764x/507//d777w19Y376hWa1BX7nsPpLiTArSLSyLCPv9KJDNfDlzennh9CQ36vnwwjicWeZZ3DJ5DVd79Ur7nQpWNqzC+IDy6hUGClTVv5WqEhK2rhDmhWMSyxEfPH6eSfNEmh6I+8BmV2n6jpoVuikkm7CuwTqDsw673csJqTWRTKgCX0zqRFSKxmhyKlirabuGsfOM00jwV0/cVIlRaJNagzEaezXDVkgx6qwgiP2q04rOaPrGoq8vYEySXNf3K2K1XC7iBKjrLJYrWsJ5h2GS3JtScY1j1Xc4qwWzZJYNtjN0646SEvPoWeaF1jWslGaeEqZes1aUplpHMfWapAchLJRa8XGglEotha7toIoFLVVsbMISICl26xUpKlpjUUBEMfuZmCCGRKhZFC81vMK1FApaySsecxVbVyOtWi7gU+F0GXBdQ1WQYmacRvwSmObAefY8D56Aw1pxdDgPkVXjKAUuw4DNhWqED51Hz/k0cTwNTLPEdqQiLa2pkjIxjfJiZxRVafq+ZwyQSmKaIikGupRZdS1aiduiT5kpRpSWV9tU6Iym1kwu18SICjkXYk6UqrHWsuoaVquGpnE0my1vvvueH/74F37+y7/z8ac/st29QblW5uyUr64nC8nPpBSIYWGeJoZxZDm+cH7+wuV04vj8LMV6PDJeLuQohCN1HS1F/A/8axfsv3jDKmGA1CKbUKX0lWxe0IhKv1yHZtm+Qs7iJudfXmRrnAppWViGkfu3nmX2bHY71inhVits2wsJOkI2Dm1auvVWlDhO47qG1jU8u88sl5N4woYoM0iWBVbbWPw8XVucQowiDk9FZuslRsq3GRxUkG5BfHdgMRrfWBqrUUbYSCkDqXL2ExUpnlXX0FlD9As5RtHotmKrJq2kxzoFtYiyplRJwnOGthFDuZyN6G/9gJs8/W5Nt+pZwgy1EpeIrhq/JOZlxhhJIC+l0HUdgx8pqXK5zFCgMSJad0aLZWfbYZyj5MwwLhyvBImcxekx13LtkooYEiBOE1opIbVn0BSc01eqn7CNuJr+aDS9W5F85TyceT4tDCEz58TuZos1jvOcWM+Z3XrNPF0gebRV0FlImlohXPcErwb1soIQ2p/PMA6eAhjXUYLk05xnT86vVMKCqxmrxdQvZsl5qqbKQVkrMYnfcaYK2eZqJmKso22ETNI5S983rG5uuHv/kQ8//4U//PW/8v6HP7Ld3qCMpdZMCpEQEsHP5LQQvccvC/N4YbycGS5nLk9fOD195XA4cDocGE4nlklYZuabs0T9bcys/Ms//mWm0+tBYLS+Bl1Jvy/f8nUJVb/NtUoL5ziXzPl0YvGBmxCIITLPC8Nw5v7NW6Kf6W92dOsbWdRYDa6VsKJWsmj37i2r9YbtzR2b/S+8PH6W4X66oMeRlCKN97SmEFuBWWLIhJiJqRCzlcK9/sxF8M18XXylWohA0IrZZ3EYtArnjFhxRpj9a2aM47KANxVDIxBSgajBGrBGck+Tr98E+KUIUpiKpkWRxxmtRNWpUTifcD7RtpO0baWw6df4mDmdT5RaWK1WV5qbxvtMzoXgM+MoNrOCV0PTWJTRvJzPGC2eSeOyiGOhAZ0ztgjVrirISIFWhbTMtUiLVrN4FyuNW62kQJQhhcLEgjFy05QMbbvBmErOMz4kLpNnKolzjZTgqW/3KCzPz2dsk3lz13HTr2magLOOSvlN+VIzFUPRDShFIDP6wHQ6kwqEnClVtu6NNSgrbLeilRgN5ErIrxdWRRX5nJWu3/zGnHO0ztJ3DX3bylhjNf16zf2797z/8We+++Fn7t99oF/dgHakVxQkywwd/EIKnnkcmS4nLsdnLscXhtOJ88sLx5cnDi8H5vFCDPGbNLXWIlTfWqnkbzE29V8s2n/thkU8jco/FWp9vc6v7aWEH8kH8/p18bA15FLx88STD/jNQkoBv0ws08jlfGJ394b9/QPrzZa2bzG1gq34WrFNi7WO9e6efnvL/uED4/mFy+GJ4fTM4fmR08szYTgS5obkG2IIBB/xPhBCJKVEKRCzwDYpZfl1qpIucC3ifFUMLqGgY8YGJSHWWJYEMQa0kZtRUWmNotNV4jaKAqWoRZMD8hBQVGVJBXyBhKIsXswAasYaJQsU4+jbhsYGlBboZ74EtDZchplCZV4itULTNFcCeSAGmWdrFb9bpUEZRUyJ8zmKdUsRwztVFb1zGILU6mYAABF9SURBVGVIJZNSIZQKSjyQcxXhvtVyMptSabSmtQaDoA7DODNOE1or2qZFa433kaeXgWESYzyqws8eo0XT+zVmUkw0jWFYInP0PJ8Db3YbWl2oV1hGkueh5tcOSLYVWmmUMiglijCnFc62slhSYK9pEiUXclWgDVVdA7eUEH2M1uJc6Bxd61h3jq6xdI2laRqcMxjXsN7dsn94x839W9a3bzDNilSq2N8ET0mBFAMhLPhlYRpGhtOB4Sjv4+XwzOV44Hw8cTqdGYfLt1lVKxn2X4sW/t/8ht+xYJVS6CptZEZm1NeWu3LdmML1FFbXIke2u/k6G2lNyonT4UAIM9t5IoXAeBEq2zIO7G7v2O73rDYB3YlxVa2FkuUm09bSb25o+57Nbs8yvuP+3YnL4Ynj02cuL8/M45llHMQKJXgx50peijQJS6YUQ0yJmBUpXeeZlMlVCbsoy3It5kKYPTZJ0l5VGp8SKEnj0yicDMighZFUkBtVbnMIFJYEvkLVFlWFkK6VJk0LJWecymyWQtdoWmeEuF4ztQZ58RBWl8xeEpydcxXYqdTr5y8KkqoUGYVKcltqbSi5QoZWW5pWE0tgJlAF27geLOrVHhiDCBF6o+kbyTLNuRJzpRYRnKeiyKkKbXTx1GtbrlGU62FelCZmhFGlDKdpYPSV0cNlmHi366VDU0pYT1WsYErKpJIkqrIoLJVt34hqprxSS68vXwUy5FrxORNzua4+ZQ1qrME5w7bVbLqW1Vr2C921UJ1rUK6h39ywu3vL/uEDN3cPuKaTg34eRRubI/maUTtPI+PlzHg+cT4cOB2eubw8Mp4OXM4nxmFimZcrtqy+RdQo/Tqs/n8LVf2LFfsvwzpaSwv0eoXrKvajhdfWr/5P37jWevUPlg8vJYkWLMA0zEzjzDR5dnvPfNVl3p6P3F4eWO/3bPZ7+ptEU1aoRoTWhUTJRsK42g1r09E0a9puQ7/Zsdm/sAwn/DTgvcd7L1jwPF7jMJdv7UyMgRTkpsm5EJJ4yaYs4HnOhpIltCjndD2MtOTBqIo1EuhlnfCiqxaXPiWbG3LIjEtiqZopQ1KaQv42RhilsKahqEIMnpoDqWhqFZMArSW0Wmn9jcf6zw+5omg6mWuNkoIVtz5x4q8ls15tqFpTUyHGiZSSkECUFgeMEoUs/7qprNBpQ+ccrVW0RoKoc4r46xMQxABC9ISQSVnIJ62umAwVLQc1Fe+lJY0pkWqSAxGuQo3MHDrRDyNuC8LBhhAl4kUpK8ohrakkrNVUo4QMkkRgfuXNkFISDFjJlO20RjtJte9XHbveseo6utWapu/o+xX9ak2/3dCvt3SrLf3mhu3+nn67Q2lN8PP13RYVU5wmgWlOR86HF87HZw4vzwznI/PlzHA8sswTKcrharW+sgJfH8/rCfM6v74eUur3LVirzbUwX48Dfuu9S7kOza9wT/mtJX79R3EFsgXsNloTU+Hl5cg8L2x2W5ZlZppHzucz65s9uzf33L554GZ/y3q1FeuVrpFbyjSgHUYLGb/rN6x3d+zv37NMZ9LV1KwiIvcUA2GZmIYLl9OR0+GF4XLCjxfCNElhx0SMkoWSUiFlR0qVVIoUcpFYySrdrBR5LhCVsKicJVqBbjRicF2VYYkFX2QWe2WzyKZZsm0VCn3NzwX1bQ6u/7SPeC3VXMT+9XW7WKhoI7sCrS2lCnlgjtJ6Hn3EuhZnHXMQiE0jt6dzLavOokMgZOk+VIVOGXprMarIS6/qdRFVSFmkibUUQhTwpFaRmhkNqr6+C3KP2KYR7i6yzX51iEApSXpLhZw9WslcZ7TY6GSs3JYpYrRFKzmwTcmEnAm5klK5uj5cS11rlDE01tC4BmctTeuwrWG16thut2xv9tzc3rO9vefm7g3b2zu22x1d311TC35z1CRnSo6kEuWgn2em85nheOJ8OHI+PnM+PHI5nRiHgWUaCcsiHUi9HqBcuwF1BUCr/najvsKT/39//GtLpyuoa65wRwF4nTHqby1zup4mGi0KnwqoLLev0tdrWfJAnTXiPTTK7TcPEzf7HXGcGY4HhuMz0/nIeP+G3f6e7W5Ht9pcXQcL2iaqthSjr75PO9RuTwj3102tUBcrCqWtGH+FhbBMLOPA4eWJ45fPHD9/4fnxC/N4xk8DKS6k6FmCwEI5S8HmDDGL4iQWuXFTrqRYmIPCaC3QkbM0xmDV9cZV10VOkUovVEoV8oV8bkCJsoDIhlWx5Gtbxz8dgPrqXhdzvNL0EG2x0eKbjOTahJxZQmKMkGNC24oxkZoldc8qUCljbaVtZQ7tSqHkTI4Jp7V8dkpcPNw1Dhalr6+fdB1a26uRu5DzeWU+1UxNkpXrmkZGBlUpGSyVjX3dZkNInlIL1hhq1tQq+bNaQU1yKOWqiEVGgOILsdbrYSYQnVGSjuCsobWWrnESqNU1NH1Pv95we/eG/duP3L55x9v3H9ju37DZ3WGa7tolJryfqSlK+5si0c/EIBvgcbgwXc6cjwcuxxdOLy+MF/naZbgQl4UUfwu9Ehi0yiGi/rl0xexX85sLsUaha/2n7fHvULBwldWBFBxcZw5RycBvJ4Z6/e96bYurLBUkylDJw6PKkkGJbUvOheEsgPLNdst2f0OMkWmauZxODPcn9vdvWG93rNdbNjcSHmQa4R7Lx6AwV4F0a8yVfSV0RLQFKrUkwiIcz7cff2D6w5nxeOL58ROHpy+8PH7mfHhivJxw40yYvcjLQhQzsCIvsUmKmCXKIxdJn8tyNqFyZCwLjdYyP2orMJe6whZV/u6v3YlSCttYyWc1r0pWMborNV/JKnKzGmMw16+Le991mtOKXF634olUCtrYb5tweQ6ySzBaY7U8oJzEKaS9tvMRRa71yrAq6AKuKFqnaZ37p9dMfZt7S/2tB8hFZJhKKVRR5JSxSmZwSsVqg7b2igHzzee5KHW9WSvkRC6ZRCVWETmUUuEaJt1occ8QNhNiZu+s4KdWFFC2dfTbDfv7B/YP73l4+4Hbd9+zu71ns93RdmuUtoSUJOc1LOQcKTGKR7VfWMYL0zgxXX5rgS/nI8P5xDScGS8X/LLgvb92SnyTVqqrM6h67UTh22cnd5p0n9dHh1b6+ix/p4L91mNfmU5a62vbdzWLfgV3rls5riWsri+mwD6yPZbwqEwtWQj/iOIlZyHMP728MC4Lm82GzU0k+IXpcuFyPHCzv2O7u2V3e0u72dCtt0Jj7HqSy2hjxO3+GslgncMYh7pmkqpasMZitKbmTLe+YXv/wP7Dd0Q/M48Sb/n8+IXjly8cv37m9PzMeDqRQpRtZy6EpMT5vRRSkQMnXw8oqoR75XKdhSlkpb9h1yDNyVVXT99Y+s5hlQD8jm9Tjmw8rxTB15fBaI1p9JW/Krd31YWYC4uXJRWqomvFqnpNiRcOrTOWzlk6fd3MpgilUo3BGOHkLjETshSJMYqCpirZXFt1tWnNmVwE8xTXhiKeRVqylpRS/09717bjuHUE69xISqRIaTKbXRtO/v+zAiMxHK89I1Hi/VzyUE1qHg1kH7wAGxgMBpAwlMg+3VXdXc1DJkQoy/hijIEyGaLm+5NasS4xLXWvQCGExMEMvo+CBs7yvubWIJNMxhgLl7GW6rIMNiugXYZj3eDlyw/425ef0Lx+xuvnH/Hy+pl9yYvHEjyWceDW9XnB4keBTQOmvsPYs6Xw3ra4v13R3q64Xd8xdA8M3QPzNGCaxm0QZvWNtb6vtSYHIQfyWvZMKZFxlwist9fLQ/GtHHab1lHsGGL0lIv5gF8lSxYg/XTc9TVb1AMBeQAfKC2dLElzy3fXD1Sb6Hs0dY0wL5j7Ae37FeXphOblFeX5jNOZ6w4O5Qn5oZBdPzm8MZvUh7UOxmZwGUsaeXZgJSNEaJcjixXyQ0W8snzC65d/4Mu9Rfv7r7j+9xd8/c+/8cvP/8Ltj6+YhpFdVIuXem5ESkrIKv4dEnFzCBHylUFFtm/Sl3iIKSlRqBS5O9coTFEz2mhFzWSj2EmmePNTSEJkUO/q42yyNgbWOSwI3AIYuRrSgKUeZwxy65A7B7tuHhRnWVlXqw2cIWxJmg0MmdZMo+WECT6ye22JWHxk84ExMBAlw0iyLCY66XpgUzSRJadp8ZQHVYGHNztyIPAWWWZhjeY8s5RunCXJ55yBMxT5y/IDsrxAURxwrCq48oRjc0bz+necP/2A8vIJx/qCQ1UjGYtxGODnCTF4ii3MM/w8Y5l6DH1H9rdt0d7e0T/uuL1d0bV3DF2Hx6PdBlqiDD1AkQxU6yO+mnr+rH7CRJjpvErS1GG43mTleb6ZwxqpPSKtzqigFVdOcmdO2vAMtn/O1mti3ggrw+8RSU4ffiam2lEExjX7hiOZ2bZtMfQ9yrJEXdcojiMe3QPtrUV1PqOWBdJVXaM8nXCsTvB5DpsVSIETHtZmsMZhtlbGrHJYY8k0a83rcQqwGYLNOXdpCjibw9oc2hWISkNZx1GoeULuF0QfZOAhIvqAeZnhPVnTlW0OERKFA0IEa75IW5dRDNS99cIY8uHkIIE17HXVG4NIFtbotKVPSnNvDlN/IELS5YTNWRJ4yHKChVI6SbIdLZsHdaKOL6DglOZhoDSMdK3RYdkRFRR1tNYHFkohGUWeV7G9kutQgKg1ZvB+MiozE/CRDhrl/lurtzTXGE0cqkREwBj5Ljg77DIn7G+BQ1XjWDUoqxrN5YKiPqO6XFDWLyjKGtoVUI7L0/o7sWYM1CAL84SuvbJTaaBT3tsWt+s77rcr+q5Dd+8w9T2Gvsc4DgQCG6EqmZB8b4yqegtIUQ4wJYfqGtsMWN7Rml1lWkCu+VAF+L8ddr2YGHkaJwH+vKAnxnqGdZ4nUKKDIx8kfeiOSoqOmzgPh6SEQQVITgGIkVIec3vHvR9xPB7QNDX87DEOPR63d9zeKtRNg+p8waluUJ5OOFQn5MUBNsuhjUXmcliXYVQa1nHKxFiHLMue3Vra0FmsJS62DtrlKI418qJC1bzidn3DNA7UbPIecVmYRnWUAOWJPcIvkb3Mnp1ei4fgXQ5aT8HDi1zsejonic4+JKTExnatBA9pSYWVlr2yrGtrE+GDh5GbHyMJLa0c037hC2Ii281snY0ea/q+HpoKkFZKwf3gtYaUKNot9zxGOqS1DtoQi4UYN1abfktM7ecFPsmBnuKTJTcfHNQaYlCZvnGOqS+nbijbY2XW1ToLm+VwhwLHqkZ9eUVZv6CsLzhWNbLjQaSIcjLYISL4Houf4SfuOArLjGnoMfUPzq1OE6auxe12xaO9o+semEfKuPR9z6wqcD+U0sLqSyqgxDeQnj6SRG4HSsgl9aHEqfgda6nNMlsmxDT2Gzuscw5herZLJFneSxZzZTJJRiARw6y1wzWlNoYPVUpPEkspQGbBAZAcIT/DVjsEUkrj4jFfW3Rdh7I8oq4rTEOHsbvhcf0DxXuDumlwOl9Q1WccyhPTJJfhUBxlrV8uUTBQMzlzPMUzt+HfEBJgDYr8CCgOj9fNGT/+9E8s04hxHDALygzTiOlxx+N2xf3tDe9ff8X4/hvatkM/LhhnDx+4BDjGyCmVCNhkMUsEjkIKQciI9dROklZGJJZtYqJyBqiYoLRGFPyjU2LHD8i0pqQEbkRGQrCsEBLHA318YhejNRlNcC8tEIGoEZOnaHYMrNMqJcgmbb9XwtHHABXNhtOSEFo+RkSTSfOAREvH1Nw5I+2BueBTgzxzXMyV53CHI4mk/ABtHaxz0NrCZBmOpwbl6YKyviA71LDFEdYVEt0TfFBI0bPZwVOTyk+cppn6jrpT9ztu13c87i262xt34PoF88j53XnicuYQSdZtqb36SLBKV5ZE1XWL3zqOGdPKVyhxUnIZWKO0pjyvMUz1/4ypjwoSu+2221/b/lwc3m233f4Stjvsbrt9R7Y77G67fUe2O+xuu31Htjvsbrt9R7Y77G67fUf2Pz6BKu2K+FyzAAAAAElFTkSuQmCC", + "text/plain": [ + "
" ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" }, { - "cell_type": "code", - "source": [ - "# Get 20% of the data\n", - "data_20_percent_path = download_data(source=\"https://github.com/mrdbourke/pytorch-deep-learning/raw/main/data/pizza_steak_sushi_20_percent.zip\",\n", - " destination=\"pizza_steak_sushi_20_percent\")\n", - "\n", - "# Setup train and test directories\n", - "train_dir_20_percent = data_20_percent_path / \"train\"\n", - "# test_dir_20_percent = data_20_percent_path / \"test\" # don't need 20% test data as the model in 07. PyTorch Experiment Tracking section 7.3 tests on the 10% dataset not the 20%\n", - "\n", - "# Preprocess the data\n", - "train_dataloader_20_percent, test_dataloader, class_names = data_setup.create_dataloaders(train_dir=train_dir_20_percent, \n", - " test_dir=test_dir, # use 10% data for testing\n", - " transform=vit_transforms_swag, \n", - " batch_size=32)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "BN95oIDmekyw", - "outputId": "dbbf673e-9b0a-4bf4-ce86-0d9b38210f12" - }, - "execution_count": 35, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "[INFO] data/pizza_steak_sushi_20_percent directory exists, skipping download.\n" - ] - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOwAAAD3CAYAAAAewrhMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9edBvyXnX93m6+5zzW9797vfOjEbSaLFkJNsYKxAMDrigUoRiKRJMKIMgDhQpikqRVKAIBIcUECgoqIQQKAKYxDhAKALExEUgKZFAMCI2siTLsqWRZrt37v5uv+2c00v+eLrP79wrzcy1NEgRuV311vt7z+8sfbr72b7P9+lXUko8bU/b0/aN0czXuwNP29P2tD15eyqwT9vT9g3Ungrs0/a0fQO1pwL7tD1t30DtqcA+bU/bN1B7KrBP29P2DdT+lRBYEfkREfnNX6NnPS8iL30tnvVlnv1REfnHb9O9fp+I/Hdvx72e8HkvicjzX4PnfL+I/OC/7Od8vdqbCqyILEY/UUTWo79/49eqk2/VUkr/Zkrpr3y9+wEgIj8gIl0eo4ci8g9E5P1f73493lJKfySl9H1f737AoIhCHrMzEfmEiPxbX6e+/Bci8ikR8SLy/W9xrojIHxORB/nnj4mIjL7/FhH5MRFZ5d/f8qTXvlF7U4FNKe2UH+AV4FeOjv3V0cPdWz3o/2ftj+cxewa4C/zA4yfkCftXwsN5m9o/zWN2APxF4G+IyOHjJ30N1trngf8E+HtPcO5vA3418GHgQ8CvBH47gIjUwN8BfhA4BP4K8Hfy8Te99s3aV7RgROS7ROQ1Efk9InIb+Mtfzl0TkSQiL+TPjYj8CRF5RUTuiMifE5HpEz7voyLyT0Tkz4jIqYh8VkR+6ej7j4nI9+XPP/GYZ5Byf//MY8cHDSoiv1dEXhSRcxH5jIj8mq9kXB5vKaUV8EPAN4/6+YdF5J8AK+BdIvL+bIUfishPi8i/M3qvCyLyd7PV+Tjw7id9dnbdk4j8NhG5JSKvi8h/PPp+cB3faGxE5Nc/drwVkY/la36FiPyL3LdX38oaPWlLKUXgLwFT4N25H39TRH5QRM6Aj4rI9TwuD0Xk8yLy7z92m4mI/PU8nz8uIh/+WTz/r6SUfgQ4f4LTfzPwJ1NKr6WUbgJ/Evho/u67AAf86ZRSm1L6rwABfskTXPuG7avR8FeBI+AdqLZ4q/ZfAu8FvgV4AbgB/GflSxE5EZFf+CbXfwR4EbgI/EHgb4nI0eMnpZQ+PPIKfjfw08CPp5R+5+j4LwSOUQ1Ivu93AvvAfw78oIhce4J3etMmIjvAbwT+xejw96LjtQvcA/4BKtSXge8B/qyIfCCf+98AG+Aa8Fvzz/j+Pywiv/ctuvFvAO8Bfhnwe0Tkux8/4Y3GJqX010fHrwNfAP7HfNkS+E2oRfwVwO8QkV/9Fn15y5Yt6PcBC+Bz+fCvAv5mftZfBf4a8Fru068D/oiI/JLRbX4V8D+h6/OHgL8tIlW+/58VkT/71fYztw8CPzH6+yfysfLdJ9Oj3N9PPvb9G137xi2l9EQ/wEvAd+fP3wV0wGT0/UeBf/zYNQkVTkEn+N2j734+8MUnfPZHgVuAjI59HPje/PljwPc9ds0vRN3R9z52/FJ+l+95k+d9AvhVb/Dd88BLb3LtD6BCdgLcBv5uee/czz80OvfXA//XY9f/eVQhWaAH3j/67o88PsZv0o/n8/iPr//jwF/Mn78f+MEnGRtUsf8w8N++yfP+NPCn3mL9PP8m8+vzmN0HfnS01r4f+D9H5z4LBGB3dOyPAj8wOv9HH+v768B3Pulaz9f9IPD9b3FOeGx835PHXIA/APy1x87/q+Web3btmz3zq4kH7qWUNk947iVgBvzYKK4WdFE+abuZ8pvl9jKqYb+kicizwN8AfnNK6WdGxytUU/9QSumvjY7/JtQaP58P7aCW/CttfyKl9Pvf4LtXR5/fAXxERE5GxxzwP6Bj5h47/+WvoC+PX/9zvtxJbzQ2uf1h1CP4XaPzP4J6Td8M1ECDWrWvtP1oSumNPKzxO1wHHqaUxi7ry8C3f7nzU0pRRIo1frvbAtgb/b0HLFJKSUQe/658f/5W177ZA78al/jxGy9RoQRARK6OvrsPrIEPppQO8s9+UlfrSduNx1C051Cr+0jLcfHfRmOHH3ns6/8aOAN+/+j8dwB/AfidwIWU0gHwaVSh/Mto43F7FfhHozE5SOqC/g7UXfaoRSntua/geY9f/yVjltuXjA2AiHwP8BuAX5dS6kdf/RDqPTybUtoH/hxfmzG7BRyJyO7o2HPAzdHfwztnYO8Z3vi9v5r2kyhoVNqH87Hy3YceW7Mfeuz7N7r2DdvbiVL+BPBBUSh7gromwAAk/AXgT4nIZQARuSEiv/xncf/LwO8SkUpE/m3gm4D/9cuc95eAz6aU/vj4oIj8duAXA78x96e0Obog7uXzfgsZJPoatB8G3isi35vfqxKRnyci35RSCsDfAr5fRGY5rv1Kcs1/IF//QeC3AH/98RPeaGxE5FtRQf7VKaV7j122i1q6jYh8B/DvfgV9+1m3lNKrwP8N/FERmYjIh4B/D3VhS/u5IvJrczz8HwIt6ma/ZctzMEFlw+VnvJEn+N8Dvzuv5evAf8Q2I/Ax1O39XaKA6+/Mx/+PJ7j2DdvbJrDZ9fxDwD9EwYLHE/y/B4XMfzSjff8QeF/5MqOQ3/kmj/hnqJ9/H3XRfl1K6cGXOe97gF/zGLr5naiVeBdwa3T896WUPoMidP8UuIO6jP/kZ/v+X0nLbt0vy32+hca8fwx1L0Gt/k4+/gPAXx5fL0oY+X1v8Zh/hI77/4666v/blznny44NCt4cAv94dLx4Lf8B8IdE5BwFD//Gk7/5V91+Axq+3AL+Z+APppT+4ej7v4PiA8coyPdri3cgmp34c29y77+AeoO/AfhP8+fvzdd+Z3Z1S/vzwP8CfAr1yv5ePkZKqUPTNr8Jjc1/K6r4ure69s2avIXL/P+JJiIfRUGlN0ORv1Z9eR74WErp+a9vT9685X5+EahSSv7r2xtlOgHflVJ66evclW/o9jRx/7Q9bd9A7anA/uzbCZrCeNp+du1Po2P3tH0V7RvCJX7anranTdtTC/u0PW3fQO2JiBM/9eKdVNc11hmcs4gIxgjOWmLo6XuPYBARRIQYARLe93iveIfvAiEEvPd437FpN3z605/mE//ix7AGRMA5x6Sasre7x3PPPcv+/i6977BW6LoWYxzO1Ww2ytdwzpJSomkaQvDElKhqR4xB2SNG6LsekqbC+r6HZEgpsVqtAEMIEe89zjm89wxpsxip62p4J+d0qFzlcFVFiIFJM8Fai+89RkQ/e48xZugjQAiB4HskRbquxdqKGBNGDHVdEwEE6qYhpURd11RVRYyRqq6ARIwRYwxt2+KcQ0Ro246m1mvatsVaS9d12t+6IoQAgBGD73uqqgKg8z3OOUIIGBGquqbveowxkBLee6y1eS4j1lpSjKTch5QS1lqMMfgQqOoasYboA9ZavS8MY2qtIcZI13XDc1NK1K4extwYQ9d1NHkMvO+pa+XJlzEp7yMiOs5WCKEnBO1v8pEUAiIG73uqqkZECMEj1mCQoe8ikufMEILOmb5vwBg9zwB1VdMlS717wMHFS7SbFSR9v6pqdI6qavgBiAm8h9Vqzeuvv87HP/5xXnvtJi+//DIvv3aLs+WatvPEJIiraJoZeweHfOaf/+23zGM/kcDGFAixR6IjBH3hGIXW9xgBQYaF3vceYywpxWGx931PCHEYcPIE7e7u4pyjcpbJpOHK5Usc7h9R1xVHR0f0fUdd14hA8dyNgbp2owGOVJVDBEKMgBBCxDlLBEKISJ4o33uMcXgfIB/re12oxphBEIrAloktAisiIOCqCgmCyQsRyGOi7xijKoEQdAG3bUtKCSESEpCSLiQSKb9DUQhFwI0xw2KFlBeYwVmHiApN13YY2Z4nIjRNQ9u2g3IkgRsJn4hgxeCMxeR504UciSENiuLR56NK0feUAiNjVNn0fY+ra6yz9KKKIIZAl9/ZWJ0nYw3GWoy1uMrRd/0g9OV9y9+aFnfDvPR9P7yf9z6vCSHFSFXV+Tuj900dIoaq0rlxlYVoEQFjLSnovAL0XYdInf8WytQXBRJD0DVlLLu7u/q3D5A8NittEiQSIhCTjpsRoapgf3/Ozs67eO/7XmCzaSHB6fmCO3fv8eIXX+bzX/gCr7x6i+VyzXrTPokoPpnAqsDE/KNCYIxaFCsGn1Rjbhed0PeRGMNwD2vVGoYQBg07qRt25zvceOYaF46OmE2ndG1LjAGRlK+XrNUFa2XQYmUxlQkPwRNCpPf6jD4LZd+p9kwx0bY9Mbb0vSclHlkApV9FMMUYUtJJIC+hsrA2XT9YuHbTqhXJCyt4fWd9B8NsNhsE3lZGF6qzGDHEmKgmDTYLdhkj59ygAEiqrDabTbY+EHo/LPDSp7GyCCGoUzGCJ4L3YC2Vc4TCS83zlVLCGkvf98NiLkI5HmuAqnKklLKiUmXi+35r9bIgSdayURIhWyGXC8tC9n4eUYQwzG15/2INu64bFHTf98QYhx9jLSmpkhaj81YUYAqqxCVbTBFB3HbMioSK6DFXWaxUhNBjjBBSQpLgqpr5fMbp+YK+b5EUsQhJPE3dYEA9ECCmNPC9dHQSgsEaHbNLF/c4OtzhvS+8g7b7BXS9Z71uOT17kuKgJ7WwMWKtwXtPSoam0ZH33hMRvA/EUCZRB69tN0AaBtpn6+q9h5iwYtjd2eH69etcuXyZyjkQ8KGjco71ekXf9zTNRCc5BKqqyq6xkBJ0nbqHKUW874kJEFErL4a271mt1mzW68HqxJDwPmQlgLqm1gya0hozsLcF0UFPKjgxJYwIURi0f/CeGOJgWWxWZADz+RwRMywOEYerhLqp9O4iTKZTUowQ1e3TMU6DZS/CWH4XEnhxVYvVHAuZsVatqtP+OecwZC9gSzbPrqenqqpBQCS79uV3XasFkjyXg0LI16pbrMJjs5CKmhuMU9c0pDw++VoRDVWM23pmIqqMVZgskIbniAhd11FV1fDccq/NOg7eAybpvOW/yxg55+hDTwScsfiYsK7Kz1HLG2IkhEgiERMYUW+gB/Z2doghEIPHGUvlKoyYwa0mJV0HecwSEWslz5dAslRWSMZA7Ok3a0BwQJKImzrmk4O3T2BffPGLXLlymd3dXYyxeB8G7RdT1M5nxVys3mQywfut5i2LzVqLQa3npGnYmc+JIZCsIfbqls33d0ZxFHjfYy2E4OlHsViMgRh1wruuw1pH2/ds1i0hJB6eHLNYLPLzEzGkwVqrQDAITlnsXrI2RmO/IhxlERhrSQLGWcQHYogIiaTaAucc0+mU+XxO0zSDUDWTCSHqYmzqCSK6sJy1BMAYGZRbsWzqWquiMsajyjAMLv9YuMv5Klxk66rmWco5CYgRUlIlgVreFILO10iYi8Io1sg5S5KEc5aqsoTsWobgcdYMghJ8wBUrnaByjti2SEo4McSoMa2ta1LYKo7S+mytm2br9RRPoqyfIvTjcKXvGZRMCAHrHMaqMjZiqKyGadZVpJSdblcNnlmJeyGBqLLAODxCNZ3SthtS8BgEm7FancMERMBkJa5WXR2QpMrcmBzHQ/CBygoF77V5Xnx4Mm7Lk4FOn/ksr716k2vXr3Ljxg0ODvaZTqcYIxB6tUgjDRmCLpDiaqbEEBullIgCITBo8nazobIWHzwpJrxXgELBo0CfY2WNP/XF2rYdQIq+7zXOAVarlrOzcxbLFW3bPxL/wjaOEzF5wBmOlcWvFs0SJWUFZFXzFkHIwJogIBpzJTE0TcXufM5k0mCMxbk6KwVD5WqqDIA4Vw9uf3HXYwgKirFVejpeIceNMvpRz2DABGCwKOX6lNIjgmmthZhw1uFDUMvbNNisHMZx4uMWSn/XRLb30vPjEOZUCDHEHNdt401rFOyJvYYblXWDO956ZemVsGbrUYTheOlXURxihOgj1lidoxgRsQpcGrDO6RTlWFItL1hj6TpPSBGyIhp7CdZadYEFJIkqeCKT+R7OOVaLBaFXo5CSegCSRMU3P8tZVfCVdbpeQgQjg+AWQxdCIiWPNQ7JIY99woTNEwls6D2nJ6esV2tuvnaLw8MDnn/H81y5epnKmaHD5eWNydYhBHyvKJ7JJrjve3Vffc+mbZnv7HB+dkrMk1IAqZStVUyBGAO2cvS+p+s6Qgi0bTdox9VqSdv2rFYrTk/P6XpFHnW8ZFAoGg8XIImtlxDjI9Y2xoBzBiMJH8o7acxpDKQQSaEARYnKOXZ31aLOp9Nh4RkjgyuYUsQag60cJltwkurZElOKyAB0uGK9nMkKqRvAPBXoretdXMWx8JbYsMTGMYN+rnJUVfWINRrHkibfs1hMDTk0Dk2JLJRxcNON0XFNMRBiIAVVXiJC6D1idUX2bYdT84MxgiSGZ1ZVlZVVGpDltlUQplj54gK7ymp4EmMG2DpSLAi7z+PhiDEN89x2HU1dY01F9EkVbVIrZ40jJVUyRUn6jDqHFDjc2cEHHXPJ6yAVwR55IOLcAGCSBESf48zW27Bi1BZLhGwogg/EEAbw8G0R2OXinLqqiH1Pu16zPFtw7/Y9JrMZRxcOuH7jOhcOD5k0Nc5q70IMhJiwzmZ3NA6WToxFKmG2u0vbtzx8eB9jDcknZvMJiML6OEWlYxQ2rcd33ZAGWK3WGGPZbDY8fHjMetXRdXlhW6cDlk3o2M0sgqFFKVtLW1pKaslBCMOiNKQUMUYVZnGtp3XFfD5lMm2oK4exhsqZvMjBOQXKjBGqyiAZRawrm7UsSEoYEj4GBU1I1JUjRRXwFEN+h+J+gbWl/1sBLV5CSZvoeWo1YtTYDCDF9IjLPY5/XVUhZYyy91M8I7EOqRQpNgZsRlEV1M1pmsoRjYYG1jiiBVMbnFE0ORkFfUQkp1mSotMx5HSKzkVJAxWQqcShMUZiMEP/t+BRJIR+Oyai961tTSJgLflZISPXls77YY2kEPAxElLC57gzBcE4x+58l67raLtAXVfUTaP9J2HtNt1X1lbM4JMhp5OkAKUaBoYYtmszJYwTzWakrbf0Zu2JBDblHFpKGqyHoAPT9z1n56fcunWLg/09Ll28wNUrlzg8PFAgw6m2SRb64DHWYK3DB83FEj3TSU3ftWzWKyDSVLXm+4q18V7TRkgGiSJ971mtVpydnXN2dsZm3aKVVJIHLg4ocNIPg5uZYgJRy5Cyi1wGuyyEAiaUNI7NSKRaZMN8OmM2m7G/v0tVqXvkKnWNnK0GwSnWqcSqfddmQQmDRSzWQ9iiq7FodACzfe+xuzpWQMO7jS11fq/yuWkagnjV7NmzsNYO1nacHy0A1NgDKe61zR5UAnzfUeLqMXiUUiJmQUxpmzKzxmDN1qqPAbRx2qn0wxgzKOiSKivfl9g2JQaBHiPsbbcZxjjGSJAw3K8cL7nrMu4a9idELGIMzWSCEfVwnNPzFAhtssDawcuR0RojA8Uuz10S9Uxi9lRijEO4WDydJ2UcPpHAtps1VVWS2Goht0l5zecdPzzm7PSUV199jYP9PZ555hkuXLxE09TE7Kf3fZcH0BNDj8SANQoIdJs102lDiIH1ejNMpBIcdNDX6yWbzYYHD445PT1ls8nIbwRnK5yrNB7SAHPI6xUkLy+pHFNkwN0WIdcBK8CPupHqqihhQHCVY74zZz6dMZ1OmUwaddetUeUEGSDaphaAnOS32KpSLZs01isT3Pc9gmCMG8gFJW3kqmpIP5TYcSxgwzxkAR6nhgoZwZV4GBS9tdvc59bjSIMQDIoOhnyuc2wXtLP0vafvPXVdYa0b4v6Qw4vyQ57HkMfSjO5dBKjJVmuseELvcU2tIE/BCfJ9HgeeiqCXmFaBN0PbdpkYESH0g7v9ONouuR/GWKw4Ys61X7hwEe97UgHeRuSK4H3GIWQY69KfYiTIMTJAJIE1mKghRPSBlEk7RTG+bQLbF+uagRHnKlIMWKfpgK5tEaNI52q15vT0jNdv3+Pg4IDr169x6dIlalcNnbdGSFG1jaDpjwf37lJVF1gulrT5ed57FosFRoTlcsn9Bw84Pz9jsVgqBJ9KuqeGpBNTVRWuUuChDOLYaqi7pmmWMLKuX4K05hjDCNRNjXOW/YM95vN5ZvFYnLOAWo/e90PMWu4zthzFahTLr05azOCUoocD2SHH71UW1pKKGVuyMWOnTPbW6mzTM1W2bAWEMtnK9TERfcYMROhTr5bGqKJKMQ3uY+Uq/Y5E1/ek6NTipq2QBB+pqrEAZRIGRZgKIUKGmHssoEWxpQzhCuB7jwBdjmedsY8oVHU1ZQDrqqoarPAWWc6Mq7aUoZLX8DbXm7LXYZJgXSZZOMd0PssGI+W0mFHlkRJV5XDODkpnzDOIKTGZTJBMLinzFWNU4otlyFnbEjf34808vkqBXSwWzOdzolW4fAzaCHV2NXOi2VpdED5yerJgufwCt27e5tLFC+zt7bK3t0cExDpsSkQbmM53OP3iF9nZ3aXdnLHZbAaG0GK5YLlYcu/ePZabdX5x/VHB0Ighmq1FlcyuySOVQYY0pDqKu1hApnHOc7A4MeKsYTJpODo6xFplY1WuIkYFg+paWUcllVOs39glLlawuIUhKBMnRp8nWNFDK0aF12p/27ajUBPLwoAvzTGO0zDFuhcLX44X162P3SMEjTH90DlH27aP0DTLePZtC4X8MMSuiqz6EIk+4kPE9/4xQdwCON57fEpMJ9PBwpXFXuLUgR2WBbP0sYA5NudLka2r7lw1eCRFKXadZgdUmTfD84o3MkbUQ4qQDGA4Oz2lqmqa+YzZbo0Pnm6zoetamqbBWQc2UdUVdrTGxkrSOTdg+QYhpkxoyX2LMa9HwGXE/G23sKHv6FpL3Ux0YKTwP+128ecFEyL0UQc9iA7UaX/OcrFgMmnY29vl8OiI2XymXGQMk+mc6WyH1+/co7JC17a0bcvdu3c5Pz9nvV7rZKIWamulNLXSI6T8JsYYTLAZ7NJYryCyurhHu9iNmDxjgbXWUjvHbDrh4OCAyaQeBGIyqQnRD0Lqvc95R72+aXSziDE7p67rRwgQJV6yzg6WLKbEkOZJiUkzGSiNZZGN+1kWYfmuXDcWhjHYNnbXyvFiZYplm0wmgxUvue7BYuaBFxTTkGGBCVVdPXLfmEMS5xx+5PqbkWIs4zMmVJTnOWvxheecCSkFV+ijcrxhlL6CL2FpiWSF4h9l4Q2COvJWprMZNglk8k/lHAeHh/Q561HXNdbYzAfQsCYGDXOKIhkrfZNFMuYsiYhAUG+SmEgk9Urz81Ww38YYtu83Su8CYqgpW5enGAklPrNO4zIkM4ciXY5RRYQ2KXC1XC64e+8+k+mUnfmM3fmcpq5597tf4O///R9hbz7jwf37nJ2dsVqtBtcYNM8mIsTybmKoXF5YxmCdze7wVssXxDbnmnRgjcnuoVIES0GDiNBMGvZ2d5nPplTOZiK+Wsu6Vtc4JmV+VVVFiglrt1TCMmmFITR2U0MMyp7x2/ywqyqUG8yAPgqQjGCrCmMlWyJFKRWACjkfmHJahWEBl8UzpF6yS2ys3RYE5DGIKeGyQikCV9zVMYW0rmt83+Mqpy5yUmqhK0KNYI3NvN5STKHAjYjJ60NdTSvKJHOZXVUso8CQH26ahrMTTfX5GAfFmmAQSh3bOCjEzWajBSg5pagKQFl4zlmsrZRcY6zyjJO6p8v1msYroaWaNIgY6smU6XTOYrnIrrDGqFVV5by1jl+Z16IEBvdeRK0xWwVb5qesS+vCEAbFNPb63gaBPV+cMvW9mvWJQubW+RzH1biqIqWAxMzPTDpZCZCqRmQbkIeQCLEjxMBqseSBuU9TWepaB+ALX/gCZ6eng6VQ16ZYjUJw0HSMcVWmDmZUMiWtHsmuYcm9KgJiSLJdKCWeMOJw1jKfz6kqx8HBPgcHBzgn+L5jPp8PC3oyUZpkAUpSSjhbDUhrVVXbKhizdZnULTX44BExBKvuZ9NMddJrnWRrjAozCnCFoGh5cVHLPcv9ve8e4T+XhVyALJMXlAJDiqgaEewIqLGj/N/j9McCgMWcJSjvOUZ5x+mXEncXa6f36bDOjtxiXZg+55sVTFwP9MhN24Ix7F04YrlYYI3BZWJJZR0lQaW0ya11K30u/S3jsNlshhCO3pPEDB6BtZYmREwEnwKeRIie/Z05IURC2xPaDAJWqlTBDFmGIoxjTrcxRr2RUSvKb/DidFGoQiMhMcKTyeuTo8RWLMY4hbzVBlDSJzFF6qrCOIcYIfiMiInJyX9HjOTkvyHlgSGCFfCdcPfuKS+//BJnxw8zoLFNUQyoYs5fafJZWTMyWqRlwYzdPeV2bgkMxTXSwbUDaR8YONLL5RJrEl3XDvFTjJHpdDosvKLpyz23CkYeYSAN72G0RDDGRFMrO2u5XA/XFoFv2zYvgkLUyJzlL6ngUbQ9hDC43CmlrYXMQiMinOd0DNnFLLEjKJBT2EQuJ//HC62Mf9u2A4DS9/1QMVPc6cL1Lm516W/bdaSo1MxC3LfWKpCZx7zdKCe85IFvvvYazzz77NbtjwXN1RK/kpYq/PAx263EvDHH3IVoUyCNcWwO6rav1ytc06jCFZhOGtZLBTvFadpOJSpR2He2qQehf5wpZ40d1vDg9hb0O4YhVtfna+WbbB2lN21PRv73nuB7gu/xptOOJ7cFIfpInyLi+8F1ds4hKRGrmuAcKWoJlDWWTP/VRWoMXfSqQZ2jzRqRHK8K5GoLMhVf00rYOCLyB8TGR+o4y+Qo1vSoVRienVHug4MD5vMZTVOrOy9Kqihu7dhdKQtgDGSUHGGZwHFdbelTjJHo+wFV932P4PHW0PU9rrL0fUXfd48gwZWrMEbos7VLaRzPqqXSooNMzK9rBEWd66pSr8P7QTGsU6LOPN0YI7XbEurLAi9A1eOI61g5leNbz2mrpMY50Rgjm80G3/dDTS3j2NWHbb4afbed+Q7n5+ePeAHFzR3H3CFnLYrrXsZlLKhjZlLJ1xZlOyjeUNJOWoxhINNk4zaWHxRCvNIAACAASURBVAF/w3xm93+sLGNOAYYslGW9jVHkYmlLVmB83tsisIvFKcEH+q5nMtW0jnVWCdoTj3UVVY5vrLWIEXzcuggpbRP9YpQ1KcYiaZsLSymyt7fLq6HX4FxkAIqMUW6nLhKXC49drrVUUoMRi7Oa3klRy+r0XBC7LcQuwqAorrqz02nDfK7WE4HpdAJJF1dxh8cWrriGBewpE1gS8WUBF1d14OT6npSgcqUgXGOdGDWGU21rMaIUwVL8LTA8xxizTfin/K8bRihjKaQnW2croimDlIb0TvEYxukm2HoLxfqWNElRREVgxkLTdR2TyWRww7fuun9ksZa10HWd0mAE/Gh8C4o6xHwpKRgTIqapqCeN1jNbg4Rtqq4otjLW45TWowDXlyqeqspVN86CEUKKNHWlGy/0nRbkZ164yUbEOpdd6oizW0poeT8FOeWRMR3mxmh2oGCdJVTUjMHbGMP6rsXbStM1xmVBM0DOK5HwJBwRiEjMxIMUCUZIyZD/FxEhiAprdqlLqsUI9DlXNk6Kq0CXASiToIumrhqquqGqaupmMmhqXdxuyNWJ3S7UMfpZ3PpSOJCI1FXe7SF4BTx4NAbZbDY455hMJoM1Ki5jObe4ZMVlLMjjuKJF2UNmyHkaI6rIkqKIBktl7UA8kIxSpZyzkyxQAaGuc+zsw2DBjDHqLZAJ8Xkhx7RVLGUcxgh0cc3Hrty2OiqOgLwtEl12wRjHvX2vmIczluSVpppSwncdsfcq5Alir5a9T4HQ9UMpICnH7mHrrWihuAwKoVjLMcI8TqGV9yqc7/JuA2svK9pEBlCjorqprklFsCSBRGLmG0sUQtjmvsch1hC3hy1qX9bHdg3pfI7d9rF38FbtCV1iRe+87XG2x1uhMhXEyGa1QmZTNfG+xBqSraoMiKayhizBeFJG2TRAByFgJLBaLgbEcCtUW6TN2oq6bqibSf6tn5tmghg7gD5lwhSNczkZ/mh9KZBdmp7NZkOKAddMstXxMHJ5Sxw6dskKgl0mClAUOGwBHdhal61lClkgFcHEGJw1mQye84QhkmxGtDPC7dsWny1Dk91eSbqbRIqaY25yLFtVFS1drkFWQE4k83dlGwOP87FjizhGu4GMUG+pdONYt1RoDQohj5si6PGR8KAs7hAf5T2PLbimb7YpKeUDK7EhiYZG4zTZWDC3Ht2WXaWusHsEFBsLl14riquEwHq1Ync+o7I2kxwyp7qules9AriAIZwoaLViJlsAb5wrV++lH3LP5fnjmPZtEdjgPX2b9yiKquUlM2VUi0di8FjncorEkJzVmkSj1EOJUQnOJoNAVUXyHpct2unpOXfu3UbIAptLnMQ6khhsVVFVE5qJCmjTTJhMpzhXIcZQNY1ylY1VMEoUSXb5by25ElKxHDYXeSdl84jRgmXrLMYqEt3UE0UlE4jNioOEmJw6Clp052MEm1TwfBzSKBSLlSe9DRtFqo1DIlSVoakr+hCIYoimIRhPSIEKS+g7RXqNYJsJoeuJMVEZtRjWQCQokSQJiM37CUXwAbEqpNYZVZBWIAixV7fNWg1XrLHYgqab8ZY1iRiNUj4zyj0s1AxkOWvphvK/BKGHFCEGvbfV6hrvFaG11umqcxXEXH9qtVjASU3ZCKDve4g55ZFDqhQjvQRwCs4V5VByunVVDdcYY/C9Wn7rHJuc5hEx2S0uMXZCUq6e6T3LfkE4OMQaowoyZYWcItHneu5cuCApkWJQbCUm+q4lmsJNVgWsFVbb9JtOk9aLp5TwfYdK0Nuah+0HAbBi6FHL6KoKVytQFDNaZ2gwRhlPJe/pu5ZS1ubzhli+V8vrfcedO/f4zE99mtV6gytpBwQxDutqbFVTNw3T6c6A1E4mk+2WIlWFa/Ln7LrHoLQ/6xw+x6MWB0awYpFkSEHJCroHUUdTV1ROAQPfK0vGWEffdtSVwyK0XQ9WqKqa1WaJ8ohtruCx2Fq1eRBD3TT0mw2Ccls7r8i2rRzB9+AioYqkyrCzf8RkZ591n6irhtVyydnpMZcuXkZEWJydEftW2Te+xxmhqRRtNU5Y9x7dHMwMhQbNtMFG8H0ACfQJTFKgSYxh3W+0oDtvSmClxhqte405jo6+BRF8SHQ+UlUWZyyRvIlYVhCFoBKCIuIkIYaEVAyWtuRm215jSmcN0ZRi88KpNsTiFaQt6b94Kl3bDeV1BTcornCfQ4aUc9lWLL7zOONo6gY/FBU8uv9WLFvcdGr9br9+mxs3bmShK+5r0Hy8He/9pRsXWBHqnGHYotKF6hoeASlj4QiIhkMkpb/aJ5PXJ7SwGc0S6VVjRHUnq+DpvBnSEZqqWGCMpW5qbKa7bTmvOdVSOdbrNV0XePjwIWdnp4TQqSaP2dKJwdiKZjqjmU5x1jHf2aOplUlU1dWwuVjTNIhVd8kZzat2wSNRUdQuenVvEkjQBeRESAaCAd9H1usNzhl29464ePGQVefpQlJubVMRe6UQdkld/y56Nn2iSpB8wEfYO9xlurtLg9I0rXMcTWekEAkhMQ+GWVOT+jX7uxPm85qdnSmnizPcdMrifIlZbRAnrFOD73eoji4Ruo6d2RxLouvWGEl07Zq07Fift9y8+RLr1XneEA+MsWBrduZz5rMZzhjqqmY+2yFGj49g0Xrh4D3W1aRMpKgEkgh9AieCN9A0lrqq6YnMd3eZTaecnJzoPlFAkJRLxixRLF2EFA1dn3BWF3oKhkCiMglLQoJHTA1BWT+u1vxtJGUyTCE9OPR/SikNNYYc69pMi8whV4gps6u2GyXoFjCyrc7KeIJzWmTR972yp0odK+oJHB8fk1Li4qWLOn7OZeHdbhwwDgFKWFDc+MdxARjluGMkEXTrHN+TQiR6r7sxvl0Cq1ojDjtBuLwfjojuUyOiHZrPd9hs1jq4mh0euVcyxBhiJBcFFwqZ050PDWqBsntaN1OmsxnG2OwGN9vYdGDPSCbh62o1CMHrHkk40V3yIG9PogCCsY5oLVJVNLMZs+mUIIlqb4/5xQvsX7vEcxcug3WEBMvNGh+hbXtAcEZolysWp6esF0sQOLp0kSvXLmtOMCROz89JIkxmc+U2W6OU1bbjsK7YcQYbAxITVy5eZLleUm2WnN5/lZs3X2cTDIs+8fCVn2I+n1Fbw9w5XPTEvmNWVRgPk+UZ+/GcnVlk1XbU8x1sPaNPFb3vOT4/RnI/utpy4egi+3sHSPJUq1MmlcERaZdLQr+ismvmF3eZHVxmtn9IXTfszecIwnK1Ym9vF+csp8dndG2r5WfJ42Oi3XSsVhsePDjh7t27HJ+csdko+YEQiN7TOMekqof64UJ6Mc5u3cW6gajby0yn01yOmWPUHN+WPCdpW/WDdVhbAZrOK8h1imDcCBQaZSdklF4ZYxwnJ/oO8/mc6XRCInFwsM+1a9fY2TmglEgW4HGcRRinw8Y8aAATtbY4GVEOAj3r1Ybzxdu4CVtJkhd2x5BIfozx0ffdCGFUNLgIVkF2lfhQIPktB1dhd8E6BZZEjAJL+dka0DtK4fk4JybCsBVK2VBLd9lRi1uDpn6cpSdS70355g/9HJ579wtEHK+88jKVNbz88otsbvasUs87qgkXL17EWUMwFdFYGpkRkjA3CXswo7p2gdR5jWFEcLXF9EqOONib4UXwxuAFEj02bEhxQ+UrDLUytaxDMOztzNlrrjHpT1m+9tO8/OoXqcRgqhqMoV1tMAlq7+nOzrn94CFt3+IlYiY19eEB1c4+z73zW9i//AzT+T6XLl1kOp1QTxqSq1l5D7bCEgirE+ooTGMLqzPaegUmMjnYZXJ0BXavwuQQxGJyPnxnd1r0IpcuH2oxfwIv0IVI23b4AM++x7BcrlieL7n92i3u3rnL/bt3OTk+5my5pFs/RAScLeBNwlpyLapaSXKVzWw+o2kmTKdTptMpknQfpKqqMklH409jlSU2rgSytkJEt96tcunler3eptnio1vejIGvkm5arVYDp/vs9IzFYsGzzz6Ltbpm79+/z9HR0cCIE9FUXdlYTxKkEOnKvs9o1VPMcS5Jdy8J/du4p5PLBIOqcljr8t8ZjMibNZcUSkHwJO+5U5CzUquaUsI4zXc6W2exKsogYV2mMg55LcnaUnC2GrlJ2x0HlGweM5+4QmLE1TVlVzySutCzvRlXrl/m237et3F46Yi261kvW65e2OH89IR3XL2Ic4nKdyzv3GLWr5k1FrtZ06/Xunij5jarztM9POPszj2O799nf3+f+XzGanEGIty6f5+9y5fZGOGsa3HTmumkwm9WWCKz+Zz3f+jDzC5dRsRC8EjoqfqOi7Xlzvl9NmcP2Z3uk9pIt1xRi2NuK/ZD5IX9A5b9itsP77A8OaXbnBH3jrhjLNZ7Lr3wTqplz/ntM6wYQhIenq1JRth0x/SLE5p+zSx0mHbF1Ag7h4cs5wfsPhvZf9chVJ5gMldY8q4XMKD4JFW5CaGxQjObkJI6sHvzmnhxnxeev0EIgdZ7jk8XPLh3zEtffJmXX3qJ84cP6duN7pUUyVvnJM1Xox5N2/akdEJKKeMXWiW1s7O73VfMGnW7246+b7UPQWNmVQhxAMzGhRIl31xa8QYLgjudTglBc8V1dtlFDK+++mquKFOk+969e1RVxSy7z7s7u+zv7T2yC+YQM+ctj2IMSEr0bZuLCt7GLWKaZoLNg1JyXwOVzDhC1PRISoVobXJ8uU2hpLQt9XLi6IMnxR5jKgYit9HEv48BS8JYyfsCC0mUAD9Ojpd0wOBulB0tYkKsKJhRVcwODnju2Rt8y4c/yOH+nL5f89lPfYKH9+6wN59z7co1rl05wMkhx8f3eXj/Lie3X+Ok23Bpd0o6P+PBKzc5u3tMv+y5MNnl+v5FDmzD0abnYNPi7F2wgqMnGuGd1vLyZ7/AT736MufRM33mBuHCRQ4axyz2SLvm5Md+kqs3nqGeTYfKkLu3XqU9vcf0/ppLpoIHKxanGyofaH0kGqc75i+0zGxHdpk2Ux5uVtw9e51uHXjhxrPshgXu/IwbVY1ZrXl4+yH+4RJcRVid8OCVVzi/fZsdV7E/nTFrZmwOA5NnLJevNjQyBdQjETwGg0k2S2v2snRSqZLGiaC1pQnR36K501gZSDVHkwPmR3tcf/ezfKT7+SwenPDpT36an/7MZ1icHCsHN3tHYsmxf8jrJ7FerzHWsNokzhYL6rqmaRqOLlxgd2eHZlT2ZqOA6CbzISpryYzCqHEetsnEj+K6TiaTwSsENRZKsNH0ZVVbuq4Fxntxa+v7nvv37nFyfDwQghS70YJ6Y7S+uq6U3OL7Dj+Kod8Wga2qXLXi3FClMJlMcjyZc59DPFlhnKUeuTVJcypgJNeTKpJoXGZFhT7HeIa+awkxEXLFT4yBJElj5aA85iQ57hGh61sSkZA8loZJs8vh5Ytcfu4KFy4eMZvtcOnyZY72dtmb1aTUsVmcs28N0SW649e5ff8O1jm61FOZAKcndDfvsFmccr8/58g6DlrH3qnnwa2HhFXP+c4R86NruvUrkZPlGQvvCbM9wv4OfeO4eOk53tU7mDek65eZfOD9PHt0ge7Obe7+zOeR1ZqX/p+f5t7JfRapZ+fwMohw5WCHdz7zHm5/6p+xXnRg5zT1jE0MHJ8v2bTnKivGcunCPpO6omprdrpEd/Me/mc+h68bZpcvYBrD2edf48Env8DNF1/DzKY01464HBva23l7mv051Z5TostsxZ1P/ySLB2fUR4c0B3vU8wl2OidVDVJXmpIRB8YMaTJNxWm6SIBIxEiCpNu4NpKobGASPUkc0ky4OL/KhcsHfOtHPsydV17l5hde5tbdOxwvzujXG5okuBhJleABSQ4RRxSPpEgMgeWqZdPeY1of09SO6XTC7u6O7vecNNVWTSpSzNVYTY3veiprMUlrZ0EeMSjKeEtMJxNISoidNE12rztFiqdTRdaNKrFiRGpX05o1uv+WsqxS7OlCgqSF/m3oOW9brNONAGbTKZ3vvrzwfSUC29T14OoWy6rVFY6mmqog5oQ0RpPMVrQu0AfPYrHCh8jFy5eo6poc8pEy79jEbcAeQqBxle5QEQLBOozov1hAUrbcmaRgtfLBR5jtzPnA+34O3/Zt38bV565QTTTN0LctlYOJjUhaISkw2atpLu3RnN+n7xqkqVmliMUQTo7Zb4VlEDbLDcu79/HnGzpf40LN2bKHWOHtnEUz5dKVS5wtT3gYKi7deDfX3/9B5s8/w0oiO9WEG12Hd4lwMKO5domZc9j1C7z7I99G3HR0qzXnqw2v339A7xMigWcOJ9z/1D+l+4xuJbI3nxCMA+dwTcPJ+TnLVcvZumNx+x6NiYSYcM2EpnKcv3ybcHCFZrZLXc+ZpJod01D1npsvvcTi1k36TcfcTri8d4EqOHbcHLdK1F9ccvpTn2C5/zlmFw6RaU2USDXfxU8adq9dhdkUN59h9nbYvX6FeroLriZarW8GIe/Fh4jm7GsCdOf0m1OStUi9g633cZMJ+wdTnr9+BfnWb+Vkseb+2UM++6kf53P//OOsTs7YtBW9qTEpgBOiibgUsmBZYoQzSdSi+9gYK9nTs+zszHXThFJIkJlIA4suxMEIlb2h67rGWNis10MmYrNWzzGmQFqkodSujZrHFiP43ufNBpQdqFz5vLE95Bpt3ats+G8TPnD33r0Bg3lbBLYwiJxz1Hlz7FLtYtwWWNIk/ZZNQkpMJjX1RIW6rpt8HAUKMgRfU4GPNK6mMxvqJFRRWESItcNKlTWtJqsJCcU2hWCFw4sHfPcv+yV84APfROUivjtBFitsG7HLls2J1te2ZwsmSahE2Jyes3zpNU5OFxy+990893M/TH24S396zubWXaybsIqG43sr7jxYcnNxQr1/gLt4gYvvfD9H3/4RLn7T+7A7DfVmyd5iw87OId18ympnQmoc2JqaRDU1VLVOHiSYzDEHM42tgXrRc/BgyfnJAxxrpjO48PAKF67d4JW7n+P+gxPe9b73somBaC3BGuykJ617fNfRbpactytc9FyfX+T8PHDnpdeod3bYePDGwqU99t57jbm5TmjmdCvP2d0TurM1i26DPT1mx8P+ZJd207F+sOD4C7eYNhWNdZjpHHGO890XOUsdm8pgLx9x+f3v5pn3foDm8BCzUyOTGsQhOEiOZDJLbr0knt1m8fCLrPtT9i9d5eDqh5hOdoimRkyFNJYrkx2ODqdc2xeuTs558ae/wKv3Eg+XQt8tiO0GY51a8h6sRPXErKEXTdshQnQREY/vAlYqqkZTOVpeaLb/8cDYbHC2JYpiElWl2Is12/21Y1JgKkrCSKLKRJwQPVac7oAYg65tI0NBQV1pUUdKUXkMvhsscsibk2+6t3GLGCXJ5xfI/rjSvBqMybnVXHNZ17UG9lmIY1TXqFyXUs7ZWZtf1NIk4XA24xf/a7+AZCOf/rEf596dB/RWaE2iT0qxC+jesDGguzdauP7O5/juX/5LeebSEbfvvsq9Wy/Cw5vYB8e0d07xa6jqOWGzobt7F3d6TrVpid2GSir25ge8+z0z5ouInTs2sz3233dInYRdO+dw7zqvv+uYUDdcePYGl59/DnvjOm7/EDOdEfsWtzTMLxxh7YSzruPk/Iy0cXTNhFntmDcTphgFVXI1R6nTjSJMphZzUairDf1qw/niIdPpjGfe+T4evL5ktem4dXaKVI4+JEw94XC+jz1vOTt9iEmBXixtNJj9C8z2d+j355zaGb7ewVzcY+/ZZ5j797JanfHg1m3mybFz/QLrh2ek5RKbEvfuP+B4ecL54pz1Zs1ePeXazhH0Hc5GJnWNf7BgFjqW6zNWuxPOP/cKt65/hivP3mB+uEO9MyPaCm8bcA3zG1eoDg7o4pqdeUW1sYTPv8by9ivI+YbdS1eJ1QTqOXa6h9iG2lUc7de8/z2XmTWJF9IzpPoyN1/7Gb74uU9yfLwg+IrklVRoAJ9359yWsSkTy/vAnfv3mU50fTZ1jZTN+kLA1VsMpMobBui+1DaXyUVdp87Qddu9qnzXkoaN3XpC2KLM+LxzSIi03g87i3SbTWbwxS/hm7+tMaw16paW38aU2lihD1qUvDNphoEaF1oPQJM1lP1rFRGOSATjofKRpg1czaT9S9/+HXzi05/iM7deJcbAxm+UEIGSwaMYqonj27/1w3zwQx9gdXyfj3/yn7NanTHp1oSXX2Ry7wHL14+5+M4P8vwv+g6mjeP1T/wEn/vYx2hv3aRyielkzrVml3uf/izLW/c4fPYG7mCX89Tz8Cd+kvWyZe8976H+ue9hszulT4GzGHCbY2rpmC5rWJ7hl2dMji6w6hPd2UZTPbM5HBzQ+RqLx8oUM6mo8789tEkXWpVAXMDu6H/WOxeLZUJ/WsHeHu/68IdwVYOpNby4cPEyjZtw59ZdCHB6/zZ3br7Gizdfx5oGX1k4OiRevcx9HOvWc+P5G6SZw7oDzOk9dqtAbWtmzRy/WOHall2bWJ6dcXK64M6rt7j3yuvcfe0+q2XLpdkluknNNEZ2XcOecYiHk3Vk+aBj4e+yePUO/aZV/nJOM82vXOLqe9/LlQ++n9n1A1wd8bYmnHva8wV28hqzrmWz7liJYA8PCE1NM9mjEoesz9hrIhMX8XYDlxoOJs/jqxmtOeTO3WMWD+6xXi45XXf06zW67VvUrXeMbrPb+4RftgP3uqmUAmlESLOpeo0YjIfGNRgjahGtCm3bdkp7LPxvFFELIWYiS+ENxxzPRkKf95WKkXbTZ+Rad0qEbUFJ2Rj+ccT6qxLYekQqd3lXQmuV9ldl9pLJTJlt3Sn5f9x4JpMG29SU/71pyraYSahJzLzHLc84+8mf5Pq7XqA62OHn/+vfgftniRc/9zlOF2d0JlHJhGgcB9eu8c3f+s3Mp5bP/f0fplucMXOGvXqKOVtx58de4uFrN7l44SLNJpDuPuThZsHDl15lJzjapWclnmr/AvddZNGecvzJF7Ef77l66TLJCXdfeY1OamS14crRL9IUTbciLc5p2p7YnbD2PeH0Hv3pA8LtCc5O6O6fsVi2TC5fhctX8NMZ4cJFmqamn9Qay5ArY8gVKOiErZcbwjrSL3p2TcXFgwN2usB8Z67gUXtOci0dET/tOdjdZ3//CjOzJnYrXn645PjBbc67BfvnJzx3/SrXj2bs+XOcd0zmOxxeucyxhbqZMZ3MMKHn/kufJ6SWy5euc7hOPHfjGv03Lbj14k3u3ztjs4HbXWTeJMJEuLp7xGF/iKTEc+98B3F/xr2Tc5KpcZMJrnEYo1mAxUuvcn78gMvf/DzPvucqPY7pc+9nnpSptL7TIqdLDvfnGFmxsQsW/essfAftOauzU477l+nMhOXJKb5bM7/xzv+Xtffq0WxJz+xWRGxvPv+lrSxzqo5rwybZ080hpRElQYB0K0A/UzcSJAGCOBxAQw4JopttTptjqk7ZrMz8vNl+74jQxc7q5lwIoKCT14VCoYA3I3a8z7MWj374CU9/+AlO1xE5DlmuOazW7Jcrjscj72+uybLjH/au9xFomrala+ueFWUseXHkQyX0w/ominp7QxiEhEEfhW2a7g83o7rqT1YMtG1/6gohaLr+WqvcDyypPiH8AQVj77PHf/AafRha4A//wO9iYD88Nn2oZ0nZ0wv6Tmr/Quw4fTpJfAiRA0maUuRH7t6/x+ruDwoKL/Dx45hxOkJJF89o/LIgf/kthfRRTy4YnD3ip9/7Huarb/k//+Pfs9MFsYpxgojjfEL+1Rfk+zWJNDw6O+Vuf8R3h9SrEhZbRn5KHI+JfY/917+mFZZuv6XKMlwnQHmS6dVDzn/8PbqBT3f7lvWLV9w2OY4FcxKhcXnyJ58yfvIQpiOczsdG93xhJTFdhadqwuqIuttyuF6R7fdIP0JXGoVLdBHhNUDe9lcxT6EcQZ8FtyhAWkUqh0RhwPKmYvFiwfHtc8L1ArdtaIcJwSTC8zTaCxBJyOOrZ5T7I29/9TW75VtCWqaeg+k6pDW4bcXE1JjXX0G7RI1iZDaiNDCYzBB+RKsNXd1glGC32ZIkI3brA+1xT+J5jB6dEnz0gEp57DY5fgf1dod3OqEqKoR0EJdT8k4w/vwxcnJCcnqC7wicfM/+5Teky3ds8iPLX/8GUa65+rPvEz54ihEhrEve/c3fcfuPX6OrDH8a4kxCSMEdQCgEES2aFuP4nIwC9jcF7c1b2tFzxo8/xW0bAi1wMsPQ9/no2Udk2YF/8+lThIAsO7JYLVntdmwPR27v7mjbDn1PsTBG9B1k2Q9wXZWURY6Fe8CBSxT2aacg8PC8D8Lp+2LGPbf6vieK1h3inlfctPfDeR/eMLr/PDRW07XdfQjlw+ryX/fzr/PDqt4JgxAIx8FKdQ/xAtly34Dof3tI0YfDW6HRyhAFHg6GQ5mDcmkaQ1l3RJ1F5zWFBd10+IeCxEspfvd7htMEnJBocsGffPYjilfP+ftf/AdEW+BWMTbbs339mijyieZDlq9f4muJpcbmgsHZOY8/f8bp1Rm4ChkPGT56jA5jls+/5cu//VtWX/6Wr377W/LEwTw4pY1HeJ//kOJ4pDM1Yegyv3jI4Ec/gdMHVIAWmmgyJa9aXMdjlM6wKmG/alhubjD7jCQOqaIBTeDR6ZZmt6ErSpr9EWeQ4o0i0vmQxHfxBDjY+8SLQIU+w/kMu55h8zXH5TvKMuOwX3HBKc4kgYFP+vAjwsk57/75V7RGYKOAYl9iLQyjBOOHnE1OeHx+SUqFyTOc0EXs9lDkSF/g+xGOF5ObjtYalss7lOMz/+yHiEZz2B0JBxOSwSml8VGrNe36lvrtt9x2e5J5SjiZYeYJ5SFne3xPqmoYCNzTM5rWpyFCexFeq4mkIHuz5bX9htmnP8RNhsi2I4oTpuMh7a3h9Vc3RB9NeHjxBK1qbJ3jKfhmpgAAIABJREFUK4VwfCoT0+iQIBkQCUly3OK++BV337zg8Pw96mjY2Y4STV1WjMcjzi8uSEdDHgUeD6II5/wx+2ePeHG74PXNgkOW92xma9FSorXAVRZjGqyUNEKgsLTHlqLsE3hxlBAGAdJRNOaPGpHegmDodAO6Z5dh+22GNeY+g9zdv5xbBOreBnB/2prvsF734cr74RW4TzL1wiqjenq+FQZx7/s0tldPoMFRAePZBTLqtY/TwZD5dMh4EBEDzWJB9/odcddQrzaYVvK8+wd++NmnyDAkvpjyV//9f0cpcn7+jz9DmwYHQeAEpIGP77kEwxRbGfxgwtWPP+HP/vq/pW4q0iig2G2RgxQ1mxE/uCL96CNOnjxg9cWv+Ke/+T/YbZeQenRKEKQTBicPcKMAx5cksxnexSXOcITtLG0V4CjJaVpj8gKRZygrGJ9c4P9AUU5uaTdrXC9AOQHkGdXihvV6A+GA4OFT0ssZg92Q+Sgm8SAOJcJ1kf4QqVyiSYr3+DG1bVF1w/bNK7avvqV5dYPahVyOZ4RuiM4qbA1RPGEj15TCxfqWtss4H0+4enCGP0ywZQPHlna1opOWqtNUMiA7ODRehOvAKD0n/ckJlfR4nRtEVTA9m+HPZ/jzc1wbEE4SxCJg2R1wmyODyZjw6grGc8Jjxcvff8vm9ppSGKLJEOFJzn/4fbrjOdvrt0zSkCJbcLtc0k1XSK1YvLulqUvqKEKex/zwJ39BMXYoE1BUVMc9nutQW0DFKO0iuj3N5j3Hu/e9NOtmiVN06Nbi1x2+6XlWTl5SbQ6oQcpoOuGoW3IB44eP+XdPn/KTT57xbrvmq5cvuNscyOr7TzndO34NEjpwtb4nX4DuDFVZEQQBSZLcZ9ItWt7TO0x338L5Y+DjA9Dgwwv0Bz6VUuLeSdv9oRX0nQ3sh/aB53r3sUSn5+jKHq9hpeVDJdLeR9kcIZHSpTWS9PwRj0+mTAchkWkxxRbyLWxWJMWayDeEnqDcbykPHdlxy+bf/y36dIhyFXgef/EXf83r52+5Wy8xAjzXAasZJAmT8wvwx1w8/T6PfvRTZJRQ7/qkicorZNVR74507hqrBP5owoPvfx+nPfLq5e85SEMtLSpU2DTERAkdBdJt8J0cT/g4novwQnQHOss53i1YvniFA4ync0ZPPmb85FP8tunDBKbBHpesX33FhetjJby5/j27W4d8kLKNPLzQ8PiTC06ePAGvJ8XXTUUHRKdX2LyhKwXHbU2VbbHblvz2SDNastnlbN+8w9cO2IAKn062CLel2N1gd1eYUYx0fBzrsXv+mla0OCfnzD/9lC4MsMcdQdHgxhHFyQwRJwzbDj9bk928JL99jZ+8pNUu1bLAbnccb97i6Irj7YJws8edzmncENW1iLrCbRuaKic5PaMSLuHJgOl4hL69oVxrBsmQtqnQxZFwNMDnEcb6lEVH++Qx/sUMQ4UtDoixxokHhK5LYA1mvaZtcl6++hbWByInxMtKtOuz73QfY2w6uqbFGktxKGiLBqqOui5RUvH2+Rte/MM/4l/OefbTP2X6+SOadMKLt7e8eX3NYbOl6wydMGB7SqYSAivvMUGiTyeVRYHr+IRRzwKzwtK2Xd+51j2o7V+WDP7gC7p/oDJWok1vNujjk+L/df7+Pw+svKc59A0diUD2pjLb78CkVX10TSisERih+lB7GHN++ZDLx49xHIvMN9j1DaI+4pcHqtUt7m7HWHhAS1m3tLolkgnZb36BfuMzfHgFKiCSPn/5k3/L//K//6+YuqHWhkYINu/vmJxfcvr0EwazM6R1kdYDHNzEp17cUrx7S4zEH06oreWwumPQ1YiqIyg12ilxkyPaekjloVxB7NSINidbtszcx4ThhJYUlEuLT10JZqMzzuYzVBQgo4QwTXq1oRSoak/5ekngtszPhlR5hq+PvN5mHOqQdn5ONL+gHc0pvQGedelaS17UhI7PanVNtT9yevWUUTjBVBkvXj/n5//pC27fH0mSlP3tO5q6Rtca3JhoHOHJCqc5EitBmiRkRU7oTRlfDml8SfT0KeLkMfE4wr15SfnVl3DYk45H2KpAVRn7r3/L8re/olpvkMZD6hBrFI4SuGgC38U3EvN2QXG7xb16SHazoK7avuaY+IhBRHJyirbQ+oICg39ySjRLUfMpuRHoxlB3oK4UodbogYeKFIk/JJjPkF6C9CPaMiM4rmkWb9i9/Aax2CJrS6k6hIwR0sN3LWZgaTqNY/oWze5wJDvm3GUliZB0VdkDCgKHPNvzdy++In10zl/+T/8jn/7Vj1h9dMmLr7/hy+ffcnPIaa3BCB+EwKoeuWPor7Rad/2h1VhQvXaj1RrT9q/EH4gl9xN5v8LpH2YR3LOI7R9O1+/0hJXyQ67yvpSMQWL7GOI9QQFxz21yPDqrSCYTPv+zHzGfTenaClvvUDqjzTZ4uw1qvWHWCkIvQdQtOnRxw7jn6eiGqthhcsPNZkt8ekGD4uLsgmcfPeP586/7AnqrUZ0g9ROuHj5GEVLd3CH9A4NRgEODFCXJSJAMJV2762kPXcFxu2ISJhg3YZGt6IaWurboyhKEFuV5dBaqrqNuW8IApO0w99ek6WBEWWnevbtlejpj7Poc3t/guH1ySm/3dHcbZKkpS4PoNPbmLXMVYtuOvJFsjIs7OsMJBFGkkCg667BY3ZJvtgyCABuntK2gUg7+g6fMooR9U7PbHDmsN1TZESeZkM7P6DwXaQsiE6CGPplo6eKETAncBxP88QAzGUGSIj3Boa3ZbZekpiWIXaStefvVb9m/fYvXtlA1ZNkeT8YYbdG298vq0YjSaKbzgNTzqY8Hwrpgc3vLenlLWmV0SnKiNUnkke92CFfihQPsZAbTU1ypcBsD4ZD2uKXKllidowpNm0m2yiOZKkLfJwoEXlFQ7V7C9g6vtlRG0ijFYDzFtAbZdswGQ1a7XQ879ztaLXqelDbsmg6MYBbGxLGPdUGWR57/3c9oyoJ/85f/lqIoeP+7X+NLh7iTHEWHVhojnX5UjEIoB2y/mgulQAs45gf4AP6xkj9YL+EPiar+R/NB0/Evr8FSiu92YHsebc9blffhf8E9Xf7+t45ULn48opUe05NLfvDjP2M4iqn2K0y+wqs2eIcFzfUrNt+8ZtBA4kd0rQXHJZ4nHI5HplenhMMBVVlwWKzZLXY8/+J3eMMRlw8f8pf/1V+zOezY3N6iChevrPCUB7sD0jPEQYoKLbI7Ui7u8Lsd2i/Iimv8EJqyw+xXhHWBPm5xjWZgDXVToHOBSiK8ssLxIrx4yGR8SiQ8xG6NyQtUUVNsMupMMxqc0HlDit2BZrWmOR6I4xQnialv39Ou9xQHg0yGjAeXJGNDvdsycRRu1ZG9uaF0AkqV4D9LcEKfYDAi8iImowmh0T3e9Lxj6gfMfI8nwnA47Ll7+5ab3/2S1ZvX1JUmp+szr7qj3m355W9+zuem4+rxp9iBj04kebujfL8kGE5JByP8aIBOB7T5ns03X/H2268QXUUqXHAjGuPSqCOb/QL3/kRIJ3NKa3n37bdc5DnnpyfIIOAsjjn/9Bm3+74HrNZbDt++Qs+mxEGKcATSgW3doPYHhB8CAu04NK5LoRvI91R3KxwnJT6/QlSaTmb4ToUot3imwHQFtW6QXoryAprOUHQNnWmhyAgcRZQm5FXJ8SgQysFTLvkhA+HSKovwFE1d4GoIKsvLv/8lV/6Q8wdzxPIO4fs8efwxVTyj8VOUF9EYSVEZ8sZwLBq6zmA6TbEvkaIFq3Glg+KPndsPeYR/CRT8l1RH7h8c9Yes/Xc1sIY+w/thXWNMzxOyUtIqh/F0xoNHTxmcXOAmY9LpKXGa0uZbst0GffeaUbslf/OK7Ktv0Dd7dpVETV1m8ynCt2zKI4WuOS5WVIcjDBMGDy5JTx9QX99yyDJevn/DcDRgdDrn/e0tomuxWc5vv/gtNIrLj54RnZ3gSA9PaWS5wGkz/NBS6xyzu8E1Dk59xC9zGlsTDX2ofdANbtPhWA+fCMcGBEYgNmsW6y/ZvH1FvVqg2go/PiVvPO6iU1Q4oetAtS2J55PnS95985wUTaoEOhziTC8Jnn5M9/AJ3dtvEVWGt99h1iuuX/yOo+x4HHjMLx9hlIsXBDjeKVIJAtfQW+4cWsBI8LsZ49MpdjLCef41x8Utc89jvd3QLK4xukbmGrHd82rzCyprsI5G2Rbfd2mCFOskJKNTBuNTpHL54mf/F9XyhsCXRNGITkis4/Dg/AFHb4kuKxCSZDTuT5zOsLh+j8lyBuMRThxiXYV0XNwqpltvOZYNu8WWq8dPka5HY2tyXRHUDYPZCTLwUb5D7E0YjTzsfs3rX3+J70ak6YSqrqmLI55b45Y1nvIIxiOCmSZbFdTHGjeu8CcjpuMTsmNGWVSs79Z9sN7pesCe9HF9B9P2qbm77QprNcJCHMbkyw0//5v/xHSe4MQS3wlQWjNJQho/oLKWwAs5uzrFiybkteV4LGnKiuXymiLbYpoK3RkcIXGUwJi2x7KKP0LCP6Sw+hky95SO/got1Xcow+pbGX19zXFdpONhlQTHZ/LgEZ98/BnhYARhhApCcBVVlWPbisBqqvyAOdyy/fob8uc3OLWHGp8z/tP/kpMHMxavf0m73EOYslceznDO6OqK6eUDXAzu5Xsuiz1s1nz55VdI12H+6An7Q85eW9b7Pb/5p7/neHNNOEiZPTpjej7AFTW4Aq1d0Dmu7dBlTXfc92pBv4OqRtc5bVmiATEzVFaQuj66bNi+X9Ecc7J1hTUBvudj0zMm4wc0IqYsNUq6KC+mDRPGo4huvaB49wZcySD0uN5uOVy/YfTsEy6efEydFdx+/RVC/w6xfMvuzTXf2J9Rf94yvXqMiQRCdlgsYeD2Pl7bl1EVGuMK/OGQ9OEjOluiVY7uLCM1Y3fY9p8VdQ5JxMXDj5gkEfXNK9rlLY7teH/3kuvNka+2LU56QlfWvPv9NySiwXUk1mzwvKCXl6URYeghhYROsFms8YOAURyyOx54s7xl3BUEedhnuzV0znuGjz/Cmc2xmw132YbaVSTzE4LxHCU8qs7gGoMXuFjhYBihXJ+TH7k96yixDLua8t0bit2CylYoGzH+0U85/wEsf/F7rr98zq7YE9kIpTW+qyAOqJoK777G2bQt+zKnrXv6iOcqlOzXKAbbY18aMLahdWrQPrfrW079MVKtcUfgDWJqU5Cv3pI7e9L5FYPHF9QokgcXlEVJcTiwXd5S7DY0bYkSgDR9FNUYsBpEH0GU/At5NRojDNZ+h1liad2+JmUdrPLB84knYy4urxjPL9CylwpJ2xLamvq4QrQ1nm053rwkyLdkb96xv9tRqJD0wSXP/urfMf78e4QTH1fecr14TjoeMJhdMDt/wMn5FYe8omlaJtMTStvRhRlXn33CXAU8lg61gUN2hKahfHvL16tbLrEcv65491IyGaZMTickFzGhVJTXa/ThgNt1WNdBVS1pK9guczb5DuFPGCUXJFefM54kkO2xw3NwE5Ltjv36Btll6GBOFc6prQdxL/9SfoD0A7rAw3dPaeucxfU75HqFqVuyrCZvYfbsGe5ghH/5mJEKiC4foQUUSF6/v2OVl5yez4kjj8LWxIOYOB3hOgEogabnJkkHvAAmJxHVwSfbl9AYglGIrlIcPeTk2fc4PTmju31LtlzR7Q84FqJGc+n5rMsVL968R4YDrO9zrA2eFgirce5JIkVe0eQ1iF5rImzfjvJcl1E65phl5IeCMAjRTUNVVFjXZ/XmW/w6owtippFkdvaQaDLAhh7WgbouqHWFyARpFPanUl0SOxI3kDTbt6y/eM7qF1+ggOjylPjRBenDE4JAcRInJKdnfPmPP6feH7g8PccTmsI2xKdzyqxmc2yI/RQ3hGCgKO/dw1IpXE9xKAs00NwTSzwsQz/go8tLgjBFZzVZeYNXJMggYBinaCzHu5J9tuDk6hmTgUcTeXTjlGcfP6YujuS7Dbv1ksNuT12UNGWBbsue0Nm1qHtAlEAgpMCIvo74nQ1s60YEUUw0GDKYzYinU/xBivR8jFC9EkI3iLpEFyvMcYfebmm7Gqfc0r19hX51i8zg4x//Fzz6yV+xR/KmKBBjDzWcEs8v++/GJELKhmz5hq5TRKMZtW0pHYs3Cnj8+Uf4F4+p/JjMQAfUWU759pabr7/h+uYOZQ1pFJFJl7usZbitGPoeZ5MzXD+m3W7QTYXUHa42KOMwNAmL5yuy8AXn4QPqV2s0FaNPH+OczRDn5wzyJ9S7DTUWmcxoCanKiqYsMVajRYeuNU7XMLq6YJiGmMWK+v0djpTU2R52S+QwJj0/xQYRurrACVwqbajrAis6jnVJ3pU4juQmO+AHW0aDKb7vYmWH9DyMcDC2pGpLBvM5NXsaUTFQlxxsy2R0ziKruHvzc8btEb3f9v8vkymBESzv3vPp6ZhOGzatYW01UgV9oUO0zM9nTAYpm8UWqyVl0/ZGeANlXRA4HoM0IXAjdKc4rA4AvehbCNrsgA5dyqZju+6reIUVyLhBdgbj+XiO6PE9WUZZFdiyQOgOR2lEvqF69YJRXdMaSN2AMB7jOAki8nE/9/CThJO65PZXX3J3/Q7fc6nKkrxYIztJ2BpE0xF4CukYRtMJ+6xAoyh1h+NCayo6pXBCl/mTx3z09CMc12O52eBLaKsGUe8I4pBmsUaMhqQnE45Zyerbgnh8ipuO8IIAK1qiYUiUnjI6mdDULU3dUGZHiuOO3XZJtlr0Kybbrz9FJ7BC/Wfq0//fA/vZX/83DAdDfDdAeR7aQKM1ddugaeiqCk9qunpPubnB36/wNjtsXlAfd/jrNR/HM27SisurJ4wfPUUoSdnULMojg+SCz/78v6beH8i6DfORz8DzcAYneGcPKWjZLB305i1iEtNOI7zpJQM3RuDQVDX55RXi8gzv1WtW1++4PR6Zpi6jIKTxU/RkwDFyqXWNlpKTdIRwKnAa/MGEESU6y9G//ZJXL99QeyDPJuTZj3mQzHCmEclEMBwOKKoDnaqxKqH0AgpautZQlAVlpfF9h8rziAYDujyn9RT1Zo0q16zaLYMQ0odPGE0jqkphHAcvDJGqv6o1XUOnDZ7nE7QV5f7I8m7X0yy6I0HoEqcDhLIYFSHjkMAk1OKAikacz04ZhjFuo9ls7pD5gUQaAt/BOnDMS6zqGCQO55OQ/PbAJA4oji3VsWB+OmAwHLIvc/Zdi+vGjE7OqcqS7XLRh/WrnENRksQRuu56CIHo+68OFieQjEcxo9E5uXLZbjNELbBehV1nOGFAKAxO0/B+v0OWBaHr96jUrmESuThGsasLpOfglRnN9Q3OJsMdD5DTkMaPOPnBD3Bdn9X1NW0QMZnNSfOScrEmaDvq7IBVBt+P2e0yhLDsd3ukF5CECdvdjihNObs4YzCa8dU339JUNabpGE1mnDx8RNc2bL+9RQuDOva57XA+BwvlosQRl0TTGa3oAWydMURJQjSMsUiqYkhTjhkdx9SnI46bFdn+wHG3p210Xy38V36d/qv+1Pjpx9hWUzctpm7RzYeFb4eloSkKXE/hdw2qLClfvaa5fod3qDmsdpx4Ad1ZSuR6LF9+Q/jsIyaffUrrjGk4Q+iGanXD9MEFHw8sMr9hd/uOwckMORsQBC5x1JA5BeHpOXo4QaYpsZfgaUErBYENiS/OmXgR5+MZ++trmuWSZrXhbl+Rb7cMhxGhMYROjHADFCFaNMhzH//MMhWaqikwXYPnRyRX5xha6sN7oqlDUeUgKqrDLX56juuPkJ7CCby+U+o51ELiRxFBHGGrAv/0hMT3qN57mGLP8OE53iwB1RIPUhARNYJaQmOh6gSR8JDW4hgDQUrkhOyaO6rdgbbJyA8t+TEjSROk49BaiQoU8dgh8lwi30N0Gr8zTJuG1c83uMrFR7PfbSjyAt1kJIMUsTckA5fUjdirHB04PHz8gNF0jFOGzM4fUjWGIEhZrdb9Y1J1wFMSVyiOh31PFvE83MBlPB6gbQNjH/dkSHp5wTge0QQh/mCCG6aUupen+baFPON42ICAKE7w4yFCedimJBlNEeOYosnIXIHNjpjS0O4K+FajyxzZVrhhyPgvfsTo5JLR5JTt27eYxRK137K5fkXbltQWOg+GJ1Naq8iykmK3w0fg+THVoeDX739N27V9La9tef/+jhffviL0A+qyJIoC0mpG6AisdDBhhZ8M4biCQDAYJjSi7SXWRqPcFGTIYBRjU584dugSl8kkpS0Ltqsli5sFh13ec6q/q4GNkzFdWdOYHN0ZhGdxHIljBFJrXCfFaWv8BqrdkbhqiaTPdrvGyyxHW/N1+55gFDGKPdY//zu645qTH/05/vycLpzgDFx8myFkS92t8GdDwtM5pCOQDtP5Y4bREPwIEw2w0sVrC8x6SfX2NdXNLXmmGcwe0uGxrDRlXpHEESWal199hT3mTOKYwTCBT54xm89xpMtgPENdniEnQ3RdYOqStnMRrmCXveHueM1J3hsIyrYlDSfgDKgrhTEujh/i+iWeI4i8AOkFKNmzchuZg+fhzE8Q6gx1MmFweonwA+Q9RtUXFoXAE+A7Lo5uUNkOs1ui6xyn7PDKlrI8kNdHKtPSZJLd1kFFKcaLCOOIIFaEUc8e8tQA0UpsrfAuFqy/+RVUNV1+wI9cokFCoyzudMB4CNPTOcvbFVVmGF9OiMOUKB2SRAOWiwW/++Y5n//wT+najrIqMWhqDEiFjBJsENK4kuRsjhtKTCTYD3yM3+ANQQ1DvGGC44UEXoDGUhYZKnEY+UDd4fgpajjHKBfHNhwPNzjDB4wDhZ9OUO4Qjc9hsYXFnlpvuT28B2HoOkuzX3OoCnwMRV1QLBfsN1vC0GXbVZhAYYqWdDRAGEG7XDBwHEAiWhiIADdJmV2c0aA55geybEuWb2ibDms79MKyLQ6M2yvCkynVPci9Vh2+GBIGfcZYWw+h6AkF1kcqQZJEaNfS+ILatYTBKaNhwuJ2xe3N4rsb2PrQ54CFtfiOJHRdjG7RTYNHg2kqquUKvVwiru/wjxXleo9tDJN0zHK9oW0ailzzOHyIub2jbTQ5kP7ZT9CzGUHoEbshbdHQeFFP8B/NaaWDMQKBB15Ih8IXHo5waY97rn/zG/LXr4jyjipvcIzL8OFTHg4H5IdHTMZDHMfhzT//glf/9HO22yXeIGTZ1Wz2K8bzM57++Q9hOqFz+7W2Y3r9RlHkiMxHFXtuVyVStYQ+dMbBsxWdrBCOQ2tEnzsOAdfBWInpBMKRGGE4HPe01iLikPF0SuuFvRnBgpLg2P5CpOmIbIlZv2P5i59x98Uv4LDGx9I1gJBY30G5HqPRmC5NyYVDJSRdEhIOYtowQM7OiKcR1h8Rzh6QnD/l7e+/IG4NrrE0RUY0nBKfzFHS59vb9+ig5Xs/fYY1PrtVQWtAdpLdfgnVgc+eXuH6go9/8JTBSUzbNuA6eGlMdHrO8PSCvK45HNdYSqJxQjyfo0OPzpHU9shuscH3IyaTGVGaEiYS4wcYZ0xdNjQqpHAl1pWE0mMUzvE7F6E0nZRoF5Q1IGqO5Q5sixuFGM+yO1TYpiWdSELXwzs7Q1tBVlY4sU9dHlA4hEOP3fWKcBwyYdh/o/opk+kcYwz73Za2a3Bjl9gLGJ0/YLfbUWYVxSFnsbhBHjwObcEpz3Bin7bJyLYhzXFMNApJxwOkiNG6Qrohyul5UJ02KGXxPUmretRNPAy4Cs5Ih8F3N7DZ+69BBQR+BGVGcVjTZnt0XaJ0jrQa95Bz+OJLqhevyIyhbSt8x8N3GgajhKwu0HnH6xcveXz5BLtao998xcrpiH/ylzjpBHwHW1uC4Yw4GmK8GE0BogPRgtzSlRqhO3BHtI1idPKMk+ETlBZMii13+zUyCRiPHzB1n+G4iq6qeSQ6RHdk/eINYLh7946ubXjz8jWMJ1z8yY9QcYwbuAgXXAlxnFArD+ElmGLH4bAgryrcZk32+gXTi2dMz74HUYR0Qbo9blUKCV4/vMofErhXZMtbSlsThAIpOsw92lXdayWs1Xh6h775kuU//N8037xguDr0pIyqQrcdGlBBQI3FJjH+YEQkBWGgIAmp7xwYTNB1iXEl/iQmlw4mTGhCn9ss53SQgDJkocvwdEKRN1w9fogWJbXbkg5GnM3mWBLKvOX25SvWiz3nJ1PC8/66ezm9xAEaY/FHQ+xwgPVDUpvgTwR1vaKoa4rS4MQJoe8gqWh1QVfewv6IMEPCaIIanqEnZwjhIDRkx4w8byiPJcXumnL5gnGqCD2PruxwjYc0DqLN2S3XhH6E9gPsaIgcjfBHI6Tr0lqBGMwYBDHt6pZkGPceoyzD70K8skO3DlHsY9MJuYJ4OEb5GqUrhgMf7XuoUUqUjzgs9yze36GVxAsD3HSA7BrM/kB5MFTGUGxnTB6cgDkjnLjUXY5oFb7f3RNHDUppjCMhCiD2aOqSxqmJrP/dDax6/Rs6N2FZS2hazG6DLHK64wFZHZC6I+w6oqwEIcnLDIOhNFCLmlGQMvAUSjZsVwtElTMdplTukeR0wGlg8WMHP4A4PsHWYFpFXjaYVpPGkq7agK1wrKDNtxC7yCRhmH6CrTu2qzui8xGz5pLWiTl0BtPV2Nr0OFWrCYKAQZJgjUCGHuFgQNcafv0f/j3ru1tGlw/46E//BDlIepC5FEjfIQoHTCYxVTFAdw1aV0RlTqktR10TxjHCkWjRUwM/gLe10BhXw8hjEMyJDltMsUc6Ei+MwXGxwqJFhyLHLl7R/PY3eO/vMHlBoRvqokZXGt0Z8raF0lJojdlWjMYGL/AwssNNfEBj/RX57R27d+8Yf6ZJz7/H1Q8+JnL/B25+/wtm52c0pqDYvWJVbQCD8mJUOMX40LkegYrxvDHRaYJ7dsYNYH/bAAAgAElEQVSDn/4U5UUYqXBNjch2tMsF1e0tVVNQ5ntEMkb5Aa7XEUcBbuQQDMboVpDtdviRQnoe00lMGjt0psUIjZQdjmfxpUR0HTIEB0HruLQ2oc4HZG1Jtt+jiop6V1NX0BpL5Ee0woBuiVSEDaFzaxpbYVF0bkeXuhR7g3s80O1KFtfXyKolNA6maZDSo2wO+JMxpSnwhgHDZAi0RGlANJmy2x1xowlqOKPtNGVTUbctnvCoqozD4Q4vDti8PWJ1g0FymoxIxkOM7Qhtg2gq0H9c3kgJUjp48ZDO1/R35+9oYMtf/iMHNeT08x8zOjun9Fz2N9fsFhVitUHWFbYqKQ4ZietgXUXdCVo/pJqOkOkUf58z8SB0QsQoxH9wwtmnj5l8/yPSSJOv33Dscozv0nQuvjNCCB/ddGS6T5UY2+EKF89z6GyF48c0UuKGCWni0bYtoeMjOojrijLfUxZ7ZHmk2ixwyoK571MVJXV5RDYlXmuIm4rVz/4jrJ/yThfI0zP8yQnT0xOUI+8bSIoknYGBBk1gzf3Su6cV3LsO/jMHmcXSYCg6i2MNvtuxur0h2m+Yzs6JBhOE4yG7Pfm7L9j8/J9x374nKEo8XA6NpSw6yqxEIzGOh+cmSNGRFRWH44rpZIhyNHa94Ww+xqs1zWoL+wNecooTJ8QXD4i//xn+IMLqFq/eUDkNu3zNaBDhOh5a9K+zx82OutzhcIcMI7zZBBXHONMxrYopNrccFgX5esvibslgPGJ0csHs6gnSdTC6pCiOKOsSBGMoDmg6fOlSlwVVvaNb5ASewBnkNEWGCibURuJYSVk1qCDuvT6ugz86patyIn8Edo3blvi+REQxxvHRSlE2NcqJCKQLTY0UlrppafYF2eIdqzfPMbsV+W4LTYejIeskooKm7ig9xWmsGI9OUMoHz0VbBckAb3RG7E/J13vi0TluGCA9iUJgy5zquGBzF7Hd3FKsNhS7hrYVWOEwe2iIB2NaUSClxih93yV3wHTkRXuvUA2I4ui7G1i92DH/6IxBFGE9xfDqAm8QEQ5i1r/K6JYlbVNTVzlFIzBSYJyA6bOPGf/J54xOz3A2B+r374kCwdmzK8YP5jjThCz2aI8LfE8SOpq2M1RVR6Zlv/IApqdDgtEA5Xk0ecZyvURT4pUVvpegtKIuW9zBBMcLkaHoI4Tk+CbHbu/YXr9B396wf3uHaVvwBdZ3aYqKrquJBwOy6sji+iWP/uqvqJZLtrsd0/NT0vEY5x6pKgQ4ohdrOaLXPVo08l470sEfpVQ9KYjAdzgWNTUeyckptsyoqyVCZDRdR/nuBZt/+js2v3/OCIfAC2gbjTEB2tbUoqGzvcak0IZOOPhxiqlaOumTDEJEV6BrS2dqbFmi11s2tWZ9/Zrq6ac4foxBgeOQHzrQSb8W8n1UFFI1BsdzEMcVm7cvcIoM11N4owGVgulnPya5eILA0LgeYn7G8MFjpg8eIGIXN3Ip8iO7mztMq5meXOH5UFZHdLui3kpCaXCaI/niLWV1BN/Hn16ikpO+meOEqCCFoOlbUx14ToLxvZ4MWa5w2nuIneMweHCFSFPctsN3XXS1odxuceioioLdcs3h9prIBT2ZE45PyLY7aDSOlrRFR1tUJGkEgU+mNa5yyIuqf31vJB4hwfycNCpRfsBoMsD1JG1bs7i5pmkrnHDCeGyI3JS790fufvOKbJNxXB1IT2YMJkOCYUgrOzylcJVLp3tFgsGhKAqk+g5PWC1jlJ/0J4ou0UKiYp/Jowc4+ZKdacnLnDZ0cdMY67gMpyecffYUd5oiIgHeEBG5HOqGza7D7bYM8o7JeUJQZ8xPUiLp4lnDMBnS2ZCuKcA4FMeGzvHxVQBKEQwUVrQoYQlsR7a4wTSC4ckZrefg2oqIjOXr3/H6V1+wff4Kv6mZSJc0CHCiCKk0Wmja2CPbl1TLJf6oQ9Jx4lu6gctyc8Obw4bhfM50PmeQhDgKFAZH+FjrooXE0CEwWNsDqOWHToYVKKFRsmE09unaENse0KpEmgIHkMri2hWbxS3F+xvwEuLJHHCIlM/sNCbRDdvjASsFjh9Qt22PSHUd6raibXu7e91ZEJIoSIiLgu27N6i2wNY560JDMmD+yffJbIIjHYrjjheLV1x89n3U7GPa1iW2G5rbkuWrn2PKA+loRGsFm1d7otMZAsizA9FgzOD8kqo4YrsCcSxAF7T7G6RR+DOfceJRCRCFQRUF1c2S7OaGar2i3G/JyxIdDPDH56STE6QfE01OmZw94FBUGDdEjaZMphO6wCPxAkx5oC4KtBOB52M87z6Ta9BdjWkbjuWRQ3akk4Lk8gGp72CthxIOXVGgixplFV3dcThknF9e0ijJJjvSdRppesnbvjJU75dEw45wOAEhuL1+x9l8SNOVVNkBakFzNGTLHZ6AiR8zQlEfNKsv31AfK5rDkfRkhIo9cB1a+r/f8by+shiFf8jpfycD2w0mNK6HrY6U5Qq6FmVcpLbYqsLzfNzplPR0ysknH3H1yWckwxGR77B6+5b99Rs6L8AmI9o4oUNhfZ8mGXAwlmx/xFCSJg6Ra3C7HCtKdFvhaAffH1EfOpqmIY6TPvHiSUJHIKsC189ougxT5zhJiNtmHL76Ja/+t/+Z699+y+bQ4nuKXZQyHcxIvBBHaabzAXXXYoXLZrFhtdrhOQpfwjSVJJFDYTyOhy03+wVbzxD6hiANGU0/Qnnzey2F7U9a0WschRUYC0I0uGaPalaY4hqnfYPRJUIKNps9lYiYjq7oPEF6EhHHHqrsKPYHOhxq6+K7DnVX4TqSKIlxHIcy77DaEDga4ymsqdBa09jeO1RpC11vAncOewJ/gfl/WHuPXtmy7NxuLLf9Dnf8tekqy5BVdCAkQMIDAf2E91MFPYCC1JChnshHW8ViZSUrM29ed1ycsNsvp0akpO5rZD9wGoEzgRVzju8brWe3fmCscrJXf4KuLijPLljSE7IMmZwR3Mg0tHjXkUhHPzRsvj9CSIhKsPvqtySpZjmvaad/5/C7nOrFcy6enaNTj49HrjKD0ob+7h1Dt6NME8qpp7v9QLptyKzgaFOEm+HHlMMh0O22hLuONM+YygeShw0mSclW50gj6ZXFzGfoZYUtEqw+EoeA9p7Y79g/vGfz8JF+/8Q0tORlSb44Ry0vCDpBaE1uFH4ciVmDyEf6Y4uXCgfsixnLm2tulCCMltCOKKF4uL3FtQ3WGIyWuGA5rj/iP1iO2weqbM5syPBNJE4CH3t0CEyDoigrClXA3nI43LN985HqfEm+XOIlZGWOTBVpmZH7QJL/iEunl19+QXp9DWWKOdzjjg3WehQZRX2G1iX5a4EwkWgE+8OWrFSUaY7pW3j/gbU2TK8U6tk5ZrEin89IU42SEzkzkizFS8VumjChpzKRqd9wf39gPr9E5TU+KYjzJcqcWNpeghpGhu2eqe/JDk+c1wr75l/57q//R3a//opx3eNJmLxk7wak6EAK6kLTju3JpJeffrc0hwPx/pF//Ov/hZe/eM3561dcvfqSLAZsdBx2t2y6DTIF8dnA/NnPEUmFjAIw2AiTHfGTY5oGhuaecf07ePwNavsVmX1PMFC9/in59S+J5gZLBtqgi5TV9ZLpvkUlCYNTjL1jEpK8mDFMPVM3gJEUWrM/bnDREZWimC/wUp86emVkmDqk1riQctgcMd03yGgRScLdb3sWZQmvP8dnKyIlRkHcfWT723/i9tf/N259Rz72+L4jOIFWBW4IRDcShoAPI2LsMFqj7IH+eA2pRCaRzTARZY6ZLfDmkSJNefz2O8Jmy6osydOcrvM4q5CqJkuhHUZ2zREpjlT1iGwmiipFtC3P5zVOL3iyntZISCtkJklNwPUNzf0dm++/IhzXtM2BEGHcF+TdhG5GzPycSRqchKoqSGZzbOEZlCHayPKmpDy/JJ2V5GmKsJKn2zUxRKqzFVFHCAOqGylkRPQHHt99j5gG9v07hubkdw1xoh17RtcyDAK2R+LaIIyi6454LFmZo1YLls9vWL24IV0tOfqJYQKd/ojgxHB4wpc5QpQQJqpSE2clw5Rgm0B9ecmL62vi2NKs76gSxTwE3McPDG/eEB8eEYsViTRYkyLrOclqxWJeUGWG3EgyrU5hYzsRuiei3zO7uCJf3GB7gYyaKAQxWhZVxfr+I33XcDmf/xAJq8lKidi9Z/z2t4iHB9rtwGANQitEEKdCbwOLOqGuUgbbIY1G4Ih48iJjdI7Hr99w+PAdrz7/hItPbolFRbWoORMj7XFPYw/cHhp26zuuP/mSbHYBegEiP3G+KLx1BHIEFXbQ9I8T7cOBdJaQlhq1uGZy58RpxL3b06x72glaH0m8xyQ5IpxUFM456jzH2R7lLanSXCxqWu84jo7t9oh14aRAxDEvUxIcdVZz93HDEPcsy0iZLVClJld7nHlg0BYT5gx3a27/6W94/M0/0D+skTFysA4ZQaoENOSzGZUU9N2O1k4ncEZGMgGh6whWEkWkay2Tmyj2gSihi5L1m0f6zY512TK/XKGFJLqITBWZSSnPl3z//XvGfmKcDhwPHSaRpO8eeLjbIq6uqX/5S5IvPkdkkmDgOBzwtiHEiaoqsUwoEZBRMwwRvzswT3KawxtsMDgVeLAD569eUZxfMLu+AZ0zOYfKAn2/xvYS10d2uyOrxYwyF+yfWj5883sucsOu6xi3B1xrsd3JaOgjTC7Qj5bR+lPZ2qmQmDD2p1i7CBgVYThgDy13j0/YY8f5T78gWS0gUf+v3OTHGdgP//obisOB5afPSTKHZwTtUaqkvJrx/NkLFnmJP0jKEFHjgHza0X//DtFNpNWMbLWC+ZxksSRdnTG/uODyckmRasQPjszoA9o6YprT7TWNtxTLJfPrCuk9U2hOcqHUUC3PcEYipCPLPOVM4qY1chygbYlREaTCBU+mU6oqpyokN9czlHInjw0RQiTVCfO6RglNOw50XU+YIs3HBtF8h3WeICzzVUFUlj6TqFFwaH7H7ume1YvXLJ79BFVeIvWMRGtCViFICFHjfcJkC7ou4ak7Uk7PiY8Zjw+P+KdHDu//neHYcnb2GS++uEBow9T3fPvr32B3awojOJMFszLFSImzA1ILSlWC9nT9Djc5JgJpamgHh48DR+fIzkpSHQi2o905pm5DWvyBJE6EyyvKamL/9b+gvvk97v17hP0hqyk1URq8MIh4ormqKgMd6fuWKUY6awkdzPKUeTVjGFqKJEETKbXG+p5hsojgGZ3ETQliTPDR8fz6hrrO2O/3oAT1qkLsjqQ6QQRFxOCtYP3unqSbyOqaeZHTpYL7x4+ni4GSKALCpERT4W1HdILdvqG3I50L2MnT7AeUHjF1gVORuRCUZwojEwSR4/qOJBNMIuKmCKFlf3dPLcGu31P6gc3bD0y7PWqKxOnU3+ScwwdQJkUZg4zgrMcTkCoixEko7SaLkj+koDqLnCIPX33LMA7c/OxTUlszqB+zl7gf6T98REdLMdMkOhDZI1RGSHIm6+iykn57QEyWShu6j3dsf/+G2XzOtJyz+PxzuptntHlBVZUs65I80RglkFLj/Mng7V3Ajp6RhPrsHJNWTB5S7UhCj04KVJ5zNl+AXdBu3iNjxEbH4+09dr1nEVKuXn3OP/3t74ge5tUFlxdzskKQaEteZGRFgTEZWqU0h5Yqr2ibnsf1hlQZQpaiihlpmjG1a5JMErxDphpZ1yxefkFYXrJzjg/rnvXmK1LzjsXVDWUxp+89zXFknqYkqkTlFyTPf8bMCNKrT4nFnIWRNGri2fmfUtVz0tkKXc9JigwdHNWzZ/zr//yfyP1I8JZm32G0IEkTjMlx0hCNZLaoifs9T9sd7QA+ekSR8OWffsnnP3lJ3H7P7/+3/5PhvsWTIboNX+SfkS1qtJeE7YbD23fkMZxIOi2JSuGlxomT4KodeoJyRJVAAsakaKHwQtI5Sb/eE4PFSINRmugtZSopNMRVwXE/0Y+RzBsmAttxovcji9nptn22mpNrydiOHPY9MQaq1RIpIsf9ng9ff8P97sCkBEILkkwh0pNbaRwnsjwnzFdEZXj26eds2xOSaA8NxXxCxJNYzYuEobOgjxQOyjxHK0PXH042w3Gi3W9oPnxAdS2iGei2e+yhQ9lIGCzxh5L+fdMSEdRzQ1HWiOSUr060IEqBCyfUVKiJcRjRQp8aJ5xEtiP7b7+H4Uh5XuLljxivq/KafdOzffMRNytJFeTakAjJbrfhoP+VxfklZ+cXlGVFUIJkMccuzukuzlDPbtAvXrN8/QlFtUTnKbkC37cMIlLVNVpERm/xQ4twHYX2TMcnpq4lT0qO+z1x3FDUM6JMmaoTHdQrydnsnDhFKlfRTne03T3p5UuKsxX+cUtRGBIj0cRTybaGskqQaKbekmpJIiRYTaMVXml6Hxjali46yjpD5oYpkZw/f46Ikd2TpV49J1nN0NoTmy2b+zve3n6FlpLEJCxmK7KiIBl7xikQ5YL58+foZ6+Y8jPKvCT97JIwDiiRMgRFO57uhOkw4WYrLr78Izbf/J5jcwLVhQWDJk0KVL0gWSYscZzFK667PZOfcALsrCS9uuDRd7RPDwR5av9jAncf2fxuz+XCMhyfCPsNhba4NBBSw+gDQUWsFAQfUBqGsccFSxSKLC/ReUVelDRth0h+2Ir7iNYpIoAQnhgcqQncPFvxdHS0Dz377YakThimkaFzpwQYgbEfwEMMkGUJOkkZfMuh6yguLhm1ohktRb1ABI8bR6SKhGjJypR+OjKKQFpWzK7OyKkZ2y391DD2EzYWRFMikxnWa/y+Y3v3QJkmrC5WqDQDGSjLgvwiofaw/u4bdvs9KkoGC649xSfND54oJyRSKYKQtOMIQqKSBBtOmVviydCI1Gh90k1OyiO1xkio0PTf3yG2KdX8R7zDLhZzZqs5D5st67sn+qYhJVCnhiLVFPMF5CnybEGcVSSX5/TdxPL5S6rrK0JdwWJJcn5JPpsTiQzdQJIq5vP6/9fLB4+UE4kece0aP/QcusiOAqMynl2fY4ockaf4RCFEhgpnDAiqKqVOVmTZin55iXx65PpXv2L6x39g22yJ8TSYRW8wiWQcjhA1zXZAIUlNSqrhfDnD2wnbnNSUrRWkLy6YvbhGnV9y9uIF/l9/wx/+y99z/Zhw/id/TvLyAjfLqMySx9st2/Udo29xfWAsCyodkDrj7MVPmX36BWF1hTAFNgS8SQm6IYwnE53tBoKSEBXZ1StW/21F9vOf4Y8HGEfafkDVc2aXz5jVc0J/5OndV9jjLaqumZUKT6BVhlgYJutwWiPnOZlJkL5me/B88/47vv7rB8psYOUeKDOBioJ2CkitiFqfRGXKEGIkUQYhFCbNSZP85DqSkvPVjHHYkyaaYCFMnqEbsVODMY7lZc3i5oxnFNzuf8fxuGOeLhjHlLZtCQGKRGH7gaEdSJOcXXdAW8vkJ1RVkM0ysosFxfklXkhiHNEmghkAR0wVptAMTw1uONA+Cvq+oT8+4o57SpMyBtB5RVIUyLzGeUu/2yBFpLMnpJQI86pkSiCkOSFN6Z2l3XaoSSMwqMQQJXgipiixztJbS6bNqcUiRGI8NShGfug7+2GQvbN4rZhiQI0BYR12HE9EX/sj+mGvr5Z8uL9lvijIz+bcP24IY08TJszzK5KXL7EXF7hPnuOXc9rZ6W47ry6QeYHMUnyEqA1BRmKQTFMkKsHggB/6XH2UJKmh3W2Ih3vCNGJCQe8VZr4kmIyY54REgQQVDWV2Tug7Hve3MFiSpCCulpTzGX/5H/8jV5dn3H/9e26//UgcHOfLCqk83bRDq4yx8QTrqPICKQ1d5/DOEmyPTSyqqBhrTfVHn7P8xZ/hg0T+26/hw7fcfvOex7/933n93/93XPzxX3C+umFRBNrlxMPTLdvNI5ttJC5KLs4qxEXJmGuiBBkjmQv40TO1Drc/0n28p9kfKBYLDj5QVDOcnhNnGTIZsF2HWWry8ytCvWKfaaQ/ktcJebNkPH7AiwGVGFazV6TFNe1mjxtB53OYItZqCqcx5UsytUT3O/a3v6bvGzJApYrJeUYbMVlCbkpSU4BSSGM4HjvafUOaT3jbk6aazDjk5NHx9NtT6xRPpBt39CJhVs94dvaad+uGf//117TDyHiQJEXGU9tw7AUaQWcdGscoNFWWo3XJJB3ewOy8wmURZTwhjmjR4cYdUnh0gFSXhEVGFIbgRqSwTMOR4/6BTkpGpyix5KsZwlTINKe8uiRVApEaVAZSQQiCJC+IZ2ec2Q7Z7tmqHf1mwPpT37FUJ9FblBKTZGit8DES4wnwN8acvDs+/uDTCSe3EgEhwY2W4APjFIlomm5k+jF7icsqpWhy7DCR1SVX8zlWCbKqoFzNKOZzSFP6MiNb1fhZQeclUyaoFiUmr0iVQRAJwTMeGvJEoBJF8BapxcnW7Uckiqw6hzRBG0HbgQkVeXGG1zAMnlQkSJngg+TQdXRPa1S/Z2hbqnpOUZagNHJ5xtVf/CWrm2uWN3/gt//X37LdrbGjYt6VmMyhhCSRAW9b5GxOVlecX1ek0xzyjPLyiotffMH8j79ELHNoLbIMzBPPZVHysX3k2//1f+Lt3/0DL3/x57z66efYdstV11G3DYexoV1PfPNeEmYlZy/umC1vmKc1ObB/vMU1O5LJkqOYzRdUF0tiXuKF4rBt8FTsx4lQWPIK6lWFyhWT7xlDR8hhspIYZ2TmjKK+xIoVbTMx7hxjY/Djkno2x1vPFDrSWUo1nyNlTbgIvP27LcduInEgkxk+KKJIUSIhxJMDSAnIE020I7634BWSBJNohBIkSqM8HKcjZakRWuFE5PzFK0J1zk+9ZlKG/cMaqQ0ulchygclKtEl5OV9wdn6BbXuUG5hCz3E8MAbL0/17Zstz8sUMK8G2DcIecdbSWYmclfisQCUZBE02n/P86opERvrDnsPtPU+7hofb71m8zJDljLRIMHGE4Ymh9QiV0sfmpJwJliRPWV2uyE3Kvf1ANzZ4Gxm9wguNcxOKU+lAmmUIrUmzjOgjiVDYvsM5i3Ue94OAXCc5dVES/UTXtkSrUJ1ANz/i0slKRUwS8jwnXZ2hpcJlBUldk84qTFGQVRVJnWN1ghSapMxRRQZaIZMfvDzekSmP0SO+7xh7C1qC1AihCQ6aEAkio8jnJ3g+G05+FTWw70eCmyinkloY8rxGGYGTJUo5gpJsbzfomWXoOsbjgbHZcX15wasiw7mWu9//Fj01CNGxXFZcv7ggKQKtDqjrl1Sf/AJdnjGJJTItUMZBaglZAD+gTUZ5/ozZ1TUcLMs0QzQjsttw+8//B2//+W94Wj8gg+cnn39Gtijp/UBUkubtI9vffkBimCcZVYy4445UeZI8Yf78BcoHfJYxHo9MPqBn5xSrFRevDEkyIVTDEBy74UiIHpMIopdonTPJiWxxxWRm6Dbj8c1bNl/9lubt94hhxK8uSPIMoQPT4Zb7w4FQSGS3YVUnTFvDsB+RBpLEYL3n0O05Bk9iErL09Kw+W8w4ti3DOFFWFUlUCOexwRMTRX5egfCILsEdDjx98wZx7khSw4uffYIpUryNvPjyU66ub/AWurYnyXKEMqzDLe1mR1ln3FzUOE7dwCJJET6irODh7kB3eKSuSq6XC0JaY8qSrCrRwjAME8FHpNaU9SXJ8gXzoSdEgReaEC2ub2nWtxwOe/regcpJs5JpGigLQ5F4vLOM3lIvKyojaPY9RysIQSKFwEiFiJHJOaIIp0ewkphEIaXBBPX/DVme55R5TmoiQlgCc/Y7y+O7DU0z/ngDu+sn0nlNlmmsDmRpgTcZOqtxpsDqHCESghVEK8lFgtI52mQnpUYYkdFh2y1GRxLbwNgQjntCjJhiQUznWJFRVCVJlqOjwPVHdLRMh/dM9oh2J11jxoy0UqhoEEojkxy8YNfsUd6wuXtCNHv0NBB9z11ocMcDxbNznqefEZtbCj2SrSayLzxklrRKyF8vMKsKzIxEnJ08oe1bEA3DKBA2UuY11ae/pP7yWx7+8W/pjyP9oMlnmpefP0dlc26acx4+vOfr736HnxwEqM8uELMaoQ29kBy9JcHzbFlTLiv0coa4XiAuF0zLHJ2XZFnOmC4Q2hCnRw67b5mmHcHM8HpFPwj8MOCPHfHQYERElGD7kc2bJ0zjuNIll9UCLVri/kjcN/Q2cEyeWKeeUAvc4QH9eIs6jrRtZKngJ5/eoNKU7aFh8gE3nPw1h65h7wJCKGyE9a5lGDWBgCgSCpNjtOTmfAkPa7Rt+fq//I7F5569s3gZSbKUIRFYnbI7HBj3e57uH8iyiikomrbD9keyvWA2K9CZQdcFaalIsxytapL6T+i614xdD+kSpVJiVMQp4H1LGiPCJARliEmBKBdw3CL7hsN6w2FzwPcDzWZDiAplcpz1iGhZrpZI5WnaLcEpQlKTXsxJVo7SOpJ2IsSU/abBW4uzEzF4dKpZni0xZUaUkJgEpU4Om7IsIEbG44Hd43va45q8XpJfLqjTmuNh+PEG1jvHYl4Rk8CmbUi0QpsMFQNOGaq8xHmPGCx4x2BHfD2QaIlJPGqyJKEnnxpU06D7EbvbM96+IyAYiiVx+Qy5uEGPntHu6YYjYTiQ+J4Sh7Q9Yf3IZAe2Hz1aOMYQcLJG1zlOKs5fv+YsE/Qfv+fDv33k/v03XJwvWF1c0eEIxlNVL8Cm2PER/XxBe16SFClOJ+wbj+7fovw7siojxp7txzdUFzdU1z/DS4FzDeZixeu/+gvKuuXwfocpXpHfPKN8cUH56kukFLhmR/twz/7Ne57+7Vvuv3vPu+/foJcr9PUl4XxOel7iZjlhWRHnNfHyGcWrn0C5xMmUZgpMVsM4QNMyNgPBgYgDYXwEl9IfG7A9RVCYaWLc3mzMWE0AACAASURBVNP2kC9vuLh+xnG3wQuJjJ66yKirGdtdy13foiKMUuDSJc0q0qc9rvaEZc3WeKrSoLMVs2qJDArfDXS7A93+9DRU2lCvzhBFhlWC4mxFmqUMux19kAy2wyVLlq8uGRJJ9/YNqR0xicFWNb1QxGnCyEiRKbabB9AFRTlDVCnu0LD7sKFvj8RUUV4uyc7OKK+uSFcL5LIin3m8FNjgmbYH9t2R6bjBDh31csXi+Sf4pKRvW9z+EdHvcf2EP1i0LlhdXKCXlyR5jfUQEAQ8ne2QWYqcAsgUieKwe2I5r/hssaIoVzSHnhgjw9DTtQ3zRcXF1RkhOKSSDH0HIdA2xx8csY64OCMvEsL2B2ijyHn9xQtm87Mfb2C18EhOQp8wjhCOaC8RAZQIZEagtCa4wNSNmJCRKod9aOmPhkIFhm6H3T4Smz1q9MjJ4w9bXARXHlARiAHFDdIIhm7N2G/JpCYrL5imknW7J0lS6qsrRHpGFHOQJS4KRK5IcgFMJKuC1cszxvGBfJ6TGAFlhsglebVCJtf09oAu58xuPkNnC6KZYb3DHj7Q3X/F8f4bom8Zh4gPlyRVRkg9vf1IqmckzxYspi+on3nKl3/KWM2IVY4/u0FGh3Yl88+X1L+45sWff0H/zS377+75eLfhQzuwtZG29wjjUUVghiKXCV5kGFGiY/aDg9cz+gEpZujZF9ihY7i/x94/MgwTbnBMD2uapye2d7d4lfL5n/0l80/mtNsHXLREJajnNTIExmBRiaAYQE6C4+Rx5wv06+dMucZoBXjGRGGqGVlSkRZz4hQYn54wxZyzy3Cqq5eGpCgQpmCQkvnz56g84yrTuMOGjc65fP5L9LNL1ut3HO7vCQ8bJiPJzi6Yry5IsBzv3jNFkErQ7DcMfUcxm9FuDvQPW4w7bXH3j0d2xT2ufMPy1UvmV1cns3lwRA1Ge5IwMuwOSD8wesvOO3T+Q2Xt4ZHoR5AZy+UVMpmT5jNaB9gJ4flB8xpxw0g5m5OfX2JVgcoKEjtBtIxZhq7nFC9TtE5YKo1JFEoGpIwwjmAdsWvpjkdEMsN1LUZr8qLk4suf4o4P9O2BdhgRQgLdjzewO9vjhhNETTLH+kCcRjR7gu15+/ARaRLyusLi2e8NLz+5QhNoNh1OeHLvmNaPuN2eKs0JU2ChCna7PfbwxNRMZOcH/PqISw1JHk8mbJ0Q0dRn5yxfvSZJTv/Uk6yx8vR3hvYIMuCEox/3ZMFTXF9ypSzSOyYXUWh839K0LVU5Z3XzJaa4RKXXODVjUjVeRlRZk1Zg1BKlHLMkJ118QtQXCBwmjihvT0BBcUH7uCZJItn1OSQJgQP908dTY78YCHpCzUAtNQtxQbFc8YmseNCaf/rwPYd2QhYa30nUKCnGQJE6vGtw1mOkZMYEU8fUtSgXYfSM2yeODx8pYsL47S379x85jiOXv/wVZ599ipsGprZhHHpKY7CjwwVx6sgdPYlJkW5i3Hd4BEmRo2dzWMyxWmOLkq6qSecrYlaiJkd90TI8PpDYERMCAYH1Ad87JIo0yZFVxSAdl3/0JbMvX+LUJYO1DB96ZKbZYknKJe1xZDl45qsV9bOEo8o4hFvM6NntdwilGfYNx21L6CeimxDCoY1CZhkf3j2wPzsjKskYIuXZgnKVobUj+ojRGYenHQup8M0BZVva3SPKnJ7XjojrGzYPj7i2Yxod3kHTjdy8eEmaarrmCEjS81eoLEcUBTFYjuPA/ngkrQKr2Yw0KwhSYDTYsSPVGUweGxWTBZNWlJeK4BzRD/SHJ5TJMbVinjva/QP7x48/3sCm11fIvEaaklInjGOHtR2egHcORyRLM9I6xyhBOavQRiDGI2LqydIUNVmO91t0PzEkkbHr2fWWbntgHCeiFjzEX2OjQBUlL372JeefvkSVCTpfY8oCYa/Q5QqtBVJnOD/hpwbjHW5ImNxE3xx4mra8uKiZP3uNHTrGY4NxEsmRaRjpj1uSeY63B6SUTP6AVwuESxkfDhz+/UAcJ6pVQn6WMwwnF673gqkJhHFNOqupk2dIPbJ9uKPKcsrFghjfo57egRs5bDakqmB6GBnWLeiCXCx599W31L/6E/7yv/kPvN090bQN1moeH46M7ntW5weqOic1Cj9B2K1Rt98T9nvyakkqI6rKCB8mpsMBPx6ZEnj+85/zx//DX6GWcw5v3yCOB9RgGZr+pITwka63iAmk9PhpICOQTxa32bO2DmmWzF6/xjx7iTlbMVssyLQm9wHVNvBsw/T0wPHhHq1OFsP2cMS7SGs78l7w8HSL7QpIIH+eIboGnj7QjTtu/vKPQM25vzvy7a//jd1yybIuCZ3DNhNu3zA9bWjHCKPj7PySaRjx00D0E9gRP1mU8Ey7J7LZjDIvCS7Q7lu6/sBsXvPi5Q1VvWCcjjg30IZAenZNVpaYfIExNeOhZ7v+FttuUELhpkAcPY9vj+jiFBMNWITSGCmQRY5Wkio3RK3QpQHlcdEigsAIAwIOXY+SBllUzLICGTxu6JjaI6F9Ytje4a3FI0m0whCp/+vCOv+V8ToUWb6EbI5LElQSEdFiTPJDojuQ5oIiE9SZIhOgpi0yPhD0gB8jdm9ZZRoxOj7+9iu2d0+MnWXsLVIbsqpAJuqEcCWGTXskfPiaxcpQlYJRRVRxDfMLyOeIdI7v3MmxmZe47BIvDdNk0UWJSxckpUaWA8W8Qza3ZNXIcX1kmjpscyCOAZVaVD7DuhY3nUigZLVAhZwQRt5984DWe1arGyKSyVp8WZw251VB9eWf0bY7Ht6+56bfMm7/gDo+IIDQG/TqnFA4ZLFm3LXEbk2iYXP3gflyxoXIqBLBECe6zY5j2yC6jrbKWZzPKLQk7jc8fPUt42HP6vVrXJLTk9Jm50yHJ2JScvmTZyy/+ASRBNqPX6HW73n4/beIwbNYLIlZQuh7ktSRlwbfDHiVoJclresIbUN/+x485OfXmKRkNr9ivpgjFGTHHXbYEURDcVZSFJ8SoidoR/3yFc22p394pH37Ne7uLePrc+qffcY0HOh23zOOH1nOEsq8xhVnlCKjPhywuz3/+J//Dt/2BO8xmWFx9pKyrJgvBRKIzjJ2DV2zp9mNJx+xEjjnaA8HZD9Q1TWYSBYt7eGebz4+ohKFLA0Xn71gdXNJWmRIItE7Mm0I40C1qPHGkWWnQ+x6c6TpPGH05OkCbw3rj4+UpGR+gc4NeZkxRovzMPQObTRpYmgbR7PfMatv0LrgFLaUaBF/+IwmSMcs0fT7NT5ACB4RFUr8iGjid7/5O+rzV+jFMxbPXyGKkzYiCIsxniwvyOoUIweYHrHdAwiHKjJUjPT7DXIXiNvI3e/e0K93mCBpmhE7emQi6IcdJjOkOicEeHj3SHPYsskj80qxqAty3RH0B0xVUxQ12gVKGZmMpstr5PKCYnZOYm4QBAKKKBKib/HDEd09kvQ7VBuZtmsmDnQhkpQ16IQ8L8l0QuI8Okaapw3LyaH6if2HO/b7BkxK+foTiutzGjcyFBVpWlPMwY4N4X4HhyeiMWTpDSY9JwrJeAhIP9AOPWfPn+Gj5Onbbzjc71FC4DMIODopkUNk+fyGrdtAlXF9/pzZf3jBFDW6LJGDQz4eOJpvOWTfsUs/0kRLs3tk83ZiriLucOB4/0h08lQuphSTtcRpJE8U2mhwIBLDxfmcY7NF3H5geLrHDz0xREQIaGdhHGne/4HHf/kbzgpDfX2NqBeYsyVTGOnGFDlMDE/v6X//L6TRM85TUpfAIdBvLc4ahsMOZZ5ITYIKEz4AUfLTL36GP/Q471ldX9J2Ox4+fss4DBAcY9+hBDg7MUwTUSnKLCNKddo7dC29s5hEEgm4YcSFQBQgqpSzyws0AhEnYhwgDnTNQGoU19c5s/KCzsJhhNVSoo6Wrh2Q+Zzy8hN0PYcfctzORlw7YDIDLuJ8B06gnCJRMEshNT1BC4Iq8dGc2jEj+GEiRIhOkiU1VVGRJQnrt4HI9scbWN08MimQqULEM2bVnKRMUQak8cSpJTzd0h4faacdeRLI6xlepIhuZFx3+Lsedzcy7i1psuBwbEDnKByjnYhKYIeBSZ4WWDKV+GOgbR1Dr5gGgfJ7gojM5h3ZhaeUQJzo/YQVkdidE+NLkjqQTJFUzzFCINyBbn9PfPrI5quv2b5tOa4lm87ic8Xq4gKTpVxcrqjrDDd2YAUmKlIhUVGwCJGlNkxupH/3Hdv772nrAnF+w+L6FXVdYiTopGJsAimOpAq079ccRc797Zbdv/2BeLRcXToaITn6iELioseXkpAZzl+9xmUZh37ASEnz/pb7MPGTLz/n/PlzwNO/3XH/9muOf/g93fojUljK3GC7Ef9uT2ctsYdh1598vSEShUIoQ5ZXSAFpldFwKuFGCoSLnFc1Q1WwmpWkZUYSLOHpgX59x8Ov/56nf/4ndmPDhzqn+OwTzn7xU2Rd05kzfLRoGYjudHMOCLrB4e2RJD+juPiEbuzZD2vU3YEiPYOoeDo84roR7QXDMPD2D/dEP5L4Fhk8k7UYPNNkTwZ0rWgmh3GWwHRq3hCSMFq6ZiJGh1KSVEm01szKOeHpwCF7y+yqIMojUnbkqaZOCvQsRZcV0ebYuGA+e8ly8Gwe7hiGCVmtIM1RWU6SGgL+5Dt2EWlAyIh0HhEnkA4/DQz9FpnWJPPnSDVDWk/cPeHWt2jXMbR79tsNXZoTXECMPUr/iAH215dXxHlNclORzQRKtcRwoKrm6HLG8cMDqtmihh6pKtLq/EScdA3jQ8fuzT3vf/2G0GhkSACFdQ6lBShJ1AkmzxBKnO57zqEyg1fgUawbT+cmkjQgdGS/39H1PbkL5FphtEJoSdN8wBDQiSU1LfbRM7RHct8yvn/P8c1HuvcHxrVj2Fq89TgjWT/2FHXB8P6WxSLFmEhZLglRk2Q5iUlIdILSinbqUYeW1raEtkKqhNYUpNqcDGQ2Y4w1h/2BfDww7N7Tm5JUGpbZkuPdPe///nf0QjBUKWJZoi9mFOcX1JcXLD79DJ+cwAQl7QkO6Z74+Ov/zOa3E6vFkkLPmM88yUVA44kKlhfnNAeL2/dM2w6D4eLsnHcfb5nGiUWS4oUmyxOKXGMHiy5yxhhO90cEF6sl/nLJap5hQ8fx/dOpBmW/JfeGy1e/4uHtH2i3e/a/+Y5+iKx+/iXdcoGWM1h8Sjt/4GF7y6VSxP0DsUhOz8JKM7tc0N0fcU8b1k/3dHc7ut2B4DzaJOgsRecps7rC9wKTGqI4Ia1WaqL3WOfQqWR0E0oKgvXEAAKJEpxIIzzWjieb3TgSGol7cFjtSGcOryd63yO9JzGeRCww8xk35z9Dls9o2oGkLjhun+hHj/N71NCjvMIoyKJn6gFdonREuIkgJsapI9iBNBqinIhDQtQjxjvs7Vt2X/0LJrGgFcE6gvA0bUuIgboqf7yBzYVhvpzjMui7zUndmFqa/ddcXL3mup5jiwVtM+KtP2kMRk/qHa4XJ0Z78LSdZwSsc0gBhUxP73oiRVWyOj9jtCPeWyKecewpspK2Heknz2QHhIxURc7gYf94wKCo8hKhFfpCU/SO9s0fcPffUWUp2o5s14+4bSA8RdQww8iRrOqJ3tNNASE1fgh0o6UwCek8R4mUrutpdw2zomS1Wp0AfecZDxsKHSh0jU4Ew9RQ+Y7oHUMrOMSS4uUlN89f0LzfMP7hFrm3qIeBUuRQSLw/3Q8D0I0jWhvSao43BVk+QzuJ3d0T2yP9saVMKqJyPH3cEaqWeZ2x/ItrLtycwZ6Ah2tzwbSzHO7WTHf3hG0gYikzQ54kiLxExkjnLSFAXlW44PC2p40TnT1iXEVoHpgNS2TX8fDmO6Zjh5xfI376S85/9WewfWL4/lu2XYe0CbmuMXqGnQtmPxec2zWuv0dt7rHrgSmOzOc5yrYMm5buzZruvkEOgkoagjRYF5FBkumM3dMeOw4EIZBpjhOSPjosmmYcflBiBrRSmFQhhMa7iJASq8KJ9XWeQ7fD4SjVEu96Bi2oy0tiUeOV5+AmiiTDWY9KR+qkB7GhNg6ZtCTFRDMd2G7WHLZ7llVFOJV1kc7naF8To4c4oXQkjC0mBA7bkcEZ6suW5dkN/TRwfPyOp/VbqrSgOrvGJHNs0MzPzxFphsp+zLSO9fjHe5SwlAXsv79l6O6Zl577f/+O9MXPuPmzvyIuS5rdE7bbYMeRGARpViA9KA92sEwq+SHs64DTlxuDZBhGbj/ec/3iGUYLDrsnEqnIlCaqQNcP5CohSQ25Tgk2EKKi6S1BOPIi4fh0YJADIg9UsxxVFEz7lmnTIkaBayMxwOD/H9bea0uWJD2z2ybcXIWHTn1EnVKtgcEQBBbVDRcXn5qXJMFZBAZN9BS6u/SpI1KHdG2KF1EPgIvKJ8iVGX+Y+2/ft3dDNI5ZNSH3gru7LcoXpFnOofYkhSZ1/BzaThFEDrsdUQh8iGRpArZBNAf8x7dQ7jh2G1CS40/3XH/yGXo2Iwk5E1vjOwhdYGuhGzzz1Tmy78D3mGKGW8xxckJWrMmqM8pigR0CHx6eiE8/olREvnxFyBPSWNLU79k+fstieUVIJCSQZBMCDj03rBcvGGeSod+z2yRs7t4znVZ4H7jf7Zkup6Qmo2k6hIr0rqMWPZSKdjyy//gtkhHtJcVQI5TG5xLmGSwv0TevmF29xOw3hDzDu0iIHUYHimWJ3Tyzeb+jvbtFupbybKTZdzifoslIJxnR90SXnfYfZcl+f8CkKUoq+iGiVcKx67FjjcxPCyEpOf0u0SNCoO56siylrApklAQfcWHEhREhAypE+q6h/tCS5qdrGqdSXv3dH1CLnFGMSOkwakSpmt2H/0IMkURqRO+ZhoSk7Wnv3zLcP1KPnrZp6MeRrJpgqgLrHVoJJJEs0UwnJTiwYyCMe6Ko0UXB5Kzg2nxJpqeY6SVtTIgRsjRBmoI2/ILEiXzs8K0gbBXHB0tzv+dw95ZndZI9fbn+HDkcmUwLknRC7AW2KVjnOdmDZPfvXxG8A+uQMWBSg1aSIjOn9bazoA2z5ZJEGvCOwhRoTtnRobfkUeFGy+A6rHMkAnQmCUrRiB7f9TjlON56FpdnPDQ9b4873HGE4+keLzORqjJ4ORJEYLpY0TmPevYIPEIKEBIfJM+PG6QfEWmKDydT9mgtyiSoxfSkuT8eGY4NcnogS66xWhBFR/vwiPxxS98G7GZPfziiTMrV3/yG+o9f8f77H8myAqchzyZMb96gXtxQXb4kmS8xWYURgasvPmfb7Hl8/57ly4REJuzvDoR9T+JLHh83BDGSTTTzeeDP3/+FfFLxuz/8GrHQLG+mDNsV++3AV3/6iqYemBRTjl3PREoKLZGpwCaR4uqSxc2KTg6MruHxu/+GCAlJtkKYKdI15P2BYV8Syzl9VuD7gXDoaO+/QY0tumkYHj8wPN2x/+kj41ODd3tm9cD0jUFNryg/uWTx65y2fkQ7QV/vIVjKteJ8taB9qjkeRzQZo9cnoEE/oLIUIQVaC/rRo41GJSlOQDeOSJ3ivfv5oOhJCRADIkYSpZBuIKWk27a8++6W5ecvSFeGMfSE/gnde9p2h4iWic5wrWP3bNn+cKR+3EA7IGwgcwEVwO+39Dh88HQ+oKSijYJtEOSpQhrF9u4tzdu/Mn35isnlNdViRiwyGmXpY0KWlrRdT99sieoXVHWkShG9xHWC2jvy2QKRFjTtjuryimp2TZFOiDrhWNfMJhXV+pJZlhB1y+zVOck3P+C3A9b2xNYynZdIY/B4jE4Y/ci2rWn8QAwjV+drjFQo7xGjpt7XoCCODre3BBHp8SS5ZrmYIeuW/TCQnV1iq0uEMExFw/ufvuKw2SBlgjEJu77HGP/zxXiHk4LlaoZ3muADgkhz2KCVxPU9YQyI4NGJQiSaLDXUbUeZF3hvyeMIfYPf7vB5hSYnHnu6+4an9w9crs5J0xylNE8/faDrjlAIDsJi5yvG+QXZ9BpBzvGn9yy6jvzyFU4opuc3LP7RMH9zx6AiNg6U5YzoI2PbM7Qt47jhcDySJGd88d//TxwOd2zef8P2+QOZhfX1jGKRc2w1/fcfqbcNso8kWcDrAb0sOfvt3zH/zd8S5hWJfSTufiQeD+y3AjO9xgY41iPJrkO392x++IHjYcP+7Y/0Hz6gukdkGOmaFuE8pU7oNgdUiGSVBDFDiRcgV1izxJcpYpIzlT3iw3tcNzJ99QqMQkeDyXM2ux2jg/DzSYQPJFJSFikiMyQ6R4hIYgTeOaIw6J+fhqQF6XqkCHg/orVCIAjNDv0cQXY0/ha/FghTI01AL1+S5i/oekfT9ohdzf1f3tF8qBHO4boOCTgXQWmEkAQXTugXL4g2MA4eoiJ2ntQIks7Rb3eM9x8YX12SX6xhsSA7e0NevWYMikGUeNVihPvlBta2A7rI2LU7spdvmF5/gizLEwvW9xyGgcpZysxwWV1hm5q2q0mTjKxIWLy44fzNJ2yevyMcPalRaCLjMGASjZKewYUTK6iXSBE45kfSRcUwjPR+QKUSHRUyz+lsj9aC5bykyhJmk5RaO8SYkC4vUasbzs7Oqfoj7ccfOO6eTm0KrfEenFeMg0DtBtI8JdEFaWJwLpz+ETFQTDRmmeG7ETc6lJFkRYaNFh01g/VoebpnC6NnPLYMTeD40HBsAt1zQ5lWGJHw7tsf6Q41SmmKqzMWn35OO5mgXr9Cvn5JvlyhbM/HH77Fjo8Mw45yOmM+z8hfTqjOX2J9IBwPWO15qg/Mzy5JX0zZ7j8gxx1Iw+Z5R9e0GAuvJ6/w2yO7oWbXtChTcflmTRhGooPYHmmbkUquKS5eMpyfIRczxN7Td4+Mg8O8PGdkRtP2PO/vOf7wPWrf8M0//1eeP7zHN0dE35FkpwVRolPKcsLWdQgpkUkkmRnspKTXM6Sak1CRiJSiKDg8f8WmHZhXC2Qi6fs9QSn0JMeLAyE4hPAgBJ0bQSRorcmFJNoIMtK2NWmWEQhEpUHnWBcYx45UaZSRCC0QYkDR0zcn+2I5BaUDQreEoiBOFGZWgIRmO/D453v2b2vGY0Nw9uRbjgIfT+/HSaJJ04LgLTFYiB6lBHYYGaIkCoXzDjVERN+zaXrM3QbOz1h+mpJfl+ipZvDq1AE/Hn65gRXJhN55ZDbBioS0qDCrNXmuid2W1nmO9QG7y5mtluRpdrJ11TviMODHwNXZFfoLxY9fvyUEj5KKoCSJVuQmQQ4DobNImaJ0QnPo0EIQ3ABEtFFkKsV7zyTNSI3kbDVFhIFuPKKXhovynFpOyWdnkGhSY5ivSx7eJzgX6HuL8OAw3Ny8QCaKvh/wCUgR2O8PZFlKmhla22KJpKlBSn3y4RQptutOdL9+pMgyhB8Zxp44ePat5/m7J/SoiFbg85HN20fEEPB9hzMC/eKK+ctXmKsL9M0VcTUl6owsGM6vlpSppZq0JOpAai2uzRg6hXaK5sM9+/cf0RbyLEFmJcpNEcqRq1OTJVELiqHk+cNHutstaVTkWrMfW9zQMUkzdJIyOosbPc0oeLh7ZHXzgpAoojLo+QVHJ9CmwscSHQyGHR+++v94/NOf0PWOqYx4E4hpBt6R6pQoDU7nJMsL1q9f4PSpHF7Mp/jM8Hw8sCoHKjWCP1KtF+jZPyKF4fD4ntAODC5hKAzZaobf7ZDeIaJAyhSLxI8OHQWpMYToT6ddiDhvwf/M41YZ2VShcHjfEVRECI8QASkVx7ql6OfoHvIiRcWUrvFgYBhh99ARawF1QMST0SEicSKeWFdIkiwjJpKhbfAhoqRCy0h0gYCk9wHlPFmiUT0QHMfDlvquZnNXU72+5+zXv6M4fwXJAr1c/nIDO/nsdwg8Z2XONijsAKKHIjNY57DOUhKZJIYkcsrtBqi3W/rDI+3xiPOWX//uS26uL7m7vaNzAac008UEMXY83d1Tb5+w0dGjoMrZ+Zos0xiTILTARcvYtkyiOW3b8pK7Q83kbMH8aoYSM5SdoCcFFzdrzPjE9asbHv56i+t6xngCikWraI+eSZXi/OmOT4iRQODY1Aw2QdmINlAYUCh659nWjzRNw7ooSFTCsXZ0+y2JEiRWkHiNGWHct8io2W4fUMqQo1He0/ue3jbUoUXSc5aBlA5LQ5JYVktBKQOuf+D4+Mi+f8IFTSaXhIPj6cdbmuc9YYCfhr9w9uvfMv/k7CQdw3F+uUJn13Tv71DbJ/IqxVgIXiPTksFP2T48Mm6OlGlGOZ8TMkP7fI/8679RfvaGOK9wXeDq7DVdE7h7/wy9oNh29G9voWswhUIk4INgaC1ZcTqdktkF81efM339KcnZGlnkQIL3A0qOnBuHDk/U23/naXvH5Or3TG5+xdiPxM5hVEa5WrC8LmnOH/jLv/5XfN1QCI1WCYNVBJEw2BP8KTEaKcyJwewlwZ5uH0YfCAISY071RhnxLjIET2MhXS8wq1c01Gz2d+T9PYvZS5RcooRGhGe6ujmdnELhIsSo0GmKR5ClhtEH2j4iVUm1OmO/fSaREIqM0PfIGJA6oRcQQ0QFgVSaUqak1iKfP3L4zmESyLIMl5hfbmDzV18yyxWr5Zz9saV2kX3d8N1X/4oc7rn85DUxTckvLxhRuCjRiaZcrFByIHmxphZw9uIFad1x9refImRKsTojUYLH779B/DHy9PxEc6wRUtE1A5GcspwiREBJiZQjSebx0bHte+yxZv7mC17+7jOawz26F6R9j9/eU4eWRaUosynL6Yrnx1sIAiHAZIa+6bDDwGSaMa1KZrOK5+cnjnWNQmK7ES1zMBlSn/6YznaMTrJrWvKyIgZF5ySpP4mtpTJMz86xusM3Fi1GQKBiYJIlxK4mDFuE3DFZrIl6g9Qjia/p7r9nKnpsZ9k9tEgnOD4fka5DmwPNU4NoLVOhaPue+vbAfRTk85TVtAEEoQAAIABJREFUq1e0fU2rNNV8ihkd5umOfrfFaEWRVcjza2KRM46Wu7cf2b19D0PHUO+J+YDyBW5/ixkaNj+9491uz9iMPN/tKFSJ3x2ZBcfq6oKgPSozjJ3HGYu+yFDLGWpxjZ+d05QFMkSMC6i4h7EluI42WozxBLkgX80x699izQUu7BlVhclKnncdQ79lPqu4+e1vePuXr9ltDkyxaAGjt0QgCoGQAikg+JE0yRFCIiTgFH0QYFKMNri+QWUz2p+hf7I4p0nXVKtXVOKK/f3/ixOQZyV5URHPzxkWBXQp9X7Ec/IaofXpfbbvEPIEwmv7nn09kk3POdYHpvMJdC3H7RNBKVSqCCKik4TUpEyrgiKXEHrax3c01QQzWRKKXxARU51f0j7fMr57ixKQaM3rWYmZaG7f3dN7h1Gacjwtk0ZShAQVFbLZYJYzmmCp+x3p+RpZTphcXCGzEhEiy9TymXakVc7T25/Y77Z0o2V9XlJVGVpFlIws8il9iNQ6I794weLFJ+hySo3G9VvGDx95/Mv3BKd5TAv2yxWzrODi6hX3W8ft0wZrR6KVCDsym5V42zP0EZtr8ixh6BVSSMYR2n1HV48gBUVV0g89TsA+CLa1RScpk/lLxtFhkpxD3dMcNxQuUCmFOgHzUEowiJHyYkbx5ZxXv5tjFx2mPOB8gzzs0HfvTmDsNhK3kCZzYpOA7yiiOxnm5jldcHhryVOB9QObtkXJgsnNFdX1EmUgtJExy9i7EbGtSbMeYR3RnMIf7f2PFKIn0Q6lA9XFElFWjP1I/f5b2rcfCXWDUvDpek5RVDwOzyg9oNKEs9efYIuMNoCPElsabJ4jJkuizsE5eHrENg3OHvHdnnq3ZQyC1advKD55QbpY4OQlY+3pj1uadqCr5clV0/Q8ATJdcPX7f+D9dz+weXxEufHUErIRnUjiOGAMeOeRoUdrjZMSlResF2tChHq/Q8mM2gf8JCErC7L1NY0ziF6znK4oVy/BJAx+j4odqrCY5ez0pW2PjN1AiJE4DqjokcHhfCA6S6kzZJKQJCl9WhJ1SkzBzNegAjpVZLkhWksiBd1QY8cek3jUJMNvHgnHDV78h0bxPzaw+75l7Bvc5o6JlgxjRzdJUXZPOgw8fv012WTC9q9fM7WRdLkmWE/38IHnv/wzld1i7YheX3P+25eI8zVymnI8bOn2NelyxvXf/z3p+RnLmwmPH99Tdx6pMxarNcvZDOEd3fMD94+3vPjdb6g++YKgJlgrGeqG7t2W7b99jf/wEe0kY8z4GH5CmJTVqxve/OF3jD98x7HZMfQ11lqGp5o8S9GJ4v7+njxLcc4To0AgUIlGGIHJEyw9IYmofEI6WSKLGVk5J5cpx/sNJpkwXQRMu0I8bRjf3zPWW5JUI6qU6tWay3/8nPXfvKR4VVD7jlwqXBcZHp4QP+3ZPj0hXUBKw6hr5pMJh2agGwM2Gjo5IGVgtijJ8xn9bIWfLQn5HJsv6GRJkWrSS0MYduRDQ/j+J9xzy+arv9AcjiQS2v7IbDmhPF/gY8T2Dfq5xvlA/fEdattSSEHTtTgd6G0H7YbEN7hW8uH9W8ybT5j//neE+QKZlLio6QbHcGyJz8/svv2WzTffokaH0pGkTJm+ekG1vMSZBVbPiUEjnEUHSaIrBhdoNg1x8CgtSWczsuWUX998Tuj2PP7wV/qH9/hDxzgITJKQG4FXHm0mBJNQzubMrl9TXdzQ95bn2490uy1OBkxhQGtUkhFHj+h6yBRJfkGQmr5/JEkSZB6ZXF/hrKGSWybWs14sePf9d7SHHakSqOiI3RGMx44W9zPIr6kbYjjFI9GQFxmxb9HBE53FJg4vOryzGK3wh4ZxtyP8kvewx6zATWbYpkYLgYqS6Ec8AZGlhO0Tj3/9M5LA4w/fkF8sUQL6xyfqu3d0RrD65A3Z9afY6oIkXxPGA93mI9EL8tXneJWjqgIzlSw+/YRlOmN0KUYXRJFgmxZb3pMXP3LsA/F2g04DvbPYvsFGRfrqC3pV0T0fkCJFqYxtP9B7+M1nL/n1pxc0m2eePrzj6faO3WZLbQUqajSBrjmSpfokLjYSh0EkJYP0lFXC8uol6fSG6uKSdLVi8HD48ITrHYONeC9Yvvyc4qxhNIZtbCARFG+umP+nL1n9j7+lWBeYSaSsHRx2mOOIf/iR8PCecNDIJCOfS5IcvISoMrwwXH72K54279n88BeqxTnx5RXD5ILF5TUBST0MxDEjZgohI2q+gNmUpCrY/fTA6GEInPAlyuJzw6AExpRIIWge7hg8FFEgjcF2A6F3HO62mLAhNiNKZgzCkaQp03JONb3Erq+xWhN9IG0HlNf025o8n5FPFjS3H8mWK+a/esP8izfk11cM4RSgt3qAZsS3CjGuUaknKQ1jaCHRdCLBy4x0VrE4L1legOqW7J9r+r4itlDffyAOltnVp5AVbMeBsL5CXtyg2g7VtijrsHbEzFaYzDBsn5lox1DveZaK8uIcrRK0UtgAKIW5WfLy+gvGzZ6nd+/Y3j/w6ssveXh/y4d3H1DhJE3DeUIc0XBqNTmLdz2oSFGUaNdh2z1ahFPO2WR4L2m9wOYGZTMOTx1xc//LDWz1u79HjS3t/XvC8zNmqHHdE+2TZVQZIp1grefpw3tEf2Q37pA+kHYWoUvi/Ixh9gqZr7DDgKk7gh8JyQyZwGGwOCGwSUp68xv0pSKonEpPsL3HNj0ubdDCEG3Ptt0jnKYwiiRRZGXOOD+nMimy63l8+4F633B9dsPaBUKREM8WEBwtkkSmLBdX6N0GhaTQBtkfodvQ9ltCoplcXJGvXmOmL5BFymSZsLg5o5caKwVdMSHEFG1TZkOK3O2ZKEHf7GgZ2JcS99kLJsspkzc3XP/D35JeXSONo60f2PzwQPvjWxZBMj4/4UQkO1+QLdeoqSIahSWjJEMMkfzqjJlpcO2ccrlk9uknTKtzfJpzDC0+WobOk5nT04jsB/rdnqevv8HtWmQ6I0xzXJWxqFa40bGvLWPX0nVHpEyZLBYIo2k2LU1dMyrQxrCrG46HhmJecf7yJb0IyARcv0WMhkpPQSpGExhygZ4ZqDMuP78mvigQVU76ckmyyok6IlpH/7zF7Xd02yM4gU5LVFpggkTqE/0wrVKc8vTHZ/rnB/rdd2hlWV//mkXxCb7XhGpBbj3l6gpdFqQS0sWCjojVllhKlE3I5RRRzAlEsupI3z6SL0uyyxuS8xeoPCdKiYgRNzqM1KeM8mTFfLrAzN/TvP9AOpmyXI74wZ7ywMFhEonSQOjQKpyy0drQti3CW2LX4ZRASDDSE4VGmAqfXTM7/w26WNEPvyCErS8L8sWEcjVH1C3jwx2Fq9FnF0gzRX78SPtwix9HplGQ6JxAJPiWbd1gU8dw6NG7Bi8TikFDsBAFRgQUBxyCkUC0kbyYUk0nRGmI0oEKFLOM9NNXVL//LcEP+HGg2R1wQwMECpnjY4RqznJ+hnra03YjMTHI5Zw6NXT9gL9JmL4yiBg5DyPSDeiuZ7j7kXGXMuGkNVz93f/C9OXfIGSJG3rssMObiPMe1zdo6xn7AZNkFNOK4+M9Tx8+kkhLebFm+Z9+w/RsTTYtSOcFclngQ0ezr1FRMl19gu5z3ObIsUgoXy5ZvvwV6XpNLUackEzyBa5t2f31W8TTPYWMZFJweNqg0ltmn02wdPj+SLaYwtBhm8DQWfzDPXc//YQ/NEgbQDkGImmRIBYVdJ5kUKcMbDgSrKXdH07bz6YhrybMF3NUUZCODlM/U5SCcmmQY0fz/AO1fyY5njO5vEGmBR4YXYdKa/LFkZj2WFcgpzNcZXBKInpL+3Dg+dufiM8b+u0RN4ykVYVIEuq6YTgeMNJTXS0pL86gyECOIKY47elkjs1LgskIF47Qt+Q3K/QkoSpznDIcjg1KJkxWU3rpEbogL89RY8+4e0dhLLPrivTymrC6JiYFAUM/jKQTjwgtEoUuU9LJDBEHRDwSK48qOvoj2Fbix47j7hntIs6ddJ9JYvA+ooUgehjGgI2BqCRJ9EzX58xuPuPiD/8D2cUbHJLK/oIgcdH+RBQnGe2YedKbNa4pMLOKvnecv/yS+ru/sP36Txzv98yTOaPKEVojGeg291SXS1KTkpy9JpstCNHjbU378I7++Q4RAmhDNV+SIbD1/kQL9J6ha5gs1qTTObPsJcF5nu8+0taBTBiGwwGdQG8d48+ajHK54PC0oRsGchRIQ+8dLinp0oxsUpBIB92Bcb9jaHKEnpHlFcX5GcnNl4zVCvojzfYt93/+dxILeTYFRpogECLDFBXDfsftt39E1juuby6YLkvMm9fIxYJiVhGUp4890bVkVYXSBi0UZv0Ce2iYeIdMDDKb0KsEqQSZNiidEbOCxVXN5v/5v/nx2z+RDi3t3rL95+8Qy/+T17//gurVOU33xJBPaIsDQaaMdYvXKZ2Hblfj4oiZZUTrCDIyvzwn01OaXYeoCpTw9HWN7i2xULhEItcV+fkFJs3Imgewe3xqYEgQ3YhDnj6oUqPSjCg80feMXYflQJpHqvkb0vkFVmUMA2w+bnn6+h3t7TPZYHHHER09Y31PFCPt5olcBhJGuv17Nl8niGKBKidMFiXZumQjWgrZkJaKfJZiFhI5HRFpR9AdiIIgRmxweGlQxYKIw/kOQo8PNZGGyIgyAsRAjAlSJGRGnfY19sB0UqB0xKSBdbZkVx5wdUl2NqXeBUKn6LbPWDkyHI54rxmtxkhBCCPROYyCoqpAKcgMsSxQ59fMfvV7Jp//Fl+cE0aHcL/gCSs+/jPZqsCUhiSb4WOOzDN8mnD1n/87iiiYLafo2LD/6Ue61hHmJWKSc3Gx5rC7ZXCeMsnIsylBZeg0IQszdN3Sf/1n7n/4geX6BdtJy3FSUMxn5NOKYlqxvrhGJQYfu1OaSeXMiop8vabdPDP0I5unWwbnaAZLMakoywyhByZKIPsDw9iiB0eCRFtHisAoTzIBkpSYnaNsijKSfLnGW+g/vKN/fsvumz8Tfryl3Tj2VtHSE2NAANII0jQySwVJotAT8KZndmaQc01Sgg0RkZao/ByEIkaBc5akDIiM05eVE+yeH6i3e+bTOWVVITODkgnCOw4/vmO432KkIu8DQ7cnDDUf9s+snj9Hv7zmkDWMk55icYaOGb3V7HrIizmFzpnOMgo0NJZ988TD+IS1Ea00wVvsOGKdJV1PEUZhq4y4XsB8QRKWJwJjkKyX58xVgjAGihSXTfEqwUePVEdyfUZ0M3YPd4yPPfM4oqKgP4zYh5bX8ytGMWF3/8jt7SOhPeJcjRQDCRaPgLwA6xFjj2yeEdsD9ceAfP2axeSC8faORt2SG8WQSo5WEmkxaUY+vcToOSHLCUEwMhLHA/U4MLYHwgCZKum3ljLfkAwgk56AISKRwhJ9z2HYkFJjhWNsjqRlzmz1mvyqYNZYDk/3iA8GaQTjoUZiSLMZ+80jxI4QB5RwaCnQVU51fUX54hNkuUDPLohVgZlNURaE+wVP2I//8n9gPl9j05FyskCqNXWbYqoXiNUXkBdk4oyb8XMmM8nTsyN//Yr5Z28ItscMv2J6fk6YzBmGHqciZX6GkobVZMnbDx95+3/9Ez+JClVOEXnCZ7/5FZ//4bck/YLm/g5hNEpD0AtGUdE3R4Rr0Mcj+2+/YXP7PUobEIZRSey8JCtPheNsMiXPSqQNtPuaceyRTwazzGh9y2gHUh0xwhOsoX94Ymw32H5gPO4Zng7oOMGnjmpdUWmJO+5xx2cCLXmWcLaes1rO8auc2adzYrLBuRoTZqSZQeUlyB6PYXCKwUX6KNBZhZIa23SMAWZVhQie58096TynKud8/Ou/E+vTo/S+6anSjIxT0X8Mmrd/+gF/35G/+ZT0ekZMIu7oGPaRl69/jR5Pvpeh3XDc1sjdiI/ggcOhIQZBpjNCiIwmsrg4Y3F5wZhmxHLGWEyJvqLKL+lCpFMJelIgUkGPJckLpMzoesuQaEaR4DJ9YoF1e8baI9qW7mHP+79+wz99/x3CWxIEqfckRJx3hOjAWgKSREWEG4jDcHo3TBK8dISHksvB8vTjO7btjhcvPjnJspAoIUmihjwhmyzQZcU4z6ikIfYdzdBgXUdsXhPbPTIVHIIgqQUqiSdgefAQT8kt6Xta29A3GxItSLMEho5AgQsZzsyQ855QH8FbQpCYec75+hO8GNHakSWRutmTLqes3nyCXr0GlROEwYuB6BuiPyWmfrGBLefXKF0gw5Fuc0TEgIwzpGhwxcAYBXYM9DFhyAomN5rzL68p3rzm2A50x5bHKHG9I1OWRBuMSE68ouFApQNrrfj4/S2t/4mQRJq3P/Dxj//CZFoRRCCd5KTGYJIZzp0WAnbsOe72PD88Ytv9yXciBD44lBEkicDLyORsxWQ6w7tAs9sTvEWoiJwo5jdnrK4uCYVBpSnRRoLz5EqSGslRaFqZMBqBnk4RZYZBkaQSUYJijzSW2c2ExcsL3Cxj+ckZ5ClWSLwSRC0RKhLcQJqXqLRCZintEAnakOY5Pqsp9JLMOVx9xO2fSc0EZSX94xPCDSid0MqRkYA0BUplJ1vCruZpd8fL4pIg9mzeb1kVJRNdoUaF8ANDUyMRlOWcofXEwSJRVEywLoDVROFQqSQMI2E8MPgd7phBPsOFFO8FqdIEe6Rz/anpIxpE7EiqNdlkRi9TknRCPptCvaX+UEPb8dU//Qs//Ot/I1eKxGjSIiVLJHmSMpuU2L4huB7b9wzjSNQKYzKCHagPB0YcKjVEMfLXf/sv+CqjWq9JiznF8iVWauxxw9PtnmR3y3rUmGVETzJ0OcG7nFIu8CESR4caTqdooMd2e8JgKfI53lR4IU87i04yth1RaJx3WDdB6JzASeI8BINOV8hzRTCnsv/oQf/s1jVGMRYatbjELCo6kxMHzzjuiEg8B4R8wHaBvu7gf/2HX2Zgr/7z/47RAR17kuDpDz2hk/SuxO5but2RFM/Z9a/oy4p9fUuX9AgNcjlntjpHJeWpN+k8Y98h2hZTCo7dA/N5wtmqwj17no8jLYGh9tx9/4BUDySpZLqckihFmjwSo8R7iGiaYaQ+NjBEkBCFI7gR3zp0Yki05ri/J5QHtBYUmUZpSZIadF6iY8FYe1QMHA57xmPH/e2Oan7G61dvYIgYLTGTiE4c3h5wLpClCUpnJGOLjy0jHeNcMXl5hsszfDIhmZwhk4pARhSKGBwxnRJFhsBgUoH1kUEoZJbje03nj+SZZE0GTiDGEXvs0d7irD05WUd3upcVnnr01MeRXd9g//1bXosEKyMBRSo0rvPU7+9RfqCsMoKWJHnCaEGRInCYPDlJnTLJtn2mvnvC2nvC1GJ0T1mt8GpJ00T63mL7O3Rygg5EDsTuQKIK1HRJNVvgxpbcdmy2H+jbW2g9Roz89osXnM2nVIs5WTVlspoyBuj7jvr5Hnt4/vnz4ejaDqlPxZDlOidPNSiDyEpEOaFYX5Eu16SrM7LFFWk2ozcbjvYtbf3I8/sfSdsjxfnIRAtEXp5ih8LgNWQTRewbus0D7nlL7I4kZxJdrrDVAmENopNokzDWO4gBJzOELkl0QlYpzJlBOsVY96iuIx+OtMcn3DCikhTKgk4JhrHj41OD3jhS/QjRkWiJRBBsoNmfuFD/kZ//0MDWxZws0RQ6IZEKk4883z5BAIMjEQHfNhysY3E2J64FfZETy4SkWqD0DO817lAztgdEGNjvDtApMq1JyglXn9+gMIxfPxHrEecl0mTIzND4gae7LetJQcKJzgDqtJUMgcAJpBaCJ+IweYWK4HqLsx6pE+wAWZLRNy0mS5BKkluJaaFvG/qwIY5HNJbcBY4fav78cE+a5kQfsH2H8BYtwQ+OnROkUZALR1pJjkdBFSfEZI7JVshsiVVLpFqjVAkBlHJ4oXAIAoKoToH0iMSNDrqO7v4jKlq0P5nU9ocDbdOQDePpsd5ZwjjgLDRtz2FwHJuO3guOd8+sX/asLy+IbaTd1YT9BikdQkA7jHQBghQQFQkQhMCNPU3XULiS0lQ8Pd8S6gPpymLyjPLiO7zZo/QSmWkemw50QqY1YXS44xG73xPVCjUpwXeM+48kbsN6PcGmgvX/9j8zbvYc7z/w7qfvWdgFexa8+s1vKNM18lmTimuGdqRrLNIrsiJByxYdW4yReJniogaZsjvUNIdbhBywrmNy8xnFvMAk1yTHHOcGkIb28IhUFjW9QWZToopEH/FKIhgItsM8tCSxI8Z3BCVRSUBoTZItwCcEU+EIDEIx+oAxGiEVJCU6nWDHiOtG3HFP3E1QSlBWU7xUBCGYCujqmvZwwDV3uG5P0zWEsT85i6UgMb9gH3aszvAhEpAopcmygdXK09d73NhSFSXtwbG5u2VoDdn1hBgFSnhcdHgF0mim6YyYaxgE7XGD8450uoTZEnV5xlUx4VAPjD/e07Ynq51KE6q8JEsMQz8StKIbBmKEclpRZDmJOT0a9l2LFJJEJeBOEUobekR0JFIxdB1SnVSPtu/Z3H0kxEdaC9F7ChMoC431jsEJRn9gtT5tSbu6xbdHtPTkxZQoUvrG0XQDlV4ymX2GWf2efP17VF6dqnxR4aUhCIEQkYghRPBCEIiARCt56mpKS5ValssEOQSe756w46lbqrRESkWa5jhxykPHKLF46n6k99CNgda2fP2Xb8lMyWgjemjwbUMaR3wMCDLGwaHSFImkG05uXGUUoe3oRyjSilyniCFBbTvc7QN18W9w9pLJ4lfEdM5Ztjp5WoWk3TbsdvecJVN0dk5MJghxCl8sLq+I5Bz2gu4Yyc5foC7WTK4vuVkuiFIQy5KYp6yrT5AClMpxQeGFQKuWXG1R9g7bHwlK0/sC7wuqg2T//My+vkWLAY45ZfEZIZ0yK9dEIs41OH+gO2zAerLZGTKdIVR26tqOI1KmIEuevvuG7viRyfX3zH/9B5KLG1R2ImNodRrSNM0YXAA/kkaJjJHgPQGBFxIRE1TIGPoOG1rSyZR8OgWhyFVJkk4ZM03MZ4i+RdiONBFIIzD5Lwhhs0HhvUcHR1Pv6Hb3mH6HIeCDodkOxH5EWc3xvsPKhMnLOcPmgCRHqgKtFVIEohoIiaCcThHDidW0+Py3oBVxt6XajojOEh5rRhLaeiC2DuEiw1iTGo0ElFIgJfkkkhiDwKMzhRtHlB1p6pa+HZASTAaNi2gZmC8myGBJs5QYHb11KBfxI2TZhFRPGOzIxBjSxGA7S7CW2EX8IBhtIGiNMCXWKJLM0BUVfvYZcvEFKr3+ueDMSduABxxCRk4mCEXkNKRKSCQRQovgARXvUbrlcKyRleRitoY+EETExcB+fyQoiRCnD0jnIq2DIQqilCc87N0jX8U/cVXNmGeCQoBQijQtSLIK7aDrB+quR0QQEYyWeBExGez7RxItmGQz2rajvmsYzT2JUOTZGlmkmCIjphUyakQ7Z7j9ke3dB2bz1/hkikw1kRInHEGU6PMFxTRBjCNJOSNOz9hutvjnJ+LeYaYTgvDIRKOyFDOdoXJJIgYOTz/B4VsyZTH5grz6El/ekKwgmR84bjYIk1HMJpRFQpoqlDIgwLmAHUe6oafuHwk6EINHpEuIKc4pkDnh/AKezuHhI5s/fsX+wz2Xf//3TP5/1t7kW7Lrys/7Tnu76F+bDTIBggCLRaokl5elZZe9lv5oeywPtLxslVR0SQVWkUTPBDJfF/Ei4ran9eDC9pQDzGIcEfvec/b+7e9785IoB7w7Ua8WFPqSwjaMg8ePA9owi7qEJuqMrC06rakHy+n4TN8/4c4dUgusluQYkDGThELqmrKsiXmi2S1RVv58BZu7Ca0ywZ0ZxwPx9J7Kt+gElJeYYgmyJE2CyU8IsWZhr3FRo10in4/gR0iJNPRMziNzIvUntJwXB9JqS05w9dvfEIotx+8PSLPg9tPP2e+PPHz3Z775l7/n8HSHTGC0Yeh7bFdRNzU6RYwS+GGY7xBSs6gNIUe0zlRFQVNamrpCSnDBMY2BcQqEIMhR0LeOwXu8WqKEpT084F2Hn/o5lKEtZbMjFRfEco2+2GGrJWZds6ekOA5cNI+sdhu0mmmBKau5MGQGPBCQSECiAHIk+zvy+QukOxESFNsN28UOlQJh71GVJQtBzjA5jyAyOsEUoXeJwSccchaS5cT+8Y6VjjS2IWnJlCTRJRaVxEVHTIlhGjGmgJQY+hElMsIBOjLlTGNKkAsIErePqGZAr0a60wNxt0buFgRm7Mv28p62GwnPz4Rg0XVNVWiMWBDR0Ds4taS+R4aJHCWH1uHujxS2QD2ecX6AssBe3lDmBZXZIG1D1VzQ9x/ophFvNghZ0/mBqtmxrAqWW4PvHiH+CfX8JSo4pEjUTUUE2mkku0jkBpnXkCPeTeiyom4qqDJjYVir/45Fs2R8/44hO4ZJMjydUbpDhifycEc1PVPuXlHpJW5V4bRGVBKjK/RCkz2kMWIGj9SWtj1RGUEpI6F9YjgdCEOLkpooBL0UtGPPfv/IZrP8+QrWDg5pEiI7okxUl5cs1Q2pH/BTQi1rsl5w8fJjrsoamgq1aghhIqmEIuCfD/Tnljz6+W2QJ3TqaaczKTm0dyifmLo92p9YWU8fjozjHXWjub6tqdVnvPvO8nT/iJv8LN8aHVoqohJMU6DUmqKS80KxLZCC+Z4YIskLhrP7aV6oyKHEHXuEnikX0QeyTHz+23/Dpir5l9/9H+jskCGjioqeEuodi8vX+GqJ2d7QrDdUm4r125eUixofPf3QUwlBErNqUAoBWSKZ1/SkyDOhgIDIHs2Bsf0TsW+pLj+BZoGbHKI7oClYbNccUpxHFlmAEPMIJmZGn/DM62aJBNETYyKLiSQKujFTmwKyoB8nhFLk9JMlXCmUtSQnECQmF1joEgo49j1aWAhwE/2VAAAgAElEQVQeOQRsK3j8l3ewvKayJWKRCdric02IFePpkdP378AesVVF1ImqEqAF4TjS/XBH//iIBLa3r1noEnNzjXCB8fmEDoEhBNJyRIuJUj6j0xPWDCxutwhZE8sXtGzAW7ohw9STD+8w3deY8EjX7onDkVJ7qAxmuSGzoKxuqW9/RSx3eFPRZ8V86gEEmMoi336CefkJy67HuY5oFS4FZH9PPDoYH2kfPxCEpbqsUNWautwgZQlRk4VBWIMsLa4OlMawlQnZH0lPP9Kfn5DHR6r2GZQhLxq8sSiR0CiaKf58BTs83pHFyHJlaFYFQhkGKVHLmjJB7zSqaqiWS1RZMSUFWZNypveZNDnk84HDn/4Zjh3N5TWyrvHuxNgdKITHTh3ifCTePaGfj6SuoxIZvQ8MOc98INPx4ram0Cuejx0pSeqmYXd1idQZQsR3AyLMBIDj84mUM1pKxE90AqMNxhiUkWQFZVX/xOWdSX3NZsV6oZnOJ5SEIXpevH6FsA2HXqCbC7LQFLYgKUFze8H6o0vUQhPiGRUywSmc0SRdzvdPIgIPWSPQ80MkT6h8QNGSx68J7ZcUdoE2mjxO+OOJ6TxSxYLV7gXtsiLuO8KkiAkEkH0kCklUgJAzGlUkBpFxQiB1gZHgQsQPjipmUoSQJKgSYRRTGMkKpNTYJAn9yBCHmfMbBDllpM9Ym5jigeLKcq7WNBcGJSA+twzf3LH/4UfaTaJYXFBqievuCdOeQmRy1zM9HsjjhDKGh3/8v0FbrNZoaYhTYNFUVC+uqGykLo4UwzvC/gvwP+CtxhVXjPpIefkbrH7BlEqi1lC/IUuN6xqCm3j65isWuediU+K20FeasHQI80wyCsoaVSwR9RJZNSALhFREqxhqhVhaZNoilUZGj+xLWEqE2+LDSNRrMCuQDTlIovAgEsHPRvrKLihMgVksiM93qKHlh6+/Qj8/YPsjw/2H+UGwaii2a4T3xJz4CwXsf1nBrlaw358YWokxS8yiZkIijcEri15t0LahdR3d/RND6zDFhlSuCEJRk4n3T/gf3/P83fd022uoFwgJ2Q2czgem+/eUwSFHj/CeEEbqupgDAxI8maaUXO9uefXihqf9mVPbE2PC2sxiVRKd5+wHnHfEIeGnAZA06zVWz/e1GPJsXAuZ0Y84n3BdpCorpnak9z8yjv8XV+sdfnIUzZJyfck4JbbrZg6pb1YMSqJKi2gqclUz+B4ZAkIrisKQY0BoSCnPMTUCSUpUAulPZPcdU/cV+EfGpz+gpidCbpjuHS4eyQIK85K2z7h6jXzxMUIfGR4d7XkiR0eOEVJGKDlLl+VMfCRJhilxPHasjEGSSUIwTZ6mWlIUNUKDsoKui2g10xp8NxGiRyhJjgmURUpFxPHcOlRVcbndMSwuUdUOmSLnu/c8fPk1bgjoMnFxc0EaOqxXTOdAFT2+7WmywefEdJ44n87ElDlFh64stlC4Y2Cjr7n5zYoiTvSPfyQ/f4sVLfbiBWa94ewkoWtRq0DZNAQa4voG4V8jp2fM5lcszS3i+CWDdtjNG9LiLXb7Cd7ecDqPTIc7EnfYakG52FA0K1SzBjugjYIskMIiTIUsBKJYkptXCLfGEBHSkkRFmBJSTCBmHvIMhVOEMBC6M7k98uMX/8CFhGIYqLPAtT1iOLJZlZR1QogT0XiiHzHq57zDFh5dy/mPkdLMK5IF2i5JtiKqmiAUPs9Wbh89UwhIWWDjiHj+wOnLf+b89Vecf7jj6es/Y5qG7e6SMHnOD0/ktsMLyXKp0dpQV4aisGhjScGjfiL8+yESY2bdLLnYXLB/PhCzJ4wTpDzzpKbMsT2RUqYoDYv1ApE9wSeiyGSpUaWe75DThNSSsR9JOWBCpk/P/PnQst6tefn2U8pFQ9jvWZQNwQd89GxevmBY7eiExAbJbn1LVWi8zogM/blHJ4UtLCFMON+iTKZMHf3hS3L7R4q8J04tthsxYQ3jJUMQnN2eIDybVY3QkurFll/W/577P35J1fbshsyH7/ZU+hEzvUNNE9uLLT8e9uSoUC7hB8eApiwF1syUisoW+ByQuUdmWNVLhtYxnkdETEipUU1D9AOKRJhmF4wyElFoxKKmtQXF5S2iWGLCiOs7SBGRMriJ4XwkjwO0E7fLa/z5xKQyOcwPg1KWbCrJqWvxMoFOqGJgtXK8vK6R3Rc8f2MRMaPY0OcllfgFq+bXbLYr+lzj5QqXSoRZzteOXCHFErW7oiluUdOfSbEnL26oN5/j5Q5tS5bTQHk+0j/dM52eCYczpywQmwua9ZKisOQMom5Iy4ZYFiAkQpeYoiaHSPYBXERGR5p6fNdTaksQBlEsmbJiHE60H77HTGeGY4vqB8buTG0MV7/5nGpTo+qCcl0zTWfG9oDmZ5RhiXpNKeYjUM6ZdnQz8jPN/KZAJqQEtqLaFgjbEXWNLCTLrqX78Que//APHP70JXSRECScFrgp8fiwR2aQLpAKy2g8i1WJrSwxReI4zl7amHHOMw4OHyPIGQeiRKLrep4PZ6Z+olAFMgv6LjBOiSQC565jtarQ2pCNxLlIZL7jap3ophZ8pCoMeQr4MOCNprq84Pbt5wQy2dRcLmsOj3e0wGK54upXnyOvbglCIqzGNNVMnXcd2fWk4PEioUVAEBDuhO8e6e//jOhO1MsdJn/Ew+MDp/cHshgJ6Qd0KZniiaN6z+7lNUYaFruC4jclfhwRccvNZ5/xz3/8DlcViC+/59SOKDKDSCSR6IeJImYYR66vdjSLiuAcw3hGC4lFcToOSALLQhOnwBgiLmdMSuAdUkpizhTWsKwWeF1iyiWm2SJsg5SgSktTGER74vT915weHpBSUgSPN4qLzQoPXL+4RsTAu+++QxjB7uaCRSExG4GtjyyLE5iOp7uv8WZNtXpNsfkFen2NW7/gXL5GlitiNghTY3SD94owOBgTKgikKEBdEGyFsCWu2TKVOygaXBaEVCGbEjkI9GQZ949MQ0dJx/7xAMGjlKC+vEBebxHbFbaqQRUgDaRMGjzx/Exqn1F9i9sfIStCFPiyRm0uQCaWISECaGkpl7ObZ11rrv/6M+zFBeVug64tYTzS7d/j2v3PV7ADK2RVE+PEOJ5xYRYOU1pMimQpkbbClEuUrSmLihQnVPsD4ze/4/G//gfU8ztuGsPZBZ5OLd15Yuh7lFJoq2k2lrqyJDEyxp7QDyg1pz/SOBP3ZbIIodDa4oNHKUXd1BRFzXSGJBTJQz86+jGThSEKSzdOoKEoK0KEBHgfIHj84FBCUa+WaJEJIeF8Rq4aLt9+AlWDkYKrZYNRCTnN+NLNxSX2YkdYLn4KkygmkdFIKl1g5IRPIwRAJvADsdsT+5bSLHAm8DQo6uoGc/MJOe7x4wPrRcFq+QJplgz5iMmPiPHEMH5AiHcc2m8Q8iNWL/6OT1/8W9Riye32mi9//weeP5zpRWAgM4ZAMBqpNS5MFFqz3a4wSqAsNE2Fn0aiyIynnuwDMmSkEFgxG81HKdDKEkOkvd8z6pb67V+RY0YpTVGvePnrX+G//AJxODH1R56eHnBKYJXkOQR+eCi52m2wTvPi6oJmWJFPZ4RSNBcb9KWBsqSPgm7qSMly+eINzfUvUVefkDavmewKV26gaCBrSIL0E6JlPBw4/fADYugpVEH2Pf3wRHmxo3xVYIodKWRyEsQgycGQ1Bqzqsg0yO5MUwjacU97OFIoiRPHnzCmFqkNOUlylugsIDqm/sT0+MB098hw94BxESE11fUt1gc2l7dou2E0ESkz6+2GOJ1Zbyp2n/41qagYpSJqQ7nbcbG9Jpwff8aCVRaZ5k5qMhXG1mgpcVEwDi3KMAfns2Dse6T0yP4B8f3vefj7/x0+fEc+tzwfI24CXUikkoQ0kqWZoeA5EZ1jd7FAkHHTyDQMlEWJQNG1PTmOrNdbjFAYIymrAgTEGFgtlmg0x1PLFAJohQsBERMqSpg8AYnVFVVZkfzA+djiu7kZNE0Tk8gIoYhCc/XmDS8/+5ygJEZLohA4MvLyCtOssdcXpNLMqZbCIGwmyIgNntw9UcSWUmR8iCAicTjBOGBNjc+CLjuc80zaUdYNu083+PMTOj8iyxWTeo0rX5HCB8bHb0jOUYYlMW2JWTPZSLne8fn/9O/or2+xi5L0heE//en3OBJjnHBR0Q2eRTMDwHIcyVlS1fVsYUiJFDNWWWRZEJxHq4w1ktBoFrsdPkoO3/7AOEzkpSGbTNlohBagDWmxofrkY/rDiWZMdP04HyuFRBlLlppjNzD6icPxQFNoFuslQmictNh6yyELKATVAnaX15SXr0ib1+SLt+TVS4SuwVQEWSCEBe+R0ZNCRFqDsgUEgXcK4QMqauIwMp1bYuMI1iJiwA8jU9ejfKQSkBAIqZFKsdxssVohgpudPTHNI8kwTxySn9NixkhEU6I2O1SwyGQxbnYly7phsd2hy4aiKFFNjdaai8sd8fzARkcYD0jpKGxNGEf85JFqIg3Hn69gk5XkKMnCkFLCmgJbNqQE2Yw4d4QUSK6DEJGiJ99/xfN//T9JP35LfHgijP8/prJcQcIhlWXyiZQibTdi9GwrS8kTosdNE1pOaKEJLpLSPHqomwVCzveglAIxBkQAHyaEDEy+w8U037dDRkwF0hTz3DiDEjD0PVPbIoIBMlkKokhUdUVhF3z6N39Dsd3wfPcji6pAWc3i6pqmqVGbNXGzwMmMiRPCJZQEVSR0PBH9A8qfqEpNUoK+6/D9GZUlkzeEsGS12ZFDJAyRcL4jdV8STn8iiR8J9R+xryxq/a9x+pfIzUfkx3fIwx079UTAk5v1XHy7LfwycZs9SQkeT3v+9P4dzjs6KWgqS4x+ViTmDFKxHwYQaU4kIalNRV03eNkR/YliWbJ6e4N984bn4whITo8HyhdX1DdrkvYM3YHEEru+4M3/+HdUpubH+DuGKRGGjhjnglDSEHImh8jUPrNPgZuLC5pmScxQmC2b1ZbWPxLkxCEqhKlYbG5hdQ31Bi0NWWoCBp8yUmemGAgyYy52bIs1DJGhbRkPD6SDQGRLcCtU0kiZwM+jPZUTInvGriX3R3zfMTlLXRuq7QIxdtzfvafKI8u6hsU1uipnF1QO+BjxQmJ3N9jmBcurVzD0dO0ZbMFgLNkaVreXXG0arJHYMKF0j7/7nvPpHasXrzCba2xVoy344zPD6Ym/JOv0lyWdYkLETAoJowq8MAihEUYiVUAP86wuqkiaeqrxjtN/+8+c/un3nO+PCK8QKHxIiJ+MbdWqZrW9ZBgD+/sT/tzTHVru3nl8mjNBUiqM0ogERiqyTKTckvMepRSS+cuvrGBRF5i6Qq8MmRVPT2dE+gkCncCYCqk1RVPOHVE/c4glAaMqvIskk+iVYvf2LfL6Bq81IQm6duD2kzeUty9xzYJUFiBB+zNIx6gKtFOUOVHIiaR6iA9M7dOctpkKLFuGLtJ1e7YXF1RVScwFvrT050DffoNzPWYcsNOAvBzoRSYXDUqUsHD044hwE4ZMrTYIpSDMuJJqveNv/u7vOLYtT48HHseBKCOyFBAS/fmnjrrSyJSwSlAVdr7XEzgPz2ATxW1N8fEl8tVL1JtPuZBLrn7jOe1nkJlcLfGpmzeJtGG1WqC3v0bmmlrXVPXfk3//L5xPPSFnpjyiNRgtaaqGoev55odHynpArLfINvLy7WeU8iVd7Egy0MYlIlSYqEhBEKQEKUBGrJRoqfGqIElIQWDLAjlJ8nKNXm8JVz1SCERZIusKWRWEKqOXS5JzpGnAtxVF3hHGYT6tWTCxRw6SquuIebYIqLpCFBWZRPQTqkoIEsoPxNAj7JwMVy4yjSdKGTEm0P55D88rhHQU6UTx/AH99IDIgjSc6YqvKV/eInc7VEwsy5u/pBT/soLtzwNWCVTOTGFAyYkcA0iJUbN7Zug7olIUvqd/90ee/uWfON090Z4iVtfzE13OGoxpEtBLfBy4f3giukwa0zzAz5qqqBjGkZwkCYWfHEFkTDnPIJ0LkDxGQV0oxnZEpYAwmqZpsNsCNwRS58hKIo2gGztW5ZKiNhRYzs8ZWxv644R3I84lfBJsFgs++vWvGdG41rHZXaHCSIiJ0/Mz0zjMjZZVgyj0zAFSYNKIcT3QI4Y/47s/0vfvyWpHMr8CvUYuMml4z/t3X7BalZjFljGvQdUsbv8dYfsGd7pDqDWh/iUpb3AOijzPlU1ZIl0F54H9d3eE8IFCl7gh0fcDdr3i5etbfvn2lv6Pf8AKjSlLvFZM3lFrhUbgx0SbJ/qpR5UabImtF3z0V3/F699+ht5Z4nqFKy84tZ7N1Zqr6x19P5BNgTM1sqkRRhOlQObA6mpF/dkbxGnP8/09XTvOgDI/IHWBNRqfHMpKfJL0fqSaBm7qJf5poLzY4cyWjkgfJd3J06gOmwowGW1LjFYooeZTQWExusS5QI6KoOdjNbXE7GpyiiQhyIUlGU0hQSYFSaFzgbnZIKKDlIjekcJAHiVT8KjVjnKxwq6uyLIGyjlGqgtknhUk8bgn/PgtsXf0hzP9c0tpK0RZ85QCWSiqcolgYl055PkedTzSNAtC7+YZ8hQRp0De7Civr3++giUIcs4IkRBhQoiEG4947ymLAh1aZB7JzpHOB8bvvqL7cE/fepwThBBAgLUF0zTRdo7eORICqTWVKVBZkQFkImVJUTYIxGzdVnO6x6eE1haVIzFEMoksNDFJzu2ILCvqRaZQBSqBEgKfM0iJ944YJvruTJRQNYZXtx/xxy++ZOyGmdm7WHD90WuUkRRasF3vWBvoDw/k6Dm/f49sGiYTSKeCYrXEbhqsBxkeID7QuXek4YlSjNQ5kU1BrpZEu8QnyQbFSWSiyGixZHQWqRtE/YLQvCFtJxwBUa1mm16KeDJaF2RZMgXFed9yejiShh5ra4p6RxdAdAN2WfP24xdM3RNCl/zit3/D5voaIwLyuKeeAu+/f0+XOuqbFWFdoS9vWL36hN0v/hX56gUTPUOOmGpJqTpiOtJNPbJaoJodgQKhNIpA9meG0wfCfk8ZPHa14OL1aw77E/5pj80SHT1pigg9+4m0lZDAtUf+4//6v8Fyx+YXv+Kz/+XfI9ZLzjLifOC8P1L7SNksoVoRbU1WGWJEJs9PHge8kDgEWmSUcAQyMWdSAuUjKk2gEuQIKSAU/9//OctMthIKPW/fSMWi2WEXG1JRIFUCAinm+UQXPa4/M+yf6O8eGJ+OMHhCN3DuB8qqotxdUK0uZ9udMogpIsSS5vYCHRzS1NT1kpXe0j54cqnRywv+EtDpX1SwtS3JcSL5EZk9OgckkUJ6RH8ix4GUPX7o0O2J6bklTUA2eB/nOZ6C51NLex4J8f/9qjNxHJDVXFwiZwRzdC4zE/vKusarGV+SUsRPgZQyWmpCcJzOPbVVFGXDNCX8FFmuLVYpiD2gyT5T2JLooG9HvIJp8Gw3ibdvL/j+6zu8LPjot59jlxX7/Q+QHaZtUIuSsT2jbElGk6XGuzPj0xNWDpgisbqoqBeCp+dv0flbLra3JJYkUUHqce1/Jpov0dtPoVxTvviYIQiirEAokinoFOQsMFYzTEdSjmgSMhbzJpJzpAheaLi6Yrm6QPgBN4FZvaAOEjeeUSKwefmKX5yPjKLkxed/TXVzw+n+PQ/vP8D9j0jRsb5ZsfurNxRvP0G9/gVp/QJ5+YZRFWTXMpyeIcKiBDEc6FxHs73B2QaTFWI8ofp7ZDgz7j8QO8/pDFZZPv70l6iQ+eJ3/0AcHPgEQsyNxpDJQlCUBd5lGD1+/8D7fmSxXvH2f/i3SCmYsiMyoYYTLBp8vSaaBUiFDh7rJvLUI9UcLURros9zVzvJubObmGOwMjOagFIJLRNCJkKOGKsQ2iDtAqEMyQqksRQrBabE5UBOJ3LQpDSLyP14JvsWCsvlp79Gf+SJp55u/8w49CQBoijxUiOUmDPaKXP96iM2lzvGd99zfj5Rr18gtzdUtkbf3pKGnzE4URqDsDCNI/hZDaQz5ODIwwE3dGglqElUAiapEbIguBHn4kw8H0b6fkCm2fim5fwDznGnSBYglUJJTQiJjMCFQEg9KSSCDxhrmAc9kZDm7KVAMoX8E4y6oOtGRDjgnCNEN++ajhGyBCVnDIiIXFxfQwWvt5eIDKm+Yfn6JaM1IDPD4R1qsIi+prAFstAslmu8Kui6J2rpKNwj/rzHxzX9sOJ48NTjkv1BEc2Ay3dkeUKLEVFuMSkgt79iNC9weoFS5ZziCoHoe0w4k4eOQoH0EFyeGdCjI7iMH3uwoKuS4BJSWEosyi4pKWCsoMzwYUNxcUHCcspQrbfUVuO6ZyY5ISfP4uWO+vqa8uYVeXtL3FwTFKTUY1WiLA0y9ITze/r3/4jRNePxAn2xQYaAu/uW8/e/o04nRFK4M0y94qkV3OxeUl9c8vnf/vd8+/s/Mg4jFAVm0VCtVlSLmpgj0R5IT0+IrqNKicd/+o8cP/wBu9yiTYksBeWuZlrUmPUldnOF1RaGjvP7H+ifPkAONJc7mqsdvlqR1ldkuyTrmeeUo0eGANEhdEKZjBSRlD0pKzQVUloSihjnt3ZyDgIo5mILSaFUSXaJ0Hp868ijZAwJ7SVxkgRKRGXJIlM1NUobjNZo36HGPCNOFw3m9noeFa0W+Os1abUhCoO/P2Dfvvh5ClaKgJCJuilJIZGnDiMEIXpktcCaEuEH4vEeOZyRyRGjZxwnpikzxgEXAz4IrLRzGH5uqiOFwFiDUoqU564uP+2LCqWwZUn0gck74uQwdh4DZX66/AsIKdOOnil1GAWdkBityTkR8SA1IUdEWXD99iUf//ozPvmrX7JJZ/b/9A88nyPrj35FvHxNSInNqkB6x0JrGqOIzuGiI+FQZYnqBD5ItF0hy4aRguls0b6kCJG7P3yD0HuKZY9ewGRKiuo1qDdkt6RCYXTAuTMCC1OL9vcI/0hZlIS8IYSJOD0SugcKFClZwuhAJCKghCYlh0AR+wOqWJBCBNmxer1DiI8okkHtKiblsLuSF//6M9SbFcc//57nziNHCYNAdgNZP6FKi0oBqRWVVUgRsdNIoR2+PZLUjlzeErzAHZ7w+3um8Ex2hu4MmQZywyQy1asXjIuGv33zMd9/+2eqxYblegda43Ni2VT44weGpw+E5weOD+8RsicefyQd7wg+IGuL2y6RdU2PRukKgsAKge8OWB2pVhXWTFR1xDYVY3aIQqEWS5LUZD+BG5FRoLMn+4GYRiASgyKHhHKCpBU5eeLYk8czMk/k4EhTIosSH0tELvDdxHg8kcaWduhQLmCzpKwbiuWKYARF01BtVqATRSyZ7gcGf6KdnikXhvXlJzS3L1EX10RpSEOk2PyM+7DG5FntJxOFKRBWoVNGa4OMDXKciPsPxGFk3D8Q+gMiObzzKF3OzKcICE3KEiUlCEHOgpwEKc6L8UJmhJ5dKVoqykWD1oYu9piqxI9uXt+DWaT7kzE9eA9JIlOmMIamqVkuarxK3LUnohTsXtzy8rOPuf7lW65/+TH2xQWy1xS7K5YvFbef/Yo7uUJMjtXLHct6/pzbPcPTI1Irghs4jy3++YQLjnBxiW7WGFnCc0s+P3Ls3mF8wD90cAa/3VK+/S1q9Vu6dIHYn5Duz6hi3rJJ5ZLGSmT4jsE9Eu0LfCgIY0c6fcPw4SvaAVKwOJcRQuCdQwiJFAGlFIv1BWKxxgtNCglZJrafvGBKmlQ0qCqiC4EnE6Jl8fot8ejwyTC2A6tVRzqfERPzhlOuEaqA2OH7PdP+nipGfL7jLH9ElZcUpsaJEh8svs8oCprlmsFLHg4PXH36ObYucV3PJ3/7NyyXl9hqjU+SJBXD6QkzPSMLxWQzatMQIwgMRgtOxwOb9RWqFLTnI3HKZJfoWkfnAlJFRKMJnYH+SFCR2jbU5RIlI1EEspRkLYgxE2MieYcbBwgDQiSqpkGQiNMZJJBGGE/YcMb3e6I7ocKEmxRZrjBmhXJQeoc2Cp8CWoHr2tkasZm3t8qrJfpii6wUNi+oLudufigMHsnixZa4tAjpEC7M8cfr+ucrWMIjWksy8afdTkFKELJDug419ozdCe8S7uyZzhFFgbY1WpTgBVkXpJyQIcxh8zR3jF1KpJiQCaRUCCnQRjG6kXEY0CaTma1SufDIbIiDRyZBFoooE8JoKmnYbtaUlcKaTFErrqmRNqKubti+fUl1u8ZuSygEUkLZbGk3t1ytXrJ4+wphlywic3MiN2SXaF1PHwNFNuhh5PTN72k/PDAAq08+pnmlWDSSuD8w/Pk7bP+MihLfNbhuIA4thX7Eqg+kY0f48B3d3Tt2r16jr6/IzUDQT+Tha7IuSapCRIE5xhlt+t0TTz/sGcaIVAahJEJnjFWUhSVZCNcj25cKIeo5nK4kWStUNWNKkBMiOpL0hEXFgKOo11hRIGSPHjrC8z1R9MjLS1R5ixIV7vie4fFLnu8fKc2GhETLkrpcMUSDz3MAQtgC13qev3um1JBFwoy3bJcbeqB7+IH4fMdu+4pyfQtFgw9+hpbt3yPdkaapqTa3WFsz9s+I2lMsFEp4vJsYzgGBwpBI2SNCInUCpRtkVZKHhDg+4MQI0w/Yn4I0MUPWCh3m/kb2gpDn4I4XPeQA45k0HFDhSCEHxumE9w7nemSMBF9TVAOYe8b+jNUVUSyQ1YKlXjAKT3u+Yzh94M0n/4rqpsYVGmEvSfYG8+INUiR0jNjpQJf2yHGPCoY8LrDVDbbY/HwFG7tndGlQel7ETn7O96mYZqPb+UwYPRFNLjeM9sygA3admdpA9A6hLFVdIXOGBCnPb8jT6UROCRkTSgikmN/mMUdEiigSSmuUtpTSYqTmOewJ44SPHl1ImrrAloZqbakrgzGSzeWGcJDI0nL561+xff2C+mZLs9tQNUtIkjYFxM0WGQbf8SkAACAASURBVAW+BGMExeBw/RkZW47373Guox08UzKIrqd77DndPzL4ESFBxsx92+Gf7snPD6jB0zQ1q6Zi6gQpJHreI44DhV6iznv88cBzG1lkCRcVx3xksbhAR427H1Au8/iHH3j/3/6Z87s7XOt/WomzCKNAQZaJummwK8OGTFkuESWoVUE2BV5X1Be3LJsKKydUaNHjgPeZZJek3pODY2x/YHr3FeX0LaU8k05rxOpzTm5BnDxlllwsPqWyWyZ7g4+aqW05n88IXVLailRohPa0pxOHhwdIjn1ZsXrzlroWOHfg/Zff8cP0XyjKDVIXNHWBDgNFTJz3Hec8cT4myqpEKU+zqqg2K47txCgTwSqsLahyxIySqR9IKcMUmQ5nlM7UiwVBT0SRCf0Z40fScMa5AaNqfFToZkdVr8FafOvxviX3PzC1T8g4IkXAFiXK1lSLC0K24ATT2OPDHqWeMCLRlLeEMCFkx+XLhleLT+jTHaP9AhXvKeWnCKtIzYpUrNDSUkTQhSC1D8j4RFVeIFZrkl4QVfqLivEvbDrN6sQcPSIlshshRohgmBEtsapISFzSLF8XdCOIKZBnYNK8WB00SSmkUaQ4J22SEKSUqAuLUnLu5BlLGYvZbK0MOSskihgdXdcBGWs1KUWqyrJc1VzcLNg0FTpnmuWC7asXVB+9Ij0f2bz9hNX1JWbZkIUi+Z+OSkWBvLokj55TjCjhiK4ndQe684nh9EzUNaJcEWNN7ANZL7BlTd+3tD++Jw2OLCULDcdhYGo9IU2E6NCUyEkSpwOyP9NhWJuC2jbkoBgPLavtErP9BFUYdNcSTnsevvqWdH/iVbHi0XY8i5YhJLyPuCGiq4IsFV1wnI4nno97Bpe4+uw3s45RSPRqTW4qRGXIJKaYSSpjlcAFgVI1MlVMYc/D1/eYuy/Z1Rl1ZYh9R27WxCkRXZhX5bqWUbynkTvkcoTYonVGSskwDCglWa4XpOdHwjBx//WX+DCxeblkwYSoBIfnPe7whJaKsTB4oen3zzDNILKhPZGWI6oIpLKiLEqMWSPSRJ01OTsKkXBHSVQRNyV0abBlgckS4WFT7QjKkHLEn0by04m4/5HBeaRdMC122Mtb1HJJKhRSBJAlq80LlMzklAhJUjZbsl6S9Yo8ORIf6A9H5DShiwlVfECbDwSVcOUVtn7L1foNo7+jf/qR6dyxfqVQ9QIwGNmgYkAJx5IzovsKmQ9QFVBGop/AXP48BRu0YkoBUprxjNoSwoDre/QUEe1IeD4Shok4ecZ+pFosUHGHex4gR4RUSCmIzA0jFx0hhHl5GkHMAcmcUTWlQSKQQuFcxE+JoijwPjLmhNYZI8UscKorqsrQ1JbCgIyRurGIwlBtdrzaXSFMAVMm4MFkkktMw0CxqNFFiSoWKFmQs2E89UQfGM4nfBBc3LxiUV4TnGAqNX7Y8vT+a2JWyDHgns8UdUOfHGWxoCAjioDLGa1K/Bh+2i1tCVLQ6pqu9Tj1xFZJyhevMFUFY+TwzQcOf/oKPUWKKFAkFs2Cvg3044CUBi0VwxiIwHJRoEUkjQHvBUEVlIv1LIVaGIwcya7Hp5m0mMeesWuZOkixpKy36OoVLz/9nxmwTH6gufw3rG4/J4qC/u57nr78R+ThRPcwIJeXvKw1q7e3iHCgH56RtsJ3PW4SMDhEyizrmiE5jo93jP0HapEJ7SxBLhfV3HmNniE6ol4iRUFZNnTdgVPboVKkbxPu1LJ+cc31am6oHZ7fMwwnci3wHsxyOc+wlUE3lsPxBwbdsbx5gyqWOAfDMeD3EZs9UfUYs+P8eEJ5yeJ6h7AFgzAEnSkKgZSJMI2cg6cuBFIZispAuiROPT5EsnG0k8eIQNQtIZ2Ip0fC6Fg3ibrUoAfU9A4dVwyDw2U7b551D8i7/4Le/yd0bclXf0Cvb3FT9/+w9h49sqVnut36/HYRkZHmuDpVZJEsdjfZUkMGwhXuTIAA/Qj9X0GAriSAzb5s2mKZ4zIzMsNs83kNdl1Nbw1qmKNM7NxvxGeeZy30P//Hn2ZgI3ll/ElLqZIcYBkhnBL6MjK9+0A8HIjThbwE8hKJy7Iej1dACaQRLHFGKo1SBtMaGtkwjxOUSi5xhVTXwjLPxBAwegVcJR8JOYHIOAdu06FlRdSKUwojxPo7a2azbVkI5OrRWlKE4PxwT6xH3O4WvRkwnabpLeGcqReP6TSqVYQYoShShigddhjwQRLThfF84vm7r4nP94QMrusR0SOEZBxncgo0SlB8wGpN17YMfc/IheOc6BfNRkgeng/gDPvXPTc7R82e+HTg8v4dn/7zfyYenhFJrh4iBYfzZdUzClYYGyvEq21bhFoVl5mW5uZzRj0QIwwZpD+tQm0hqMJQi2W+VNKxkC8t4ykx2gvCJDbtDfXNbxB4xO3nqO1LpocnLh+f8d8/oh+f1/tUIZgfvkP2le12YNe3zE9PkGbSXNYPuxAo2SOcwpkVbftwOdGYFlzP5uY1IXiW+USvDdJcQ2453z+wsMIFVBaYIEiHM3P8jhIVQqwKTm0ki640L64w7R6pt2jbYRqJzE9UJEYYuuEKSUOdQAWHnN4z7LY0L16x2+w514pUlt3NHU46AolcF5SruByZTiee5wt9mzBNg9lp9v0vyNMeER8xSqKkIYQTJEkRhlIXHi/fEHYL/c6ikkAtHc4IqDusklyePnD8+i9spg9YeUbcf0t79ZKm7eGf/+uz+KMGVoULompSgGUpxMtCHGeKz/hLYXoOyNNCPB0xgFwC8/MF0Cu8WUuyBi0lNSWiT2Qp2AwDbWvx80ItmRQDVhoAaimM5xNOaihQa8a2ms22wzq1RiNzWf+GaaGWRN4aai/ZbXd0r66pu4FS1iSViBrV3OA2e5STVFOwnSGmSKgCcmW6LDz9/Vv06RP+fMDKjuLfcz5d0BTUPCLOEyIGYpwxqjAtF6ow2B/8ovQS5zqWeabGD6QaMVdbihuIUmO7iSqP7F/C9XAkRsH4GDj8+9+Y3n2izoqcHQwNU5yIcbWcK2NoXEssIGMhxbBWNJVEdlfcfvlb5rs7sqr4FEmjp0RF125R3Q2q3aDVa6J4JPsLNZ/wjyOlqZj9ltB+TswnojWMMXGZAkVazOaGEhS7nWQskfuPj+T9K0QVKKUpyaBag6yFNBrO0wLLRL/pmMYnUgg4bShy5TDHOqFtROdlbbMMG07HSHSJzW1L0+7wJSGMYD6PHD99jYgCKTSiEahOsn+5R+82dNev8XRgGvpNh1A3SDJKCkL4CCZx81ZyjJEgQW0M2WS2dwObpmH0E72DRrckrQlKUo3F2JbhuhKXE9PlG5LTCN0hs0W1ewgDRQSs2fHK7Sg+Ei4HUjlQkUziSEln8nRCtvc07gVFdggk27sbGH9LuRfEpz9R3j3z7nf/zu76M97+rz/RwPoP31KLIkyVHBTxkhEx41xDxmFVy/myMJiWGgOgIFaMNdzsb1li4Rw9RikkEEum6zuutxtCCIwUpBAEH9Y6k5aIkumsJfmAVRqrwTaSrjd4P1NTgVRJwVNyJWZBEBaz33L9i89g18DgULVBthtut29w7UuWuayJILsQiZje4VxHlS3jZcYvM/PhGV08z6dn3v3pW243V7RDR7ksqFBplULZlnE+EVJinkf2mz1ZADLig8cphVKRIBLdyxe8+Kf/HrnfUevI4fv/hFLvSfk7lo/vmA+ZJifGUklVo3VPToYYJNZ1VJFoVY/Uhmle8TBhWggi4zYD2VrkcI3eviSmESECsShOISO6Dis3SLED1TLnifPjX+AyEg4XLjmg+5+x/flbioxE48hioAyGfJ2ISyI0T8TzheV8ZnvzOWr4jAmHSmtFz/tH4jzjvacKqCHx/P6BIhXSOpJYu8vGJsbjO7qmsB0csa1U43F9Rd0YTHC0TUsdPTlFegzaSlII5JgIKaOEYXx8xgnFcCNorGahModILQorFBTPkieajaSxiXYbyTGC86Ry4nL5QG9vKP7I93/+FtdtePnLr+iGPZcsMG6HbffU7Wc01y+Z/EjBIIsDP4JpCeGMjwJlW4TItLdbuvYKyi9I3KPUR4q84LNB5oC2IzHMuNZw/ev/lnD3kuXvr7h881e+/9PfeM5b3v6IWfxxS+K//ZlUYZohBEcOhhwjm02HrAqdI12/QShBWGbCcsZur0gxYo3hxd1nyOOFcT6R8owUwOwZwyNFVJQW1JxwotDIihKFqio5r8XgWDI1TasVnPADAVEiskArgbKF7BJ63/Hiqy/pP3tBbFtEO+DUDp0N7vYlwt5Sjx59HNHlSAgXUthhdYtyLd3+lv1nX3C+TOg4E4/39MqtTYzTgqgCoQ3D9RUlRw6XkVIqSq0555oiRgZsa2ncSigwXUv32Qv0FzeIoaeT1zT9RDyMzM/fEQ6R8D5QvCTEQpIKbRVFgjI90lS2todSCUvEVrMGTpDE4pGlsOSZcZ652r4k/1BAaJVCGU2xiqQ0JntqSkjZYO2eKS1Ya9FL5nzKWHGNuroiC4kyDar12O4Fyb1EXD2SPn0gdEfML/8Z98WvMEWxfHrP5fFAurSIKGmsBnfGS1jiCth2tiKNIZTCdDlj3NrC0q2lpgkf3rOMmXC60Mr1INFPM3E+0zQdRRn0pqcE/4P/diHVwswJu7lHN89I17MkTXg+0yjNIiTd7SvIHUv6iN1o9rqBUlBOch5PBOcgJOanE1YZkp/QQdBLgQxraMPLAa01jW6JQaxfJm6DcoYaT8g0kdOFtkt0g6bpNKlESA7KNaZ5i7Q7fGiQJaDjI3U+43WHuXnF9up/o/tlof8fz3TX2x8zij+S/P/hkSVFkA5Dj8ES48Ljd98hVE/LBudeU61ls6v45gPL4z35+YiQ0A6W19tXZPGKy/GB0+MnwmXG65ZqLK5p0DJgCMScyEKAksScSVSQgkjGhYKsGSEEQliEVkRZ2V4PdK/23Hzxlty2jMKiuxtKc4vtrmhURTUOpQKmfSRM75mP76AGqDNKDFQhULajv3pJuHpi/vtfuDw8r8qM7EEItHEcnw4MO43WgrZ1jDnRtQ6jJSVlfAalE1JmhFhoN1t2+0rnnjF9Ii9rb3ZBIWuHqpkaRvy0Ri1NoxEanLUI6ppRlBFjDdoYEIXgI8pUrOmpNpNlwdaACAs1JYqEaCTKrSbzWiVLzORSKLZF3b6iLIH56UBteuTuhtps0Zs7ijSotkPXyrP4iBQN2zdfkt4eMOOEefkGeb2hLCfiRWBuX9P0O+LhgRQ+kBJUsVrqfcmImrBi5UaWIihFMs8V789kzqRqiaGAD6jGUUzCKEW7Gaj1h/OBUlbbgYAqLNJd4zYvSHLP4kd0OWOdRquZafI02z2auA7vOTOdZ/BHSoJ+b6nuGl8V9K+5at9wddcSgkccHsnhTLPdom2kqC1yzogYwa/JqLh4Qp5pZMSIiFYRWwpkxbyAcgZre0S2SGFx9gpKppw/Eo5/pYnfcRknut3ndP3PMOKKq7sttVl+uoG9EQN//PsfKUKRi2bYXmFM5coUxCDp+y3D1c+ZfF2Zu53DJ0GLQclE1ZJus+f21VuWeeL47hsuh2emaHFXt4zLhH/6COmZOE1AQmpwUqOkWnmvBhAB4QS2NVjXYVzD1X7g7vUevWmorgVjwLSobg/uhtLukcqQkgF/hvF7dPxAUz2FyJwCKY/48UQuHSIWRC2c7+/RwUONJD+TZWSZnpGycj4npPqBfSw1Ja20DaMUuSpSTngEZmhg2xN15On5G7QXtO0Vpc6MPvCiu2LiRPSCw+NM1ZphULjO4kNAIGnMKu9qXMMyLSgtMI0mlUAsmThNBALf/+VPvHn5S4IyKJepThMRWNOhZUNWFXSk6JGCoDUGdXPH7D1if4XcXSP7K7JQRK2hFOTVNc12jxIC9dkbuqow0kF+pJQzu1cN3YsXLM8jkxIsx0c8lVgzRRaaoSGLTMiBOCaMVpS63hKUGjBagdaIqliWGSMyyiqkEggUVGi7hsPhCaklRVTMZsfm7a/Y/fw3yM2AkDOnw18xLtJ2PX6cGJfIMh6JymJkR+aKXFbSw+wfyDohVYfpNlh3QxItx8N7dioxGMP0/QP6kkE71BzWsksRlKIJMTJNzzydD+Rlphsamq1le3dN/+KOIsHngKgLMs0kkehUwdZP1OVvkP/KjfHU819IB8FSFGx2xNZx+/n//tMM7Mc/vUdcKtFPeJ+ZP53oNorN3cDmbsvuZabdX+hqR/COfPUlrr0ifPqGWmeKBLvbE5qOpBX7X3zJ7c8lu1dfcf2zf+S8zPz19/8P3/3uP7FbzpyfPrL4EWEcw/aal59/gektY3hmf91yc7el61oqGSkzl/GJtrMouyJMynRG+hnlChRBxSJSJT5/Itz/BeM/oLMhFsEYKlmdKeKZOh+JH99z+PPvMf5IowvFrKRFpeMKmE6FxVdiqtQsMEqjhFiXcjHgdEY7jew6zKsXbL/6Je71DVM8k9NI0xhQCffmJerxwKlO5BKJSybKhJqXH5I4BiUVKUFKkFNgmcPKm9INQvMD4lTj2o5c1iZSakFqyDmSkyfFGeUUyjUIa6jWkJ1FXV0xUJjGiWwMzfUtwlmslOTgoUS6wZArINVapyugYkHOC7E8okTG+8Tj8YyKIzKcMWWmcwp0g2w1SUgogugjpdT1blesVTvRNEjT0LqWzEwugaoz6EqOGVHXfLl2hkihaknZDjxpw5wljRjouy1d20EdefFqj8RzOp6IpUXIDWG6cImJmqEVM8YErBak+YEIOFkZTxu2TYeuC8EXmjJQ3o2E43dMx/f4MKG0xZietu3YOEERsCDxxwsqtVz8E5czDC9eYzoFAqTMlHwhq0hbZoTSTNmSwkiXRlQYGaylxAu5tj9mFH8kIiYVsk+IWBGhkJZEKIKxRoQtKHXGL19jmz3WfU4yb8hXLbZ9QZzPnKeJ6DSb2w19cYRjgCRYTCQNEnd7x2/f/i9c//I18fzA8fCOGEdsN+CGa/av3tBsWlqdieFAiUeMyMT5QvIntKzkMlPCgioapSbkaJAqk/0BqVtyjkj/juX5G6bnj9hsSXkgMzD6A7l4pvdPPPzhX8nHT3Ss6E5NQirIJdBZg0+eUAQ1lvUlVAWl6nq41CpUUyk6ofY37H/9K/b/8Btka9Dhgi4LQiRifKLGCUog4DEtdI1hSpXsK7kmSkn0/eqJiTFRq6JpNlQ8c15VEKWE9VBqd8vN518h291adigRXTMyjeATyAVpN1TVoVoDZoOs/Q9Nl6v/n71UhSCnBVFWpYYsILQhSwuiUEVG6oR1BZqO5XAg+RNNKxm2hmM9U5nWjK3RlBTot3tKFUgE3nuEEbS9Q7SazZvXNP0VZfFUMbM8PVB/KHagNMEHchYIu+bM3aalefWSfPcahobwQ2y1629Q5hWPVrPpobnybHTP4jVcRpyWLB+uycsRpSaMCGzankVawrjAfCJVjyDz9PHAcn+BpxNyPKHrWh1decUtQlmaocG0lqbrsQJMbTGuJ/mO87cjojE4KzCmrtdN7YCyb1c3cPsr4vPfOZ5/R6egcQKlBIYfRxL/UQP7PD8RygwVBIKaImGp1DJT4sj8+B39tcZai2q/pn/7W3JzhWw1SkmuN1cUpTHGE+dHwvI9Rhr6bkfK35HEHmEM1//wGbW85Dp9CQSUdqh2h2oHMJKmLIiLZT4l4nxEAzl5hkFjlKUsHvJImg+EpwuGZ4oYSKlw9iMiJfxzwL/XPL+7Z376hnZ3R7468nT2fPz3r9nmTCcLsm/JpVBjwft1+ZlDooaylhZixGqNNBVtKspAs5G46wZ33XH96y+4+uots6mIeGE/9ITU4acPiOTxlwuuFFy/oXQzrYuMS+R0uCAbUFrTNitpAvNDcidVcsnEFChUlBEkraHdITcvUJtbmjqiywFbMq2sxPFALA5jXq0WBL1BGkcVhYoG6pqMkpKUV6ayEoXz8ydESQzX1zi7IwuNUFDwBGHI+o72akvQJ3I8chmfOV4eCDUiuwFlWkTxPwT6wRlN02h0p6iNwF5vaF7fYkxPOI1wL1FI8rQQZSKjaGyLdZZaKuiK3XToboOwPVVlEGdiAa+u6XZ3hK7liREnwCgoToHs2TVvaY1FPFny6SM5Cqy5pd3eMPuAGb/Gv/s7z+8+kcbMvr9hulxQeUW9amkRRbLMhSoqWiparamnCW0Nm61BZQO0DM2WJSUIZ8JyIkjwuysuvaXbfEZnK107YK8Di19QbcBIYPH8GEPsjxvY0yOUilWGIhVuaKhkcg6E85oMkT5TTKW9yrDpaOznyPYFousR0iAJlPkd0n9ga45rbjhCnUeKvKE0V9h2D6pDltUubl1DkQ5hJVUKUsroTce2fUUZHcvDO0xoMDKjlAEiNWVIkXk5EU4GZKKW9RRw2Lzg9tf/QriVbHbv+Nv/9X8Qn0ecidg5Yir4JWKk4Cmse8qCwVqHqxUtPMJGbKtZUqAqQbNpUFay3XfoRlOHlpuf/5zm9Utko+lMoJZKQqIM5OUTOz3CvsHUHWnZMr3/mnYw2DEzXyrTNCGdgVrxYaGUSNe6H36OiCLXmmNJa+PHJxAa41oooPNCmJ5wrUM1ihgjcY5UN1OlAi1BynXVUTNGK6TQ6P/ST84S6yxhiZScaIwiVEWpAu8raS6EUTCYAVoNTWCpFS8kVVakiKRsiAFy9lijV+ugFchGoDaKqhLeT4gqSPOZ6XKieE8VCqEqyQh8SGz6FqMyysKcIkY52mFLtJIoA66zZJnxJLQQON1RlSZKEM6hSkUtitp+IJ8njtMDOSfY7HAuk3zm+U/vOP/lG+wYcdWxnM4oFF23RagCdRW2URLPTzOahr7pKDKidUGXjKPitMQOjpR7StTMIjAWz5IrMQqOl8pSZ4IodOoK1GuSf2IwFlXVD+aln2Bg+6YD8QPqRQqyrNSqKVWTkqeREr+MiBQxdsY/fKTpr1DdDVkplK2wPDE9/hti+YiplSw0cg74w5maXuDkF0gn8CJRlQUl8SVgjCDngEJS60wqaz8Rd4XcFapUyBoppbDkjG0MTt9xHAupXmPcC5p+h60LQg/E9gvkfuD2xWeIwfLdv/2eob/BXUmy2PDx679xmWf23Za7X37JV//hfyIen0nvvuPTN39EuES32TItM6ZRJJlAgekamr5n++YLmje/ojSGmj7S4xHdnihaXPhIef7D6p2RFt3tGV7/A+MhkS/fIw6BRgtIEHxkPBcWP9M5TSpgtSZPAR8qa204IZpMvZzxj++wL94QlcLYDus8lxBoNh2tdTTSEpLHi4JEIrRF1wT+Qhw9yrZU7RBSo51ie3dLCRtKihBHjDIUYSnSgmrABYTWxKyQ/Ra2t4jdK8LjAzeuYFrHp6fIEhKJjK8ZkTOyFEwWqMagFoHrF8LzMzWFVTVSBY2zKNMQ1cDDZaYXM9oKFrthYx3FWZKxCLdDtCvyVpCJ/oRMerVE9C2ibaixorJDt1d49RFpDCJXrE/ohwPf//GP+D/8lXReuFwCTmX6ZhVtO3fFPJ3oOkPRAttp2sUwnS/rXOwdphGkZcRMTxRX0G6i6+/IQiJjh6otNRZ0lcRzQKnCjCKqLc69xSZHKAFN/ekGdri6IuVEjImYCqUIYqrMYcaISi0aSoefRnKeyfqJSfyZvhSurl/SNQYZDpQa2L18xVI0vqxOntpsMMMtc8iE8xPVZWJZe7JN26PklqoES1rxH9oOa7k7K7QTpAjJj1TWVsfFZwwDarPFDbeY7grjGkJ4Wrk/BkSNqA30P3vBZjmz6W9ANuiXL3j7q19gp5myXNjc7QjTR2oaiXpm+7MX2F3HUje0MVP8mTIeIC00TU+33YJrSLUgSkTkQJovOGXolCQ9/JV6eIc/3ZOaHdnA/s0v2C0SP1aasZDiMy2ZVloikHPBCAl53dtSQSlBihFJQgmJKjPp+Xtc+hW6uUJZA/IaLSPSjzj1iU7eIxko7FdvDHJVnMSZtFzIYUI223W5KRVaaWyTqfMFuRwpUiPsQOt6oujwVMbTgRJmXNsyfPYlaln49nTg8XRPOz2tQk2rqbbBF0+MHpMT9TjhjEKKE5NeT9UrAmkMc8jEmEnLgrCrxeG8BFyUGGdJoawSZbfierTSIAQgsFLSqgpxokwBKTLQrP7cbou6vmMnE+J0xB8emJ6/Zvz3P9LkQioZKaBSmfzC0DecLhMxBqRcn3ff9RRZqSozTRNaS5yuLPUJiqfmZ/yl0L/YIJSjU3c4eYeRPRe/cD5fOMeRJBaGTUtYdlgDwU40FvqfamBjFRQkRcpV1ag1rbMYY0nzgg+JGjUiGkwKyONEjN+QlcfFI4fzhen8hBkcS7Ole/Ultr8D1ZCFRrcDVkl8jijTUGIlhERaMtFmaByqadFmgzYOWRJhuZDqkdJqMkcIJ1Q3ILLGuCuU3YBpicWQAhRaEgGJR8lC0R671Vy92lGLoFLQvpCXSNetRYE4vYekqT6SfaS4jiCvkM0dOibinKmnT1yOn9B+wsRI9QIXJf2+JfgDMT7SlYRtZw4f/sby9ITxAdPC7mZH7TY0b3/BxgeGmxcc/vAXnr75yHiayXEFXWshSSES4YeqoSDEZVVmIsg5EsZH/PE9dtOCbdB2wFKwcULMf2WZDxT7Bar7J6h7lFpp9lLJlW0kBIhMqSsADSWpcYblmTB+xFiLdFtkd7PuaW2lawo1n8mqwdxcIfMveTGfeff//p/ExwfkkhDCrNZ5ZSjVETOkMROzx1iNsYZUC0UZshI8ns4UJozpccXSO4vSq7Ylnc40xwNmPFOVJQtF0NBtN9h2Q9dpRJyoJSFLIo8jyoAPlbiAsQNq2JDmI+enj/i/fos9PCKbgd46RI54H2naBmnWbvZ/QRa1bYdtG7ZXAt9myIrz6cSSEsNgydkjSgs2UvwnkILQnxg+vVvgogAAIABJREFU23D15kta1yFPB9T9B/x8AptIYkMqZ1IZmZaRVz/VwAppUbJyvjzhfaBpFEYp+rZBtj3jOJGmBSPX+7PoE93WsLWCp4ePfHy8kKTl+sXntC/+GV7/CtHuyHklRkQtQVaUyAjVYk2FcqaWhF8SlQZnWoRqqFlRK+SqqbKhyEgWnpwviCxp7BYpmnXYxzNN06C0QLdyfUmXM9q1FFFQ/cDw5gtSqCyTx+ZMni4cPnyLC0+k+YhGUoNk2L1hu3tDYCAuhenxnvjxI6e/fU3yT1zOB/KnB6zteLKOdu8wnUd3GXHzyPbuFU4asrtDS48wjqfTA80woa929D/7kti0vBCrmDmJR7pqWXwmpbV8YZxBaYXSglQsGIMYBuRuR1GG83hilyPWKEwr0EWiSyJM92Q+YvQWLRJZGaowSGuwFIoX1JLQRqGNJFVJSpGa1/K4TAlRAipFRE7oPtNI8OlAnb9DdTtcf4t8uaFMb5kfPzFHQVpOqFSIZaFahXUdOWuSCkz+QtM6etsQU0JIRUWx7W+Y/II0mqE3NFohkiGHQpov8PQB87BnnmfE/hYhdsh+oMZMyQrESrSgrI6gmkZUkavdQLfYrmM0iqazzHFGxIVYNe2mZRgGrFufg7Vr7r11FiELgkpKCW0VXd+vXqau8HT4xGnMJBRCNRRZ6GZJ4yTz8sws/kTf91z/+l94c/MFy03D8+kDoXhKvUFQKfGEUdOPGcUfN7CH+yMlJ0rJ1FwZ5xG9cyxxBpHZbHfItiONZ1JMUCVZdHh1hXn9hi/+8TVu/5Lu7g1ye0tVLUUrvF9WVGktiLLukfu+p20qjoUSPUUshGIpIRPriptUMkOM1BhWR2kV1GzXe0lRiMsJvwSWaWFG0G9a5Eax3Q9QMnmMiHZDbq7AWFQodNvAsNthh5ZjnDj/5T31ciLPhRw142zRZSDLI0/PHwmXZ8aH94hlRMWED4F68mAv5OiZbaXYBdFCsxnY3N7S3e149eIrlFTM5kjuNlinyEbBZoMqBaUM8uEZxoh/HpFWk1PBx4CoBmom+YQiE5EkoXj71W84G8vkA/L4xNB1tM5jjEU3Brd/jUgK1d+Q246lKoLPCK1Wzq7S6/8hhRUaUCWSNYbZ7l4ghy2iBkqYiPOFGCPtsEHpmcIToswQZlKQuNZz+3bLGG55DonTh0d8zBAb5ktFGg2yw25alhoJMzS2RYuVctgYg1LrByoxUkpGsjp+ShgJ99+SY0C++hm6XFBli6wH2v0enQzVaYzrEFmBr5TokUrhlCYtkbjMGK3Y7HaEzYbxcCZnmGePMBWlNZSIEpVusHSuXQkadt0bVyClREbgesW1vsJPieN5QaiW3c3A7CMxZPpS0U8npt//K/7r9wz7G+pQ2F4V3F3HVA0hO6ZJkqv56Qb2+HhedRiiQqlIITnnE6UUTCNwrV8L5apCMVQpMZvPkS9/Q//lb6nXbxBNR3UtVVpEzuuyRUIqkUJBq4bGbJFCUvOZtLwnL/drFK15DdKQq6ZESGUmLSesiBQ/rvoFtyeGkdN4IvsJi+B60yFKJpcDYZbM1tO5BqojpIq0FSULVUWKPyL9PePHPzB9+D3++Z5wvEAQWLehhCP33/yOnAs55PUIPs1rzlkYWttSReXp8oSloEMGlQlPgeQK+d7jPz1QHhJ0W8JmZusqZcmEtDBNC8Y4out49dv/hqG/4vvf/4HpeUS7lkH0pBhYwgTJI4lU6XCtZbi5I0tFtpJGZlhOxItE98Pqgs2fk/2AT9u1+SLXMH5cAjUviLKQ40xJccX/5EqtCtv0qGZL1lsKCSmPNEKRSiKlGcrMMh1QY0S5Ae8LIiW0PbB/I9G1R8jI88OZMHuIAoMlFUFGYKVDiEr1haVkckkUmRByVcJIW1fDgmtQFZxqyONI5h3bfc8WA5dP6FDQU4tuLN5tqDc/QzevyF4Rlki/b1BGUHPFXzyfv3rJ4XBitB2ztCvGSGqatkPIQms1m1bTWUNrDSHFNX0lBcZano8nGmlBKxrds8hIjjPPzw+keuHm9Z5UCiEWOGeEvxAeDsTv/g1loe4izRdbtr/8J3Yvfs1cOp5+ShmWEooq1pC7sisELOVIjJ45ZTIVJwWdrkgnUNsd9tUvETe/plz/HHa3aGVwRkEJ1FqQRa4IzwJGKUStGFUpKbGEmVIUxW6YfKbxmQ0TnTAsfiKGEScyhUxIaztIKrleuJeIFvEH1IdEy8h0+YjNArH0pLpBuFtqcdT5iZoj/viJcvhI+v4bLn/+C/nhCZ0rqm1ZSiTWhK4SWSsxLMwhr0yrvILMQ/Y4JXFWUXULeUGqdf9Tg6RGicktPEvePXxgUfe4O0nyHfa5Qb/8AtH1hAy627Dpr3BVImphWcIqT9Y7Ulj4+x//b+LpI8nPSJ2p5UQ4vsdu70jZIsMZFxJmrtR6oapbpHtNlXtSKlipkTKT0gKprtuLokih0AB1uZBDIFdIy4RtGyQFXRdMvSDSkXE8o6xDl4gxW+J0QtRMvJzJ0xFVPVlG1JC5et0gZCQcE/4iELqjmg1zKljnVtF19TStIMeZebpQa6EKIEdCKtSa0Y1DKQmlIMSInL9DX0Z0UyjTgk4dzjlyuyeZFlH2OAxCL2jVoa1BdxXdr5FSYw1tazkDhYQxPTVnWluRdaJpN7StpbWSloGKpNZEDBNbJ5gvZ6RtGJcREFzdbLmq64Eoy0pTWWJBWQHZo1RmPj/TUTF+3V7aZNA1YfZX7K9+wvB/SZGcIwhJZgWAKVUJKVFLIftAFlBbQZKO3Rc/p/ns54jdLTQt0hhKWL2rTbPKjLIPkBMyF7TWSAmyhpUe0O6h2VC0pJMS7T3lcM/D+99xfD5gTMP+7nN0u6eIPVU6yB5RDFY2uKYiGfHhgaoTRs8gKpa6njLWVVKVqkf4GX//d8I3fyb87Vvm758ggFYarRWua8g/GMxiDDRNg+gkXTtwPowkHxEVHh8fsI2iMQKtQGiBUIJus6MmTaqGGjQ5ZqRI1EPmEL8mfv/M/jeR7ZdfoXSHnwOP80wnYbjeIXJi++Yfqe41j08HvrgbiOePLOczdbpnjjPz9JH9zY5FSfzlYT1lbcF0G9rWUd3AUiVFrEGTxImYFUK1CKkQwqJNxzydKH5VZtZaEXkhPj8i/RM5Hpj8E0JE5lxw3TWFBpGa1ajwfKHOkXwJjJcn8pJoZEfbGMTOMUZQSVCN47Nf/QMvv/iSIjLjdGSaDnRN5fj0gfPTJ1LMWNOScmD2I8ZpQkko6xiGDiE9sqskcaamwNVGc90vDL3ikQsLF3ScqD5QywlrM86+pFLot1tk1lRnkE1ms9H4rFlyojUtssw4m6npQkoB0RdylGsrTRa0S9ihYVN3RNHSsSckT06J7ANiroyPF4yzmM4xziekqGgBy+i5nGeUzSQjuRz+xP7pnvRqx8vf/Ef4r2OJf6SBvXq0WamJUqj1pa0gm1U7qQQ0VqJ7g337ls0v/gn94i3q+hrZrktFIQs1e3KIpGVEVVAVco3kVBGysiyJIgROdIhs0abF2EotE+N84PHhG5Z55vbFz2ibjsmvNjbb9MzZEKKnMwok65KNSqxg3A4pAW0p2ZAT612dbEhxIj08Mn3zLeHdJ/zBM10SSmuGYcAYR9duCCGtDGWjUXY9ITc2rkBvZWmazQ/xPUEVBR88UlmM6KhS4eO6V2+6DUIWXCMJORNPmfDpyOTuGXY3WCTz6YwIE+VyJgtBqRlz1XH98ppa36CK53J4xvl7nh6+4TxfqNqz3fZ4qZjiyDQuCB+wjcMOWzIahCYkQyonYjVU1VGlRUqJrJmiHVELXM1sGrsObDxSwpE4H6jxghKZXbejJvDTTJo84fiJeJ7JYyI8XzjdP0FIWL2gtKbGzDL79RkUwTdf/ysfD98gO8G2byDOtNKx3wmUtlwunsH0ODdQ9ZaxeNT+itr1SJ1RsrC5fbmuYvIz6fAn5vEDumhiMUjRo5aO0/0Tz0/f8vpnv2KrA5lH+q7FioHbN58R//5XlvYT8fGyAumnBd3L9erq8kijLd57ZBaUGNGNIQtJkHva/hYnttwfHmi7HmctcZoJbiLatSKpGktVklwyYfGkmFGmwxiNnyOXUMAeeXtzhz39hG0dJTVSrUkaqRQSQYqB1g1YDUplssyouzve/A//Ad5+hXr5Bc3VDcI15FqQUiLmBZEKphaWywVlW7Sy1KpIEYxZU0MKtVIt5iMEj6ozXe/Y/+p/JlcJ2hGl4pJHgp/odSLJAdX1SO2oFVKNgMR2FmksQqzo8ZoFxuxADtRkyD7jHx5Jj0/MhzPjsSCkQxTBMnmabYsshegXFu9pSkutlfHiiQFO47T2U5UlZU9GstttiX6mG9pVr5EyQlmqkPS7q7X7qyRlmXBU1OFMEu94+P4TNy9fszWK48OR6fEjw+0tSziR6hmvNdJ2OLXBdlfoZeDmZmAfzz9U8cxKllwEYV5ta8/f/A2Mohl2mG6DMA2xCIpoyHKhqpZcFZWK1AotQNRCXCZEWdblqVSgDbIYTAI9RWoauXw6cn54oCwXqgdmw/H7E+NhQtXKIhLZKIxWOGXYbg37u5f4Ar7OKKGIpwvL8xP+AUwnaK4aOidJ5xXOpjvN9u4adfcK++bzVX0qJcJdobXF+nusKMRPI/P5iGsbnJxQcuR5+kSeH9HxiuXDPdWcEOYXSPcLtnc3HHY3RFbWkhSKGgRRN1yWjCwJMweqFDRSksYzqjaIbku/bVejRMzcXN+hraWUTKdbJhSX4MkxEIunGwaUMLiuw8qekiRCwIu+IaeJmu8ZP3zN7tXdTzewta482hzWjmP0HlHzemnvFHbjOCXP23/57+i++mfS9WewuUZ1V1hjqTUj8ozIETVHiAJRNCVptO1xXU+pCakKUkMpnsg9cfya4I8o2WPdS7K9IlaNRxAr6F27Gsi0ADxCFarUlNLTdN0PhyurcKuWRMqZogRKD5Ti1mjl5YI/HlmOI5dLIglH01hIkZQiz0+PhK5d2xqN4f9j7U16NcuuM71n7fY0X3fbaDKZJFNMiZREoWyoPPDAnvhnG54YMAyjqlAQDFIqUkomMyMyutt8zel268EJ1dQcZADxB+696+y919s8WE0tlRgL2jZsDwfOpxMlVzKVkgLHy5m2ccwhkkJCK7OCqcVyupypce05LjmT6kJVP/Ln3/0XJjRffPPX/PXf/poqge3NZm32azRVTWsGuDqWIaGoeGMw/ZZ5GCAFTC2EywXOAzJeqPPI5fhIrBF/2KK3G6TtcN0W5Xdgt2A2oBtK1YjKWBvRaSKFkVwzxiiUaWj1NXFJDB+euBw/MD+NfPzzW2QZ2e6v6bs7hudIPkaYFeO01sBmD8ZUkqsoHbh8/y1VFGIMxrfYrBifBmpeaHeeeQj0XUN4vjCWRHd9oLaJ7sbh6JGmJ3tPUhtSUWhr0P2FYI4cP/yOfpuJ9hm3faa76dm9+pq2bRkf/4VcPvCUFq6+6LH9HS/++gXT+1fk4Ux4XGtTz48zSRzeazploRQu5wu9M4RpwpmGcBmY54p3V/TbK5QIhVUfp+lw13dchjPHy4XzcVw/1N0WpZtVTy4Royr9rqF2mvPwjoc3v/vpdNiaC9M4saRKLhUhYyQzh4rSHX675atv/oHNb/6efPcatbkiK80UA6quRuxaM6IqpEycVup5zgbDaodrrCKGM2leFzuSZ1w5UZYHjFNIqURJDClR/Zak3MqI1RklEV9GQokoaVG6odSCdRuoa2thqWubQcnCMK+Z1w5hvgyU08jwNDJNFbGaQsaYjEZBjsQkFAVYTwFKqczzgrKy+qSdpoSAt45cImHJpDhi1Rpqd85TIhhlyCQkQ0wGIwZMRpaZlwdNaHv21xa9gWoUh9tX2MNXlO0LcusxJRFPZ+o8YMgs84TVEc0IMVCmM5e3nzh/emaZAqdPj+RlIZPoXu6Q6wZ2HrddT2ixW3R7tQ6vshTJpHomTx/QZcTYBuyGUjXLeGL44S3y8Mzxu/cszwtbZTC1w+UN46dAHCKadZOKWGKUlV5eM0uq6ApK1ucPOa/ZWFFUvQEapiHw9PRE6wQnGdO25POC7CI8PrDUgNl1dNfXYDrENCijQLeU5gvqNpG7Cem3SCd0mw4lBV0ch81XWLtlSpVlnulvwH55xS/+1/+I1g3v/uvvmd8f0cVSFrfKLL1liEca3bKEgNYCw4iqn5DaQg4UE7H6mtPxwqbr8U6x2R5oNg2mcUzzzBITYtYGlaIqVVWKLmQt+M0G32tmfsKlk7UwTBOlrCwcYyvWVPxW0d7tuf3VL7n97T+gv/yauLvG+hanFalUVF2gFGqZSGnA5BkERFl2+wO67VC2kMtASmcoLTUp6mwYPszYmFB9RlsoKWNMQ3UOZRqUEnSJpPGyWt5CodSZXEF7TZCCIpMuw0rKq+B9j85CmGfG8cTw449MH5+YT4EYPDVnGh3BrxEvpWHV4ROII+ZEWhK5VKZhpNtucI0lxsvajPDvCZiUKcaQUmWZJlSd6b3GdYZaFWGOGGWxplKYaXfw5Tc/Q9/f4+83jAssW4fc3LHoAykN6GXGDmdkOfHw/s+Ejx+4u9the0MKhflhYPjuR+ycKNGxGSuXx/XmMSwfqKNGbiw2dDTzHmW3mPaI6Q6YpkdZR5UZlZ5R8QFTPCrsWEYhPz0xffcn8scj+gJqEooyXJYI4wDiV83Uqv+eMEpzJeaEKEUuhVgLzhh0EUQ0wxRQBrT1bPfXNKZiTw+Mx08kVdhsPGIdoSYkPPD8wx9RBm7v73C7PabfsWiHVMPdq1fYL39OVZ8o6ojSllo0zJAvgWku9BvP5rADtyOoLe3L1/R3nqJ39K3jzf/9Tzy9v7AcZ9AVs+vJzq9/AEoQgbQsxPiAEkOMR6xZ0DpAzkzjxGbT8/D0gLYO1yiqrEEH5QoSIwpFKWWFlhdLrVs2t3/F5su/++kGFs40jSFjsc5gekN7u6N9ec/r3/6P3H39t+gXX5N3r7DNBmNXQ75KM1ryCtdNCynMlHgBJRjT0ulASc/kuno2pXisrBWml+ECZ0izw4inuLzKC07ACbZxFIRpWoiLYKvGVc18ngjTjLIK0xms0yyXCcq60KgFhnkiLwWen3l+f2Q4VWJ0hFiwVhFLJS0V74CSMSbRtC1aO6RqoOCtAyppKSAZ0UKMC4pMrUIqMC8RySBV4TT/vYNJtEF6oZLBaXCO/sU9zc9+Tr66J/bXNP0d0mrOoimlouZIeX5HffyeJs9slonh8sQwn9jfv8RYy65tSH2Dby2NuuO78XuO8zNlHrFJWIwQ6ohaBoZ2wG0PqM1Cno+YvgfvqFJgPpOWEzHP5HNFPRvmdxee3rynzAGVgaLJKlJLJYdnqnL4dsuSCxlhSZGYKqFkUkzrW5iCMYlaKs77lfsqmlwLz8dnrGScgu5wIMpI3ljczRVhs0e8o+0tOZ4ppZLCmVLOKC2EEIlPhsPNl/TXQq4nRBUadY9YyzF94PTwlvEM26zp7EQ5jWS9o9/tuP7H/5l+d0V/uOPNf/1n3vzLtzAOHD89svuy/Uy0i2RVCXNBa7A2YHShlveM0/kzamNLjA0UQw4F0WtJvkIxnweMcczTGVU0cRqZbMa1Gzb7a+z91U83sP7qgN/d0l2/RHmHP7T42x2x7el/9VvqzReU3S1FuxXRlwK5JOZ5oaiEKuvgtk7jdi15GZD0yPDpLafTjwQZ2O1u2fh7lsu0bpEvz/g5E86VOU04FYjpRDYTdZlpcsb1GxQKbRpqsSwh8OH5wn6zRVmDEg0hkYeFcJlx7YZPH09gW/b7G2JVhJoZU8R9hmdp50nq3692HVavA+Ob7bqcyRUtK9+2cZYiEOLaGGiM4J0hxIIASjS+dZDSartUFXEGpRVKKUpJYBX9pqfdHwjKrldVfcCIIddVY9Q50YaZ87sfOf/wr4RSUUFRPg3MIVOOwv3rlyzTBTNX5mFm5BnvW6w2THPEeEMdhCiJfBlgE+mKQ5JBzEwYL7iuZU6RtkRszaRlJj8tpDeRyw8D43nCmXVBRYkUMimsHVLWb4mmoVRhmgJLKMxzJkmlypqJLaVAgZwzuVRCVSjryBWc1avzSioxJZRTuMbT31wjd6+RvkXbiE0j2lm6vaeqTM4zPiUkF2ZjsRS0c+tBkWaKuqK9/Yrm7hcsIVK1pug9KQj1PGLdgmwP2F9+Q5/gb776mu3/81/48Lv/F8Zn5ufLaoAJJ5reM00LRSqv7g9oVQhhpJDZ9FtEK2LINKZjnhYiCSUWowzKe5Yl4HVDjRFVAyFfqFmQsnB6esf/f+//Xziwh7/+B+7/6je0918QtKDdeuU0ux3u+jVqf6B6TVVpDU6kRIqRkgK1nJF8WpMTKTBNZ4SJ+XwhnhPOt+x312jlGc6BNKzuJRMCfdOtfUHHZzrXoBe70ra1XQFG/Y5cWDEerCbt65cv0KKRUgjzTBmPcB5wBRyV3WZDabYU07C5vYWvXmOevufx2+8wTq3v0ZwpUZiGSDZgrWUaAnNIa6geRUqJWFdCWimZ3XYPdUGpirGGWgWlLHEJOGdB1gWJUoLWKw5zGAZShaQ1p3HBTpl8jjR+hiJgKjqe4TIwPJ04/tu3nN7+yBAqKhri8RkpisUnHv/5R0QiBmEOcPX1r7HaQsyQMzVaVDAwFCZV6fqOnCylWEy1lGQIU0FXRSoGqzpMLsQxc/x0JI8ZVVY4dpEKtSI1UUvGGIdCGC8TVVvabkuRhUKmpoA2mlIKtSqg0jQNISWWlDhezjxeTlhn+PmLl1x5j0OjCsQpscwBVTLYBttdYaUypkSxLe22Q1uNkXULXZlYlnf4kjHliDYTpnuFbr5mae5wKMKyUD9/bHQS6hQI6pkaJkav6a53vP67r0kP33L50zt0KGiX2fQOXMX3inyZeHgItMlhNw2+69HOobSjiCNe1j1NYbXTitYsKWOsgxgZpyO2z7hDi7raUMXz/u3xpxvYzTe/Zfurv2PyHaHM1HikswVvIJZA44QgEbSsyYyS0HWhT4/I+S31/J5cE8vymcljG0LSNM0ttrsmmYZQoZoA7kwYL8yXCS7PXC7PFBTH708r00c02Vjy/hrd9ijtqKJp+wNYi+l6qJXz4zPz8URjhDIPlJKxcaZ5/eVKDuiuaYJG3d4x77YMTmHFUJUmFYMyCkHIWWicJ86JHDPOqDV8bxW1QiwFZYSubcixksuyuq5qZZxOaFH4xhNKJelMLpkGwTjLxuzAKIJyUDokNTQhky5viJcHlC6ISeRpQi6JNDwyHwes6YkhUYuhRll/ViXTdY5E+Wzsb7h8fGS+XCghkZeMTS3briOIBr0BsyFJC9i1wL0I+jMOdBqeSE+Jy5szyykhUdaPQ5wRVXBOU0penzfWUqqQUl3te8ay2XoqE+22p9bCsizknEgpklJCqNha6Zwh73oK65WZCohmnBamPDDqH9loT2d6YnIUAW0V86wp3tPYDRmNKIdTG0yp2GlifvyBS/6Rmy8buu4V9maLuAMxrnWxcRyQNDMOI+38jJDW323VPJ2fiNOJRiekKowG12hUW9nuevyNIc4T4sC2Bi0KQTEvlSqOosrK8V0WSJFSocbMcfiI1omkZ/Rmi//yFe3Xf0M8fMPt7i9pJf4LB7a9e0H0Lcm2hDlAisQ6kZaC2+7QNa6h65gxopGcsPMT9eN/Y3j3LeH5gctloOk2bDdbtIHO7FA5U1nIYd3MLqcH9DRihonLmwcu779nfP6EKpnzwyNkQYxGnMN1PUk0oh3WN5jW0mx3+H5lysZxwQPWe5ZSqDWBg7JssfYVYoV50VS3p9kc8I1nmmdUMXTaUlRe0xnKkELGaIP2Bi0VJYWq1Bp7S5kYF8bLjJDINeJcJSwz8zDStC2xhNVQgVBSZgph3Zo3ms12T3d3i1y9wm+u8FIZn79n/PBvbDae4B0xQ6sctmsw/Rbb7XEUjj9+YJ4WTNboClEUxXmi9VTfcDydSSFAyWsDf6zoqDCbnlg0VEvJmsZ4clQ4ZamhMueIT57lWLg8TOQpUqeM04J1BlFlhW8LGGPIQBKhKL0msEJG6/UKHIYFpWU9kQGj19PWfM7cNtpwsC3KaKwYOutonOU8FiQXhrcfKaXgUZTmAG2D2jhEK2YUtSi8byGAcmaVn8ID3eZLYnzH8eE7XOvwXcHbn2H9FUo3iPbkuWJypUwTJSmQjlAzpX8FN79kmjL58omdXvupPAapBa0qOEUiIesJtb5R22syisxENQt5uhDniRzX0IrXivbG4F7cUr94we7v/yP21W/h8FdEtf3pBtaUCVsjxjp06Yi5Z14mGm1RWjGPC1iHqQXJF1Q8E49vmd7+G+ePH0lLpu1f0W1v1gxnMSxTYQ7vSfKIcz37xtEuJ6Z373n3+z8wvntPmobPlkLgcWFOsvpP1UjUM77r8a2slDKb6KYZjGeJhVIrYg0nIGmh3zSIzqirDfH4EVUtvrum/fLXHJYnwse3qPqJecjrokkLOVWG4YzBsN/vV8lmnhAqpmnW96gpEAMxro0K8bNOHeOMMxprFNM8Uj7/gZpacVqR84K1Dc21Z3dnoC/YbmXmxhxQ1mG7K5rtNdo6nn78xESmf/EVISdSPiNXLbYqlk8LaVoISeOvd3QvXrG5vWNc/okUFzSJUgRiRAWHV3bNOCcgW0rUEIUxJnQ1+GZLTJXz00wYI6pUXGsgBzJ5bb7IAHotCZdKyJmAI+XKcpmhfk4eieCtw1rL+XJiCXF1VonQNRbfOAqZXAtt19I2G+Yw473DLBWbKlxOLD/+EZoN0u45fPEVZr+GUKQKghBTZCpgWkduXpBrz6sv/pYS/sw8fkd+9w5Xv8HsvqG1r5GqCSWgy2pqyZdMGCIqG+ztz3jxjy2nu1d8+v1/4uHjGw5RU+LqT08kCgrbbAkTqJJA+z3YAAAgAElEQVSI8xFfemwreJexNUFOaFMJqZKVYLuGzWuP+/KW/m/+B9zX/xN1+w1Jtlj5Sxqd/sKBffj+XwgJbn6xw2uP378g1I7shSkpmDMNBVUCNh1hesfw+IbzeWF3/0u6zQum6AlpxTy22x21Jrp8pqYFmTPT4yMPf/gdT9/+M+X5jEmKJVai0mgU0l5Rp8IYVuq114601M91NRWtNYwZCNSQiTlxqZmqK23nUSXw4cP3mOGZl7bjqr8GZcjtHrW5wd/cYc8TKY3oqoCMrQqjPCUWUlo7gXMO5FyxsvbcKQ2+sZQFcqlYu5rEW7/ycJeUmKYF6xtSiiiBUBO4ijMN4oVYn1lOj/S9R/srmsMr9O4e1+xW11ZaqHrH7vaG5VKoJfDwdEGcQvWWNmnUvofOw2HH9S++4v3HJ4ZxXHlFktYbgqxf+aotx1AoU0R0/iy7CSKGVDRpKnTZUIphvfVWUo0oVRAFIUdEZEWB6lXy2OwOxNiSyvq+r3m1coaQCSEA0LUd3jtqrdRayHXtBetbD5+5wEucUEbYuY6aExutSX4k5RO1Bk6nBXN4sTqudLMG1zdbtKzBALP1GHuLKpbFJnq2cHxGpz+RLgFnA0bObNw1GSFMgaUuOFuJeebDjye8tGhdCLs9u1/+hucAjz/+iZ0tGJvWOl3lKBPs9y1CotkIigsxZqw2iE5s71rEbwlaKK2jv72mfeGJbUPe7ynNAdEtphaIJzA3P83A6nxB1ZFpeSS5Dm0/b2YFStIYFcnzOyScyJdH4uMHFIabX/wDevuC7K5RUaOWkSWeUfurtWFxeURf3nF693s+/f6fCT8+YwZFKVtqWS2Qtla0XRvwd61lvFyoNaE1xDgx1wXftFi1JadCiMPqIIqBSmGuiSVZnFxx33jm0xvUp39C3/WIM2TTE3Z3yP031O8+kscP6yAYg9KVGNfIWYgDkgtKVURpQhwwtmHXb5iWzJQVYQGJAWUS7dZivGK+JNpGsCaxTBOBSrftsbses9+yvX9J1SNlfCTFJ5qr1wT25POFfHlievgTsWbs/hVZb1BLQi2Vg9ky1czz6R2t0dRtR/Pqnvtf/po4C/H4RE4zI4miYWcUnkpfMg5FrornaSIZwXSRgqZ116TSkq0nBUuSjqo8IZ6ATE2Jzq9XVgDRsp6MTYvSdd16K491a61srZmcFTmVdUgRUiwYZ7HaYAWsqasEZxUVhTEebS1GwbJcMHVN03hv0Vc9h+ufU9sNqvEo7THar8C1kjDa0u9uWDpPUp5LHJB0wcvf4pJnuvyB/Pi/40aF6b9Am1/Rtq9QrUH0Pe7FX+FeV9J5oVwGVN+RNx1bYznZyvHTHzAukxuP2ezRyrKEGTNFtm5mu+uxmwZpVyp8c3uFuzlQN54lJ0JeKFcGo1uq6Vb6oXmmLBNMz9D+RAOruh5pHMpq2q4BMjklxCisVMLlmZRGltMDdbxgS6Xve4zbgGrQvl+ZpXJLrgktCaYT4TQw/fADpz/9CTVM7F3HYxpZ5swyB3JRiKo4D9oURBR93+KcXk8rvb4VY1xQk6E6g7YK6wVTDTlF4pKJc2VgQCWhpBOXt3/ANY5uiZT+nvkysL++5tG69UoaI0YKiKybvpjW+J8RSqlYD8oItcyEpa6oCQTfCKUarAGtIE0LKrG+61GYdofrPJubLf6qo7/bcbjZ4axnHCI0AaePZNNzWh55/P6/0dUzMUescWysY3h85vHHH8nLEd87XOfor69o7u5o7l6ScuHjm/ec3r3nfB6oBUQ7lHFoa8g5Yaqw7zacwwAkqqwldiFPoAxXt3eYxbM0njlljDLUzNr+GIX02W9ci1BIVFVotWPTb0nVk4swLxElCr/bsswLhfXjp41Ga41vPJ23iEpoU1BayGm9pqcQmNJCgyKX1SXkvUV7R3+9xd7eQdeTtVqfI88zcTghxtJtPIfrr0h+SylbVPLUuEXlL+n6Vzy/+z+R6c800xnXPmK7L3HNrxB3DSjcywPpBlJItD/7kjJMHH71HT//D/fMb++ZpjP7L35DcleQYXr8xPDwhjmekf2On/3qN5T+Bnt1j7nak+JMloJXoJcRkQBzJYULNb1B72fe//AtJo3cv/gPP83AyvYK2n5duhBIy0CJE9Y7csi4nIjnE3aesdpTtTBkxTDM2HLBqQbTG0y3Q2gw+UxeBurlTH44Mr59JD08I4tCiWEYTyxLRimD8xoR/dkdEqi1EkJF/l3bQzHPa61pv2npNg1KKl3vSVmY8oLLivN5YJgippvRy5HTx2cOX31A9q/w3Q3jaWTOAZwlz5HMsqZbSiVkWWNxIeOdQduMUxalNXEJNMYiWq/hdlkJfRYIKWPEUFQlW6G/umF/f83uxYEogUjk/Y9vub5qKaWQpkeKMVRusC6xudphosMtM9OHjxQmtsUR4kAtGd8YDve/QO2usVe3xKx59+0b5o/PfPzwwOk00CuNKINtWnTjMFqRpomkKtYUNAanC267RbkWjMe4jBeh3XrG1lCGaS30Vut+YFlmrBaMSThnESCVQGsrJReWFIGEUhpnDPMykWIkl7XqxmmHqJUJrCiQ6xoJjCtJoWkaihTG8xmjFpQplLS2jExhpt00mM0GcXuctjAc16K8sHB6V+g2YK5eQnNA2juy37HEG5r2NTftVwyPvyfP75mXhTlCPr3BuBPK/YH26mfY/kvM9gt0uYO6YL6ckcdvUdeKjf2S9v7XBPuaFCt9WLgen8jhSK4FubrHXX1N9QeywHR84vTpA/dXO1zTwzyRT88M79/h94Hu1cK1XRdXf8m/v2hgT1HYNR0xDCzDQA3POJOIsTBdZlwFlTJSNMVvKLbFbK+RzQ26QpifybKwzA80yjMNjwzvvoePnwhPJ2zVhCwsSyItEeUMu26Ds46SAzkvlJIwxlJLZkmJkgtar8OMUpA1MWiGISO6EAvrsGtDNVCyMIW15cCkSjoP5OGf0Yd3tFdfIOIRC0HJ+rNLCtEW3fTr9XuciXGm5IwNFWNktUIC6IKQKDVRJGOcA+0xuy3aOuiE7uC4eXlDs98xlsw4RqYhczxFxB1QzYF5fKAxM+1O468OOH9Fuiyk4wk9vGc8nrFk5jyQ5oHzQ8KrBuPBnAsqCjIpNnbLh08P5FKpn1NWh5trrnfdKnGxYkcaLSsdPgKloe1vcNs9oh0uRpp9Q7vvUGpNJw1zpOS1JsiUysY6nHNUJVQqMQVyrcQ4Y5Re5bXLSEorgjPESNf362laIqGu23trNMY4al6N8WNMOFVJMaB9BlXJNeKtwdmWnDW7/S3N/p62Mfi8o5wM4/EtsXzk/H6kje+x+xeY/gVieoLp0PorGv8lu/4fWZcOE7UGcjkSl7eMwx+Z3/9f+PaWbvf3WPMaykS5/Gemx/8DzHf4618jVwW3uUYlTxwG0mjRbJEcmcVjZC22VwjatLTtjuPTic5ozJQ4v33m/PGR+RQpeVU5iOqnG9jddkdaJlK4UOZHnJwJLEzzjMNRUiEsCTH950WKQ7Sn5PVNN01HzCzokqiXidOP75mOJ9RlQg9nxmFiXBJaNyir8F5BZYUmkYlpHVhYUYWVCkpRRZFrpRSw4pjnQiMKtDBNE9atxnNRwpwrw5JpiqOmhDeFPZl5eE+dFZubO9resex7ZoRaFK7dc7h+TddfIcD33/2RT++/Z6ZC0hRWYrwiY0xBq4LxoDqPu7rn8OrnbO5vkTYzxyecKyy1ILrj6uoFt2aLUQ3StBSzsPcjoivoA4Ud7DRNdkzvPhKDQckT4zQSNw0hDnT9npsXX3IMQjkFNqYniuN3//ovfDg+szcGMQbXNDSt4+7FNccPC8Np1YfTGJC2JyWP1MpcQBmPUxYpmatXt4xvN+Q405RVS55KWSOOWgjqM28nZFReyAyUqkkpk8paTCBa0AJONL5dnyyFAChqSavckyvGWJrGEZeyhsF1oWk1xmXcxqP6Bt80eN+jVEPIgtEaaS3ESNYntHmihok4PbM8n1Hqgiag/B3iOopuVliY3iOVtfII0FUw9UR79QPh9Hue3/0Bmf6Nrn0knj+Qnv4TevodVo7Y8gJ0AGsQs0Erj/MNOR6ZhwslCnUckQBVNComdv2OoDTPjw/U00ItHpobarNnKXtKaKnTQvdTDezV1hHiBakJ5nHt/yFDhpImaq1gPbrpyLqhFk88zpR0YXo+koj4rUHPZ+oPb3j+9geePz5TU6EuE2kaKKFgCfjGoRwoEVKKTOMFrSr9tscoRYyrCR9Zeaq5VKzz5FDJpTDPa7/UMkVIFW0sWLP27hahJlA4kMo4LDhvCU8jozxgdw2H1/fInYGi0K4j4yne453lhfmSl1/fUpe1wiYXtbqi8kTrK8YkxBXa2zu2X3xNd/cFaAEuePHormdaClU62u09U/Eo16PbllIukD+uZWd0LNFQrFAoRK9wd3fQtqicyE3LxznSXd8yhYAKha5Wxo9PfPz4iT98/6/MkuhQGG9Xp1XNTNOZmBeqMnS7PWV6okpD013hD6/Y3P8ccduVqSMVu2l58YvXPAwXTJrRXYtBM4eMUhpKIYbVwaSqEENGNBgjrJTQlRFrjKLtWlJOhJgotaLEYK0lp0ytqyut9S2bTUuKgRwuGAu+1WyvOkKr+PObH3B1zxd339BpRSWRwowMP5JO35EvH2nbLVf7G0qz7k2azRb0nqwaRAkrIyAjUlGi0WhEGjQ3iNrjrr7gtvt78vzE5fgOiR8IE9jR0NiWNBlUVEgxKNUhpgIe0Q5TOpJU0jLz8f2faVwPxeJMy257x/WLe5bNgnlRuBzP+P0dutsTzxPD8oHrn2pgj5/+TMqCFouh0ujVnKBKwNSB8zxRsOzbG6q9Ykme8enE05s/01jP4cUtvirm55H3v/9XTn/8E/N5oooi1bzqmmJB27XgKxsUYNTqJ9Wq4L1nmRbmeUEbS5WyvvtSYZ7OxDmjlNB1Hu8MVus1VRPqaglMggVqDqSaSTlSnWDEEKaBYRkwscf2e1p3Tdc4YlxIJQMaJOEPDu8MMTWIOK6u7qkVpulE21RyHog6cvuLb1CHlyxFcXz8QGsWxCi0u8dtesYxMdKhtgfo9yQFLhW4VFJcqNqifUuOmdP5kXl6WFuFupbWNzjriU/D+jFKCzZGtk4xmUgsA6dwpvy7b9lqur5FixCmcU0Rac9cFardYw/3mM1LzPY1+Guc7/BSyecF129o7u/xl4nhh4+cHwaG44hNrGaIUiiZtVaUtbxN61WyUaoyjQNVNL5pqEAukVIiojTee7S2iARKyozDQAwz2349db23KBUwvmIaMPuOn794Qdi/wm83VMmQR1hGOlnAFGatMNpj3RY2t5jtS8TdUNUeUxVVEjGNzMsJpcBqi9ItShxVVbII1fRgXlOaazB7itPokphC4Dy+Y1++oJUbUjSgNKUoSlWI0djNBmUqiznSi0HKqnGfzpEhLmy2e1S7JaRMf/tLpNsRCxRzQpWfEIalcsIqt9ZHKo+4ZtXaysg8Tiy5Q3HNOHeobJlDZrkkFB1us2WZI2YOxO/eEd++J5wv69WnClUUGMNcEqMZUKnQS0vrPbkWnFa4xlIUpFgZhxllE6IVIgoEclrpbrUKMRSi+Vy1miLWKijL6rwRoVA/f9kF7xTEBVUrfX+HuXlJ3R4Q6XCSCB/fkpcTmIJ0O9zO4ZtKY9b6GqUrqSr8/oDrG5Y0oPVEObzEbV8RpyPtocGYhqJ3lPY1+B5n1kYCq4ScKyKa5fJMfXiDkQW1tdQKdVE4LNZ19CSGy5mU4rrNtYZ0OiEpUWIk3zlk45nIhJRptAJZdWhjwFLIU4IMoRSSFZr9DWb3im7/M8TtEb3S3Y2uVKOYxwxZWIyFzQazCNtLIlwWRIRqLNUJou1nlEtcMZispQeIh8pnRk+mUkm5oqpwvMzAChQrOaOdw1sDNaKVY3e4JZX32M1IbRP+bkvubjl89Rvs9et1kTcPBDOxGEOxV5QOsA2LGJzesEQHZJS9IMYhVVC6oXEKVCaXQCBi8oKS8DmkYIEdSIftGxZj0M0rNoe/Zzy946IMNb7A0xOSIi0KtEOc/HfKXVE7stFIUaA1jdckDIvxtEZDFSa/xhGlgniD7DY/3cC2u1tEN4juCFGISbgcR6bzBWMEt9mBccRpRA8LTRF8jpRWo+JCvAw8vvuB85/+yHQ6UnIGhBAjKI1WkFlPPbTCkLFa6JqGlAPVGqJUkkT2t3uMtywhrj1LRahVIW5dciiBlBNC+SzGR5RKWKspMWK1YA0kMloLrrM01z2Hr/+a9me/pbQHRALLw5/xaqGtgm7XXKQ69ARZcHpGeyGmC3NIGN9Rm5bGXIOFrFsWDNJs1ghW1Sh7heteIlqhypkSF+J8RJGIQa/VotJQqsIWS50zZgnY45FyPPL04ZElR9qbKxBNf7jBqpnnhwd0t2GxPThP1WbVixFqypQcGcYzrW0wJq2s2/2B0DhC267yiDN4WyCdSBGKUbSSOecC1pHbjnfn77nqG/av9jy//0SKBbQGoxFR6wfUKHzbr5U4aJTJxDRTSlqRpSUzh0gpgZgqSnlqWintrdXUxpGNZr9X5PSBZp9p77fo+ytkf8vm5pe01y+xhytSLcQ4Mte6Ou5aIcfKNM6oPOLKCbym2oh2HXZ3i3UdIhoxnwdZr0CxRRKU9W/S6ZXpp9S8VuCWV8Adyr2m2w3EtDAkYRgqTW/Q3q9lcdNImgfUlLE5o+LCEhLKtVTbQ7v+L7KaSkQSNcyYFFDjhenTB+CvfpqBTcWSUyWEkceHE4TCtmnYuw3FBKxtWUImjI/Uy4Xl6ZE4LRjb0mhDGi+cP7yjjiecVoylrptYARQUMs6vOEOxniKK03ChaRv6zZb8Gfu3vdlgjUaMQS8Ru2SkGqZhZhkWFCBUlFFrUqVqRDJFArkmus6iBIwSbOsQAdUJ/uaAvrmlbm7WFnsfQR1RbcJqjfY9anPAbzbkOEH4SEpndKPoxKFch/gNoru1jqbZUhtHShXrb6G2KLdDtFkrYkMgTiPCQm8Uua5kctfdYCikoMnDEU5n8scfKcNAbx2u6VC+JTvNxUWyN1x985raeFzXk5eF7e4N+6YlhrBW+FSYzmcustB0mu7qgL2/4dJ4zO4avd+DVziZ8bUgITF/Gggp8/jwkc47VLvh/pd/Q3g8os2CXWbyeSAuCYmsVZ41kpMwXio5C1o5nF3B08N0YYmr6T/G+Fnu8VRxzGlC15Vpk3VhSZnH5UyeCy8Ot0jjsftr6uYa7BbjW5QTvG5R2ZIXTVSZtm1wypGfHhnnQrUJZwqpRuY4oPA0G8H5DpE1QF/Lqu3zuQ2CWpAcKGVE6iOQcPYVxbRMsWNJiqId1ULKQMq0FioayQYipPNIfD4SLxdSzijfkJsONnv0dkdwstYr5USTI/n4yPDuB57ffM/P/5f/7acZ2PPDM6nodXOaEyYn9HFimQbECJv7l4gY4jQxPn2inp/Y+obx9MjpfEEtAbPMiFQWEZSsqftSWT2/pSK1YFGYqta3kAjD8byi/5Ri07XgP7s4ayFT0d5hquVyHkl5pn6uTG2MxTcNGkAKMWtCCjjb4sxqYSsxIpKpydH0L/HdgefzWywDvrvB7RqMa7FawK6N8kmzwrhkQZzGNqsHVvtrlL2lqA2iC4vI54JyobB2QJVlQJVnUsyommhUJUyRMq3IwhIWnPaUJbA8HAmPT8THT8zHR4wxtLtrJoHGeULRtF+8wkrH7uYVUfuVj/v0QP8vf+T19Q3fvn8LIjTWoVImDZFQBbvVuO0BYy3d9grbbXBS0fORMp9I5wk1V8JSqOOEuWnRusfvdgxxSxiO7O5bYvoBkwekrDW4tjU03jOHQFoSSxgJxlOUImSIeS3Bs7aDnNGiCQgigiqC5EqNGdd7HAJz5Pnjgr03mAXqtABHpqc3mBJx/Q6tDVoV4jRQy4KjUnWLNomaK2EJ0LQUbaklcDo/YsKEdS1KaUpK1BoRvaCVYJUmfrZHpvAE5cx2EyjmmiAbxPuVoJAr1ilCSERZEGURcejqqCHDeaJ8eGR6fkDrit9tUbsNbDYs2y2b3RYTJ+aHd1z+/K+Y8xPNePlLRvEvG9gwxBW+JAqTC/OnT1yeHtcazpxJX5344jf/wO7VK87eMD951LygFmFEiDGusTpd1+oOhFpWqxqfr1MxrPpeTXFd1ytYxhGrNcY1xDEgIqQQsQ6c89QsoBRt06zG9BRpXEMpa0G2dh5KRumV9WmcwRoNJSFNJc1ntHVY7dB1Il4esW5GqQ3iDShLiiP/H2tv0qtJlq5Zrd1b87Wn8yY8IrK9twpKJRADRoWQkPjxiAEUVAHFzbyZ0Xm4n+5rrNs9AztinIOY+Mjlg0++zba97/OsVaVE2bIKkoRBtDtqUgT8+rZ3R5I5Is2eVBZSTYCELIjLQk2RvAzkyxMoR7/Zs+1axqCI84JuHcVHni4D8XJl/PqImmeE99huS3OzR2/2mKrwQoO1uKanOdyR3J4iN+SiKeOCbpsVKSvWutriPb2xXGZoTAPs0M0eaTRaGIwQOFmp00g+vzI/npFJ0/VH3t9+IJXKPAxr0b0ajnffMlxOPPzxluvrE9NwZo5XoipARTQOoQ2uakoqzHNGmBbTben7DkpC1YqolSmsV2HpF2yJWAU5zlTrwBwIIfP665lOCdpUMLvAEgfC13+l3d3QbnY0rSPPF15PT2hpUMqyTAsZS3P8QHPfkNAIJjJwHa8UodahaYUcPUYLtJE4a7HGQNEIcSCVwnUuSC1XzaZ0kAo1FazMpOGZJBXt9gYhNK3bIPqJYk8YUcCP4AfE5YlgJHK7o/vDnzk0BlMig5+ZxisyLGzcb6jq+PrlhGtautaRUyJOA/HyjEkBbSpLOHNdLvR9j9vd0pgGMcws5USaA8s0gda4xjBdryDWvmh984GmyEqgj4VsEkpEjJZrqki/uVGFwZgWJcoqg4oZWQXzvCAQWKvJUqCtxU+BeV5WSbEUayZZG1LO9Nt+9QTlhJ8yqkxk+UgOmY0ytEYjRGTNFza4RiJdi+g2ZFqUNMhGIYsj+IGYWcf7tqeYDk2Pyh4lK5IFYkDlhTA8kr78wpQl9XhDaBpiLah+R9V7jNmSrWTyV0oolCgwZofYNOj9EbM74LLEJElOmWWaKWagc3uMbihL5evTK/3xQHvccPQ7lE9MPkACs93RfPw94ttvyfsHtCxIq9fEkhKgFCFkZJYsPpFlRMsFJRU1ZvzpK8PlyrW/Yffue/R2i/3Tn3HTGXH6Sq2BWhObxiJSwlRB9pHbRbE93OL6jtPpFask19cnWq1ohwt5HClDQYS8Jq7cuoZLvWF7aFiWV8rzgo8X7PiMsA1VWUa51ilvbneQZ8L1hSw7lHAsk2eOimUe2UiDOrwHoahvtr9Exs9rN1vkTBQKoQuzMxjTYYxDyT25WM7LQuMcWisgruC1mLB5pi4DWA1lS9ts19VdXIidIquFXbfSN2KqhFkgcaivJ6JyXIcTZZl5/+47tBJcH7/+dgd2Ghe6bovRFlMzsnHMTUPveuy+xd5/QHQG3Lo0b9s902lZBzK2Ybs7UMKCMgoxriV0WHd9tRYKClEESICV96O1BAqpgrUK3bVkoRBvAXKqwFhDKYEcK9IYlNark/RtxZBTJJW1ZRJLBKUYxgljoBaPaBXdnaPaGV8nNsc/ofoDWZaVUyscvoAze4Q6gDTrN3EEpMF1RySSpHvQ6xMyZokUDlEypJm8BFSJ6CqwsmP2nhIyU5nWfPbb9FpJg2m2HO+/ofZ78rxQkSzpQjWWqgyiCmJ4o3VETwjr/MBtHUZu6W/fE+PEzaffo9sG//TM5cszwbZsHz7y8N//B+TxgL1z1PmFsJzRWKTU1Kahf/jAZltZQiFiGJaEBYx12KZy0IoZj3SJ2jliv8N9+p5vG8N2Y5F1IS0X6jISLwPxOjN8PfM6B/b2SPfNJ1QtmG3HfHri2ByZjCJJqGMh+ZGm2WGPB0rnqG1BlYhQEWpAxomSAtv9DUuZKcPAmD+jRKAuE9Ju30DiLU17AFkYr89r26pobNshbINyzUokmRdyWCkdVRaKBGs9yva4fgtqg5Atc9TI5FEiUsJAjQt+mSjDM6p12KZD2Q0iB6bLI/PLj1yuX3DWIB8eMLpn3x1wN++wXcd1HhGmp5bK63AmDWdqiL/dgW2J6Oip10T1IywTrllxk83NHrntQUu0yqSaqEmw3WzQ88AwXwnLwni+kIWkoMl13WFJmdGseWAkSJVXeVWIUBTO2TXJJCpzmpBVo2BVItSMN4qiKqlkVKlsuw6nLDEURGb99y3rqsdHlJakObBpW0JKNFvJ4WGP3vW4d99jj9+TbEeQE04bjG3QArK5JdUdVla8/0KYRqwyaNNQXY9wPTEXKAtaWUROlLCQpzMlTlAKSu1Qtx37ksmignXItkd2GwoCnwJFCOR2g+o6xDIha8ZUQxGJnOOa03YamQ0lw5wy1+tXAoX94c/Yh0/EKrC3v4PrM9JpcmPZ/vHPfPs//M+oP/7XtLs9xUxINTKdHxG80t19WOt5/ZYYJbu2ZwpQhoDwATGc0Fuo4US5Xrk8/9+IeMLqf6K9u8ccj5RGIdSCSg0yRvp7eP3lkToFTOPQ+x2Na6l+RBDBW/K0cHz/nthvOP040bgN+nikefctcrMhxgEpe1J9guqJvpBExWaNaTQ+nclpRsmEqIkYR6JsUf0ttbmhNpvVqSPXCqG/epRpqLYh5kLOeX0BZFYW1TRCeWZzOJBLRbY7rDQkMqVGaprR2SPijAoDZb7SyEydTmRjSJPHNgL9cI+0BtUfSXZPc/sB3Ga9mitFIwuqeOaXL5h5IDx/Rczzb3dg7TRQChSluJy+YnLAyPXbY9PcEokswzOFxFF0zOcL4+Mz118/E6cFXViZTXPCbfe4DqZlIdZYjAUAACAASURBVJdVpCUkK8uWTK2VVKDmikwZaqbvmlUJojXOGM7TTFhmTGMQWqIbu074nCGVim4NTlnCshLxtZZQFTF5whI4nRdsJ9h2K4Vvvnh8d2S7TSQtUO0W6Sy1FKRW62SwSGJefbXBvxKqZLd9hxWSikCkhCgJJSqUQgozOSUa12BqIgwXjAGNZvSemCtGtxSzJVOIdUZJgahypcYrgRIKY/dIMiUEYhjXwbo1SNmxo2eshdeXgVhPbN9/j8s9+tBijWVG0r5/z7f/7X9D9+k77MN7VNOh5AZZz/S3W7Q6YewTRhww23u87CjS4rCIG4kqIEJAxjPL89/hy9+5/PhXTMjI4Kgj1OaBRIuwBqUN0jSUIjHvFL33DM9PvL78QkNB+xk5jai44F+f0X3EVDCykutCkWdEe0fZ7HByQ9+0hLkyXB+Zg0K1HVefaaRa2ccprgb2aohJoLsWZRwhr0oYIRtcZ+l0w5IT8/XMFJ5JuWC0RSpNFo4cCioE0jQQfUYUTe4jdbdHavVWD5TrKKYo/DSSzk+k0NB0HbrdUZRD3Rwwh09sikA2LUXadV9dBdSyonDNCuLbPXykhoCdJsLwG/phy+kFuStoZ0hhRJVAv91hRWZ4/pW5BGzXUJaJkAynv/7K8nImjFes6UhF4+yGm67jGgvtVuOz53R5JOeyDoHEGmFTWpNyppYKIaFEYRpGSsoomykmI6REm/XHDjGiraDreoSAUjNKC4yWCBw1L2tFq+Y1PWUs3W5De2yxB4PYSLCaIUhkzDRbA1ISciEnTxgjupEIszpSalmZxlYaaoKwrNnX9Lb7LKyFhFAN2nQs1xem4RXhR5ysLD4QlcYrEFuJM1sya9qrxkRNiZIjykikAIylMQJEorB2PgcvKLrB6j1WG7osiDkhGTB6WRNCSHTXIvYH6mFL3bZ4va5gjDHocssmf0McXgnzz0izYJp1PVWkAdWgqsboBiEcOi+ozqE0LGlASGg2kqoWsn+i5AbZ7nD9zWrtkyv9oX94wDjF6ee/Mn7+Cc4n2gLz6ysqzviXZ4xu0drgi2YZr5hwRnizip03BikLm8MNRViyaahGk6RESUERkqWkdaioNFUbim4w0r4NNd/0mTlQQkDlQE2BvARCrjT9Dtmtqas4jyxPryynE2YJuPcfKVJgmmalcCKp0lIVCLuBZsOSAq+nV7Lb0+06km2h3ZGEpQhBZsVU1bL+4eSayEuIVQJtDKrboPbptzuwfj5jnUBh2O8McVxTKi+Pn5GjQTeatBi8HplOkfA00VZN3+4QumFMarUEaMv72xuySmxvGtRnyXC5MI3LOkkWCgHklFECRBUgKjlVvI+oXCFXUozUWohLIMRIDInh9cqmX0vRIgmK8tQcgITS63pDCEFShew04nCg+/23sNughcRJh7QdOQZSWdshOQZEFSi1EEKGKlBF0Mg9okiSVxRY3UHGkKsgJoOUBmEclYXESFwy6XRlzitBcHtzy2F3QPVbirLr7jgHUlrwlxPz+YTWks12h7KW6GdEGNjavGagQ0GZFmxFKGiyoFwH4mskD8/U6yvWWTb3d9T7W+yuW2kWMqyM6JKoQmPMO7z/O2l+wu5e8eOvGHukKEctgUYWhNDo7kjb3CH7nrOSZG3QVpPNhtzskKpAKhAquUzkMjGNV2KKVNVg2pbjwx0tE15l8nUgiIwoC/c39yjZM2eFUgcinmkodPKVf/3P/xcUz8PHI3ffvkdvLUUpSpX4KWB0oVLRtqekDmV2pFLwS6XtBForfAgscUEJhZ8mZEkoKroGhFJIEr5kVBVIKaFWSoxcXx4pzfpwoGSUa9DOIpUBqcjtcc1pV4+UUFhZydNpQE0vFN2B6ci6oWpHFoqKJBTQYoWSS+qa2y6ZeZrYOvvbHFht4HDT46wiDa8IGVdUZEq01dIqS04FmTJ+jFhabg53XKaJrNbeaN8qLuPMNDwhWsvu9ogwga+fV4zo+TISUkDE+OajFeQi1itp1cTImu2Naf32EIL/Py1VwUiJU4CCvCSySGvXUmY0GklEKCiNJfcN8v6WZXOkdgeMdjTGkFPATyPezyuDRxnapiP5DGbVMtZqqPWGeRwZrmeaXUW2DW27xQgNxFW9KR2FBtve0dwIlgz5+oyzGlEq8/WMMh2gKa6hxEwNAX85cfryE8ZarJJIo/DLhTKfCTrRdi3aNvg8k8KZiKVOlfl0JZ0yJntKiBy//z3bVqNuj/R3t1gyri6IBDV6KIoSFSbdUeYTQcyUcOKmn9HCUuKEqAmfJNxJknagOjh8orU9jbP4BFU5yDN+uDBdz5yvL2gE5ILShqgFslGIfou8e8d+f6CMA+b2lusvP/DL6ZWPH480/QN9f7OiQMuVPH9BJsF4GnhOAWssbTaIVqzkzMUTayCLhNtqqsnEy4yxgsYlavAIu1DMOriMU4YUsaJATSv6VZp1kKl7hJQsORJrobEapCQPA1FrVM7UPhNTWr/HlSbbLYgWIyJSZHyKLF9/Ip5+ReSIaw9ku6V2t6jNPdVuENpRbYPVGmcksrDijJaF56dHPh0Pv82BdY1BiEqOC5KMEgKRE7pCHANOG7SxONsRxIqPGReFaG/pN1t0zVRRiTUS/UBKDbY70LOhOTsO+yPfCsW//PVfiJNHC0EuBVAIaQjp7doZJ4RYtfbWOow2GG2JMVGlxudKzGtLJyHQoiBkpZpKaw1owf7dPdtP3yCOR2prkVIgkMgiVllWTmhpUbZFCEvOikglVZBaY2RPNRafAzUMcH6m8y35daSGhJQTdAfYvCeUBo3DNXe4G0mgItXqV4l5Ybh8XeOR+o7MGpPrWo3v1mu5MhKhFN3uSLAQwoDWjlTWWqGoGXKCLOi7nkseGeZEe/ue2z/8E+rQUa1GqBYpNSJHZAXpwYdnyuUJrpk633Cdn9E7wXx5hV5ASRgCShji+JVJ92Tp0JsjyrXE5BF1RuVIRaF1Q9N4wjBQi0brHtdscBqKKtjDju7uDpkXdFzYjyP+07f8l//9f2HuBf392+osSwiZVPd8+N2/RY4X4vxKeAnMwyPSnZFCUFNiGs+IxtDcJERXaTaSpCKLvDCWgWIcxw//jLYKkQznxxPDcqG1irbvMI3EjxMpnbE7Tdu1xKYlh4nWtohUKdcroVZEKYhutTYU5FsXW6zzDS1o1FpGiGlkfvyVbF6Ya0NyB8TmjiQ7qnZvgHkJVayfVUWSU2UYBvj3f/5tDmzXbkhJ0G32CCQ1DcyjZx4jfSdJc1x7gELS2h3DJZG0ojs+sPv4DQuZ09NnYvgJlReMUAyvT8hGYPoWAZAzt7e3vITVWwISoTRoiRIFKcva6EEgKtRYiNGjtEJLQa2RaVqHPqKAFhmMxlhDsg2za2hvNqiHB4Jb449qnqjDAFlglFsB4KWuzlRrSQl8WMAIiqtrCKO1lEZQTYuIZf0eiZn49DP+7z+g6ivlcE/3x39P2rxHuS0Jveod3YEpTmwbSy0LVUpqTqTgSTmBP6HDV3bNjK+Ccf5CUJKmv0W4O6w7IDRYKVaYeVWY6AhVgihsbIvb92y//xPVtKAgzjNludAYicysnxHnmXl+AT9Sxow1Drv9hGogJqjjC06NGAaQHWUxyM09VVliNqQcWC6P6OkVOS4UvUVqS2M72o+/I8yBsgSqH9BFIPcOLEjbUEOlSI+QEsMt/+5//A9cXp8p1aIpXM/PXJ+fUVWSr5L4Ass1I2oAGahUjJYoCYjCOQ48/TKxvQ+4w0iuA32baHuJaCVx9KiaUEJjiYynZ5Y4I7oW33SIbkPZsk6UlcW2jmm5Mrw802y2xFnhTxfsccEejtSY0X2L2XRYZ1cwnygsOdFvjtx+888s9sB8HWGJ1Fzwl4GUR2rKEEYIgevrlVokRRikttQK8D/9NgdWZ0lZCkEVOt1y8SdCSrh2vR6UWNBCMp8948tInS3dVpF8YVwSsu9otzds9ndMrwvXlyfEMnD49JH7Dx+IywC5Iq1DmA1CtXz3p3+mCEWMC9lfma5PLJdXpuuVMC/UsqKns0irw7Oxq45R2HXIYDS1sdRNS//xPc2+ozv0qF3HUjN1mOk7i6KgpWYaJpZQsN0e2zeEYV7f0lqj5fptDZVMImlJe7yjyo5YPMIW3CaSnCNcBaDAGtS2XZ/Ayq0Ppk1HWmaGNJPyFakVSTTUJFdTwjxy/foFPz7jtlv22z1CJGIJSNOSi2IJkXbTkaUmloo0PW3XE+OIYqTfrRneeZrRCfJ0oV4fyWlkuFxIUyCcLsSYcW1Plhp5c4O0G2g6ilYoNZDnL5yu/y/GNOjDhPQbtG6Q4oBQGl8iabqihoAXnnazQTXtSu6IifjySHr9glaBTb7B2XtybkFIMoKkJENJayRRGk4/fCG+DMTrlewD+817Du7I1QjG5YwqGUXFGoepqwVQ6spGWpYC4fmCqrA9OsriwVmM3lJYM8tzCmuyaLjSpYXz6RGcRu8OGNFi+yNFZZTVuMat12M/QWmosaDMQo4nss/okEEokhRY1yIExJgJytFuPtGZG8TpmU4IUB1LkFxPV+bXZ5bLlenpFTVFFp84zxPKNatW5h85i//IX1peruxu7yEUXs8vGCW5ebgjRQjnAFLSb7eIaPBlIsbEcjojg2eYXth/eEeisL1/R/vuDvf0M5fXR67nkQ/fvYfWMI4TNJrtH/4N/eE99+++Q+iG03Bhe+i5Xp9ZXn9lPD0xX88s08hlOGPbFts0aL2S55VpV1G0dRjn0H2D2Jg122sF1Qh0iqtBXitAkoXG7joUhiQbqtsgpaa1LabpmMO4Vtqix4kr2J5iDWXjMElhqJSthj81yPh71PZI3n8kyn6Fa0tQCETTUZVFlhZRHEVAERakgRrBPSD3FaNvscYQr5o6vVKaGbm/o9oGbTQJA6KBtyaQkiufl+RpakDHM8r21AwxLly+fME/f0b6hc406GFZHb8SijH4qJHVok1P0BYrO2LUXJ/POPVKLzfo7TcMwWG7tFYiqwIacin46RHHFT9JrG6xvjCdfuDv//F/5eONpUsP+PEGffuJ0t8TdEumpbGOy+NfePnLX7n+/RfkFGn1Oo29zF84hWeMMGz6lnkMjOPqWi1yZZHUkjFds96igDp4pNVUJaA35KxYYqIuM9GDbPc0D99RxhNlfEELT6MExliSj3gSWlSUVYigCCFxe9iwU5YlCeISSHXEVk21jmIkcym0m4bN9oAB5mGgxhXoULwnp0CKqxyrhApjJr2MLNcZ7Rqqz28Std8QEbMIi5OOzrWkZSD4wBwHjO6oVZFj5eXxzLG/pcZCCokaF1SQLJfMfP6V7v4d3cdPHH7/T9x++o7nn/7K0+mVnAxaVGryaNvQHg+4w4aZyDIn3M2RxWluv/lAWf6ETAtpOpPDxJfHr6DfrjHT86q3lwpnHVW8XVWpqy1AQqqe+TyQ44LTBh8t0hhcu6Xpthi3Q8l29Y5KiVANWa7dVErEkJBxIodCsJpMZHl95fzLM3/4t/8Ovr1DlozSLVkaJJIcAgszKXlKDDTK4oygUpASnBbkvEYhS3tDLg2pHhiGCzotMF8RTaCVB/RBvgHPPEqvqyZEJOQLIo/YOpCHL0gZMf0fqdWBT5ikiDOYKPDXiUUI7HaH3nTYnWNREakGwKCUWIVf8garfwc1UfInonc4B6IGQhJY41BdRw4eMSWuf/8vXM7P7G9uuL25xdgT3T6gtGR8+YxJwxrqxyD6d+gqkeeB+cefSJ+/4saF4iFKibYKkqemTKhvk36rcKUh5NUOKMT6gE6zR6eCkBKlBfPLRKgz4xjRl4q7SNQmMiPQ1tEdbpHdlmxb5scfkENEjB5lIqFkipX0rUGVhs2+oTYWaVpqKDS2IxUBSlLL2uslFXIoVLMqNjGV+XohDRNxuBCXjLM7CIkSIktMXOaVb9X3PXa3Z0mJput/uwMr339D3R/ZvbunPx64fP6BsCwY1+N6x6bZEK+eL788E8dEWjLkgoyZQEQsAxTY3H+k0R1JG8T2njYbluFKHM7E6HF7y/T8yOvrM5iWgMGe99x/+gbnBbF4CANh+IofXtFWrRxYo2jlBqEgzMPq5pkGaowIZVFNRxSBJQ2UvNIfTL8hFY0ShqwavHCIamm6PUizluKLoIRAWiZEmKhpJueCkg35Dfu69ms1WQiCkKQMTQWRPI3R+OmCjyOZQEoz0rZIKxmuX7EK7u4eUMoSlURYTfIOj6NEiRgC4RxQG0vaZYz2SJ0xWiDkiDbubTilkcVT8oyIr8R8oXIkLxsEGtfdMbsRqRNJZ8R2Q3O/R7WAi9g6kRjxp5GueLRskFRstyPkQmoPGLnBCUcRglAytWakyWR1Zecu5PyF6/JImDIvViF0w7v/6r8jXq+UNBFrgjCj/YUSC2IKfP0//jfGz39DjhPLxRNSA07TqpWkkWtZp7Ulrg8OAUtMhJqpAqRSKApKr1uCeZoRQYESKARxvpKeIrJ5hoctselI3Z7W9AjVE3JPeJ0R24HN5ogxamUtSyhao7oGud9QtaOzHdv9Hf32gDGGlTiWSTkhhSIsEQpY2+BNR6iSEiPL9YTqKk61FCfx+x777ogKBb3ZIK3BX0fmfwya+A9GE49HhGuYagYBsm2wSoEytHf39G7DJC/wPKyEBFd4+fqIlgKlVxPZ/Hzm9LcfcP0eteuxRfNxd8d5GHk5XQlxYrvb0SjFtUZkA4dDh902GDEwPZ3J5ZV0fWT++hPXpy+gDZuHT7j+SC2GOFxIfmYaL6TFo6XCmAZTArUs5DytXOS2JeWCkwbjtmi3A7nmQWtVa5cZiaiFpkSaNDO+PjKeX5iHGddtcMcDtdnSdzfs/nzPUgtpXkihMOWFvAROMbAsI9oIbK9prF13fVQ6Z4j+QhheCCmuLRs6TIEqIpfpSjy9st/voO3I0cMlIupMVoUiJEZ26wrJGJq2QVqFnyKGhapPSGlRmwZRNfu2ZT6f0RW8EoRti2wquilYs0WUhegntKzkPEMZ8OUM1hD1QvYjuVq2D1usEixLJpeEzwPz+CObW3D7e5rj98jt75DNA2CYhmeWrz9T5xPoBj9eMPnKL//pPxM//0KdZnIQpKKpqqWgGJaASBFhJM6plVdc3pB8b+s+oRRLSMTo2df6hvRJaCRKaAwWiaaRBpEKwlcuy4DIitgUNII5VVQW+PFKfn5E3hxo2h6hDWbTUKSmUNFWozYt5rjD7fY0rsU5Q1hmpnFAyRW/M5wvdG1L1x3pHhTJWYxUjJPnOi9QobQGd38gLgnhGqqUOCkYXi+/3YFN40DyC/P1GV1mVBqBQimJOJwZZ0+8TsjG8Pr6RAkZtVkZTI1SNLqlcT3lMvDlP/2fNIcd0ziybRwyXCmn1/Xb1x+Rk0E4w/a4Qd90VF0ReaIuE4xfyM8/w9NnuvFCKIJ5iYzmC6nUlZFrDJvGord7qrAgBFUEos/rNRKLUA21OlJWiAgyrTa5GAtLmBEoQokUP+HGC/7rv/LD//MfuTkeOd68I9ZCGtdQRWgsoeoV8zmMKLPS/XTf471HLQ21ZJSV60FjvQIr2WD7FcpNnjn/9Hfa5kheFGLMdHkmEhk+/405RIzt1i5vnEAWhGuQ23t2Hz+SHMRF4Q4NbfPA+PqM6a64zS266bCHlpgKzr8nLp4+e7KueBEpRkCjMVJiuoFSBsI4I0KmZs1mc0cVNyw+U8uZcWhx/R2q21LGibbbE4+fmKYX+n2L2e4pjSXpCghEd2D3TsN0YJguGFE4/fgvhMfPiBSoCEIRLFkgSGhZKCJTlFnrkdawP7S8fPkVP3m0ceT8hhaSgiozk4+E4JEFcplod3uka9EKxmVCCFC/SpSzbDvB8/NXTGOQroCAsIwsV83+ZovUklQBYxFFIuaVUe06gX7b/UulSbVS9NoAiiGQQyRME7oWSnuk1I6QDdV2JF8ozjAOIzl6lFREsTbGchFoAfvuH2Em/oMH9stf/kK326A7A0Q0CXJkHj29mRmyZH4dkVFAgpvDHUZrHn/9SsqVWaS3fSOE84nnp8/E4Ila0zrNPHpKI8k5U1SiPdyimy1GOWS+srw+UueF8vpMerkyXyI+CErNuDgSlheyFuy/+wNmd4Nq1m/rmCXLslDSvBrDWfk5VQhqXpguAVdBKkeRLaKxGGMpS0KmQBquXE+PVD/zze9+h21aZLfH9TdUswW7A9NSciRcX4nThc3tA7bfYDdHDJoYF1KYScWvoffqEVikuKdmT0rPZD8h/Uw8DcxfB5angcvjiWWcWcaJFDPOupV+QUGKimkazPsLu01L8/4TlxgZFoXuj7jdn/HhQr6e2BwPqDQjjcS2khAMeUmEWlelBhUlV1NBkT3ObdEmEKsi54BQHbVYKJCiZx7OFKFRSlEQiPZAo/8I8Rv8fF2lzeELqo4ocwDtKL3F6B2bEhl+/hvqOrJtNgypAgVZJTYWlsmTvEQ4Q0iJvhUg9GqAMC3VFqYFapYI6tqvNivXK8aVHmGsXdNvr0/YpkGqtfvqykLxM6c4oltFCQZjDVk59LYjO4uyjlwtWrerha9UogCRIuRIXGaUaRDaQK3M88RlHDFSIkt5uz0J5mEkLYllUvjFErIjpwAoqAptNBZL1RqrBeF6QZjfECQezmeqnzGdA1kpOSJiQlXBeXkkLQmNplEtUmhizgzjSEqRje3QxpDE+jRDK/au5/Q84ufANFfs4UB3u+H4/hv6P39C3j6QhCXOr8TnH/G//szw5QkZPCVlpJJsuz3bbYuIgYGKuLvj/vs/kJrNmtN864EWUcmxYJotuRam5IlpWUMPCEIqyFjRqeLkul6RsUDwiBRpnMV271ZEprYIt0G3e4TpQbektK60mk3DVBaElBQpqdpimx4rN+Q0EfxISiOkRI4JURSiCqqfyecT5emV08+PvPz1F5aXCdLKqkpvKNdFeoJcWbzOri5XOWWuLwu698g3x+oSAlZqrLZgCqm8UKtkmTNVbRFuy4wi5UTXKURJCFFWnGpemclm02NkxKsLMQw4/UJrdoxxDZfonKhipTLadkfxBZkaDtubtdFTrlQWal7JjmHJpDhh88Tplx8Yf32G9BamrwKfIqlUpNZ4FD7WFdg2DHx5fqTvu7d8vyPkQqiVQqQmT2M1SityKessQAhIGZlWYJ+2lt3hBi0TfhlJQ0K3hmg07c0R2pW/FQuIOdJ1ihBXLYnWilBXIoaaI+F8JQlHEhajDUoYmmZLiQthCfjrwHM4r0PKCjkkiJIaFfE0koYzhcgiNJgGjKSq1WqXym+YJTYhUlNiHsfV4yk1lIr3iXmOa/BAZJIB5xrO1/ObmRtEScisiSEiWoloLE/Pa1lX9R3SaN79mz/i3h1pHg7E23eo+wc6UamnhcvPM5dfvjL9+JVSI8pput2O/bFF50oIgc1uj/r29xy++wNBWa7XC0rPxCWsOFSj0BlKSqSY337EQg4LRSwsU8EmQc6Frj8yXAZMzaiyIOJEkRnhLNLZ9U1l5coxUiBah6wGkTXtpqXYDbLpURaEWv9jozK6UahkITmSyIjgkeVKGl/g6RH/t5+4/PCFfFqQvq4JmFLXfXPOSGuxtsE5BwJ8EpTYsFVH2s07ihOkeGKcX0l2JrcFakDoN7aT3SK6ntp/QGWJTjNGBkocqRSqFJR5ItZKkaCcRbSKMD+j/YDb/QGadyTxtuR/2xtm4joIkwVbEsrCcI3EIpC2IKRC1MQyn7l8/YFlOhGWBT+uqSHd9hjbELxnSZkhJ8YYVwh5ziAEyzRhnSXnRFUO71jpD0IitSSGQM0JlohE0jqLqJVaJT5knp5eUJT1QUdlmmaigMt5oLu5wUSNu7lnuXqSuFK0JpfCdr9HaIdMlVpGxDWwjInDXVmL/SkyLzNxPJHHM2FeWKIgi7DKvYpZO++nE8vnn5mfPiN0ot1ssbsbKLt15RMTfvwN+7B7a6lCMPv1W1DIt9F/VTipVz5TqYSYyHUm5UTbOozRVJ9JweMrOGdo9nvG+cxlunB/9wGx3/PcOGKI9CHzfvcNWfXE5YnLrz/z8uNfyK9P6/eJsCjXE6piHCNGrnT1fn+ku/uE6o6IIjA6klnQStB3DX5ZKGEhLQHnPSIE/DhiamGJHlUcoluIw5WpCMgVLQp5uTKdv1LLzPbmgFWJkieSXEsJkkzTbJFSkaNEuxa0RqhAzoFSBdJohKwILclyDYCLXCnLFTk/I16/4n/8meXnL8SXK8WDwJGqWEsIKbPSkFiverlSaqXbHdjc3VLdGoiXWpPSW8RyyczLRNtLGr1WGHXbo7st9A+40kA4Y/JlJX1Q0E2PsR5RFlKFIlqKasgpMM6/Mnro7/e07QafA2maaVyGPFKnEzWdmJevqDqj5Yas7kFukDhqnletaA04I8nGcp4GUAItMj5VTsPMGDIzgqwlcwxvtTZAru7aEDy2Ncim5Tpd0UpQC+jyFi8VFedacqnkt8z5ZrtFCFimAb+sgRsESGMQITOGZ8SQsKeJ5mbC7gbsZoNrG2rK6HZLLRmhNU3bUK5Xnr/8iqgrS2qeLuTpQhpOeJ+oukc2GtM6dHfEmp7qE3GaOX3+jK4LcbOhNi+4hw+0dw8IFOPLb9iHVVVg9fpkFzmRQ1l7m6XgGkdUmSQKFYg5sviZmB2i75FxBawVJfHJU8OMsobtu3vM/S3u40fchw88hQlxPJJpSNeAodJ3HfbTRxZRMbGhyA162yMbw9ZZxpcnskj07z7Sbo+UrOianiJHYi6okinRU8YL4/MJPyxrBFBUXE5kBCIX5vMVmgu27VeHatuu1zWgMRrSgGw0wlikNquIq2aszJAGspAgV/yILImaI5S4No2CRrsOado1DB9BUCh5RAxPDD/+SH48oSKIIilIhDaUvLpqqhCkBCIV1uNekUqzLDMvr79w826PHne0Zo+IlTJBRay7AJHuzwAAIABJREFU6DEyxBmpBDYtZDcjxIUir5g6k9OJFK9UIamhoqWmvA10qurQzXva7Zk4SopeyfnBj9TqsUquRY0aYF4Ynv+GDH+htRm3+R6r3xFoWEIhZ0HbbLgkyKFSssC4lnGKeAKjj8w+kqog1IxwLabrKLWScgEpKEKwiIyQhvE8IPT6e4cq2Wx6KgNpmhFaU0Ja395SE2NCaoF1luA9KWVyLohcMbUSFg+XkdNPvyKbDd3hhmbT023at/RWh59mnJIICbppyEohRWEeLyitMBREnJAxM/pKNR3Vttj9GbfZo2rFaIVtO+LLwDifyM6TVYsyPYfdHUH+hkMnrSzz5CmlQq1vUT2FoJD8jDSayroby6WScmacFmoVNGItDjRuQ62ZuiyEcaY/7rl5eI/98A2+33A83rE5HFBSEoNHa4Xpd9S7W3pVyYuk3XwgaI0viZIiN+/fU23B3t+i2hbVtKD0Wn6va0Ehj2fi0xeWx1dE1VQh2d7fEmIiBk9XYfQBwkiZL2SjKU0hS0coGSsltt2QpUSaHarbom2zFtWTR8q0Il5UQxESaiIsFwTx/2PtTX7sTLI8u2PjN73BB5JBRmRmVWVWFzobrdLwj2ulhaCNIEALQRDQUAtQdXVNmRHBIOnT8/feN9h4tTDvBrSrRay4IXzh5P3M7N7fPQffeWjSRFpXPeGMplKhRNLlBA/PmDkxr0LJum0mhWZ5M1pTlEZh2/KBNHhdrgEtFj2fkdMj4WHEl0xHQs0rusxoX7imBT1o/NQxr0+49C+Y/YLxCq0zOa/UWnDdgMqZkmh7vcOEcz1KfyANmaQP9OORpCfm6xXvLTvXITmjjcUO9+Thjvn0D6TXGXN6geMjst8RzB0aS9xgPmfmuXA5z+TsqNLIg7lIu03UljIKJbOtgjIWbS1bTu15oDSEjDIesRrT+/Y7VoIdmzxrDSuqasZuJG4r6zrjnMFqcK6lyvK6oY2m1jbL1bS3eXg5kS8br1IxWnDO0A8Dg7VcUsT3HYd371BDjxl73h/2HN5/Yl4Wrs/fUHnBrivUEa0t9XXm4ctXpnFg9I6h37P74JqyRLWd7vPplbwUVPwVyf+mG6ihUErGuR5jHFUEckLXgrxxiWKVdgqbdvrO20ZxQtePvLs7opVweXygbIHoHF9++hmJhePvf48aDWlJbDkQU0B0ZCrN24J1JBWZRoeyFlJBa40uFbwmlA2dI8ehB+Xxw4iEkZxnUtgwpWLRKNsz3b5DTRPT2PH8+U9s52dIhXRR6M6RNcS4UfOChAtFVxhHxPYkYyi0TQunFXOYGYYO23Xoth3fsKdOo6rCaIXotr8ppWINWGuo1qIUPH/5yvZ4Ir+u5KhQbyjZFFvL32goylK1wTuH0oqcIrVWOq1Yvj6iTMdeHAc0nRe+/vPfY+WK6TV6N1Fk4JpW7ARZfaGuF3y/x40Tbtpj+w5terRYlG5w7WI9RXWY8YDxtyAXpNbWcNp7al5a82dJ0E9EP6Hv/pr69Mjf/d//Jx8/VIZ6xapvqJtbrO4o9JTiSbFZ2Zc5koohv0nNjG3mBjf01FrZQmp9D2upSpFKJdcKNeH7AddNLG8Cbz31lHVl13skZuISqctMSS1ppZ2m5mY9VNqifYexGigYZxFtmhkireSw4bUBVZGUmprTGA7DgKTUwAbOEw479rcfuP/urzDXldNLRGnTDiXxODPgTeUaAqfXE8F2jMPI8O4d2huu20bpGrHz9fXC+vwrYk4v18Tt/fe8vpxwby3tnCNQQTW3ackJUytVBNEKjKMUYc0JJZn5+kpNpQHGFVxfI+NgcZ3l6T9Hpo+fKOue2oN1mt3tHmt2xO4DdRY6s1Kr0FuHU1DiM5tsdLbhUIbdgcP9e4qasHXidCn4UZGnDaFHjd8zHX/Db//qv2lr5fGB6/MDuhasJPZOU8KKzIZ1u6BYsVphzdj8KbmwPfzMcLxA2KO6DqSpH7s6YHXFdF3D3VhNSZqUC0hCEVrbvxqKh67TqC2z/PgNUkJMbbSNUqlbfoPRKbIImQRaSAK1WkQZKsISEopK+vwLOQXS8xdqWNGXZ0YCxWbMzcj+dx+Jo2PLEZfB+EinFf3xjqoPYPdvNMHmalXGUrAkcWSrQVsoDiRTWDBApy1qvWKVpShDZof2I8NfdPy1+w12m5Gs8HkiV9eAdqZrqhcMTgxOKlHXt8Jpp1+RSiajEKbJs5ZMFoUWhXU9RRku87X9n8IwjQe8VmzbQi3tg69Le65VDbfv3pFKJIaNkprSRRtpGCIxOKNx2pNKJORM1gXdWarWKBShJGLOpJLJbzdLtg1tLZOFz3/6R7p+bG6e0ys1RdowRKBmLsuG39+hB6G8nlkeT2yXE1kn7GjZvb/Hjt/hP31CH/5V9fqvK1hUYwtbY9vJpqDWljipIi3HaZrIWBVBqlDUmztVhLos5PyF0XXoKo3SEFaCwIdxYj+OuPVMyQvWK6bjDjt2FK0w/ZH+HvLpiZASLgshVnJujBwpmVHBcr2SPn/G+hu2hwtxq3x3+5HryzPZLBSdeXj8zMvrxrTfs+VnjNthjh/py4bSHi2GIu2t2h3umPZ7vOm4nE5oKlYSEq4Y47BGYU0lxQ1rV0RdoHhsN6CKbcvsyoGqlBqpOVOso2iYjGHbEmUtjLajGw0siVQhtD1rWkdAIzRYuVca43ybVUtFpGC1ZltXzn/+F9Z/zGzXC391f8NvjwOKQskzcXhFvTsQk5CjYbyxzJcTK47u1tIbj9OOXFakFGy3x7tWZO0J1JBJ6m0UUUshpIgtjmVZmXoD2oDyqOFId/cd4dvPhC1glW3xUO0IKWH6geF4w/qywCqoUihZwCq0tXjTisjUQjaasBUMGiW6Gd19m2GGXIg5MmoF2nCar5gQUSE0fpgCEcW3l2ecs6CEWDJKN8WliGCKEApsJeOteaOc6OY0AlKpSBY0DXxflG3UUGua2GuOwIl//A//V9NvVkM/7lBubIKwmKgCw+09u+M989dvrF9/xsQL4XShXgqXbeOgOvT9nt27f13F/usQMWEhx4izjiq2sYZUwfcObZsISa0rad3esBeNZZOkvEXKBJ1UQ7GoRohPORPnhc//6T/hvnzmN3/9e6abAznPnJ87nh8f+O73f4X3nlCENW4Y5VBV4Q93DMc9eXtC6kIMG5KfKVth6C+Exys719O5HbvpnodvP3F6ekCUYxgj//zLP7E7jtx8/1v6dz9g4iuXxwcyDnPzHnVzg745UE2bE3rdYyXhU1tuVgLkSFxnRBasH9AibR7dWbT1jS5vJ6TuWrdVHKI7JLVI3c8/fuY6r9g1oXPCa4uj4BQY3pjNSmN4Yzij2imQU1vKl5bpbSrl9pGsRTEvG7M1DAg1ZeQQ8TvFVoWsK6UYSjXoDDZXai3k3D4NShkooE07IQxCrekNHiaAQ9mBYiqu6zj0B8Q2zQYUxGj8fo9THzHjAv2E8Q5RivF4h1kubF+/0O8HUsiEy5trxyoUQrEVrQ1GaZzruP3wHY+XK+eXCzlvlFIQq6lKeL2+cg0bTsCkwKSlBRhU+1kZaYRNkeZyenumvf223iRkisJ/sZ8rcspU0ZSU0YBRCsQQckHXjFaelAt91yMJ8vlKikubu4vncLijO7zn+emZnK+IdyhlcOMee0j4FPGvisu3r6TXFrcNa+H2bzTm3a841in1bZ5YQDuDKDDOoXWLaQmKTg0tSRRjG3KXwvaWPS61tPddKdA5RGucc9SQkZhYv37j718e+cO//Wumu56trgy3d03hsWXqdYOU6KYBbd+6qFKbRaBqXr59pawPDH7P4yIsc+J4857ztz3h8sr8ELC1ZzjsWXPm3/8P/x3d7ga12/Pt4TOHUZHmM0k8/eFIGneoYSIpCLFQ/ARGYzjANlPylSCp5aSlJxXN1A/UusLyI0orqnYsseL8Hu13uP5I7m4Q05FWadJi2rKAe7upGKUYvGvddKm4zmOUIuR2ympt2rxUtVuNNqb9nNrGW8p6YlasseCUQgTm5yvm5gZtO7K2JBxd9wE73CFuR5aurcpph9XtZCopYZUFRRvXxUgtgjbN2odTbHnFUltxhAVFRUtCK02/31GtRXRPd3xPxVO3leXpG/1uJPaK3FXCYtioVFHM1w1xGp0SrnMUItu8IrlijGEaR16Xa+uYq9ZEgkzKGa2EJLXJ0GhuWlUb/8qKxmnTgi+5YlT7IGijWcOGcxav2ru65ojSthn8rGkFW6BoTSgVV4Xe9fh+h7XCGk5YA31nSGvk5fMv3KaeSQlrnDF2QJG5zGfmuOH6nlp2+OMd289Xati4/vNPSBb6755/vYI11oIyhJyRnPCdo1LJIdF56IcB13tSLS3IrpvSwyndiIBKtWscQqmFLJVamkVdKYWSitWGp4dv5O6O/oeP2N6wnV/Yzq/Mj38m51fyh8ToLN6A5BWT5tb0WiL5dWGpF+KqKNpT+oHny4nLtyfUHPDDQJphTivP5zOH4cj2+Eg4P/J1eYZa8LsJOwwwjc3hg2HcHVBuJOfaGkFDwuQHSrhgkHZd7PpmJ8sX1su/IPHC5DvSPCP6EaMd0U24+9/jp/egdvj9DcGPvJSVXXk74bSlM4reN9u8mOYQGgZLqQq0RRdDSJGKUHULV2wxs4VKypUVYSvQW5CU0bGS5og5muY/EgO1h+qRpCBkpIIY1VxD6YoUwZmG/TEIEhMKhdKtuLJ2aCvEEiBHVGnKTuMtWrm2qOAUVTJZV3TXtY/68Y7Fd9je47ym7xznJbHfH0jzSiwJpyyd0hQ067IhxlIqDMNAlsw1BmqtaBG8c1jr23ipVKCSS8PMapGG/3njf1mEQTcThAFSiVinsK7dIkyv6fuRUiFugZpj60pjQEPMldOcGXzEdx7dd5i+R3eKaRqZ45X19YXXrMEL3U1PPx7AVLIquKkjXwKx8ww//JZxGPnl7/5fdAw8/8M/Y3/5+usVrBhLP4zolEHrlobJLR8sWrgsV/p+wHqLNQZywSmNE4US1XAg1lGrkErmZZ7pXA8VjLH4cY/bdxSryaYjVo0JG7IsbF8/s14eyGZDLZqiK+P6gooLy/MjJQoxg64apTqG8Yb+9h3dbuL88IW4vULJbOeIXKA7OnS4cv32GZGMLldyzdhhz/j+e9TdO0rfUVNEa4/yI8qNGKtQKUOJaFupeqRKK6xgDZW2W2tu/x3b+RuZxLTbsTx9Y1teKNqz9/cUGclm4sO/+Vu0HPiP//P/wvr1M7saaV1LzW7XYUUItWK0okhhXTOlVnJ5c8pa02bbUqlatS0WpVlzJaLaeEYEQiacrozv36FyRUpFSkTyisRKURte9W0GXJpfqKwBcQMR02yCVeh2B8Ta5lC1LVvsnGrjp9p8ReZtBzuXyLadSUXhqsHtPgIDyXhkvMXefsIFzZAXhlhaHwSFRaFiYg0bZrfH7Tq2KnjfMQxd677PTfGpjWli75ypNFePUTRkbql4Y/BK4WpFqzeAAE24plVBq8xwHKm6Ffl+v2/gx1iIAaRYUsxsoRBiRqyQiyJWeL2+4A/3mM6ClSYAk8SWl9YMO7zDHHbo/YS/uyUPB5x2xM5xORmCKKbbd/TvvmN5fkCtmXi6/HoFu+VEXK4oZRFp4G9tQNCsMaBUu14YpVGqma2ltvdDEEHp5m4tUiELSnuq0iirUN7T3ewxU4/ZearpMW6k6zr0NnNzM7LfvSN3lWF0pBCIr2cu335BhczQ39HZkQ1NwreRxe6WIAnb9+zvD1yeH8hLQaPpbc92ekF1AdsZMgHtO4bbd9ibO+ruQDVN0lWrQaQ1QVSuEFaMNBseZkSp2vSTKCpgbYed/sDQf8SsL8wPf+JPP/096fzEh08/MFUL1VG7gTzdcv/HW/6Wif/4P/2PxOfPWAVIRolw2O9w48h1m1m2jRgztRQU7d+gpEyRSgFCyuTaRmupCiEVEplOK8oa4bpQ5xXGHomBvJ7QOmLsHowlzGeKUnQSkesDKmRCSKxrQPk90u3xXcN1KhGc0YgGJRUpiZICUjIpbniVUTFSs2AMSHzl+lzA3KIqTHc/gHgkOtL8E9avXNYZQwPL1VypUqghks3GeQsUYF2u+M4iOb/5b99wuAidUhhnUSm/Na+EXoFvv632RKtvf1IRJbjeYHzlw4c7druO8+VKzMJOdSxXIYdIdBU/OCoDl+vKMkdEEqIS8/WVm/FIqbDlwHW9YveO/s7h73cU33Hz3Xvc/Q3XN13rdHNkGAa21zPLt6+Mnz6irCL9Einbrxj+TzaRc0AyKAydcVitqTpjBktn3xojVRiHCVylyxm1zhiaaT3nFgbICnQRUgq4wZK0RqRwd7zB7numT++Z3r/DDBZ6DV3CxYKTTA2RToTL84ntdUEy1Lwy3Ozobu+QLAS18e3P/0g/7ekd+Nt32FipLLhux/DhL5il4gaLmUDrQEVYS0C2EziFHiZs2chZUHVDbRUVZmTbEJpNW/e+vVVTximHdoaCweqp/Z2uYu++5+PfCJeHL9jxiPbvGMc9W2dJzpF0z80f/8hfPn3h5//jf0W2Z9SWIRXiEshKo7RgtHrrzFeoFWsMqRRqEXIGUZZQt+YRUjCnyNjWb1BRoXMlrFeQI1pptLZoOyBmIItBlYb+rGGmLFd0yNg8U5Yn+v636P1vCDIgURhNQqtA3M5QA5JXyAlVKylFtphQorF2jxFLEEtKCl2umCWhTmeWXx7JS0KPE+N4bSJwZZvILJem0YiZUC+kktlqZgmB3W5H7xxKMiUJ3joGa/AIuhSUMRgUriY69faOFQWiUNCeZgqsN+hO0e077r47YNVKVULFUHI7cOZLY19LjhyOR7rdxMuTsJ4jIV1gzQyxwxqoJZJJaOeoFkK9AJG4fmX75Yy4kS0U1LBH2wOBQhk9efT0d0fuUiCeXn+9gh1vd1wvC+fTlc4PVDJOGawxlFRwtkNjyKXgOk+RN3YwhsGPbDEi0oLc6CaxUhpiXtG6oOrQ0jdOKArsOHL38R3Xl0oKj6yXE7JtLGlDSSYvKyHWxtYNGRMLg3KEkni9XFHDLeP9R4xRLC+PuKMg5op3I35/izKG63qi5MLx/S1bWCgU1vMDers2GryzaOdIoWlB4ukRFQJaOcTsSb0ndx5jDEkaHFqqJTrbMLC2Q4+37H+35/aHP1DzwhoeKEugt2ObZStNcY4P//aPPPz5n5n/HBhVxSshh0KSK7u7EWt7QpK32GekKEsRxVILc8xUEaJp2WNKYZbMEY9DsG/A6sF71JtUy7kea3vAobRHKaHWDDZidreYvsAG2/WBoTeMx57SKzLClmdy3FAlQNmgpDZfTgrFgO13lJxYY0QlRSlAKhAD88Mz159+Yv35MwdnMbXQiTBazZwqWcrbDaNSSqKKsNsNDG4kPT1RakJEN2evtJU2UzSdtW8FWVBS21VYBG8tJde3TR7QWuE6ixvBjYIfCoULrreoJC1iSEL1lZpbY8/TU3XBdLC/m5r9bq2EuvFyeWToHdZpxtuBYizBFkRnOueJ6UKKV5aQqKJJruNw+1t0qXQG7DSRY2C8OyA1/HoF63dds3MvC5kK2pKl4ir0yraxgDeY3qG7joSQokLrdhIb7UhUgmTEamzX0fWOUrfWgFKJ18sDlh7Xee7MX1IMKKsI68zTjz9iQiBPHuccYz9xe3jHy+OFnA05Gx5+fiDGwnj3jttPv6X0eyIwfpww65nHn35ki5XTsrKVgpDpvUHEYYwjhguX56/UlNgPB/z9LeZwg9UddX1FXV9Ir69Y5ej3QqoD9S2JRAGJYLQiaSFrULSFifK2B4z6xnr+O4a6oLsJbz2rOiKmw7+74+Pf/vf8/emFsNGu3hqIM9dTwA4T3ho6D0uopNwytrrrScvGvK2YwVOtJddC1ZqsFBFwRrUmodFo69C2R+uenDUqNdq91gqlHcWAaIebQDqPCwE17Mik5r3BorRuOJxUcaJxpgM7ILTxSUwZqqNUR9oi5XpFwoYsM3I5E19f6bQirysSA2yBqesQqwihqVl613Ztq2qNvlwSvTe4ziHS1tC869EFKEIJGYc0zaVqTqbGzhasUlhnUY7mYPIauzdMt5ZhVzB7TTGNoDKfT8S6NkZ0r9gfDkSRZl8QxboWxGu2S2ZbA4HczBDVoLXFTiOym8jegzFY05qqvbEglevlkfDLFWd27IYb/GhR/oayVyzyKxInUonkEvHesV0DyiuKVBQNMVnqhs2Z3TQx+ObRKVUavLq+Dd6lor2m9h68Q1sgCbpWxGq2cMV3hXB94fnxK8oX4vmFh8+/kC5XJqUxVWGVY5qOhCWj7YQ3jpyghHYdrDFxOb8iYtHj0CJ1y8p525jPF/bKMB6OPD+fiF8u/HC9x7hMKpdmS6uZrQSiBPQW0X5AhQ21rajlSlgjKgjm/h1JJXIZcF2PqgavBZ01VSn8MKCtB6XJtSDJY3LPtjyRzg8c736E7nv09DsSe97/4TfM3/7Ia7FsP/2MDhudh5KE6gRvO7zLWJtJrSEKueCVJYpBsmBQbzlv1XrcfQ+9xgwdxRhQFsFCVsQcqUnwRTUwu7No1YMdCCrhesPxY482qo2Ncsa4RuugG4EBXQs5rCAGpVvHKccVjUKUbyMrBlJYOX97Yq8qvW6C7rAlaqzELNi+5/bunvDySnp9aW4h4+mtoyiNSMb4/i1aCKlkaql45dBVU4RG07caQsTpt/m1agEU13eUqUP2e3b3t1SbUQcobmY24PoDWlpDLlUAg3ET2nk6QmtKKsUwOaR32EtGnRMlQFGAM7jpiL25Q4aJ2vXQ9cSua6e6Vc0QrxXr6ZmwXKgEen9gdztSxwFvbn+9gvW7nnlZ0VahjWrrRupNk2ENpWQ6qykatpJY15lx6HHes55nlDYMxyP6Zs9sFXbs6Z3i9O1nJGwY496+0AnizOXhM05H4us3JCR20wFTBXSHwbEtmWVOhK229SqjcYBIJi8n9DLhBo+vQlyXRnLvDVI6KhHtFcd3tyxPmeXlFaMT3uU2LtIGbVvqqW65uXbWgL4G6hqZX164vFzwyyv9px/wgBKo3hJVZuwmXDdg5E2elAIlLXTKcDj8lrh+5vT0n3n95QHT/YLdXVG731Cy4fvff+L80y/k5z1mTgiVFCJbipheI1UhtSK8BQRSxNbCzjuShlwFpyxOmbYEYQ39bsKNIwVFzWDf8sqiNBqNKs0YWKQ2w5q1iFNo3d5nUhJh2VBGIapiBoPudoi2VNpprktCant3Sm5y7hqlLSgoj1EeoyySVoy2zNtKqRbRntxNJOsxfsfubsC4nnm+cloCJVRqbjjTKuWt2VWbKE0KxjucaZnyZb6iyeyta7B7YxGrKKZxlHa/+x3Th0/0N3d898NHrN04Pf8TJbyi+4neCq4foHsFN6L7WyoQ5wdKXtvJLgpnYOjA7gyXl0DeNqqzMByQ4QZ2e8T3BKWx0wHTDaAFKSvKTky+Sc3nlAgys8aKcQb78ftfr2CHD0eSVsi3MyEWam5WsCKtQDvviTWz5YiKCmU1YmmC3MNACAV3PND/8AkzOrAWWxM7SYTnF3LI7KaRa7rS1YDZLqxfEnU5s71eySUT1g03B/p+pJaNlMEYjzWWnCLxesHYAsVSnoVCoMx9i1RicDpxc9ORjaOajLEGf+jJ543ldKJXhWnqUZ3lHDd2NxPedqxBU4tFiXszxRtUmklPpc0rDyv+cIu+3SF4knLEDN3OvFnIX5HthCYwX07kIih7y+XlM519Zm+fEQUpVJCe3/zxryj3n/i7//1/w6SVki1B/kuUU1pcEADBGmHsDWus1JZrQSuD0fa/Blqs7xqWk/buK6U1YfqhxzhDLokcM0W1NUqtKvjCIglXKr1RbOkK+kpIHn8ojHcdYlr2tyqNhBViIsdEWiLeOGqqhCXQtuM0Xd+zzWfqFlFuoOuPrNuCpIAbJszxHUOq5FD53e13fKcaMujb0wPn+cISN0IIoMAKWGfRoaAo7flQE15rnG55a7/bsRlhvN+z/+4O9e4DdTgQpxvcu98h5QrzgqVnGg2qLGAi/e5I1BMyvaeKBTXQqUTcLnjrUDYS8oaZDF5WyrltqCWtMb5D9yOCaYeQHkiqox8GNHusn8D1eHuBmFDGkJUnq7dAyq9VsGrXM1Qhx0JMibBkamkIjJqbGlFEE1MAKsf9voUkqOSciFIRb5gl4/a3hBTIW6KIsG2BOK9crq+IF3JdWyMDQw0B2QIR2EJlSJmaAjEL2nYcbga6vmc5n0FlrNPYwaG9tEKRjTCvvGwbU+exzpN0x+A9dhjojxPFVmwNbE+P1BixY0eyhmGvSFk103rvm5+1trVCUxXL+YK2I9sqrK8zQ32P00eS9ignpFApFIwEtKqkmgkalNozdgc6c4/Ejbht6PgNSZHlmtD1A7vb7xhvP7F9WdpTQoRcWmgddNsTrZVU32aYrYUMQBUhVaHQyBHXdWGfPSiHVo6Kbk2nrm8bKTm2kECOpJyoZUOZgpLS3uedJ9YNIeP7DkOl5q2dcrWFFErKxPnS1tTSRlpmetfhtDAvC4NSTNMN9eWF03VG4/nw6QP+3TuerzPDzS37Ycfpp5/I28bD6xkzTIzHA/vpyPvjPUopHl6fuVxOpHVpTSHV9CkKYTQd9k0/aceB3FmGuyM3v/2E9I46Tph+xI09T+cXOlXJ2RCvhb1RPD88sztO6G5CuwN6/w6je9Zk0EbwZg8lkrlQTfM7dUYhSrieL2wpoHOg1w17q7VHtMP2e8w4YKxm1O9ZTi+YKdKV0OK5SchZ4/r9r1ewxRq63YD5AGjhclrIa6X3nppCw7DUQlGOLRRKiAx9j6qZukVwnqQjw2TJKSDbldfPP7N8fcBsgbhe2UpE94aSLXldkAJx3ZonR2s617GU3MLc1tO7AduP2MGj0ooVS7ZQrMZZw7jfo5R41Zj1AAAgAElEQVTHFM3tcUdvPFY7TucL6+mJnb5FO9PkuruJsl0J8yslJZzruF7PDGZCjKKIQqIiFw0Z4irMpcX/xqFny8JyemXYGbzrMRIJMTUigjZYM4A4nBG8MUhV5G5PKmfs9opcX9hevhIuD8zXEaX/Hd/95g/8tF7I58/okvDKkGIje5TapNe12rdZrDSTQS0oNElgyQGTCgOONQqmdHR+wu6OuN0O1TlqTagcoWbi9RVVMzlHJGwN+t33xAR6GEFbJCuIgXx5pWAbIC0VapIGdO8sztv2hChNbqKJLFulsyPeTnhp/KUlJfRuwn26o3Q956dfSM8/o5dn8pJ4efjC42FHN+0JW8VUxbQf2L//hKnC9Xqm1MK6LtSS8M4yjA7baZKH4cOe6eN3zErTdXu67pZUC2V9Idcrr+cTdYvoqjinCff+j6jjEekGKhY9HLDGMOCp64V8FVLcKJJxoxDKhihLP+2QIsxhI64zdgvoyeG6DlxPUpZaoHMdIdFO7tJm6jW93Qr+fzenX6Fgu35H3M7EUjCdp99XpIO6ZlT1CELYAqVs6CpkUczzjNMWrRR+6NFOUGVDr4Xw8MDTn39kPb2ic8ZphXG6va+2QiltvlljoqTClgurXhClcH5jGHfUCs4alrOgdAXXRm4qF0xRxGzQw47+/sjYacq2YUQYOs+8XtDJ0ZseUYVLnOl7w2G6aydhzaT5hK6WwoTREzpDiQaNo3ZvAQ4lHKaJnZmInUGKb7uYWiFG0w8dtSpyLNgaUKFpTJQ4qhgomrjC9cuZ9ZczhEQuKw/n/4d+98Snv/gNn/+hwbuoucX/Sm7LB1WT3zafBFqgRSkUbXRWRdDOoX1HqDC6nm53oD/c4IYJbdrvuNQNwiujWuGN+7vkTMit+FWsmCXjvCJKJqAZb96h+31LgBmPsg7rHEq3vLHSHWXL1BKwVESENRWkP6BvP1JzIijDsdsx7Q/U7crzl5+JTw+E5UoI7c2KRAwZaiZviS3NmM7jtEZSZBoHOlqIpx86Slkxveb99+/gOKH3A6nAmjbS+ekt7FMJWliuV6Z+YtgdebE73n3/WzZjwfQo3VF1Gz0OR8NWhXi9tM680eScW/xRG7RrpgKVKjFcscsZ4xx1aLCHGNsNq6CxxoPW1Lcni3OeWitG6zZj/7UK1vcjegfrdSVbjRo9mIS3Dl0hp8IwOrw1LJcLNSUogkimKo0eNbFcCY+BEivztxfcupApJEmEJOzMQCfNWFdShizoDJIFh20hAanEsjWdpA/U0kIPbnBUk+itxUVPjpoQe+zdnuH2hkBrJoXlQsoFqxXxesLLRNxWwvUZVRPT3S0aRYmQ55nrU6Ryx/FmwpoRMSMrM7lUht2ebhi5lor27YtcUE1qrB1JW4oZGK2GsMK8Eh+/sZzO3N58wLiJtAXW04XtYePALSVawvmVUQJxFkI4cvvhB14q5OXUtk6koJVt3HmB1KjnFGk7M1kqsWaO08h0c4v0PXra093eY4YDyvWIGJCKRnC0fd0aT6QlgOpxWthUJqSVzvToCqTEtp5YcsVIYbitDZRGQ8ooaxsDWirKOXQtlFBRKeOUZpgmGEaiNoTXF2zfs4VKeX5Gz8/U50fS5UwMgaIab9iaQk0LnfW4wbHFwOQMtQjbvBByJKVA33ekktjfjPTHCduPbNoSkhBEt/mztLyA6zwpJ6Z9h7UdiaYW9f3U5NqmR6m2bldKRuHQtnvjSVd0lbc+QXsR5JIxTtOPjlgyEq6k0FOXjt6OGN+jjaVtKhrQGuubuNkIpJTQWlPLr0hNNM5jd4b331tiiU14vK7E10tbuN4q3jk6o+mHI2HbWC4zWmmGYYJOsYYzthjKsmHKhteRpBO41ijRVHIIkPiv62KUglW65ZMFfGlfIaNAa2E6TBy/e8/z+cT15Qm9bu0rayM7tcd0GwyF4DyWjpBnStFoMazXmZoSloIxFXTl6eVb2wASTUkbJSYqI68vL/zwu7/EDt/z+JCoeWlzPmUbVtN7un5s6M+sqEWDOMrmWGtCxYqcC9c/nyEmtm1BGSi5kq+Clx0YTQgbZatYWSkh8e1f/oF+d8d333/k8mKpJ83lciZJC5hUoxo6RYRa20mmAN153v/wA8NuJGuNubnD7G9JxjeWtO6xUpEYoRScUWwlkeOMdhU/DEjnyEkQidSSkBKoaWNwHtkurC8gFbSfQHuUceAsShlqqpTY4oolB85PL6QY2R3uGW5ucL1H18rTz4+YeKY8fiZ8fSCvgSQZcQrjLVPfAZpwmRHR6FxYTyeUNngl3OxGrnPFGo2UQtgSJive3X1i6TseQqLvB9yw47q8Uoyn60ZqDbipa2MuZZAoXF+uDMf7FupR8vYWvzJYg60ZS0Gcbckw0+G9IRWh5ACqoKvGUsnrDL5HfE/cFqztmgxNFNSIVh3GW6rUVqzGoqwhhvjrFex5vuLekJK6G/C9wUw9qxKuTy9446BWMoIyCn+7QzpD3iJZMpIrN/d33Bz3PH35wloK2oFJLXRBbQByKW1oa9+yx1EK1ti2f1grJaVGTS+ZUppMqAjc3n2HTprXzz/hcsDqwON1I/z4E7/543/Lhz/8DSkGigj9MBK3TNeNLMsr0+gYjztivHJ9OiNZ4ZQnxQR0OFfQJvHLlz9RjTDsDnRGiOuFimbc75H99LbKpUixYqTSadBbIq0LEgMmZIY6EZczaVvoBwu5kK+BnFdWA1uKzd2TK1olcFfKBi+ysL+9x93fcwCuMfBweubb0wvxWpC30YzSGm0N9x/eY48TpfeYYQe7I8l1LWzgezCKohoXGOUoqqPakaBWpGY6EXw30PWm3ZRyRrJvZoKSqSVRljNRFN2YmgpTG6p1rXAFtvlKul4gr9RyYTstmDwjeiTMC4OxdKqy7zyLdsxJUZRv8UoN+8MeoxrzqR9HJCas0kgupBgwVrGtM1UyMWf6oW0BmW7gGgqXklrHVg9oPTDsHLUWQlIYN4LRKONb8fd7/HAHemBdM10HVjJSFnyIhNNXZD6hJdMNE6mAto4OxWZWXk8PrClRU8EqS1pnVD+S3YzqBlBv22nOUJUC2vOl5uYLSkFI2/brFey0H8hbIoaEdhbfj+T5SrXgB4sRqKkgKFzXMR0P2GUmnK+ky0pcV9brWzDBFXbvBmqp1FApoULVlAJat06m0ablOecrpbTTIxfBTn1bMIiasEX+9A//SHe45bvv/4Jpd49+n7l8/ZFaNrQU8vXEn//Dwrc//xPKKlxvOd7sGCdP7/v2LvSKajLVKPzQEc8raV0ISxM+7Q47nFmoWsgYdtMdHCfy8zfs4LDOUmJkeT2hYyYpg5XKOl+JlwsG0wRJy8b68IgsVyKK5M/kFFG5JX6ksyg2jLd4e6T3hq2v5HwirB256/j0b/49u2HiThU+xoXz5cLT4zM//cufOL28kHJmd9jjxp5NC/vdhBp3+Ns7htt73P6Goh1VFYzW4Bw1D+B26J0w2pEtLqCbeb7WivMe0/coUdRcMGkjLzOqZPL1TF0Dth8xw4jqerIyGAy2Rqoksq7UOpOuF06vDxQm0la5iqJ3E9+eHwhPz7jhCDnAFnFecXv7DlUNIRa2LVJVC+0rVXF9W+9Etx1i4wz90NEfBvp9h+ks3ndUbbBd10xzpr2zrRa0qsQScVYx7Xr6XQ86UeIFXzNuWcjnL5Tnr7ysC0/PX/GD43B/zyqWLJpaNU4r3LBjR6GSSNcVVSylZuJ6JavWdBpv7gBNjhuU3NQtWrfnw1vfobO/oh/WlAaadl3XSBKptCsrME0D+i1EkXOl2++w08hunLB+Yua5zTytAjLGCN2upx8G6hpIl41tjqA6Ko2GH1PEdI77u09sW+B8emU0PW4Y0SJs5wsaiKGgl4XL5x8JIiAKsSOxRjq14SQSz7mhRcauUfq6ihSHUpVrXLj9eKTUSCqBfujxSRHjyhI2ck7k7kKpQmBBupHxsGe8ndjd7JE4k16eSeGF+eGFuq3oYYeTSp0v1GWhVMVaFf0wcXuYWNKCzgnJM4aC1NAAbrVgqCjbUbJBrEPriNMRYsZLa/2X4x1iBPX6yI11HKaR97uBb7985svjA1lBVYVMZSmR/6+9N9mV5Eq2LJecVtXMbufuJKPiZSIz//+LalZNvhd8pLvfxsy0OZ3kQJTMGsaAgwrAD0AQIEiQvFdPIyJ7rz1Fz+nhEU0zDWdEB2e62kqlkojTCz6ecOdnQq9I7WzLgo5GDyavc3LAzAj4INT7jfvbb8gYXF6emT99JoQnnIvgAuIHeY64lgmfnth1o9xWc31VRYewEOnLRgf+9l//C2/Xb4z3hU9PCUahFqWWQUzZkgBvBj1PORBCprSKiJDnjMsByY7mldbuyBTIeTL5a1f6mExoIUBdmbUStpXJV3y7sdzu3N+vXKLn9vYbH7/+3+iohMdHHi8n4tOZKg5JM31Teh+M2oCBhkg6PRLiibp2Wi240aFujPXGtXd8PoNYXlCeMiIOHwIxZXxI9H9qu/6TG/b192+cnp4J0wmHw6PspdEIoJ3z+UQGgip1CKN2XDzhni48n15g+WBfXin7zZ4u5xPdHwiOVtEm7HtFgZQz4TTT48Q2z+TnF6ZpYuwVHYHeKmE6c78ttLrR9426vEFIXD79d0Z4YNNBb28G9hpCr7vJ3NIR6aDK4znjstUqXrrpnVelF2EMh3ceiWIKFwcdz8PLJ9w84YdtuPXjG+3W+P3f37i+vROj4/HxJ8O17KsZ2IfNUJcQ4KdPzFOAMlAZFoSUzpRa/+QMzfMD5DNr6/S+0bkifpB8wIeMnp/Il9lAX9//k9/+8R9sr1950Ep8uXDVQRmFbqZOfAp0b5ETUQXvBSQyFMSfcdkhYqL70Ta0bojbOaVMbSbu121DDtjRtnSWayWqZ0qJqBXfd9gXWvDUkHFpRp2FT0nJyOUZ6YNe/gHbHVEzoe9FoTk6nuv4wD0Ij+EBtLDWK60dP6Na+PTzz9xyZ701hg6GH8Rg4g0NztAxqmjdOXFBjsOwqpDUoS6Qg8ePQq93tusrW13YVXFpZrTK7e07IwaWj1fK/crDyyNpTsg0sbtIkQQuWepDrWg3KyA4JJ8YriJRkZvhaJMojkpvf2ijI6Pv1M3S92KaCGki5ola/8Km0+n5MxIn8vkFfDTHf74g6YF2/2AbjRADY3R0YCd5vODyA5dpgn1l//0fJC1cXh7NldNXqIVRE0LBTVhC2/yIOjMu3xr09ID/8oyUSr0vjLJyeX4htI6Kx7XKel8ZXfjl6ROXywvvvwtvvxU6ZjzeeoFt4enxZ/CeddsRaRaf4TLBB0JMLOvGPj7odNIcEBW2MWwOfLlw/umJ+JDZ3/6dcvtODhYjsb+9Ud9v+BS5r78TvaeXjbZv9NattoyZt69f6SmRDi6RBIdDuFweuVxOfLy/sg7h9PzE55dPiIePj9/YlwXSA/FimJvOgKG072+U//hK+fhOCo6UPM/nmd05tn2jXD+Ij1f8csfPBR2NoZGBZ3RD7BCg9R0nDvEWrN0H9N5wCmMv6O3OthlMzTvHZTI8Z/cD6krdK7JW4gQ+BcRF1HlEwZ+faQoROGljd0p5f4XacNLQYa+u149feXx5QJPaN+YjcQzitqN14/32O3tTiIZ6GaMRo6e1jnORvRbcYjPNbSi5VBqmPvLi2eo/uPdGyoFBJUUHYfBxXxh6gBSensF7zpdHUimkU2bVRh+BGE64fAafmGJCU+P6vqGIcZvyZD5vVRyG7jmIuDayjMaWtoG5AQR7K/TW2JY78pc+iU/PDPE0l0nThZgmWmvEp7+xvb3Sm9nnojOeTm/DaqWQ2WMkpTPneMbpgOjAdYJUaJXTvHJWWO6rMWP9ROt2G+xrYZNAmiaqFPLpEa8d1zYuOtCHB/r1A3VvvL3v/L//z//FLz9XpCqiGXFCzB43O4YTamuEkBEXeL/dmYmc04nRhCqefPqEEtmiI4lYiNdyhxh4/OlCyoPRPhjtjcvsYB144PPTE7EI+7rT2o7L6fgZDXpbLdxaC60VRvA8PFxI58zTp0+UdSf4yPfXN14/3nEPj5ASqwiXywn8F/JDpTXYy4p8vFNa4+M/v6L/+Y1xXfD7wB2RFm3b8TmREZa3N94kovGZdP4CeaJpw7mE82YYUO1or4gMoB/ipcGoAz8a/baw//aNdr2T0kScJvI0m3l/K9ze341sKIl46sRTQGIEnxhd6RLxOKoMgj4hrqGus9+uIJbC4IeiNK7bG/Npxp1m0pSR9YrqxtDKXhqVRJBkEkXF1F8ofV2JU2Jd7mbjbMYVE+8pN+uir7d3UyPlzOnlgXE5QwzEx2dasKQHcZ7ujFRVa6cnz5BBA2oPSOmIVE5zQsTZ+Kf3I1JECckyan02XXJXQZ1DRXFBiHjEe4KPhhxSpY+Gd8Kof6G9Llx+QnWAs5a2iycIpk89Ty+UfaNWyy1JMQHCsiz27EPM95mMsr63Rm2VlE64OKhjYdSdmjyjNXQvf8Yp7HuxW6Abh3atjRw9IQR6SOTzBa2F+XyhV7jdX/n9PyqnEEkx0YDwMBEvmaqVIaYQCjETpFP7zrYvZGDdd7ZtkFPAnSLMGTll3BUTsKcG7R36gvSV+72gu7exQHC4lMluIl1OxCmzbCtdPC7PuDEIKHVfKK1SeqVXx/71K33vSBls6x3myE8/feH8t5/5GJ23Vkh5JuUZVyrl4w1fHfta4WNhu++4MOPnYIl8Q2mlUlrFp4Rzg/LxTnt7ZTy+Ubtxl3xIiA+GoeVAq2ijjgIBvAv4NEOxV08bQr/v5OHZbysb30nJ40ZnfNxoR//AT2fmywO9FLprBoZLJ5wbSJvpNdOnifDpmRYdwwty4IS0DlQ9/uEM04kRAoyK1h1Qhnb2daNoQxlmuKjFtMXePuTmlNXed2hZyPOEeMe+F8KcmaaMpoy7vFCnmR4TTQRCRHywuBUxbGtXUGevDgeUslNLg7ZT993QqIdryIdwsMq6aad9YqB4n+jibV7bKsgA7baX1Fl2Rt/xIgT5C5VObrpQy46gOG8nkUikdYcEhw9nRisgggsJVcHJG319o/RhkXrTGecD+7IQTg/4PFPWK9veDeimlTEUp4M+KmVfaduKDmVtAy+RNM10H+mlEIfiOojPdO6EEHl+yiy3HUIkTGc0RuJTJk4e7UKtynK7c3lMXJ5e8L7hfKePSghCCIPadqZkG3ZME3NwaBXaaNT7B7Qb5f07WhNz/oLOjdGE5Ga0Z3qMtHlizpnUO/V+x5VKaDu3r/+TXsHPmfPLM8457t9vLB8fjCGcz2eef/pCjY4pJMq2ohJNvF92vv/6Pzm7d16ef0JSInz6GwsT9/dvlNKQw34WVOl7pWPYzv3bN/TxO6PsdDqkjI+ZOhScZ2hnXW64HJieHshppnVsDrs07vcGRVnKnb1uDOn0IEirBLUbTJcrfTGJ5/BK98Z3Fo04p6Q5sdXEqAnlTJCAzxd6W5GyMz7u9AY9RJhPuJiRlNjF0f0NCR3cQm/gUqK1wxmE4mUgXvFzZERPzIES5GiUJiRF9qYMH5DpTHt4psWJHiYaciighDE6Y4AcYdEp2eUTHETx6LhR2sLbxzfScSn00f4026sYZypPJ5pCqRZl4sXTVRARat3preHFhCZOuwHI/8m20z+3YdOJKSS0Fbzzpsrw9i+sXfAxIinSFZqLxDwTurky99Wi/XxMlusZMml+pDtHdTsaT/RaGSp4bz8EjYEUYM7ORibX25GT8g44dDiyz8SYqaWZv9JZ/sovf/839rUTHh7gPPBnoO8wGnstrJsyX9TwLy4hY5jbp24En1Hn0e6gJcbuUcl0VdZ1w2lFRkWGoGp0fOYJ7xPFV1pN5JcvnF5eiPOJVhv1+kH/uJLaSiuvvH/f2FpF14WcJhs1hIhPifPlwTJetjtLG6TgcCdLxNPdqIb3929kF9CYkHgiXTy368p8EkZfqG3B+PmOOgxOfv/2lfr8jTw6nc5tCPPlkS7m3W3NaPsxCa6r8XkR1CW6RMJ0oYWFdbuTzzNeBuv1Fan2PXhRtGxQF9p2w8+RPEckQKPgnKIycMHh84TEiE8nS9prC7p8oLuhXHuwdLqRMs6fCecL/frO/v7daKzDmoJuwGjDYiUd7NHhPQdDeRAVwLTcOM8ijXA6k8/P9OlCDxlJZ7MpHrNRT0d6J0ZveBg1pOpQm3VHL0iy7+9+/WC9metJgjPteMzogM1V8umMDAGx5pIeY0/zaRglRBFEKxZZ+Bc2nWR6IoVAaxX13lCSISLd0bqBqMV7VARxCR9PxKmi9YbP4L293bUPWoP1oCX6+QFxHu8EP81oWRh1A2/PjdYHBGW+XOj1De3FIF1d2caCS5PVzT4QpzPt7YrrdtJ9+vu/0S/Cff9GvW30MeilEFxEtLOXzl4r2jbGvlD3lYcnT+vQO+iYGLP5KX3w5OmEuDNtPJNl5ePblVIqLoCLE2OKTM/PnH75r7hpogzQUKE1a66VnfhyJq9XyvXK2Dba+cReGmhjDom3j2/I7577gOn5mTFNtDCZbC6ekWnh+uu/s7/fERIpP8PAfK0Eerd5dhuDjcZ+gNxV39H7G+RAAwgZHwSfItdtJ57M9eScfbhtW8E5aB1qZzTH+MPSpkAfRAmk7Bh/HrYecQ1YaM2hZeBGRtKEQ6FckbYgWoxnnSKjCU5OlNDo5056OGacKE07TsGnxPz5C/lyoq4LbdktYW8YCVHHQHpFeqOo1cSiyn6/kXsndkPxjJxJPlHVlHUaEoRokAVnHm8fnH3jChwQ9V4WvNGerC4OgZBm5jzYb3fcGJS10NVKuDyfcClRSrGn+QEyH91UTW6IOdGOlIE+lLpuaP8LhRMaToyUGNIY3lOpOPEWxyEgzqh1zntK6ex7QRE0zAQ/4b2BwwFkrpZXGkzp42Ki4qAsDBw5zyzLlR6MgevEtKNxmtFDwLkuG1o7pW6IC4QQcFOk9savv/5K/vQLvy0Lz59/Rtnp+51A4NQ8+2ZSu7ELIkpd7rjaqFvl2/bK3kGHkFokfZmZnx6IHqRslKGM9IjkR9zTBWolusC2VlqF08Ns9L4Y0FrMeC07bdyp9YNBIU6BVgwFOqrHzxPxPJtxIdkM8/r1N2pvnH/+wv7+O4zOKc+QAikB+0q535m8NbbohXVf2MtCG4VGQ6PFpyhGi/j2n79y23fS8ydOn5+oCM578sMjPk0MHLVsjOXO2DZrROmgvt8Zyx2nSi07dW3QKjkIYYqod3QUP2fCnBnS0b6jBVzbkPbGGIW+fiC1mOACay4OZou5iBfi5zNBhL5t7EYLxw2lO0cIHjedcXFmuji0C6UZN4xWkWITB2mVfbmi2ojAcr2h950wX8j5bF3uNKHB41M+cnUtK0pFDnmno9RGcJ51tQ0bnJI89LoBSmmWQZRiwAHbsrLVQkgRjZ663dm3nXjEk7Zim3H0wGimIuvO24U0PCnPaHN/3YbFB9pQGmJ2qoHN5eQgAIh164YOxAnLvhCCQ/PJ3u1j2I3shOESXtXwJtNM21ckGXNXROi90n3DZwNfO7/T1bJb2r4yeiW4QN9M67u3QtXC+XwhPWXKqlx++Ykv/+1/wMPMmQtrreSTEtICb29EL/ReDlSmcr8upGlG5hPr3gguER5+Jp6/oF3YPq6Ut1e6wPlvE2U+MZIj6U67rpTrzvnySFCHbBui3ZQufSPqjguFqgsxOvQUifkTZQxLURNvyq7TjL88cPn0E1OF6/WVtN4RvbKvVzYVXKmMfmeMwr3sXP9xkCzVIGptbBTdwQ9r2ogDhFIqy164TGeeP/+Mf3hBorfUOBdAhdGV5bqi9xvt/ZV+fycH6PtGv2+MfcdpR2uBvuOG46PdEaeEx7MJU0LGpwuSIiqd3j6IfWG0DT8s8Mv5wPCZppFGRCUSsj/cRo40d2NA9c7og9qwGXLK+BRxIdHbAD3yf8sGe2LsK7KtxN4Z62JSwQEEbw2laWbERBtAV3xrBJeRoeCFVgdjDMpu6YBpisynmXu7syxXqht4UYsUaZ1eCvePq72+8sS+77R1ZykNH1dCmiDYvDvmyZIyvHWg9zJQFy3YbAyij8ez/C/asKWNP1PWOWqerhBjRNWQpaYB9X+++3VYbrgTa2vX3gliXDoGiDpqU2MMxZkUwp+smzg7Rttp4mkrFK2m+D9n5hiI+8r6/kpfDJE5tsLJnTk9zKzblUEHcWxrJZ8yD5/+D3S705ri4p1RdrbbjeCjvQDSzMgz4fzI86cTczoRHl7Yh+P+/R399jv77/9Aopik8dFRPu702x1ZV7Q2dsRS6u93enC4U8LHjlCJCTTZUM4/XpDpTIiZVirt46AQ+kyYE8U7Lp9eECnU5Z1yv1GLEvOZViw8uW+NESIxOpKLXN+vOG8JDX3fLBWgN+tQek9pnaHGWm6q9LrStkqIzrrJPpuDZ9/Q+8L4/orcX2laKWWF3slxQpqaE0urYVZdZ7qc4JTxL0/ML7/QU2Z4xbkd2GB0C5iSRNeA+hP54TNaHT44ZJjpfhw15whKChOjrPRu0RvqIoSExkRR6N46rc6bc0blmP36aNypPOFKtQNpmonnJ+T8xC4mpKEpbiucnCUSWHqvjXL2YtJBUbicJ6b5Qt039u1G9Byb1pw7PmfqvqO6cZ5mdHTWZbFmYdooarxqcYGYJ6ZposfI8AF8stHXsJRC91du2NaacXp0IOJoY9j/aO8Eb6buVishDgSPCIyjkSHOIWoDhN4t8qEfNWxHjZBQK1GUjmX1yB8fnHp8vkCzG8Sn4wmmgjt34pS5fxvU0vh4fyO2Tgydtr+zfP8PNE+sq5CnwLKtXN9eoRSkVrQ3moLEQJgn/OVCiwlFWJYVv5hBmftOfXtjfFxpo/C1ddLjK21ZGfc7rlf8nPFSaVrR3dOD5+nvXzhdTtRaqQedX3dlvCcAABBYSURBVKMnPj7izs+QJ2JrbP4r9a1w3z4oH878k7XhpbOsd1CI2UgIKZ5pcsdPwrYPYkxs95XqKr1YLGL3ULtZ7f6AkIkLdnACjMb99VfKeiWI4r3H+4l8eWbcdvrbB3HfcK1S9g9G2ex3vjeCOpJXSyCQYfiZfKLmE/30SEkXmo+m8XUeiVBqQhMMDJlCmNjkwi6ddPLUUmhlt//W3vEhIs6Tg6cPZfyxIUMC8dYgG1YHowMfkxnpfabHBPOMaxekd0timM746WwNJh+sPj3sbvdtx/mGnxLeWxxNihMiA9HG7X4zmaGLNgrToyPcu+X7pBMigX1Z6bUQvTtmrBVKOV6NnjrsghiXCy0EwjTj80yjIN4MEzY8+qs2bC1w1DwcMR2IM4znMNqBdw56R8dB9cNqW8NousNRr8cPRhgMnAhtVBSl9WqnjDbW5Yo2i8HoplfE+xPzfDIFzoDoPLrf8eeCa0r5uFL3Oyk4ennl2z/+T1wMiNi8ePRKL5uFRLXO6FCXhZWNMF3w85k5mLrp9vqV9XbDpwlCtoNHHKMqr79+RX57NeG3DHQ0zvGF9e2N6TLIfiaFibpd2bbGdPJsW0engA8vhOkZ8iM9eOgF/3hmtIX99sH1+1eie7OIEwHJJ6aHiTQ94tMDrVZIEYaSO+gYuACTE26vV9pmeapbV0KIdHX0buKIGE2ad/3+lbreaPd3ei8GhCfwLolpemSSyOWcuW6V0jb6aDzMj9SlsteVKp1KhTkyPzzA8wvy9As1P1FdRuKEeGG4E7SZVRfrjoaJlM+0YSnzLjrEWRMn+4yOTq07IoaL7a2jzmJe7GFn4oPkjAPdasc5MbVbzObZLdGUU9osclIcPU0UibgGtIHEYJ3tY/Pa1QPa7WBTgW1dzDwfLFsnxozTRtuaOYjqDggpnyBOlN2aSrXD6IrlThfaGPSB0ScU1vuKhkDdK6dHS2mQOOGzmtjkr9qw9YjjkOYQ74/WdCc4+3gGejCFOq12ox7gj9xMxbkjdPM45SXocVpZMLSMTq8FaYW6fRy+QZujuZQI7sReGz6dSMdB1INnOEdW86V2hUGlt521vtFe33BOySEhPeC9Q5wjTGfwkU0LdW/WEu7CtQ14/2AOmbRX+vWDj/qKnh+RYckFfThag0FhGxXBXhjjekWIZI3UtCJuhlxgrxSgS8HlCNOF7ia6OuNFjYFED3kiqSNh/CavQhfPClylk2WQg6FLa/LUbTP9bGuoV9J5Ijdla4O9rFQVROw10nolx0ithbdvX/EpklvDbw3f7ORXl6gaKf5KmzNL36j1RtdOng1k7s+R94+dPCd8TOTPL5z//m/o+REevjDyI8MnuguHxve4VVM86BcZDdl8oX0Y+NtFalvxIqSY8AKtGGjNhYBiNNcgzjKpnGmww+SRYFbMPoSGJ+aZiz5YSbBvx7jHoTEbl8tbsru6w82pivfO0vrGoLdGOv6evex41/E+/XkxKQcvazOBkKqVXKq2KUXCn6B32S00O6aJvhXAMU0TrXW2dafpincOlyeGFLq3iJu/bMP2uoB40ICEaPMj79k2Q4D03uy0G51aCvrHjSv2Rz9u5wE0cXi1Dm1rdjtr67Bt9O1G266E42RT8QSf6CqEnNmbpZuH6WSib3HgJ0K6ID6x+0gvd3IUfK3IVnB94N1glIY4z9v6houJaZoZ1Z7ePge6FOq6citCVOMS9X03RY2L3GuxEGsFXKTpIIh9fOu6kkLndu2k2eNCJT441J/oEpH8GQ2Rms8MZ8/AXhdk7AhCjYnaFMfAqeDFWLtDrGO9bjulvMGAUZshShiW6h7sd7G/7ogztUxDaW2jdeHy+Mw0n1n3zqUUwqEmK9cP6v2dXjacC6R8RmJFdMM5OIfIujdj/M4wfCLOn5k+fSE+PzDOE+30QA8ndLogLiMu433G+UitO+oTMZ3+/I7asNvMKKWVvr/R9mKCBmdkhh6shnSM/8/3g73SnLMoSTXxjg6Lu8R1RExTLNNEj5k+zFXmvT8CmRVJARFI3g4D55ylvh/RoSE6gp/o44J2U8ZpB60dUQOuNzrrdsW7QN2MyzTNM1vvSMyc/ETjHUZh4AmHCEWbWvJf64zeWN7fjljObFjW/hfWsLUeERWiaOukaSJ4Z82mXi1oV+3Ji9hm7N2US3KcUNKtK+m8R4+Aot7FOpytIqPZZh9q/kd1hGjMJRVH9JE+Bute8F5p4hkuks4nepwI2JC6rR+EJFxSQD/uXL9+pdIMq+IC4BghQTqRSaz3G32YQkhrZezQSqU3g0qX65WqVhdiedzIOJ6s9v0Y+cFDeDwRLxPu4cL8+Wfi4yd6CLTe7fnjk9WR3uOGQzWgovjTGUJmlCOpfdghaKFjzvCkR9NvDEWddRdFlV4rH9ud2ndKNxUSMqhDKR3CXlE2LgcLqW4L5f1KWa70fcHJQMage8+cPaVWQoyMEfDzmT04CoMwz1z+/m/k5y9szrHQ8XEiTA8QM8MFggs4FxlqrwGc0FQMTAAgapny3W401+qRXOcotRNyxMVMb7bZnLP5rneHbHBgFsohgJhFTSyGs5QDdp9PSLToGOcafXTT6ro/oHD/+8asw5LsvdibcDSL3gzRXiej2w3asLJQW6NXm62rgyBQemdfFzRFcs7QhO4C27aYFXCaLUh6wLKutN16O7Wt4AJ+dogv1vn+qzZsr3baIN0gWzpo+0bZV9B6BGGZmDkdvJpub0dUOuKEVorZ51Ky006O4OuhuN4YraNiWFFVYQwDi5Wym8dSoasBxlrtOImI92ZKYMD0QHz2SJ5Ztw/2beecZuTxhRRBumlZ0jST5zPbbaf3O7IXWunQOtIdoxS0QOmwdpPutV6Njk0/uEV2OA2xppXMM/npmenzJzhnOD0ynn6hzY8MB/t+o0vBqw317Z/3CGoGg1LQUHESGLLT9w0XD24TSpoSqKPWjqRE9N68utuKxkobd8YUoRaohh1tQxgIt/sHve18fvgbpe7cPl7pywLNaJcxBSRlepzo80TZN2Dw9PxIuJxxKeBPM0wz/fzEkk40bzGLPWTURbwYGgbvjS3VsQ2rio6OjnGURGpQdDE2chvBrIvqiMGSAhSMdhmEPjq9KiFa+WAHltWL8eiN9GHig96hjyNC5Agad9HjDmyOHg3Q2iplt5p+HDd0qwWGUg75YIyBVqvlDfWK9kKvhSRi3K6upGDP6b0Pam+knOljsK87TgSfJkotDKD2buAFFyxHuRT2tdL1zqyC00OR9Vdt2Fo2RIJ1gH2zwF4BHSZe8M5OLRC2o43v7S6yPFIxnWbvNstSlD8uZCdHU2vYKGZgiqmBKZ1UO0JjtABpYjSrJZwIeihJ1EX8FFGXiPkE7YG2Xnn/+EDSiS4wx4QPAUnJ4GRcWa8bIySrJ2plWT6opXFKE95PbNcbtZozxOgA9h+szljALifi+Ux6eia9fEYfH+jnmfnpZ+T0GdKZmBxti7TtigrG8R3WkKObs6l2RwgTSqVJt7pLOqCknI55qgM/8M6jCEHOxPOF1grp4YF2vrHEb7BvbHdlrMN8o23ncppwAT7u75SyEv0gTRNdPWmemZ8/ER+eSClT9wIxkB4e6THiTjPNeYaPSJyRMNOds0NyeII4RO23PdQ6vc77PyNGxxHoLSLW6feeWitexFi8f4x0jlcD2BjQxwR1p9eC1oGo1b3GPRRK6wh2iPuQmOaZ0mzTiovUrjjn7SMDYFBbM2rlcaHUWmyCUSv+CBd3ztGrHcq1rGz3VxNn9EatG6MUPI5Wjnq0VJoAeyP5Rik2s07eA8Jed3wI1FosGMx5hhU/bOuO85YAL/Gfk0T8c13isuOk2XOnFBvViJ2evRUI9tyttSEukPJE6YPoTGL4x42kOmi7nXSq9hyu3dLKRqtGohPH0GE16jEacsDQQhvd2uDO2vJ//ArFWZ08GKSUcHk2/25+oN9vtHXjYy922o7K+vs3fB+EOdtNv61s68ZaCl0bhcoYzuxwOkyFFIPREWMwd040/Mj0/Ew4X+DxiXG+4C6PjPnCSBMaAuIdcb5QunW9GYp3yQb+4hm1okOpo9kRFzNdrIkhDuRIBY8xoK1at1rtcOxFIAX8NDEQZmAajbl/4eN95e31jbbvhMlxWz+gN/BKd92EH2kmns/oKVNSoHqHXC74PLFPE8wzw5uMTnzG+emYp9prKojDq0P7wDmht2oyPwbO2aelai8ljtGeOCuLQOgSLPqlN0rvgFj3FhvxdRo4gySM2ghekOCRYbWnk6OWxXKDYOCco7VOada76M1SHhD9cxRkYxlFDgi5NUt3I0k6mw075+n7AmWhbLZRR9mITkjeG3T9EA/laIdqWTecDEKM9FrY9tUQQs1oLKrGwR7Hi2N0e0HilUD+6zZsb5U+KlCwwHlFsZGGjo6GaJsY88O2sv/5xPBejk07bMOWDecTDodzHDrLxhhWs7RWiH/UuQc6pdfCXisyXXBxJgShj6M2huOf9XgXkRCOG9Aj8YSLM21akX2nl419v+HKTlYlesGdMufLiffR0dsH3ke2Xlj3jeoHkgLdOfzphJxPhNNMmibybHLCMM342YQXLc3EkFER2ihorXQNpgYKs40oekN7Jcj/9kB6Ufa14NVMEr13VAYpZZqfSHNmDDs8em84caSYCTFRtFnXXm0+KtqZfCCdG9PlxPv3b7SysTXlPGeCzHh1hOPAcfNEDc7iNfPJZs+nE5LSn5vVObPkERIq7k/gm3g5DtaB0vHeFFOm6DFvrTjbKCJiPGUU59wR+G21uWl5TZAwFLO2iQ1cdFi2DsOS1rva7wNxtK44Z+6avXQ4UhB67/a6O3oBdpAozgt0S6tAB4zO0EHZF3ov5OitxuwQfOL+/gr1akKKoUwp4Z19c61V8A7EZq3g2JcbfhiBYttW0E7Zd4IPjKqIJNRXei8IlvOrY1Bqobu/sIbdlsVOvmGFvtXveihCxtEIcQww29Zmz+LgvInRW7WTTMahEsGaEaPRWiV4f/ygB200+mhW0Nedti1mSEYJaTId8B8p5Kr48IezQoFAa4PqhOFslKNZ2FUt9jI5YlZc26DsLLcNr566D8KUOL88mMKq7Yw6CMNq5Oo8py9fiM8vTE+P5JDQrgwsW6Y7h08TPs82YmoNYUURaoGYDNeJi8ZG8h6tlttatSMD5pwP7jC4mOwmCRGfTyavG4IXpW/2pPPOmbqHcNDoTwTxRoccHYdn1jOtbSwfjZwTPgZCcBZ07AU/JeJpMrlozuaS8ZkqdjPKoVQzNZGN2VTc8f9tURneGYBPasdoKSZ2d26gePs2vBwIViV6q9VM1MExAgScM2RrPza6t78+9AhJa4U+Gg2Ppun4ZhzW/ROzsukBlfeRMeS4yZTeqh0ojj9FOXI4cMZorPtiIzoXqPtKxBMQdC/QqjVYW2MrJp9FoGk7Gl6OdduhVlrZqbUQQ7Jx52hmINDB6AYGsH+n/bm3diT9gfZ/zsAu9qH/WD/Wj/WvsP45PdSP9WP9WP+/WD827I/1Y/0LrR8b9sf6sf6F1o8N+2P9WP9C68eG/bF+rH+h9WPD/lg/1r/Q+l9rrhitU3/l3AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" }, { - "cell_type": "code", - "source": [ - "# Train a pretrained ViT feature extractor with SWAG weights\n", - "from going_modular.going_modular import engine\n", - "\n", - "optimizer = torch.optim.Adam(params=pretrained_vit_swag.parameters(),\n", - " lr=1e-3)\n", - "loss_fn = torch.nn.CrossEntropyLoss()\n", - "\n", - "set_seeds()\n", - "pretrained_vit_swag_results = engine.train(model=pretrained_vit_swag,\n", - " train_dataloader=train_dataloader_20_percent,\n", - " test_dataloader=test_dataloader,\n", - " optimizer=optimizer,\n", - " loss_fn=loss_fn,\n", - " epochs=10,\n", - " device=device)" - ], - "metadata": { - "id": "R_8rjNgHfVYV", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 228, - "referenced_widgets": [ - "72415a3076c042bba10412be90a5222c", - "f3eb5a1beace49cab6c1f9ec107e57e5", - "1b5f49a68fe84812ae6f1c014d3348f0", - "c33a10a3693340bc9b9477caab4d532a", - "267761bb9148406eafbf4fce8a35e731", - "7ca1118a9dc54de5945764c9c5aba485", - "8c87a454a6d9410f90a1b657118fb794", - "9e7268f207304961b8035122012f61b0", - "ff69c66d4d3f4c17be9826da8319a3f3", - "4224d3ad9ded48cea36a5984826af143", - "f92c3db1bd3b40bd9c3f93f35a2f41c4" - ] - }, - "outputId": "f255b316-776c-4c84-f5ba-df20190c739b" - }, - "execution_count": 36, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - " 0%| | 0/10 [00:00" ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" }, { - "cell_type": "code", - "source": [ - "from helper_functions import plot_loss_curves\n", - "\n", - "plot_loss_curves(pretrained_vit_swag_results)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 458 - }, - "id": "XIoYQSRvfe0j", - "outputId": "99f648b7-496e-43f6-9fbf-3fd66f504c94" - }, - "execution_count": 37, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAG5CAYAAAD/HsejAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXyU5bn/8e+VfQIkZGGfIFgFAQGXIFZqcReUI4pLXSselS7aoz3VX2mr9Whrj6d6rFotrW3FYrWupaLFterRqhWCggqIIGomBDAwSUiY7Ll/f8xMCBggy0wmM/N5v168TGaeeeZKHJh8c9/PdZlzTgAAAACAviMl1gUAAAAAAHZHUAMAAACAPoagBgAAAAB9DEENAAAAAPoYghoAAAAA9DEENQAAAADoYwhqAAAAANDHENSAHjCzz8zspFjXAQBAtJnZa2ZWaWaZsa4FSAYENQAAAOyTmY2SdKwkJ+mMXnzetN56LqCvIagBEWZmmWZ2l5mVh/7cFf7to5kVmtmzZlZlZn4ze8PMUkL3/dDMNplZjZmtM7MTY/uVAADQ5puS/iXpQUmXhm80syIz+6uZVZjZdjO7t919V5rZ2tD72hozOyJ0uzOzg9od96CZ/Tz08XFmVhZ6T9wiaaGZ5YXeOytCK3rPmpm33ePzzWxh6D230sz+Frr9QzP7t3bHpZvZNjM7PGrfJSCCCGpA5P1E0tGSDpM0WdJRkm4I3fcDSWWSBkkaIunHkpyZjZV0taQpzrkBkk6V9Fnvlg0AwF59U9LDoT+nmtkQM0uV9KykzyWNkjRC0qOSZGbnSvqv0ONyFFyF297J5xoqKV/SAZLmKfjz6sLQ5yMl1Um6t93xD0nKljRB0mBJvwrdvkjSxe2OO03SZufce52sA4gplpOByLtI0vecc19IkpndLOl3km6U1CRpmKQDnHMbJL0ROqZFUqak8WZW4Zz7LBaFAwCwJzP7moIh6XHn3DYz+0TShQqusA2XdL1zrjl0+D9D/71C0i+dc8tDn2/owlO2SrrJOdcQ+rxO0lPt6rlV0quhj4dJmimpwDlXGTrk/0L//bOkG80sxzm3Q9IlCoY6IC6wogZE3nAFf7sY9nnoNkm6XcE3qxfNbKOZzZekUGi7VsHfPn5hZo+a2XABABB7l0p60Tm3LfT5I6HbiiR93i6ktVck6ZNuPl+Fc64+/ImZZZvZ78zsczPbIel1SQNDK3pFkvztQlob51y5pDclnW1mAxUMdA93syag1xHUgMgrV/A3j2EjQ7fJOVfjnPuBc+5ABbeB/Gf4WjTn3CPOufBvLZ2k/+ndsgEA2J2ZeSSdJ2m6mW0JXTf2fQW39m+VNHIvDT98kr6yl9MGFNyqGDZ0j/vdHp//QNJYSVOdczmSvh4uL/Q8+aEg1pE/Kbj98VxJbzvnNu3lOKDPIagBPZduZlnhP5L+IukGMxtkZoWSfqrg9guZ2SwzO8jMTFK1pBZJrWY21sxOCDUdqVdwm0drbL4cAADanKnge9V4Ba+9PkzSOAW37p8pabOk28ysX+h9cFrocX+QdJ2ZHWlBB5lZ+JeYKyVdaGapZjZD0vT91DBAwffFKjPLl3RT+A7n3GZJz0n6TajpSLqZfb3dY/8m6QhJ1yh4zRoQNwhqQM8tVfANJPwnS1KJpPclfSDpXUk/Dx17sKSXJdVKelvSb5xzryp4fdptkrZJ2qLgxdA/6r0vAQCADl0qaaFzrtQ5tyX8R8FmHhdI+jdJB0kqVbBZ1jckyTn3hKRbFdwmWaNgYMoPnfOa0OOqFLyu+2/7qeEuSR4F3yP/Jen5Pe6/RMFrwD+S9IWClxIoVEf4+rbRkv7axa8diClzbs/VZQAAACAxmNlPJY1xzl2834OBPoSujwAAAEhIoa2Slyu46gbEFbY+AgAAIOGY2ZUKNht5zjn3eqzrAbqKrY8AAAAA0MewogYAAAAAfUzMrlErLCx0o0aNitXTAwB60YoVK7Y55wbFuo54wXskACSHfb0/xiyojRo1SiUlJbF6egBALzKzz2NdQzzhPRIAksO+3h/Z+ggAAAAAfQxBDQAAAAD6GIIaAAAAAPQxDLwGkPSamppUVlam+vr6WJcS97KysuT1epWenh7rUhIOr9P4wt8FAD1FUAOQ9MrKyjRgwACNGjVKZhbrcuKWc07bt29XWVmZRo8eHetyEg6v0/jB3wUAkcDWRwBJr76+XgUFBfzw20NmpoKCAlZ8ooTXafzg7wKASCCoAYDED78Rwvcxuvj+xg/+XwHoKYIaAAAAAPQxBDUAAAAA6GMIagAQY1VVVfrNb37T5ceddtppqqqq6vLj5s6dqyeffLLLj0Ny6+3XKQAkO4IaAMTY3n4Abm5u3ufjli5dqoEDB0arLGA3ifo63V/9ABArtOcHgHZufma11pTviOg5xw/P0U3/NmGv98+fP1+ffPKJDjvsMKWnpysrK0t5eXn66KOP9PHHH+vMM8+Uz+dTfX29rrnmGs2bN0+SNGrUKJWUlKi2tlYzZ87U1772Nb311lsaMWKEnn76aXk8nv3W9o9//EPXXXedmpubNWXKFC1YsECZmZmaP3++lixZorS0NJ1yyim644479MQTT+jmm29WamqqcnNz9frrr0fse4SuSYbX6e9//3vdf//9amxs1EEHHaSHHnpI2dnZ2rp1q7797W9r48aNkqQFCxbomGOO0aJFi3THHXfIzDRp0iQ99NBDmjt3rmbNmqVzzjlHktS/f3/V1tbqtdde04033tip+p9//nn9+Mc/VktLiwoLC/XSSy9p7NixeuuttzRo0CC1trZqzJgxevvttzVo0KBI/i8BkORYUQOAGLvtttv0la98RStXrtTtt9+ud999V3fffbc+/vhjSdIDDzygFStWqKSkRPfcc4+2b9/+pXOsX79eV111lVavXq2BAwfqqaee2u/z1tfXa+7cuXrsscf0wQcfqLm5WQsWLND27du1ePFirV69Wu+//75uuOEGSdItt9yiF154QatWrdKSJUsi+03o48zsATP7wsw+3Mv9Zmb3mNkGM3vfzI5od9+lZrY+9OfS3qs6snr7dTpnzhwtX75cq1at0rhx4/THP/5RkvQf//Efmj59ulatWqV3331XEyZM0OrVq/Xzn/9cr7zyilatWqW77757v19PZ+qvqKjQlVdeqaeeekqrVq3SE088oZSUFF188cV6+OGHJUkvv/yyJk+eTEgDEHGsqAFAO/taUegtRx111G5Dcu+55x4tXrxYkuTz+bR+/XoVFBTs9pjRo0frsMMOkyQdeeSR+uyzz/b7POvWrdPo0aM1ZswYSdKll16q++67T1dffbWysrJ0+eWXa9asWZo1a5Ykadq0aZo7d67OO+88zZkzJxJfajx5UNK9khbt5f6Zkg4O/ZkqaYGkqWaWL+kmScWSnKQVZrbEOVfZk2KS4XX64Ycf6oYbblBVVZVqa2t16qmnSpJeeeUVLVoU/N8QXt1dtGiRzj33XBUWFkqS8vPzI1J/RUWFvv71r7cdFz7vv//7v2v27Nm69tpr9cADD+iyyy7b7/MBQFfF7YpabUOzPiirVkuri3UpABBR/fr1a/v4tdde08svv6y3335bq1at0uGHH97hEN3MzMy2j1NTU3t03U1aWpqWLVumc845R88++6xmzJghSfrtb3+rn//85/L5fDryyCM7XDFJVM651yX593HIbEmLXNC/JA00s2GSTpX0knPOHwpnL0maEf2Koy/ar9O5c+fq3nvv1QcffKCbbrqpW8Oj09LS1NraKklqbW1VY2Njj+oPKyoq0pAhQ/TKK69o2bJlmjlzZpdrA7B/dY0tKt0eSNqf9+M2qC1ZWa5/u/ef2rqj6/9wA0BfMmDAANXU1HR4X3V1tfLy8pSdna2PPvpI//rXvyL2vGPHjtVnn32mDRs2SJIeeughTZ8+XbW1taqurtZpp52mX/3qV1q1apUk6ZNPPtHUqVN1yy23aNCgQfL5fBGrJQGMkNT+G1IWum1vt8ed3n6d1tTUaNiwYWpqamrbZihJJ554ohYsWCBJamlpUXV1tU444QQ98cQTbb888PuDmXrUqFFasWKFJGnJkiVqamrqUv1HH320Xn/9dX366ae7nVeSrrjiCl188cU699xzlZqa2uOvF0h2VYFGvblhm+5//RNd8+h7OunO/9OEm57X129/VRNuel5n3vemfrL4Az3yTqneL6tSfVNLrEuOurjd+ujNC158XFZZp+ED93/BPAD0VQUFBZo2bZoOPfRQeTweDRkypO2+GTNm6Le//a3GjRunsWPH6uijj47Y82ZlZWnhwoU699xz25qJfPvb35bf79fs2bNVX18v55zuvPNOSdL111+v9evXyzmnE088UZMnT45YLZDMbJ6keZI0cuTIGFfzZb39Ov3Zz36mqVOnatCgQZo6dWpbSLz77rs1b948/fGPf1RqaqoWLFigr371q/rJT36i6dOnKzU1VYcffrgefPBBXXnllZo9e7YmT56sGTNm7LaK1t7e6h80aJDuv/9+zZkzR62trRo8eLBeeuklSdIZZ5yhyy67jG2PQBc557S5ul6ry3dodXm1Vpfv0JryHdpUVdd2zLDcLE0YnqPTJg7TsNwsrd9aq9Xl1VqyslwPv1MqSUpNMR08uL/GD8/RhOG5mjA8R+OH5ygnKz1WX1rEmXOxWUosLi52JSUl3X78xopanfC//6c7z5usOUd4I1gZgGSzdu1ajRs3LtZlJIyOvp9mtsI5VxyjkiLCzEZJetY5d2gH9/1O0mvOub+EPl8n6bjwH+fctzo6bm86eo/kddq3lJSU6Pvf/77eeOONvR7D/zMku5ZWp0+37dTq8mqtKd/RFs4qA8HVbTNpdGG/tqA1IRS68vtldHg+55x8/rq2gPdh6L8VNQ1tx4zMz97tXBOG52hwTlavfL3dsa/3x7hdUQuvopVV1u3nSAAAom6JpKvN7FEFm4lUO+c2m9kLkn5hZnmh406R9KNYFYnIuO2227RgwYLdtmQCya6huaVt5evDTcFA9tGWGgUag1sUM1JTNGZof50yfqgmjAgGqUOG5qhfZufjiJlpZEG2RhZka+bEYW23f1FT37YyFw5xz324pe3+wv6ZXwpvI/OzlZJikfsGREHcBrWs9FQNHpCpsspArEsBgD7pqquu0ptvvrnbbddccw1btbrBzP6i4OpYoZmVKdjJMV2SnHO/lbRU0mmSNkgKSLosdJ/fzH4maXnoVLc45/bVlCTpxOPrdP78+Zo/f36sywBipqa+SWs317SFotXlO7R+a42aQ00/+memafywHJ1XXNQWjg4a3F8ZadFpjzF4QJYGj83S8WMHt922o75Ja9tW8YIB7s0N275U4/h2Ae7gIf2Vntp3WnjEbVCTgtepsaIGAB277777Yl1CwnDOXbCf+52kq/Zy3wOSHohGXYmA1ynQt1XUNOx2Ldnq8mp9tn3XQkl4ter4sYP61GpVTla6ph5YoKkH7hoT0tDcoo+31LYLmNV6bLlPdU27r/pNGJbbtuo3bliOsjNiE5niPKhla6WvKtZlAAAAAHFtz+u/wv/9ooPrv8450hsX13/tKTMtVRO9uZrozW27raPr6F5cs0WPlQQb9nb1OrpIivOg5tHSDzarpdUptY/vMQUAAED0tLQ6vblhm55YUaYNX9TGupy44pzTpqo61dQHZxuGOyp+7eDCtoAybliOcj2J01ExLDXFdNDg/jpocH/NPiw4PaWjzpTvfl6pZ1aVtz1uWG6Wrjj2QF3+tdFRqy3Og1q2mludtuyo1wha9AMAACSd0u0BPbnCpydXlKm8ul65nnRNGZUnM36J3xVHHpCnQ0cEQ9mYIQOUlZ688wHNTMMHejR8oEcnj981iqRyZ6PWbN4V3vL7RTe4xnVQK8oPdX70BwhqAABEUVVVlR555BF997vf7fJj77rrLs2bN0/Z2dlRqAzJqK6xRc+v3qzHl5fp7Y3bZSYde/Ag/fj0cTpp3JCkDhmInrx+GZp2UKGmHVTYK8/Xd9qadIM3L/gPPg1FAMSzqqoq/eY3v+nWY++66y4FAvvufjtq1Cht27atW+cHwqL9Ou0tzc3NsS4B3eSc0ypflX68+AMddevL+v5jq1RWFdAPTh6jf/7wBC3696M0a9JwQhoSRlwHteEDgxcvEtQAxLNE+QEYiW3+/Pn65JNPdNhhh+n666/X7bffrilTpmjSpEm66aabJEk7d+7U6aefrsmTJ+vQQw/VY489pnvuuUfl5eU6/vjjdfzxx+/1/N/5zndUXFysCRMmtJ1PkpYvX65jjjlGkydP1lFHHaWamhq1tLTouuuu06GHHqpJkybp17/+taTdfylRUlKi4447TpL0X//1X7rkkks0bdo0XXLJJfrss8907LHH6ogjjtARRxyht956q+35/ud//kcTJ07U5MmT277mI444ou3+9evX7/Y5om97bYP+8MZGzbjrDc2+70399d0ynTR+iB65cqr+77rj9b0TD2ZnFRJSXG99zExL1ZAcZqkBiKDn5ktbPojsOYdOlGbette72/8AfPLJJ2vw4MF6/PHH1dDQoLPOOks333yzdu7cqfPOO09lZWVqaWnRjTfeqK1bt7b9AFxYWKhXX311v6XceeedeuCBYKf4K664Qtdee22H5/7GN76h+fPna8mSJUpLS9Mpp5yiO+64I2LfEvRQDF6nt912mz788EOtXLlSL774op588kktW7ZMzjmdccYZev3111VRUaHhw4fr73//uySpurpaubm5uvPOO/Xqq6+qsHDv24VuvfVW5efnq6WlRSeeeKLef/99HXLIIfrGN76hxx57TFOmTNGOHTvk8Xh0//3367PPPtPKlSuVlpYmv3//o+nWrFmjf/7zn/J4PAoEAnrppZeUlZWl9evX64ILLlBJSYmee+45Pf3003rnnXeUnZ0tv9+v/Px85ebmauXKlTrssMO0cOHCPj3jLVE0t7Tq9fUVenx5mV5eu1XNrU6Tiwbq1rMO1b9NHq6crMRragHsKa6DmhTc/siKGoB4Fu0fgMNWrFihhQsX6p133pFzTlOnTtX06dO1cePGL517+/btWrx4sT766COZmaqqGIWCXV588UW9+OKLOvzwwyVJtbW1Wr9+vY499lj94Ac/0A9/+EPNmjVLxx57bKfP+fjjj+v+++9Xc3OzNm/erDVr1sjMNGzYME2ZMkWSlJOTI0l6+eWX9e1vf1tpacEfY/Lz8/d7/jPOOEMeT3DVpampSVdffbVWrlyp1NRUffzxx23nveyyy9qupQuf94orrtDChQt155136rHHHtOyZcs6/XWhazZW1OqJFWV6akWZvqhpUEG/DM09ZpTOLS7S2KEDYl0e0KsSIKh59G5pZazLAJAo9rGi0Bui8QNw2D//+U+dddZZ6tevnyRpzpw5euONNzRjxowvnbu5uVlZWVm6/PLLNWvWLM2aNSuiXyd6KMavU+ecfvSjH+lb3/rWl+579913tXTpUt1www068cQT9dOf/nS/5/v00091xx13aPny5crLy9PcuXNVX1/f5brS0tLU2toqSV96fPh1L0m/+tWvNGTIEK1atUqtra3Kytr3HKizzz5bN998s0444QQdeeSRKigo2Ofx6JqdDc36+web9USJT8s/q1SKScePHaxzi4t0wiGDlZEW11fqAN0W9698b55Hm6vq1dzSGutSAKDHwj8Ar1y5UitXrtSGDRt0+eWXa8yYMXr33Xc1ceJE3XDDDbrlllsi9pwdnTstLU3Lli3TOeeco2effVYzZsyI2PMhPg0YMEA1NTWSpFNPPVUPPPCAamuDs6o2bdqkL774QuXl5crOztbFF1+s66+/Xu++++6XHtuRHTt2qF+/fsrNzdXWrVv13HPPSZLGjh2rzZs3a/ny5ZKkmpoaNTc36+STT9bvfve7tsYg4a2Po0aN0ooVKyRJTz311F6fr7q6WsOGDVNKSooeeughtbS0SJJOPvlkLVy4sO26z/B5s7KydOqpp+o73/kO2x4jxDmnFZ/79f+eXKUpt76s//fk+9pe26gfzjhEb//oRP1x7hTNOHQoIQ1JLQFW1IKz1LbWNHAhKYC4tOcPwDfeeKMuuugi9e/fX5s2bVJ6erqam5uVn5+viy++WAMHDtQf/vCH3R7bma2Pxx57rObOnav58+fLOafFixfroYceUnl5+ZfOXVtbq0AgoNNOO03Tpk3TgQceGNXvAfq+goICTZs2TYceeqhmzpypCy+8UF/96lclSf3799ef//xnbdiwQddff71SUlKUnp6uBQsWSJLmzZunGTNmaPjw4R1eSzl58mQdfvjhOuSQQ1RUVKRp06ZJkjIyMvTYY4/pe9/7nurq6uTxePTyyy/riiuu0Mcff6xJkyYpPT1dV155pa6++mrddNNNuvzyy3XjjTe2NRLpyHe/+12dffbZWrRokWbMmNG22jZjxgytXLlSxcXFysjI0GmnnaZf/OIXkqSLLrpIixcv1imnnBLJb2vS+WJHvf763iY9XuLTxoqdys5I1axJw3RecZGOPIDZZ0B75pyLyRMXFxe7kpKSHp/njfUVuuSPy/TYvKM19UC2IgDourVr12rcuHExreHCCy/U+++/r5kzZ8rr9bYFsX39AFxcXKxf//rXuvfee/f6A7AUXGUoKSlRYWFhh81EXnjhhS+de8SIEZo9e7bq6+vlnNN1112nSy+9tFNfS0ffTzNb4Zwr7sG3KKl09B7ZF16nyeyOO+5QdXW1fvazn3X6Mfw/C2pqadUrH32hJ0p8enVdhVpanaaMytO5xUU6feIw9cuM+3UDoNv29f4Y90Ht0207dfwdr+l/z52ss4/0RqAyAMmGH6Yii6DWcwS1vuWss87SJ598oldeeaVTq9dhyf7/bP3WGj1e4tPi9zZpW22jBg/I1NlHenXukV4dOKh/rMsD+oR9vT/G/a8wmKUGAED8mDp1qhoaGna77aGHHtLEiRNjVNH+LV68ONYlxI0d9U16dtVmPV7i00pfldJSTCeOG6xvTCnS1w8epLRUrjkDOivug1p4lpqPWWoAklw8/gCM5PPOO+/EugREWGur0zuf+vVEiU9LP9ys+qZWjRnSXzecPk5nHj5Chf0zY10iEJfiPqhJUlFeNkOvAfSIcy7uL2LvCz8Ax2o7fbJIhNdpsojU34WWVqftOxv2f2AM7Gxo0bOryvXEijKV+gMakJmmOUd4dV5xkSZ7c3mtAj2UEEHNm+dRyefMUgPQPVlZWdq+fbsKCgr4waIHnHPavn37fmdSoXt4ncaP7v5dqG9q0botNVpdvkOry6v1YfkOrduyQ/VNfXsE0VcPLND3Tz5YMyYMkycjNdblAAkjQYJatp55f7OaW1rZ+wygy7xer8rKylRRURHrUuJeVlaWvF4aO0UDr9P4sr+/C9V1TVoTCmTB/+7QhopatbQGV+IGZKVpwvAcXTT1AI0qyO6T4Tw1xTTtK4UaWZAd61KAhJQgQc2jllanLTvq5c3jHwsAXZOenq7Ro0fHugxgn3idxifnnL6oadDq8mqt3hQMZKs3V8vn39UEbUhOpiYMz9UpE4ZowvAcTRieK2+ep0+GMwC9J0GCWjCclVXWEdQAAEBMtLY6fe4PBENZaJVsTXm1ttU2th0zurCfJnkH6oKjRmrC8FxNGJ5Dsw0AHUqQoOaRRIt+AADQOxqbW7X+i5pQGAtuYVy7uUa1Dc2SpLQU05ghA3T82MHBVbIRuRo3LEf9Ge4MoJMS4l+LYQOzZCY6PwIAgIjb2dCstZt3tDX5WF2+Q+u31qqxJdjkIzsjVeOG5WjOESPati4ePKS/MtNorAGg+xIiqGWmpWrIgCxW1AAAQI9sr21o27YYbvTx6fadCnfbz++XoQnDc3TZ10a1bV0cVdBPqSlcTwYgshIiqEnB7Y+sqAEAgK76dNtO3fXyx3pno19bdtS33T5ioEcThudo9mGhlbIRORqak0WTDwC9IqGCGrPUAABAZ+2ob9Kv/7FeD771mTJSU3TS+CE6NLRKNn54jgZmZ8S6RABJLIGCGrPUAADA/rW0Oj223Kf/fXGd/IFGnXukV9edOlaDBzCsHUDfkUBBjVlqAABg397+ZLtueXaN1m7eoSmj8vTgrKM00Zsb67IA4EsSKKgFw5nPzyw1AACwu9LtAf1i6Vo9v3qLRgz06N4LD9fpE4dxvRmAPithglpRfniWWkBSQWyLAQAAfUJtQ7N+8+oG/eGNT5WaYvrPk8do3tcPVFY6rfMB9G0JE9SG5XpCs9Ro0Q8AQLJrbXV66t0y/fKFdaqoadCcw0fo/804RENzuQ4NQHxImKCWkZaioTnMUgMAoM9qqJE+fkFqaYzq03y6baeeXrlJPn+dLi7I1plHD9cBBdXSp2ui+rwAkszgcdLww6N2+oQJahKz1AAA6LN2bpf+fJa0eVXUn2q0pGslKUNSjaQ3ov6UAJLRtGsJap3lzcvWsk/9sS4DAAC0V7NVWjRb8m+Uzv2TNPywiJ6+rqlFD79Tqr8sK5WcdMFRRbro6APk4To0ANGUmRPV0ydYUPNoyap6ZqkBANBXVJdJfzpDqtkiXfSEdOD0iJ3aOaenV5brtuc+0ZYd9Zo1aaLmzzyE7s8AEkLCBbWWVqfN1fUqyucfaQAAYsq/UfrTbKm+SrpksTRyasROvdJXpZufWa33Sqt06Igc/frCwzVlVH7Ezg8AsZZgQS0Yzsoq6whqAADEUsXH0qIzpOZ66dIlEbuOY0t1vX75/Ef663ubVNg/U788e5LOOdKrlBTmoQFILAkW1JilBgBAzG35QFp0pmQp0ty/S0Mm9PiU9U0t+sMbG3Xfq5+opdXpO8d9RVcdf5D6ZybUjzIA0Cah/nVjlhoAADFWtkL68xwpo5/0zSVS4UE9Op1zTks/2KJfLF2rTVV1OnXCEP3ktPEaWcDOGQCJLaGCGrPUAACIoc/fkh4+T8rOly59Rso7oEen+3BTtW55Zo2WfebXIUMH6JErp+qYrxRGqFgA6NsSKqhJzFIDACAmPnlF+suF0sAi6ZtPSznDu32qipoG3fHCOj2+wqe87AzdetahOqXYr2QAACAASURBVH/KSKVyHRqAJJKAQY1ZagAA9Kp1z0mPf1MqHCNd8jep/6BunaahuUUL3/xM976yQfVNLbp82mh978SDletJj3DBAND3dSqomdkMSXdLSpX0B+fcbXs57mxJT0qa4pwriViVXVCU59HTK+vU1NKqdGapAQAQXR8+Jf11njR0knTxU8Ftj13knNOLa7bqF0vX6vPtAZ14yGD95PRxOnBQ/ygUDADxYb9BzcxSJd0n6WRJZZKWm9kS59yaPY4bIOkaSe9Eo9DO8uZlq9UF2/fSoh8AgCha+Yj09FVS0VTpwselrJwun+KjLTv0s2fX6M0N23Xw4P5a9O9H6etjurciBwCJpDMrakdJ2uCc2yhJZvaopNmS1uxx3M8k/Y+k6yNaYReFW/T7KgMENQAAomXZ76Wl10kHHi+d/3Cwy2MX+Hc26s6X1umRd0o1ICtdN58xQRdOHcluGAAI6UxQGyHJ1+7zMklT2x9gZkdIKnLO/d3M9hrUzGyepHmSNHLkyK5X2wnth14DAIAoePMe6aUbpTEzpXMflNKzOv3QppZWLXr7c9398sfa2diiS44+QNeeNEZ5/TKiVy8AxKEeNxMxsxRJd0qau79jnXP3S7pfkoqLi11Pn7sjQ3OzlMIsNQAAIs856f9+Kb32C2nCWdKc30upnW/0UVYZ0DcfWKaNFTt17MGFunHWeI0ZMiCKBQNA/OpMUNskqajd597QbWEDJB0q6TUzk6ShkpaY2RmxaCiya5YaLfoBAIgY56SXb5LevFuafKE0+14pJbVLp3hm1WZtrNip33+zWCeNG6zQzw0AgA50Jqgtl3SwmY1WMKCdL+nC8J3OuWpJbdMnzew1SdfFquujFNz+yIoaAAAR0toqPff/pOW/l4ovl067Q0rp+rVkpf6ACvpl6OTxQ6JQJAAklv3+K+uca5Z0taQXJK2V9LhzbrWZ3WJmZ0S7wO7w5nm0iaAGAEDPtbZIS74XDGnHfE86/X+7FdKk4NZHL42+AKBTOnWNmnNuqaSle9z2070ce1zPy+oZb55Hf2OWGgAAPdPSJC3+VnBW2vT50nHzpR5sVyz1BzRxRG4ECwSAxJWQKab9LDUAANANzQ3S45cGQ9pJN0vH/6hHIa2l1WlTZZ1GsqIGAJ2SoEFt1yw1AADQRY0B6S/nS+v+Hrwe7WvX9viUm6vr1NzqmHEKAJ2UoEEtNEvNz3VqAAB0SUON9PA50ievSmfcKx11ZURO6wu9J7OiBgCd0+M5an3RsIHhWWqsqAEA0Gl1ldKfz5bKV0pn/0GaeE7ETh3e5VKUR1ADgM5IyKCWnpqiYbkeWvQDANBZO7dJD50pVayTvvGQdMjpET29zx9QigV/mQoA2L+EDGqSNCKPoAYAQKfs2Cwtmi1VfS5d8BfpoJMi/hQ+f0DDB3roxgwAnZSw/1p68zxsfQQAYH+qSqWFM6Udm6SLn4pKSJOCrfnZ9ggAnZfAQS1bW3bUq7G5NdalAADQN23/RHpgplTnl775tDTqa1F7Kh+t+QGgSxI4qHmYpQYAwN58sTa4ktZcJ136rOQtjtpT1TW2qKKmQUX5nqg9BwAkmoQOahKdHwEA+JLyldLC0ySZNHepNGxSVJ8u/F7MDDUA6LyEDWrhffA0FAEAoB3fMulPZ0gZ/aTLlkqDD4n+UxLUAKDLEjaoDc1llhoAALv59A1p0ZlSvwLpsuekgq/0ytOWbmeGGgB0VcIGNWapAQAixcxmmNk6M9tgZvM7uP8AM/uHmb1vZq+Zmbfdfb80s9VmttbM7jEz693qQ9a/LD18jjSwKBjSBhb12lP7KuvkSU9VYf+MXntOAIh3CRvUJGapAQB6zsxSJd0naaak8ZIuMLPxexx2h6RFzrlJkm6R9N+hxx4jaZqkSZIOlTRF0vReKn2Xtc9IfzlfKhwTvCZtwNBeffpSf0BF+R7FKqMCQDxK6KDGLDUAQAQcJWmDc26jc65R0qOSZu9xzHhJr4Q+frXd/U5SlqQMSZmS0iVtjXrF7b3/hPT4pdLww6RLnwlue+xlPn+A1vwA0EUJHtSytZlZagCAnhkhydfu87LQbe2tkjQn9PFZkgaYWYFz7m0Fg9vm0J8XnHNrO3oSM5tnZiVmVlJRURGZylf8SfrrldIBx0iXLJY8AyNz3i5wzqmssk5erk8DgC5J8KDmkXPS5mq2PwIAouo6SdPN7D0FtzZuktRiZgdJGifJq2C4O8HMju3oBM65+51zxc654kGDBvW8on/9VnrmP6SDTpQuekLKHNDzc3ZDZaBJtQ3NdHwEgC5K6KBGi34AQARsktS+84Y3dFsb51y5c26Oc+5wST8J3Val4Orav5xztc65WknPSfpq1Ct+407p+R9Kh8ySzn9ESo/doGmfP3gJAlsfAaBrEjqoMfQaABAByyUdbGajzSxD0vmSlrQ/wMwKzSz8nvojSQ+EPi5VcKUtzczSFVxt63DrY8Q0N0rrnpMmniud+6CUlhnVp9ufUn94hlrswiIAxKO0WBcQTcNys5SaYqyoAQC6zTnXbGZXS3pBUqqkB5xzq83sFkklzrklko6T9N9m5iS9Lumq0MOflHSCpA8UbCzyvHPumagWnJYhXfJXKT1bSkmN6lN1Rtuwa65RA4AuSeiglpaaoqE5WQQ1AECPOOeWSlq6x20/bffxkwqGsj0f1yLpW1EvcE8xuh6tIz5/QAX9MtQvM6F/5ACAiEvorY8SLfoBAIgln7+ORiIA0A1JENSyWVEDACBGfJUBghoAdEMSBDWPtjBLDQCAXtfS6rSpsk5FeTQSAYCuSoqgxiw1AAB63+bqOjW3OlrzA0A3JEFQY5YaAACxsKs1P0ENALoqCYIas9QAAIiFMn/wl6SsqAFA1yV8UGOWGgAAseGrDCg1xTQsNyvWpQBA3En4oBaepebzs6IGAEBvKvUHNCw3S2mpCf/jBgBEXFL8yxmcpcaKGgAAvcnnD7DtEQC6KSmCWlE+s9QAAOhtpf46FeUR1ACgO5IiqHnzPNpaU6+G5pZYlwIAQFKoa2zRttoGjSwgqAFAdyRJUMsOzlKrqo91KQAAJAVfqNuyl2HXANAtSRLUwi362f4IAEBvCDfx4ho1AOieJAtqdH4EAKA3+Bh2DQA9khRBbWgOs9QAAOhNpf46edJTVdAvI9alAEBcSoqglpaaomG5WayoAQDQS3yVwdb8ZhbrUgAgLiVFUJOYpQYAQG/y+QMqyqeRCAB0VxIFNWapAQDQG5xzoaDG9WkA0F1JFNSYpQYAQG+oDDRpZ2MLw64BoAeSKKgxSw0AgN5QSmt+AOixJApqwX3yPhqKAAAQVbTmB4CeS7qgxnVqAABEV3hFLfzeCwDouqQJakNzspSWYrToBwAgysoqAyrsn6F+mWmxLgUA4lbSBLW01BQNG5jFihoAAFFW6g/ISyMRAOiRpAlqkuQdSIt+AACizeevo5EIAPRQcgW1PA9bHwEAiKLmllaVV9Ux7BoAeijJglq2tu5oYJYaAABRsrm6Xs2tjhlqANBDSRbUgr/dK2eWGgAAUREeg8PWRwDomaQMamx/BAAgOpihBgCRkVxBLfSmQUMRAACiw+evU2qKaVhuVqxLAYC4llRBbciATGapAQAQRb7KgIYPzFJaalL9iAEAEZdU/4oySw0AgOgq9Qe4Pg0AIiCpgprELDUAAKLJ56+j4yMAREDyBbU8T9uFzgAAIHICjc3aVttAIxEAiIAkDGrZ+qKmQfVNzFIDACCSwjtWCGoA0HNJF9SK8sOz1Nj+CABAJJVuD7XmD43DAQB0X9IFNW8eLfoBAIgGhl0DQOQkYVALD70mqAEAEEk+f52yM1KV3y8j1qUAQNxLuqA2JCeLWWoAAERBqT+gorxsmVmsSwGAuJd0QS01xTR8oIcVNQAAIqysMkAjEQCIkKQLalJw+yMragAARI5zLriilk8jEQCIhCQOaqyoAQAQKf6djQo0ttBIBAAiJEmDGrPUAACIJF94hloeQQ0AIiFJgxqz1AAAiKRSf6g1fwFBDQAiIUmDGrPUAACIJF8oqHkZdg0AEZGkQS34JuKjoQgAABHh8wdU2D9D2RlpsS4FABJCUga1XbPUWFEDACASfLTmB4CI6lRQM7MZZrbOzDaY2fwO7v+2mX1gZivN7J9mNj7ypUYOs9QAAIis8LBrAEBk7DeomVmqpPskzZQ0XtIFHQSxR5xzE51zh0n6paQ7I15phBXlM0sNAIBIaG5pVXlVPa35ASCCOrOidpSkDc65jc65RkmPSprd/gDn3I52n/aT5CJXYnR4B2azogYAQARsrq5XS6tj2DUARFBnrvgdIcnX7vMySVP3PMjMrpL0n5IyJJ3Q0YnMbJ6keZI0cuTIrtYaUd48jypCs9Sy0lNjWgsAAPEs3PGRrY8AEDkRaybinLvPOfcVST+UdMNejrnfOVfsnCseNGhQpJ66W7yh3/ptYpYaAAA9Eu6iTDMRAIiczgS1TZKK2n3uDd22N49KOrMnRfUGZqkBABAZpf6AUlNMw3KzYl0KACSMzgS15ZIONrPRZpYh6XxJS9ofYGYHt/v0dEnrI1didIRnqdFQBACAnvH56zRioEdpqUk59QcAomK/16g555rN7GpJL0hKlfSAc261md0iqcQ5t0TS1WZ2kqQmSZWSLo1m0ZEweECW0lOZpQYAQE8FZ6jRSAQAIqkzzUTknFsqaeket/203cfXRLiuqGOWGgAAkeHzB3Ty+CGxLgMAEkpS71Hw5jFLDQCAngg0NmtbbWPbtd8AgMhI7qDGLDUAAHrE5w++j9LxEQAiK7mDWrtZagAAoOvCM9RGEtQAIKKSO6jlhzs/sqoGAEB3lLYNu6aZCABEUnIHtbZZalynBgBAd/gqA+qXkar8fhmxLgUAEkpSB7Uihl4DANAjPn+divKzZWaxLgUAEkpSB7XBAzKZpQYA2C8zm2Fm68xsg5nN7+D+A8zsH2b2vpm9ZmbedveNNLMXzWytma0xs1G9WXu0+fwBOj4CQBQkdVBLSTGNGEiLfgDA3plZqqT7JM2UNF7SBWY2fo/D7pC0yDk3SdItkv673X2LJN3unBsn6ShJX0S/6t7hnJOvMkAjEQCIgqQOalLwOjVW1AAA+3CUpA3OuY3OuUZJj0qavccx4yW9Evr41fD9oUCX5px7SZKcc7XOuYT57eD2nY0KNLaoKJ9GIgAQaQS1PA9BDQCwLyMk+dp9Xha6rb1VkuaEPj5L0gAzK5A0RlKVmf3VzN4zs9tDK3RfYmbzzKzEzEoqKioi/CVEB635ASB6CGp5Hm2rZZYaAKBHrpM03czekzRd0iZJLZLSJB0bun+KpAMlze3oBM65+51zxc654kGDBvVK0T3lq2TYNQBEC0GNzo8AgH3bJKmo3efe0G1tnHPlzrk5zrnDJf0kdFuVgqtvK0PbJpsl/U3SEb1TdvT52maoEdQAINIIannhodcJc8kAACCylks62MxGm1mGpPMlLWl/gJkVmln4PfVHkh5o99iBZhZeIjtB0ppeqLlX+PwBFfbPlCejw92cAIAeIKixogYA2IfQStjVkl6QtFbS48651WZ2i5mdETrsOEnrzOxjSUMk3Rp6bIuC2x7/YWYfSDJJv+/lLyFqSv0BGokAQJSkxbqAWGOWGgBgf5xzSyUt3eO2n7b7+ElJT+7lsS9JmhTVAmPEVxnQESPzYl0GACSkpF9RC89S87H1EQCATmtuaVV5VT3XpwFAlCR9UJOYpQYAQFdtrq5XS6ujNT8ARAlBTcGGIptYUQMAoNPCHR+9XKMGAFFBUFNw/su22kbVNTJLDQCAzihl2DUARBVBTbta9G+qYlUNAIDO8FUGlJZiGpbLihoARANBTbuCmo/r1AAA6JRSf52GD/QoNcViXQoAJCSCmpilBgBAV/n8AbY9AkAUEdQkDeqfqYzUFJXRUAQAgE4pq2TYNQBEE0FNoVlqeR5W1AAA6ISdDc3aVtuoIlbUACBqCGohXoIaAACdEn6/ZNg1AEQPQS2EWWoAAHROuDU/K2oAED0EtRBvHrPUAADoDB8z1AAg6ghqIcxSAwCgc0r9AfXLSFVednqsSwGAhEVQC2mbpebnOjUAAPYl2PExW2bMUAOAaCGoheyapcaKGgAA++Lz13F9GgBEGUEtZFD/TGWkpdD5EQCAfXDOqZRh1wAQdQS1kJQUk3cgLfoBANiX7TsbVdfUoqI8hl0DQDQR1NoJDr1m6yMAAHtDa34A6B0EtXa8edmsqAEAsA+05geA3kFQa8eb59H2nY0KNDbHuhQAAPqk8C80w024AADRQVBrp22WGqtqAAB0qHR7QIMGZMqTkRrrUgAgoRHU2tnVop+gBgBAR3yVARqJAEAvIKi1E37joaEIAAAdK/UHaCQCAL2AoNZOIbPUAADYq6aWVm2urqeRCAD0AoJaO8xSAwBg7zZX1aul1amIRiIAEHUEtT0wSw0AgI75KpmhBgC9haC2B29etnysqAEA8CW+tmHXNBMBgGgjqO3Bm+eRf2ejdjYwSw0AgPZK/QGlpZiG5RLUACDaCGp7aJulVsWqGgAA7fkq6zQiz6PUFIt1KQCQ8Ahqewjvu+c6NQAAdlfqD9BIBAB6CUFtD962WWqsqAEA0F4ZM9QAoNcQ1PYwqH+mMpmlBgDAbnY2NGv7zkYaiQBALyGo7cHMaNEPAMAewq35GXYNAL2DoNYBb142K2oAALTj8wffF7lGDQB6B0GtA948D0ENAIB2Sv0MuwaA3kRQ6wCz1AAA2J3PH1D/zDTlZafHuhQASAoEtQ54Q9s6mKUGAECQzx+QN88jM2aoAUBvIKh1YFeLfhqKAAAgBZuJ0EgEAHoPQa0D4aAWvnAaAIBk5pyTz1/H9WkA0IsIah3YNUuNFTUAALbVNqquqYUVNQDoRQS1DuyapcaKGgAA4RlqDLsGgN5DUNsLZqkBABDkC7fmZ4YaAPQagtpeFOV52PoIAIB2BTUvQQ0Aeg1BbS+8edmqDDSplllqAIAk5/PXadCATHkyUmNdCgAkDYLaXoQ7P25i+yMAIMmV+mnNDwC9jaC2F8xSAwAgyFcZUFEejUQAoDcR1PYivA+fhiIAgGTW1NKq8ipmqAFAbyOo7UVh/wxmqQEAkt7mqnq1OhHUAKCXEdT2wszkZZYaACDJldKaHwBigqC2D8xSAwAku/Cw65EFBDUA6E0EtX3wMksNAJDkfP6A0lNNQ3OyYl0KACQVgto+MEsNAJDsSv0BjRjoUWqKxboUAEgqnQpqZjbDzNaZ2QYzm9/B/f9pZmvM7H0z+4eZHRD5UnsfLfoBAMnOV0nHRwCIhf0GNTNLlXSfpJmSxku6wMzG73HYe5KKnXOTJD0p6ZeRLjQW2oKan+vUAADJyecPtI2sAQD0ns6sqB0laYNzbqNzrlHSo5Jmtz/AOfeqcy687PQvSd7Ilhkbu2apsaIGAEg+Oxua5d/ZqJGsqAFAr+tMUBshydfu87LQbXtzuaTnOrrDzOaZWYmZlVRUVHS+yhgp7J+hrPQUOj8CAJJSuONjUb4nxpUAQPKJaDMRM7tYUrGk2zu63zl3v3Ou2DlXPGjQoEg+dVQEZ6nRoh8AkJxKt4da87OiBgC9Lq0Tx2ySVNTuc2/ott2Y2UmSfiJpunOuITLlxZ43z6OyKrY+AgCSjy/0i0qGXQNA7+vMitpySQeb2Wgzy5B0vqQl7Q8ws8Ml/U7SGc65LyJfZuwEZ6mxogYASD4+f0D9M9M0MDs91qUAQNLZb1BzzjVLulrSC5LWSnrcObfazG4xszNCh90uqb+kJ8xspZkt2cvp4o43L1tVgSbV1DfFuhQAAHqVzx9QUX62zJihBgC9rTNbH+WcWypp6R63/bTdxydFuK4+I9yif1NVnQ4Zym8UAQDJo9Qf0OjCfrEuAwCSUkSbiSSithb9zFIDgKRlZjPMbJ2ZbTCz+R3cf4CZ/cPM3jez18zMu8f9OWZWZmb39l7VPeOcU1llHY1EACBGCGr70Tb0mllqAJCUzCxV0n2SZkoaL+kCMxu/x2F3SFrknJsk6RZJ/73H/T+T9Hq0a42kbbWNqmtqURFBDQBigqC2HwX9mKUGAEnuKEkbnHMbnXONkh6VNHuPY8ZLeiX08avt7zezIyUNkfRiL9QaMaV+WvMDQCwR1PYjPEvNx4oaACSrEZJ87T4vC93W3ipJc0IfnyVpgJkVmFmKpP+VdF3Uq4ywMoZdA0BMEdQ6gRb9AID9uE7SdDN7T9J0BeeNtkj6rqSlzrmy/Z3AzOaZWYmZlVRUVES32k4ID7v2MkMNAGKiU10fk503z6P3SqtiXQYAIDY2SSpq97k3dFsb51y5QitqZtZf0tnOuSoz+6qkY83suwqOsckws1rn3Jcakjjn7pd0vyQVFxe7qHwlXeCrDGjwgExlpafGuhQASEoEtU7w5mWruq5JO+qblJNFi34ASDLLJR1sZqMVDGjnS7qw/QFmVijJ75xrlfQjSQ9IknPuonbHzJVU3FFI64t8/joaiQBADLH1sROKQts+NrH9EQCSjnOuWdLVkl6QtFbS48651WZ2i5mdETrsOEnrzOxjBRuH3BqTYiOo1B+gkQgAxBArap2wq0V/ncYNy4lxNQCA3uacWypp6R63/bTdx09KenI/53hQ0oNRKC/imlpatbm6TkV5NBIBgFhhRa0TmKUGAEgm5VV1anVi6yMAxBBBrRPy+2XIk55K50cAQFLw+YPvdwQ1AIgdglonBGepeVhRAwAkhfCwa4IaAMQOQa2TmKUGAEgWvsqA0lNNQ3OyYl0KACQtglonefOyCWoAgKTg8wc0YqBHqSkW61IAIGkR1DrJm+dpm6UGAEAi8/kDbHsEgBgjqHWSl1lqAIAk4atk2DUAxBpBrZPCLfp9fhqKAAASV21Ds/w7G1WUR1ADgFgiqHVS+6HXAAAkqvAvJEeyogYAMUVQ6yRmqQEAkoGvrTW/J8aVAEByI6h1ErPUAADJoJQVNQDoEwhqXVCUT4t+AEBiK6us04DMNOV60mNdCgAkNYJaF7CiBgBIdKWh1vxmzFADgFgiqHWBN8+jHfXNqq5jlhoAIDEFZ6hxfRoAxBpBrQuYpQYASGTOOfkqA7TmB4A+gKDWBbta9LP9EQCQeCpqG1Tf1KqRBQQ1AIg1gloXhFfUaCgCAEhEPn/w/Y0VNQCIPYJaF+Rlpys7g1lqAIDEtGuGGkENAGKNoNYFzFIDACSycFALb/UHAMQOQa2LvHnMUgMAJKZSf0CDB2QqKz011qUAQNIjqHWRN88jHytqAIAE5KsMaCTbHgGgTyCodZE3z6MaZqkBABKQz1/H9WkA0EcQ1LpoV+dHVtUAAImjqaVVm6sJagDQVxDUumjXLDWuUwMAJI7yqjq1OqmIRiIA0CcQ1LqoiFlqAIAEVBrq+Mg1agDQNxDUumhgdrr6ZaSy9REAkFDahl0T1ACgTyCodVFwlhot+gEAiaXUH1B6qmlITlasSwEAiKDWLcGh1wQ1AEDi8FUG5M3LVmqKxboUAIAIat0SDGpsfQQAJI4yf6CtYRYAIPYIat3gzctmlhoAIKGU+hl2DQB9CUGtG3a16GdVDQAQ/2rqm1QZaKKRCAD0IQS1bvDSoh8AkEDaOj7mEdQAoK8gqHVDeEXN52dFDQAQ/3yVzFADgL6GoNYNu2apsaIGAIh/4V88FuXTTAQA+gqCWjcwSw0AkEh8/oAGZKUp15Me61IAACEEtW6iRT8AIFH4KutUlJctM2aoAUBfQVDrpqL8bG2qrJNzLtalAADQI7TmB4C+h6DWTd48j2oamrWjrjnWpQAA0G3OOfn8Aa5PA4A+hqDWTW2dH9n+CACIYxU1DWpobmWGGgD0MQS1bmKWGgAgEYR/4UhQA4C+haDWTeEVNRqKAADiGcOuAaBvIqh1U64nXf0z01hRAwDEtdLQDLXwLyABAH0DQa2bgrPUPAQ1AEBc8/kDGpKTqaz01FiXAgBoh6DWA8xSAwDEu1J/gG2PANAHEdR6wJvHLDUAQHwrq6xjhhoA9EEEtR4Iz1KrrmuKdSkAAHRZY3Oryqvr5CWoAUCfQ1DrgV2dH7lODQAQf8qr6uScWFEDgD6IoNYDu2apcZ0aACD+tM1Qo+MjAPQ5BLUeYEUNABDPwq35RxawogYAfQ1BrQdyPekawCw1AECc8vnrlJGaoiEDsmJdCgBgDwS1HjAzjaBFPwAgTvn8AY3I8yglxWJdCgBgDwS1HvLmZbOiBgCIS77KgIpoJAIAfRJBrYeCQ6+ZpQYAiD8+f4BGIgDQRxHUesib51Ets9QAAHGmpr5JlYEmWvMDQB9FUOuhXS362f4IAIgfPn/wfYutjwDQNxHUemhXi34aigAA4ke4NX9RHkENAPoigloPFbGiBgCIQ+FfMLL1EQD6JoJaD+V40pilBgCIO6X+gAZkpSk3Oz3WpQAAOtCpoGZmM8xsnZltMLP5Hdz/dTN718yazeycyJfZd4Vnqfn8bH0EAMQPnz/AahoA9GH7DWpmlirpPkkzJY2XdIGZjd/jsFJJcyX9//buPDyuq07z+PdXm0r7ZkmOLSm2Y8dL4iQOJmRPIBC2AMPWhHRP2IY8MAOEnukeoNd5Mk0z3cMzMAGebgIdBgjrEwhka0JIQkICZI+dOLZjx3ZU8hLL1ma7tFad+ePeUpVk2a6Sy6q60vt5nvvUrVO3Sqdu5By995x7zg+LXcEg0FpqIiISNIm+Id2fJiJSxvLpUbsA2O6c2+GcGwV+DLwr9wDn3C7n3EYgfQrqWPa8tdSSWktNREQCwTnn9ag1K6iJiJSrfILaYiCR87zbLyuYmd1gZk+Z2VM9PT0z+Yiy1N5YyZHRFP1JraUmIiLlr+fQCCPjaS12LSJSxmZ1MhHn3C3OufXOufUtLS2z+aNPqcwaNBr+KCIyN+Vxr/bpZvaAmW00vCKLxAAAHulJREFUs9+aWbtffp6Z/cHMNvmvfWD2a3+0zNT87bpHTUSkbOUT1HYDHTnP2/0y8WktNRGRuSvPe7W/DHzPOXcOcBPwJb88CVzvnDsLeAvwVTNrmJ2aH1tCU/OLiJS9fILak8AKM1tqZjHgWuDOU1utYGnXWmoiInPZCe/VxgtwD/r7D2Ved8695Jzb5u/vAfYDJR9Skuj12qvFDRr6KCJSrk4Y1Jxz48CngPuAzcBPnXObzOwmM3sngJm91sy6gfcD3zSzTaey0uWmvjJKbTyiHjURkbkpn3u1NwDv8fffDdSaWXPuAWZ2ARADXp7uh8zmfdxdvUkW1sWJR8On9OeIiMjMRfI5yDl3L3DvlLK/y9l/Em9I5LylKfpFROa1vwC+bmYfBh7Bu0UglXnRzE4Dvg98yDk37QzJzrlbgFsA1q9ff0qnEU70JuloUm+aiEg5yyuoyYm1N1bSdVA9aiIic9AJ79X2hzW+B8DMaoD3Ouf6/ed1wD3AXzvn/jgrNT6BRG+SC89oPvGBIiJSMrM66+NcprXURETmrBPeq21mC8ws06Z+AbjVL48Bd+BNNHL7LNb5mEbH0+wdHNZi1yIiZU5BrUjaG6u0lpqIyByUz73awJXAVjN7CWgDvuiX/wlwOfBhM3vO386b3W8w2e7+IZzLLi0jIiLlSUMfiyQ7Rf8QjdWxEtdGRESKKY97tW8Hjuoxc87dBtx2yitYgESvpuYXEQkC9agVSSaoJTTzo4iIlLFMO6XJREREypuCWpFk11JTUBMRkfLV1ZskFg7RVhsvdVVEROQ4FNSKJLuWmqboFxGR8tXdO0R7YyWhkJW6KiIichwKakWktdRERKTcdfUmadf9aSIiZU9BrYg6/Cn6RUREylWiL0mn7k8TESl7CmpFlOlR01pqIiJSjgaHx+hPjmkNNRGRAFBQK6L2xkqSoyn6tJaaiIiUIU3NLyISHMENasOD0N9V6lpMkl1LTcMfRUSk/CR6vfuotdi1iEj5C25Qe/GX8NW18K+XwcP/DK++CCUecpidol8TioiISPnJ9KgpqImIlL/gBrVlV8KbboJIHB76R/iXi+DmdfDrv4GuxyGdnvUqLVaPmoiIlLFEX5K6eIT6ymipqyIiIicQKXUFZqyhAy650dsO7YOt98Lmu+GP/wq//xpUt8Kqt8Gqd8DSyyESO+VVqq+MUqe11EREpEx19SbVmyYiEhDBDWq5ahfC+o962/AAbLsfNt8Fz98OT/8/qKiDFW+CVdd4jxW1p6wqWktNRETKVaI3yZltp64NFBGR4pkbQS1XvB7Wvs/bxoZh58NeaNv67/DCzyAc84ZNrroGVr4NalqK+uPbGyvZeeBIUT9TRETkZKXTju6+Ia5a3VbqqoiISB7mXlDLFY3DmW/2tnQKEo97wyO33AXbfg13fxY6LoTV18Cqt0PjkpP+ke2NVfxu2wGcc5jZyX8HERGRIug5PMLIeFpDH0VEAmJuB7VcoTCcfrG3vfmLsO952HIPbLkb7vsrb2tbmw1tbWfDDIJWe2MlQ2Mpeo+M0lxTcQq+iIiISOEmZnz0J74SEZHyNn+CWi4zOO0cb3v9F6B3hx/a7oHf/i/47Ze83rVV13hbxwVe0MtDdi21IQU1EREpG12aml9EJFDmZ1CbqmkZXPxpbzu835tBcss98MQt8IevQ3ULrHyrN4PksisgcuwAlruW2rkdDbP1DURERI4r0TuEGSxuUI+aiEgQKKhNVdMKr/mwtw0Pwvb7vfvaXrgDnvkexGpyZpC8GuJ1k97e3uQ1gJv3DvL2c06b/fqLiIhMI9GXpK02Tjya3wgREREpLQW144nXwdnv9bbxEdj5iD+D5L2w6Q4IRb0etlX+fW01rdTFo6w5rY6vP7Sd3798gBsuP4M3rWkjHNLEIiIiUjpdvUk6NexRRCQwFNTyFanwetJWvAnSX4HuJ73QtuVub/bIu//cu5dt1TX87Nq38pPt7Xz70Z184ranWbqgmo9dupT3vaZdVzJFRKQkunuTXHhGc6mrISIieVJQm4lQGDov9Lar/wFe3eRPRnIX3P+3VN7/t3y4aRnXr7yEDZGz+drLbfzNL47wlftf4vqLlnD9RafTWB0r9bcQEZF5YmQ8xd7BYfWoiYgEiILayTKDhWd725Wfg75d3uLaOx8htOVO1g1/n1uB4QWdPOlWc8eDS3nvw2dx6frz+U+XLqOzWY2miIicWnv6h3EOOhrV5oiIBIWCWrE1LoELP+lt6ZTX27brUeKvPMZlux7lsth9ACSeaeHxp1bz8KKLWH/FNaxevXZG67aJiIiciKbmFxEJHgW1UykUzq7XdtF/hnQa9r8Iux6lZfsjvG3Xo1S9+gj89J84EGphrONi2s65itDSy6BxqYKbiIgURWaxaw19FBEJDgW12RQKTQyTjF/4CUinSe7ZxLOP3M3I9oc5Z9dDhF75JQCu9jRsyWWw5BJYcpm31puCm4iIzECiL0ksEqK19tjrgIqISHlRUCulUIiq9rVcct1axlKf454Ne/j33z5My8EnueLwVi7Z8gBVz//UO7ZmoR/aLoXTL4UFKxTcREQkL4neJO2NlYS0VIyISGAoqJWJaDjEfzi/nXetu45Ht1/NLY/s4OPbejg79iqfWLKPN8RfomrXY/DCz7w3VLdODm4tKxXcRERkWoneIU0kIiISMApqZcbMuGxFC5etaOHFPYN863c7+OyGPTjWcc3aG/nUeSFWJJ+DXY/Brke9hbcBqhZ4we30S73w1rLKG2opIiLzXldvknM76ktdDRERKYCCWhlbs6iOr3zgPP7yzSu59dGd/OiJLn65IcWly1dzw+Vv57J3N2P9u7zAlgluL3r3uFHZNDm4ta5RcBMRmYcGh8cYGBrTRCIiIgGjoBYAixoq+Ztr1vDpq1bww8e7+M5jO7n+1idYtbCWGy5fxjvO/TOi518PzkH/K9nQ9sqjsPku70MqG6HzYuh4LTScDvUdUN8ONW0KcCIic1hmxkcNfRQRCRYFtQCpr4zyySvP4GOXLuWXz+3mW7/bwX/96Qb+931b+eglS7n2gg5qG5d4a7mt+1PvTf1dk4Pb1nsmf2goCnWLssFtYst5XlEz219VZO4a6oP9W7ylOnq2wP7N0LMVKmphwZneREELzszuVzWVusYScAmtoSYiEkgKagEUi4R4//oO3nt+Ow+/1MM3H3mZL967mZsf2MZ1F3bykYuXsrA+7h3c0AnndcJ5H/SeDw/AwG4YSPhbd3Z75TEY3AMuNfkHVjYeHd5yn9e0eWvGiUjWyCEvgO1/cXIwO7Q3e0ysxrufdMXVMHoYDmyDlx+E1Ej2mKoF0we4hk79u5O8JHqHAAU1EZGgUVALsFDIeP2qVl6/qpWN3f1885EdfOuRHdz66E7eee5ibrh8GSsX1k5+U7ze29rWTP+hqXE4vC8nwPlhrj8Bff6wypGBKRWJ5PTKdahXTuaXsSE/kG2Gns3e4/4tMNCVPSZSCS1nwrIrvWDWugZaV3n/RqbO1ppOeT3hB7bBgZey25a7IXkwe1y4ApqXe6GtZWU2wDUvh1j1bHxzCYiu3iT1lVHqK6OlroqIiBRAQW2OOKe9gW9cdz5dB5Pc+thOfvJkgp89082VK1u44fJlXLSsGctn+v5wJBuujmWiV657ml6538Pg7qN75eIN0/TI+WGuoWNyr5xzkB73/mB1qZz99DTlfplLeeXpcf+41JTy1JRjppaPTzkmpzwUgYo6iNf5j/XeMLVMWbRKSyPMB+OjcHCbH8Q2Z4NZ707AeceEY9C8AjougNdc7wWyllXecOR8e79CYWha6m1nXj35tSMHvTpMBLhtsG8jbL7T+73PqO/I6YHL6YmradPv6jyU6EvS0VRZ6mqIiEiBFNTmmM7mKv7HO8/ixqtWcNsfX+G7f9jFdd96nLWL6/n45ct429kLiYRPcvKQmfbKZfa7fu+FvVwW8rZ0iok/eoMiFJkc3Crqc0Jd3ZTXMkGvbvIxsRr9AV0uUuPQuyPnHjJ/6OLB7dkLEBb2eq4WroW1fwKtq72taRmET2GvRXWzt3VeOLl8fMSrc26AO/ASPHubN6Qyo6Ju+gDXuBQisVNXbymprt4kK9tqT3ygiIiUFQW1OaqxOsanr1rBxy9fxs+f2c23f7eDz/zoWW6qqeA1pzdwbkcD57U3sLa9ntp4kf+wzKtXbtDrecuEt8E9XkgLhb3gY2FvNsqJ/Uy5XxYK++UR77iJ/XDO8eEp7w9P+aw8y9Nj3v1Gw4MwMpjzODDluf84csgbKjoykC3L7e2YjoUgVjsl4B3ncaI3r9IbVheNQ8TfopVez46C3/Gl09C/a0oP2RYv4KRG/YPM69lqWQ2r35ENZM3LIVJRytpPFqnI1i2Xc949cQdegp6cYZQ7HoYNP8oeZ34v3kSAywylXO7doyqBlU47uvuGeNPqtlJXRURECqSgNsfFo2Gue10n1762g99sfpV7n9/Lhu4B7tv0KuD9Lb+8pYZzO7LhbdVptURPttfthBXzg8bUPyzLVbweZrpWrHMwemSaUJcJcoemD3yH9sKBrdnn6fH8f6aFJge3aR/jOSGvCI+FLPOQTk8ecjoxZHX81JaNHs65n2wrjA9l61Tf6d03tvwqL5i1rvbCSizAEzCYefeP1i3y7o/LNXLI73mbMpRy+29ygirecMkbN3r/nSVweg6PMDqepl0TiYiIBI6C2jwRChlXn7WQq89aCEB/cpQN3QNsSPSzIdHPQ1v2c/vT3YA3q+TZi+q84OZvnU1V+d3jJkcz8yZTqajx/mCeCee8SSsyPXaZoDc27IWNaR+HvfdM93ikZ0q5/77cP9ALFY5lg1tmGOvU+wczj6Uc3lp7mnff2PqPesGsdY03GUfFPBsaVlELi8/3tlypcW89xkyAO/yqQlqAdflT82uxaxGR4FFQm6caqmJccWYLV5zZAoBz3vCYDd39fngb4MdPJPjOY7v846Oc254Nbue019NcU0ZDv+Y6M69nJ1YFtQtP3c9Jp3KC2wnC3vEeXTo7FDUUOXrY6lHDVwssm/isAssica8nV44tHIHmM7xt5VtKXRs5SdnFrjWZiIhI0CioCQBmRkdTFR1NVVxzjtfrM55K89KrhyfC23OJfr724DbSfmdIR1Ml53U0cm57Ped1NHDWonoqY1rXKdBCYW9qd03vLjIndPUmMYPFCmoiIoGjoCbHFAmHWLOojjWL6vjgBZ0AHBkZ54XdA2zo9oLbM6/0cdeGPQCEQ8aqhbUT97qd29HA8tYawiENmRQRKYVE7xAL6+JURHQRTUQkaBTUpCDVFRFet6yZ1y1rnijbf2iYjYkBnkv0s6G7n7s27OGHj3uL/VbHwqxtr58Ib+d1NrCwLq773UREZkGiL0lHo+5PExEJIgU1OWmttXHeuCbOG9d40z+n045dB494wS3Rz3PdA3zn0V2MptL+8RWTJipZ215PXbGXCBARERK9SS4+Y0GpqyEiIjOgoCZFFwoZy1pqWNZSw3vO99ZSGxlPsXnvoYlZJp/r7uf+F1+deM+ylmqWLahmUUPlxLa4Ic6ihkpaa+MaPikiUqCR8RT7BofpaNL9aSIiQaSgJrOiIhKe6EHLGEiOsXG3F9w2dg/Q1ZvkiZ29DA5PXi8sEjIW1sf98FbJIj/AZZ9XUlOhX2URkVy7+4ZwTlPzi4gElf66lZKpr4py2YoWLlvRMqn80PAYeweG2d0/xJ6JzXv+5K5e9g0MM56evA5XXTwyKbgtblSvnIjMb4k+b0H3DgU1EZFAUlCTslMbj1Ibj3Jm2/QLEKfSjp5DI5OC3O6Jx2GeeqWPgaGxSe8Jh4yFdfFj9sgtaohTq/vkRGQO6ZpYQ01BTUQkiBTUJHDC/lDIhfVxXnN647THHB4ZZ+9EgBueFOie7urj7o17j+qVq41HWDwpvHkBrrU2TmN1lIbKGA1VUeJRTXMtIuWvuzdJLBKitbai1FUREZEZUFCTOammIsKKtlpWHKdX7sDhEbr7codXej1ye/ww158cm/a9FZEQDVVecKuvitJQGfWeV8Woz+z7oS7zvL4ySk1FRMsSiMisSfQlaW+sJKRh3yIigaSgJvNSOGS01cVpqzt2r9yRkXH2Dgyxf3CEgaEx+ofG6E+O0T80ykAyu9/Vm+T53d7zobHUMX9mJGTUV0Zzwl2MhonnMT/sZcJdbCIA1sajur9ORArW1ZvURCIiIgGmoCZyDNUVEZa31rK8dfpeuekMj6UYzA11yVH6h8a8YDc06oc77/n+Q8O89OohBpJjHBoZP+ZnmkFdPNNTF6U+J8Q1VMVoqorSWB2jsSpGU7UX+JqqY1RGw+rBE5nHEr1DrOuY/kKUiIiUPwU1kSKKR8PEo2Fa6+IFvW8slZ4U8AYyoW4i2I3m9OiN0XXwCH3JsaMmTckVi4RoqsoGt8aqGI3VUb9scqjzXotRHSv/cDeeSnNoeJxDw+MMDo9xaHicwyPjHPL3M4+Dw0eXjaXSLGqopLOpig5/62yqoqOxkqbqWNl/d5F8DQx5/39Qj5qISHApqImUgWg4RHNNBc01hd30P55KMzA0Rl9yjL7kKH1HRr3H5NjEfu8R77XN+wbpO+IFPuem/7xo2LzQ5oe6TIA7OvDFaPR78moLuPduZDzFYT9kZQLU5ECV3T88kg1iua8fb3hpRkUkRG08Sl08Qm08Qk08QmttnEjY2NM/xG827+fA4ZFJ76mOhbPBzX/09itpb6zSJDISKInMjI9a7FpEJLAU1EQCLDKDgJdKOwaH/GCXHKXvyBi9yVH6/VDnPXqvbdt/eCLcpdLTp7tIyGioyga3xqoohnFoZOyoQDY6nj5h/SqjYWr9gOUt1eDNxjm1rKYikhPGopNej0VCJ/w5ydFxEr1DJHqTdPlbd1+SXQeP8Mi2HobHJte1ra6Cjsaqo3rjOpuqaK2t0IQNUla6+7yg1q6p+UVEAktBTWSeCYfMC1TVsbzfk047Dg2Pez1004Y6rwevNznKzgNHAG89vMaqGJ1NVZN6t7KhKhuu6vz96ooI0fCJQ1YxVMUirFxYy8qFR9+D6JzjwGFvopiEv2XC3OM7e7njud2TeiVjkRDtjf6QyklhrnLi+4vMpswaap3NCmoiIkGloCYiJxQKGfVV3gyVS6gudXVOOTOjpbaCltqKaWcFHRlPsad/eCLATTz2JXn6lT4ODU+eHKaxKkpnUxXtuUMq/UB3WkN81sKpzB+J3iHqK6PU6SKBiEhgKaiJiBSoIhJm6YJqli6YPrQOJMdI9GV74TJBbtPuAX69aR9jqWx3XDhknFYfpzYeJRIywjlbZNJjiHAIIqHQ5NfCRsiyx0TC2fdMlIdzXg8ZoaM+2/zPZeKY3Ndet6x5tk6tFImm5hcRCT4FNRGRIvN6H+s5e3H9Ua+l0o59g8N0HfR64DJDK5OjKVJpx3ja+Y9pxlJphsfclPLs6+k0jKfT2fJU9vWUc8e8r7AQ4ZDx8j++7aQ/R2ZXoi/JqmmG9YqISHAoqImIzKJwyFjcUMnihkou4tT2VDl3dMhLTwl7ua+nJoXBNOMpL/BJ8Nx87TrCmuBGRCTQFNREROYoM29oZEQrC8w70/XmiohIsOgOdhERERERkTKjoCYiIiIiIlJmFNREREROwMzeYmZbzWy7mX1+mtdPN7MHzGyjmf3WzNpzXvuQmW3ztw/Nbs1FRCSoFNRERESOw8zCwDeAtwJrgA+a2Zoph30Z+J5z7hzgJuBL/nubgL8HXgdcAPy9mR29OJ+IiMgUeQW1PK4kVpjZT/zXHzezJcWuqIiISIlcAGx3zu1wzo0CPwbeNeWYNcCD/v5DOa+/GbjfOdfrnOsD7gfeMgt1FhGRgDthUMvzSuLHgD7n3HLgK8A/FbuiIiIiJbIYSOQ87/bLcm0A3uPvvxuoNbPmPN8LgJndYGZPmdlTPT09Ram4iIgEVz49avlcSXwX8F1//3bgKjPTAi4iIjJf/AVwhZk9C1wB7AZShXyAc+4W59x659z6lpaWU1FHEREJkHyCWj5XAyeOcc6NAwNw9EquulooIiIBtBvoyHne7pdNcM7tcc69xzm3Dvhrv6w/n/eKiIhMZ1YnE9HVQhERCaAngRVmttTMYsC1wJ25B5jZAjPLtKlfAG719+8DrjazRn8Skav9MhERkePKJ6jlczVw4hgziwD1wMFiVFBERKSU/JEin8ILWJuBnzrnNpnZTWb2Tv+wK4GtZvYS0AZ80X9vL/A/8cLek8BNfpmIiMhxRfI4ZuJKIl4guxa4bsoxdwIfAv4AvA940DnnillRERGRUnHO3QvcO6Xs73L2b8e7R3u6995KtodNREQkLycMas65cTPLXEkMA7dmriQCTznn7gT+Dfi+mW0HevHCnIiIiIiIiMxAPj1q+VxJHAbeX9yqiYiIiIiIzE+zOpmIiIiIiIiInJiCmoiIiIiISJmxUs35YWY9wCsn+TELgANFqM58onNWOJ2zwumcFW6un7PTnXNalyVPaiNLRuescDpnhdH5KtxcP2fHbB9LFtSKwcyecs6tL3U9gkTnrHA6Z4XTOSuczpkUm36nCqdzVjids8LofBVuPp8zDX0UEREREREpMwpqIiIiIiIiZSboQe2WUlcggHTOCqdzVjids8LpnEmx6XeqcDpnhdM5K4zOV+Hm7TkL9D1qIiIiIiIic1HQe9RERERERETmHAU1ERERERGRMhPYoGZmbzGzrWa23cw+X+r6lDsz6zCzh8zsRTPbZGY3lrpOQWBmYTN71szuLnVdgsLMGszsdjPbYmabzeyiUtepnJnZn/v/Jl8wsx+ZWbzUdZJgU/tYGLWPM6c2sjBqHws339vIQAY1MwsD3wDeCqwBPmhma0pbq7I3Dvw359wa4ELgv+ic5eVGYHOpKxEw/xf4lXNuFXAuOn/HZGaLgc8A651zZwNh4NrS1kqCTO3jjKh9nDm1kYVR+1gAtZEBDWrABcB259wO59wo8GPgXSWuU1lzzu11zj3j7x/C+5/D4tLWqryZWTvwduDbpa5LUJhZPXA58G8AzrlR51x/aWtV9iJApZlFgCpgT4nrI8Gm9rFAah9nRm1kYdQ+zti8biODGtQWA4mc593of6p5M7MlwDrg8dLWpOx9FfjvQLrUFQmQpUAP8B1/OMy3zay61JUqV8653cCXgS5gLzDgnPt1aWslAaf28SSofSyI2sjCqH0skNrI4AY1mSEzqwF+BnzWOTdY6vqUKzO7BtjvnHu61HUJmAhwPvAvzrl1wBFA98gcg5k14vV2LAUWAdVm9melrZXI/KT2MX9qI2dE7WOB1EYGN6jtBjpynrf7ZXIcZhbFa4R+4Jz7eanrU+YuAd5pZrvwhg69wcxuK22VAqEb6HbOZa5G347XMMn03gjsdM71OOfGgJ8DF5e4ThJsah9nQO1jwdRGFk7tY+HmfRsZ1KD2JLDCzJaaWQzvxsI7S1ynsmZmhjcuerNz7v+Uuj7lzjn3Bedcu3NuCd7v14POuXl1FWcmnHP7gISZrfSLrgJeLGGVyl0XcKGZVfn/Rq9CN5fLyVH7WCC1j4VTG1k4tY8zMu/byEipKzATzrlxM/sUcB/eDDC3Ouc2lbha5e4S4D8Cz5vZc37ZXznn7i1hnWRu+jTwA/+PxB3AR0pcn7LlnHvczG4HnsGbee5Z4JbS1kqCTO3jjKh9lNmi9rEAaiPBnHOlroOIiIiIiIjkCOrQRxERERERkTlLQU1ERERERKTMKKiJiIiIiIiUGQU1ERERERGRMqOgJiIiIiIiUmYU1ETyZGYpM3suZ/t8ET97iZm9UKzPExERmU1qI0WKL5DrqImUyJBz7rxSV0JERKQMqY0UKTL1qImcJDPbZWb/bGbPm9kTZrbcL19iZg+a2UYze8DMOv3yNjO7w8w2+NvF/keFzexbZrbJzH5tZpX+8Z8xsxf9z/lxib6miIhIwdRGisycgppI/iqnDOv4QM5rA865tcDXga/6ZV8DvuucOwf4AXCzX34z8LBz7lzgfGCTX74C+IZz7iygH3ivX/55YJ3/OZ84VV9ORETkJKiNFCkyc86Vug4igWBmh51zNdOU7wLe4JzbYWZRYJ9zrtnMDgCnOefG/PK9zrkFZtYDtDvnRnI+Ywlwv3Nuhf/8c0DUOfcPZvYr4DDwC+AXzrnDp/irioiIFERtpEjxqUdNpDjcMfYLMZKznyJ7D+nbgW/gXVl80sx0b6mIiASJ2kiRGVBQEymOD+Q8/sHf/z1wrb//p8Dv/P0HgE8CmFnYzOqP9aFmFgI6nHMPAZ8D6oGjrliKiIiUMbWRIjOgqw4i+as0s+dynv/KOZeZfrjRzDbiXfH7oF/2aeA7ZvaXQA/wEb/8RuAWM/sY3lXBTwJ7j/Ezw8BtfkNlwM3Ouf6ifSMREZHiUBspUmS6R03kJPnj79c75w6Uui4iIiLlRG2kyMxp6KOIiIiIiEiZUY+aiIiIiIhImVGPmoiIiIiISJlRUBMRERERESkzCmoiIiIiIiJlRkFNRERERESkzCioiYiIiIiIlJn/Dw1CrMYhrhTFAAAAAElFTkSuQmCC\n" - }, - "metadata": { - "needs_background": "light" - } - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPAAAAD3CAYAAAAjUNkqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9ebRl113f+fntfYZ77xvqvVeqKqkkWaMlYRvZYEAGPMjgxiQYOjRDIHQHszoMzUrTmZMVsrrdndAJdAIsFqHpJgnQcQIkdBZT4pB0sww2NsbzPEiWZFdJqpJqePO9Z9j713/svc859773SvVsjJdW115+Vt1z9jlnn9/+jd/fb+8jqsqNdqPdaM/PZr7YA7jRbrQb7XNvNwT4RrvRnsfthgDfaDfa87jdEOAb7UZ7HrcbAnyj3WjP43ZDgG+0G+153G4I8I12oz2P2w0BHjQReaOIvP06+94pIk98gYd01LOve5x/Wi3SQ0Uku87+T4jInV/YUYGIvElE3vyFfs4Xq11TgEVkd/DnRWQ6+P09f1qDvFaLTHPvF3sci01EfklE6kirKyLyn0XkgS/2uIZNRN4qIn/piz2OxRYVlIu02xaRD4jIG75IY/n7IvJhEWlF5E3P0VdE5MdF5HL8+3ERkcH5l4nIe0VkP/73Zdd77VHtmgKsqsvpD/gs8M2DY/9q8PDr0rr/P2w/EWl3G/AM8EuLHeLE3fCEDrZ3RtqtAf8c+Dcisr7Y6U+B9x4F/hbw76+j7w8Afw54KfAg8M3ADwKISAH8JvBmYB34ZeA34/FrXnut9jkxjog8LCLnReRvi8gF4BcPc+uG1lFEShH5xyLyWRG5KCI/LyLj63zevSLy+yKyJSKXROTX4vE/iF0+GLX1n4/H3xC19qaIvENEHhzc6++IyKdFZEdEPiYi33qN5/5vIvJ2ETlxPArNN1XdB/418JJ437eKyI+JyB8C+8DdIvJAtNJXROSTIvKdg3GcFJHfitboj4F7rvfZIjISkTdHrb4pIu8WkTMi8mPAq4CfjbT72dj/WuP4JhF5fxzHuWtZJBH5Nglu8kuOR635pqoe+BfAGLhHgkv86/GdtoE3isjZSJ8rIvKoiHz/wm1GIvJrcc7fJyIvPcbzf1lV3wLsXEf37wX+iaqeV9UngX8CvDGeexjIgJ9W1UpVfwYQ4Ouu49prDvC6/oAngNfFfz8MtMCPAyWBuG8E3r5wjQL3xn//FPBbwAawAvw28A8HfTeBVx7x7F8BfpSgcEbDfsNnxN9fRrB2DwE2EuYJoIznvwM4G+/154E94JZ47o3A2+O5XwB+F5gcMaY7gSeuQa9fAv5B/PcyQYDfFn+/leDRvDhO6gngHPB98feXAZeAF8X+vwr8G2CJoASeHNIa+B3g7xwxjh+MtJ5EerwcWB2M4y8N+i49xzgeBr400udB4CLw5wb00Hjd9xEs173XoM8TwJ1HnOt4Kd7vfyAI0AngTUBDsFaGwHt/APxc5I2XAc8CXxevT/2/HciBvwE8DuTx/M8BP3cd/P9m4E3P0WcLeGjw+yuAnfjvvwq8ZaH/7wB//bmuvdbf5+O6eeB/itpkeq2O0Zf/AeCvquoVVd0B/lfgu1IfVV1T1aOAmQa4AzirqrNr9CM+5/9Q1XepqlPVXwYq4BXxOf9WVZ9SVa+qvwY8AnzV4PqcoDA2CCHD/rXe7Tna3xCRTQIzLzOvUX9JVT+qqi3wjQRl8Iuq2qrq+4H/G/gOEbHAtwH/o6ruqepHCO5X11T1Dar6j44YQwOcJAiTU9X3qur2EX3fcNQ44nPeqqofjrT7EIFOr1m4x18B/ibwsKo++twkOrK9ItLuAvDdwLeq6lY8905V/Q0N1vkm4GuBvx154wPAPwP+4uBe71XVX1fVBvhJgqAnfvhhVf3hz2Ocw7ZMEMTUtoDlyP+L59L5leu49sj2+cQPz6rq7Dr7niJYgPcOY3qCRbie9reAvw/8sYhcJbga/+KIvncA3ysi//3gWEGwuojIXwT+GsFiQCDcTYO+9xLikK9S1fo6x3dU+8eq+veOOHduYcwPRYZNLQP+JYF22UL/zxxjDP8SuB34VRFZI1iSH43MvNiuNQ5E5CHgHxG8gILgff3bhXv8TeB/UdXzxxjjYe2PVPWVR5wb0uIskIxCap8hWLAD/VXVi8j5eN2fdNsFVge/V4FdVVURWTyXzu8817XXeuDnY4EXb7xHEFIAROTmwblLwBR4cbS0a6p6QgNI8dwPUr2gqt+vqmcJLuHPydHI8zngxwbPWVPViar+iojcQXCN/zJwUlXXgI8QlElqHye4gG8RkfuvZ3yfYxvS7xzw+wtjXlbV/47gDrYEIUztBdf9ENVGVf9nVX0R8DUEK5us0+IcXmscEMKA3wJuV9UTwM8zTzuAbwD+noh82/WO8XNow3E/BWyIyMrg2AsIYUZqHe0iYHhbvO5Pun2UoPxTe2k8ls49uGBRH1w4f9S1R7Y/SfTzg8CLJUDlI0LsAXRAxC8APyUipwFE5FYRef313FhEvkNEbos/rxIm0MffF4G7B91/AfghEXkoIrxLEXxZIcR4ShAKROT7iMDSsKnqrwB/F/h/ROS6AaPPo/0OcJ+I/Dcikse/rxSRL1FVB/w74E0iMhGRFxHi+utqIvJaEfnS6IpvE1zqo2h35Dji+RWCtZuJyFcBf+GQR36UEBL8UxH5lmPQ4HNqqnoOeAfwDyNg9yDw3xI8jdReLiL/lQTE+q8QQqo/up77RxqMCLKSxWcc5Tn+X8Bfi7x9Fvjr9JmHtwIO+BEJgO5fjsd/7zquPbo9V5A8CKqfYB7EOn9Inx8lWNtzwH/NPIg1IsS9jxEY6ePAjwyu3QVedcSzf4KgUXeBTwM/MDj3Q8DTBBDsO+OxbwTeHY89TXDzVuK5HwOuxHH+JPD7RCCHBSAO+H6CO3YAbOEYINYh597KADyKx+4npCqeBS7HiX1ZPHeKIFzbwB8TwonhON8C/N0jnvXdwCcJHtJF4GeALJ77auBTBKX4M9cxjm+P9NiJ4/lZ4M0Deujg3l8Rn/dnrsFPzwliHXLuTemZg2O3xfFcifzxQwv9fx34tTju9wNfPjj/88DPP8c86sLfG+O5VxHc3NRXCLx6Jf79BCCD818GvJfgjb4P+LLrvfaoP9Fru9g32hFNQhXRW1X1zi/uSJ6fTUIV28Oq+sQXeSjP63ajgOBGu9Gex+2GAH/ubRP46S/2IJ7H7acJNLzRPo92w4W+0W6053E7Vh74zd/3w2ozG5CK3NJ6h1fFGktbO/KiwKOo9yBC07ao+hBsO481BmMt66dOkk1GGJPhnMfhUSuIMXj1GBGc9xRZwSgrQTLaPMOcWGF85iRrL7id5bVQ3aiqtG1L0zS0bYtzbi7ID0MRvPdgemWlqojIImABhP6pOUI/AURjzmRB56X7eO8REYwxoDb+BgRUXbiPCGBCfzwYEGMQY8A5Tq1vsL66ymg0QhUuX9lCbM727j4tQj6agG8ZFZa6cZjRMm1T0exvsZwr5bhkdzbDiOKbiqb1OK/MplNAMBjUe5zzqJhu3M45AIwxc/RIdOrpIngfARTp+6R5Bpmj31EGItFqeB+gGweAEdPh5SqACAh4VVAwIvSAepoYRdXEv/Q7jN2IkGcwKnKMNeS5jfOpnD59mvF4jEM5f/5Jzp49y6QY46Y1Vy9cZLq/ydm772R14yTnHn+C97/jj5g4eMd//I9cefI8HrB5xsrqEssrKzjnWb79LGdf8mLuuv8BTp08wXve/vt8+N3vIzclbeNYXl7CVzNOSMaTjz1BlVu+5pu+gW/5wR95zkUMqR2vkMNA3dSoV9pGcM6FCTcW9cJ+tUte5LStAxOEUAS8erJAeeq2RgERQ+1bWvUYhIIMUfAqKNCKgdGIKsuZrK+zcfYW1m69hWxpghpD07a0bUtd17Rti6rOTX5iDlBELMYImF7Qhox6GMOlYyb8CMLnA+MgB5OfIoK1tr8n6b7zykFj9WcaGxoYSySML89zlpeX4/hgPJmwvbuHzQxLyyt4Y6j3GzbWV6hqx+WdGbPZjNJabAaz2QwQTm5sMNvbYb8K8+Wdw5qMPMtpm4bRaEzjfKf0vPfMZjPatu2Ea7F57wkCauK7+AXhhkXKpONDOqtqUHKAMTIQfjoFqFFIk9JzyRAMFESiYdd/bu59d9/0Pg7wztO2NUaELDNkWUZuLRcuXCDLs2CcbMby0hJGDR/71IeZ7u1y9713MDlxAqeez37mcTJRPvWxj/DsMxfw3mGyjHJliY2zt9ISlPJoY51v+OY3oDbjXe94G07BFgWXL22ysrzCxqmbeOapJ3n8yaeYuZb1W85Qrq4doPu12rEEuK4qmjq8fNO0FFmJGk/dzhCxeFV83aCRgCCIEdQITpXGeRyK16A31QiZsVgVRBVjLM4YNLfk4wmrZ85w8vZbWT59Ch2X1F6ZOQdVhYsCnCxuat73gtMzkAbzybygdkyDRKUiLPJtb3G1O9Cz6uGCr6poFOD+0mC9jDH9GMUgAqOiRFHaWhmPRr0wCIg1YISyLBgvFxiT0WYwyi3WWHamLWYyZiQtq5Oc1rVMm4bxaEImStVuIVYoy5KyGFFkOXVdc+rUKRDD5cuXo9CDEdjf36dlnlbzwjx/vBcmz3BR1VBgkwD1FrcX+qAUBgrTmPl+ytz5xX+rytz8p/kZjm04nuBttAjQNGCtxZogyFmek2UZxjgef+wxcltQNTXl8oSljQ1MnoP3GK+ce+QRHvvoR3DTfYzJUIS77r6Xh1//ej777EU+/dnPIJMxFy9f4pbb7uDe++7nN977x5g84/a77yQ3GU9dvMBsNsOeWOau+17IV3/91/OCB+7jOO1YAry/vY13inMt1mSYPGlMS1UH7W2MISsCIapqGhwcgcxYxBjGK8vkeRGts4AHsRa1hn0j2BMTVm85w82338Hyxga+yKlFqKsGV7X4psH5FkUPWApVMMYOhKl375B+oq21C4wjWDHBAfM+uLM6ENjDjUt86IIy6BiVToiTtQnWoONIjISxnFhdxXvPztYWWZal2wYxMgab5xTjnDK3OIXxqMDE9yvKnIKMSVayPMpw6jHTCkHIs5zJZIK1WRyXYWV5Fde2oDAaFayvnWA6DSva9vMM9Y7prML5eYXU0/jwUEPEdLRMnlASmqG3s+jhhJYEf+gNBeUmZl7oEYl0DRMiYqKxWGyeYJ3DVIbH+iTdwStRxTcNDSB1hbVZsMhZRj2rMMYwmowwmWE2m7GyvIL1SoHh0Y99nGp7lxwDavCt8sQjj/PpOz7FfS99kFnTwFLJxz/2cd73gQ+x+ewFtreuslyOOHXmJpYmE5rHZhRlhmQF9sQqTVng8/KQdzm6HUuA/WwGGLR1zFxNkzdkNscYgzWGtmnIsgxXQ1PXUYMqxlpEwSAhVnUtai3W5EiWUxnI11Y5ddstnLrnDooTKxhbMGsdddvQNA5tHNJ4pHWo8fhB/BXmVTBG8D5N7EB4O7/XMNT+3b8RvNM51y6xaQxhgcA4PgRUqCoZcoAhe4b3kakHBNTIzGh0m2EyHnPTxkbADZwjs1mnMVrnaJwjLwvKIsOKAe/Jo+13XoMXI0Jmw2WZGPIsD/e3GZnN8KoURUHbesqiQIqSqq4QEcajMd57RqMRozIwj/ebnXs9fLdAz0QVAH9AoL3XOYW12A6ziv3v/ry14UB31oR31sE4TOdpDYgs/XNNFP7heBSN1POg2ittgbZtaOqWSgRro1UucnLJOH/uPHtbO1C3PPnU02BztChofYO0gHp2r2zy1rf8Lh943/toM+GWF97FV7zm1bzlP/1ndjYvIfUe1c42m9vblEWONi6ETBsnOH3XHRTLywyiwOtqx4uBq+Aee+dwDqzNmbUzsqxA0M56tD5qYBSDwTlHqy02z8jz4G6IyWmyjOLECidvvZlTd9/B5ORJvLW0ztNUNXVdB6K3ARjz3oME7bvojvWzR5ysMAKJ6FNnUBcsioigPsA7ESMhhafhfGQPobOq6d1UBCPmgBAnpkkWKagICUpHwVgT4mXfsra2Rm4zJINTp05R5EV3/6quu+fmWRZXfgjWhPE5VZwINoTPHQ2MsSTrZK3FNQ15ntM0M1rnGBVlUKR1RVEU5NaC9yxNxqh66rpme2c/XOvcIe5riu0PB6vmPY55F3kIHPa/WegzmN8YbqgMleo8qNbdJyoUI4KXeaByfvwhfMPHO5nh2MB5h3MtdVtjWkuW5RR5TnX5WQyG9dtu5Stf9zoe/ehHePrRx6mvbGG8kgOznR3O72yST0qMBfvQK1jLCvaqGnENHocTZafaDZjq1HDfl7+M13/Tn2U0WiWj4DjtWAJcXd3Ei5CNRhR5gWtrvJjwwk1LmYfbOfWItXgB7xu0cSyNJgHoyXKctZQrS5y64w5ufuE9FGuruMJSe6WtG1wV3GTvHURXRzE4CypCHidRtBemBHgYm7SuDMBi6QUwTuocuMJC37lffVxsYkyrETjp4uPokkHPfL2CifGhsWQRwVcU9UpZjlhdWsZE6zKOFlCBqmmpnUMJaGkmBkMQWkVQAy4pK+8hxp8CZJntvAaJCjcvSjJrA+BVlIzHY+q6Js9zRqNRBCQtK8srgKFqnupi49RCyJKEMz2tFyRVsLaPg4d0HgryUKiC1e4IOUC/I/Jv5jGF4AGbOG/Jag/CFbF431vfDrCMPIImSx6OiTEQjUzw0BR8RNq94ts2eEJNjbEWazLKccntL76fm++6g4uPP8FjH/won33kEaq9PawPd/bTKRc+/Tj/4dd+PXhQezNyHM4qjfEYGxSNiuEzn32CT3z8o9x/34OsjHOwh8Vqh7dj5YF/8u4X6/buLrYcsXL6NGZ5mUoMjkA4nMO3LVmZI7mlVo+1BuMFRciWlzhx+6088MqHOH3/PYw3TqLW0jrXpYISIpomPExmnGzTx5aLyOOwHYyzElMsxl6xrxfQg5YBAiMkD82r6xilj1IN6s1AMXQ3xpjgShsroCaAHRpBLGBjfY2zt5weWM/AxA7Yrmqa1mGNsFSWZFHIW9cGsE+E3aqhUbCt48SkJDcdHNepoKqesruzSzka07QtznnW1tcRYG9ri5WVFaydr833qjx75SoXL16cE+IkeEOr7P08gpyAokU6D/sdNldHzeWiwPdzlLwrT0olqRrQoBBSGNO/kwtzEk35fE1xSquFe3rvwYfro5MdUogSUp3WWvIsxMsZgtYtT3/2s3zygx/k/COfotnaIXcOnOJRyjzj5tESN09WmGWerbHCJKPG05gMHU8oVjZ4zde9npe//BWsbpy8bgk+lgWWzOBdi9/dZbNpWbv9dorVVVyeh/RDZqkzT2uVkTGMvGDIqDOBk6ucftmLefHXPsRNt92GmIzWK/VsRtM0HWMsTuRcykCTO3tQ2BYRz/lr0704YBEW0c7F+825X/Emi+CN1x7EWRTgYUw9BNSMMSytLPVgTLDLsW9wFzJjKDJLEb2JIZoLKR8a0zEyQNs0xfzBxU/vWxQFs6qiqirKskCMYW9/P6SthtcD62shnXHhwoU5UOowRPkwN3VRgJM7vujWLoZCiyj18JkH79+/Zx/2JCzEdwrbex8o3IVSA48rzn0wDm3/TkY6Tyl5ZUGwfQgh25Ysy7BZRlZknL3vHm6+83Yunz/Ppz70ER7/+CeZXrhEvTdlzzscW1SjCTK2NGsla/UKo3JEnQmaC3fdejtn19d47zvfzmu/6b/ketuxBLgRwXtH4UD3p1x9+mnWJ2M0M6g6WueDm2gMjSjeCj6zvODBl3D/qx5i/UvuwY9L9jyY2uPqGufaOWs7nKThJCaLK6bX8vOTmYCsg5Z5kcGGLRRdzDPvHPMNhH5ReIf3OCyOC3Fwr+07V88aylHJeDyKd0iiKwE7VcXGGHZkQ34cAqhlrelsP0SwRbK54N1rdKk15DTLssT53gWtqoosyyhHJTs7O9iZZTKedJpOgNxaTq6vY4ArV66EHLFzwe0z824yHESnD0OvD5ubRZDpMPoO2/z5QVQshFg2VHzEdF3PI0MXOqHSIhGiFoMxIDosSFFEU1FOL8Qpk6Dq8b4B12KcxVrLqBhx5t57OX37nbzwwZfx8Xe+hw//0bvYvnIZ7zyz7V3KUc7YrbJdG1ZWLVlZ4Jt9Nj/yCG9/5DyXLl/9Agpw0mrqEfVMd7bYvvQs5alTKErhBd+0aFnQTHKK227m5a95Jfe9/MvJl5aoUaqqxTeh8sc7h/dubhI7gh+iifs5W3SRe6YRGRSYHEA59YAV6+I3I4j28e8iG6U0jJ9zoQ0p9pvvB+pTBZAlINJBgK0RxAobG2tkmR28EyASqrMURKHIbQ9YeY+PVlmJCHSMcYeBghDdVTSkj4wwHo/Y35/1VrhughW2OUYss2mFNRlFWcy9tzXCTSc3GJUlzz57id3dXdroPg8t6WL11lAhH9Y39Um/0/VHKfJFN7uf0wDWIZEvMZ13lhRopzyRmB4M89zdM+EnSE/PgUfWvZef9xyShdfWBV62Ft96mqxgnBecvecebr71Nu592Ut49x+8jfMf+ihbz1yi2Nmnaj3VDGb7DZkVZtN9LvJ4VCjXH//CsbfUETyKF43Ip7J99Qqr5ZhyaRkVQ4VnsrHBi179Cu79mq9k+dYztMbSVA1atWjMQbqBy3jY5FzLLdMYlh4WHy32XdToR1toIta1YGVV8b63fKY7lxjSgvTFGamgwaTAVkGwiNFOiNdWV1hdWur2ExrOWXD1AhhkreCj69f4KJDRSjet69zB1jmcs4idH1u6X2YzjLVMZzPG4wki0LYuvGuWUVUVfn+fJRGKIscgMS4PjLy8vESe51y8+AxXt7YQeus2LB8dlmMO6byYDxaZr1o7as6OqghL85XCjzSbwXVOKcSF/qmXYf5kqDcCNITTQ3UYGS3NSVIMMPQaQijjnce7OhiltqXIcqSwnH3JA3zL3XfwmQ9/jPe99Q948qOfZDqryHYr8hZaURpXMVWHA5pjYFJwXAtc10HssmARAKq9PS5fuIib7CDrKzzwqq/hq9/wZzh9z934ogzASTvDO0fbNsHK6CCtw+HA0mFWGeKkLuQZj7p+2GcIWgzdvoAmH6zA6p/bW2mZUzkHn5veSNUThhgQTiMWxGOtMC5zNk6skSUBl5gO8g4bxwJR0UiAUWZtG+p4bbAwzitN0yI2H1j6/t3btkHs/NQWRcHu3h6z2ZS8KKmbBuc8xljKckTT1Ozs7LCyskKZ5/MhBcKoLLjl5jOUoxGb21vMZsGiJ0E8jB5JYNM8Dum+6GGl/sM5XFS2h7nawVpagnvbjzj5I/2QEr1jvzRmE8peVSHg/DqImfvc8/yrhfsGBWMR8WGuUnzsPc43GJ9RFAXFuOSer/wybrv/hTzxkY/zgbe9k61PP87WbMqkzDHWUmBwgPFfQAGu92fUTU1RZmTGYNRgMWzNpizddQdf/13fzkte9yqKk+vUGtA5rRt8XeMNOAkppog7dIjgYpsDNExffIEqxga3dS42HTT1Pk6V9j7lAvi1yDid27sAsEDEMSOgISlfCISyFNOBJ4G5lMyGBRnEGNaIIc8zyiJneXnM0mREnkWGI9R+t15pnJIJZBIA0CC8IWxxXhkVGSaOx3mPU8iMoXUeGy1qqx7UM92fMllamptdY4SizKnrBqsZmbW41nWWUcRQ1zVbW9usLC8xGZVz7jkE63z61ElOrK1w9eomly9foW3b6PqBxHTNPEB4ME4OGMZzKOmFuT0IcqXfBz22sDiim3RC+j2FOlERR0uaEOtgSAZjMRLuHUO27vnxyT7xiBHAEvBmOpyjcQ7jPL5xtHkIT7L1Ezzwylfwgi95gHMf/RiffN/72b/wDO3mJqZpyL1iv5AWWNqaUgzGBe3k8xxOrPKVr30tr/iev8At99yFywxV62ibFt+20Hq8etQD3mNNkN4Ubh5mPUVkLrneD2DeKgz7p8kzQ+FMrpRoJO48+tlr+F5TL6K8YoWEIikhtjXJIvtoMc2Cqygmxr6B6W/aWGcyGpFZE+8VTKYSUh7OC84btAXJgkvoVHFOadoAHGXQCbAXQWOFlW8ajAX1jrqucc7RtI7CeYZFecbAeDzCeYf6FmMyQGmaOtb/BkDMe8f2zg51U7E0WSLPMiJKEOkbVvOcPnWSUVFw6dJVqqoOAimB8V3ENkgpmIHA9VM5iDeZXxW2iIEc4A0GIFQQpx49lgggRKQqAZ99nBKFVENRkDHa5aEDtNGXvoaYOvBtx1PpOSHZ3CXtLDFs8gOPT4Iya+oG1zryvKUoCkY3rXHfq1/JzS98IY+86908+u73sPfMRcQ3OHfYZqFHt2MJcO4cajLUGKoiZ+m+e3n193wnDzz8GkYrGzQos6am8QGgMs6HZDgDVzkJWPwtHHRzj4phD0OSh3FwuN/iddHFJMJOh4BbB5ksPMeaUDAxBFnMYGyk58WfxtiugEAMlGXJxvoJlsaTmJvv8eMUXzqvuAg6qQqNiytnVHHOU9cNo7LorlRV1MexeY+RsJxzaCWGtIqlD1gMhRXKrKFuGoxAlmVd/j2Lec2wGsmFRQ1ty+rKCmVeDHG2SJuMtbU1ynLM1atb7Ozs0vo20jhUg3m/MAeDuUoFH4uA16IHNEf7BWvtfa+M53nCEB3jSNfgjammdFuw3L0yj0UdGqznkEd8XBrLAliXYn5jkseVBtzzdLRV3fjTyjmbZcioYHLrKV7+Tf8Ft957Bx962zs494lPUe9czwcg+nYsAXbO45fGzJZH3P+qr+XV3/PdTB64j2o0wlctrXdBeGO+rPM3SHFE0uUJ+esno7Ognfabd5MXLe1hcVcfsczfNzGGZ+EZnTIxvfuj/aAT+NFdPwBsOvc+dIzPCffPMktZlqyvrzEZjYP1CrPajVQ1usIugGQhn+zQjumFum5oW4eW0pUkOAXXNhiNaDtED2d+6VzbtmGt9pA+EgCt2XRGq2BsWHTiXEBSrbWh5LIF7zSWVO5wYnU1WuLkhvb0m0xGlGXJ8vIym9tb7O7tESwiC0DVvIIZotIpc7AYI6d+SVDmLXM/14F+SfgHqaNuucQ1f1UAACAASURBVGO0rr5DrKI1lc4VTjjIonIPHlXwCHXg2nfxP6m2Os1af510anceg3HeByiyKNAy45YvfTEnb7+dT733g7zn7e/gOO1YAryV50xuP8srv+tbedk3vI58/SSNLXHTliaWPvrouogPywbDfAcNpqTEy8HYFZgDRA5rw0Xgi23O7ZmzqENreVCoD1MEKZ5NGj6JdMoJJpAjxUJGJBYqtFhrKIqSkxtrlGVJgjkT46dnO/VxxU8UshhzefVRaRiKPLm5DTPxGFWmdUvrfNgMoa1DUXwU4EQf7z3T6RRVZWlUdkJa1TVt2+ARXOswPtDcxOoi7z1N02AzC2Jp25ZZNUO3lLIsQxgQXeoh41ornDixRDkuGO+M2N7eDsj2nMAMXeNA5wD2yZywD1tvrcPY8lgwlKxvbymHoc9wHoNn4lyfskoGXwalp+FtYvZg8Pwheu6ci+KosfQ1BRXz3Gzm+FMPDRPxip02+NpTlzmuLBhtrPPi17yKMy98IcdpxxLgk6/8Gl7/vd/N2a94kDrPaL3BVC2mdTjjImNrbwTNIEcpoXZZOCiABwEKusX36Xjqdxi4MYyLeqGVOLGDiRpY9M49glDz0FkJiPmEmPo5OM7OjXah6idpbmsto9GI9bU1RmXRWaxkaeumoWlqMEJVVQF4co6wdC6Mx6vHpzSFmHhMsQY0WWjtrYAxwX9IbtvQJd3d3WXTxFw1qaYcNC6qkCg4QyFumoY8zzBxsbtqUCBVVTGbzRgVJWVRkuc5dlCz61XJi4yNjXXG4zG7u7vs70+p66arwBrWUgfhTHRNoN/hChXCOBdDq+SWp0U0fY7fROUbFKG1PWjWzTEgkoFve8WirvOmgAPFICEkjjwwWJI6HPO8BT9oqLoxeAH1tDQ4BS2C53byztsOXHOtdqxa6A+/6z26fvZmGpSqqskweFUajYBFXG6pkceUHjtI2EIKBUUT6HH4zhgxRDzgNh+GPM+5PDqsS55P2Ct+zn2e39ZlXokk9zmkBgdaVhWTJlGzILxJFwvkecbS0hKGANyFrX4cTes7DT63DE8Er3H7mJD17WJdE4EqRHAalvbhA/LfbddDdOsWlJ1qInTEczrgTBOwivF6CNOlvsMUW79riJWwkUCeh7XGRZGT56ESrI7LD1UDKl7XYceU6XTGbDY9kDvux+oWxn4w3Tecs3DORJyqD13CuV5JDAUs3WNekKUD21Q1zNmC+56eN5SToTu8eAzfx8ch3J6/V+rr6QLkQFsj5EVBlmU8/OqvO9xFPaQdywKv3HaWRpWmbrAIXh0OF4rAfXKsei2lHbNLVw4Y3gYQM4gR5qujNDLtMJ5I/w3MOrTaHQkDESPzaacp+kcmLb/oRi8+ox9mKGjoXGiJRE+utfHxn5HZRKhdS715NU6edBuBhNU1gRY+rhP2aXwSUP2k9bq8dBTscItYlhktj6YYUIJl8hqEPwEynSsnPjK4xGvMgCDDpX5pLiTeg96KQUhRAWgT6GKErZ1tbNztYzweA2EftODeBqueBDzPLXVd0zR1t+Z1EYTqfwd6JbRfI8iHEFebxdmJqYwgPGkFkkEkucy9xSMt5TQxu8DQIEj37qFfXCscFrEHwzPAqVQCRhBWvMUiD+9DWjTxWwwb51NTtpsblxjXR4U9ALmO0463oL8rfXRxnYZ2jEOC3KEDqVK8m1ydg23eNR5OaGLEAy5VZ9aTSNKfFyJ0nyZtIIzSI9SLFmeIbqa+vYVM/xnE0BIAOu0ui3o2DdFI3DFjECcl+cB3wzKd4YwubYwrg47QgdJTTMzxBm4xIR0Xn6na9gojMkjQX4ob7gqnkZET7eYWuie6RpoPNz/oCRPrhQNtvff41lE3DXv7+/Shi3SgU3LRRYTRqCTPM5qmiWu96eY9XNMr5V4BhjLXVCMuENJ2mryHVFTRC3EQRB9dD+04xYekL3GvALrtYjoB1s5ialQCAwilo1XYLMFEACyiAcYEo9aViNpuueuwJQ+or8Izc7x4DIcYOKYAt4NdJnvBgp4I/Ut28WK3SwYLA9WOeXuLOF+JM4xZuyZ0mnmubx9tHxDIxWcPfx/mpi268t1x7ced+nXu60DBpLxjjOx6C5dc3vRhQO2VSve4iHaStgHyya9JpZi9EHYW3btuTXF3Jhl0L3N0Dtd6iJFz/16JlrH4WrUTosS0ibfmaXdQKQ6Xgw539UgCnWVZtzrJOUfbHnRbO56I75hy4LFTnJpI0+hpDDc1CCKShDcKtwieWIIapyzwZ+KffrVSWF0WtutR/JwJVoLyk0FM3839wEtMjO8HUpnoeBgYexjG81ztWAI89P0XLdTiIOZjsYNtETFM9+9eQIb9DgykE/j58/NCuBinDM8dde9FIgZiz1t6k1ZEDbQ7c48JbnKX+uqO+0iPnE7U5kILQcXgxEXh1qTfu2f0W7l6NIJfRsKWRV5SBB0CF41eRx/5Dv+Yo40MPKjgraR4rd9oLiySmKfvUAHOKYrhrAzmYbhz6BA8Gx4/LJUDfZFOCj0kKhokrYGPQuiHb92XmoYwxiKiqOmf01Vusci7SbDn9zVL/zXGhMrCxBdxrju3Pe28qYOdSRgkOwf0Pg4WNWzHc6F92l9qQVAF0i4Jw3aYZZ0/Pj/RxqTKGrpVP4tWOzBXek6qa4U4iAHjHbw+PXv436P6dhYh7eYwd22YCLNw78FTUjIrWIW4xWnnvkrWu4ND1019sKbJ2hKDL5+Q0xCu5IXt5qGpm+hGBqvRph0nIhKbEax6Z2V8sMIhVRVSI0biKh4IcWUXFiVjl+y676zfMB3Uz+kR5FigfRLotHnDMBZPggGEApVYJaWdgIRtmvpsRs8LgR/6dJJ04VRaGxx23NAYyqRnzu3YwbyQhj8BdaS13MmhUgUrtlvoYBA0VfcpwZOKRLQLQroItF5rg4prtc/hA9/STVwCblT7AS26ootuVneXRIVuIuYt8lG54tB0zjVfvBYO2Z6Ug5p9fiwc6CciYCRhVt2YEk8n723x2uAmp7WkYemlVxePg6GJAuJQbRBcWKJpNFjW1sV42JPZsNbaNw02g6ad4WrH0mSCMTnTtsarRcTinCEvJth8TONAbWB1VY2WIrjNaedOL66fT00lhUdQPtEubmBA9+7zaZPD6DsUyiHNe56Z56mOhxCM7ZJk4V4+1MN7pwhpEUMqb0315Z2zTwLwRIZVX4HOkoRxIJBhDKa7Jghw8pxM7NfZ9mQ3BqHIICQ0SSkOeERTVZl0yvCoVVfX045XC909JBDN+7BdTNJqQwGZnyDmjg3uyGEuVzo1tIqL2qlnihDsBfQR1Cwm9jn0+msJ8txvGaDhQwHu75we0J0TJBbDO8KCQAe4ENf6Gqv7oC3qKtTNMDYsRRM86oJw59Ywm+7RekeRZ/i2pnEVrZuhWlOJYEwOmmGyEWJLyvEKTW1ZPXkWO54gkuNNhkhG64SmDt5QNQtfbNCu0CKsQw2pLBtf0PTvFt+qd5PTvAW3NM1hb1Hm989a9MAgeDZzNcaHzIMgITUpETzrFET06tKcH5jb+W1tk/s/3E44KLG4SWJ6mhm+K4N3JXpESUVo91yl90rDfU3nlcZO3TuJSPfVki6tNzj/ubRjCvB8XNu5KpFhFxdk98Smuy7FG+na4c6GyZ0BDli94X3S73ANdPFQuOCQcR+Mp+Y7BEXgu3tElRyF18a0VF+BlSp2PD7400Gjp1ROnHh1M9AZ3geBRRR1M3y9Ca7CN1OE8HWKpnWgDbgKEaWJFripZjgTK6dsgHJUQ5lkWPsqtFmOioFqQtM4ntn6dNhStixpWstotMp4vMZotEJejhnlDT7z1FXYQqZpPJ4MsgmODO9tyKebyJ6S46XAa05CuZMVC2voI718G+gjdiBgYb9br3WYtaBvg5VMC1ZcimnjfHdZBkGNjxY669z2UAOeLDNduijVoSfPQLX/tE7/JQgTLWDWbSaR+EnFxS10kkeYXNvAvCl489HdTgUxylCBxOtFSQU6KQ7XyGvRLpDKPg8DXa+3fQ4u9EHrlpq1w61l4oB1eF3QxvP5t/mWzvW7SvYgRH+fw3bviNcPjh821kNdPAZ5Y5IF7eOiLlrt4Nr057sCeFWHkVDNEyqmGny7SzO7iugUQw14vKsQv4u4ClxNkRmapkLjJz/QNtzb+7Bvom+ZTZuwstiauDoqPT6ms9qwT+d0thsuFUJe2YSxmaUTmPoE9U7O3nSPWT0lyyy5FCHFgyUrJmSjFcbjE+TFMrN9H75tJULjLUhJka3gNAcsmBD7BeAszKWRLII4YYwhZxvGaJLyF42IckpdaUilBMIH8g792m7OTPi0TSdcYb6GVj/xT4pxkhFcbOmaFEp0YQ8WNUOQNh2f9yzxKe8+N0z6A0PeHHqeJr5jKj6Z91aP4s9rtc/RhV48TnBFOkJqMmAxZjhagBaFaz49RSe8w34prlu8TxdJz7lzByt6Dm+9C9wFuVF4uy1O0RCv+haNMW3oLuDbkDv0Neoq8FPaahM3vULGFGhQ34SPjvkG7xq0rfEzhyZL4NvAGBIUuNPwrpnNER+ud9rVagWr7xV8TZkV5DZjOpvGj6WFfahVW6bNPtXOJRChcQ1Oa9RaGmcQhSzLUSyYnJXVdYpyws7OPoiQFSOqRsnyFZbXzlAxpqJAyRBbYO0oWGhvMGaEYKLV9qiE98HEFZcalWN8P9VYCBOttCD9ar+4iySEyKOfZxPd3jAvoZJq6Fqnf6c0mZ/jgaGAJWuc4vAQF/eIeR8C+i6+Tf1T7XZI4c1b0F4BDPluUXauET4eox3TAs+b044knRs5cI0H7mgf09DHBcnNHLjjB4S7+7+Bizy89/D5JKGXhWOHW+I5sK27tu8ftn7VzvoGmfZIFFDxNd63gUmMRb0D41A/wzX7aLMHzS5Sb1FXmxTWgXNdjbco4DyiDonWW5s6MHvcG0mIFT+AaABQrLE0vkVpEfWgLb5tePbSNgZYWV4OX8Kwya0lfEVAMhBLYSxODdr6bv68q0EMqjNmrmIqjqrZC7QwOZCj2ZiZXmb99O1s7VbsTRtW1k6ztweYEdYW2GINTIEhI+DfGZ7wpcAODJyzrinXrJ3brGio7iMslTSYtOV1LPgY8KImvCPF3CFEO+zja2nO+3PzFq8X4rRVUZ8371x7end3PpZetJ7h3eaXSrLw7H6hx+fTjifAg6TlvFVcICxJTnuXJ/Xt0OM4h4vpp17QknVbtJzRFWGR+IqJm84dlv+95mvJcLwLa1SjC4V34GaIn0K7A1phw7ID0Cy4s65F3T40U9xsF233MG5GW+2jGeA9SotqjUqINcNukcHlFtFQUudctx2siRvni2ZkNqeTAfUgDd5XqCrlqMQk10xbmsaBgBiH9wbIsLZEXR5LEAEJO5OFKifwrqGuWxRHloX4VUyDYnDNPlemV9nfPI/znnK0TOOewdWAFEhW4otVTL6CzZaw+TIqYzIzwZPhSWuEQUyG9nV6CE0sM8zwGkswUnzcucbJUMR6cRWGSjktrOi3k13w9jqrP6/YIcXPaQEEGJPSfnGF16B/4pFFQT6YYel5efHrFIsCP/x93FTSsV3oYb5qUeP0bu98jmtR0/RIXbQ0CzHAYTnGhZFcw53viXc9X8VL+Vj1nWM6/+yIIKs2qJsifhdXX8E3O0CLmILMjhEV2maGd1PwNUanwAzVGXkGbVN1Lth4aYXJykk2t2rqRnnmmacRlFFZMt3bZ29/SpZbbj5zhpWVZfb3dqhmyiOPPEHT1jz4pQ+wNDGge4iZYo3B+QbX1MyakK8VG74CIeo7xrS2wRpPlhXBbXcOsVmwBUZCjC/RXXQmxNDegzpEAuBVtXsYlP3Z1fApWLGIseTlGG9G2HwJMz6Bs8tUbcZk+STlaJm8XGbWOOpGwRSIHYPkYWcXr4jmIBqtd4yrO+RXOiFKzluoSAve3JDlk6UL7NR/nzkiFZ0lPShExI4DAZdQVz20wEOlkZD2HjybNxwJ6e6vGfLhQf49LN32XO14Atyt5BkcQ2LFj3ZudZfXCr4NqWKqe7mkPYOJWBD49O3eAM/PA2GL7tDhBSFd70EsPNR2iznr5CiEOtooxnFlC1qBOgwO0Rm+3UX8Hup2UTdD1SL5MsYU0AbXGq1o6h18O0V8BTQ0vsE5YXcPnrwEH/v4+3nq4g6Xru7y5PlzlKVhbXWN6fYMjDJZGnPq1GUefPAlfPJTj3LhwmXOnX+apeUJH/lUw4MvuZv77zvLqZNLjHJHPd1jurvDqMxjqiKWPMgq+3u7PPLox7j//rsw1iPWg2/IVbBmRItQjEqcr6mnu7TNFJvHCqm2AXWoaxF1OPW0GrdJCsujyTNL3W5hTI7aknrH0moG+QRfrVBOVsh3V6gaxXlLVq5QjFeZLK8zrT1Vk4EdY8wElSIUoXSxVeCX6IpFBSvzwjyY1yCkqUIv5NB79lgsmkiIde9e9wBpUGZJqCV+tzrJAMNwUcMzGRS6JIwChrH20MomXjvoSR6nHWs54WNPfUa9q7EyWMBAFgAQ6WuU+6VuhLhRE9Bgo8tpAkoa63q9911iRuJLD4v/Oisd9wEOVvEgOq0Dl7xzXzTFSrHaKC4KSIl0BcLX3AVjHFAhfoa0U2hn+HYfiFun+Abv9vFuD9fsYapZLO4HMRaxWdivWT31bJNmNmN/fy+4xZXy6Kcv8uhjlzh3YY/NzRnb2xVLk1UuXnya9Y3luD0pLC1NaOoZXj02z/EKqysrXL1ylVnT4NQzKjNO37TO7bed4ctfehdrqyNGZcY999zF8uoKS6trzGqHtTeBKk89+TijwrGyZNB2h3a2j5UMbIlkJaKeen+L7UvnsTKl1VlIW3lHW0+x2iA+7LrS+gZsKAyxkgfaahvSQibE2kiGsSVZMUJsjjcFYjLE5BibY2xJUYxpFVRG2GIZsSuoXYVsBW9GqM3xYlHNQTLQBrTFquDVdEtW5wTY9zGrj3Goov2ab5+q2HrlnT6KRkSwUzjV/xF4dsHKqmqQ8RjTDo+DXwjneqvbK4/5CrR07uFXv/a6g+NjWeCR38W1+0z3r2Kti26MJctHZGY8p5Ggl64umlUbJjFu+OZNhotxUABLLEoeiKotgu/LFXXuTmi0mIdpraGbP/fJkBQ/iYYVRUj8X5x0rVG/C24PV20hzRR1U8DTqMZdLyryHIoiY1a1UagDKm2txTtQLFWd8cinNvn3v/X/Mpks0zrHuScvUJZLgCE3BaMSGreHLTOcLVg7sUZhLLs7W0ynM0ajEePRhJ29fZxzjMZjtvenTKuaqs4YjRve+ccf5gMfepSyyDACr33tw7zq4Yf5ihe8lNXJBLEhvl6/9SyPffJjLJ85QyZK6xpGK8sh9YXD729RXTrHiYmwu/Us09keWIN3HqHA1ftAg9BijcVTBYvoFXCdtVJfI6aIyrHBNwbjPWp9yFWLBZvjZUpbbSOElKHbz7DFMl4mqJmQlSuYYgWTrYFZQqUMIZcYhDxiWP3GeYFFUnVUv4mDmMAsKdoOwtlbvxD6pcKMweEBeBm8yf5LjcNQUfHgosFIm1DEcGxY0zYEa7snDPCfxZj6etvxViNtfpJnnnkS0Rnqp3iaGHRk5HYppCO0J4YxAsbisCEewGBtTpYVFEWJZBMkG2OzEcgYlTEqI0JVVXSBEiFEkbQyBDu32dkQhR4ifQdicZ80rEQcTEN8F1cI+XaPttpE3Dam3UNchbr9sFOgpuWRAdmVzOCqLVKc5ZzDN+FDZ9OZ8rt/8Al+57fexvblhrLYphxZJMuoG88o85y6eYPRUsvSiQ0+/sgTTOuGNQw721vsbm9iUbRtyFQZWaGaThGbM5tWYctSY5lOK7watnZCmSWi/PZ/+kP+8L2f4Hu+d8qrH341t5xdpalm7Fy5zHve/QEeeuXD3HnPAxS2oBbHSBrqq+eYbW6zv71DtT+lKE4wsithyx8R1m8aMypzPvPYI8x2LiN+hyzL8K5GtY7MG5Y6qhigQYzQ1qHay+bh87MiBokFFGLCPpsBkKtAoKlCXJ3lJc2exeQrmPIWTL6BKdaQYhlvxsFbkpy0ckqEbn9sxcdvIIVI2kjI5EJaCZTKMeZAlvBf7fO0dD0H1nYgfB0KLSYsK5WB9JtQ7DMP4vYAWnxphHmQ63NpxxLgC0+9l8mkxDc1u3tbiChFOaIYjWjrKZCFzd+114hibLS4wc1sxTD18SWkxJgRthhjyxOU45Pko3WKfBk1o+hu2w5x1LTGEz2guQJdhh7A8FiYLiNZLHyL6RvfgDYYnSF+H1dtorOr0OyiOsNrg3P7eFdhiYCJ97Qq1Cpk9T5OlcoLTsbcce+XsrVZ8av//Ff43d/7AFubFVme47MWUxY4J3hZ4tmdXco1YbI84emnnmR5VLC3W3PpwnnKXLjp5ArjImNvZ5vdzQuMxhNmjXL1yia33HyGZy5dYTqbcdNNp3j2mYvs7oYcb5YXFKWwP93if/+nP8Vv//av82e/8fU89PKX8q4/fCuf+NhHeehrXxM/m6TkTminu+w/c4kLTzzO9tYlZm2N856NtXVuOnMLWV5Qtw15scxdL72N/UuP8+xnPsRs/xk0bnmLeLw2XXXTrN7Hx+qp0WSJPNLbmAwjbRDeWJvtB4AVhHi7aXZw3lOUm1Bt47I1zPgkdryB2hWMWYNsGUxBiHMtYZs4E3GY4L0lG6gdB0T+iNzZtYF17MCt6J0l93celB1st5PiWnQg5INa6AgUpPuEkC0sfEiu+hCf+YIWcrSyzd7MoK0yGpeMRhNmVcusakFc+LyEOMQYsszStg7fzroqHDSW1cVNxtQL1mT4KqfeK2nyVYrROuVojWLlLLZYQWSEShFcGA0TnYCJRRi+13jzAFY417sxqh6hQttdpJ3i3Ba+3cbVu5h2D3SGj/vzqg/ljd43+KZBxNJ6g0iBNp7GAeUKJ295IUsn7+M//N7v8htveT9tE74gMV6CyURYXxtx9UrN9t4+plympmAlX2J7+zwrkwllrOE2xqPtjHvv/xLOfeZxdkzL9vZlzpy9i1tvvY1ivMT21hbVTDn3xBMsLU0wrQeJm4vXgtWcravbPL73GP/nI/+Mf3dylf2dK5w5vcbWs0/xeL2NiOHSk09y7tFP8NTjn+TK5YuYPEPKknIyYVSWrK3fxKlbbubWW29l5eQyUmScOHMr9fZ59rafIkPxbROqNKzHtQoSPkTetg1FacA31DNHXo6RTPHiwyZ+nhgrW9rIhoG9W7yC9+ED5L59BsmntH4X6mcRu0SWbWBHJzHlGmLGeEYYKVAMPlZ69cIrQfkGP4skjEO+mbPA0aIPdwdJXt3ix867UM1AymP7/qIE4BwBth6e6vyCCrDNxoyLkslowv72Lju7u8FBsBmZZBgxlKMRICwvL7Ozs8NeXYewx1qszamqGrEG1zSA0PgZ6vYxYjHMcMyY1VvMqi3y8Qaj8SnK8QYqY3ysWZ7fOzCSY0CMoevcUyYuWxOPaIX4PWiv4GdXULeLcxEx9hXet5TlmNF4md2dS8yqXXwzIwuwCK41OAWRJW6+515O3HInptzg0qWaf/Wvf5PpVBmXYYO7pXGBlQbfeE5uLDMatVzZ2+H8Zy/z9PmMtm5QL7RNzdLShO3NTczyhKfPPc2zTz8TdoJUQzudsbszZW9a0c6m5AK+bdi+eoWNtQ129yqy0Zhbb7ubra0tynyJ2XQfSrj47CY7u9tc3trmF3/hF3nRvbfS7G9S7W+yv7uDEcgLoRjlOBw5DaN8zN7OFTavPsNH3v8uTp86ydkzp1lfgmrnHMa3KA2ZKHXb0rYNxhYBIBRhXBah9BNPZrOgeAk1yNCDT6CIDYKGgoYfWJMDrvO6fLMLbhdrSsTs4KtL+GKFfHSSLN/AmWUwJUaycGdJIGuPMBuFtOr4QCxKvxorHAvnwjedD4Zjfe44LjEkrs3o0loROU/bBEcQNb28URON0bwQf2EF2BVkMmLz8haurRETAIw8s5T5mDwvqOsKEGbTGiFu7i2CYkJtrUoYvAlFCc6H2l8RRWlxbi+44+0+dbXFbG+L8cotLK3djMmW0PSNglQVD4gonvmN0RDp1mkSgRalQn0FbhffbkNzBd9cwTdTnKsw4tG2oW2a8LGMPOfkTRuc23waV9exHtDjXM7pF9zBaPV2ljdO4+0IyHny3ONcfOoCmQCuISsn+KbAqyVbnnDzqTV2966wvJLz6Kef5c57XgQ258mnnkbzjJ29fZZGy9RVw87OlHrmcdWU06fOsDub0Xpltj+lns7AGGwMzK2F1s84c+osp2/e4DPnHuOrX/EQ73//e6maGb62OFPSIDzy2JNMLNh2kyzbw0hGUY4wRinLgBFkmUfaGSdWVphVntJk7F65wCOXz3Hq5CorY8/YtiBNCDO8w4kiPsPYVMFkMWRhs4Gwuhvi52jovCNQoyBNqLiSUJetYlAXMhdqYgiFD+WqbY1KjZttInmJVFfJx2dodIwpVjH55P+j7U16NEuz+77fM9zxnWKOjIwcKmvobrJJdnPoFgcZkikvtPCCtmEDBqyF9UnKn8BLe2HAMOyFDRigDJOSTVgCZYkUKaLFZndXs+asyiHmiHe84zN58dw3spqyADfgikUiMobMN27cc895/uc/QDKK6yg0oAaSyABYbs/Kww5Kim0hDaDsPYZ9f3p94x39lc4dd7/+K44eb5ruoHF4A4CFN4yx+A8Mnww/W7A/LwEJfl5jd1uzWlYYE4ELGUS0IBWKJNXkWUbXdRjTkyQpWZYDchBuR/vOrbdyohTBCxKZxExhIuvF+sG7uFsjKNBZR9/VGNeye/jegEbaeDOEJAINwaFVPNviNU4QecAEhPAg4g5Tiw7TXqLdEtescLbG2E0EYoKP9i+2R5ia9eIVd+2GyWSCN11cpyAxTjHd3WNv74iuD2idn99YsgAAIABJREFU0Hc9L1+85i//9M8IztJbx0hmuL6iY41AE+5aHhyVpLRs6hVvPzzk2eM9ZCpZ3H2ObRUqTZhNcroGbu5ucQMJI80THu7POLu8RkvBOM3Y2dlhOiu4ublEWMOsKOk2G24uL3lwfMT19RV939GaBi1zjnaOWW02vLqY07UbTvdT3nmUIb1COYFSlrZdopIJm03Lwf4IRMr+8QFts+H2+py+aTm7XrI7LdhJA7u5IBEWiH7YUStsCK5FMwKfxuOK8AQX3SuEkCgR145BbLOyJEoqhEjiwx1HkB53v5sdQCov8N7ShQoZJNI2mG6F665xJAhZkmRT1OgEke6CnBDkGKcSnBRvUi19GDYiwyIbFz1MJPerne0yKgTxM3tc2PIF3NCstzru4QgUGL5vUD0Nq0oltqh5rPC4q5b3Y/m2w3+tKHSaJmw2m+GHFPdeRs55rPXUuoqvT0LTVPcZOc7H8+TWZ1hrTZIkbFYr2qahKHLk4Ohihw5oJRS5JxUp1jjmlz3F6JB0PCGEeKoJInoqb0kLPgQkAbV1NAwWEToIDd5s0Gww1RnBV4S2Bt+DbyLW6CFYgwiG4Dq8a5EYNus5UuqYaC8kRVaQCc+LD/6S1aZi9+ghR4/eJgM+/ulfYvqG3hoaYJJKRik405GJwPz2CuE7Ep9wcnLEfiaxoeWbjw+oaolSYwQBN8mRwpEIWC4WOF9zsHuE62q065ibDUdTBaGjEJ7GdngPZbFL16woioLPPv1rnr39jC++fMU7b71L1xp602Cs4uauYpRo2j5jXAiKaTrQUHOa3jGdTcjLkk1dk5Qj0rxE64wuKPCB29sldWIJeym74xmmX5GpBCsSXEjRckTvWqRYQBCokCJshdQpznWgxwiVI2QCclBYhSiTdEICkiBykJHr7e6dGv19NwvB4b0hEDBtNXTbFN8v0aFCZlNcKFDZHiKZodUIqTJ8yPBb3y/8ILpwA9os3wBcW+9sYSHIf8tSJyKBnq8aMf7Nc66U8t698o0+eviaOGB8ZYMi7r/n53n7+dIJ+w6tFc69afdbyxLvW/q+u4/n2FQNQLz4giFAK764JEliyFOe0TUbLs5fEawjkTJmKXlHFzzBXzDOSsrRDFnus7re42S8i2U0XH4H9/5RcvhxhsW990gswa7xbolrb2jqC4Jd0fWbqK8PDiEdwYFC4W2LMw22jywrESwExXQyYjwacXtzS9N3rO6WCDSmmfP67jm+XfDg8Xd568E+vm9J0oRynDGbaEYphL5jMh4R8NStYXeyS7tasPAVSE+9qNh0isPDPbq2pSgSJuMSLeK5ebOqOHv1graqmZaCSTamKDxN61HOc3hwgC5Ldg+OOLu8oV6vSJRiOp4yLSf4rmd1d02eahqt6FrF6/MNqQ589zsPaH3NzmQHbyWBhiSJ92c5GmGsQcqU87MrRplGEsPZF10kKhiRMMn2yKWgKE84fPAUb3ueP/+Ipq9ioaoReeqQJqK2SeJQeoNOBmyECSiBj5pJAimQIYO8T5z4GWuiwKDgimYJscsrBJbQ95hVjUgzhCoQ9gapdxF6hlATVLKDlClBJhG1Rt0j4fcURx+4t+MNcYrzbM++fui8b9Dor56R4SujcNja9XyVXRhH761U9d9V/F9TAbdsXe+jGVksRCkEzhlCiNazVRf9bSO/OKCTBCHEvb2oUor5fI7tekRQNOuOar2hrWtsZzDGUDV9DErGUY4yJvsHnG42TEYFo4PvYEkQcihXISIsH8CJqO4JzkRGkZlj+7s3511b4W07rKcGlNk6gvN422JNg3ctuB5neqRIqZYrljd3dE3D7u4+zabi5MEDzm+fo4Rg+eoz7Mrxm7/yTW7/47/P3pN3efDgkD/5p/8Hl198ihfgzAYXFLOdXXxwNN2Gwo1p68By6Vh3Aq1r9qYFZy+e8/TpMUoGqnWFd4L53ZK22XB4MKVr1iitWa87IOHx6VPm6zWp0DzYO+DVxRX1uuXLz18iA5i2ibogGXh0csLrl5eEzjFfw6aTNG3NeLRHkea4vkLRo1VgNCm4ma+xveHw8JhRprm9OsN7QRAF61ah15o0LSil5vjBe+wf7fPi5Wes+5JVe8D0+B2S0YTO9wTb0jU3iGpJpmoSVZMlBq0FSaqQaXzQI+xwbo7glxSxYMHf31NbFxbcduSM3Tq+KyK5QjuC7bFyDbJEqIKQzkAXcdROJgQ5gpDfg2eCyBJ093TUNwb6sNU4fwWC+38r3G1h3289h9mdLQlEDg3831ZL/bxv6v333////MUvP/nD9xHxxUmpSJIUIQSmN3gfL553nnbI5Ylkjjc2otsC7rqOruvou56u7VksVrRNT1O3VHXHZtPQ1pbgJN56rO9ouw1ts6JrNjx88m1Ukg/JBbH7iuARoUeECuyKTG1IxBIVFijRIFyN71ZxNBaDx7WN4zKmIZgKZ2ucbfC2w/YdrusxbY83jkkxolpVLJcbkjSn2lSEvgbvaeuWzXzFZFTy9/6D3+W3/u5v8iu/8cv8yre+yfXVJavlHUpLnA0U5YSsUIwmBXXXU7eSX/7ub7FzcMRifoXGYvqOtu5YLSvaume52jDd2+X0ySmnD0+oNjWm97Q9yCTl8vYG5yyvXr5EIqiqBmMcv/d7/xFaS6ZlydX5OW+/8zbnFxcIBLPplLvlEu8ce7u74DzdZkHoa4QzNHXLZlOxv7fP5eU1B/v7UQPrLF3f47xEqgznBHfzJVXdorXk6voTXp19yKurOTtHv0AojtGzfVw6JZ0cQjIjL4+Qapfejqn7nM4Fmh56I+Ku3BE7HwERvpLyt+3EwxGUIIdOzHCmVAgRZYwCfV8cPliCb8HXeLfB9YuoGvM9uB4ZPIkMcX88dPh7PfG9qeEbxhYMa0rU/b74/mM/00UFXzEPZ8vfBhgWwvff81XhzeNHT/6rr6mA/+B9KQVJkqJ1ch9/KcTgpxTeRIl4H9A6JUkTpJL3+TX9QPQwxlBXNXW1wVhDIMrovIA0zygnIyY7M4qdXZJxSVpm0TrUw/7D95juHuK8AjGwfEKPCBtUd4utXuObl7jmFd3mHN+tCabFthXBtuDMEDzeIGyNt5v4eVNj+hpvDWVeYHuLNxYtBGmSU61rXBC8/Yvf5vr6Cts3OGvjA6FvSLXHug3Ob5B40rTg137jtxCJ5vzynK4xZCpjMi4j0JeXoHN++3d+h8lUcnf7OXuzAu8cy0WFVhlNE6mc452CJ08eUq03JELjbTQP72zP0YMDhLBMJjlNU/H0rSccHh/x9rtv8/DRCZvlipuLax4/fkrT1mSpZDTO8VJyd1PhWs/OKKGvriO413b0XUfXGZROSbOMq+trVoslaRanqfVyjekMRVHiPNwuVpyfvWJUZpHsYj1t15OkOU3dEUjZ33/AZLpPWuySlvuI4oB1nyCLPWR2SG9L6lbSdj7mRllD8HYYmwNsgUaidDSyryKNM24YVeygyg9uJIogdFwTDWCbcBZFBNriNFYRfI2W/YB7DIaCMnKt49PjjUvntjAH2vT9OP03x98tk/Ae1d7C2kP1/sxG+G+sPb+2An798T9+XxILWCo1IIeSNMnwQDsEYIUQyIZU+rB1w5cCa6PfU9f11HVNW1dsNmussxhrEEqSlTnjyZjRzohiOqaYTsjGI9K8QOuMJMnRxYSD46d4UcZzht+Au0WaOTQXmPoC117imhswG2xbY+oKbI+3Hd50uK4mmBrfr3GmwZmOvm8wfccgqaXMR/jeYPqezXqDVJI0S5ES5rc3BN+iFWzHt77bsFpecnv9EoLn+OET0nTEk6fvcHT4gB/98MdoIcjTBKngvW98k/Fsl9X6jpvrL9jfiQ8jnRbUjaduepJE8uj0kPEkIs+27UlVRPjTPEUoz97BhCwRHB/ssTOdYPqOpqmZL+64vDrn5uKS44Mj9nZ3efjwBGM7OtNRVT3eKTarmtXqljzTpDrDtA5rDHlWcnZxxe7eIQ8ensZYHdPivUEpzdOnT1EqrgeV1ggl0WpMnu4xKkbcXp9zdfaa1c2K00ffHEz1FJOdXcrZBCdBF2OqTqKyPZJsD6kn1J3get7QW4lzATtgLiJ4FP6evxULYXuQVNEsQQpQAaG24pfh40SrAOHVm0gW38cubGtMt8C0K2ToCLaLtA8ZopuoiHSQrRAngmhRFBNreNgfBQaOwiCTHYgc29cZvlK42zjYbUTtVx8AP08B/1xn4Lg2SqJ7RLAolZDnI3wQmMbRGUMIgVFR0Lc1L85esJ6v8c4zGheUk5JyPCYISdf0VKsN9aYmy3OyNCOX0bkhTVNQ8UJoqQlBo2RJWZTUdQN2ge/XyGIXwhphXkJ7DqamrxdI12FNH4n2g/1N8JbgYmUG1xF8g7MNto8jM2EIJfeghKCtGzQp1vl7hDR4R1dvePXp1WAw5/BuANAEWNciXE3oljz/ixvaqytmJ7/Mg2ff4WDvCASUsxF38zskjtV8zqZz2BBo1kumZRRI3C0NVe/oAwNo1DEd7zK/WZCojJubGzrT8f3f/A3mi1s+/finBOcppKJtHUU55Xp1gzU9LgjqusGOWm7m13zjW79AWUy4m69IRIBM0ATJyztPSFJ2Cs3+eEwmLOurFhs8Z6+vefTsm3g1wrUrrs9fIlVH17fU7RqlLVIZkJL5pqJpA2WhKPMS51penX3Exev3+O73/n02Tc/t3Q37hzs8fHDKelUxGe/Qdy1tXZNPdsj3TimqivX8iuv1JaqqyXXNzgjKxJEIi9SSICRa6KhACnHkjbbXatAXD3JCD0IKBDo64A2mewIRz9a+JfgaKVY4uwBVItIZIttDJlPQJegJkOGDAOGQMgxg2vD8kHH0F4AIUX446KEGnAa2klsf0+zijtnHY8I9Co34d1Tf/x8FrGIIdd9GMCtJYTyesFptMG1DsJY8zVBC8urFGS+/eMF6vkA4SJKMYjRmd2+H2d4UnShM09B3PaPBBiYAUit0MlzoAGmSEkJMoT86OuTq6oa+bdisLpjmI0w7J1Sv8c012BatAnW3xtmO4HokDoLDmS4Wszc4M6DNpsWYFtu0JEOWbPDQ9Q2EhNVigRrMnKQUWGuAQJIM9qQ+msmFgQgADh8i+NU3a7744M/g+XMSHdC+REtJqgtw0dnx0w8/peocAcGD/RkXd7c4mTCePaSqU46Pxyxvz+g6x3JZkRUlWMd6swEBL1++YrWaU1c1s8mEpm2pasv13Zq66XFVz9vvfROh13Tec3T6gJeX5+zv7vGdX/pFPvvsp2yanv6mpTMJnSu4WlrGew95dXtOcI5RnvJk5yHLZcfu3j7JzhHKF1xefknX1jhbge/IUk3VdBAMNrSs5j35KCPLRhSl44f/+v/mk48/5ff+s3/A7tERL16/ZLNuOTw64fj0lOVywXIxx3SRCZfnI/b2DnD9u9SbO5Y3L7ht7qhMRZ5p8mDIpEcoO5hbBnASRRI7rndDdxtM9n1cDd2ricJQWiF2Rh88OIOzNUFUCLNBmBUynSCSCSHZR+kpgizueIUkhCQyQoWLZScHdZbYmkXAm5b7ht0RR+8BDPuZ0frnB7J+rhH685/8o/edc/ceRQiG3NgO0/d46xgVBTdXt7z64hWr5QZnA2U+YrMxvH51y93dJjKnfEvXd7gA4/EYqTVySLbfxiyWZUFRFATnhh2yJ88ypJBMZmO07nHNBcrcYKtbcA1S9PTtBrxFBQfO4l1LsA3BbHCmxnQVzjQIb2P39R7hAsF5RIgaVyU0zhq+mgX11YurlEIqidKRuhf1wJGv7YNAOYczDSHULO4uqaqWjz97TSClqtY0bYvzgk1tWS7XTMsRUihqC6u1ZVl1GONJtebhg2PSPEfqlL7tub27IwwpDl3fc7C/w+HBITrJub6+4/ZuSQgK01mWm5rHbz/jV//W9yHVfPzJJ0jv8aZnubgmz0vOL29ApaTFmKv5iuMnb+FVgkpH3N2tuLy6xQWBTDIuL8/Z1HeMJ4oksWSJJPQBU3u0SpB4+rZGqximbZxAqQQpA33b8Od/9qcUZcavfPe73M7XLFcVRZnx8OEp+weHZEURs4elpBiN2bSW0eQApcfUraB3itoIvAXhBgsl4QkMxoBhi1LHE6jc1sjwOcEQDCfCcA0NgcF0P/ZwvOvipsK14CpwTTQk9LEhSBGiqoo0OpLcW03F6pQQ98gD4rx9+5tbovuu+1WhRIDHj7+mM/CLj//x+4g3jhuReOGwvaHvukEbCmevztlsagiS1vSgNMYrLq4WXF6vkMoidSBISLOM8XRKmkawJEmT+7jKLMuQDHvjJHoSKwWZ0qSZACpsfQ3tHG82mK6ib9c40yJDNEkPtsX0Fa6v8KbCdg2u7wg2dkprbOTiI5FCIlBYY7F97LY+xAfWNkc2Cg6GJD0RvZ6TbEQ22iUfHaDzQ1qboKQmSQR5BgLPpjJ8/uIaS8qiXmO9527dcLtp46nO9CRZxnzV8vL8Bo+m6y2ZlhR5QmssRTlGwGASEKWUeVFQZDnGOibTXVarmk1VQ4jbASkVj5485t/86K/49nd+hZMHJ6zmS2zvWNytWa4bvFCcPn7M7XLOql7R9zXPHp0QnKWpGwKKy+s7Xp5dsa7XBGEQypHnGhkCeMFquaHIS5yNN7mzBoFC6QTvHQf7E44P99jfmfHBT37IT37yI777ne+yM5txfv6Spm2ZTHfYPzhkNttlMp4ipGc0Tkh0wmS8y3i8iw8aYxTrZUvfCywaF8ASSJJkIHjE2TZYi+labN8ih9QLAfem+9sivnfyCGrwmNjyCLZOLFH3LVwf7YBDP+yI4z0jiSM8XoIbRnN+5oQ+lLe454h89WNbzXsYdMuPHj3+egr4i7/+J+8nOont33u8CwQXaLuevu+jxZuQrFZLOtOjEoULjtY5ysmU0XiCMTVCBUbjgrzIOTw8ZDqbIrUiSRN0kpDlOXmWgw/DCiqmrGut0FLg25qmXlKkgsQb6Nu4ww0twfbR/dFZgusJtsGZDbavCKYlWIvtOpyxDK4995k71oGzcf3lQ+RXB1wsYgFKx7Ou9zaaCUiFUBnF5JDxziOOnnybJ7/wfUh3COmI3lryVJEmmoOjU37y0UsWdY8N0FnH3aalMoEkzVBSoJOE28WG1kBn47i3M5uwv7fD9c0dq9WGpqpRArIsZTKZoqRms9rQdoZ1VROEJEnig8+7eJNeXZ7jnOXdd94hSzLquuXq+pbegPMBpTSPnz4GBeNJSddsmBQpB3t7zO+iuUBAkmQFZ+dzXr2as1q3dL3DGIsPjrv5NakuB0DGoiT0fRxv+76i3izBO3YmIw4PpuBb/vRf/jGz6Yhv//K3WS4WnF1cUI4mjEcTsjxHaxB0aCkYjUYcHhyys7tPno/pDaxqw6KyLCpDbwVpViJUSnCWYA3OdKwXN1xdvGY8zpFqe2h1cbXE0CWFfANQDQUlB6Q5AuABH2y0S3JNNHywcQ2lZDREGJZOMPTxyKgcwDJ+9mw7cK/iRP1mC3X/2a+tgC+/+OP3i7KkbTsI0fK0rVratqO3/cC4SlhvVnSmJ80SVKLp2h4lBAf7O4yKFLyjzAryPOfw5JiiKCNfVCmSLCPNsjj2+IiGKilxLjpfmLZmfnGONQ27O1OkEwRr8cLGAjYG4fyw4+3puzXBtwTb4uMdi7NxVJZCRZNu7yP/2gHDLxIiUMdQ3GL4ZWx32SCQasxkdsLOwVN0uU8yPUIWM/affoPTX/gOy8Uc39WkStL0nptlzZevLvFOs1pXGCdxpFjrKFONt45N01N3NrKEQsCajvNXL7i+uaOqG04ePCB4S9+1QHztmc7orWexXDOZzZBK0tQNSgqyVLO/M6VIMz784EOyLOe73/seVdsOSCsUZc7B/j7eeTbrCh/gar7gyxfnrFc1JycPaduG1XLO/uExR8dP+fSzlywXHatVT9uB8wnCa0zfUG1uyVONDNGGSCtPVhZopWjrNZKOcSlJdeDF55/y8uUrvvNrv45Hcnl9i04yRmVJolNEkNzc3tHZjtnemLZv6IzhdnmHzDJUPsG4FOMynEtYrVrwHTK0YHs0niyTpJkkYAeLpXtb+bgO+ooNLYIhyyrmdAQ5+FwHH4UUdoMzy3gksx3B93hvIjK+BaMF0SBwKEixLdSt+Gb7x3AffRWFFoGvr4B/+oP/9f0QAs46EILlckU3pK5vo1D6vme9WuFcJPpLmYCLnN48S5nMRkgdiyEf5+zu76C0iMqmwbCbILCux3uPdw7TdJi6YTO/4+LVC1y1psgzimIcObzBITDgDcEYvO2xfX0vDwymxQ5ndNP3BB/31XGPOIj0jRsMOwY3x60boY/yxYg6h/gUH35ZMpmy++Apk5Nn5Pun6GKCaRpwBqUFq4vnaCqcXeFdR5oEfLtmnAhWiw7rU4rJGGPb+EAMkiAUdjDUC8FFNJ0QFToBgrOsVgum0zFlWdD1HYEEqVKsD6R5zrvfeA9jB49pPFopnLFMxmOubq5471vvcXN9yasvn5OlmrLIOTt7ze3tDZlO6I2ldZ7Nuqa3nqrt6XtDnmpW8zvSNKNpDYiUrpPc3TXs7z3COViv5igVkX5c7FBKSaQKzKYzDo+OWK8WeN+SqUCuYb245fmnH/HW07fY3dnn7PyS3ntG4wl5muNc5BwXoxF5XnBzfcurs5c0fYvSKUdHj5BizLoKrJuA6T0iaCQBLRxJEiC4mHYR3vCug9gG1hNtcIbr7r3D2cE+h/j1wjuwHaGvYJtj5R3WRuBOiLiSEliU2OJYb6Sv4b5yh3cE940hWusIGDzjHp2efj0F/MEP/pf3Iy1SsllvqOsGYw297aJNcQh0dU3btHgfs3tCECQ6pela6rYiK1LKScF4NmE6m6JThVIhggT3HHMRQ9MImMawvl1wc37J+u6GarlAOcPOdEZRjlCpRghLsA3CtVjbYUyDM/UAQhh8bwnDOii+rijAuL+cYTjXy+jVde8mKKJHsRRRiB5kLCQhUwQ52fgB+e4j8v2n7Jy+iyKhWS+4e/Wcs49/TL28YLU4Q6tohjfKPU8eTnnn7Yc4n9C7hP3jA4LwtK2nah1CR7ldPIN7gojjtk5S8iwjeEueJySJIs9TvPeU5YTJdErAM9uZ8PY7z8hHOSpV7Exm9KajKEqss0ynUy7Pz1je3rC6m5Moxfe/930Ojw755JOPybKU977xHmmWYbqWzjjQCcZamvWcerXg7uaO3jrSokRnOReXVyyXK5I8JyAYlTnjIkEMaRRJopFqu1IBnWqUCDjToIQjT6Gv1zz/+K8hBN557z3Ory+p6w2pEmR5zu7eIVk2Ik0LZrNdrDEE73n3nbd5751v8ODkCbO9Y9LxlE0fWGwcvY3hb9t1IsEOCRfRlD+GzcXCZvi7CJ5tZM39DO09wltwfezCHlyQCKXQaRI3Fb4j+BZvWvCWhDfglBAMVkNiKNStd9eW0jEIOIiUs0cPH349Bfzxj37/fe8DTd2w2WwwxuCcjRQ3qdBS4qylqduYvu4Dzgd8COhEY4wZVinRtSGqNRz4wWEjhEhxdJZgHL53NOuGH//lj1nOFzR1Tao1whkODg/RWYZOJIKeYGu8abAmkjWcacEbvLVYY/A2Am/bwpVSDWTzLR1uq4KJF1HEdocTliAsQg4ewGqESvaY7j/l9Bvf5+DpLzLee8x61dIZy+7JMeVkhKnqQUUTUWkXopsXqcZITdXCpjZIleC94PJ6Q9fH87Z1niTLSJKMNCsIg0omTRP6rsX7KKCv64Y0zxmPC8bjnM7UGNsymuTkRUI5zpnuzABYr9colWB6y2g0xnSG46Mjbm9uWCzXnJ2d8+ztd8mygnI85ermht3ZDtZaFqsVwnfs7+SkKt6EQiuarqeqK6p6QzkqefjsbaregFCMRxOSVKE0ON/hfUe03rGAG3CNaFtrXWRJde2Gy8tXnJ+95tGDE/CeVVWRJBmj8Yzrm1tCgL7reevZ2xwdHbNaV0zGM46OT9jdm3F4MEONMvR4D52fsOkKqlZiXDQgcL4apgOLsJZgbVRBeTNwBuLrE0Q/7EjSidLGEPyw2ZXRyVOn8aE/FLpzBuc6nIuBdoEOsMOmSEZm2PZeE8M9yHBKHvKghYRHJ19TB/7kR//ofWsjMmmtxdqeEHwEn5TGO0fT1GzWG5zz94d5jyfLUrRScYccAqbrMJ2l6zqctUMh+zjmdh191dGsWz77+HMWt0vUEAuCd6Q6cHB0gE4kSnkkPd7VOFPjTYe3Pa5v8YM00TuHQA5WLYEYoTGgiFINVrAQ10FbQz1/T9MLg/bLITFeM9k74Vvf+21GDx4is4wg4mqiHBfcLe5ASvb2jphO9pjMDlF6hPWaHknQJV7s8OFH59ze1cwXFct1y92qxbpAlsbdsk4ysqJAqCSOVgMnOE0TppMJSknqtqU3FkLPannLpl4hpKeq10gFSaoxrkMqWK9XONuTJnrgFTtWyyVpkmBMJOX0xmFsQGiN956d2ZTLy0vWmyXBd/zSt97i5HifndkuD09PqZqG1WaDcYaHj04J+Yi/9Tt/hx9/8DHOQVkW0YNamggUBgNY0iQiy23bkSQ67t6bapBx9jSrDR9/8CHjcsTu4T63d3ckSc7+/iF5UZCkKQKFVilaJRSjKSBYrxbs7haMRyW7e8eMpsegZ7RW0rSe3mmESAguEEyDcBsI3b39rAjRI41gCd4CHhECLjgGrk4UzugUoROEjNOoNxENjbJUO/w7HSE00UAiBKIRYxILVoR4HvYD5BWI3X9YZZ0+fPT1MLFubm5wLu77BLGDZnlKkii0SKjWK5qqivxglUSGjIIiS9BSkcoRwfSslkuCCzHNLgSm0zFifwfhFCFYPvv0M2xr0TKj2jTkRUmqBEp4TNMgyxRnG0RICMZhnEXSYfsWu/VqdpGY7oxjm0rvBsZLVIoInA+VssWNAAAgAElEQVRY69/IIuUA84toSMZwdLJeY4SiReI01Jsl6x/+GTopKbMxB/unTIpdQDMqp8yv52xC9AwOPqecPUXku0xcdJH8o//zz/nw0wV385bWgZMJ4NFaopQkyzLqthtYPxE0y7KcskhIRCTPpFoxm1lM35NnmsmkYF1VjMYl09mUuu7ojMW6ljIvyQvJ+e0VO7N9DvYO+fiTz2IQeGNQOqOta473DiDJ2D85Yf/wgC+/eB6vjXN46WjbmmfvPOPo+CE/+elnBNczKjK6rub86pIvLm64vp5z8eKcM2W5PSk5OdQc7E3IhKFMA0oZZrMJBwePeP78c/q+wduE1WLJaDyK8kthwKz5F3/0v/Hk9ef86vf+Nh/++C959PQ9nj57G51obO/RacnDRxMQkr5tqTZzNqsV9fyWyWTG6LCkbQukfkYz3aG6u6Fur+nDBan/ktRfoX2L9iFKD/WwsxUaqZL48JQxFkbJPG4dgrx/yEsRCM4hSeLHt/lO2/C70Ee+geiQadSaKz2Kgguh7xHu7XoyNvKvUdBvTBQu5HmOGg6saarxwaKHUWKz3sQsWw1SJSitEENeDcGTJEm8EAhUUJy9vuDy9TVHx0c8efKI29tbXj6/YlQUpFlgNIpgjXQdvqsQvqMcjVDKge9wfU+QLiKMxiJcpEQGuwUn5ECzi+dcpfRAfZTDbjCCgW7rGKI0UoY4hnuHc4HKSM4bR19O6X2Gu62YtI4yKJIgyJJPSXXOtNxhNj0kz8ek0xH7+/skckxRjHEOfvKTD/njf/Yn/MW//pS7NTy/qCjGY4KIBPosERAcWsWcI+csWZ4OU0M0fR/PxkihqNYVDEowFSyJTjk6PGW9WfP5Z6+xzlOOS8azjEmZsLu7T7CS+d2cL19+QV6mjCcTmk3LxcUtQheYvuO7v/qr5NMp6/WGf/KHf4hzASU1bz15xFtPn9H2Ddc3Z9TVglxLvvHeN/nw44/xIXC0e8C7z55x9vlnLNue61WGVwlN0EyV5yRNEApubpbUm6hc27KYpuMyXn8COommg0WZ89mP/xVffvIRv/v3/xMWNxOkFDx88pgimxB9xKOjR5oVnJw+plqecfnFx+SpYHdvh4fHe9ijQz796AuWG4uQOV2bsO4NBZLMLCm0R4sGdCxOmQwotDdIpWMhB0nw0aw+7oxDHMPFlhYZ+c8hBPxwvhUhrpiEWMLgcKrSXXQ6xYmSgLpfI4XwFdHD11XAOzs7KKnQOubKShEZj9YKFncLlosFfd8jiJ5GfrCDRSh8cJgB2ZvOZjFEqwvs7x1wdzvn6uyO9SLKEMfFLioRSJ1QjMfkWYKpO5p6ycEsZzLJUNoTfIe3goDDuH4AGvwwkod47g0RFHLW0dueNImE9xgjGZ+A1jqMNWQqGVLce5yLnb01nrmVfLY0XNxuCGNFwGKaa/Z2d1hvViSJp0g107zkYLLPKMkpJZRpRp4W7E4f4FzBD37wEf/XP/1XjPOCHk9DYL3uKNOMWZmhhcWZHqc1k8mI3jj6vmObtxu0om97JllGoqMOW3hB23RcdktWq57b21uyvEBoTV1vuLtbsbypOdo/INElkzFMZjPu5rdxXG3WJFqS5AnXlxf8wR/87/wX/+U/5NNPPmGzXqN0OvxfmrrqUKJhZ3fCW289Zr3+BOk8v/6d7/LxJ58wy1N+8Kf/nEQEOiEQekIxe8jHzz/n6UHG8cMZMk3QQtI2hnKcRQN5aRmNE/rOozV4X2NDRyIKvvH4gA8+fs3//D/8d/zef/4PSdKML73l8eN3GJXTYYcbV0HeCW6vr2no+esvPuNtUbB/8IQXL89wrsWENR0GXcyQ8lu03QG+e4Ww5xRqAxaEkijnQCmEVgStEd7ivI9d2YPQMRMqOB8dReQ2KcTj/dbQlhhWEADREEJcb/lBWRUSCSK6vLzJCNuql76mAi7yAgJopVBbh4EAzaaiqzdY2+OHbCMhovBBKYVzEcjyIR7SE61J8wRBwnhvh2JnxOL2jr4zjEdj8rLAKUuWJoyKDGUM1XpFImG2O0Wn6ZBQH9k23vbIQbDAfa7sFuVjcGLRw8Ytaoi3rDFnLcb08XusxQboBax72BjB3GXc9Jq5FHQqyvg+//IVfVsj5C3WGSSOPFGUecbhXsUozdkrxmgPy+sFyiYIn3N+tqDuFKZtcN6zv7vDzbqjdT0jMkJnSaRkNi5ACk4fHjKb7HJ3u+Ti8pZnb7/NzdUZtbFsqpYsScizhLzMIVjwhnGZoBOJR2KFRCrF7c0KEQRvPXmMTqO00TpHPsrIxynZaIT3Gb/9vd/ir376Af/yn/0hP/zBv2F/UuBlSu8Dry/OefL4mOP9A3xQIA11tWIur3l4fAJdz0d/9aP4O1ESieDi/IK67eh7w8dtx4Onb3F0+g70C1y4Zrm4IdUuHreCRCUahEBrSHEgDS40vPvWA374w8/5n/6b/5r/8D/9B/z63/73eP78Q54+e49ROUGgEQzehXrMo3d/jb63HOwdYU0gyTWr9ZwnTx5yN19wdXVHIseELAM1pm9mVOaGtPqUPDckIxFpsq5AmRSpPaSOEBKUCNHNBYEgj/eUf4MqRz3SliwCAYUM0T9OYAlujTexgUhVgioI5Ail7vfNP8/bzwViffpXv/++GixEjOmp1msW8zl1tcGaKBF0zqOTlCRNSZIUAOtcRH8F6EST55EymeQZOk1IU0WqFUoLxtMRo2lJWmiKNEEaS7OYY5oVB4dT9o92yMo0xkn66Lxh+za+7919Fs69XEsoogOCQicRNYydNz5o2J6JpaR3sO48y05w1QYuajhbB17dNMw3Bp1NePnqkrYLGCOgl2ivkU4hrMI0nrvrFZdnd3z01xecvViwuOkY54dUG8/LV9e0raOuW3rnQSdUfZRSauBkf488SbDOMhqNwAdm0wnfeu9t6nYN0tDbmpu7W6wR5MUUqTS7OxOKXGP7ilGeMhqV0RmlajBuyJ6SgbLMSbIUlabMZjtoKTg42Ofm9nZwD1XU9YY8kZRZpLZ2vY23o/cY73j85BFZmpAkCV1jePXlGR9/+BHVehW3C0pFqiKB2c4OIcDB8RHrdYVHoXTBt7/9Sygsq8UVBIdKMgiazaZB64QoHok+oqiERCXsTHe4urzhz//8LzBdz7Nnz1iuVozGE9I0i5sDKZjt7lGWM2Y7hwipOTt7xcHBHg9OTnj96pz1YoWzAZ2mOCHJyxnoCU2fglNRVGMblOuQzkXBg4ikJQbOwL03F26gOst4pt2qnLaCCQHI6M4Zo1rjcc0PVkDgo2un0JFDP3zP6YOvC4X+q99/3xhDVVUsV0s269WARlvatmGzqcjSmNSglMR7F1cnEoQSJGkSxQhq+CGlip0weKQSJIkiKRKUljE5z3iqxYJ6fcdsp+DweMZklpPmOqKaLqKFzhqctfdFGX1+47lEDWFb0RFEMyz4huKNgJUTgtYF5hvDxbLnYg0fvVrz/KLm9mpDszTcXK65ulyxXvVsNoZqbfCdxxvwJoCXJCol0ynKa2SToW3COJmwWdQslxVCZdwuV/Qh0FnHqulp+ngzSGd5/GCfvmtZLDes1g1t02OdQScw2804ebjDbJbjnefs9Q3eSgiaej1ndzZiNi7xpmc+n1NVNWlW0LtAXsTJKQTBpq6ZzWJhmbbGmh4tE+q65+LiiuV6RZZnBBSdcVzfzmm7KBXsTc/ObIe8yJmMpwQvePH8BTJAnuvBeTHeoDpNkVqTj0YIKTl6cEQ5GvOjv/qAyWhK8IbptCTNNL1xLFcbrq5v2dvbo7c90c1lWOchUGkW11sX13z8k4+4fHXG49NTEJAUBTpLAcFqvuTFi5eRV5+ktE1HWYyYzXZ58PAU7zxSaVSScfLwEccPTjDO40SKTY6oWo/yAWH6SAySUV3lrcd2NrL3ggfhQAxWw1stshiSOrfFS1wVKaGHadBHxRIMWmR732SEUAQZ/bkefV0F/Bf//L9/f71eU1VVNDsbwpmcdbRtg/eBvCgRQsYdsPMoLdE6IR2e2lINrCYB3g5g0+B3FBk7sTBF21PNlzTrJaMy4fjBLtPdkqxUJEpEtaF3WBPXUMG7gZ8cx7AICmxjXeL54j6hbihcHxzOR/K7C4p8vMeLswXntx2Vyam7lNwqks4hrST0EPo4Y0sr8SZg+0AICW1tWS8bXA+jdMxMTnGNod3UKATleMxitaK1lspYjPP0PgwjlmdvlHK0O2G9WtC2MUfXIUgyTW9qTh4ccLA3w/QNk/GYL754yc5sl7LMWc1vsV1NogTT8QhrLEmWo3RG07t4fpPRjLDre9abitlsh1Qpri7OCAGqursnhFR1Q5KWbKqGu/mSJMuo6xpjLWVZUhQls+mUUTGi3jRU6xVKDR1KwO7eHkmWcrdY0JkeYy13izlXV7esVy3PP/+S8XjEw9MTbm6v8c4iZcKDBw8px2OkVNRNS5pET2kvwMl4H/nOU10vuD475/PPP+Xdb3wTmSYkWUqWZGipGY3GFHmJVIqiLKMIRCrSNOf09JS3332Pt956h6OjB4zG0whS6RxV7JEW02HtFP2gZejB1TRNzeL2jvIrAO69bPArdhsiPinjGB2GXAgRpao+WKy3+GCRIZJcIrnII5SOwedCcPrga6JS/os/+m/f99t4iQE9E0R0t2t7AiK6TyqF0posz0jTuP+VSqLVG2tO5+ISncF10DkbiRy9wXWGbr2hXi3JUsHh8YzZ3oh8nETzMwJKCLw1MdojRGqjkhqtU6JhnUTJJD4sRdxFb43K5FDIzptIiRQSazxFMaHpPNc3S5TM+Ht/53c5HqV0i2sKGciEJyeQ40mcGYKwPcEEgpMIr3GtZ5KPSaxHWIPrO8pRTtO3LNYrjPd0zg9J8vEKJgTeeXyE9PG8aG0gCIXUCqVjKt44HzMbTcA7njx5zNXVJU27Ybm6oUgLEqXIUk3XNSRZjk4y5ss166ZFCnVvfeRDHIeXyyW3V9cEPLu7u2RZSdt77hZLdvb2OT19wnKx5O5ujpKxqwgpqJuGNElYr1Yoqag3NevVMqrE0iQSebqW3hp8gHI85vHjp1zdXCGkxtmIPl9fX1KOSw4O9unqFW3T4Txxohuok03dxklLRKFHojTBeqr5CtN0zO/u+OCDH6OUYndnh3SrYssL1OCCqnXc1UZnD0eSpNEmKM1QSlOMxhweHnN6esre7giVj6gpWZscaxTCWmSwBOEp8gwtRWRmBaIu2HnkwOgSgwIOb+NDaQhz8V7gQ4wdCsLF2g/Rq3xgWseJcNCkPzx59vUU8L/5k//x/gzsBsaUNZZuMKdTUpJkKTqJ66OtlawkulxsVR7e2ZgOT4iSPmfx1mOaDldbulXDZnlHUSYcPthj72BKOc5QOnZenI1uEy7S6cTAhJFSD1EYEq3SISE9sHXQ3wJ+QgicN29Cl6XABce62kRwJ9P88i99k6enB1TLV2hZMR7BKAuMs8A0h2kuGWnI8WgfwAYSDzvFiFGao7yN/KngUFrR9obe2hjC5YflvQ8oKSlTwVsnMxLhI9lkwAqi1F+TZWPWdwu+/a1vUDVLJpMROzu795OQd2og/jv6riMvC3SaU3eWdVOjtSZNMjabip2dHY4eHPPq9Wt878jLjNnODlJllONdvJA8/+IFi/kCgmdvd8ZqtSTPEpxz9J0hyzKmkzGjsqTvDDe3N+hEgHODjXBknk13d6nqhtV6w6/96q9hrSMER9tscK6j7zt2ZjOUjzZMbdexWm2iuKMcDV8fH3beWkSIDi3Oe1arDSEENssVn3/yCVLAW289RSUxaUIMtMRtw5BKR9ufLSYiojuqVvr/oe3NeizNsvO8Zw/fdIYYc66ssauqi92iONmiOZmSaI4iIVn0QNsQ5BvBhi8MA/4D9S8swISgC1n2hWHYFzYgmJBFgi1SlFucWd2VVZXzHBnDGb5hj75Y+0QWDQlmA64oRA1AVmbEibO/tfZa7/u82FJsusaCMSTV4JNl8prJK0I0qCTrNK2CtL85EWMm+4hFcD/BF7KLH1HRla9dNO6YHb+8iDhyvgxP1yrvopXQVnHz5te/mgP87d/6hx/HGImxgLBzIvhwqX2Wts3+OQZ0TgmzE1AgGUAxBGIQz2jwnuAC0QfSFBnOt/RnG5YHHW+9+wZ7BzNmixZby9PJaEUOjn67vjy41tpL3WnKgrttmxlaGwlcS1GQKiWVT3JwItaKSEJZg2kMGEXd1XSzCs3E6auHZL1luW/Z269Yzg0Hew17y5r9RcXRrGKv1sysRSeo0NRZgXMivJh1gGazHQkllNpWTdHfRqw2zLqGZae5cTSTONGqJeWIri0pZ1arnhQ10fVM/SsmtymCj5pHD58x65aMg6QsW6to2ppxEixv1oZhGvAuQIbDwsS6dv0ak3O4KXL12lUm51Cm4f6jp7z3tQ+wxrA+P+ev/9Wf5sXTp1ycnzGOA7ay5TWNfO29t6mqisViyY1bN3j6/Alu6MVTrS22blke7LNabxiGkZcnr5jGAaUTR0d7tE3NxcWK4Bx7C4PWiqZt0OZ1FEpd1wx9D0W5Nw0TKKFh+BAJo1hH/TDx+Wef8fzlS65cv8pi74C6bYtJAL5MoNglLlw6hHaUjqwwppXQAZWJzjH5TJ8bplSjplha4xHFgGQlg8lK3G8pEKMjRYfVCjf2kkRhapSp0aaSvOWUUHmXUlhMFTmWyQxA5tabf/krOsC/+Q8/DikRoly+c0wkHwmTx1a2RKRIi6YQP+puGpxzxocghz+KTTC6gB8ccfDErWNcb5j6LVeuHnDjrRvM9jrmy466AqNkTZKjQ8UonqEcMUpRGRlWCdNXbIm2rogpis5Wa3xI6GLESCi0LdEaSqNtLYnxVUtla5qmlvVMbZh3NW1t6LqWdlbTzRpmi5q208zmFYsOuipRt3POVo6pD9gssroYAuM0EbzA5+ddB0k0s7XWtJWlszBvLJXVxCzCER8DWhs5DDnjp4GjRU1jAwrP8fEeMQbu3X0oXO1Nj9GKvcMrTEHx4uRUfkYpMm86wjRhdOJgMSN7x8vnLzg6OOLw6g2u37zFF/efcHzzHQKah/fvMa1OqbPj2eP7uGnLdrvG+YDSsurwfiKFyPHhIV1rQXmUTuwdLJkCoFuW+3t0i4bv++ZfwkfFW++9y+gmTl6+IHjPsOkJPrLZ9OSsOTzY4+hgxnw5YwqBi9Uaig/XucIcTzA56fhqHahyKQZRMY2Bx/cf8PTBPa7duMLe4T5N0xWxhOxXBVG7i90uTqMdObIUgMrK6jME0fK7kOm9ZR1bHCX/Onl0itgkDDWR4gZiCmSgbTsRdiCBfhJqL+oro2SdaVRxRakkQhAtMAFN4tbb//ZXc4B/75/+g49T3q1p5FkWnZcnkzEC7tJa2lXkfig2LWm3o/flMxCcI7iInzxumBi2W5yfuH7rGjfevMFyf85s3lCZLHEnyYtPs+x9c5Y7hzEaoyX6QisNZT8dkwyodh/KaKq6oW07wfMgpn1tTJErCj1iF/uitKaqZN9dVRVN3aB3/97WMpyrdYGSd0Q142IbMbqmqSwuBmKStnA2XzCbL/CTY9tvUAj4b39vIeBxN5BjoKoMqEBWmbarqSor1VbDclZzdLCkm7esVuesVhsmF1itenwEZSqmkDg7X1HVDbU1NFZTmcQbb1ynbUWmqq3CB8/p2RmHV6/y13/mr/Htb3+bKUTatuOj99/jweefsV1Lqz6Ojk0/EtGYumW22CPmxGa1pmsa9pYz6lpzdLzHYjGjaxcsFwc8fPSQk9OXPH76jHfe+4Af/bEf4/T0lMePHpJCoDJW0MO6Yux7ZrWmqSQFYdv35bolYPWdgi5Gkb4qNJ2F1iR8SIQIzkk3+PzZc/7szz7h6PCIK1eOS1XfJRa+9t4q9frQXtoGKTVaadwkOCWlNCFmXNBMXpNiS84tKUHMgawkbE0h0lmjKrwvxhVlxPRgKpKqUMqitMw1tDbCUivmBglwk53yG+/9+FdzgL/1G7/+cYhRDq9SpN2dh1xan514w8p6LBWBd4xE50khirWv/HMaJ4Gi91tsZbn11m1u3L7B3vE+bauxOgFB7h3RS2ZvjOgsBARrxYwgP4syxi+UDQWX8k6tKXtCCWFjdw8tQgelXifmUarzzi1ijGEH547lqWyNKNFQSRIDQ83L88irsxEK7DtmGJ3D1gKgDzFwtjqnqWvB9+RM8p7aamZNQ1vLbltXUDUNxhpQmRQDdW2IXjyqKQVSTqw3W/rBkbOij5r15Jl8xFYNXVtTG82ia7h+fZ8337pJt2h5dX7Kh9/3EdffuEUElntzGgt7e3OsFQ7V3c/vUKnMcrmk70eevThhComkLaNPYMSEUJuKw/09jE7s781ZzFuSd1w5PGY+m3H/3j3qtsWFTAjwne9+l2dPn+KdY9512EoqUdd1BB9QcUTFgdXqnHEYqIxGpVSuZBUhZjnAPhNDwmTHYibrmZQghkSImRQy5+cXfPKnf0pTad56+zb1rCsMq5Lg8a8RO+0M/uzeS4B3UuG11kyTJ6aOwB4uzxm8ImhLUomYJ3SGqvz0ExllzWX7rHQN2kKZNCuli3/+dTsvySJSt2+9/1NfjZkhK02IgkuRN5QXwoES725lK4y1xFCYUlGmc95Jy2WUJC2QMm6c2Gx7fMwcXbnGzTducHhln8WyRZmEdgM6iBsoxZK4XsQa5Pz60OZUMm52H7uENzn8l6QDrQk5MUxOvpdcsl/Ljw8KNV9Jx7Az9RtVkXQihogxBucks1YrjVYVo888O5l48GiFmzTWNCQivZuoarlToeWNs5h3tHUDvni0kgx1Dg+Oef9r7/H53U85W51StYq9/QVu2uImT20twzAyjT2Dr5gv2mIvbEgp0TtHyJZuMaOuxWKZw4T3EbA4l7l9+12evlzx3gff5M13vsZv/rPf4uzsGXfufIdHDx7xzvvf4J/93m8zbbd0VsLj9g8OCRESBh8yWMV22xNCoDUW5zwvnr9kPrNMkyG5kf5ixf0HTxiGNSYuMFoskFjD1Pd0bcf+/h4nL1+Sc6SOkJLFhUyOBmXE/bM6lQ6gqlvGyZHQ+JgZhlEAC9ph5xVHBzUKJa6zlNmOCVzm7PFj/qd/8Oucn5/wN/6DX+P2176B0q2QMvLrE/yvyyOKKWGMoW5buvmMcRo5Oj4Aazk/h/V6hla32I4Ljuc3aeIzyGeovCazQumOGAzoBhUmspbKq4vfPKaC8FESiJDj7v3q2d2E/6If39MBDoUykFKW1ngHA9P6cnAVnOQihclBFHugeIYzSSlSSPTbgWlyLJb7vH3rJtevX2WxP6OqQOtACgNkcW+k7KT6Bi9rp0v3hio5OQKYSyi0kgml+Hp37XRxK5QWKZXWX6IldzSE18dY7+gIWfzDKSUqYzHKoHUCJK/Wh0RONT7V/MmdJ6xXFUbVTCHRDwMRODreZ7NaoXWm6xpUbqhthQsTbScpCmAIMfD02XPOz3u2QyT3WzYbL99XSGQvd0CsJiSk0hpLXdUYE1HKEaaJnBOT9+wv9rGV4Z133+TOdz9h9IZ/5yd/lt/4rf+bh49fkc0e+4fXuXf3c5qDBeuzCz775BOy95Aie4s9+r7n0cNHVMaytzzg+dm5bB2K0rfve+7ff8DRfsfhXseNW8e8evmS46N96gZm84bRK0KEg3nLq1enZYo90VcVoawjRx/JWbMdZZDW1g2T65miZ3WxYXKQlMZF0RWMW0drLdoEcjK0TcX+UhOcRasM2bMdg0D7nr/gf/nH/yOnZ2v+7n/xX3H9zXexdStiiy+lJpSTLO+ALDOUtm2ZzWf0/Za267DbNU0LzTwxOkXMe0xuxnA2sFc3xNmckB8xY01jEto5yD2Sm1myh5XccVFyL95V38svgUzK7qs7wLm0oRQTf86vx98ZLlVZ0QdSiBCTrHmwaKvZ9gPDMNK2c7723ofceuMW88UcWxm0DgIMCxPKjRCFN5STI/qJHLxYEMuB3YlIlNKQhdcv9wlTbk5KDiilNdaKXQTMLqNmR0CQQUYuv1ZM1tI+a4yuWa83pa2SgOoYBfWTkuH0fOBslYihosqRYdzgc2a5WOJHz9ALu6vS8jWQIlVtqWtL34v08+LigpcvT1FGk0qindaGpqnRTcYNA3VruXLlkLZrODs/ZXJFuIKlVgqvEtN2Q7t/yNXr13n14ikPnj4nqpqTsy137z9h8pn//f/4J3zz+3+AFBPTkPmju3/G1K9JyeInh0riO66sDAejS/SbLWbHBssJWzdk5wjec3468dDAwf6SW7duslqfMFtU1E3N6coxJsdsHBj6oQgb4NWrV6QkQWYhO0xjCQr60UOQYZAuwdxjH5hC4vmrc65cuULbLEluwoeI1hVWQ1slDpaaEAI+QFCQpkzwgf5swz/5X/83Xr58zt/9e3+Pb/zwj1O3c+m0ds/23fu7HCattcAVm0Y+21aqZ0g0WI739nkV1oQWnOt4sh3YxiPeOFiS03Ncf8Ky82g24pTT6TKTXrwCDdgKdhkTuTxAdiFQX9UBNqYSgXaKJTaxYDhRxFD2dVmqotJGKqLPDD7ivaNpZ3zwzvvcuHmT5d4exhZGL8JnTmFCeYfyjpQcOcm99xJ/kjOX+JGcoRAYY1TEBFUl94wdOWH3lwJ24eupPGV3NI7dakEp9aXhllykvY9kE6jrmhgT3gdCiDgXcN4z9JpXr9b0YyLnScQL0ZMVEtS23qJVxo0jpijNYoiEEFitxjIos0yj1DVSQgACGmsN80WHH3uSyUxu5OQ0sVjMAY33DqMDKSpmjaB1nHeieGsaolJ0e/vUdceDh/f5p7/5myyXS548e86D+3eZzRbcvn6Tu9/5hForTl68wk+epjIcHBwwn93k7t1HPD85wwXhPIUk1j2lBO6XokhX1xdrHt5/xA/9yEeEPI6ewCcAACAASURBVAdtePudGbre8ODpCZv1Gq2yRNMqynQZYooYbQkx4hMMXoaUOQaMyhL8aRRTCDRNS0wQYyb6hNGKylgqmzCIpDSmwhRDHrBECFER+pFv//a3mIY1f+e/TPzlH/4rLPYOUcry52I+d38r50iVh64xlqaZsegOUL4mKM+8nRjDKcE46BpONhnvam7t3eag0Uz+JagJq6Q06F2li4lsAirVX5pOl9gWZLD6PZ3J72WI9bu/+Y8/1iWtLcRQBjkanSp0tMLFxaJMg88V6wn60FEvb/Hme+/x/tc/5PqNGyyWHQpXMDWJFLYQNuDXEHtiGMlxJGcvoduFjJCL/9JU8uJqY2i6GSFKxKixNaaST20qoScohSoca611iVeRSptRIibXhqQ0ddsRy0NIqmwx+SODE8mqlcDykCLTqPnszpZHLwZ0DSEFYlBovUtNhLat5IGnQBkZjpHBh4ixNZMPjC4Qc0Zbi/eR4OVBNe86rAZrwGiNd2Lgt1aCsYdhYJwmNqMXvIuxDM5hrOHKlavMZjNu3r5JP2w5PTuT/e56w7YfGMeRhw8fEUIQyWU/knPCBc+m72WdlTKD87gQd+GaYGRVp1LGKugqS61A+cDe4T6L5RHWtOQY2PYXvHp5wjjIDMPoTGOKUcJq2tpilMJoQ0rQzpfErCEZwhhRuSaicWlCV1IuvQu4yXG4Z7h+VKFNMRTkjNVaYlQT6LTbgJS1e0icvjjhsz/7Iw4Wc27efhPbzi4PjvryKS6dAjkLnD4EJjfhgwcLocSYKkS8Intgy3obWI8e6hmq3UfFiE6xrIdkwCVuI7kKqlyqb1Zy3QOMgtsf/uxXM8R69ugFh4eyhK/a4odUGYzGR5GMhWQYpoxPlv3jq7zzzrtcvbKkriY0QmwkTtImlfG9xpOSQ+HJ2aMIpMInUkr2zTEKeV/l161PzhB8kKGV0iithN1cdqgESCGTk7xJ5PcQkTzwug3X5S6MRGzsKAmoTAyuTNITqiiodhRBbaAfJmKE4BMq6QI8qPCTp60rrh4d0FSyH/fes9lsmcZRrJWmImGYki8ieE3Wlik4lPc47zjaa6mMIGhWmy3nFxdM04CxNUmBCwHnIrUWrfmVa1e5f+8e7739Ft47np+84tqtN5kvD3n58oTrt97ip376p3n65Cl+6Pm9f/4t+nFktpyzt7fgYnXOrZu3WF2sefL8JSkjWwWl0BmWywXn6zVagVUl3pNEcCN3P/uMD7/vI5aLBRuVuXa8z+npmot1pG4qZl1X1Gm5ROg0nJ5fYJsOrRLbMeB1RjmHDhGTA7aymLZCRUWMBhUj3o3s7x9TVaLtbtuWruk4P+9ZzBvZxyZIyeNjJGQ5PtPg+OLOF/z6f/f3OV/3/MLf+tssj6+BqdnFjqndE1YJL7upK9q2Ybm3ZBpHtv0WpZCA+qYV6WQUKXHVNqRkePD0nPW64Z0rXyNUT6j1c2ZmAjQ6GFSjLvFOpurk/GYZihqt/w2n7/+HA9yPFRf3T7EGurahrirqqpaVSYSsambLKxxfu8n1m29z7dot9maa5B4yTVtykpUQarcaEu6UShI2JmQ/aZ9VjsQSlhZDKDT73dBJvnmtMpNzZMQh4r2T8X25x+hdOx1DwekU5ZXSpcru0KEy7R56X6bbmh2eW9p3sZGlLFC8EMpKIzn6yZGShmiojaGu4MbVffw00lhD12rcKD+8s1enaG2orcWnTD+MjClj2zmbYcRPRUOrFC5GhnHCHs3JUXKKa51YzuvCZGo4X48ELJ2Kl5nLTdNgNPz+73+b22+8wfG1a9y9e4/KVKzXW27evMm9u/e4c+dTXjx+DFEkn8vlIU3b8M6Vd4ghc+utd3n68pRZ2/Deu+/x/Plz+mGgnyZMLnUrR2JI6M6yf7jEkBguzonjQKVARc/VgyVdlbh5+y3295c8f/qY+w/uYau6BHcH+s2atmupq4asLYMbJEUwBZhG9GRp25nA1v1IawPWBMDQtRUxebTVzOYNmzQx6zQ5GWIMxAy5T2w9kA3TEHhy/yH/6L//+/Trc3717/znLI5vgGmAL81FUhI+9TxJlrUTjvlyuWSrFGOG2WwmXSGamHuGfiJFTfBLHjxb8+ps5MZxx43DY6CHtMUYT6aD1BDyANNANzsQGkgSE9D38vE9tdDf+eRPP1bVglwtSHpGYEYyS+rFdQ6vv8/t936Atz/4Id56/y9x/Y23mC0XKAb88Jzo1xjlMEQIA6SRrjEQHMFtUUmyaFQWtVVO8VLnnMvOVva2Jc5CW3mKZXlSopSorpTcWaytL8OZU4rlnmNK9d4Z+uWpG1OJ2SgKMsluiqWb0kXPKpUjhMgwOFHqoHn2MvL4+Sh/bk4s25p5q9lbNDRWyRsZ8JPHe3E+iVKspXceHzO9CyhjsU1DVTegNGO5N3dtRS1uNazRzGcz3nzzNnU74+RszaZ3MiU3pf0OgYP9ferKcri/x9NH9zh7+YKDvT1ePH9GpRUHyxn3v7gjd3MFP/ajf4Wua9EK9g/2SWiePHtJRjGVll0pRYieaZyorIWUaetKRPwk9vf3ODpc4qeRtpEqmFIoMHcJC6+04tqVA1YXp3g3MTmH1oYQI+v1mmEYmc33sFXDph+YXCzXI0uMmmEzEMYN77655PbNOZXyKL0zp4C1Uklj9ECkrsXoHwrMPyVkaBQDcez54rNPCd7x9rvv0c5m0pmV85MvBR4QS6h5KErCWPji1lqMrvEu4aMjJIePrtiDK9Zj4ORsYrvVGNVQ1QpTOTDuMg3EGI2xVdHty+D19vf9/FfTQn/jR/4qF6tztps1MXqU0rTNjNl8wWJxSN0tqJpOaJHaoekJ05baCCPLkFDB4cIIYeD46gHPthfoLCSNTCJFLyyhnC+X4rs1j1RPU74aLZkyBalCue8m74kFGauUkV1rgXSonOXOZ4zcmU2xF5bfX1xi4oQRZKAi666M/EemaU3Omboy8sBwhr3lkrbeknRk2VRcPVywv9ew2axFKVY3KJUl/1jJ5NUagbfPuw6TwSa5b3azGYdHR1ycnhF8YDs5Ts83TDUsZw3ztmYxm7Ocz1EmyiR5cthG5HvGSFtKzqQQIHoWtWWr4fzkBdNmzYWCl5ViXhvavTkKxR//4R+glaLtWl68PCFjOD1fEWLEec+TZ0+p24b3P3ife3fv4sYRneVaEBIQMk+fv8Jmz2zWEUNmDCPD2BNCxupEV9e4YcODs6fMO8vh4TW2Q2C1GcnKMI2eGOHsYsOsqbBNx+C8bBe8BMXpMPDNr9/krVsWq+SQ7nTOGQEotvPuUmdsjSKERAhyMNUY5VqVMmEKnL14yf/8j/4HTs/O+dVf+8945+sfYdq5HIvy+xprWSyXbIeexWJBCKHomTN939O0hqqZaGNHLHroMXl0A3NzxGZleHpxwmrjeGvV8bW3Ovb2T2mzE142svrK0ctQi++thf6eKvDZev3xfLnPwdExR1euc+X6LQ6Or3F4fI1uPqNqZ9i6lqELE4Q1eTojuwv8dAFxJE0D2Um13a7XxWVSUhWSE3tgEWzksj8GqarGiJbZ7qRxRYa2Gxvu7mkppfLULZU3yxBqu+0lexhVFFglFa54N+UgpyL9lFN/9fZHvPvRD3FxcY6bBnkgFBj45CqevUhE3bF/0HH9aMle27C+OGWz3ZJjZjbrcJPnYrUhZkRKpyuariNrwcgoJbGqH3zwIb/4N36ZZ89e8PLFyzLokDt/U9cStZoSfb9luX/Iw8fP6EfpVppKwGur9Rqj9SXXWjYTlu3giUlep7ffehNrFClM+GmkUpq2aXFT4OJ8TT+M4jCbJrrZjNF7xhIDK1PzLQDT6ASXlESzgx8E2GAt3bwjUZ6cCbSSPa33W7q2Eqtp1bLe9owu4nwgxIw1lnHoRUSjNbWphSWdBq4ednz/RzeZ1yO1cpeCHvnxG5SuqKqWuu0AJGitDKSk64qSf1VCBxIaN008uvcFj+99zv7+kmvXr2Pq5lJoIQ92VdBLHu89IHdlrTW+uI7atsWYQppMWbBRtgECUw6MyXJ6EVC5ZtntY/HFprnbR5tLqeXtb/ziV1OBu7ajriw+1EWpJBNXkTGKkFumBx4VJsKwIk0bohtQqWT0esnwFbVU3g15ZeGToTKWUCbBSimsMSRKAJixuOKsUQV2zqVBn9eLvLwjOSTx5slMopgt8iVQW1AzZT1b+F67f0+FUtlvVtQ2c7i3x+bkueisdcKlik8+f8XdB1sWBzepG0NnNdNGrHHdbEHbtmRt2QwXEn6uK0mKqBTzdo8UInvzGT4nQobv/8ZHXDs8pDLS6juf2JLRpmYIMKdi3U+YKfD05FPGKcoKykhngZL10zhJdtXJ2YpZ0whRg5rl/jGri1M+/exz3n7zBkO/oasbchR/9TSOkog4m4lk1VZMLmCrGmMtB0eHDOsLzoBxHIt+3Mr+P4GPiBF/HLCtyGrFiJBwU89s3snaBM2w3RKSKUaUgCJSaV3C1jND76mMhdqStaWyDQfH+0xuoiUQFRLHExFwoVYoKy4og8bZLc5kUp1ZzEr4d8qEnMgpM2ZNTDJ77i9WfPt3vsX5+QWvXr7iJ/+9n2f/xhtkhNGtlGF/fx9Swk8T0XtSXcs2IQUiiWEzAAataqxucX7E6om6UsyXh3jvmbYXfPF0RHGVr7/TgdlSM1HnjFKWpJr/l6rw//vje6rAry5OP96ZanWRhknYF4Xto8WkHHtwZ+DOUP4C0oBg0ROKgFIyNEIlcvZoAjlMELxU0LiLu3h9TzXGvAYBpC+L0WWllMpeOGRzaR3cmQdBDrjRckJlnSMRk0qVfFkFkjGbCNFfDrH6zRnPn3zK+vQU5RQ5jTgMn9xL/J//4hlB1ewtGvATwXl0VRO1xcdM3Xb00yhgt4AwhhOMwbF/fMwH3/cRk3OMzvPs+XMeP3zAvTuf8vjRQ2KKOO9wMZC1JabMxWrLtvcMLnG+mdj0gZg1mR1c3zD0PcPkUFVL0lXRile0dcP6/IL9ZYfRmcePHlIZy6ybATKJv9hsCUaTq4opJpStmXxinByzrmExa1guFvTrnvVqXZ68UuGs1XS1RetEVesScTOhjeHiYoVCsx48tlsQUqayhr7vMdbyxs0buH6FJWBI+BiJ2YCRzKftFNiMntV2YLudyNhi0TMojOiIUShTidx3nIjTCEgsaE4JjabSVqx7OROT2DtjSc0IIbE6OePT7/wZPoy8+97bYkk0FRmF0Zq2aVBkxnGUIqCkuKii+AvJg84YI2HwMYoZorEWlaGuGpKpebkaWQ+Wpt2jNpFaT2glxpus4e3v/1t/4Qr8PR3g0/PTj3Vx/hhjysFQRRElLZvCkfyaMJ0Q3Sk5bJHRQcIoyRmSX5sRkqJDJU+cSjRocS6V8no5dIo7NnKSybE2GjKEKGHLWlt0aUFeCyN3Ez1VBmFZbFuX5oXMDmmyw32qctgVcldKMct9H2SIlWFkwf/1rfucrBJt2xDchHOO0SfWg+d83bMzjaeiqzXWUlU1TdvgfMBYw9NnzxiGgViEMeMg+9nROd56+x0SmX4YZAdZ4lBdkOn0ME5C9UjltTVizNgRLXa78CtH13jzrbd4++3bPHv2AKPh+OiQ/eWSk5MT6qoixch6vaHuOjKKg+MjTF0zX+wRSkSp0eDDxNHRAcPQMw0jVimsApMztTHYHNBKMEpVrS+hgcoYehdJtubqG7c4O39FTJ7tMGCqirfeuFWEHpb5vMM5kRNKftKIriperXvWLvNi5XixjpxdwDRoFss5VRPReqKtNbUxmLpmcNPuLSQy45ywpkholZItQi7rnKLlCCmy3W65f/cu64sL9pZLDo+PhW2uJLWjahpikuuYzDXk/R9CEGRUOexay/tT1H9G1F3Goov+YLVec/pqwNg9YZDpEaM9Kkfe/sH/+Ks5wOer848v7Vd/7lMiOTOBHAeyOyeHcxFnpKkIGXKpwBIgpRSoNKHzRHIjJgf0JWXSCxtLNGbEuGuT1eULmbPcZdAGlKWqWpqmK/jaiNa8/toQ55RSWVp+Y4r9UBUztRx2XRRZIYjf2WhdHE2QkIo4eMPnjwJ//NkKbVoxboTIZjtyutpythrIWuB9GcXp2Tl10xCj7EJ3348pBMd33nkH7wPWaLqu5crVq4QYefL8GRiD956UIt5nig8EpbRY0gBIEtWhpGXdTXUnJ0ORmAzb7RofeqzNXD0+YtgOnJ9dMIWJo6NjbFUTYqRuGsZpwlQVm3FgO/RMbpeFnLlyfEhbV0xDz9T3zLqWpviaZ3VNihNaQ91YqkrTzTraRiycY4Cvf+P7+aVf+RWeP3vK1G/wzgviRovAoa5r+m1PTomurqg0xOiZYmJIihFLtnPWk+Z8nXh+smZMiaMrh5iqZFyhcWEgpknEtSmXiW9CmTIToNSPkmMWiqY+5gwxMm62PPj8Cx4+eEBVG65dv0rdzWXOYizdbIbSUmXJJbniUjgikpeUEprdMFXLdaPMcaqqIivL6C0vzzxTUnRdRW0zNgXe+ZH/9Ks5wGf/hgMsOhNJnCP0ZL9Gxy06T6js2QUgawIqBzSe2iqS28hgy40YJUqrFCSTJu2MEkoLhlPrMh1+rRXekRuMqaiaFqW1xGqW+M9dpi9QXth8OfRSZYyvi85Sa/V6jZC5lArmJN9fVpnRB7ZTx2/89kMevnTivtKamKAfHCGCMjXLvX2sMazWazabLcu9vbL+gnGauHHjTX7u536Wp0+foLVUkZ/8iR/n/PyMK1ev8vjpM56/PCmBaJm9g0O240QImZBFddbUlbzqGmLZi9symMspE6KYDpp2j6qpCGEiRo8Pgdu332K5d8jB0RHvffAh56sNp+crLtYrvHes+i2jD/T9SEyRujJ0TcX+cs6jB/cJzjMOPZXSovFOEV1OhDGKurG0Xc180aE0bDdbvIO+n3j65CnJT5y/fEn0Ge9iIZpuCEE6Dq2gKcO9AEwx47IE5VlrqY1lTJ7JaE43nqT2OL2IbCdFt3eESj3K9eiYRIWnBeYvm2O57+9cSCl96TCTISYM4CfHyxfPuPv558QYOTg8ZL5YFj9vxXwxo64tTx4/gpwvkbq1rS7fbxKvu2Nz7ZIvRX+QlSEZRVCZ1SayXUNrWypr+PBH/6Ov6ABfnH0MXILb8w6Vo+UJY1VAxS06rTGM6OTQOWFUpNKZHEc0E6SRHAei6yEUvGaSELKUJYIyFc/xzrCwA+nJ4S1j/tIK70iXzk/l13OZ5yvxHQajFcYIH5ov/QBVUV8B8mTcOZOStPn9MFE3C0xdo2zNZlzwe3/4nJcbx6xtURm8D2gr0+2mbkT2GGXP6YOESle2DM5iZv/gmGtXr/IHf/AH7O0tWa9WCJXT8Du/87u8Oj0lxFx2g5QqnwiJy+5DWE4iYEll8i4vkbpMwGialoTm9ttvstls0abmfLXhnfc/5K1336OdL/mjP/mE9WZg9IFhGIXT3bYMzgGKq8dXeePWTfr1itrAsO0hKQn0ygIjTLEgi7IIM4xVzBYtMYo2O8XE0E+EKK3mdr1GZTg/3xCyLogmwzA6chJQXGMtlRVIQUaELcEHTE50lSWbxJgj7eyQ+fIm3/3iOa/WgWdnPcRMW8/kYV+m+FkZEfykJA9tRFWnlVhjc8qkKDU85WJGDZHN+QX3PvuMVycvuXblCsv9A2wtXUPbiLusrmqskRhTU66X1kru1+7wxhhIKWJMcbjVFm0TSWW0njH2hpcnawYPP/ULv/bVHmB43c5egut0RKsRwjkqrqnUiMGhoscNW6zJqDySYw9xSwpbgX8liUKhrG527QyXpox82QZrtUsPLHfdUmXF5SFhzV+urjvKvbRMhaeFVG+hIigognlZJX3pj4VCMkxU7R5TiJiq5cFDx7/4/ceEyqJTwo1eoPHG0jbtpbBBWyWYoarGass0TmWQZnnx4oQ7d+5wfHyEtYaTk5eszs85Pz1js+1x3tN2MwEBODGUh8IhuwTTp1yuCXCZApmiRN8YGZZN3nHRrzm/uOCN2+/yjW/+IHU359Gzp/zL3/82dTvjF37pl/ngo+/j2//q9+mHnhC8mDISWG3ZWyzYXFzIDr/AB1PI5Q278zTLvtRqJU6mWjGfiy+5rhuMNgyDo10uaeZzusWMk9MzxqTANPL7oBlHT123+MnRNTV1+TNE6ScYXmUqYjZobWmrVhYwtWXwAZctXs25c/cVm1FRd3NmXY0moTPopHFOhkUahS3KvJwzOUgoeMoKrzJhN8b0Cb/d8uzpAx7ef8De/gGHR8fiUDKGvb0li/ni9ZnYnQ8oktmINtLd5Zyw1lDX4qKKIWKVsLtMZRgCvFzBv/8ffkUVeLVZffzlw/v6TqpAJ7TyELaoeEEOa1Seipd3gjRBcuQ0oqI4j4qIGJIkN8RiUTTGoLDEINUz511nK8ppaXWl4uwsWHl3sSmq1i93B2WKcVmtjVFF/yz35bx7Spc845ylUsekMLYt6QSJully/4njX/3pY1QzlzeF0uVQZeraME0joGhnM5Z7+xJEtu2prEFrybbdjv6Sl5yi5+q1q2zWKyprGbYD2lh8zqSsREzhBNkraBh5/dMOTUsJQ1dic4zF2JGTiEdcdMSUGabA7bfe4f0Pvsa1q8fcv/cZOnnqqqJrOu589w6bzRZPRNVVSW2UiNAQPTevX+fmGzfISaSFVWXkLV46GWsNlVa0jaFuFFWdmS9nVJUlJMU2Nbzx7oestwPOT6y3G+pmwTgJXmk2W5ASbPux3E1V0TFD1popJMYI2rYYW4mbTClCdGidmc87vEscHFyhavd5crLm2asNU9TM5nNaAyZNZCWVVjYZGVTAKg1RFfyrDCpT1rK/Lv21n0ZevnjBZ3fuEIPn6PiQ+XKBNpaqaZkvF7R1I2EGMaKVorYVIUiErrFWZK6lxQaIodhBa0vCoauGKRj+9q9+RVPo8/XF5QHefeyqHRpMSuC3EM7JYUVTAdlhdAQkHT2VcGVxcUwQncDvskJlg1EVVgl25HVMTNnWZ/nB6sKwUvp1IDdl+iy5TeK13KlaFFkQNZryJBQ0TSYXGaWQLG3VXEZ6GluLcISaaRhomwr0jHuPL/jTz57jowj8yYrgBb7m/XRpp4wxo3b6Z5VpmwqtRJq46SeRXmpF2zXcvHkTozVjPzCNE2+++y7LgwP2Dw4xlWXsB5TWLPeWKDIxCcYo5UyQ/nk358fJlKsQN+WA+ZhY9z1Pnj6h62r82PPg8085WlTcu3+fR4+eMPWOcRwJKvONH/wB1usB5yV8+2B/ya/9J7/Go8ePCcER3MhiKaqknc25thWNUbSNpe00VauZzWcoa8mqprv+NX7o3/oJ7nx6h36z5ub166SomIZE29QFPJ/EKeUCEU3vI0Pw2MowTY6IQZkKrRI5O0KOGK1xo8MNk1j1YmDWtTJMbA55uY6crQbmbc2sAa0k8C5nhdIRo2XYZIq1MCObh1x2xGhhOucIwXvW56d8/tl36DdrtFEcXbmKqRu0tjRdS2XFYZViInhHTpLIuRsSNk2LCxHnoiSU6IxzI0ZbjFZolfiVv/k3v7oDvLv/7j53MDmVNTp78Bck/4ocLohuECN+cuToIEoVJst/5zAJIzplVNYYZdHZEj0EN2J0EjWRFsWVNiVXVS+I1KRsyQV9pti1dYauW2JNLdPrcvgzO9fRbn9cZrhJvKnaWMHR2FrunbEMvHJEo7G6IaREVIHHT89Yr11JPKjwxQsdYiDFRAzi3x16iS5RyJtUKTFDOBexWuOdgyRDjbGXYHSfMr1zfPTN7+dr73/Iz/3szxUM78R/+9/81/zwD/0g+/t73LnzGYksX1OW4Va4HF7JWqmy9hJar5RmGkeePn4kclPv5K7czPixn/5rPD95xenpK7SGvf19Tk/Pys8mcv36Nb7zySdsN2vGfuD05BVucqJ0K1OgnBKkQNNYqlaooEobvAeta97/xo9wdrbiyeNHfPOb3+Bitebk1TnT6BnGgc12YJgcPmVcTLgo3disNnR1xXYYoapFwHHpNyjJCLvBUM702y0vT0+pZkt++md+jvc/+gaPnjzlwaMnzPeOWLQV5BFjnADaqVHZklUWdxqlC0NddneXq6YsxNChH7j7xRd88d07qJy5evUqs8WMrBXtbE43m6OVLdbTcLn1EDBfKtuPHdNNl/tyKsIizS/98i9/NQf44kst9J87yLL9QuPI4ZwcTlFpgxYjJuSpHNZRDnAcSWGSCNJCt9jdHZUWbOk09XJwjZi05c5bkVWFaa6CmbHpnUQ+KoReQWa7mVguluScGKcBpSQ4WykkDsbY1wMsU5Uqrstapy69uqh2cs7k5NC5gtyQssfWgcVyzvPHF6x7R920OMFCylUCVdgDiUrL9LYuyYVVtesMVNkLapqmZbNe0/c9WWlG55lC4tYbb3J6ds4//9a32FxcoAnc/eIOf/LHf8w0jbw6O8V5Lw4pJCorZqnKEhcTqSor4oX4pShV57DaMA0jORs++sEf4od//Cf4/T/8oyJf9YzjSNfNWC4kCaK2hqdPnnB28ortekMKCWuMUFmi3LuVkkzlprXUjUVXlpS1tMhJce/xMz777C4vXpxw89Yt7t2/jw+ZV6cXrNcbxskxhkAEsjaELN7Yo8WMrq5Ba9rlPrquSVlMGylK666NfFKsob7AB9fDxHL/gPsPHnO26nl1MXDYNXRdQqtJTPaxLpXWlY5KlooKRYzCx8ooUjHGkHeQRsf67BWffvIdnj97xuHxEftXj9FW5JzLxZKqrmQtV0RIcm4UTVNjraauK/b391FQJL4Aip//xb+4lPJ7OsDr7frjLx/eHbx9t1PVJFLcQlqj0ojOEaIjx4lU/kmSwyyVGUjg3UROnpgdygKVQtdzTDMn64aAIaoGVXVk3RKYc7FxrDY9KULTNFhrSwKiCC+ca62GCwAAIABJREFUH9A6YiwYK0Mx5wJVXYsgpLTXxhhMJWnsWitJA9ixv2Iuwy0DyRLzRIw9i9mCtp7x9MW5tEcBfExloJYvh3tNZagMHO5JMHVdS2qFdzK53d/f5+DggJQzm37LNHmS0kQUx9eu84u/+Eso4NNPPuFgb8bq/JSubXny9CnjOBGCJD4mFFlpWSchB3VHdmhNJWIPCYYS0UqK+CAggXtPn3FysWJ/f4+2qnj16hXayMZeKYUfR7727ruolBj7LTlE6qq65BrH4Glqaf/qGpSK6EqXcPeKyUU2/ciLkzPu3XvExcWWTz//ghcnJ5ycnuNCkpyoEFFGsoF8knlIXVkOZi0pBUYfWI2eKUZC9FI9lVQwAfdLJYs5i5bAO1arc+7fu8vq4pxpdAyjZ7u+YDavWcwqIXkkVQLHhDpSdL2XqyUlFYuQdj7xsmpMkRw80zBw/949vnvnO8wXoqVuakHwzBdzlvtL6qrCe09dC3PcGENdCdMsF/95ZSpUERz9zM/97FdzgLfD9uPdoZXva7eTVUWtY8QI4IdiD3RE1xP9QI5ehBzRC9c5ytooeI93EwpFUgavKpKdkZsj7OyYan6AbpaYZsnkNWcXIy5mKOukGESYXrczUixqKyXEexlW5cshVVXLrhi9416JlUvZCm3sl6iBxbifNTnrgpLJjGOPUobokpgHlHCJN5tJwPFGAHVKKazW5Bg4XM5oKl30wolxdBhjZZpuDP044FOUPKAsAvusDDdu3uL999/nz/7kTzg7OeHrH7zP3t6SGBKT8zKsKtUgp3Q55JNja0hZ1iCNMdRVhfOOmCMo8DHiQmTynu00cu/uXc5PXnF6ckIg0U+OzXrDZr3iYLnkow8/ZH1+ztj3JSZHy15ficNMa5GpLpcVTatBi/c6ZQgRxtETYmZ//woXm5FNPxKyHNyUywCyRJKGGMu9OkuIncpooxlcYAjiflJKQQJbiTAmZy6vMKEo9aw2ksWVRZ65O5RbJ8FxVw4O6GolEMWcSErIqnqnM9hB71K+pLQAMiCkPOCTeM1TDFycnvInf/hHTP3AGzdvslgu0FbTtC17e/vM5rPi+GpoCgLJltwr2eFLAeq6jh//qZ/8iipwv/l4d3C/XInl3S5Zp0LCcGS/FQ10dOQg+b3Jj6Tgyu43ligKL3QL3RLzjGQOqea3WF59m/nRdbJuWPeB1cYxXx4Rs8E2OzmNRivLNEWG0bHtB/w4Utf165YkIxUUXaDzBaVTDpD+UpqhSCdTya4pbwwkoyimkWmcSKFi2DqCH2hnLVo3PH9xTlKWpBQxJ3IW7GxnDdYIIM5ay+Q9kw9gDJNz9OPAdhwY3VS6AiViWGP5wR/+YT755Dv83u/+Lm7ocdPElStXSBmmSRRMR0dH9Nut6MOLwEMpwRylhAzKcqTrWqqSVJFB2tuULwc0JoMfRtarFZtpYvICl6uMZd61rFcXuHFg7PtS+coKiyhge6uoK8NiKcjbqqlJWbqSEIWd7UPkYjUyTImQ5XXabQ9SEdOkcp82WrE3nzFrW9ablbSx2qKbGZOXhxYgcSXksgPXKFP2aspiqwZtFKnkGBktU/ygW/ohUaO4sl9TGYlAgfq1HxyJ6dZK7H0p57LHUDst4WWnIzifSJocoR/47Luf8uDhfZaHS46vXhNwgdYsFnPm83nRjVtmbVvenIpxHMRrHBIheH7yp//dv/AB/h6plL7cdXf8K11azEgZyKJsRzW7RvZrQtiQ1QVGSbBTQkQWUVdErQlaE0xHnnfo7pDl7BhbH6B0g/MjTx49lvbHW5rZLZrDNxjOP6EKa6zSGJPwIVA3bRkaFQuijRw1jbzMORXcaCaHLOypYkvMCcF46oqE6OqU/C9IFctEElkrdK6wOnPycoXzGZ8TKSQqrUQ2aBvON71QI2LCVpC0AlMRqNBJlEhTCCTn0MpgbY0xGedcya2VN7Tzns8//4J33nmHG7du8uj+PR4/fUJSmYPDI7TRHB4f8vLkVFZr2kpsCDsgH6AzEVhFj5kGri2XLKsFg5vYek9Uido02NIyBu9lSq92FRaic2xX57jVqchfAaMMTWUx8odhVMJqhehU5LXW1uD8hDUynQ0xsh0d5+sRnyrhmSlN3TR4nwh5l5MLtmCR2rZi0VWESbEatlSLQ9CGkAR0UH605Fzuj6rY/nJE6Upg8cimkljys0rtnJLl85Pw/9D2Jr+25dmd1+fX7eacc+99bTQZDmeks3GW7SpbVQaM5SqwS1QVAxBMQUwoVCAGTAyMQELAlCFiwgT+BJBgYMrgghJ2uZx2ustMVzbRvHjxutuec/bev57B+u3zXpaElCE5nhR6kZER79579l6/31rf9W3AwTffu8fOTnTZU61B6SqkI1XBVung2tJFF0GwQ4WqZAOysgOVgjjN1Fz4/d/+hzz/5EP+tX/r3+bv/Bv/Jg/fehswbHZnuK7j1csX7CuUlJlujwymQ3eyQ94f4ucpyc8/A+uTfhGalkt4plWSEVauLsWTwi01H8k1korMnak4sGcoew/0BePuHczubdTmIVM07GfPfr/n7vKK7GdiyLz7/l/lZ3/hb/GVb/4S292WNE+UXIlRHDi8D81jypKzIpaMsYquN0DGaE4kEMksdhjnWguUTy3ZalBG41lXICGMKFUMfo68fHF18mYuaA5L5ZNne2KjM3amsX2MbmAK7I8zs4+Nc1ywzvHzv/Bz/Mav/zrzNJFzwlnX1mS1tdMi8H/y5BMOhz3GKPbHg+yElaYoxSefPj0x10B22xV5+WpLwiuIUb0DNr2jbxlWWkFNr/np62TUGYeqit51aDJOVTotgJJqNERjFKoWNJmu06Lv7STgO6dIPwyMm63EhcbMtHj2AQ5zBN1heyvtPBBjPt3GtLnatDC/7WA52w6EoqhuS6ygKNQkbhjDsAaXC4JrjW7gVhJFWZXPpZZCLW1kopBKYsmVu+NCToX75xs63cLhkTFMtDr19DOrqk8+5Kt/llygLYu6abdLEi+3w8013/3On7Hf3/HW229zdnEhCYmNSz3PS9tYZCiV2YuoparKr/zqF9RCH46L/MuqgC4o3UztWusnKp+CIaGrJ4cbYpmZU0aZAWU2VLWj1DNC3oAaWQJc3xyFKujFqcMfrgnzwm53zmb3iHtvfZXLm8i3fu/3uX31jG3fCcmhwOE4n7ytaq2UJP7UMXiGRqpf97+6zbvG9eJa2R4+VaGKEnQxFyjiz5yLojbO9XycmKcFhTkJCzKG/bFweT1j+xEUbDcDtRSWKPNxWVlSVdwNAQZn8PPM7c0Vz5895dHDB0LyiJHFR/p+4Ktf/zrvvfce3/72t7HGcrbbMgw9X/7ylzlMEx999Ak5l9N8Xxp6egowZ43Xkk5DkvLExtcocEpuzaHXaCWqqs6INK+WSkkRZ0QRZI0gptZaShHFkdaFvjcMg2PcdIyDO9E6ldZstjuWxTP7QMqZKWkJPjPrSBKlZaty6BQZZKFmnNGMzkmxKkXMiuPi6ZzjYrehM5wseVIKgBg2oFZ7Y1lrmYb0a9NGvVrROrfRVubtu7sjMRXu3X/AoDKajFVCiVwL1CjTNgc0u+LG0mrMPVUb+lBp5CD5HuKy8IPvfY8/+5M/5d69+7zz7pewvTiKbrZbYkpc394QY6CUQoyelCL/0q/+5NEqnw/EOk7/laSpSQuhsKhqZQesMkpFVPWY6snLNcvhFctyQBvL8TBxc33H5atr9vs9lcrl9StiDtztb5imPX7aQ1hQMZJTJFcw3YYvf+MXePe997m9fk48XDPPCxXN2cUFPgTmZSbHyN3tLRK6LA9nnmfGsacfRDuaKmhrwbg2w3BC/sSGRqxkhQFV0bajNAf9+TgRfSRlOE4RH2Uuq2pgP8ltHEIgp4g2hslLx5HbfJZrlXgWrVA5kVPCzzPGGKbj8eQiElISM7aUubm+JgQJyjbtgrq+vuXm9k5M+rQWNhcrU62tQE48byXWN0qTEJCns5bRWjqtMDox9o6hc8IUUxqrNdRCLUmC1ZTceutaCtWQfQPD2LEZHdrUFt6uWg5vx+w9ruuJOZFK5eoYmJZEysi+vOa2ftTtEhDVkNGK3lo2Q0ff9eynhZBhWTyKythZRmtk5dNm+JPIRYms1BiD0UKVXR1dSpWuSGvZkVclgv6Y4bAkqul4uJXRoLaw+XWlKHridis3kU2t6kQ0EqVds35STYFeKyonHHD96hV/8sd/jNKKL3/wAd0wYGxHPwy8ePGcq+vrE086xcC/8Cs/+Q38uWZgpYWXW6oQN1QW3ypNROsD03TJcX/Fsr/hePMc4jXbQTEfD3z/O99B5SBulDVyuKn4FMi10ncDx/2BNEccjt72THGhqmtsf8Pl3ZHt/cd02jD0mn68h+07Fn+kG3qUkhd56AdSLBz2M85p/JIwZs/u7EtgCp0T7+hc5MOXPGEB36qqoOVh12YQju5wXSc2Kg1VzbkQYqJWK/tj5xjHnrvpSE6BnCrWDjhnCGtyozbyIqlmYkbBKMUwDKAUMSWmZSY3w7vkPXe318zzEa0sf/fv/j2+/93v8v1/9l1yuxXWSJiu61iC2O9SZVRo78+pmKWV1kwpc3U4YLc7Nk5jVcWqwrAZWUKmpkDOibETZpJ1luQ9qYrGt5REPziUquw2A51VGNv4Dkba71oVruuZD0eWMNEPA5OXDK3QDpu11S91NRuszZ1Y4bRmcB05ZaZZijdXsba12jAfj+i+I6WI1oah70i5EpOMCjkXXO+4f/8+8zwzz0dWPTlKbnlJtBBOfdGau5D4zic3lAm+9lMPuNd3VH8AknhZdy2gPoocFdLp5o1Z0gtzXY9Q3YwYxQ3GHw7YYeD66Sf8z//Df8+f//G3+ff+/n/A13/+r9H3jp/+4MvEGHj5/DkpRu6d3/88Jfl5QSzZiaoqS3PxvbqjxDuev/hnXF19iq4Lo3P0ZSGnPVdPrnj+9Dn++oaSF7SpaJOpKhNrFtBmOtLbjlgyt4eF7UZz9uAh15dX5HhLrZEYr4GO3mzwr14Qa2Z3tuH8/IyXzz5FlUrwC4fjQq0a7wuVQipHHr+bePxoh9bpxCcuVU78UGI7nSXQy6CpWWGwKOtAWVL0pJSlTa0NNCqWmAt91/Grv/Iv87//1u9wtweFkd20UdjOEEKgM9CPA8fDnuSX5lFdsJ2nKkg5s/hAyBmlLbvtFu89WSm++fM/h3OSDJGizMZFKVLJGGfpx5H0Rnuu4XX+k0D1tGUxKIOPmZt5puvO2PUjsbHhRFAPw2CIqTD04gKimqpLG8MwDlgrVNS3336LedoLw47M7myLKjDPAeccpYiSa1q87JRXIoT097KtKKuKquX2KoWzlvd/6qeY9rfc3t2yhIztB6wTtdejx+9CTby6fSLTe2ka7zX3WYsH+Ha7Y5omYT5phXHy3J3b4mdx49QNTUYb9kviuy8KCxPfePeMC9PTabBr3CXCBlSqUjZWVl21cPQCqLGOSqxt9eu/j35B5wQ58Xv/x2/x2Q9/xL/zH/5H/Npv/G3effstNn3PJ+cXXD5/2SyIv6gCXtccKIxK+Pk5zz7+A+b9U4qfGfuM1ZHp6sjxZs/h5orbyyv8MeBnL0bwGtzQgTHNykQiHFOXsbZns+14efmKO594dHEfnQLH/TWlLqjuHLvtsU5umJgWPv7ohezvtGLsB0pVLD6jqmE6igLo1cs7Hj28IIWFokQgQW7C/Sz9adUavwSMEd/ligVr0crJKiQXiVVJSUTgqZCoTP7A+b3E2PcMruM4JZRW5OIxRnPvbCPsJ5XZdBaqwulOJJPoNvd6KcBm27IZemrJdEPPv/Kv/i3+z9/5f/jww48w1qJLJbbc45wz0zRxcmaU3RGnBloplFEoialCt/9nv0Q6N3PWieIphAAKus4yDo4QM4tPGGDcDKSWTZVSAhR97/js2XO0ymxHySI21qFyRhkIMVCaMERr0/bOqbX5kjIhn1E+dQzWmNb6ap4+fYqhEEJk9ok0LRjr6LqeJ08/o2ssL6EmSqJf5yyLDyitCTHw9OlnwttOue3chQGljKXWSC4FZzS2gXdJaW7Lhk/vgHzDV+5p3toabG0GFLq13w1ckzVqObEHfRP11/WHRFGaAskUMDlSpoJOmU+/9x3+u//2v+Y7f/5n/Lv//t/nwYNHnJ3d4+nuE779h3/0xRUwdfWaKu32vUGll2z0HtVV/PyKq9vnxMPM8XLm7tUd8yEQgjgYCj0tYTvLsB3ICJkghEAaNdqIh5K1HTevLonHmXfefsxme4/jfITlloNPuOGMBw8esD/uMVUohIGK6yy2AovY+DjryCHw6vmeq8cT9y4EIUZJQEQp8tJo5whZo7oBZSxKCxIre78qVM5+Q5oroQhqnHwgJ7lJfvjdP6YrkY11LErsbILPLEFa777vRRva5GZzjBStmaYZCZAu9K7DaI0/Hql+xmjFu196zNtfepvf+Nf/DvNy4NMf/IAcE9o30M4YHr37Dsf9gbvbPdmIlnYldSglmTwrsnoieyjL9RQxeuHebmAwGqeFmKGq+DqpXg4ppQu2c8y5MEUwKUvyYwmMvWYzjpQUub06yFqvCsmmroCQHrmbFYdppiCB6FDb91klStbIPzOqUlImasUcE0sshCJAFkCMgZoV2Rd5Tko6Ha0Kg664weFzIhaZc+dFzNkV4v2t2zxba4ZaSDljrVxI1sie/OgNT7LGh4x9b+SRTvQUFmVQxkKtWDRaV6zKkCVFUocKCWIR6LDWpkdHaK6lgKVQ4xGtAuYm8r/9T/8jT77/F/yD3/zP+eCr32DyR/7ih9/54gpYImjklM8UXl1eEzxUnyjLFbXe4vRCNZmSAjlmyReqUJOItmtRzIdFaI1DQ4Kzwi8JlAjDrbV01nJ3d0utmXEzNk1l5hgDzDPBH4Xy16iBXdeRoqwPUJUcU6O+aeY5cfVqz4Pzx1QiWplmkyR2NAYYW7BZiJmwHE+mAhVNTYnO9mx3luQV8yFRciAV0Cajq8YZ6DvN0BvsIJY0ucDkPZVKZzRW6RbklSWIq7RgdJp9UKkyhqeM0vDykyc8+cH3+aVf/hW+/fge5XrH7c0tfVEkLG63Zdc7sre4B/e4vr4m15VkIE2dqq8BrRXkEvsYuJkk9+jexjFacC2ADHlSGKuFV42SkLkKsWSsgc3gcM6wLAtWK7pGRTVKERoiDCKwOM6JUsQauFYxWVfrZqAZ9ZMLOcYmysigFbHKaqeu333zDuu0pGmolDnfDFiglMDZvXtUo3lxfcecDgxWpn9rOgqirV6yWMM6Iw6lKiNGD0rjlPhge1/IIfNwF9k92AiaveLPpjbhg4xLFdBLRbV3d0mGmJWwt3JtmBFtihHSSQoBnQp2gG/9o/+L//KTT/iPf/M/ZXt2zv7m5osrYEVu7CQD1XB27138dM3d3Q1pf4fhQPRH9pdH7u4WMI5u7FA+UXPHMkdSlGiSmASd1Aa0ttQk4WDGyi1ptLgaLMtCbhk5XefEXsckXuyv2G53jUjfuMApEcJCSgGNJUZxBhz0yPNnt7z/pUe43sih0vaDmUKZItQjtbYPPpWWnlcISeNDbdnIjmEccW4m1yM5ZszQCyijRDJpbcFaeUFrU8xMi0cPY2MeNdFDlZcrxIRBoaocisIAEusXnTP/8H/9X/j9//sf8+LFx5xvB/RuxFuZZRc/8+mPbujPznjw6DG3N9doa1pGMq8FGSfktJ6eZEExJwhJYkIvNh1nQ0cMGUNlcAZtjfCttYZtL7vxUpuziYj1aa3wUjyD6UAZpukgYe5V9rw+i/xRgqyltmWfLCqd2g55GakSVgsXqiromrMFtdJpw+gMg9WcjT1xOmLikd3YA5mt8YznZ5z1O/aLJ8TCflqoujLHStWFoRsx1oiJxIkWKekLZo0cNRaGkSe3AWs0X354zk4fIHrk9Yxo507AppgaNDdUxQlBVIi+WPK0FBrdDAoqsUCZPdpFrn70Pf6b3/xP+MV/8Vf52jd/7osrYKG/iEC+VsX27DH9T/88u37k4z+94eXza/KykJZILYqQg8iwtML2DptUaz8lUwetMU6JqB5JPNSmYEylHzvGccO8SBh4VQrjnIgNgkSZpDATq6Jk2X/m5i6pjaamlWFUmUpkOk5cvZp5+HgDShBMrVepmLxYuTbOq6KppApkuc2PR08umlIsSWLrxVomy03inEUbj7WFnGZZOUTZ0ypj8ClSdVtvWCXpefVkNSDRmfLUSbmw6TuM0rx8+ZLPnj3HWLkdj94To7CNfJAoUr94Dne3/MLP/RV++OFHHI9HVjtdWtu+/lXaCCE2M5ZSK1OulDkRYmY7ODotHDunACUvnTMKa8QHXMwXKrOPxFjJaWHoOwYzEmNBGRGta9sRfJGEhSL00pUxJRnPwjVWVeJhU6lgLEW3UcsKOURrDaXQW8VusJgaGVzh/sOR7Gd2g/Dx+w1Y6+mt4UsPH5Iq7OfA3Zy5PkiKYyxgdccCTQxSIUvOVqkZtCUrhS+Gi/e/xqdXz5jikZ99bNjaEVsEz0globShc8IFVe1W1kahKCyxkooixHZoFd0YXQ2vUIpSEsZndPGoHPknv/1b/O7v/CP+wX/2X3wxBSwtpViZ5pwIy8zh5sBhX3H9B9zdPSHPd5hsRSKohIaciyy3lbUUCsb2p4bOx8Sae1SgETEyIc/0Q8dmc8ZxOkoeURbCAchaJgTJl33t/dwUN1VuikJtL5onp8j3f/CUs/tfxziZTrQzWONOLZtuXOgYCzl7EuJqkYKoW+Y5E5ZKmBIqCzWz2AzWCsBkNM46aqr0VpOMBiceVkprlhAwxuC6DmMNNaXGHirEAspo4VKXzDLNWCM4qaoKXSxff/+rfPanf85hmtEGsX/B0CnD4TixmyYePXrM4TC9JnY0In4RloGwjbS00EohzpUUEoqbacHHxKZ3BKvpq8I5IzvOkmUFZhQxijn6MXuchc3YMW63ks0cE36R1AG0IdaCz/KcVqTZGLWeLZRS8bHIz62knc31DU5yrRgFXWcwJDpdGKzm4f0NF+cDaZnF2laDdo5MpWYwRDpr6TZiNDB2lsOSycpxcyeijH1ampy5yO2rZRGEgqIUF4/f5f0vf4Vv/ePfxqjEV9+5YKcVHR5dE7pmqlb0TtZ6RoPxwqM2KjGHAkaRKqDWAHm5jVPJOCWdmsqF6j2brifm+fOU5Ocs4NrcLLKkLBzurrl69ZJpvwcGAj3HfcJEYc3YYUMmUXRiyUFmYa0puraEdS2taS0NlaxNUwumKJZF4jbGzY5SMksQY29nZW0QQsaY2ixbxVhMaUcqgVzTSUEC0vZ/+uyKr8+R+2OHdbLkN1aQ4VRLY2wZTAVthdOci8jXVnJFDoXiE9IDleZZ1YlDiLJQxJx+sIrshDAQs+xRc5C2nJyaiYgwkdZoEml5i3B+a5V5Ngu7p4bC7/y//5SKZAvXMJ8wgDBHjNb86KNPODu/YHt2xu3tbWud5fPUSqOtaaIH8XIGIZmUqolFobRjToVYE0cNQ4LdiOyLkZszBAk8l/02DINls3Eoq0i5jQvGUmJq/lUBZR22trgXaGKY1x1CUa+N5GoL9O2NleLVMHZOKJ9FWH73z8+4f2+LtYXe9I1VZsko9tPMs+cvOdvuuH9xhi4VmyNbY8EWsIoyaPb7IISONrKUHElr11IKMQT+5E/+lLEfyN05z3ygPJv55ts9TmUhLjXRStWKzqpGS22rLJqdrK6QChlRVq1FbNR6UAiI5oyl5sj4+YIZPl8BryHXOYkaZz7cMR3uiGGm1EUKM2fmgyf6A2f3HzCc97LEj4Wa2gtlFDkKmJGqDPo5CCe2tpfNFY2kzhVSmhjGXpLgUiT4CO20tm3OqkSyFdheoQgxEaMwf0LMuG7geDjw8cefce/hB9jOiml7yQJMBE+KCWtcW94LWSUHoWJWxFRe9MK1cQIKwXs6N6CbON/7jE4FVRJWy8rHWdOsVazwtxuNT9YfolbBSKsbYxKWj5KVXQXQckvXXGSC0bqJ2gUBLamSlQjP/eUltJ1oBZE11iodhtavPa+NFsdG1YA0JYCV0oolZ0oqTGkhlcJucHRUqFmE8yo1cwL5b7WVLmiePfMSoGpyzKRQOM6eUqEzGsqqRy6tiGUHXpWhtHQNrcBq8bxWtWCUoaSEc4rN2LHbdGJPVF+nd8hRJO/W0G145933oIorCjmiivDArTbsp2Nz+TCEWhqjTtxeLi4uSCk1583EzfUV11Xa3a7vWdzCRge++dZIpzKGIAdQW0c1P4e2DhNtOEr4CDEXhGZfoSq0kfFHDJcVKhWczhhV/n+q7y+hgGkMplIry7wwHw9kP1ODp6ZAnDO3dxHmQg6V5dkd43Fk3G2gbAlxFvS2ZekIBQ6U1XifGxW24pxGJfEYjkFe2hAL3WipCM2xlkI2zYmyQPSixolRgIeUFdOiiL7tI01B64GPP7zkp7/ykK4/Q+FIeYLk5XBJgZQ8tUIKmeij7GM7hbZQnaL0kuFa0LAIuh5CpCiL1ZXOVkqMrzOfSmvtkXVHZ21b5WhSFesYZ+yJiqedbjxeRSWDNuTSCCJVOL+FVsiroZ5phIhWBKLAkjFB4leNEP5zOSlyBGsWNpGWRK4TyKUwUoRFkiYqio2VdVfnNDVFRhSd0/gYsUESCZZFczhGbNeTteO4RKYozzSUJJZHDZUVz+0m01Ol0VmBwskxWKPE8L7TbJ1idNApGOzq9HkUqooxKLtiGZV7ZyPGavyiKEWsglOSC2IzOErUDL1jSrHlcEnR7MYdF+cXfPd73wVESy5634pfKi8T2KvCroMPzjc4Jy1+Lo2HX0VqblVlU+WztSXTV5ioBK0JRRRuChlvlG4jkhEfNW0Mn+fX57uBkfZLMnJnlnlmPk6kMItG0/QUOuYlExeJTPz0+SWuH9n5dxdmAAAgAElEQVRtL3BOMlBjFEZXKdJG+jkQQm4uCDJ3WlPoOyc2MRpsc1vUVqFMR0FuH0GgG6m/VDrb4b2YoAdfOOy9WLzoTM2KZanstvcwWhF9kvb9RKSvzcCsNLVTIISEX8QB02iNcwaKeDUbbaBk4hIouqKKQheFUTIral2pSfJkrXWNsKMa6V0ke+KSkYUQrzRWC9+YpkHVWqEKxKafqw2EUkVuhpQLuqqTbUup7e5tXmUreUMKE/SaMZUSq7UPzRFUhvU2pzbP7aIKk49QLU7LoaNVFSDQDpQI9Ria+6bn7uB58OhMwrxSFXAuyzooVqHiis9UPSmpxAKo3RGlNtKEYugcVlWcVfSdwRnRCpdSmKdFuM60uBwtsSqydmqrKgXjZiTFRC2Jkj05JazqOdt23C0BnYVdl3Pm1ctXPHzwkKEfmKZJ5I3W0fc9Qz9QjeZuuuWjy5mLfsuD0UFzxSzN5rdBVCgngJ88ikpVBZUVtckb1creKlJTEuxd0eX12PeXXsClKS3WNYVWmhgzyxyIObO7eMg77/8MzwvcpksJeKodfqrc7W8pObE9s+y2vSDHCOgUQ23OGpw4q6bIHpAqp3EIYmzueovtNEo5fAq40lTJpZJjoWZpo3PW7O9m9vvA2fmWXCMlayYfePr0kp8Z7jXfKk0pSlp5pWTOR1Bto0SRUoq0lKq2NjCD9wsxyu3mlyx+Ts3wXKFx1tAXxRJlLZVUI9a9hoMb0b7dHE3IbloMhzoh0vL1JXOncaB1A8FLOb3wIrZp+0nVolbVGh/zevZcc3wkwUG+roTSyaFSimABSk4sChBLZb8knDGMpmJ0i3lRsUkxA871LEukqI4lVI5LJibxlRKnkxVcLI1WKc86r3LIRlNcVYXOGaxRGCVMqJwL2jpQlePxyGbTM44OYySxYzW1W9Vxqo0QYYnCxgLOdztmH5hj5VxblrKj3C3cHhZx/by44LNnz9r3JGPSVz74gL/5a7/GPM/QDbz47Bkf/tHv8vGN52zssCrI5mPtGookQEiSa2XokQMLhYoAMrrkhn0IBlHb4aplE/FFFbCst+SUttZirFixViZ8DOSQiVVTXU+1HbEm+s0WUy3Xl3tiSpy7M5RzpOLxPnOcvAjC20onJnnQ2mpMpqEbBdcbqjEkBLUbR0dKCtMZjFJYLWqfktqLkavQInUhVyU+VGj8lHny2Q0/8/XHWJ1QVTS78nLLD6kQQoKiBVUhoERNibgkSjK4zlIr5KwoZSGHjI+yP64NvKgNTa1UfBArHSNWFoIIv1Fc6620tr+69eCrNvaknEIefFVQTNtjKtOsecVmVSFzZG1KndcxInLwGmOk5V5vYFbOdONftP1lzauYXZGr3B45JTrTsiZ9kS1Myigl87GPhbsXV9SWOC9rOtk4rAfI2l1kGfBFhM9qGKBA1Qb4FKwWwEcYVFb0w6owjj05ya3lnGEYRkL05JxxzXeMdqix7mG13ORVSej3brDsJ80dBTCkXDgeDpjm7GGs5a//8t/g8uqSP/yDP0T1I3/1F/8Gs9rw/DDzQVZcGIuu8ZQEktt4p9rhSdd2w0rYW5qKqYolVbKC2nCH8sbu+AsrYN0GcKM11nV0w4Zxu8P7BZ8TOWpCziJ2b0UoJm7iYKFMx920kHVGoXh1e8T7AjmyHToRvFfNEjM5FnQBU6FrhXs3H6la5sS+M5xtHKooiganNDVDFYNL/BKgKLbbM2IN+FQ4hEic4MnTW2JurppVylNQQQm40iAZRFVYXqrdmCoLXCwvjkF3muTF9dKYik61keNVQzalRV9vhJRl9y2MttcE/tPKB/n6JSd0iwslyzxMY1ZJhyC3vNGm5SfJDSAMwXLyKcttP76CRuvvp1/NAaSuX7+WBrKU0yFR2x5WoxuJR5PQGGXwSaxYC6YJ3uEYZC1YYn5tudQWfadCLjT/rxbNmdeOR8lnqaHmTDd0OF1xWmERkYKfA0pVAQuVvF85Vw6HI655j1nnUEaTovCTrRPuckgRaiGEQIyRFCqGglMQc+LmWkwKfYjUKtY33/rWH9I5x+3dnsm/EH/qorieEs+uj2wfGZFgtl+rNlhV4UVroHerCylYJV9P3GSkk5HPuTXfn+8C/pxMrCK0Q4yh9D39ZsPm/JyYAyl7olcYayQpTis2Y4+yHVfHI0soaGPJU2JaPM5ZCj3KgDEOFIQkC/BQIGolvN9U2HU9JlWqgW7TY/uBlCN3h4CuvRh81yL0uCxtfgiRXCS/NaVCVorbOVGCouiR2RfuPT4nLUemMDfXhoptYWpvzo/WqJMQ3qxaW6UESHJgnEb5RHMOomp5YYWgD7pA1s3sO4mP1Epz1EqYTKXdPEoJnBlbyBtK+OeqVFmjKEF9c60tf1Zu69S+/5VvXZuZ8ZveyW/+DoJp5DcK/ET+qEgb37YAdY10BYwVXGIOqXULr1v+rMQcrub2cygB4lKJVMSCRr78GyZ8lRPZRGs5lIwRILPmTE6V2hlJeEzNU9uK13UyCWrPuBmZ5yPGdlxsxuYMU6kqUmMmFZnbU3NgKc1Bo6ZEjVFWTUpWdz6IkTyttb29vSPljDGGn/7SW7x8+RKFw2jDYYlkRLUk5KZ1tFSc6DOrPlgXlNOo0opOV4KGmCspQ6xV0iL4fHukz1XAnbM45zhOB4zWol7ZjqS0JaUjKc5MfU83DJxdnGFy5jBFFh+EB5ozMSacE9he256aggSC1UgMwoSxzlGNJuQjISY04rs0nnX0mw19PxKXhePdRIdhdCJXK1oTwiIrnyqvyRIDaM3kI8clYXB87wef8NEnD3j70Vc5HA8NaBBjeVErFUqMoA3W9hJepsVt0ViNzWLM5jorD8ILArwGfInYXEKtXEHSEpK87KUUUlG4xkpaw9uMVqfb1LQbtNDoh0pJ8qDWpxdeYqAaYaW8mev+z9MnaVnKb7SwrZBrXXeymjcv5tP/UIIEq/a7biN8qZWUoszetUjaAZqi1sKUbk3VdrtQ28wuf+iJk11//OvJ1JCbK0hzilTIn13kd60dtQhWgbZMk6dUMUjcbkeGccPtfo8PHgnwBtv1+BgoCBPOOeHAPzjv6HvYjBGfNFfHILGsRlMTdMNAKmLW/+jhA+b9JTUuuN5iUIRYSQmKbdv2KoWrhLnDGgG0mt8pVdG9OJZqZ/CpMPssTiVZmGivyZ0/2a/PVcDWQkqTpAzWQGchDx21bMnlvMnsMiUHjjqzf3mF94EQJi4uHOMw0PcDx9kTkrCZVE301kCSWEfV96RO9ILqCNpqfMoUbTjreu7dP6cUIwZ1SREDDMaeFC0FuUEzyP5WQ6yKOZgG0gRy1ljXc3N7hUbM3HJRSDvgZB6xPXM6EHJPrBVfAxFFUhF0Fv5uu0FWf2tVpaXMtaCK3NjWGil4aIl+Sqx2NDhjcMags/gi1VrBSpHF3GZUNKrKAdU52xIPS2NWVZQG84Zfk0L63pMDpbFvtOvrgdEK5o02/tRCr4WvZMyhgWLyeTZT+kJrmZurZKmoKkBRqzghnJQ2lmApiGukQjXu8FrGQNUYVeiNptdQQ6J2VszqqUTdzPKAkCvOGLKy+KwZNPg5YKzCh4q/OhCj8OFdv6EozcubIz4VnOvoaqazis5BzQvGaboxMwcNxTB1mqQNIUcKlRgjVsEy3TH5QLUdGFA5k+YowKmVXa85GQVoSmq3fGnAXJXP22oBAdFGdvG6YGPFxEpIquECX1ABGxNJaSHniZy9LPQt1LGjcCY0QV0h3TFdP6WqwhIOvPX2Od/4+gecbQbu7vb8xfc+pMRErJlxC4/e2tEZy+GYuV4S0Wr6agimoPoMKeOsYrfpcdpihg01iu/VsXhU1qRe44y08CVGNkPH4oV4kUJFhcigBdL/qbfvc7HZUkLF2BGlComANT2lGA63E9dXMzfXkdvbW+bZk3MlhCTUzYYgztOM95noxZtaG9cQerllrLOYWmX2qTSjeJkBc5YXXlVONw5KADqjtczKbfYspYjtaFPnGMRFJOV1xpMQrRIzyqyAVX3tMmmaX/e6q4G2KlI/BiytdsErH3z9906/tzm6qkY0Wdd4bQVyAjlRP1agsuJ9LVDRWRFC+DHkXCvonWN0GrJY+2gFRRVCruSammOoaLeV7cmqMnm5SAwwVk30idRWfDEkYpMQphBYFo8FHj24RyqRlKXN7fsBbWVFlvYTlMyDcUPOhbvbO853I5FM8gvO9egqRJ2+0823WjVlmXQy0r5nIWzodbZtn0UpOCvgnlBTLdaIXY/2lfT5TCk/XwEf9pfkIpY4kNA6o3TBWEU/jnJbpIWnHy90vSETqGQuLs65OO94eH/Lcf+SmiZ67VAq8c5PPeRi26OqxpeCSQUzdLjisOcjDx+c01vDskDRlq4bGXY7wnzggw/e4WJjGSygRByuDZSU0Cjm48LOyzrj0QNN1jB0jl/8a19Bpcz11YwqlaorPs3Uari7nZmngp+hZENVI93QMR1nMWKfxTFBa4ui5+72knlOONtjXPd614ugnp2FkESet/oZrkWTs9zkpjGhjJJTmgyFLBY/pgWzqdpM7BRdE3WgJPLDGLEkz0WdCkidgGWhvoIUMm0Wh1ON/hiwtdq7vnkR6HaY5Cw5Uap5Tb0BoMt/+/pPafNv+2etUHNOJyFD1zkxEqCi0fTGCL0zF6xuMSnGkHJljom+E/KGc4aiNbeHBWNEUL8ZHMZU3hrOeLAbefLkR9SqCG0MevvhQ2IpeB95/uqKl1c35LDgjJFIWCqdNTw6cxgChyVhB0PBEfeFXhU2XYepPSGKWqvX8OBiw9AZrBUnFwE7qzhu1hYpiuRhKS3dmm5WSM6CKbI6tFqevamQvkgqpTYye6im0cxoqrZIuHcHWXN3t+f6+oqUEz5GjHOgFM+ev0TXxNNPn6GVoe9GOhf5xs++y3YzcLgLvLx9Qjc4us2IWhLd1vDw3DQzsUy1PeN4RlWyxnnr3iMeX/SUtOD9zO78DGXgeHuLQTEOhukwY12PGwaqUTjjqHHi+tKTU0BhiUVxXBZ5cUvF2o7tmeyqjTX4ZcF1sm98/nxmmT1KWaa5krMoaYL32AzW2UY3lDfXqELvDCFmNOW0KlCtyEtbwxjrWhrEGyuX0vaR7RYVJFle8tXuVLflUmelbZPbbv2z5dBYNbVrtRXajdtm/zXSdaVZVpDVRimnljvnLAVspDtQxgjp5Q3hwfqrtAF3XTnq9oKmJGCjVuIUua7FdZNRqloa06/9QVm0xTFlidwxGu8TfT8QfcRo4TT5ohl6y5Nnl9w/31CLbo4bTr7PFLh3fs5luOZ8tyHFLMYDdXWzzGgdGZ3mwVZz/2wEbYkYRvdQEPMCYZoZux4/TRhb2Y2d7KlLlc5nJdq0w9oYc7JuEq6QtNqlCrIu9r9GOkfAUgn6C5yB0Z1Q97KmKE1VFtXaF2UKYU786MNPePnyEls8xvUMW8fF/ftsh46Xl0dS6dmcnVGqYXueOTtv1q9mR1Gw2Wzpxy0p33G2O+N8B6UkDhY29+/R7XagFfPeMvSKvteUNsP64MkUMjIbjmcDppNZLRW5OVOOHI4Qoha2DQPDeIHtdtSawCTGzYAxmhgjxhQqiWEzEHxCqQe8eHGJ90Lqz8U0QYZi9oniI+dnO7reklceNBlvwCtOKyHZra6zYkGnRDGajiY80ApW9lUuJ9S573uxvs1FGF/OygyfE6OzAoQoI4WAtJ4py21dlXCUlZLWbaVVppTe4CfL/PxmSb7ZeqecXzPWWH2fXmtepXZll3+K3mnFapuHeKWJRqympNx+Xv2Gl/UaW1JOWMBxXpgXsfSJRWN0ZhwcuWq8r4RScDbhtKcTl/mTVlyVzPHuBpUDnUo4BwMdSgnHfPIercCr2pImmpuGqpw9vscSC5dXB2n/jSVU0SlrlckxEalkDdZI06SRmaA00opSYt+09kerqZ6s1mR06jvppKz5ArnQpUg6INqhtAjRQU4SlSPPn/+Q588upY+vFWN6tmcD9x+cM/YbXgbFsBPiREiBYaeRnFfFcYkM4xbnLjDGUe0dm13HdmsIIWFdJALGKHo7MG42bDYVRcBazcOHD1BuoChIfkGrSo4LD996eAoB00aTYuVwOGCNrK0UA6lEdCks/kgpiRCPPHr0iMtXL+gHienEiIihlsI7b7/N1eUNNymCyuIskjU6R3LIHI4L99zuRG7XVJwVKuAavr2ysGr7/ELOglRqjW0UQbPelG2+PBnRI8QXpbQAOi1j2SgtCLaROR3dCANZdDalZOHrKk0qGUtrq9eia0WstREkdkWzW6+8ukuUUkh1RZzraZY/lfwJMJOf3zpHKYlh2Ih9UmOCWSvc6F7LLClulbSVWEE1CaIQcwqZJDwEk+n7DtcPLEvi4uI+16+eU4PHli27QdP3Bq0NKQWhxpaE1tDVQC2yDpNUScXY94ScSDg245ZBa4IPlAJ+WrjZT8xTxGrL7IMYElp76kyUEl44bacLSp6TXu2MlLhnpiRjU7PokLXj2mEVHBprv8gbuHbCltGF9MYahFqIPvDRD39ESRlnO/Lisdbx8OE9dhcjOVpuj4FQDViNHQzjmSJXaf0uL28ZNmdYu6Pvd0zHS3Rn8DGg9EDRjqJ6DBqdZT9xvtvw0+++zTztGTZbbDdihzNqUexvn/Hq8iluPDu55VMU773/Doe7G26vXqAvdnTdlq997et8649+H+Mqg3Vorbm5uabvO8bRkEvGL55lytxeHRg3Zy17aWm3k3sDwJEUxMM0s910gkxrTWegMyKEzyAGBe3fN0ba2pzFA6poI64UDVlXpZ7salKIwugy4mwZQwD143vckgIomatXtlVuzAzVADPrrBBWmpul1J3M5grEkqj8OJglCHebfWVTgmRItVt1babbHnnlqBsrrCaQfWtIob34BqoUrHPiT5tzOlEMrZNbrqwGCsgBGqLnXrelqkpOnlcvnpL9TBoM3pvmZ9YxDB0X52fs724kWKzriKUwLzOhilRVmY7eOWmrveFYA0utdK5HaUvwC2SFNR3HWDjMnl4r7EruMaoh6/XkmQXNe7qug4vw3Wlbiqpl/76OHkaJ+WBFgK0vsIDtCRrXat37VSiZy+fPuL29klnObShhoe9hd76h63quDgnslmIiZ+cj3t8ybgdZ35QBHyaWoLjY7ojV8MHXvsbb9zKXn33Ey1cLx3SGLh15CiRTMDVyPEx8/PEztrstMXqs7aAPvP/ez3B3/YSLix1f/8ZfZ4qFH3z4Hd5/5z3GruP6xWeEZU8/dIwbxQ8//C7aScq8NRrbqIYxRoqqWNehsuLV7StKUuQQhW1lFFoZ/BQJpVKrOEnOR48Pke1ulJstJSgSu5JSlttr3aColRyjqFlBrqQqZINchX1UK5gss5RueulahcSRc2pCdH7stlQNBS1K4DOjrexw1wEzCXlknX9//LZVQuaFFpkDqKbCKqwYlezPzUrYoM1/QNE456i1kLInF/ksQoyEowfbFGJtPo81QqqUagUMEhsOMYNTYJw9AUTykyaubi6xTjM6y2Zw4Bz3L3b0VrPbbVBkjocjJXqWeSbXTPACbtpuw3ESM32jIrpqRmtZCpSU8SkzJyglEGJimQO+GO5CYkH0xSpndO4oprSgd0MqGd06JlQ5EYHWAueNLkWksqshfjv89WvU+if99fnUSGuaVJuVVtK8j5nr/USm4zBXbHXEqnjn0QXj2GHsFp8P7L1CGQERyrKw3GZGc8HBF25nzXGu+HqLpXI2QMWyvXefT69umHKFaYHpyGawnGkPquD9RFWFt9/5Ejc3t7z76AHWBeb5lnme+Ke/93v80i//Km8/fIfvfe87dKYS5xvksEwcDrf4JIJ70+xjAPquo7MOHwMGR4iJ4DMKS0oQknC5QxR2VVUScrbZjEQfBa0vGWv0KVXeaHBGk6pQBWsDktYHK2w6KZhUhYVktaHqtUgaSFVy01bXJmZYz/K2yjnBwyBW6rIP1krhs2+HR33tSfUGO2ulXLK6pNTXt3umnOiV674XVdFOTOBLiRKS1rjrOQnRIS2RHHqGrieYSNKCsBekpbdKSyZwFimoMYZxM2Cd3IA5FZQ1WKXptCUsnhhn+r5jt92w6Sy93jA4w6Z3OCeh5qXIjjjHig+J7GS2VSDm/QVCSqRU6bqe0Wlmv+Bsz+Q9BYsbBwgZf/S4zlFUpcsZZ2REWamm6+e27tvXg9JodUL2dXtOclC2z7WutkvyjNBvwoF/yQW8ntBKvUYva64s08Tlqxf86Ecfsb++wpSJbRfYbQVw0XXk+eVL9l5RkmcqR4Y88cJHnNlxKANTGlhK5XhzoNeJr335gs1uy/biHdKTTOlE+5p94JgD1i0Ys+Fscw/teqal0g33ePLJUw63Bw77PSlGUi5858++zVvvvMP5+QPurp8SYyB5CftWtpEeSkZbR2o6ZD9PGCPz99XhiC4Oox05K6Y5SAQnYo6maqXvLNVADIswg5LEpxjkxcsqoRU4q4XUISiTyNDa6geE110REYJu3OxahApqmkSwtsO0lkbdaAwetRZWg0vWy3QtamvN6eaXYOzX3OjXz1YKsxEwG1BVG4K6Vrn8pbWiKBFcdH2H7gwxGXIWSahSCpUNISXubg5stqN4kVkZS7SRUO4SGofcaLLRmMFRRwudIZSEMhWVEF+srsMizitGS7i3X6QLGd1OQuKoeB8gS2h3KQqjOrTqqLqQY8KYHmsVMQQR/lfox8rYSwRPKZk5RnyFJSVCSZQio9DGWpwpoAqr+unHRgjaau6fkwa+yXZbtwMC4rWtRCmnMegn/fX5Cli34/eN1UEphU8/+pg//L3fReVEZyzzHHj34UVLIDA8e3rLkiy6sxQVKCEQsiHcLdTP9pS+Q5kdblQMfaQ3gWJ6fO558eLAFA1nDx7ibE88HiWx7uZDUoTb24VE4uFbD3FuYBiFF7vZPiAnebAP377Pw8fvcnbxiD94/kT8jumppSfHitXCpzXacHV5RQqiB05kjsfAcb9Qs6cUJTrXkMTxot2ezrZdrJXiLqWIpZBuflJaYjOzys1xUlQ2tSKtc2Ny1bZ+0FRokrs31UcitZSd7pq+AG1drMRW5nSj1noqcgHARNTunGsZTbbtllvWrn4NWgnCLM/6Db5U24ytLbpqBAwNKZGWGWcNw7ajIukO83GhNp/kFDIznn7T0/c9IXkBkLYj2SV8ELqttgqcYsme4AvYyNAPmKIpSyEmD1pa69kngr/Fadg4y/nZOXbY8Orlc2pObIaOsHgB5azGuoGiCqUmrO1w1rLbae7ubrAWFILQS2KlmAu6Souk1Sx+oVMwbjT9yUJnxQRqE4ZwYq8JoPV6DSfGDvU1M45V/rl+yiIB/cIKWL6dN9b1tZJi4tt/9G38FDDasj3bcX4xcO/RFp8qUyh8+uqI6TacDx2aSsc99i8d+9tXdHWDro57F/cJKaNV4f75yDEe+P7HM94rPvjgr3C7LBJsfbbj/v0LhovKO+eJz578kKQMf/PX/x6P33qPF5/9iD/4J7/N44ePKVXj68JcDJ+9mvjh9/4cZy3OjKhkMXqk6IiPM9FnDsvMPEVCiEQvDhIxFWp5/WRUa2dTkuBq5zQ6i8dTKiKcqFVjtWkeUCKN00rM2aquWCPIamk3pkU1c8TSXoS2zqki1udNFtRJHiin/iqDzBVqLlLMRsQkNSVqfZ0YkMVgizUArFJOBXwq3lUj3Ja0tdXsysRSq1lPEWqjWoPJYqYcI/NSGXZbNsOIU4ab5RajhD8QF8lI6gYRAxitySGiLIx9f5I4dJ2htw5rFKUazrbnHK4P+Bjwx9hSbUU7rYsiInjAp8+v2B8Xhs6xGXZUJQQda4TgE0vmOM/CWzCGl69uGXoLFGHwVbG4jTGT245PtNKCRXQqo5JHJ8NoewyBU9MjxXECdrVWqFNE6f9H25s1SZJl932/cxd3j4jcqqqrepue6cbMgMBgkTAiBiBFiZKJJhpNxlc96QvpWU960QegSTSazACJFDZJAIllsE1DwDSnp7urt+raKzMiI9z9bno4xyNr3lhm7DQr6+rKzMgMd7/3nvM//+Vl7MIAQROKKNhlLDzh6An39SxguVErLqT958+e8ejRU77z3V+husqXD7/g137tV/n8/k/59NEjcIHTO29xmCZ88OSU+KVf+j4//cmHnO7fQoDbd+6y2x0QmSmlcXJ2mxc7T80JSuXFsx3JJVwIrFYbxFfuvnaH188Lz598RnKaq5RpfPHwCw7pmvXpd3jt3nv8+OOfEMMJv/pLv0FNe7787Ies+kCdDFAqGuiVcmV3dU0IPbcvLqhZS5zd9pp926sQYyk5xRabqFtimnVmmFOmZMvqsYfRoW1NMQaSFyFUKAZe1NKMMqgnqYCi1G0xZbdr3mARqdOWZ0WOxTdGgSw5WyKi3ABWx75LnTsWPXBtP0uvXP6uAgadMrgjiKWvo+Hfy4xXIzcXpVK08O50ndhvD4AjzBlp9qgLtFyZ97Par3aKiDcUXIpdpxtLSXRmqztNnuv5QDpAnhw5BRzaChSnZJZSwGVhmkfG3Hjjzi1kqrQyQWvM88TmZGPqKzhc7xE6Yrdinke6ThMtu75nmpV+W4q2h9vLK1LV2TS1EFpjFbxmX6FWuwslVIxauni5LeYKIuCxa14VfRdZqi0T4sDXD2I5e1Bo1rMgPHn8mFoKV9dbLreXpJJ49OgpDx9fsVndYpoTZUq0Ukg5UUrh0aPHTLkwrE857Hc8+PJLm0cKuWS++uoB4lQLW+ZM7DXnVZqwGQYuVvCTv/0j8t2evvccds/5rX/1v3D74g32+xfgCn/9ox/x/b9/h5//7i/jup7f+53/jcuv3qcLmfX5HR6/0FzW0hJzypQmvPbmm+z3I9f7iZqKnmi6BKlVRfnqzClqfeMD45SoruoJYz5rGLMUhm4AACAASURBVPKcZ8H3anAWFkCp6XWMRkd0qPNHc8uOr9P1/FI/uiiHYIGq9EP73AUt5ljCZTtVlwV3BJwa5Kpmc83q9qMzB0tJrl8rrh1Pd3l54wZNpBQl8HjMasgH+uAQKZRWaD5qJlJU15Y9wtQaBUGqVhy5JKWMDkLoAtHI27XAvkwEF5j3Gtw9z1CLRr3eunOXzcmGL7/8nGk8EHCq9gLKmCiPn7LuAl0QhhiQJqzwlFwYU8XHgXGa8U7n5gV1PsmThrLnqi2MRA0on1KxNM7CSRDWQZMhjhWKqNxUy2P1EBMzHVvwBxU5mOuKtx3RQKzFQE2Mq/8qH6+mB7bXXlg2rTUePXyISONq95RaM9TKZ/c/0fFAVoCglHLTY9XCgy+/0BNibpSUCEF3J+89oQlpPOBfclOsLRBbJPqAp/H0q0cEErvtjlW/4eK053p/ydWTPX3XM+dCIXP1+FOGUPnJxx/w6LM/Z+X2hHDK46+e8ezJJdM8cXJyotS22DNPiTt3XuPB4Uua9S2HcWQa07E0VoM55a+WpifVlGfm3EhFY03SPBFjoxVr1pr2wr0XsixEBetbnc5CqzRzolSOjmvoeEiwIxxuBrC6lNqyjNtSRi//ws3nWErkmwcK+9xSrYmgIdYiNzd5QTksORCjWKqCyZIVRD2c9H1UXMk4Cp2DzkXwkRIjc67scuPJYeJgG82ihaZBGRt5qhzGSX3TaExkHI51t2GeKs5F89PSTKNpnjg9O2PvPfN+z1wylEp22sNP80zfBS7OIkPojw4h19dXAPQhQitsNmtCXHF5daXeVsV02KaxruLIIrhcWDnHae/oAzipZofbfoawo7ZHS9ej72+JlmX5WkOe1aPbgdd++jiSeIWPV++BX1q8pRSePHlC7CLTtD+WCPOsIMBog2uqCc+tSVdljGbgLEDYgop6r4qVl9k6zszQzy/Oee/dd5men/LZTz6mltGuSyWGwGE74Yvas4zjJX/2h/+a2EU2px0bPwIwTQeoHV3naQRanUn7xJj3TOkxD8OXtCbkWX2g1Z2xWbwolgIhNwvBPLJqFf2jbrH0MdAFT/CO6J25QwrNkFGNURGCuU26BahiQYONtcUyFlr408vyOy4x+/+GHCsj+4qXTohlBS/jPxHBL6erLIJ6/bZjyWwltUoF5djvLRwTNeNpSM0mpyxEp8qraN+js2zBdZ4QPc+uRw5VjeRz1dGYRRuTa6bMqr323tH1Hev1hmdPnyNSOTu7sEV4jfee09ML3n7rbXZXl3z5+WeaHSxQUA/qMmVku8edn5DxdMOAxC3j/mCqoEBpyrdu4jjkQpompWjmYsmGHTH0BN+IZcLL4raxlEQvXT8xI/7lZBXUyYSXrv3xft44iTpZqh61Un6Vj1c7gV96gEQUlXv69Kmimt6ZykT1pyll1VIGZ4sXsIVWSjHH+kqM8cgXXUTrJWdTv6hULsTIyekJ5+fn/KN//I/58V/8MZ/9RJHTnDIlZXKeqEXYp5kuAq0gNROlQZ7wUmmywrmOq+3I9upA30cO+5maKmnW1L1q4FIV1O8462stKhKHIropZ2iOecoqMK9Ob3rKDNGx7j1DtJ01qym5IHRmSCdm0Yu044JZ0iSUCKBlqt5rdwSLKsd/BG5O2mVhLSX28hXBetXaXjYVXx66pfxux9fXZ8msdtT7x15weSCthG7m1yWN4IToG+s+su4DVGVPiUAMXkkbJXO2WnPaBR5sr7ksjSkbBgBHkLCJKrGqg5pG0vyUN994k67ref780p6TSAiRlBJPnz3ndLNhfXLKOE4UVIfcnBr1XU8Jrq4Zp8Tr916jX6/ZXV+rjhdhP074rImG+5RxYMIWNQ9wqEC/VtX7eldt82r2NaZCauae0kwe+hKydTyNbQ0sf/Veg+XFqX1Pk/rSnfsP+3hFLrSBHEbUfvbsGSllhmHA+cF2cc1nDT4xDEbez5p95J3HeWcyMuj6/ohqxxiPAIvm9mLGeZ5+GHjttdeIfc/p6RmH/dbcDmC/H0l5BBotR3IVpqRlUCvQ5sKYlVihAdRbvvjsCeNUefvt19hsVjSX6VY91QnrzQl4TwyR50+ecbjaKxuq3vgH16KJDE28KlWap1Zhmg4EKZyuI5vBMXROf49aKFRoTj2va1FNqe3PoACWTSN0oTXTlbZFSWQlrNws4iOABT/zdx1BKjLuBYtoWcY+2rNioyV1cuRYGQnckAmEm8a63Zw0arQndF7oY0CodNEz9A7nGzVlcp1N4N5YrQZWtRKlcNqpEP/6eqL2PWlsymoyc71qPOFW9ffIKWtUTL0m58pq2JBzYcloevz4EU+8nmIStA2YU8aZ8iyXmd040lpju9+zWnWE6MnTjEgk5cLpxQUvtldM00RwIE3nzc47UjInFdQ21jvoolMp4wJSmRb4ZpR0M5Nv7aWZOzfjOu15Deh06gVW+dlZ8X/IxyufwIpuKoH78vKSe/fu0ZtLf606lljULa29BJbY41VKUXPvWg1EEPq+P7KCuq4zsbvT+Z19HieM08j77/+Izz7/hBiFOhbmSckarVSogVQb4oqBAZ5x1AXifVBjNIncvnUL5zy3Li7oes80TTq6CQHvA9vtju2cud5e46r+rmnOFn8CKSVEHLk1UmlMqTHOBWmF07Xj1iZwMggaCq+gVy2qikLAl6UlWsY1WpYVY7nl0shgrZjawiylsZbE7YhALwvw5QWt/6TgWBBNmQ9er7U01dA2A5RY0GQ7wpvdx2YvtIgbfsaIj0b0jiGGo1+z0KAlWqkMXeB0iLQK4zhT5gMXZ2e4eQKBe2cdW1cZLl7n/kcPNKfJm5uFU6WSqq6K0TyFe3fvcfv2a6SUub7ecxj3pJzZbE44HK4B6IYVXYycrdc8eviAGAKtqIxxlJkXLy4Jt8/ou6AkD+cYVp0GsDvHW2+8Tp4n0rQnhMhk9hghWn5UGvG9qFOmIc4cr/8ybrPWRpZruyiOmk0PbMN0WmY7GyPlrM4wIXyNxu7LjhNCsB+a+cFv/ACHsL26YhwndUPwWhLPc2K325KSpgmmpFS72Pd45xn6qCqdGI9Ros55ai14ryfyarWyBwvGceTff/ABXz34glOv5cY0zebqL5QxUdH40RaWh1LDlmtOzGVLq15nsk64fPGERrG0A48z5pVDkAKDC8y1Mo4jmjivfa4YgX9Kle31zH7WO7dZRW6dRU5XwtAJOilqKu1bTjNZiOvuONNViq8CYFRVJy3+UTcXfzkMXxLKw88sZFm+rt0AJl4aQYTotBcXK4eLvdZSFi9AjBdH9QrgVRMzSFtyeq1Mb0oJDcHRajYso9KHxmY1cDJ01JwQga7rmHNR4kMRSp44P11zRuWQ9jiKHmuoHxhA6AZOz04ZDyPf+tZ7PH36lJwL5+fnTFPSZyMEYh8YD2dcXr7gnXfe5sWL5zx58pgXly/o+55V3zO1TIieavlWC3nC0chpZkJbl77rePeddxj3Ox599QDxjjplrsfRtMXh6JipVcyii7cZu1WZHYvO2enPM2DBmV8adp/UNbTcoPzCK4+QXnkBVylE260P+5F3332X733vezx7+pT7P/2YaZ45uzhntVpRS+XFs2c8ffqUw+GAc7Db7SilEIKWypuTNbVk5nlmnmeG9QkhROZ5UpO3ql7D3ntSLiCeeTqw2245veOg8+raMCXG65HDdaXvIz6g4WRtosmED0KIHu87oOJcoeRJGU4AoimFakzgtCc2/+H9fDA7UkdrnlKEuTquDomn+5mcG9ELp71w+8Rzew3roRKimGOjU+DLNplKU8eNKkxSca1qbtBCMrYyfQG0KiqDO1azClcpvbE1e0CgiM44EU2HaA2kaqpB5wTXMqEpTtGqGLqvkaw4sXGZnuHRCZ3zFKeKp6UH1hJckXMRmMZrjZ6JjpP1ivUQqPPEVAq9V0HDMt7q+oFaHT6uoO8YDjOPnr2A4JEW6GJHShqAN3Q9F2cXfLH9guvdlhg8q6Hj9OwUf5jYz5m33n2HlEZ+/P6Peevem3Sy4t13bvPaa6/zwz/5Q9adZh09TyPNFE5jKjy/3HKyWtEKTIeRMh6UjjlP3P/sPhcnJwiNOiedECCkrClGviZ65+iCRtO61o4zcXEOQb2ecQsoGOxktnlvA+oNziDB22lslYcXfPga58CCyr1KVfDhvXffZVgNIKJgU9dx+84dhmFgGie2V1es1+sjan19vUekMQwDIQS6rqNWz5ySke1VAgdKKu97C0YbJ+akAno1GBuR1xx9vwKU7A4aLlabEv2lOWUhtYpk0WziOpsyqNh81Ou82ZDUUhLzrMdlyY15njVzWAKlLgt3ZntITLlSm6OPnk3XuH0auHvRcbpScTZ+ORW1dFYbG1P/FJ3P5lk/n4so46ppFEnzojazdpIiclNC26FcDEjSk8vAtSWg2gwBvDi1xPUgJR9PjtwWKZsCUM7flNELnTM6NcxPZpC3jJO9OYT2wRG67mg8H4Mjl4RrFiXTDXgHJQg1J/rVwLe+8/f48rPPeZEOrH3EM2peUlPgczWsSHPicL3n/iefUGvjwVdf0cXA9W5PE8/3f/03IQw8fvGU733vF3j3ne9wuNry13/xF7wmdzk7P+Odt9/mwWefkOeJ2xcXbC+f4wi0VtgfRqLTMrWY+MCHwOnZGbv9nsN2S2cV0Izej1wqnWBzZa9XXzzOaTvixRagKO7glMFxAzYugLW1TW0ZLTlrhxxHY/ivtQfWYsua99ZYrdbUXHn+7LmK5LvIfr9nt9txdXXF44cPSSbg3u+v2e/3xwS4cRw5jHs0sjIxjbMl3mlCn5binloq45QUbnee1FTUXYrajpakA1OvMUXaD7emKC8OkaBBZXmCltmse6LvdARieRglFw7jQWe91dOqUh019bBjbo7n48jldGAsjVqEIIETL6y7xvmZ484tz/mpYwg6qHfeHcXblXrcqdUYv2kfdT5wfSgcxoKz+WsTdeisuVGzjY/g2B8vw6PgRF1RWqNQKOKg6U9S+t9LBmvczCQVzNKnpJnyRz8qS3Yw5gXtxGuJu7CGBIYYWHVREw7ajJlt4JeHOeisOHR6Sg0SiUPkG+++w61bd3j6/Anl0QtOuo6Trkf8wHY/cXpywltvvsUHH/x7RFSn7LxKIX/wG/+A/X7P++//f+A7fvCb/5CT23f51nu/zPk6cPXkAZ9+9iGPHj/g+YuO+bDn/GTFtN9yeusCNiv2+0Lf9dSaGUe1xvFe7/04jlbpOeZ5oiL42DGVoo4gzeFr1cokOoJvOK+kC+8UjFpYV0qZ1NJYR6iwOJQs98GLmWAsdEvR66/9/9e4gBfSttRKKYk8T4z7Ay+evuDq8pIqsN3tjLChKHU1UGu73TJNIzknDoc9MUa6vuPs7JTLyysFLFxQwMT8j0tuIJ6UDyCOer1n3Xe0AvurA6ntaVWTFVqr2otZOZpT4XCYaThK0XFG10ddoMe5lrKEUsqkSXfVUlEJXBXmBLs5sZ0r2zyTRPCiNLqN95zb4j2/EE5OGqtVJpruVlxRLm9FCf3N3B9rI+eGd9WcF/WGdkGUUD/fGN8JaBIjQnh5a15KaUM5q3iyzVZvsnbVICC1SvCBoes0hRBFocUeKE39NFDMFFLeQBYRoXqQoskPIQidbwSncroQgqp9ika6xODx6Jhlte5w4hgnLYs//ugjPuJjIo3XLk6Jc+WTh1u80xCz7dUlH17vtUIxR5FhGMi18nc//jvWqzW5JL788nPuf/IR/+C/+Kds1ud88MFf8ud/8vs8f/KA3eUOLwHySPQa2D4dVBMcHepcUqua89dKFzsOeaSY4f75MFDmidaEgjCmmVK1GhmkctJ3mqwQNDrHqUeg/llopSxAVrOFKuY1LsutO2IYi1uHc8rV1k3ha1zAijTqzdzvrvjowx3jYebzT++zu96RSjnyOUWElgtpntntduz31/R9z6NHjylFpWZd37Pd7cxqRN/MarXSn1QLMWkwlfeB2AXeeusb/MJ3v8MP/89/xX434sueOjtqrsbzVf1qbZoqJ1I47Ce6boVzgRiCAWzKW57mg+YxlaI2QCLk5ihFOEyF/Vh4MWempiVt5x0rgVPXuBjg7EQ4vwisNo1+aHSdlqtqmWK0SSf0scc5xzROpDnjDLjKkomlsR4UYOo6CF5DrN3ccE2ZW40bllVlkQnqSSzilIddoBQtrVNTx5RkU+VSKsWLjZNshIGCW16czR9trFTV9NxFD9VUU1g6YFRL2+BvNqChj7TiNQGwZPBCCJ5x1NGemsZ53nnzTd7+5jf5/JOf8vSrrwjZkfcTo+hm2Uom18Z6dUIpjfV6xdX2ilITD77cH0df1znzf//+7/D+33zA2fkddttHvPPGOdFBnq45PbtFdZHxek8QYXt5wIk6fszTqFY9MZIbOFGCUG2NwzjhasHHjgIccjbTgYpvma4VVj4QXaPWbIfZMltpy65q1YqN8hYR/1Lx1ErzyjRT8kb9mQW/MM2+tgXsRP1uT083fPXFyB/83h9w5/brzHPhxXZLKoVUsoFYavg1TxOHw4E7d25zdXXFOI60pvS+0ir7w14N1py6Quz3e1arNWmeiV1HjBHnI3fvvcFv/MZvshkGaqkcppFQZ2SKFrVZ8T5Qp6RB5E0T0Yc+EoKjlMQ4JeYJguiwPWfLp8HRpGPOlcNcuB4zY9LPJRGiF3rvWQdhEzLna+H2mWNzAsMKYme5N17wwfbYKuSiBJBaJmrR6xej4CQqt1rUq8otoEeuSKcL14k6F+bqNFKkaiawc16BJ7FAbNdAHJlGbkqcPMarNItOaY6UM0E8wekoDxFC6G4222bRKGZdo66Kqj0KXWDVR7w0u1cQorYKXYxsztc8ffKMaT/SrQecC7SqljzzNLNZn3A2rOmcsL18Tj5cs+rPOFsNPNpOlIKNDR3X13vefOtt/tk/++/43d/7HT755EMVEfigk4z5gLjAswcf8fyrT/CusX+MBgREz2bw7HYFrL3ItbAZOk3UaB01zQrCYeBR05at1MphTIQqSN8zl6YZS5LpaZxEYd3L0ZjdO3WnEbc4w5lDqKDPd1MCiPfhOA7D3Eo1VrVqOgcahCbazeFebYr0iiU0mRAch8OOZ88e8en9j9le7vBhIDdhPx6orTIeRu0lkvaxIQZ2u2ubnwoxdsYF9aScjm+yVs11TXNCEPWdcp7Ts3Pu3XudO3fu8OSrB6zXK+5s3uaLjz+gjbM6VIj2kU4HNJpnIxD6aEhq0bAvGs4HnedmSEUYS+OQZvbjxH6ulOZo6AMzuMw6ODad56SDk03H6RlszoT1oChvsA3Iu0ZDJXyKfIcbdLeaRLA0ctHcHx8E4/og6EbhjLuMBProLKKzMRVlrvmogM9i9OZsxBYaVHGkZtTEUqkeSjEiiJjIwbjzJRcIRk6wAHDXwjFyVMtBUY1vVGGA90o4aEucpjTmNCN7PWX6rj+OQsSpeCCGSJpmfvz+38AHjv3uEjdPnF2suHvrnA+efUlpKipoJnt0Irz//vtsVitT+wglKfnHNTWMi0FtaKV6+n5Nq9A5oQ/wn/7n/5A/+7Mf8vzJI27fvsXdO7eYppFxOpDHA2maj70popTN8TCRLRwvjzNTzgy90wWbZwbvia4amWMhtHgWjoMTc+TACC/LaPAlmnBDva4XxlY7nrrtWBkuDPevZQHXuienym53TcAxT4nnl1d0faY1ZVi1VshutHAuLZN9U7PrYb1Sn6lSLBMXvOt00Vr+kLr9QfQwDB2+P+H01l3e/sY3kZL5o3/9W0TZ0nKF7MlpYp4zqepJFkRPqdp0KY+H2cBcwedIozKadvcwN8apsJ8Ls7Ge1Aiu0PlMF4S1q2x6ODvznKyF0zPPqofYoyqpqDuwl4pIs7LJ2Ublj6SmWm5IG6Umou9xRIIrZJdJUlRiKAHxBe8rOTWSg1aFJI65QnUNFwLTnMmTosi5QXEWmJ61jy210KRpSFypJFEnDKlFxQdo2eqiQLXNr4HzXpHxppZAyGIIYLosCbhWlGFXFexKVRFuF+1BrZZLXI3E44Qp7XFzRmqD0EMbOe16AkJulgZRNHT8qy/u8/DBp0b71M1A7bA1wK42u84meUy1EASEyvOnT/jkwx9D2rOOjrNVz+75M1Ke6bpAv+oZLi7IBZ4+e2Gv2xQQRBlsU6lMeMo4cyqJW13lzkro3KLb1QppEXp4WbjQy8J1VgFVoOCcnrylLWCmO75OCFo2q792s6nI17SAqY45jdQ6KYQuld1uR1+ELg50XcSHgWmajqWA80YWtI3F+8A8zTau0NNpseas1bjR4ghDxHeRe/fu8P1f+2XquOV/+h//Z/72z/+YvHvI59OewXmaDOzTgbkokV9KATPPFheYk846lfKYaTTmlKy0FGrTgG9wJvVSqd+qg3UvbLrAyTpydtbRD5XNyhGDlpdW1el4xhsP1nnDjRWtD8FRjUtN1VP0ZHPK9mrSOSH63r0LOk4KAqPa3yRf6YKxv4DYPHPJlFpYBY31pGnebGtCNjfHWipr3yG5UJPQqMyl0FplCN4Ekg4plZoyztvvb2R67x0Ux5xnXFhOCB0n7Q7XdF5YxQ4nmL2t/ExSQynqESbOk+eKi56ui9RxJrpgdWLFOX2fzItJwfKgaHQMaB8ZLBkiWJvl2nJyYcb4CURbocNh5MMPP1YRiXiuLq+0N6cSg+f0/EL57g5KE8ZUGOek4Kko+aKIVodSK5sucL6C3mtlF7zHuRtGmrE2qLUSjm4aeiFuUGmOvfHyeb3OHBfyQvb4ek3tSqBVSPOeUrYEn3jy9Jppyqw3J5ydn+lDYA9J6ILtxA2MKldLArTsXK/XXF1dsTgjal6OntqxX7M5OeUbb97jT/+ff8P/+29+mzCPPP/yPrvLK0rOqkGNPVOG+WhQVu3E1R2ytqaZRKL+TWqBouitGn97LQ+peA9dbKw6uNgEzjYdwyD0vbBaC8FDDBpvGYJD/E04mNIU9WaqE78griKuEXFHYoYA+/2ek5NzDofJEAzN15HSbCar/tUxOHLW3KWuqkY4V08qxpGOQs1Ve9/amFNFxNOcWqvm1gi1mptkI1VRM7wYCNLoRbfRkhNOApDJFXrTrJ6fnyFScVRqyTrKi4HcErlV1iHq9cxKfW2Aj55WG/vDSBcjXT+Q5kT0OnNtzuG7CFLYjwdyyYjcPIYxLGFsRvBvGtx+BHsaiPdWWut7a60iFU1w8It6rNK8BsxR1TxwmhKPn74g9gNTyvQnp3zr7W/xl3/9PodpIpDooyeaGm5FY+OFtRdiVDKQuGUBLmKTikEKlFaPAevLAgaO3OcF2ddxkahriuhiXmbxL63y//gLuNUCNVPriHDge7/4TZ49/Wu2zx8SfeV5GfH9itgPWkolHd948ccFqmkHnlIKu93OWFru+CfGyGaz4ezsNvdu3+X3/4/f4sP3/5w768jDLz4hb68gCy0HptQ4HCZFkWVJOnBKEWTxSZYjhXGRwS2+Uw4ISujS//ZwstHg8JNBWPcQ+8ZqE4idg2aqK5Hj7rlYverNunElxC9jAzNLt++rUVMTzs9OcSJc7a5xTnvZ4HWsJWggWk6VrtP0gIYjV0gJ+irQHCk3iokbVOAlCsJUKHOm9yqTa7UyN6cpBqVRyERZmD8qy59zJpoYoLWqG2Rw9DFqT28zUmd+1IpYYy4gVemKrdLHDkEDt2utdCcnuODJObGOylXX6+eZ5z1gFMKmoof33nuP+598TC1awnuvNrOtqWC/2ekXREUazRuNUSl1IJ5qQWgZnbFrGd6oqVHyjEuNVOD0fMOYisab9Ct8nVTs4BypNdbS2LjGKoidukrBvVm8NyO/hWL6s46T7XgCL4td7JR1Bli55TlycqP9/roWsKsjKV3j6sj5JvCNN875p//ND/i3/+4vuf/FT4nDKavT2/huzXq1MYWNQAys1yc8fPhQaZJeTb4PhwOtVbquI6VE3/eWnJ6INH77X/4L6vYxb58GHn/6ETEdWAeHa8LcKrlCqYB3BBFSLSoD9N5ICwbdt2Y5tjqb8yj90UuxXtvTDcJ67Tk769isdd7pasZ3QvCFoVeCx5FLoTQRIz0om0lE56q6u2IG5QsJwtQyg9Bq4vHjz0EcMWA3WYXowRZWyc0QTZ03KoOr0XlHzTofdgKzIc1HUXmplFRYed1DQm00j4bHWXZSKoXmhH3zVFfpgoI1C4BEg5or+92e2nes1ys9fcSTW9YoHd2ltLwvmUzRMtwrIHXr9gXB6ziwNL0WpalkM+WE1EK0Tc2BZQ5nnjx+BK0ey8qSki0A7anFStdmAJYyzZRXXisKDqLkCnEGGAVNcjw5u8U/+q/+a/7wj/4teXfNXCpvvPkmn3xyn8N+zxAjvXe4VumjY0VlHRt9UKZZjJ5gC3l5DJwZ1dXW8CxiH20JlCSzKJMWWaHNjENDVJCtqiTRkeDLkt3/6Au4lSvSeEnab7nePoO843Td+MF/9h6nZx3v//gTDvPE6cUbrPs1aUyEIeB6z/Pnzw1O1x85z4lh6FUJ1G6c+1prPH/xnB/98A+5e+K4t8lsH3zMWkbaytH5jrBP7KuZn1fzShbte6uDn//5n+Pxo8fsrrbMU2I5GRcpXfBC9JUuwtA7VoMwrB3r08jJacR5XUglVULwrNcrfGjqk4QZz7E87GZahxzRSWe7x9LOCHoC0DTJcX0SKNlRMtSmQFEt6su0CPkV5QxKaClVF6wTpDkLvjan5miixLowg5RO3QVPKpW5CFIcLStQU0X76VwbB9FTfqCxdh7XGlH80Rgi58IsGe/ViTN2SoQZ+kFT6ZvmF41ZnVY6HH6c6LvAMAT6PlBLJkQYx2KGD003KYGz9ZohzJSiFyt4x/56d1yktVRatUlG8OQ54cSZ7tm8qrNKM72V5zhtj0LwRB+J/YrryOfFyAAAIABJREFUw0ii8ujFJf/uh3/FW++8x3q94s/++E/4yx/+GXk64Fuh9wHJmZa1ShyiAlfBVWu32nEhgkkD66LfvullfTA0/0jb0I0cK5XFLTRK8MHRKDi/lOhf4wIedw8Zry+Zdi+YdlvqtGea9kRp/MJ33ma9OeFP//JDnj99zKpbs4orrq+vqQ7Gw3g8UTabEzYnG3JK1v+qFlRESGni009+wtvnwq04Mj79ksHt8SshlWpEcY+XTK2afwOKCpZaSTSeP/gISmETKyuphKDluQ+ac9R1gS42vMv40Oj6xmolxKHi/azCB9Eb5MVBLeSsIwSOJApNYvBixBVu/LJVKlaMvuhIaSaEqDu32OuEG2YW2I30jpSyhSJUG385nAs4b/GiGcRDaEKTQBP19tC0DIySGagIqQohKT00JxU7VFHzgWQnY0GtYcRVXHCGOCsYRqvkVGm9ZintD9eIgzwlzk82DMPKQuX2FFGddBcCoVZ86GhUQif4rmNKBxpedbYNgvOcry84WY3sriad99sppFWHtlmLWGPxT1YAbmlZ5IgCa1XgwMzRT05P+P73/z4PHz/lg5/8FOl65lJ5cblFfCB/OTHNI2kqBFGKpFTdjINzdFRW0dN3C0NKzKFEjEplPhutoib4VlJby+KshF4WNdZqheARL9SWMNtKba+8auVd/BpR6Hz9gHx9RdpfkfaX5P01dVTnvz5kfuW73+S73/4e//K3fpcvv/iYWxev0/dr/GDNf1PUsesCuWZyUfJFtwr6oNbKRx/8Da+fZ+6GPenZQ9ZScL2Wb6EJEjKxc3S91/kranZHVbAnky2H1qmMsEYEvXAxCn0fCVGArE4I0RMHLWl0oStX2Xs76VCTNr/Ma48l9II6m0mZjQGcVLNbVQplTnD1YmQYCpvNgHjBS9CS191wl3XhaEIE2U4qW1A08M2TRXtejOTRUtFTsKoaSbw+xA191tRs7uZUrhRaUm2xYgWFXKEWB0m0/KyNwTtKNk+v5lV04QOCkOeZlhLSJg5ToZTMXJT3PE2Fg1OhiHKZhVQzOL3uh+sRqYXeOSYUbPOtmEZZuLh1l9oa+/1OiTkCzXjxwanpQfA6mlOB/DJztgPAe5wP/L1f+lXWJyd88NNP8TEioaNlFVmkaeLRw6/YXV3RBWfz90AUoaYJ74XBwXnvuBhg6L1mO5logdKMrrtQUBVzcc0kgWIifntMijlwaHBbJdWMALHzanCBtgDOCxIdvvtaUeg9Oe8Yp0sO4yXjtFcJGAJ5JoUX/OIv/yL/w3//z/kX/+v/zqOH99mc3UGcCh+aLYBk6hTXIFE1UjR2fPrv/47zrnBvVckvXuAohKDgjnOOCITF5aIFvHgcjpIy1Xo/CZFadMdrNi904nG+4WOh65S91I7k8UboNKaz73v6viOn2bjZgiyOjQZ+ifW/i2Oks3/XHVaH/Gp4sMz5PKcnJzivm4UuHzW1c96aIpuzOa8iBWVHteNpWE33qGJvpd9Vd4N456w/a/mZrXkyzaxyVDl0slqMATI1adBWsk2oFDRc3TcmZ8M9Q1ShmeGBmvHVmtT9sVS4Rss/53Q+bJVHKQq2hRhwQSxYTQPTahOmOlMlENeVk1WEK9WR73Y77t69h0hjd70lxI4xFTWWqxCcY7YAcIf6jCHKBUc8pQm1ND778iFxeMHnX3yBiOcwjZrU0Die6N4p+NUFi1ktBWf3re+F9eDYrD3BZT3UF67zS6ct1osjjiVS9Kg5sWdEg8u4eYZsMS/CkeVzzuykXpWK9WoncJ4pNVNrprZErTO5TDomqhOlPuHF40856QK//p+8y5/+yV/x5PlXON8bUtnjN4FpnDiMewTh5OSEzWrNuL3k6vGnfPf1SH3xOT4r4uljw3l9uIITOhFi0Lkp1bqMYuOWrCOEtihAqrpLhOBBKhIq3qejyHpJkPM2Irh1fkYumTTutVRzi8WL9bl20Y+WKW3pc80u1N2AFNIUlHLesV73qPC7Hr9ezEPHGXgk6MxTmqp9u060R5ZGoVm+rDMwznZsbgT6y4c+XAam2AgNEXoH64iywFoxbarOfrOhp6kI+6S/XxQxZ1AVKyA6H46+Y+nrFpF/zpkYla8+rAKW6a7vD2WSObPiLama0B3qNBNMheVE2F1t2e8PNAqlJHwIOBe489prpHlm3O+Z5xmbSiIoH7ukQhP41s99h9qE+5/eZ56NTNQgxs7aAjFOddEyOTg1PKBCzUSpDAE2Q6TvKjEIfQSH5vy2Vi12dVmk9prevbR51p/5O87olUZo8d7hgm22ThVJhULwEXxAfPz6FrC0iNSIawGpgVaEmjUhT1qjli11fK7MmPSEX/nOa/zox484zAda15PFkXNiHGd8uNEFf+db3+SPfve3efPMMz/7go0bj7Qz75Vr7EPDeyVGBGl6IwRqbrQqdNWZW4ZX94zFnLsJ3utKKyyQv+B8Z8wo61ulcfXiGSkpNXMYBgWdPC99HTcl9FInoQCFsyhPFmWPERJAZ5PLtwBo1CRQLcXdNhwlJCw9tTKbSlGqo5Oqgg/UFUTtZ1F3kKILYE7ae1W3OH2o62NNGVcrHcImYBuuij5cA0QXsZ6ODSmmaqqVIAvRU6+DD56XDG3Ny03IuTCcryzfVsEtnVHLkZQRfGROE9EHfS8L6o72z048NReqxcekZAu9CbEbNOXyyRMkLGmFKtzoQs/+MHK527PanHJ9GA3J9krwKPl4+lG1NI96BOu9iJ5IY+0bm+jY9DBE8E6pw7R20xa1qpyC2o4ncjPhCs4dSTyNRRfcjn9X7sDNaa7fX3XKIOC7SOiGr28BK1LqONncYrre66lXdA4otSAy8ulHH+BCw9drTjrhF779Jj/6aEerI951jNOoPVlupFIYVj2ff/QT5mcP6NMTXLmmiD70TiouCC6gp6RX2V30GmzVgLAKpDmTs5aFUpUJVLw/LmBtWVVE8HIJtFjYimvUllQB5VXg7RbrekOWG/U4AzyqgRZ8Ajk+IGLfU6vRA2lGScTKYh1B1KbOnRGNOqlWsjZM3N10USyccXX3tB44W2MMRNs45lSITYE+76AVLbVxgvOV6BUFdqbscq5SDpUxVcQegyqNWfccCM5GTs1oimZ925T/vbDnms25z87OTHLoyPOB2ZwpvXd0sYOs7iqh6ymzWixVGydxZFZp5SKVG7ua2njw4IH1ltpf16rXpRV1CRmnTEP45P4niIvHxSaGVmuJamVurahrZsO3SnCNzgknXWSoI2eDYxWFPuioUV9B5YOLh5uzqkdFKC9JAt2NSf7CsxanHAAfbsT+y5hRnFZ/fojQBVyIxH79NS7gaqDFtGO/39NqPsZztFzxrjIddnhfkJKQBpvVwK2Lnsv9gT6cMqWEiGfoOsQ75jTx7NET/PiCUK9okkl+RScF56uWiqHhgqbRR6+nsXNCDB39MLDd7XDRkaZ0LFsUF/Z4H41MrqSOpdwZhl7LZet3m1Si0T4dy0JdhNqgiOfS76KgnPXZtk4Qez6W2TM26mksD9JylqmX1DTNhNADaJlpVjXLSe0tggPEvJgMLHNNAUDxVNvFdeZqubsiSvYXr0HSpoLqaqNUz1wdIpHqKttDRpIi2XPV33YqjVIdvfN0oiYJjkYMuvHq76NmAKVW+r6n6zoO45aawdWE2LzeNWcpE3rdmojavlb1kO66CByM9H8jBGjmJd6q5Qe9NAN2Tvvf2lTZ46wdEnPipC1pijfGidQbkb0Y/NUFxxA8337vm0xXl8j1xCo6eteIzph6Czjlq72ubvyLRUq1329BxaFRajlqvdsRL7EDYWl/jJ7qgjmimKFi/FpP4DxS88R4uEasp2u2g4LY/1cqGZpGk5Sy4+xkxfPtnnE/UpojTwfWwy1Nmm/w7OGXhDrT6kzzQmmOio0NbO7nnMOFoCezy2iY2EyZMpV0vGFiN6zWigvBLprltNaKhn019vtJSxwjeAgLCcaOVYwfbA+EuIXX2szHWr9UaZtLOdmOC/CoQGmL9lPLXv3QccmiAgIz9H5pQyhFJWlq2L4kFVpZ5oWWMqlo7+StxwfHnBPBaGLinNnuOFoQOhwpV5grJytdWK45JY3NC5dZKZgJaLnQfCCKsqxahWAVhItirh26Kc5pplhETSmF6BRIq7XgSkWk4INjf5jI88zQR6Aw9Aoi1VYoVUk4IQZKmpfHSgPQZWE22cjMCaHrqCkpN7qpwUAxTbOzkY4DqDeVj9Si3+s8ffS89403qPsdHHacDIEhqJuoYhqGMKvHr7YQIjfVzdIHN21LmtN2IsZwrNqWe33DvFr45rahS8B3Aekcod8Q+tuvsiRftYSeaVWN1FtuNEuJ0xKy0TQnDhBlSDnwdaQXRXPzvNhraizK3dMLhhBxVU/A7FSvGkQRYrESN3hl2jbRi+RdAFdoTk8478FV1ahW829u5mQB2Kn0kkLE4H+x/g2x4boJEJYSZ7GLqaUe4ziVyyq2eKvdKNu8lsXSXk76Ox7hR7poNsfGYehtwRdMr46z4DFlHolm/y7OcM2Zcbiymkpt9MNKFT76dNJlrxe+CU0qUoUi7RhE3ZrQBc1DPu3AN52hOgSZ4VDNBrc1CyJvVK/32Dc9mVuDVhPRK1/bO5VHds4RFJdWk3wrJXMp5JLoq8cjNKdVlQ+N89OBQNPcKFH9sVQhWN9cDDxQNt3yB3yDoM0/0vS6ltaM764n3bLA4Iby2Dut5M5ON3zrrXvkyyfk6xecR8eqc8qLd+24WavdczluzstMV8zDKjiPVJ1qNNSUTnOl9EaF5SHCU0UNErwHHxoiER86NWCMDunPCet3v74FnHMlp2JC+GzeVYVj5GjD5l3LBdS+ofOKnr6ckUTDNKCFaT7Q1fwSmVtLZhesV5BqPlJivFZHiBHV3toooWl5V6i4duOx2BrmSaWvXau7AZqahpc5J8aMsZvmLQ5D9MH2ISCi45AlReLmhi4fN6enNIUxskkqvdPLfORo20m3/FkCyhoKLum9V9ZU8P6IhOsDpQ9qjJ7gwWHKH+uvVqtee/96Y60TFhtblMPdS9RezFe6LhIj4Cq5Zl0x4hhbM3piYzSSiL4OmP0lIo1g78KBjcxW0Cx3uOkJrAIW3aFWq56cCr5rrNaRkjVyhUmBoNZ0XOUbtnjaDYi2gHsCtSR1XnG6gYirmutbqzUtJo+0r1cWHkQag4e7mxX7R18R64FV7+h7TxdV/6xKO130wXzZNEVQbP1q9aG4lcbAxhBQOam5dxq3PUSve7jTMWGz1dK8WhTFaOysfoMMF7C5+ypL8lXlhHpTS64mwC9UNUpVQoWDo8ODqMuvx6kdixPtf80EPqfCPM+89tpbfOEL5xenpEM6GoRVKVSnrJUQhBCqqYFUpRKD1zakVWpRAk5FS8JaDQU1TmrBwAURY0Mt+8TiR6RKJUWdnfGY2/FmLRKvYGLs4xgJJaBrBWKL0PYyZz2iopWOl0vj5fdaFvMCqi3Gc/p5s79ZkhHsQVyodn2np6myuYRm80ScyhfV2A41mPO6xOqysfkl9SKTbGw0z4UUG8divalpXkErmNLQDCjRE1QFBeb4URpIZZxHdRLxAe88fTdw2B9opRH7xf/L4TtPHODkJDJutdz19nPEVrEdvIg5Viy7pdCgaAVTm2MuDS/FTAz1ni3VlqMSgAh4Gp6m3tWhkp8/5qx3nAxC1wtd54hO1C4oCEueczUE23tV2MlilyT6bBynGouawfr2IhAlHo3qJAjNaXCWuAAeXAe+Axd76C+QzRvI2ZuvtCRf0ZUy01qmlIlcsg727SHHykPMYUAvvg73++a1n8z6IF5c3NLeKkQ++fhDzs4Hfv6bb/LF/cp2d4lIVVtWp+MMF6MCV6ES+0gInV7A2qipssRyiDQoFec9yY4gEdWs6mJ3NG89EgYoLCiz2Z44uyHNe91lS8E5HWw26+maraab2M2b03cpn3Xu6XV7swcSA15YDNOXfrs10jzjQ1QhBuaYYb+jvbDmyNZim5FtRA2QRmgqUoDFJ70Z71h9mOZUmMYJ5wNd34E4dS1xlU0f4DRq7s826UPWhLkIyVoGpWGqEYJWH6pckgKHOeOspJ7nQpJKTYUuTKQ5sdisuuApvuCkEI3O2neNXsxoXrsEwxVuQKglX13BJz31S1uqigUi1DZJw8c0v8kDnUCUSh+8RcHApnOcBVGhQgchgriMd8ESLJYT2DgFot2sswnGTfPL8T60xVXDKbnDez3ElqmC8w2xRDhxqOQ2BlqISH+b2r1O2HwDv3n9lVbkKy3gedoyT1tKnSglHaFyg+mQEG6AnlqhKW3MBfWKyoeMk45UK6v1wN2797h69CFdB0jRkY/z4Ar90NMPUe1Ju4jYKInO47pOj4OsEjqHlmwlZ7uuntjrqQ0YmKb96HEEZCffwh1XNHThZbdjHIbz/ni6LllCtarVqLPMoSUJwcsNer2EW/3MDTeDnfoSILMAXa2ZKJ56QxMUMd6jne6maxUs3rRo+6I6WzWT1/1AT0U9ie30toc8eId1p1pRNNXwimgWbu50bkoVOu8ZG8xVmEUN83BCq2iEa2lI5xiK0LlAKpnYPAENnatpxotQWyXNDlcbqWW6rimBIgq0xCYqhtFoDJuB0HW44Nhe79jPmdyEJlERaQSpiYXuoCivbsi+gWuVgKjCShqDF3ov9L4RPfSdykRXobHpHd7rNffeH/2uWs2GFCv6rxhHMWN9mwagz4aTago0HXmqcEapkkt1J76BMyJHcEdpqQsd9Oe01ev0p99mffpNQrx4lSX5ij1wuSbXPd5X3VGWndF5G4EsBmmmgXX+CBq54GjSmEvmejwQNyeM8wytcHX1lL96+CGD7/FdIIRM7AIhRhP393SdV6rhEImdR1pGSoeUWcPDS6bIhNRl8B60V2uNKlU3iILOeWxcI8czcCGfw8JqUpDQwCBbbM7eU1nK6GU09FIzLGhPtJz+C5vJqrubnm6pEe10jiHSWlXfMMwfSdrRrXMh+S/98/L3WquyMQykKsVOD2enkBNKEYpTzq+TRq2JXAuNQN91APRNjQzqyiG+Y8iNQ9LS1lWBohBltWiXiprVbw+ZVd/jxJPGA9IcgzbVykn3inLnVCnTATrt+0JQTvNqiJwNkYiqy1o+0Hfwc+9+m2//4i9wuU/89P4XfPbgEfvra9o8QhJ8Sbgys6Q5RqeJEgEzXjD7285rzztEoYuePnhChC4Kziki7cXjUdKQ2uxiaQp6rZ2AeLXQFTP9w1qr4AWqiTHC0m4pc7C2RrNZsPeCj2p24UMkxoALA7K6hdu8zXD+Hqv164h8jWMkqQlphvouu0lTDqf34aiJFYImEUhDTCoVgyBoeatJOo3VKtKuA8l5nVuGiusDoV/jYqQfNnSbFX61psU1d958l3uvv02tO7ZP75O2X+HSlpInqI4WoCUth/VoqWB2KiLKhm9VKXELDRO0NMJKLz2wdJEZZoFVqVZSKZjWLB9pOd+WHq22YpXJssia7QkvASDmB1YtX2phODUUeW82mWv5ZuMoS+luH+04N/Ugy5xbSzWazoVzqRbrAiLKKxcBnFeTgJLxQ09KM06CRoM2R9fDKjWux0x04JKBBlUs7kXfTxU1Xk9NSFMmTapumopFxojolMFcGpcL6X0g+I40TrgCZ4Nn0AZfhRl15KuPfgzTnl//L/9b/sk/+eeMDIwpsX3+iJ/+7V/wF3/wfzFfPmXxkuq85j8FJ3QB89mORKeUyGiuoc6mC6FzNnNutFIUIbbf0dm/A0b2uYkQbU2fXmWkqYzRWSg5hkU7AW9gmBI3vD57Hgie0PeELkI8ge4ufvMGYX0HF1YIXyOVsus6Ul+YpeK6RkenifUuggTEadm8lBuYVA2EPqqBW2nQDQObzZq7917j0eERdXVK1zdcaBCNlTKcIOsT/NkZ3dltwuoOZ9/8Fd547xfJ01PG8ifgemR6ipuuqGmrzBkRas6KUNdM8+7okNhKUyDOLFDE0HBn6KqYFWizHXg57fQtaGlUbYwBS/mmZ7hauNqCNtCrtRtCpaA8bVl6JvveYC6TC+MriKPQuN5NlFRZrwf9nQ1+dS+f6LbZ6DRFN5FS9YGuZjgneJs7tptxjASGLiqbqlXLv1Xd7apz+Kyv4SXoPWwLoq3m8ce0RNE+9HI/IlRKqsxU+lLopLH2wqoJMfa0rKOy2Jm/le//f97e5LmSJEnz+6kt7v42IICIyKUyi1W99wxn5kQeKMITL/xjKbyRFIrwSJ5GmpRuNntERqbZ1VPTVVlZmRmREQDe4u5mxoOqmTsQkTWJkUm6SCYQwMN7vpiaqn766aekeSLPiX2XydFm7dq9Sylx+vbX/O//0//AX//V/8ntl3/OP/tX/4r//r/7b/nf7v+JzX/9L/h3f/s3nI8PCtQ5bE6xapZFr8w9J0rBVfxRrNus4hfFgqzKqLJyYwMXtHYbo+pjzcZy8z5QcrLOKGN5OQ2fG0zuZKmieO1oEp9w0SExIl2P628I+y/ZXP2csLkiO4/jJ2xmCJsrOtmQTonBF87njC+BgifPIDJTyokyH8nF+MwSkLLDdxfEH4khEH1gu93xiz/6E96/+S3p+lNi2ilBwXli3xP2L+hvPuHTL3/J9cvPSXQcc+DXX7+nd47+xZ/h+z3T+9/B6fdsxm+ZL28ociLN6iGT8aSTeJAZXCKnhBMlnNCQ5uUaFRJZvHMx+mNlFaxFuutiq56x5sONneWcysjOUyOJlLLuGioN4QYrP1WNJ1fo+0AhWx+0IqvZZvjqwHHN7QUQ8dZGqTn7MvkOSIVOHLMrJq2b7e8hZ2urtPZLsrYnujr312W2vVOQaYSLiAkCKCKeEcMENFy8TJob56hqFJxG9jngmRl6TxxUDysXrN4r7HqNRmLn8VFLdnMS0jQj+R2Xb/6Wb978Pad//D/43V/9j9x9/x0lzVxtC7sYICm/OVjphlLz0hXjyWkE5a3RBGOHecvrhaqAWWFJfUbe8sTT6QFxwtB1Gq15DLRS7oAPzsoEJvXbDNvZBqK90RLBBZDhgN+9Ytj/jH77CeK1W0+R6mfY5LNevPmCIWRKzPjZEyZHsiaCeTyT85k0PZDlATipTKjzSBkI3ZGhL+QQiDFwtb/m5z//Y/7t3/0N+eZz3HyiiAMXGYae/vCCT3/5l/zzf/FfMc4OfOD++GCN0I7Yb5DNAeIN07s9cu4Q50juLTKdIY94r4LmWbKGMfOo5AYRSnZIzgtlz/C4xrKxw4lR08tSNmgAFBjwVJFQDb8qmaUORI+WE+aULQB1zcBbmG3WJpbLDl2kjh7N4tCcMjfjzWjZZZ6SoajOJIyWzqQ6a8o5ndxQzOMkY89VroNWoDT803BRmKZM7zLXW0+fPeJUo8oltPcVIaGNBhRVBCkI2cFUdMi36m4D3rMJhYiKLswp83B/YruLBO/Zdqo26aOw2/cMuy0PxwfOpxNlnriWGccdbj7y/T9+RXEO5wP7vpB8tny1WBvkrHiA2Dxkh9bLHWCklVI7zDCGXiWIiAkGNJaUGn2aR+UgeGvntJo7ztJEB9ioFbGONWVeORN5FHxQJpoLER8H2LzC77+k2/8M372khI1Wb1bP70fZ5HNe3B/+DJ9BLolpFsIkjJOGXyndMV1OTOMBFybVMkqKvgUpDNu3DJsZiT2x69jvrnj9+lPisGPsrigygI/42OG7QByu+LM//5d8+fM/5eF44f3dPX3fczzfMc1KzfDblzg/4H0k33tG53BhQ7m8h+keeMDLBC7p+ZjsDpJw2fJgQ6a1AL9wobEe1iqhY4Stpf5bQBr7SpoBallKmHP15RWEql5XWgeP2o21Ctrm0ATS4hIqYyBWENfKSlmbgPG+sw1IxQCKeXEvzrxsAZJqQFt0Vsk2zmYnq0idMr/Imct4VtpkcMQuEJPNMM4Of1GChJTEVLwNCVf+Rz1dRGdCzRROU8ZdJtWvzsJ5srbKhzMhCmHo8apEoCFpgc553GZLHyMPx3te7Lak85k0z7gEyekkDHJq9Xur6Og1W3mhFJs+aMwqASRpK2cFWFXf2fAJM2rSmt+sV+WDM+ld68uWpadcgpjxYl/19cWp7pWPgo+2i8QtfnNL3vyMePVfEHafgN+gokwrUtRPYcDx6he4lCjdDJcZN2dCSszzxDx7inTgt0xuJLuEFAcya40tXkwhcaakzKvbVwxdjxQhxA3FqVp6DIE+Bq72t9zevEJcYX/Y4KPw9vs3XF1fcRkn7h/uEDokBvzeMYfI5Hrc8RuKf0M5f8t8SYQQ1GBdIE/qb8o8aYnDGGJKADBFirAM/qIsxpetgF+KWwAZAzyKLGwq6iMvlfCx5MN1k6gAV/15DaObxpJgcKcQJZKzWIdSDc8LedZFVstWaoQqIl6VEEupwgEen/V7Sm6nn10xKVtHScI8KRUxeIfrtHafRfAZcMGMQEXjXCmcUyaJ0mbFylkenewozhvoA+OUOXnlHk/J0VlLYxd6nASKM0kihHmaefvtd+rlQiC4wOl8UVderFPMCVIyXjLF6732UrkASq5BoGS9P87u85LbaheVs6i3FKXf1rGjgOa29uzBGiKqt62UXmt3dd5kgc2AceWRYfvo8NGTY4/0N4T9F8j1H9Ptv8B1B3LtaqK2Wfz441kG7DdXuFzI7gz+Qp4TYZ6YJ2GcDmQcuLMyeNxFkejicURc6EgpMV9mvB/Y7/Zam8xFm5mDgO+0MTw6un7D27ffc31zg4+FbhO4cjccjye2mx4PXE4nchZS7Ciup3Mbkt8i3mYWUyjTe6bppDk6Wl+dkvbWhuCNmqgUPBeDMm1qqSaVhjSLEwu9qoGyGDmVg62LpFDLacu9cyYisOTc8uh3GtabdGpl9CSdaFFUOxUFlEoLf6s4QEWkc15kTHMuNnUvtxlTpYCbs8nvghSvZIODoCmPAAAgAElEQVSkC1hElRed9w2EFO9wqWjlQHTWsZclKpmKMJnnysWCLgPaimgzSsmF8yVzdIkghc5BCnpuIRSVQZpnkzpSHWpywicVrBNxrUkBVPZHa7GalqhhasSRcwFv3GcMcDRyjohYwwEGzdOera+lPer564bovbdGk9wkbsX4mTpGdtHydl7zWy3poXly9Op9vSMOB8LuNf3Vl/jDz4n9rbKyxJhdOKT8hCCWdtAIMgwK0MwT06gweW2RqkqN5MxcJs3bnLOZMJrj7vZXbHdbKGq8brM3YMARQyR2kbkUfv1P/wHfR372xReE2LPpN4h4LqcT2+0OL56Hh5PtXgOhf0lwntRdM8Vrcrwin36LH7+D6YEyOZyckMkT42DMsVn7K2bVZRJvK1ETIPu55U3FguJS8MayKkV/5zAGF1jhn1YuUlKGhrWpGPhVioXzZqzUr+Y+6kZSaIZbBcGzMbl0vlMy5o+1IlqOnXLRziOLLZ3xikF0LI14XHFMs/btplnlcYML5sUM0SfjXCb6gnQCG6Uk6jiSgktOva7AmHTHkmJNCLTbqDOzpgvDHJiSZ5rg7t2JecxcTlm9dSy4gNI5i+bmtTgTjEdcxeKKLPXoOu845QQsJSBnQgoVbZaVXnM9ryqjq2tUWhRRspgMbkaCa9GOzvMtiLM5VRQI+rfe/ssV5MIUQ8UzF08cXjG8+BO6279E9p9R4obUvLw99zUA85/bgKs2r3OOruvI3uNdIKUZP9Zyio7rIGWkCE602dp5x2a3Y54KIXQM24FcUpMMLSQjb3SE2BO6jpQzv/v6a8R5fvbFl3jvGLqeroqMO+UU3d/fQwbvO3A3OLcldFdM3YG525JOO7h8D5f3ZHlHV0DiDHmZ4uB9JCAwZwrKCsui/axkjBKpxppT1gfrK++7NkdoKF5rPHVhrQXYNFisdaClBxagCqXTZjS1elUjgOhGqflVzo55vKiB2u8opSl+xKBkGHFGAbXNpBTaPCrlgzucM+Oz8ypoO52Ilo26YFfQ2TVIwF+E06UwTTBOajwUlaylSGWMojgABmAV5qTYyemccGipa9N3qpZhf+FD0NJa5ZHngotRGXKpLvZinT8Va9D7mmYFsmKMzXiVOltaFKWAlYGGYk0LouNRBGlEGLx9hvkfX0fl1BzZdoKKcSDapCBBSR6+75H+QLe5YXfzSw6f/DnT5jMkbpVQ5KQZb1lVOX4SA651zQqxi/OEuBJhw0K3eW4UQRFRJDhrA0TKcDqfLKQrOB909GNUYTnvAzF0hK7Dx0jKmTdvv2ez3XFz81IN3nuk7y28Uaj+/v5eh6vRU3zAuY7ed4RuxyW+oBy/QcI3zL7HxQjjCZlHSGqkIasskPbqqdCbK7URouBSsbaN3HST17t5LSYJyzT2Co4srtS8Rm1OF3l0n5acuVg5iVUt2ogmlQmUC2WedPC308VZe5a9r+WqoNFALRtJoeCIQbvAgq5q0pzp7HlQ1EMXK7OI0wmKuhllHMFKNIXgC50vXKbM5SLI5GCqPlPapocZhEYAnkJgnEaG6JmTdgB10eMa/1kjBgzJ1bqW4J1XmqdIq0Nr6U0F4+tYE/E2Q8k2joo2q/xNMVDQhPlZMAdvFQpVOi0KQjlaJ5HW000FFShlrWKqtXYfHRLARSF0Hj9syN1Lhts/5eqT/xKGT3DDNUhsqZNY62SpAoY/lQGrLK4hsChailcKZS3qq5CcdiqlPFtuJVaamIhxQ9d1hBiNaqcT40Lwyl7xAe8jMXaID4BjHCe+/vr3pJR4+fIlMUSV5IzSkFYR4f7+nvOkrWtFAoSICwMxHqC7YX7Y4+KGfBko7h1MR3y+QD6S5jMknbJn0hvWkaRhZEbDvDxnNRi9I7o466ZZo96sE99DDGjDhLNcGctfVyytsngENftEnW6YyTZC1ORgqpe3UoNz0PWBOSf1Dt61c1E2V4KspQ9tgqieWBd+9K5RMSsQp97HmxAALaRrvczFhNQ7reFGB5cgXLxDTio341HVn5QtlbDQ1+G5nCeOpbAJcHGJLz77lIe7ryh5ous9UiYTKKjheDU4U/u0+4dtgi4IZG2g994bXzo0pQ5tTqnRUDE/ZymRAcPOuqscWgt2VjlQQkbtpV40rgQ4Hi+M48Tty4M2QHiVfnKhqDxs3+GHDre9IV79MftP/yVu/wtSvEX8DhGbK9zCZ02nnumAn2nAYqhpzRks33VOd/oAZGvejvOks2NTamF9TokSCtM40VuIHHuVxfHBqfi5C4gEXAgmtan/zfPMmzdvSPPM69ef0Hedgi5BKF2vHSjOwf17zpfRWlY9xQ+4IdCFgdBtGM975tM1KbyB81vm8Xskdzh3hPmCpDOIzjFWoW8NqZXTPJF8vWan3GoytVEeV8y2ihEuQsuZddEYRzJXQKu0aKYqPqhxY2j04qVBhfeK1FCxGpaGeosiiFi0Y7l3MUOuQgZFgR8vnlKUGFmBs9oYWhdpa4MUU9gsEL3eF+90sUcnnIPTVMnaFYPAeS5aD24RiLZyuALzOKHl4cjNiwPp8nuczHjR0NR7rBlE6be6eMwILU/NNfIostAXnQ64E3GE6o3RddFyXbHykkUqNQx3rnL79V6LoAYeFA9o4u5S8MGz3UWGTSAEpRR7a7aR6JCuQ7oB+iu6q58zvP4L3P4XzOEl+B0FmxtdjKNnXWYiFez8iQzY1oAJni91S2mwmxBiIqaOaYyEGFUI3DxNSpnD4QCiShs5F2LX0Q89PqjnFadeF6PViWm15qIdR+/v7ii58Pr1a1WOBPoWTiun+O7hyN390WR2tMbowg7ZBoZ+z9y/Yu6+J52+Jp1/C5fvkOkOwpEyOrKcEJ+QWQPBqraPk6aYUSzUqY6qsa+8EHD00q1C69J6fJ0Is/1tBb1qjuu9EjRq5O2cqLicKTYu5SXTtM6oakctPyQtb6QpkbM0j9SkaETz6wahS5V20ddk8+5Lm2Rd6DYQPSeKd4Si8JI3cEy8aEioqB/LPCptP6we1IvQOfXanS84mfj1v/937IZs3GXtLHPOylfOaTdTqtTcivkpo6qYZ1XRC+0Y0m5Mad5Ng6lieIxiMbksY1+1tU8fwhLm2zW5gg5OFCpRXj12ph98mwUlASQI0jl830PY4PodcfsZbvgChk8owy2Eg/YM2HMXqRpoCx3z9vYnlNRpOVkxbm47EV1A3kOJkTB32u/ovN1BvaHjOPL+/Xtub9X4pmkmhEjXb7SNT4tnWFJntbXazqd11CoADvDy5Uu2W1Xx896z3e7p5kQMG4LruL8/Mo0XrNWf5BzO9UR/xTB8QhlfcH7ome8i7jKQp/dIcJQ5kOYzySfEzeRJqYmuaIlCh4/Zfaj13lpntI0tBNfy2NkwgKiUKWtOMI/olhQg19KGrda2Qda6rmPJkdF6rnhB8ko4IGeNYFz1YIZd5LpIgsXXoGi10jSNrQnoZhmM6FCjA0yVowi4YDVe89qdUwmdkgrzrPOqtHQDs7PNy9WGfhUCqPmzd7P14IqpeoiRMAq17l2BnXU9tw5TbyBQMcVHlJxSbGdUI66AoJFkzHAamwr73qOCAxbeYrVcL3q9zYD96mv0ClhFp3Xf2EO3IW6u6bef01/9HLd9jfRbfS6WBmWW51rJO7e3N1xdXz/HJJ+rC73kbNX1VIK4/tNTcofzE9532nXiApMooB4lEMSx3+8YhoFxHPEuEnzUyX3WYE/KiLP8kYWiWBd0ynB3f2JO3/HJJ47NZkOVi42dt5JVIcbAw8MDDw/3kD1StINE0b9A7L/EDS8Y4yfkh9+Qz19Rzo5ic31x2gxRHDAtuzpoyFV8oTL7g03IK0lzZKw2m1IharWfOvakopa5GPPHykvK0GoFBRNn01C1UFpJTn2KhccW/HiLDGoroh4Z6iwmRMkebqYIBp5h7Yeax4d6flmppyVb5xRW2rH3LU69GOKJTiWMkETpdQ0Iqvd8pjCJGrRQS1PoBMOgKpebTpsPQjTtZSOseLTtMRXrCDKj1kmNWvIL1qudcyZlLaVhOa80T6qIfk5JuduSm1hhbWSorY014pCivb0K+WlUlagKl9Z0UQGrqGKLPqjSiOsibneD335JvP1LNjd/RhlekFnGC3krHWZLv0IIXF9f63ztKuDwI49no9BUhNX+/UgNAw0xffCEEPEuWH1SY8K+68zY9EFWD+wsz200wuq1pRbgl2S/orKlwPF44quvvubly1vTJdYdLXjPdrNV2RivNbz7+6OGdtk2U+cofiD6Du96UtxyuevAO8olkM7fE92FnC9oUS8hYSZNE/M8UtXlspjgGc5GluSGGCPGG26NA0snUy0xVcJH5eFWlL8eFZ0uWTWfgtcWPleKRcPGxVaaFeBaaSqlGhrnVj7yriLUij7Xz1BDsDzTGEmWEbMeAZJtrGnOGi2o9GohF6GPotTUnHFOJWkul8I0a3W6oJGb9yrzE4O26nnfeh7V0Axb8SZ4INToQs9BVoDe0jhiXtoLvoiVwmherjYbOFG+d6VCFqkAkpaV2igUwfJjQ6ytE6w2RoQuQFAQLURH7AZct4HNFbL5hG7/JXHzGa67At9TBwEXTGnFqWLLfr9ns9nQ9/2zjReeLalDe+BrFHWt79SEyH01XhsanfXnTpwO+XaeeU5aqwxBpXOca1KltPxRzLvWbUMMIVbPcT6f+frr33M8nnj16qUpa7DUqmvdeui5e7jnfD5DUgAnF4f4gOt7xG+RODDd95TjgMjvKdN78nyv8JybKHLWDcWBJKM2Os3laQqUGclZDbtYPptQjS4qYb4ajHoTw6fbwq07ZGV4KeKvD5x1yYn20nZUb4uh4zVEd24pf9S/D9G3hoeUkqqWWDgqzmtze0qGcej5pFJLK95CZQWSohft584FN3hcmZXdBvjWBaU3pIvCttfSkanMtBJQQ4tr3myqIaVy1Yu+JhsFdh1i13yyUFsD7c3JFkmI8Zk1BcFkcBAV9Ouc18kJ9jOcbYZOlVCdAYg+CEUyIXa4qGwr1+2QzS1u/xn+6pfsbv+CuPkc3IZCRMRTiuB8gJLZbDZcv7hpazSYBHKukcSPPJ7JxFoMtxoQVJRVF41zAe91DrD3oZUfVF7EsQxjzkzTuCzGD9C32rVT66uVmC/todWvKSW+//57csm8enXL0Cu45cSx3Wzpuo5yf8fV1YHNZuDu/XvmuTYgeLLzFBcQ9ynBZWYxJY1TgMlTxFPkvBhMTiqqXkyZJGXSNKumizhI4MVCXmpMrDK2FPXKtc6aq5b003ttnxWchsq5GEK5qu5UiR9KfR8BXydPmDHYfXKiapagBIdxHM1AXHuGjQJZrOCS9XrqJgLV02nbnoiNENFgxAbIWVteUeMcPZxlZpwrMFcYes+208mJarT1P1mhxXqd68YPsWeqLDUFB51RXCsBRVM69XV6300v3Nr7cFBERSZ88NQU31f5Yg9VhN7Z8PBaX3fWcYSH2e6j7wJh2OH617jdl7jDl2xu/pRw+AXi9uAq7qH01BA8++2G/fWNzhEuRQknq4jsOcd/sgG3fNSkYp0LC8sFpVdWA5YKdtkiePXqFX3f2/xXab8H9RiYgqR6EMzjVqNddtp61MV3d3fHNI28evWS3XbXIPngA/vdnvuHO7b7npcvbnj79i13798bSKTeQfwO7z9Vj+G160UuAVwkuwdwSuyoi0iyMs5gbiWKnFWruMyLJItYfoVoeehyumgd2y+C7OTUcv5cJXjRtrlsgvl14nwlf9S9gWLdVN7AFitRVNmd+tygWN6b7L5lpik/eq7VC+e81F4ptC6fglIWHdX49HwV1IExZbJkuqgr3bmEE0eY9LOdgz4U+pCJ3itbyWn5qfbpqgc2FS979k6kGXsuS13Xe2Wl1fWp9yZbacg6gszQNQ2wsT0WClP1tDwWHhu4ZAbs2s+Wf0tUPWff75CuRzYvkc0vCNd/wnD7C8LuM4q/IrvIevb1brtlu9uyGQZCmwC3HOuU4Mcez2tmqCUU88A1PNXNbxXKmNf1zluOazRCIw4cj8cWBscY7UavOnSgoYbU78VRh3nXCXDrzSRbe+Dx+MBXX41cX19zc3NjdDohhsjV7oq7+zui7/j01WsOux1v3n7HPB61/OEG8Fe4DbisVNAs6oErfbGIEOZAnpPqcclEplju5HRrriiplSyyeWKxa56nCd9rtCJVgUF8u4dN4gdDlVk8UD1quK0E/YLHrwyxeiKx+VBWI3YepBrwEr2sd39xmhsLjjznxftKDe0LrXYqGvZGp+siaWFYw/apEA1sEyc69KwUnBT66Bg6nXMlmH6YCQSKfY7UBZ1RcXttG6IiMDUSyFklier0QO9VVkeZgeWRAYoDJ1purFrNYuJ1zq3+8xoS1O6iOlHQedGGl9BBt8N3B6S7RnZf0F39GcPNnxJ2nyBhizgV5itOWW773YHNsFVsKPgPjLc902cezzZgnb+zqAbUULpN5wN7EGpw3vieIhBjYBgGdrsd0zhxPl90YvnaA5vH+NilPFWwWIfSUIkHKgz35s0bTifNi7fbnTZ4+8Cm33J6OHLx0A+R3XbLu/M7Sp6ADnE9Ll4TdmpAVSQ8CRRr4C7icaKeNosBH7kgSSVZvS/kpKGdIr8O57QDyokQrvfaOVPgdL5oN4xXMgxVscM7tFE+G0nBEOJV7luvV5wjsxj60l5oE/qoYE6hzYiqZSIqZbM0xlgFjCpVVbICYQtrjBZZuVausZa6XLQtT0BmrS2P04UuRhvIbiQQX8eXNOIbmqtW41y8ag1h1WQtlzaEuIBx6Uvr525tf9h4nFrNtHJVjYikMrFCzXOXqK/YVxWhC7ioapI+dki/hW6P728I2y+I+z9i//JPccNnpLDB+U6R884z7AaGrld6cAj4ENpV1DVeWJzRT0rk8MrXMxKDGas9/CzGJDHebAiBfhh4OJr8qgdnag/v373nfD5zvpzZxz3gFjZRAzCqIS8hSNMdsmO9YzXP48zgUuZ4vOe3vz1zc3PDixcviCHQDR2pZI6ne87vT8xpZNIpPmyiLZwSoL8hF49kwaMK3CU4a3A4ksVmxuKhKPjhrfSlMjUafjpT9k9MOMMgswEzkjI+6Ll7h24IFUfKUPOFWj6h/qhGmpgYuqd16TQ/XQ09L2wfEKtXGysu0wAyDPF1WEMFtdZa5VSVG0wWJKnihvZaV/DS5HlMO0yitduVbGNStHxTqY3Bhpl7p2oVtb1PH6yBbyvUHlcNtzqvxciLs1TMleYsal+Yj0slw1neXqcuiMtQ5WC9pcyi2A0ebQHsd4iLSjLxHb7fIts9ub8l7L6g2/85/fUv8cMV4nvEqQjCsN2x3e4IUU2sM+agrKHHBa9sKdhzj+d74FJ0iFRKj3ZkLCfTfztiCND1bIYN976WMJyiwD7yze9/zzhe8OHFI9St5XcNSf1xF9W4xKscImedLv/NN99wPp8s996y2QyE6DmfH5gmR7h5TQyOELaM58TlooPMu+EAMpGC4C6BdDZjLW+RcCZNCbzovNo0UZItogR51j12TrbQEbzP+Gzid1m9tLheQ0ixvDMVZiupNI3pVB49+CVUNm9Vyz8GyOhnhRY663JWlNzuqubZFj15A6qcIeApJ5yP5s0qY8yeQ7aGeaxXutSUpvbHegv9tTbupWNOOsfJWylGVTO1W6cVHNR6NH2gAlYayamHz7TRsCZa5JzOQJaar9pm6KTywiuSvaDJ2Zd2zXVAuXiHC6Zd5QxQillpkdEjvsPFHT5eI/EFfveKfv85cfcF/eFLfH8FLhD6gWGzZdjtDcSN1BG2y0K1x7hKdevUkI/HnX/4eB6I5aTVdWseDDRZmpKt9iaQSmFKM/3Qs9sdlHHVDcyz9sh+/fXXqm1k/z0Og5eFWr+uQ2VZYqmaMOuNKEtYvTb8nDP39w/Mc+L29iVXh2sN6cKBUnZAslA1sNsE5nnmfD5xPN4zuaLS/WEDMlBK0Daz6XsIjjKeEXchJ8FlXURpEiWi5AwyUQdyFdFQWlAZG9VMWmbdWsaIXzWqS1kHjUAtPRWMcSqQ6iaK5YnYvVRWVSU+AFYTptXbFTNae95i/bjKYQ9ueR+K5oyl5Z8KqyebhiHil24aw0YcYqIJNdXCUquKlmdjfRmeQe3IslDWeMtaHlJPW0PdUory1YNN/3OGv1j0FoJr90Epn874BpbKBP23C4Fi3GgfeosYM9IHJG5w3TVu8wld/zm++4yw/4Ru/wnS3+K7HbHriTGy3e1UHlh0I+u6yA/Vdpeu0ydrfbWef8zxPCKHPpG2+wGtHim4lgdL3aEpXMYJ5wJ9Pxh9UvPnu7s7ht2ubQhrgbe2MTz5ec0PCqmFHI81hJTauL4D9QZqSH20gWOFw+EKJzZxkGD1QiU59L2n63p2uz3Hy4H7h/eMfg9u0PzXO/IY4fKAlzPEE3m+p8xn8mTSoC4hs4qnF6ul1rk6JevQs5wSPhgwKGiPsU2nyMbpLUlzu9mQY7Em9QWwNYpjKc3DstLjqmSIWh9V7rPeDye+VerqcwRlOGVWdVhqXl2xj9JSnBoJaH1VyOOsYJILlkfr73KutFttvaupjr5WySmlsPzMylsqgFAlc5ZOLme/9xUki9bBVA1ZDIyCRTHDGVZTCsKsnOZN1AaR4JEYcK7HuR7f9Ui3wXVXhO0n5P0XDLsv6bef4YYrpB+Iw4HN5gpX6w2WQg0b5eb/kEdtOa/l7TxxNm4l7fMfO57XjYQtFjBQYalLqnzK4hpri2FKmYeHE5fzxDBsyPnM2TjRw27XjBQW71lD9Y9C6qsUwoDY5VePwu0Vqt3ALjifNaSe55nr6xuCr6DC8p7U63OBfbhm2Ow5HY/cf98zes8cAvNpQ+EN+HtID5r7SgAuZJnwMpFlJriZlGbAMU1aPtJrLswumSazqmq4lElzVqWLogOyk+WhoQJ9Na5lyT0xxLyWitRScqvjuip2l3JD+F1Q7nKLXozYgEgjVeRVaKeKluVRrqZG7Iz3nTX0Dm5RJ8mm3eUc2Vv5p3UBtYQA5zRFKHZtGsLXYF+BNbEi+sIp0NeKU+ldzWXVu1abqLJDNcpTFDoq6OgSBHD9Bgm9dg91G5zb48OB0B+QeCAOr4iHT3FXnxOHW7rNNXHTszvs6Lqey7kwTypWr/TdTiWinqzJ9VpULnRdxMt6LilxOh7ZXV99uO5/4Hh2CF2JB866j3Q2qnUoSaXpLWFvNWLtE1Zk13un0wBsMT8tYj8Np5/mwc3DtzJS/Vtphvr0BtbDe880XXjz5g3jOHPYv2C7GYx+uH6ldbBQ6JzH7w8MQ8/pYcvp3ZbjuwPZ/RNpfEsag92TQOIEjMCptUJaoZk6SZ4UVArVJUpRreqUJnIuhC6QU7KymBAcpCTgQyNu1IXeLNhpySeZALxE40sbN7qpU1oVIVdtr1UUI8XBqp7qi3q1kpfQNjibQCAL9bJuGCEqUcV5r2FgBtV6ci20F7HXuWrA9dkVA/J0vUhy9Q30vhkSXZ97rdUKNE+czbM748E/8ro19XOC+KjCESGA73HDFa67RroDZbghxmtidyAOB9xwIHQvCZsXSLdh2F7z4uaWYdshFMZToswjXdR13EVFmqn74g/gNx+gzQJpmjne33M5n39CAy4VSrEcBHRYM4sPqwihAg5q5DkpMSHGyOU8AnB/d4dzYmUkFoCiWA9pYQlBGtDxJPtf3RAMNYXlfWqpQ1+jZIT6mpoXn88622fY9Gw3A7GLhujWJEU/3wEhRA7XrzjsrjgeXnN8s+Hh3W+Yzh3zxYPrKCUinI1LMZu8i46fCV2HkMnjbCLsTnuDRbuT5lnLanWgmpIQvM3/FSQn43IXa+2sWITyohUgak8CqU0EZvQCytSyRgavXRJtQ8hl8bA1WSlSB5Wvc9MabD/eXKsEj6ZYUJIompuL8liMQKHkHFmto7LMkBIs57Vrrr25VJooFp7q+flahzIEWiVfdXyqM0/vDEgSr9MAfdzg+wPEF0j3irD9lH73irB7jY87QrfBxR6JAxJ2xH7H1WHPdnewCEMjpZIg+h4fNdKpAg71jpRHMLMeFTisrwBhGieO9/ecj0cVgnzG8czZSGAZcNs9ayjUHmNZGDy+dhM5Ue7n1bXyPsekOXHfEbvQ2DMNlTIlwiWHSO0DtLSxeFvneOSlnwJf7dxFkcn17icCKV04nicu04njKbLZbNgMqhri3LJ4BNNIIkAIHG627A4vGN59wXff/D35fk8+/h7vOsrlnjJl0jxrf2qYlPRRRkoatT0tBUiJYnIwkQqwgCppaPN/ypngDfU39MmjpSntEFCkuwDivInv1TzR62egi6l6XuvZJ5S6Eeh/XpaGAY1w1IF6v4jSa1RVF9lq4HnLoWubpA7zKskAN2xsSlHN5HYi9rydsw8DFYuv1rpa7BWx1pqtb3lucVmnHThtWnCiLEDxDnzAhR7XbXF+i+sPSNjh+5cKTB1+xnD4GWE4aJkodhRUgH2zP7DbXzEMm0ceM+fCOOk8Je2FVsKSOL/YwZOjGLgoQqOLUmAaLzw8PHB8eGCapjZW9scez6ZSfuzEzL1R+cprJFgMRNnv98QYmafZABRtahjHUXfH1XsvnSftg6kh89Ocub7+Y1zSp0b89GdPfzeOIykljscjw6CgW/TBupr8o/copeDCluvbX7A7XPH2m2vefFWYJVFcwQUhjydKHpX7PIEvHTmNOHfG5UROsxqq05Y0lyM5z+R5VPS5FHJKkErzaipe7luOqaGnyZ1aqKwOU5Hvhd9cwKuXzaDh9YJ16Wap08obdXFpKkHR57KEz6VozV9W97GYB885qyhdKdonbCNgQqylneWxip0LVO8pNlSy1FS/3vVG5qjpWwFcr7mnC0aFDIILHS50Wpft9oT+BRKvCN0VrntN3F7T717ihxvccI2EvXplgRg7NtgVVA8AAB48SURBVNsdm/2erh+WFMCOlBLTNDUgrbYDtvWxXlNPMJxstON6TfM883B/z/F45HK5fPRv/mPHf7IBP03KlVDOUscz461/M00TL29fMmwG5vsTaxL30zxXd6vF/z4tDf1QmemHjLX+vFI/n35mo2Ky1KEfHh44n894cfR9z3a7bV65fr4GJB4fb3n52UDXD3zzm79jPH5DOb8DvsfxQO87LkeBJGSJSgbJmeInSJMhtqo1ldKkZY00adOE09zUUdUmNV8tdb5TUcAr59IIGDo+RFsnfZYmLOCcN08uJrmzeN8GiCULjV0lzkCNsUpZyDaPiiMVgyg04YAGeAHgiGHR7KpUWGXrgaPWnPXVqsKxiKVXS25MK1fVNTyhC/Z5ggsaxpZuC90B313jhleEzad020/pNje4+JLQ7wjdAF4JOrjAZrvjsN8yDIN2DEmTvKOySeZ5Vi9p9FNtL/QfsAM/Zis5qf62ppSJ8TLy/vvvOZ1OJMM8FjLOjz+e3w/MGtVdGTEa3tYTr2Mxaw5WucnTNHE+nTmdTnivVMslPF6I+jmvTditcmTtaHl6k6qhPhoW1ryFvn7tRT/WsvW0hFVKYQbGaeI8Xuj7nq7r6DsDK0zlEXE4v+f65V8S4gu++93fc3n7K0Q6pvEbUjlpeQJ1cqMT0jzhQ0/JM1ISaZ4oadLmhVkFAMgJ7zOSdfyK99Z1k4vSOrMKslP0QdbpDKDYBKVAKhWb0jv5ZPOqRcCclJSBr7Xh0hauGAhRQS+dgAgVCKkgojxZgNWLqtSOZ5GANa630LqQdMNXrnumaKtnjaTr39R14KsyphD7HpwODnCxJ8SBvHmNbF7SbV7R739G3H5GGF6B3+CchrohBnzw9MPA7rCj74cPyjeNtFqU3DLPc0vBnHONx/+Dkal9naZJxfNNimkaR969f6+znyxS0kikKmX++OM/uR94/bXWtKoBLBe1eMAYA1999Vvu7+8b2KDQ+8Lwqjub/mfJGct7gbNi/QJmPfWyTw24fl0vrI9561LKo5rnOkwvFMZx1OHbIsQYlc3lC32v3NciDujZXf2czfYVD29f8d3v/l9O9wfK+AZX3iHpojVhiTif8FLIeYQ0gZsgz+p5JYAbbfZS1nzXadhGVk1q57JRDVW1I+eMuEwu7jGmEIppVAlkvT9KmVxAK9CwnFrKKVo4AlbeZmn7lPJxsk1Tc0Sjk1wqt9mwkJrDClr6obKkaHTOdg6i2ImRa3G+UzBQAs5HDV99IPR7JO6R7qChcH+g239O3L1m2NwS+luIe4rbgAvETtgMPbv9nr7rrB+YFWBar7xYiU9lnNZNH0/D5o9FptgKrWliSdrEMo8T59OJcZ70b8sSxWofx0/ogZ8Srdc5aRUOV7CkTnBzDbEchg3f3n2LiGPoe25ubnQX9EspaaFRmtE1FG8p8qsnllasX6PNHy85fbjZfOx46s1rk8Yjb2U3+nK5qBxQEWI40217ttsNIXSan4Yt+0/+krj/jPff/pq7737FdPod6fwtvky4lDXXTSOSO4obwU+aF+eJ7AKSImQtMYnPiO/INleKUlThMifNVwuKUBcdrK2yvipunkkqfGe8YifKAtPaX1q0tJRJYl81nk4pMxcd3elctPtvkwvafTEqo1PVzMpp1rnQFcuWWmJeeWuNvJzoTN8KhqrCKe3Fild6nOvAR5zr8KGDoPmt765x/SsYXtHtPiFubuk2LwjdFucGxHeIi8S+43A4sNkZyaKBpPpfXRVSlmYRiuIUqhKypIY1dP5DR8mFyzRyOh2ZRjXc+TJayVCBRW1QMTJHgxr/f8qB1z+TCnjoqlheay9PKZOLJl3D0DFOics4EoO2+q0N5ilyTJVRLXX3kxaqf+y/+tlPPcQfqi3XWrKeA+iGUeVFfzg8ytkxjolLuufheM92s2Wz2dJ1PUhP3Lzm9c+vefH6S95/9yvefPMrxuMbQjoi+UwZ75DikOwoc29gz0iRCOlMSRNFRpwRFaT0UDI5KT0zzwmShmWZyQgRGZLDFQUGUxmpI17q/GlE2wkpXqmIxTjBRT2gRukZFwo+KjI+z9qs4k0ltBri0lySbUH6BrjVklSxTiYv2kWs2IgzELqAN4OwvFg7qFQUsVjtFt9T/ICELS5ukOEWt3lFHG6Jm9eEjdZri+ut+aAjxp7Y6TD5YdOp4D0LiMSKiFR/2EirFhEqCQfqC2NzOvVnda0seEFJmdPxyN39PeNlbKFzSWs10kLVG6vNIirf+xN74PUkgXbpGsAvPxdsOoHO9ElFW8wEzSenlJjmsRX0a2/xGsFeQ38iWOF+6dd8arAfM9qnx8dCZ72uSshfPntZeB+2L4LusDMTtR86TYW7dOR4uljL5JYu9ojr6TavefXFgcPLX/D7r/6e09tfk+b3hjyfcPMMQUES8SPFRfLsSXLGOU8m4YtYiSHhsg61dr7AbHlvUp41JRmZQi3IW09xzWsVZLKSUinK8EqllZ9ENB+WYve6GMrb6cIWandPpbeaEZtXFfHVfTUQTEP1Wv/U/mrnAqUo8j+Xws60wUWcsquKI4Qe5zskDJS4I4crXHeD72+Ih08J21d03TU+7HBxgwuBbtPT9zs2m/2jHPWjS2JlK+u2ypwSuSjJBipImw2zqalADbTL8mZFsYrj3T0PDw9M4/zxuq5oitKiPIpRaZ8NQj/fgNfJuZ6Lli+8D0yT9sNKcRQWRYg0J25fXpOnid12y7dvv28n2lDsFYBU37fm0CCWJ7lHxv0UnX4aBj89z/XffCyU/tjfrF/2yGvz+D7AshGllDifTwz9hqEf2Aw93nf0wwu++Pk/5/76hndvfsfp7hvy+A4X1CN7ZjqvXcin4zvef/8GKTbfp4C4WSGerNrLZMghU8pMLB11DnBJM5VQkNJFF0pFhCvWkHUKYDESSDZGXSkFCZHY7kWTo9P7XqTV9pXIUXRWkBOcdFbCoqk32u6uz7doT3TXDYbyevrB6UjTLuBjwIVIFq9hc9jguoM2yMdrXP+abvMp3fCKsL3Cdxtit6fr9my2O7qhb4h09YjLM5PV/x8/Q2xFFct3awpYITytcTvVLRevqYawWJuogT88PHB/f890vli3Hss9lYX8RKntjJZTGM7S6vTPOJ5lwOtE/rEBqBErimehqnj1COhNvFwufPfddzw8PJg2lm8bQl349X3X9Mia8y65Mu1n6+Opga6PtdH+oRy4PY+WBrbM6IP3+kOhuV5PIqfC+Tjy0AX6LtIPga7bs7/9E/YvfsHp/Xe8/eYfOd1/RUnvKOM77o/vSeORaTziQ69TCRHlOruMjl6ZVIPLZvIUZorlveItxDZgxuVoDC7L7Uo2AkfWEJ3KfCsVboACzphoVX2yFuZFXHW41EkFFbyS4ttGUVVG6wC4KvznCoRuwLuoiLAPEDVMFj9A2CAy4OPGwKlruuGK3dWnxOEl/eYVcbgm9htiF/Fe5ydT6jPI9v3Ho7CnR11/1fMu85mhDrJT4LJ7xJvPRrhwTpgm5fY/PDxos0ypfcyPI8nFWLFRtMvKqujzT1pGOp1OWiezJH7du7uAWUsoXGw2zpxmS9wLL1+94u2794uYWs58HDCilS8+lufq/ZAPDPMPedb13zwV5Xu8Nz/660ce+3Hksfx9Rd/X55JyJpeZdEqcTyPuHvqhJ/Qdu35gc/iSYXvDw7vXvPn2H5nokAnEe5tSMGsnUlZ0WXM2lbXNckZECD5QSFqOanXhhHZsZbzpaemoF226LzlT5hlxsaHCThSr0AqPqBwuNddX/KK2MQpan5UVgKXKipWJJDQNmwb+6Lwl5SoHfNwi0uNiB51D3EBxB1x3w373CcP2hmH/kmH3kmF7oN9egYsUqsa2Eoc0fyktrLck/4Pn/vRoz8hApWzKJ+KsiaMIJQvexwVxFqHOvaolpXE8c7y/Y5wn0pM0UM+uhT5tWqPUnHd1nqUU2qSOZxzPMuA3b97w4sULhmFoTcree/PMldNcH/QCwc+TAgHn84Wckkm/LoLcHxoTKAfWNzK6vnf1zAsC+NSwfsjQPgSt1gb49ErrzvnhrvhDacQH/86NTdz+NmfhdLrAeeTizwx9ZLsJ7F58Sb+94ZuvfsXJXSOXt+TLW0gPWgsuRemXAiVPiL8Q4tDYVLlkQ6Nb0EdhZk7GAisJ0oyYtyxpJoekeVhZwBQXMpVC49oEvmydlva6eu010qo93ZjHdw7xKpwvzpEN2Rarv7rYgR/AbRC/pxsOuH6g397w4uYLNvtP6fevcH4AiZRsFNNQn7l2TUm7Tmv2bx5XLMf8ccZbDbGu2zZMTpzNBdbr0Nfq68dxZBxHLpcL03hW+d1SRfftM9DuvXoaj0NpgeIWbGCVRv+4uGE5nm3ApRQOhwPb7Y4YQwtzS3m8kCv7ZxoX6dhs8PnNzS3BJDXXofMjYyu1XOSpqVQNqz+GItfjh9Doj/17vXE8PT4Whn/s508PPTdTVCx1yzX2kjM5opSZ0kjJjnHyBBfI2TO7z5D9Dte/gcs35MtbynSy0kaGPKkqZlSpmmJhumrOahipn5SgzFovLWjHWMgGJGkJq26gPluFwDpIaq9y41PLwjfX68no0tQET/EPQ5UJqmjhA+I0ny2GPHu3QXykhA7X7XHdC7b7T9hdfcb2+jM2uys1Whdr7wPOqVIvbT5H3bwTFfURkZbzLgHrx5/RU5JJxSvaX4h+H2xOF0XR95rTjuPI6XRqVMoaueWsFEmNuD5M4Z6uqUep3JKv/cFN54eO5xnw198pHTABeLa7DX2MBOe14dzGHjgLEXKa9eJQ0nbKM69evebtu3ccug5dMAvxo0rH1gS/srkqPVPBkAUUeXpT9PvavoYxe3IzpoaK5tpZk7GBQ+ZwS43dWQNl68+px9OH8Xhz0C6e9j16a5KpYYjT8JqsHI5zmvUZSsSFA+Iizh+Yw1vydEeaHpB8xMmELxvKPKonTjOljIi3WjC1jzrp74sCLuJKq8hSskrYAvM4kkl0vYbS5GLgS1aCiLUPVumZnLIytaRWgExFRDBD75Rd5gJFVL1RfIcLPcW/IPYHtodXHG4+ZXt4Sbe9wrkeGKAJ1VqkZbMcmmrIo6OWnED98DMWfg2sDAfQTagCdLoO05yZp4t528k48vr9mquwvKGNmil1BpOlF6YxltrMHKd0cxFD3LWNMK+u4Cf1wP/0D78mTRpmpJQZxz1Xhz2bftBeTsvTlM6nIdd4PutsorLh9vaG4/GBcZpslIRY2CANZNEcQRqKWVU+FL2zy5PHO+nj0KQaHI07zArQqIYsiOWV6MOsYJFIQ9DXx9Pde308zbH1fIqdrzRPBdVDQhHRrcVCYD0yDkeWDcVHwtBTugNhvienI3k+qXqmu+AYKemE82cEk/g1TrR+dmAcz3ouVYYGzYFJKhiHz8TYWXdQwbsAY+J8PqvcTIittQ9R9U3nPbGLpHlWYf5SCL62GTokDriwUeQ47An9nmF3w+b6ZxyuP6UbXuDcwDK+RQ2gtqpSwTcqy2lxUh/c75UTa7/jP37kVEhzIs1pQeYt7605cQ2V67//0LOvEafeg/q8axhfmqh7EYcPqswaouPh4d7eb3EWP+mA73/7b/6OebowTWem6aJgSk6Uaxi6qNRIltBUFRr15m+GDa9ub4ldz//113/D+Xyhdp3WG1EfzDLN4eNEiqdHfc3yuasHLovRVg2nUix3qmFnEer4SESoNOJaBgP5QYP+WOlquZbHXrnl1uscerUBYWT9QgGnOIFSDDtcvmF2IyWfIT9Q8j3ZdeB6yjxTm+d1yn2ipBHXW9thKWQbclacbYau0PuN5ZHJXqeqFsN+h7hA3/eEGDUVsrbALnrOpyOpeEJ3haqlO2VHxWB85APdcMvu6nMON5/Tb1/gQgcS0QZh1+5Fu3s/+JjrLz4C7/xId/UobUqFlLQfuxSt247TxaoGS7dRC60/krKtj+qspDJX2hatO082fVrVyOrY7vaI85yO75jHqV1VK4/+iPW+Pp5lwH/3N3/NdDkxjmemebQboaJsh/2ezTCY9wykNDcQK8bI4XDFPE28f3/HZRyBpbiuBva0JXDlNXmcvy4lH83DqhhbvQkfphe1xc7CwqLAR2mcXnnyact5gWNtu9Jit/W5PM6z1+dYjTklPceK2NaLf7QsS+19dyYWb0OxckdxguszlImS9sALXDqR5ovqUaeE6irPGj7HGZ8TPmlIDQmYIY/Kuy46wV57j2edLI/gxBNsHMZUCtOEMstQsseYwfcv8ATEdyCqpe1Djx/2bK9uORxesjm8pOtfgOuhOLKs7o0iOu0Riz2s55RQPraBPnoOH3l9Tplpmlv0ME0T0zSRy6xgVl4qGk/X2x/CXGqN/AOMBRBrR91u9/VVzNPMdBkXfQqRJqH7YxzW+niWAX/37e/4t/9m4jKeGC9n5svIPCnKPI8T8+HAbrcFxOQ5L8xzwolnu93ys88/5x9+9Sui74ixe7TA67GI3K1KR/Bop6oRZ/37RdTNvJfdxMyyGehD8YtHzfVdNW9W9LVogrp8WosS1g+1cWjlcefS45tvG4NdQ4zeZIUWqRgLD3gkxFeDARHrpbWpEGL6zKVDJCqw5YwnnWdKHillRlAWkbYfKtBFA6cmSpnJebKy06TfMxt+AbWNzpFtnCwUCfho3b8u4HyPCx0+bIn9jq7bst1fs736nG44UJVYbGDoIhJSr7JhDBaJrHpwfixYuD4+avhl+ZKziitcLhemabb/Lq1JgVUO/LTCsAZZP3pITan1udbnraVW5W13XUfXaU1/Gicu5zPzNNHC09X1/qQ58JQnvv3uG6ZZT+Jy0V1sHlVJYJom5nm2EaKFkmGelAj+7//9r/l//vZvOZ8vbLc6YqISMj5Wp62Xosjnh3XY9UXX79W4FHhZXr8KT+pRjYflq1jjOVkWwTHckxDnw4X1sdC6AnKU5d81JYCqKGK/W11zKdqcP6e5RSftzEV3b6UauioAbTKvxs5ChdU9WoNXA1R+t/p0BRpdMcAxz82AZUXUcEUJI85E8aItQBcCodvQbw4Mmy2x3xDCgI64126sWrs3x2ILtEY563tVN88ft2T/EIi4/tmSlujvlBV3bg0ol4t1dbHUbGtaVSWC1ijxU8/7IWBZe5uVJx1CIMZoVRYV6tfZ0ep1T6czl/GiZb0WxT3GR55zPI+JlRNFCm/fvtFOlTkzThOXy8SYcjPgw+HAZtM3AKAOpd7vDyCOb757y/76RTO0pyWkmseu7ly7gUv4/OShtlxVv2pos/xcbNdvoffjlnT7+RJS1/eqSCdtU1jO7WOL6PH3j/NzLa1ZzbXS/UotO9l55Yx3ouMvyap0kqGIUiobQOa0wV9HtDhwEW3oU09g5miLoth3JncD+toiOgZUMqVotaDdN+OF+xDY76/Y7XYUYLvdE0LXstdc75NzeDvn+gyaJTfU38ILoBI8mh3zkWcKbUm3slx9HdJ+tza4lBJ5ThQr+1wuFy4GRpWiZIpS78zq/aqi6sccxA8BS04E8Vrm3Gw27Ha7xhPQNsKJUuB0vJCmmXGctV5cP8MEICllWavPdMHP1IVWqL+I8HB/x6//8R+YLmem05Hz+cTli8+Z08hlGtnv96Rp4v7+gRg93TBwPN5zOo8Mmy0udE2PCZTZpWr2lRKA8nRXxlLDIbBJBGVFxqjhaNvVakRYOz/WmW5tXli3Ka684spjLwavf7cssELJbgm/0JxaGkCTVjn+oySAupHU/KktRcFmDoDqaqghV7CNYmydYu/pvBmPOlRNEazjp02yX6cDy+MuVLKGp25O1dSBJqyXS+HhmDmeHkzR07PbqWE/orey3rxqGmNGQaHmPXWAm7gnhvoDIWqBD/tkizmT2qubrUUva9/2+XxunIOU0qMcW2vgtjPL8oalbkQt3VpWixdp5w+V562gVNerSouPwfCVzDQlTueR8aJKo/Os4XIreNUKxZJPtDr8c2vBz1bkyPagfXCcTye++s0/MZ7PHE8npsuZeRp58fLE6XDQeP8ysj/cMM8ztze3gOOffvM70yxWokawId+Pkdu6+nkUEuuNrZ5MszX9u/rvxRilLIahXx6H3Pq17uD5I0ZcH9rKaEsNecybl2ICA4u3rtIz7b5lbU1cPm9ZsI3sYe+v5a11TiSPzs8ZK0hclXwp7evT7bsORtePsDa61l1V2u+gtoO2v6QOZq/XWdl1d3d3pDSz3W7p+76lBiklLYlVMQGRdu7LCNqaRmDCBvIoPXqaplRBAAyASkn7o3NamuwrwaLSIWFdjWhxzXKvKikFM6L2ivqiJaRu/ANZGmm6rlOttCoHZe/rUCDqfLlwPJ24XC6UZOshL+L7i5zQ0rW1RHU/PqWox/P7gQtNuBvQ2UNf/555nDk/HDkfj3z65ZGbV6+4XC7c398xDIEYPL/5zRve39+Ti5Y9qkZSvYmL51vt5PW7shjJI8JEM2RBY00e/31eFkdZGfmHi/3jLK3HORCsvfPTI+c1peDpZqGGUAHoZYOopl5JBc7K1sv1aiqq3jBVBcrmt3UjrHnY43sldWmxlG7WeEJu5/I4dITaD90CTlvY85w5nU6Atj/WzbeU0sj/WoEoDYis5bgQ/OozFmN1wbfPX4+vTTmpCJ8ZbWs7TY/bT9dp2Pr6H1ctijmDZdN/mu9S8qMNv5Rks42UrKRgVPeERajRRvX8p8uZ2cL16tEfPU+chdCPQ/jlPH/COnCpg5ZFSd3qBYQ0Tbz77lsupxOX04nj/T33n7+H4Nnstty8eMHL2xvSPPE3//ffcilz661UFo/ehDrDR6j/LisEU9XspYixhDSHqwO2GvAl+ZF51Z1Piob+beGvQthHHt/s87GgG7YL17y6ei4NoUsuy+bQ8tnlYUjbOJZm7vrgH/kIWTztY69kHTZmpXW+kVCWtjan7/NofynqZRpmwHKf1uNLPpb3LT3SyqVe8n9hnmdOpxPzPDev6r2vMhzNGz7OIY1ZVddPPT+7tzW6q68vdWAA1hHEYog1pF7I/6VhHIA1Wiyb8Doaqp7uY6BYQcPjCkJF5xfljbycm7bNLnI50zQxzgu9snpl3Sr077wLhJV01JrRtf76nFIaPLcfuCaWLMyl+nWeZx7u3vMffvUPHE8PfP/9Ww43N/z5P/sLXr58yR//0S/5q3/9r9n0He/v7lSiTBzBBxW2s5tUea2PQtB6YauHVD3Co9cg7cYtdi9NzqV69yX1WPdlrnZsJ08+Z/F47Wa3TYAWLtYgvdjP6yubVa3AirZ2V4OzW3nKFqmuwrLadPSPltYz+59bwtW14edSFUbazWAJ1xZw5mmk8bRh42NI7NI3u/Kkosy5pUFgMWAVtFve4+nxgbfUfxgmsNT2qyfV+2veSj58zxou14hNZHnG2Zrz11FOCJ5+6Lk6XBFjVMcwa9g+jZMJ78/N8Gr4vg7dqwqr5DrPSbXfYowM/YCI43w8cZkTcy3vtefSLvlZx7ND6KoZ5CwHWwhjGnKdT2e+/u1vuX944Ms/+iWvXv43TJcz/+v/8j8zTzPH88lCce0q8UGFzYoRwXNRMv0SdprRCYshPHqg6xOsQAw481jFRN9g2a2rgX0052ZZpOuQ7OlCthui+a08NZSnQXZdkNVY66Kvr1o1dNRfi4bTxZruW771Qdhl4W4LoZeIouai+kL36HdLzsWj66z3PefUhPArCQaWOcN1IVcCTkraELH0RdMio9oMUYn+Tz3O+vPrkPG6bdp+1h50i4tWG/g6HH58HR/zajrgLQTXwmHvA33f0Q8bnaSYEuOYmKeJaRy5nC/MU/pAOWb92fZhICp62HXRjFcdVM6ZeRwZL1p/zixMr2emvY+OZ45WqZ7Q7qq5myLaPeftIuZx4u7dO87/X3tnkNwgDEPRH7sNJQdI73/AZpUYSmOrC1lGkGYymW7CzH8rFoCNsdCXLezLBfl6xen0hePxE+l8xjAO6A89cikYU0I+9HjvdTuRInMyfZlV5+IFNPkJlYc+xroxMNFUghB0wyztu3bOHNeZX7Oy1uv8/hUvVcd3Jxqu1fP1lgwb9Q67uOoE7iLn0XShQOvkS6+4kNir2M/q23aQhMzlN9VU//FxbeaPTV7bsc2kSFULfiHBuY4CsV006rx6C1+qfLYBLV+mzTsUoI3GBmgCiM+yayue+ma+483Xz2UfphgDuo+9/hEXY0uBFFHlNY4jUkoaIkw/Lf5eZKPAyXm7f22P+Bax7zr9MASdThqmhOl7gmSpeREuXPsnu2c1NyHkdQiPTyGEvCo0YEI2DA2YkA1DAyZkw9CACdkwNGBCNswvVwRResdDhw0AAAAASUVORK5CYII=", + "text/plain": [ + "
" ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import torchvision\n", + "import matplotlib.pyplot as plt\n", + "# Plot the top 5 most wrong images\n", + "for row in top_5_most_wrong.iterrows():\n", + " row = row[1]\n", + " image_path = row[0]\n", + " true_label = row[1]\n", + " pred_prob = row[2]\n", + " pred_class = row[3]\n", + " # Plot the image and various details\n", + " img = torchvision.io.read_image(str(image_path)) # get image as tensor\n", + " plt.figure()\n", + " plt.imshow(img.permute(1, 2, 0)) # matplotlib likes images in [height, width, color_channels]\n", + " plt.title(f\"True: {true_label} | Pred: {pred_class} | Prob: {pred_prob:.3f}\")\n", + " plt.axis(False);" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZLcCgRhS-OhV" + }, + "source": [ + "# 5. Our custom ViT model architecture closely mimics that of the ViT paper, however, our training recipe misses a few things. \n", + "* Research some of the following topics from Table 3 in the ViT paper that we miss and write a sentence about each and how it might help with training:\n", + " * **ImageNet-22k pretraining** (more data) - Train a model on a large corpus of images (14 million in the case of ImageNet-22k) with 22,000 classes so it can learn a good underlying representation of images that can be applied to other problems.\n", + " * **Learning rate warmup** - start with a small learning rate (almost 0) and warm it up to a desired value (e.g. 1e-3) to prevent a model's loss from exploding during the start of training.\n", + " * **Learning rate decay** - slowly lower learning rate overtime so a model's loss doesn't explode when it's close to convergence (like reaching for a coin at the back of a couch, the closer you get to the coin, the small steps you take).\n", + " * **Gradient clipping** - reduce a model's gradients by a certain amount to prevent them from getting too large and causes the loss to explode.\n", + "\n", + "All of the above are ways to prevent overfitting (regularization) and in the case of ImageNet-22k pretraining, it also helps to prevent underfitting (apply learned patterns from another dataset to your own for better performance). " + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "authorship_tag": "ABX9TyMG7TQ+zjNvXlWvwhTedWdi", + "collapsed_sections": [], + "include_colab_link": true, + "name": "08_pytorch_paper_replicating_exercise_solutions.ipynb", + "provenance": [], + "toc_visible": true + }, + "gpuClass": "standard", + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "069a53cbbc6c489bb0e93920fe9c74e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } }, - { - "cell_type": "markdown", - "source": [ - "## Bonus: Get the \"most wrong\" examples from the test dataset\n", - "\n", - "Since our ViT model trained with SWAG weights performed so well on the test set (close to 99% accuracy), let's see which samples it actually got wrong...\n", - "\n", - "Code from: https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/solutions/06_pytorch_transfer_learning_exercise_solutions.ipynb exercise 2" - ], - "metadata": { - "id": "UGKYpI6_hRz2" - } + "1008a3eb2c1e444f8fc417fa2aabd3c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } }, - { - "cell_type": "code", - "source": [ - "# Get all test data paths\n", - "from tqdm import tqdm\n", - "from pathlib import Path\n", - "test_data_paths = list(Path(test_dir).glob(\"*/*.jpg\"))\n", - "test_labels = [path.parent.stem for path in test_data_paths]\n", - "\n", - "# Create a function to return a list of dictionaries with sample, label, prediction, pred prob\n", - "def pred_and_store(test_paths, model, transform, class_names, device):\n", - " test_pred_list = []\n", - " for path in tqdm(test_paths):\n", - " # Create empty dict to store info for each sample\n", - " pred_dict = {}\n", - "\n", - " # Get sample path\n", - " pred_dict[\"image_path\"] = path\n", - "\n", - " # Get class name\n", - " class_name = path.parent.stem\n", - " pred_dict[\"class_name\"] = class_name\n", - "\n", - " # Get prediction and prediction probability\n", - " from PIL import Image\n", - " img = Image.open(path) # open image\n", - " transformed_image = transform(img).unsqueeze(0) # transform image and add batch dimension\n", - " model.eval()\n", - " with torch.inference_mode():\n", - " pred_logit = model(transformed_image.to(device))\n", - " pred_prob = torch.softmax(pred_logit, dim=1)\n", - " pred_label = torch.argmax(pred_prob, dim=1)\n", - " pred_class = class_names[pred_label.cpu()]\n", - "\n", - " # Make sure things in the dictionary are back on the CPU \n", - " pred_dict[\"pred_prob\"] = pred_prob.unsqueeze(0).max().cpu().item()\n", - " pred_dict[\"pred_class\"] = pred_class\n", - " \n", - " # Does the pred match the true label?\n", - " pred_dict[\"correct\"] = class_name == pred_class\n", - "\n", - " # print(pred_dict)\n", - " # Add the dictionary to the list of preds\n", - " test_pred_list.append(pred_dict)\n", - "\n", - " return test_pred_list\n", - "\n", - "test_pred_dicts = pred_and_store(test_paths=test_data_paths,\n", - " model=pretrained_vit_swag,\n", - " transform=vit_transforms_swag,\n", - " class_names=class_names,\n", - " device=device)\n", - "\n", - "test_pred_dicts[:5]" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "ncTLFSKXhrgI", - "outputId": "fcd9a610-a291-4ae8-c296-036bb4d69333" - }, - "execution_count": 38, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "100%|██████████| 75/75 [00:02<00:00, 25.08it/s]\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "[{'class_name': 'steak',\n", - " 'correct': True,\n", - " 'image_path': PosixPath('data/pizza_steak_sushi/test/steak/2144308.jpg'),\n", - " 'pred_class': 'steak',\n", - " 'pred_prob': 0.9924067854881287},\n", - " {'class_name': 'steak',\n", - " 'correct': True,\n", - " 'image_path': PosixPath('data/pizza_steak_sushi/test/steak/1285886.jpg'),\n", - " 'pred_class': 'steak',\n", - " 'pred_prob': 0.9951366782188416},\n", - " {'class_name': 'steak',\n", - " 'correct': True,\n", - " 'image_path': PosixPath('data/pizza_steak_sushi/test/steak/1016217.jpg'),\n", - " 'pred_class': 'steak',\n", - " 'pred_prob': 0.9988836646080017},\n", - " {'class_name': 'steak',\n", - " 'correct': True,\n", - " 'image_path': PosixPath('data/pizza_steak_sushi/test/steak/1868005.jpg'),\n", - " 'pred_class': 'steak',\n", - " 'pred_prob': 0.9997372031211853},\n", - " {'class_name': 'steak',\n", - " 'correct': True,\n", - " 'image_path': PosixPath('data/pizza_steak_sushi/test/steak/966174.jpg'),\n", - " 'pred_class': 'steak',\n", - " 'pred_prob': 0.9809446334838867}]" - ] - }, - "metadata": {}, - "execution_count": 38 - } - ] + "14c9f4e69c854a53a8e15ab5323eec94": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "cell_type": "code", - "source": [ - "# Turn the test_pred_dicts into a DataFrame\n", - "import pandas as pd\n", - "test_pred_df = pd.DataFrame(test_pred_dicts)\n", - "# Sort DataFrame by correct then by pred_prob \n", - "top_5_most_wrong = test_pred_df.sort_values(by=[\"correct\", \"pred_prob\"], ascending=[True, False]).head()\n", - "top_5_most_wrong" + "1b5f49a68fe84812ae6f1c014d3348f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9e7268f207304961b8035122012f61b0", + "max": 10, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ff69c66d4d3f4c17be9826da8319a3f3", + "value": 10 + } + }, + "1fedade3d325455fab7041a5ecdf7a24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "21000ae3a0ac49459ba4d66ce30e3349": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2163e30923ee4e98a0b524113055cbbf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "223758f1c0994fec8fcd2be8947f9f4e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "22ea6b6a2899467bab284b86ea60280e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ef69dccad93e40509855e3042fca66b1", + "placeholder": "​", + "style": "IPY_MODEL_ea0de57a136f4ee782d0a0b60f15120c", + "value": "100%" + } + }, + "267761bb9148406eafbf4fce8a35e731": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2afefd5f072f41a6a9754b8b86885fd4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_14c9f4e69c854a53a8e15ab5323eec94", + "max": 346328529, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_21000ae3a0ac49459ba4d66ce30e3349", + "value": 346328529 + } + }, + "2df321077b244eae825466422ef0bdfb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4298507389e2419ba787f316d2c09c58", + "placeholder": "​", + "style": "IPY_MODEL_1008a3eb2c1e444f8fc417fa2aabd3c6", + "value": " 10/10 [01:06<00:00, 6.83s/it]" + } + }, + "31690837feef4696ab18ad72b363e6fd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4224d3ad9ded48cea36a5984826af143": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4298507389e2419ba787f316d2c09c58": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4ae1ed5541474dbeb8946a87b97ed3b8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "503f290ef1704e8199c52fb3ab150bdf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "69e851ff3c3344b3ba0dbad055a542ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f9fd5a5bb97f4f68978610975a864fcf", + "placeholder": "​", + "style": "IPY_MODEL_069a53cbbc6c489bb0e93920fe9c74e7", + "value": "100%" + } + }, + "72415a3076c042bba10412be90a5222c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f3eb5a1beace49cab6c1f9ec107e57e5", + "IPY_MODEL_1b5f49a68fe84812ae6f1c014d3348f0", + "IPY_MODEL_c33a10a3693340bc9b9477caab4d532a" ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 206 - }, - "id": "mKVRdY1Vh8En", - "outputId": "9a3a1429-c55c-4e5d-cc40-2869d3a4f723" - }, - "execution_count": 39, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " image_path class_name pred_prob \\\n", - "25 data/pizza_steak_sushi/test/pizza/2508636.jpg pizza 0.801234 \n", - "22 data/pizza_steak_sushi/test/pizza/1687143.jpg pizza 0.999948 \n", - "43 data/pizza_steak_sushi/test/pizza/2111981.jpg pizza 0.999943 \n", - "24 data/pizza_steak_sushi/test/pizza/714866.jpg pizza 0.999935 \n", - "8 data/pizza_steak_sushi/test/steak/3424937.jpg steak 0.999927 \n", - "\n", - " pred_class correct \n", - "25 steak False \n", - "22 pizza True \n", - "43 pizza True \n", - "24 pizza True \n", - "8 steak True " - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
image_pathclass_namepred_probpred_classcorrect
25data/pizza_steak_sushi/test/pizza/2508636.jpgpizza0.801234steakFalse
22data/pizza_steak_sushi/test/pizza/1687143.jpgpizza0.999948pizzaTrue
43data/pizza_steak_sushi/test/pizza/2111981.jpgpizza0.999943pizzaTrue
24data/pizza_steak_sushi/test/pizza/714866.jpgpizza0.999935pizzaTrue
8data/pizza_steak_sushi/test/steak/3424937.jpgsteak0.999927steakTrue
\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n", - " " - ] - }, - "metadata": {}, - "execution_count": 39 - } - ] + "layout": "IPY_MODEL_267761bb9148406eafbf4fce8a35e731" + } }, - { - "cell_type": "code", - "source": [ - "# How many samples from the test dataset did our model get correct?\n", - "test_pred_df.correct.value_counts()" + "7c07eac4cfb3485b81b301722b8ed256": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2163e30923ee4e98a0b524113055cbbf", + "placeholder": "​", + "style": "IPY_MODEL_8992a45afd2a42e48e655a12ba80291f", + "value": " 331M/331M [00:18<00:00, 20.0MB/s]" + } + }, + "7ca1118a9dc54de5945764c9c5aba485": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8992a45afd2a42e48e655a12ba80291f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "899a3c7eb54744b0867b948b62425136": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f9d6180bf6e74ffcaaf5a8bbededb652", + "placeholder": "​", + "style": "IPY_MODEL_ed05f564f7e84d00881ee38a5b38c635", + "value": " 330M/330M [00:18<00:00, 18.8MB/s]" + } + }, + "8c87a454a6d9410f90a1b657118fb794": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9e7268f207304961b8035122012f61b0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a812ad16865e42df8cc28512f6bf034f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ab127b12615c45ed8b27a59584657bde": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b695c70e6147429ba217ba33e96d226e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cea652ed4443470bb0e7177ca97483b9", + "IPY_MODEL_c2d4e872f3a146088ec5a3befeb8fd12", + "IPY_MODEL_2df321077b244eae825466422ef0bdfb" ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "EMPqhlcGiEIw", - "outputId": "3fb93aa9-e718-4d84-cb7c-0bf52076b133" - }, - "execution_count": 40, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "True 74\n", - "False 1\n", - "Name: correct, dtype: int64" - ] - }, - "metadata": {}, - "execution_count": 40 - } - ] + "layout": "IPY_MODEL_31690837feef4696ab18ad72b363e6fd" + } }, - { - "cell_type": "code", - "source": [ - "import torchvision\n", - "import matplotlib.pyplot as plt\n", - "# Plot the top 5 most wrong images\n", - "for row in top_5_most_wrong.iterrows():\n", - " row = row[1]\n", - " image_path = row[0]\n", - " true_label = row[1]\n", - " pred_prob = row[2]\n", - " pred_class = row[3]\n", - " # Plot the image and various details\n", - " img = torchvision.io.read_image(str(image_path)) # get image as tensor\n", - " plt.figure()\n", - " plt.imshow(img.permute(1, 2, 0)) # matplotlib likes images in [height, width, color_channels]\n", - " plt.title(f\"True: {true_label} | Pred: {pred_class} | Prob: {pred_prob:.3f}\")\n", - " plt.axis(False);" + "be6101867f2c47ca8b5450b2a2755702": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c2d4e872f3a146088ec5a3befeb8fd12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_be6101867f2c47ca8b5450b2a2755702", + "max": 10, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ab127b12615c45ed8b27a59584657bde", + "value": 10 + } + }, + "c33a10a3693340bc9b9477caab4d532a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4224d3ad9ded48cea36a5984826af143", + "placeholder": "​", + "style": "IPY_MODEL_f92c3db1bd3b40bd9c3f93f35a2f41c4", + "value": " 10/10 [01:54<00:00, 11.41s/it]" + } + }, + "c3f31ae0b1654d338a6d16600fd0ae7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4ae1ed5541474dbeb8946a87b97ed3b8", + "max": 347495889, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1fedade3d325455fab7041a5ecdf7a24", + "value": 347495889 + } + }, + "cea652ed4443470bb0e7177ca97483b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a812ad16865e42df8cc28512f6bf034f", + "placeholder": "​", + "style": "IPY_MODEL_503f290ef1704e8199c52fb3ab150bdf", + "value": "100%" + } + }, + "d1c7ef8be6974da1bffac9352f5bb756": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_69e851ff3c3344b3ba0dbad055a542ba", + "IPY_MODEL_c3f31ae0b1654d338a6d16600fd0ae7c", + "IPY_MODEL_7c07eac4cfb3485b81b301722b8ed256" ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "RyoCgHlSiKfT", - "outputId": "73179653-e86b-473e-e7ac-104c68d99b7e" - }, - "execution_count": 41, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAO4AAAD3CAYAAAAaN2hxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9e6wteVbf91nr96jae59zHz3dtx/zZAaGgQEG4gBxBIqTICeOSQiGODgIgwlx4ghFUZTIlkEBo2DHFpZJAggL2SYyEEKwg5EVFIEUHJuY2IltEkMMBjMM8+jpvveee885e++q+j1W/lh175xpuntuDw2Tce6SjnRO7dpVv/rVb72+67t+R8yMx/JYHssnl+gnegCP5bE8ltcujxX3sTyWT0J5rLiP5bF8EspjxX0sj+WTUB4r7mN5LJ+E8lhxH8tj+SSUfyoUV0R+QkS+9rfpXm8Tkff+dtzrZe79dSLytz4R934lWefDRCQ+4vnvFZG3/daOCkTkW0XkB36r7/OJkldVXBG5vPLTReR45e+v/u0a5McSM/s9ZvbffqLHASAi3y8iyzpHd0XkJ0XkXZ/ocV0VEflpEfmGT/Q4XiqrYWrr3J2LyD8QkS/9BI3lbSLyv4jIQUT+kYh8yauc+4SI/PcickdEbovID4rItUe5loh8loj8z+v3HplU8aqKa2YnD36A9wH/+pVjP3jl5o9kbf9/JH9mnbM3AS8A3//SE8Tln4qI53WWv73O3Q3gLwA/IiI3X3rSb8Oa+++Avw+8Afgm4EdF5KlXOPe/AG4CnwK8A3ga+NZHvFYBfgT4d1/L4D6uhSMiv0tE3i8if1REngf+0suFcWsI9anr74OIfIeIvE9EPiwi3ysim0e839eJyM+IyHeJyP3Vav3LVz5/6EFE5OdeEinYOt7vesnxKiLfun7nj4nIr4jIhYj8goh8+cczLy8VMzsAPwR81pVxfruI/AxwAN4uIu9avfJdEflFEfn9V57rDSLy46v3+Tv4ongkEZFRRH5g9QL3ROTvisjTIvLtwBcDD+bju9bzX20cv1dE/v46jl9/MG+vcN+vWMPhz3pts/XRYmYd+IvABnjHGvr+6PpM58DXichz6/zcFZFfFpF/7yWXGVdPeCEif09E3vMo9xaRdwL/DPAtZnY0s78C/N/AV7zCVz4F+DEzOzez+8D/CLz7Ua5lZr9oZn8B+PlHn53fXI77DPAE8FbgDz/C+f8l8E7gc4FPBd4I/OcPPlwX1xe9yve/EPgV4EngW4C/KiJPvPQkM3vPlSjhPwF+Efh7ZvaNV45/EXAG/LX1a7+CL+brwJ8AfkBEnn2EZ3pVEZET4Ktxa/tAvgafr1PgReAnceW+BXwV8D0i8pnrud8NTMCzwNevP1ev/9dF5I+9wu2/dn2eN+OW/j8Ajmb2TcDfBB7MxzeKyO5jjGMP/EHcC/5e4I+IyL/5Ms/7h4A/DXyJmf3Djz1DryyrR/0G4BL4x+vhLwN+dB3HDwI/DLwfeA74SuBPisi/dOUyXwb8D/g6/SHgx0Qkrdf/HhH5nle4/buBf2JmF1eO/dx6/OXku4EvFZGba3TwFcBPfJzXejQxs0f6Ad6LvxCA3wUswHjl868D/tZLvmO4kgr+8t9x5bPfCfzqI97764APAnLl2N8Bvmb9/aeBb3jJd74ID1Pf+ZLjT63P8lWvcr9/AHzZK3z2NuC9r/Ld78eV7R7wPPDjD557Hee3XTn33wb+5ku+/+dxwxTwMOpdVz77ky+d41cZx9cD/xvwOS/z2UfN16uN4xWu/Z3An7syHwb8p8AvAG96hHX0tld5z3Wdu9vAz15Zc98K/K9Xzn0z0IDTK8f+FPD9V87/2SufKfAh4IsfYe6+5up312Pf/uDaL3P+c8BPAX39+Ukgv5Zr4Xpij/JuzYzfTJ7woplNj3juU8AW+D9F5MExwRfno8oHbH3CVX4Nn7DfICLyZjxv+Foz+6UrxxNusX/IzH74yvE/iHvnt62HTnDP/vHKd5jZN7/CZ79+5fe3Al8oIveuHIvAX8bnLL7k/F97DWP4y/ji/mERuQH8APBNZlZe5txXGwci8oV4xPRZQAYG3JNdlf8MN0rvfw1jfDn5WTN7pcjr6lw8B9y1j/Zkvwb8sy93vpl1EXngnT+WXALXXnLsGnDxMueCr7X/C/fwAnwHPt+//+O41iPJbyZUfikCtseVEwAReebKZ7eBI/BuM7ux/lw3D1sfVd4oV7QeeAvuhT9K1rz5x4DvNLOfeMnH/w1wDnzzlfPfCnwf8I3AG8zsBvAP8RfwWyFX5+3Xgb9xZU5umIevfwQPoyuufA/kLY98E7NiZn/CzD4T+OeBL8XD3ZeO4WONAzzM/HHgzWZ2HfhefuP8/G7gm0XklfLA10OujvuDwBMicnrl2FuAD1z5++HcrUDgm3iZNfMy8vM4/nD12u/hlfPQzwX+vJntzewSn59/7eO81iPJ64lq/hzwbhH5XBEZuYKqmQMN3wf8ORG5BSAibxSRf+U1XP8W8B+JSBKRfwv4DOB/epnz/iLwj8zsz1w9KCL/PvAvAF+9jueB7PAF8eJ63h9iBZN+G+SvA+8Uka9ZnyuJyOeLyGeYWQP+KvCtIrJd881HrlWLyL8oIp8tIgE3VgUP4wA+DLz9Ucaxfn6Ke7dJRL4A+Hde5pY/D/yrwHeLyL/xGubg4xIz+3U8FfhTKxD3OTgye7V2+ztE5Pet+fJ/DMx4+P2xrv1LeLr0Leu1vxz4HOCvvMJX/i7wDSKyWR3HH8Y98Me8lriMeCTzAFQcPtYYXzfFXQf4bXis/4+BlxIF/ijwy8DPrqjgTwGf/uDDFeH84le5xf8OfBruvb8d+Eozu/My530V8OXy0QjyFwN/AF+sH7xy/I+b2S8Afxb42/iC/mzgZ17r8388soZ5v3sd8wfxnPhP46EoeBRwsh7/fuAvXf2+OPHkj7/C5Z/B04Jz4P8B/gZr6Av8V8BXisiZiPzXjzCO/xD4NhG5wAHFH3mF5/k53LN/n4j8nkebhd+U/AE8vfkgjuR+i5n91JXP/xqev5/huebve5AqiFc1vvdVrv1VeNh9hqcJX2lmD4z7V4vIVY/59es43o97/Lfz0Ub2Fa+FpylHPuKBjzig+qoiH502/n9TROTrcDDl1VDn366xvA34aTN72yd2JJ+cIs46+11m9t5P8FA+qeUxAeCxPJZPQnmsuK9d7uHlkMfy8cl34nP4WH4T8kkRKj+Wx/JYPloee9zH8lg+CeWRCRjPfsGXmFmjt4oo9F6oZUHV6DZjQEoDpTSsQVsKMSZqq+SodFuw2sDATBEMuVqVUXEGiRnSjPCgTCjQWycERQR6r2QxYm9EM0IDJaGiECo5KVGMbQpkNawWBBCFoEIIAtZhvf+YB7BA60LtcJwnel3AGtIKmxx5+1ue5gt/x3u4No588Nc+SNJIEgjagYVaJtTgZLNDCKCBcRvYbhO1TAQUmiBEpl6Zy0ynk4dEHiK1FehCDpkQlVIWWu9oUFQDY0rEYAgNtGMhImFk3JxiKpg1Wp3pvWK9IyYspTIdC6VUuoHFwLgbyZtMjEqtDVUFFDOhdWOeC7VUSlk4zgeaNaapUVvg9p1LPvih25xfHqm9UWtHRBCEUgpLXzi9fo2YN1zMC8dakRSJY2R3Y4MxUdqChMg2bXhq3PJEFE6kkU0IptTeoSsbSUjtWGyI4MU6VZqBdUHFEKvEEFFVZJM5rxXGTHrqGsM20feX1HsXpKZEy5TJGAK0VhEVnyt4wFpCzW9kGCEElmVxhlKI9AaK0LuhEujNEBGCgIhBgpiNOEQW3cLuGT48Nf7JC2d8+P6BpYLVCghT6dy9f0nvHesNa5UgRm/+rP/Hz//qI/EHHllxl3IkqGB0VBRBCBoxGkEGau8sS0dECUGQaK4wItTe6LUREP9cA22duCCukK02xDqqgnSD3gmqBIGlLGRJBBVSEIJ1ghhRFcUQcaXUmFAxclSiGq0WaJWcMwaIRkSU3hu1VqzDcZpotdM7iID1wsmYeebWLfq85/rJwOd99qczhMbF+YvsdkqZF5alsNsMDHng2AvSodbGkBNBI2pKN4GQaN1orSHa6cC43dB64+TajjxkjscDx/0EBFozVBMhwTxPpBTRsBo1gRAiGjOESEyJPA6UNjPNDSud2juq0DG6VZayUJqhPaIpIjFgHUQDze0o3YxWfU6msjDNE9OysN/vudjPLLOwLEJpnVIbtTZqa4QYEFFMBNEAEtgfFw7zwqEsEAO7uOPiYk9rByQKIcM4BBbr9JjpKxuxVoMQiDmxTI0YoYsQNWC9Q4OgwY2NVVrrEIypFXoBhszmxjXyyQkqjWMxqIY0oBvRBGuCNaW37msvKt0afZ1bFaX1BmakGDFzBVXceKgqitLWdd1L9edX0C4EHRAU652cMikNwEIpBUVxDogQQ2JuMyCoBugNEX1NjJ9HVlzRhobgD/1gEcVILYZ1xVYvZnQQQ0XAIGogxEgxoDUUxVpHBUzWGWmdaB3FyBpAzc/tnRRgE4TYC0mUAYhhNRq9oVERBRH3AGbGqEKthRwj5mYRM6WUzrEWSmn0Dq01rDdEOjEIOcCzT97gPe/6NN749JNcnr1AmS6Z799Gl8zN69eIuw1nd88gKEE7ZSlgHQ2ROCSGYSBpoosbg83uhLIUjEZvhqowLwsxBVIeMIx5KZhB775QREBQNpsNOQfEzBevGCAYsBlHpvnI1BZqL/ReCTGQU6KWBs3oYhAEWT3qNBU0ZCxBTIHaGghMy8LxeGQphbks7I8HDtORi4sD+0NhXgTrkcNcKa3RrWMIJkptxlI7psr9/cxhKuyXBYuBqMrlfmK+f6TWI2EQTp+4ieaZeTqgbInjBhCwhhmoFJBKMCGlARPFOiQNiPnSsNbYDJnJjD5kbBzYPHGD0zfcJG8y2itdLliaIotRpxmVSJdMjAPNCqU2dNWUFAIK9NZQM59mc0PRuz+viIIZpTZEAoGIaKQ1pdWOBKEWIeZEBYIEctyQUoPpQF0jv9ZBNaAIIm5EW2urEj+66j6y4mowkO6K6RqHiKKqtAZBFeiIKtIbJp5A11apC4h5mKFmBPCXb50AqHXUOgFDl8agCY1CVEHpRFXEGkolG0g1ZLVPIQpGJcS0WsWAilOEllrXsNOoFax3WjVUA2JCiokuhkhnN0Te/uZn+Ix3vIXcF84+8F76PJGTkKrypqee5ubNG5ydnZFE0WS+2DBi9MB+ux3IMRA1sNTGdrfjTW95Mxf7Sy4uLrl75y7Qidkp2rUUNCjTcSJpRERozaMOuhHUX2pQodORjhucpXB+eAFCpIuw1IXtbmQMI6LK0goWApISfW5IjNSl0cVYlsZcGjEZrXdqayy1MM0Lh+ORi+OewzQzzQuiibzdcliOrpDz4mG3qUcsaiyts5ghBOpcmWtnbp6aYHA4TtRWiUHptfv5vYN27peJ05yREOhmzMsMQdgOA0OImLiHCxIQCfSlEHonBKi9wZDR3Q69tmO4fkoYB9oys1xeYlNFK4Qm5BCxLtTWASWEQBdFujuabmv0QCeE4AFzNzBW79w9evSAGRWhtQnpESwRNGPW6U08LaqFlDZs8kCQCZG46k0np0SvnR4WWm20Nfw2+4heva6K22pFYgQ6GgK1VjDW0FcwMZrVNYdtSG++oLsrkIog3ZUzm3l4QEOBgCuu1cJmyKhVeiskAkEMtU5U97QihjXAPBcZxoFmnWaNZfI8orZK7Y15zRWd9RforaIGas1z7F45GZTdJvPPff7n8Xmf9U7uv/Ahbr//RViOBOsMOvLMk7c4GTac37nH4XJPVIW+eNgmgQbEGMlZicmvr9I5Lgfu3r9DypnrT1xjf7hPXTwk7a1x3HsI3ZeZtIukDKEFYsp060DxBdFdyWKIhJSJISC9MZVCa41xHN2A9o6ouXJ1AUnEwWd4Kgdq9ZDs+o3rTEtlPuy5PE4cjhOXh4nLw5575/dduZZKTAMpKUvp7I8TtUN3J01HqR2aKE2hduM4+TmmAVSovdN6xySwtEIMUGulWUOiUrVzXiYPuspM6RWNiZgicRhBjdaEPOxoS8WoWKkk6xQ6NQrD9RNObt0iDRmxTptmjvfu0w4TUjtBMypC7dUdh/rot0OmU2ndFbfVBQAz8fBYBMyIIazRWiFlJecA5pGM1YY0paLetYPQW6WzkAcYU2BIkXEYmK3heUEnBWER9edb6dceLT6y3j664saYAAghoAqqtoI8DQ3KgyBORECM1iq0TsIQlTW3LCugVInWCOaKq6yKHkDKxJASPRpB+wpiGTknt4Rq1F4JIbI7vcFmOzLXmdt3bnP/8hLW0KrDSoN3a20GKSWCNbJ2rm0y73jbW3j7m59hM8CtJ29wuPc8l/eepy17hhgZc2azGREp3Lt7m94b0iv0xS1wB40BERg3CQ0NpNODEpJ7wttnH+b02jWiBkQaMRgKmCr0SptntkMiRUi5g0WCBpbS6YjnVWKM4xYQYoxI8PxUW2UTMxp8Qaoo1oUQEh0jJp/z2iCExFJm9odLJAhdlGleuH37Lodp4ThXpqWwP3j+auZvptSF/XGirVFUQ4jiqdG8VGqA2cyjGzMIiiZPFRqdag5kpSio+CuZpwkFtjFTQqcEQ1KgmhuWRQNB4WSX2W6vkTWTOvSLc8pFx4qnJvnGKX3M9BgZNxvK5SXH/R6WhUEVzRltawiclShCUAegECOIEEMAHMwLIRJCoFUDDe59TUAFlUCMgtBpvaDYaiiVihBjXqMMd0L0wum4YTNE7l0cCGKIepoZIw+NWO91TY/853VX3JwG5nl2RK556FBrcaBqzWkFQ8XorRLUSL0izYGbslSyKsmMjJF6p5dCTtFD4ehoYVQhiKyWyNFkUEpzMGtpneM0o1YwTdy9uM9hPlBKoXSjdfe6ghJTwqx7zoIR1DgZhKdv3uDz3/Nubj1xk8uzFwll5vz23r17XzjZDuyGDTGAirHMe18oOSK9oRRaBRMDlDRmhmEg5wjSkRgorRKiW/fzszsenrXKkCJhTFh3pLLkuAI8a5pBAIGYIt2EGFmvY6gqIUS6gAQlDxlDCTGsfTMeDlo3eveQtjW4vNizlMJSZubFDV8XoZsyzwuH48RcO4epsJSOENCQmOdKQ1hKo7bOXCpLaSSN1N5owFLNgSYaaYwgSlu3Too50Ss0CiGpA5ZB6L1AdzAmBiUExQIMmy11NWo6JPLJhjhkIGIG43AdkjFfniMps3nyCYabT6Ix05ZGPUxwnAmlkCShKpi5sqgKUd3RWDeCBjy3im5NxFbgS5AArTtiHqOnI2EQrDd/D0Gx7qlC6231EJ77ihghdGo7Mow7dkMmJ6V3oOLvWJQlRY7HPYiDq6ryG1q2XhfFnY8TIUTEoDcjSETDGhYjaDeCVUIv2Dyh1ojdASbpPrhoSkAJayLeY0LFQQBRNwSE6MhoyNRaWWYHB0p19G9q3SF9g8N028s24gBUByQ4qhtEUOsMUUkhsNuN3Lye+MxPfY53f+pbubnb8oH3/jrZZoI23vrcmxhz4nB5iVgnICzHPWX2cLv2xRdZUkySlwG6v4Td9pRhMyAKRmfMI6k3YlTm+UhrhWme2AwD45hRjV6+MqGUyrwUVDPd1EM5FTSAmKJBXUlToLSFqh7BpJAIlmgdQky0Zh7V1LaCHQ6Ta4gECahVaIKZsCydRmNaGjFnYjVuPHWD5198gfPDJYJSp0ppxtKMUo1SYelCUeHYFjoGKjQzTASNCsFRbSRgQKmF2johBnoUZIw0gRyEIIHT7TVundygHBeOpRBzYkyJYYikIXo4bZWokRqUkEd0HOBky8mNG5zcfAN52NKOM/XufZazC9JUGTTRuwOoKIwpu5JSaa2h6qVLzOejtUaU5PoboFkj5UTvHvqGoI48m0BTRBIxRGY1CIltCBCElBWiYFIJW2UYE9e3G4YUOEyeHiXJiCgpRjcK5nl2SOpg4eutuCE4Yjnt9wRR6I2wAlDUCavFc1EalIWAETEUw6wTQ1pLPJ7iY4JqBIzau4csGphKpfdGmxdqKZ6DeOLsIFMzunWv36mXNeAjQJkGLxHlYDx1/YRn33CDWzdv8ObnnuGpJ7fcPA3U4zkffu8HOJ6dE2Li1hufZbfZcX7vjO04stuMWGvcnSa6RmotjMNAEGGZZ4YhYmqEkDHCWlYweu0OViUPTWsrhBiJUTk52bgSitdmY0wIyrwsaKzMSyNqJOdMKZ7biurq6bOXyayTUqRh1NZozQh5IKURUUdlgwVqK7Sy0Ht3cM4aKMQcKa1xeZg4lpnaYF46xeD88ohoIuUNh+NC7Z25Npopx+LjW3rBdE2HQqBZR2PwmiRCqx3zmhq1e94bQuD69RNCDpQ+o+pp18nJKeN4Su1wcTjSu9FrYxwz22s7NttMWMtgS13QkNbIbODadmR3siEGpVxeIMeFdu8+4TiRuiI9EDCP1rQjKtD6ati9JBPUaK2701FDU6C1SohKiNGBqaUSY8RLOEqzTkgBaMQoWBCqRFhzaOudrNHThF6Ahd0gbHNknzJzM2o1jIZKIKeBUoobkNaR15DkPrLiDn2BeWG0jraK1QVrhaRG6AtKh1Y9lOyNpF4v7c0L/WJ9LW93JHioCE42mJeZWAOtN5Z5ppnXFnv3SW9mBNWHeUYzc0CqOboc1hxvGAaiNDYB3v7GW7z7HW/hHW9+hm2M1MPE+YvPM784sT+/y7S/JIfM7sYbSBK5/eEXKctEnSaOl3umwwFqZcwDkoNb2HliWWYH0FInJqGZsNSZaydbTk5OaWZruanSEXrvjEMkDW5YHm46spIfNCRCFpIEr/+qrmSAQAhKjJEYvQ69GdY8v1daNWo35CFaGii10hoPySStdbqwor+F2o2Lw4G5VPbHmeNcKQ2WBnnsIFC7cjkXzNTD4Fo4TAutQ8PQqGjwEp9ZZ1mN64pU0pphQOuGqK6IfiOMETPBBDbbU4Zhx/FYmaYLyjwTQ2STEpoiacxoXNePiWO6rZLxqsF2O6JB6MsEhyPTC2eEiyNjqYQOqulh2ibqeammQF1BPgyvbgTxenRQaq9ARYkrKaM/BKLEAuDpnIhg3VHtkAZK6R5tmJM5em/kMVGsYX3hxm7LySZzfszUap5Cidd6U0rklD1CesALer0VdyzntKWi3QvPwTq6hoNK831o1BdLShExh/4dlPLF4+GT1wqWpVJLY1kWavVCtoizU2wNe03ckwlOZrDeUPO8wzBCdkQ7qZJj5GSTuLbZ8c63PMN7Pv2tPPfEKcEWPvDeX+Xi3pEYjN6OlHkBEinvaNW4/fyL5BTBOm1aVu9m5KCU0gghOmmBQE4j23HLsFsJCQUIiZAiJzeugSgXl0d6r5RFwQLjGJ3RlTy0nZeFZubAWwwoThDovWPCSroIjm6qh8oGSBBXXINxOxBDopuX3Bwa7J57dvf481KYS6W0TsPYTzPFBM1b2tSZauVwWJhLo97f0zGmUjnUxrJMlA7TXFhqR4Ln8gT3NEtfQSwVavM6c+++8kJKD8EWVWGajp7fRvGopHXGYWATI3OtJA0e4hscpon94UBMJ7TmmEVMgTwOpHEg5ZHSK7JU+vkFcu8S3R8YuxHFqCv7LsVArQsiTkQR1ZX9BClGSi3kIRM0YGZeGbHgntLM57Y1gmYvdbVOcPeEhIhqxFSJQ0CC0nBvbKJ0wpobN3IyTjaJIY1Mi9GS0WonpEzoza9jzuh6LUnuo4NT0566ODAhGFHEQ9beV8ChoyhEt2wYlO7JeK2NZs09Qjc4TMylOChjbp1TWml4ou5p12s+YLWI+LUwhaAkFYTGyRDJArsc2SR419ue5XPf9SkMsvD8r/0S8+GcMndSPKE1z5npgSFnTrY32IyDh5XFc5kckzOoVvPXzdFHJBATDJsdedyQkmHSkKDU7qWYmDOlNW684SaH4x7bN1QiOTtK2nqni5LH0cEKc28ZNYBWrCwOND0gr+TspIwQ3LCo0WsFNUKMaIj+t/h1uq0eRoWyeHg7z5XDNFFbcwBq6TQr3N/PnN275DAVz/6aYwiHsjC3TmndAanqXi+lSIhhBWQ6zTqm4vn/Wo+3Na/s1ZHSKNFJDq1jdaVwmjEf9pR5h6QTNidbrDpgpKqYNeapUneCkjz8j5HtbuvKWBZaXTgeD+Rp4lqHKBBojjP1B+FsB2mUVskxerhMIMSApkgOnlaZNcyMlDwlau0Ba2pdc/j715g4Tk7ZNMHnuDcI0b14iBCdfJHSljQOzCYMSdnttqRYGEeh2ELQBCbEntE4sVTXhRgfvXXg0XPc5littI51KOZ5qXM+HQixbjSDeS6UVimlIivHszUHsaw7gtbNSzvgIVgrbnFCAOjrC3PChkaH5j3fCE6zVCOL8OTJyOd9+ju5deMm+/05b3n2DYx95s7z7+P87EU2Q2YcT51PezxCbwwp88TpDcaQ0OqgQ9C4IuPqZIGVky3mnt9UCCGDBpbWsbmDQtDE0hqGcDge2Z7uIAjMhkSFtSYaVEhDYhjzamE7rfa1TKTkMWN9cNpde0DBFPIwIEEozRlaElZgKg4gSgyCFZhLoa/voVtnroVSjWkpHOfK5eHAYSocizAtjTv37nE8ztRqdBPqynzr5h5ddWW4qRJjIo9edupiWDWsO/LvgL3nok5M8NTIekNMiJoRVaxUL4FF5yO35ch0MMZxJOeEmJcMPbSNCJFxu8FT0s582DMfjrRmvpXicWK5vOQ0DQzZPbxjKIbgTJWQhLgCU62tNd2VGMKKiSDihKHWUIRxGFb+dSPnTK9+XcNTsY4ShshcF+cqB3XuOEIRZW6d+VAYu5C3IxofMOBmry2LeFVAlTgOcAiOE7TGa9kf/9EJGMWJAMKDQrHSm3vLpc2Ac3U7rqRLLQ/PVdU1N1jZKH0NhevKGVUFUYK6tw0pEnXNJwQkrXXKFXGlC1nh5mbD577zHXzBZ76TG5uRe+dn7O+f8eKHbnO8vEdEGFNyRLU21CopRnbDQHJXwAPtjNFreI5jeOgZ4+icWNRhNlF6F8rSaUslbwZASCkTUkRjcHAGY9xsCCFwce/soQfNGkD0sU4AACAASURBVDBzZo6oEAfPcRDWQn+nN7uCNEcPqc2YlwWkE6Ki0b24ofTV26OCIZ6TzjPnl5fcP5847A/M88zhWDi/9LLPxX7iYn+grwaE9f2EmOhBKbVQluL5cZAHLg0TQ4MDPWYL1IaIMYCTVaJCCIQVbxg3iZQjFhKlFxqFk5OBa6cbbu4yKSoiXk6xrr7Ih8wwDuy2GzQ6732ZC9N0xLoQQ/Y6dROmqtwtBR0GtgGwGVYWVMjO+w7qpbKlFK8jm6cemIObziGP9NIJMa55b0WCEpJjCoEBq20Fuxwxj+rsq2KNrsJlaUytEdJIzgOzOVEoa2SzyWw2CblQsAHpq2MKkTw67bWsKePrrri9d8yclF1qxWurjaUstAfWuq8PBw8J1aKr21oVQkJY62EPPChocAJjTAEjrCEVRBGadnoQYgzoikqLdU5i4NPf9EaeOdnxwq/+Mmc09scDdGfP5JjZbjYEMeeJWicCQxrYbHfEIaPBgR4HzBx1DSFAcQNSm2IWEJQgypCGte7mXSPYSuzIAyFG5mVxUGLtaDkeDpgJQRUTYynNGyBSotPIOZJSdMQ3RDB1LmxtpBM3AvM8E1DSMGCyUOvsTRltdo64eElBQmCuM/vDxNm9C164fZeLw8TxsNCrME+N/aFwmCaWWv17rTnyq6sx7lB6p2J0VZp5zlhrwYKRJawlz4VIYRyEMQY2OfHkbsfpZsNu3LDbZvIQyBuPJHoaiTmCNJoVxo2XRAyh9EAp/SFJZLvbkIdIzsJSjhyPC8uyMC8NkciQM4MEWk9Yvsbdw8QYd0QpJHOusYbg7xYnxNTWGTYjtFVhJfCANGtSAQcaRTomrvgxOTgYVGlNUTpB3XnFOHgHEY2CMAFt2HiYPWy87hsEC5lSYbvJXDtNjBeZ46XRbM29u5HHkXleYG3aed0V91gW5rnQzUsRKs4vdfBIHrKUunmrk7eKeQeH+wLDHlBn1IvbGoSUvCbqhWl3Tg0PY6R3ogpNjSiQgrBJnV1IvPHmEzy7Gzme3WG2BWsLOSWGGAk5MubgLYe9rsZDSENk3AzeTbTmN2HtZhpyIkUHKoRObwVVJedhnWTPGUN0wkCtPraQvP63zDMNo2NczkfqUoga2A4jcS0vqQilLEgQhjGTc/TCu/gm185TDmxPtuiaO223O2qptLLQemTcjLTeOb9/gUii48T/1ozDYeLu3XvcOTvn7tl97l8caA1ogdaUy/3CcSlUjMM8P8QcYurkwfPubis9tBdQ6MuEqHm1oDXGIFy7vuXaduR0TJyMid2Y2aXA6TYTpJIHZdysUUjK5O0JJ6c7ujT2xz0aneAhcWB78xne+74PcHG+Z9yMDEMGMe7dv8OyHDzd0kS3QEgRk0SRhG5GjvVIE+P5/UzbJrZpwzYk5xeIQcp0hLpUJA1U1u60kKB5F5VZ9bQoNlIAlY6VCekdyoziJcucw8oD71gENNBMMRnIaSSNW9LaPINVzKCYOVMvCZtNYIidHLzZxFaWoepaalJ5LVTlR1fci+OBuqLEokLHqN0Te7kKY6+9igBdnHnkcLkTuL01KxJEieolBZ9Mh/9FxcsNEpBSUDFSEBKdp05P+ZQ33eRNTzzBfPsMvTwHGpKFLkZU2I6Z7HwyljI5DU2VNCRSTOxOtlj3kLMVB1FySmDG8XggBCGn7BG5GRoedOVU56J2L3mk5CyqXoXSnS01lYWL/SVNjXtn97l57QanuxOsOTLemjdYmBnLsgDr4hHPlc2ceVNrWxuBFNHwkDnFig+owbCB42Hy0ljrHI8zZ2f3eeGFO5xfHjg/33N5OdFNEUuUuTPPjWluzHVharOzhkKiEqA7F7x1Z1vVCgQjRUWpbJNw6/rIG65teO6pJ7l5skHagrRCVCFJ4yQW0tDJY6dT2GxvMmw3jCcDm11iaUK3wP3LPV0CS73g7NgISTi5tqG2zr2Ls5UHX1HKWlI0OgNxyCzN0wrVjGy8vHbn8h5nt++SbOGpbeDWjVPHLUJgHLfuYePAkDZrmN2o80zrhVpmel1QK9S2EK2RYib0ipSCSFvfAXQVJEVmg6U3Zk3o9jrD9oRj7wRb+feqtGLUJtRWSCxc22U2CbI0ijrXW3oniPPvg/JbEyova8+grQwn0bACGbYCLF5je0DN87TOEDVSjrjTc/AHwkPeqlwhfoe1B9Ihvb6mVp1s8NwbnuBdb3sLzz45cHMY+cCdO4Qo5DzSgzFX4/q1Hc889RTH/Z66zCCN2qrT14JTA/OY6b0540oF693b7KKjFqKRbpVmBSTQraAixAd1xe4NBbqGkm2eCSkRxI3Z4XBgLvMKdIzEkHy+BFKI1NqdhJ4TLfT1bw/DzALdhGZHYkrEPD7EBxBFQiblDAYbi5h4L+9SjhyOExcXe45zIectIkfm5dJ7UGulLZ169EUa6Gxj4omnnyEMWz74wotMy8xqv7z2Lk7vC8G4sRt55olrPH195MlrA9sEY5+QXtCwdkeZs4xqrbTZkJTIK1hz7+5d2lnnYn/wULwrzQIxjVDPGYaR2gqX+wOtOU9YrPu4u6PKQ974+sBLZYYQh2ENa8HqQCsH5gznORNCJsWBEj0sVwnEYSBH33Qhnp5CL1COSCu06UibjtRWsFawvnhZDmcKmhoWFUuZpRiFhAwnjNefwmIilgWxSm+T89FVCd3fXVTYbRLXdgP37++ZxNedmRvuIUesLSue8jorritp42H3Uf+I91V19tCDftiU3JPqipIJPPzbuqDBObdrzd4pcb2tig7SKrHDNgoneeSZJ6/z1ltP8ezJjqe2Ax/6wAeIQXju2WfJQ+bs3h023ftlhxRoSVACpQi94DWzYQAVOk4HbL2vOY6zeyR4D681r+NpcBOjihfVs6OTzntVJ/EHz39FvXtkKr7LxxAT106vsd1sKKVyPB5JORFyoncoU6XWxjR57m5i1DbRu/e4llrRELl+4yYxOfUz5UgMiaV0lqVw//65537TgXv37vP88y9w5+4Z89zJg9ce52OhTgXpQtLEKMZmcJ5x2oxkhGWpKErvRq2L7zRiC0EreQzcevI6n/LsUzx5MrKLlVEbUhZGiYQUqDT62hxQRFh6xCo0U87u3qfJnsUctFxqwVBi2jCMI00z83Hmztk9RCHnAVvXUJCEiTKOjuRLSPTW0WDU5YiKc7yDCOPOw1XhGik4L7lW80iirZx6deV0pmYEM3JyYlBMSh42hJixVullZilHMpVEoy+LVxZiYDal5gHJW9L2OrrZOmGoODU3xkyM5hxycSAyZme7jePokdrinjXFQGudnCLLDB/Zr/51VNy2lgYexOVOqHYWTQyuwA/qUK3VdeEH54CK0c1zPNbtWAQhprjyat1DY17ET6qMKnzKc8/whe/5LMr+Psc7t2kX93n/2YFmnaefeZannn2Ow+UFQR0gSTFydu8OUYV5niileMdHymhM5KQcjwdS8BfuZbjIsB2otRJDRqS71fUGzPWfLMHxOK2texlgbYFg7aFtvgPIPGO9sxlG76BpneM0sZ8mYqsQAkNwRljthZyjkxYUZx2tbKN5KQybLfOysBQ3aB4VDMQQubi45EMf+hD37t/jeNhzfn7O+cWBe/fPKQXCsXL//iXLtFCOM2PI7Lbj2oVeqGJYa7T9gftTZSkVkbV1MDZyrpxc2/HGNz/Ds7du8PTpFo6XDNJIOGUxmANarRoFsNBQDZQqzKWjm+ClwTo588vgcirM88ytWyfEnGkVlqURYnKAUtcmzwbNArUGLveTp1PhQIqZnEdCTARRxpQREVLIUI2UAkEivQJdSWnw3U/MiUKXl+ccDkdqL55eiCuLhDWtM2ETI4MIUSPaGoPAGPxZllKRYQPDluHak2jegAbUlDzAMvsYYvR1EZC1dQ/GceR0d0pO5wxDoR59feqK1MeobMb8+ituGAb3kHioOORhDeFY2TzejxhU0LVe5myjBw+x1tr8CNYapc10Uap5/6OakaSxC/DZn/ZWvuA970bLkff9+gcJpbBfhJy9v3EzDty5/WHKdHTkuCycnU20OhFkZaLgKG3pC9kCbV4wm7l53f+NS+sFaTBNk9dvY3hYh4xRENN1mxcn/2tayzPiRsfrnh6O92YMKXk+qx/hrx6nmcPxyLWbN5jnmWOZSDnBWgXtrYE4qNXxRnlDidnY7yemaeIwTUiA09MThpR48cU7vO997+fDH36R4zxTauNwmNjvZ5al0doFF/fO4TBzGhLXt1tOhoFWhGHYgnRKb1gaGQaY7t5hqRMShO2YOb1+jWeefYpbT91kN0TKsier006DOSXTzCi90cRzvykFLGe6Jv9fJyGAgmnHYkJVOck7bq5pRlfQpORxxzRPHC4PLMX3vHKrGTEySymMORMjqKwNAgI5RMSM3WbDrVtPUZaZ7cbz5Pv3L2gGOWWevvU0w+jtmXfv3uXOiy9SW+c4HVmWmQf/BH6xSquFyRpzbytHCrIpWyCmTMgj4/YmFjJ5SA+ZbKUsYIWwVgesF3duOMmjzkdSCuxGODlJXNYjqRSqdt/GqQbvjKq/BU0GeVVcXeutou61amseT66ImGr0X8XJJPKQxuUW2roBhjzY6yeGdX8BT+5PN5Hf+dnv4h1vfoYhLlw7Hdg/MbJcev9rDIpK5fkP/Rq7zUgO3lZ4ub/geDxwshu9jap13+upq7fSiTKOA6wGpNVCqQspJ98WBq8z99ZJQR9urRPWklU3Vy4zn+xSCp1Gbcva6ri2gqn6ZmrmLKf9fu9b5LTuvcTWqfNECMK0zL5hmHkdtolf47Cf4c59hnFkf9h7E3oKDGcBq86Gunf/PucXR/bHhWle2F8emKfCPM200qAaI4FdyIyi6NqKmdUpejdOdlx74ikOEtnLwuWLBzbbgaeevsGNmwM3bmRi8PJTWWZsGNEY6aa0xfP+niIWA02FqomWEvtS6GGtoTbfJG8qTphBjFArIQj3L/e02mlLYJ4Xj9LWbXugsyxHUlbGPLDd7IghkFJkSANBgrOPcE7A7RfvEYKyv5xJefAuq7ASeNamgnkuxJg5uXYTs86mbB0MFShlYSlH5vnAUhzwK918XWsiaaRJIMbMOAyMeUNQodTJNwuotu6o4jgIyEP6bquFw/1zkHNsaezGwOkuYRT20+JRSvEN7FJKr7/iCrKGw/EjhGoRUh5ofc1Lgqy83raGgPKQUiaidPMyTF+L/kEU04CKEOjshsBnfNrbefenv50+nXMyZlIwblw/4fTZpzm7fcbh4h6YcXK65druhOlwYJknb24OSkyRWhdP/ln5vsF3ZFTtQKfUSk4B1YEYg285EuPaB5uo1etqEry5ehgGSqmee6rzho2VvCCBulIzJTgDxnPRhSQDN248QW2dWsV7N9W7m5ZmtFrp1t3SKhyXmXlqHI8zrRs3bt7gsN9z4+Y1nnjiGrVV7k3n3D674FA6iwmXh8L+4sB0mOhLgy6E7m2NQ/BG8RQj9I7SEfMulv+XtjdbkuQ4szQ/XW1xjzU3gOBWVV0z1SUtLTIy7/8Kc9MX0zXSxS6SWIjMjIzwzcx0n4tfPZJ9NyMCkAIhCAEyA+6mpqrnP+c7OTVK3Hj48IHHxz3P5cTbD295fDOx28EwGWKNhG3De0HiZONopeLniVrk3ppaZSuZEjNhSYQiL62Yc6dbChpImEs9F2uF8klT6DYAYoBxztJqw3nD4BXeTWjt8G6QiGOP1YmP22Ct0EJaaZQiJ7sWEyjFMIz4YSSkxGVZiSkCuV/39OuzknJBG9h7xzzPLMuFLa7EKJieUmFDElA2R8apMI6KUjPH04GUMsMwM/iJhmZdNhFmlUY1uJzPxG2hlUIsEjG92d8Ri2JZC61IikmhQP8Kd1zn3Cv17rql6s4K0tq9gq5q6btXU68fiiQf+mJWrhMFtPiSm8xDPYW3dzN/+PYNn374E7ZFZvOWU1yZp4FpHrEf3vBjuLAbxh7sL6RYiUHmmMMg8bfS6Pct2eWMhmlyiB6m5Z7aGna03Xkk1j1txFChraUiP1dtiZgaMSUqCqM8tYnFsfS5YEXTTBMzf63kJBiUWCrTZMWm15BzsJFDcatQGmxbJKZMSBKlWy6BEBJKa9wY8eMk46OQeP/tt3zz3R9p//bv/Pjf/o3DElhC4rImSmzoqvDKYo3GKc1sFBaoIWKVKMSqJXKIbEUxuIHqDLODP3z3lpvHO8bZ4WeF8fICHoYZbTyhwDk11jXRqtzlt7AJZRFJKSk0TcshM8aIqmIXhCvlQU5M1om9dBpGOVq21uF/MvZyxjNMg+SWsWi6imwco5u6UUdy2TGKrmKU7juWGF601izrytbhD7RGU5FSixxhtUFpw3JZO1XEoZRhnHbdnGEFNawMGdmAULBsAeccOUbW9YLRTqKrPQPt+1w/p0COiViiuM205maeOR8CaSmkrUATe6oEZSzZ/QoGDOec8JGqMKe0kh24FTEnXL21raM4BCLXL7n0iJ6SBIvpzCrhPUgA/27n+K//2x/Q4cTh6UcGA3/LqwhW9/fMfmTbNnKqHLcFrRJxDTgjpDxrHMYgaZ7uQLHWghEI2OA11hlSkZ8nZRn3WOMgZbYQGJXvQlrrzi9NQ3aPiqIpQ1GKkDKtik2z0bPAVlNrpOpGShKhG5ohtVWSTU2OQiXL/SeXSgiB87KQsuzm6xYFBpclPTNMkwhYFP7jrz/w8fnItLvl5bTx5XBmjUnuqhJCEnQrgjS1XTOgSk4XJQmesEWhVdiB48sX0nIkDJrbD/fsZo8ZXE+9zHx4946qDN//8DM//vyR4/FECCs5F1FEm1hOrLN4N3RxUSBGNZc+W6rUlmSGb2SxqCLGFaqkv6yV2KTRGtUaVsvMXWtJZRkl83OtoJQEugh4oesD1rh+jK99ARlylV8zlQRFyc+qErkUvPOo2oibkC1tc6SWusqbqEqBdv0KaCi1YazGakUshZfjgbBc8MYyz3uc0ZQcQGmZEedEjBvrupJSZOc0N/uZ6f6W5DZ+PnwhZ3l5i7iZha39a+RxW4ezqW6Py7UvEN3tw7VQqjiRhAZZxPbFV4HqOq+tVY5MpoKlsPeK//O//DP/+o+/4ctPfyWS0RjOhyPWWJ7TMzu/43g4YLThfLpwOj6xm2bcPItireXIabozxhgDXaX1gwMa27oIztUIMSLljdFbSg9OyIspYZ1FKdN9zP0a4L0A0krrTiyJGoYoBe8tZVLJlJLZcsRaj7ee1BohRWpVmJzI+RrAkP/d4kaIkVwqKdVXHcANntPlQj4EQgh8/vzE6XxhCRk3TDw8vuN//93vMErz/Pkzx+cDLWccirQGtmWlbhs5FlIpJAVWCyIHo0lGdgmtFcPthJssZtA0K3fStGyY04WG5rSsXNYgxMaUiSmQne08rsoVil5LlRGaUp16cgXQO5x3OGOZxhFtjByha3cLNS27YJ80KERgUFr170Y2g9J6WqxpCf/o7q+umZSEc1ZKZhoHmi7kYkkli1moyNgKFJsW2HnOuYfnHdo5QCDl1IZWDprwvozMMyW9ZhXbJt/5PO9Enaml86YytW6UEiAHRtuYreZ+NzE4hdWZh51nngaMPmO0+rvwjZKX3y+9cLVSxJRk4dIh2il1aLkcE7QGY+QDbA2UNrQiwQCZ+cIVJOe0Q6vKaBX/5V/+iX/6/TeE0xduBs3t73/H4flIionRjeSU+OEvP6KAm9sZbcA5jdaV2gKlLEL+VxrrejCgKfw4UJUc2zYjLQizn4VA4TzblmTEYiVwUGqADpZrDXJpWCVvXbFnGyHql9zB4MJ2qv3zyEV8ylVb1pRp64rShnXb5JrRFClklm0l5CBhBi3h6lyqpGK0YRxH7OBJJbKFldN5JTUFduDx5pHf/v4PPDw8cnN7izaV/Y0nfPOAqo3dOMoY6nLhy+cnPv70E5fjiaoUrcfbcs3UwTE4w3y3p+4cRxLn80HcYUrDCs/HZ4zzlKbQOjOMTlTd0WKdYRo9OX01x2staq8MdVR3t8p90llZuN75PtenI4Eq1khow3jXzRJajCZaUWMGBH5fEbLl5EfRGUrDVkNOV48ASHDEYa2W3VlVAb3HQCkyyopx6TNXMQyVUsk5AK0fEBu1bBjlUU3hjYD5VauoZmhFLKjny4XbaY92cmcPcSWXAC0xmsLsBqzWTA6syqgSuPc7doPFWYP3nnXd5N/DuL9Xcn+5hVvb1zsgTSDSuZQO2xZUqTVy9zDOipOms6ZkR5Z5qO22R4VkJ8fBcDd74uVEihccjcfHR1oROkbcNmqrvDwfuNnd8PJy4PjyIikPL6QDENaSczLDk9uWwSiPURIkOB2PDPOIdp6CLMJp8ui+oK01tGxIJUhqRUvWcilFEj3NQkfjrKtAuwUKYORu2yQRJW0jjRAzSxBu7ha3flyUN2yICbQldl6X343M3jH4kXmamKaJ/W7Pze6WFDPbFjDWYa3kU+/ub4kpvQqEIxNFJ8KystRF3D6+Mb3b83b+Dn84dR+4jC9ySygnpMbVaFJNVNWoqfWXk9gFS8usYUNbx7QXoUjvxOlWqywoSkVpXndKaXFAeNkytpdTiixjYvracNFaY7AGp7WknrRQFVNtrFsSe2n3vseuRtdayE10lqFfIxoZpQe0Vni34/7unn/4xz/w6ekjzy9fxL3nJskY54wfhHstYPSINoY1icLbqkwvaIpWAzSNN1aA+daRkozFcm6YnJhqRueueLTIYArONLzKzNaKSUcFtMsdreu53w/Ms2NLEaULhk6K+TVU5WtO85oZvPJ6JJ7kqVVQMnC1NtKNGq1L5E1cV1XIewqFajBoS7ysHFumbgs388zftidubvd4BzVFtpzEQUPl5fnI4csLjw+PEolD4YdZPKe1x+Wcx1hP7fPhYZqYtGfYTWhjWMImO7LxnJejYEzxEufSRuayOUFtFEzfWSulRhpa8pNNwOohFdYQ0MYI3qVk1hSIqbLFQq2N3d2MUpphtEzTJLBx45lv9ky7CTs4nDPs9zshSWRhJc/TDefTBRdn+TyNhCBCCWKvXM8sm4gr+7s92kAKgWVZidtGKJlEY7zb05Tc+XNJqBrIFErvs8m54azDWg9aM0yzuKJa4XC+ELL0EXnnaFV1O6vsQrlptJK7tUL3F7aYdZqS00Qt6hXjI/FMCXY4PzBYLWET7yWYImFlyiYge+AVJVO73z1EMa8YLdUnbtDM48w87cX04yyfPn9m3cT84dzI+bKgSBhtcM6je3yx1IK1DltzP2l1QmZ3XBntBD+bMkk7VJHRYiMzDp6mxeqpakKTGFRlpNLCimkKOxiqzrSWSDkwejk6z5PnuGwMdaDESjNa2j5+6YV7/QAFd/k1YyuQbURRbNcPugfQa5NRjBEfsCxgGcnYqhjQuNqI543TukFK5KWyvx2Zp8Lx8CyFYTWjlaiT0zCiHh5oTRFSYT9PfXwjpD1lHVVrtLPiZTWqW9rAD56tREKIDMOIHRxrWuVIpoTo0KrwhXKWmXRKwg+uTfK4aKkryRVSKWxbp/uXTC6ZkAOH9cIaIgW4ub/j7Xff8P7bt8z7kfPxxOcvL4SYUYOjOkNoonRuUfhbRkGmklp9JUyUnCGpTomQzzlkOaaez2esVtKlpMA4jS6abY3k0pjmParzq5z2zHpG6SbQwlIl8KAUwzAxDAPDMFCo4ivOheXppTOehX1Vq9R0SIheBCWD6TNYeU7WsAFdMVWiEHs3dO6zHBPH0aE7eTGnKsTIbgiIaesLt8core3PUe0zUs00zex2N+x3e7TWDG58FYfOy0IplWGc0cYxM5COL2jd02pNSC7OXOtCZDceBy9whChGkBSlAC7EjVQjNRm8GdE6s62RMEa8UrhaxKQSE75VXC8uM0ZwrlgrnyGZ/Tywn0ZUOyFVRVcu+a8QpAdenU9fF2jDWic+4+5F1qYP0Tu1XSmR7U1/sFTP5o4Ufvt4y8PkMCUwDhOl9OSL87w8P7OcTzzc33Cz31FSggajN8zTjvNlFY5yH/2oq3BWG01VqqooC857hlEG3qmKK2reC1x8TRvGWTKC5Lm6ukCjOib2eL6QckNbLz5nrTGt32ND5rwEqeNohaYkeXPYFpR1zDd77DxyzpFbCuFy5udPH3l5OZFKxY8jwzZSKczjiFZdyOz3r2EYsdrirMcO8vOVUrDGCgNp8IxGzCDLupBTIq5Lz5BWtiQs6lGB9x7nHdoKE3i/EyGkIgCEqz9aKwU1yxWkFG53ey7njdqMfAatEYN4dxWgR/nMDZLbTSnKiaWJ2mytYzQTzniUsjSlGLyXeX6uckTvTLKcryNDLXqKMXjvsEbjncQujTHSz2Qtt7cPWDMKqTJuoDZMF8tQWrzHeGKGy5o4n4NoMlaERVU0GktOgvv12gl2GM08zBhj2exGSQu1WtKWaQViXDFkoim02eG9ZygRXwqextQUuhlSbSiV0YOilU4PqRs30x07b3Fas1ZkJPD67P3CC7eU8hrXk3rGa0mVHF8Upicevv72pV7HQZrr5VgA5ZXdZPjXf/4OmwO33tFCYKmBaZLGvbCujOOAs5p3bx55+vhZrlSpYJzh9v6WhhDoyRFrRDBRWvVdVuG8wY8O44zgQlR37yjF8XKiVNjt9sQQCVkM4mKWqCxLIKRVCP0FWknCG9ISuUstc7osrFtgi4FcE6iC9obdmwfefXiPNpbzcmGJge9//MhlOfPy/Cy55qoYdzNwFKFnGKAVCZE7g7Ome4g1sx8laqgtznmBmC/idY0hEkNiXYOMH8JGSlFGYd3tk1LGuoqtArZ3fpTsqdaUUl6/25IyGEglykhEiah0s7/ldNnIMeG8Y54mFNKwGEIk5kDp459rfaQ1Bqu0MK47dsiYHqDvii6qkslin0yJmCVSp61imncY16HmtfUUmfxagx9xxnG5JNZFlGbTyZODF/RQLo3n44HT2+reGAAAIABJREFU+W8syypkFWC/3/HweMc8yTw4hIUYA+t2JsbYq3Y0IW591ivC6jiOzINGZ0fbIulygPMBfGW8vWVSBasq+kreTAVlbAc4yJVOK02JZ5ybudsPzJPnvARK53ObXwNdY3vkTo5qqocDZCHmLMVUAHTXjNWmQ79B7lGR4WoCr4nRGHaDxbvG7TRwjItAwHXl5mamlpXBGbzRjG7AWUdYNnkDDwNLTFg/cDoEVPeLOj8xDI5htNiuOislJVchR4bBMAyemBOlNdw4UFBUZSm1dCcTwh1eAqlFoRh2CWzrx9+r/fG0LKwxEEummsr9mzs+fPueYRporbKFSKqZl88nSq2klLgsZ0quODdSyoYxmnmeJEFThXyZvGKeRjGVeGnXE4eOiFPLEnh5OVJr43I6cz6f2fqOq5RUfNRaGZxjmmZqEZdSa0JNHLxFqSzjO2ME5ler1HBYhdaFphSlaQqya3s/4gcZwZRcyEnqNgUrE6klATJOM0pwRKPrGdjucqKJW0z1DGouhTVuxCjAOm1FALROGhpyAXtlgNVGLbClRFgOQh5xE+/efcMwjMSShadsPaUVzsvC6XIlZxist4xuYLfbcXtzxzQNGK3YT0OHxN2IOy4JJXNZpfhMNJxBKCRKMQ5OSB5FsVOGt6ZxS8Q1EekyjaosZhjQWrzvNNDN9ihrYrSF/WQYh27JTL1m9teAxenOgypF/rC2J1uQL0F1jf9q95JF3UcqRvfkjerUCQnK11QZ5pnj8YXW4OHNG3Ei1SzEf0Q0CSFCFbbTNHmM94SSOZ1eGMeRmhSp99ugjIyLvEGZxtOXT6wxs6bE28c7ap2o6ms0b1s3SmqvxdmlSO3llhJbXoklU5qhKUesiljEMplKJKaI9pb794/sHm6Ybkb87GlUwpooTcYdy7IS1kQIkS2u5FS4uXG0mvHOsRQx+PvBopTFVs2ybHhn0U1xaQtWWeKWCSFxPJy4XFZCjKzLQoqJEGSxChxAYpROi9Fl8N0HWxs5JlJYMbYRUxS1n9YFG9s7gsprUCKlTMMwjCPWGlH6g3To5ljkmlSb5IWVgAymQWAGgxsxysq8NGdaU70QW3zEYdtYgohr8273yo/OOYsSPHj8MOGtJYUgdZZKk1PG2oFaFc/PJ4zd8OOAdeIfCGFjWSPtCt3XQjjZT3vu7m7EltsaOSVazeSc5DhuPc6I0WaebwkpEWMipY2cJcscQ8TGhYfR8G70PDjD1K2kSsmLp/VGLAE6KUqSaxtFNhKrGze7kdubmfkYyVFaDlKMv/zCLSnSOzb+rndFAu8SHJABum7iYmqtkRHIAkp6bEsT/6ZVQq0/nRbC6QRlZfKWx72oviWsMvDuRPzjaSE3GMeps4AUkxd8p3OW6iwLYiEUnIij9GRQRpNL5eH+Dm0tqVZiLoSUMEWAd9tl4+b2jpQLly2SlSK2yhIKp2UFLffbUMTWGHOikhjnke/+4XdMNxPFNGLNqOKouUhudotcTgthTSwnWWixSNSwFmm+K6q/NBo9jC51ja2I1zfpQi2RmgNh2wjbxrYFthAE5t2AKi0SrRYhVmgtItM4MA4z47yX+XQ/IcWUyFHGK6YD2ewg46ZS+tWgCngu94xwLIHUZHGmloRtbATBarXGIHZG5y3zNDI4YV/HEMUSenXWKVhjpG0Sn6xIRYmQQkWN9sOA1o55usF1XK4ehEOmtfQcG+Mp/XQ3OQE11FIIQXZD70Yxz1Sw1jAOA7P3OO1puZFKxFm5PuneAVSFu0ouGe0kiK+dg0URquXTpbA+X/jjPPAweu6I2KaIFTQWExSahrKS+hLsTW/1q4IebhharOz9wOM88706CManKFRJv/zCzSUhgDfxg8ou+3W0Q+tl1rXH/GRpi4umyVEARa8lKezGHcvlTKKwG0SRzCkw2pE1bOQYccZ1o/aFeRxx1gpJwjr2uz3jWDm8HLHWc3N7J3WeVhNSIpUkSqof2BmHdxY3eGKOvf4R4ipRuBQLdtq9LtwtRJ5eDqxbEJBZXanakkqlaQgpYAfDh+++xXnHljY0hi1GzsuGbtImv5zPXE4LORTJ1TaBz9GMFGoVYJRSL2N9dxrJsbDUCmEjhIh3A+fjWeyDXUiSPlUZSQ3+Ckfvf63fKd3QPb9WBJkQVqDQVJORmVEoXdFGTPNhTRL0T5KRzU3LGKep/n0KrghjmPc7BuupKaNrw1KFFwXM40StlctlEb9vk90npUBKmZijjBW1YjfeMM0TCsXgR9Eo+jy3pUDpaCPfWceg+kJvGNUYBsfDww273czlcmHdwiujWYnOyOg0k7OMzorFVtFPWLI7oxoldzi50t1qKZUlp8vK0/OZP/3lB/7jh4+oVCjvbvn2jw+8ux0pacUb33mIckKpuUpGuAtltRRotbsLBLI4eBFavZNTlqLh7K8gTsnb+Nr6Tq8H4fVDqlkwlVqprgyq18C8vGmanPFrZjdo9qPFKdiNI7pmbnZ73j0+Ukrhy7LJYq+J2BpOS4uBtMc7lHEMdqQsC2NfcNY5Ht6/Zbef+fzpZw6HZ8ZhkodTyegmbxLZQgt47HQ48/PnL/hpRp0uxJhYQmTbIpeQWbdCioXSFFiBuhdVcIPlt3/8PTd3dygr14Gn5xdeDkdybXgjNrywbaSQcWbAWE3LFVUghkopkXFUEkfcFOM8sNtPoL0klwziha5VEKtrwGpDSeWrJRDprjVa9xoS+c+1/UBbg7IaZSTQHkukdWQPVcgPqEpekxzrGijloTpeXhb+/NcfqDR+891v2N/e9vt+Y7e/YzfPDNaicqaEiKqJ/V7u0zFEtpO8EGmG2gpr2HpXsWIYvByDvWf049+1CfRIaMfVtFbRNQuYTVwz6J7DNUqaHK2BsByJ20lOE1EWoO4FaoqGbhpq6OQDLcVkrVtza/coVDF+VBpbDoS8cVpWvv/pI3/56TM/Pz2zxMpoPP/j4wvf3Aw8zHc8aoNq4JQR4dNJyJ+muy9AIrClFFqSEmtKwNTE5Ayj9xib0FlODL/4wkWJAeD65/Lw1K4Wy4coHlU6Nb77kztfR2ZnMBj43Ye37HWFmomxMRgBsC2XFU3D9DoShRjjrdavu21tjWVZO/dJyqBRmabhsl0kfORkPJRqhiJSe8mFFIRUkavQco+XwCUU1ho4h2ehImyBy2XtQQNPyIVcCzUnlNco07h7c8/Du7eMu5HzeqZUcXa9nM7UAtMoo5YUEyVVaJWmBMuaC4Syid1RKZQq+MGwbQE/OEIApZykUeig+GJQSlJGOXeTizWC2mmiYDaglizJG+sY5xllYNlWWrvQ+hxddmWZCOjr16nFKmqMY1sqX55e+PNf/srhdObd+zfkBCVlpps9D/sbbm9veHi4Z3AGVSolBo5fPhHDRmsKhRGEqRaeVwiJ3JsMrHUYK9laY7QUSve5ruojRWslXNA618zpq2dcRK+KzPW1bj0hJCXq2sjVp1V56Q9WyIzGagyWTO1CXME2oa+UzhxbU+W0bGyp8Hw483Q48eVwYg2JLWVibmTl2Jrh0xr5v39+4TePE7f3g8y0cyE3KX//e564TGA6BgnkOWobxiduZs9uclwZ7e3XaKSvrUrsSkuQXnAzshPWJl5S6Y/pXNvOU65FQNQN8f3e7/e8vb2By0E8qdaL9W6NHPSZsJzlTqPlRaCNYZpGrBFJPrfC+bKwBcW824nMbzUYGZZ//HhGG0mflEY3+SeWLVD7n8dcyFWzbplzKKTL+TXVcoWMC+s2iF1EyR85R+5ubxh2Ey/nA8+XA6UmGpUtJMmMKogxMwzi3tq2hVITtcj8NGwS2zPGUGp4DWI0JUqm+KBjt4l2/aBqVJEd+xqPrECutZvsK84Z/DgxjAPWatYgI6pc5FittJA+aml9Nmq62WJiGGeUGnj+cuJ//ul7Xp4vrKv0K7VsaAVu97fs7264vb/n9u6O/W4nxW4x0ozH3kva6fn50BveGylVXp5PHM8XlFLsb/YiYLZGpmK1hD9yLmgtNEWtZYMoNEoFrQwhy7+f7KgBrRupBOGWIUGEELNsKMajKFDlDl9yFT2hC34xBNYoJpyXw5GX44FlDSxZEWIm5kIsVU5ZSpA1ukf+VFHkptiU5U9PR37zt4EP0wdGK2kjZaQfmFxFx+iXxlbFYDIMA05reWZK4G73yM1ukHbH3KSJ4pdeuO0aFOgGjNYTERJRy3IKqf1Oy3WG26glCF9XCUt5P064nnl1PQcptYxyz6tV7LLXtu/JCSfZWYPSMk5IOQhY7QLDNPZqRE0NhZKlgb2iyLWRcmUNmYpYGQ+dhIjyhFS5LJIUUVp3VtdVbDPkmnsrmyBrrLe8/fCeYR5YU2ANG9u6UFtfTFUKnbTWJJXJpUhzX2nUcr3/pO6WAassSinpM1Ia5xutZVrTr5A61XUDClCqjGKK7LCFRksF5xyD9WhnWEMgnrcOdBfBp5Qk7jNjGIcJP4zs54Fx2mHtyPmU+PN//Jnvv//E5bwB0tiAalzOKzlEwnrh4fFGeoOXlUsuTH6kxgS5slwS5/NCinA+Lnz6+MTPP3/i08cnYpT7nR8c1unXfiPrLX7woBR+Gnnz7j37mxtMkcqPWgreKpw11ChNkNCkUlRXKRsrEvmrpdswbRY7pFIsIXLeEufPJw5r4HQ6cDqfiUm+ly0Jb0treQ51P8X1nQY3iMkExWtwojRDRROo/I+fn/jHuz0PDwOqipJvFFhkJm4GeanWJkmUksULYLWitIy3MI2WYVBcQgb9KxyV9XXBcrU8ijCljWQ/5WB7NWn0v0ch893WpMe2wuV0JuwdQ6tU3dBWdXKkpinDtLslxkXuC70NPNfGbhjFR1ki027mclnZUmB3d4MfHNu2EYKIH6FEmjakqjicF1KG2/u3+HHHnd8Tn75wOC6kLG91yY92/lNVXMvIWhOm1OWygtP80z/+I/u7G1JNrCHwcjiwLpdXrGaMwp5SaLawcXVh1YKMVxrd9ikAgZwKtWqcs6TUWLfIfickBcHo9FNAE6h3jhGFEPBjzq89OzlH1k1mwk1Vao8NNqVAyW41DJ79bs807Rj8gB8cyyXy88eP/O3HZ56/LKSkUYjIpbpWcT5f+Otfvmd/M3B/v3K7vxM2dK6cliPL6UJNlcty5ny5cDqe+f6HH3n69MS2BmLMtNKpKBmUbhinRfirnVnsHH6ayExcoqEqxbqt1JLw1vB4f8doDZaKVo1cI7kmiV5isWZAKUcMEWUqHz68wTrP0/MzP78cedkKz0sgpVUMI6lSqixCrIiOujY8fVzZJDBDzX082W2SysjnDwQ0n9aN//nphT/sbpkGi7Hdotl6FlxpnDPUWPvYzIhIa6w0LtTC3W5mP028nFZSDr/8wlW1/Z37SfyVculuslMWubNV3dCtJ0CwoEcaIvC0JqmZNUS8b7SWGP1ESVWONQ2qMrL7ao1SI8YOkujRDq0bTXsKATd6rNLipw2NkDQJzSVlQs4UCpetcjpnQqoEteGcQ2tDxbPFk4TpX/8FNVHcIujWqEmOW0UVzKD57j/9ntsPD0Qqawy8HF94ORxIXQxpPVFSyrUftze+IdWO6tUwb/tCrzKr1Nf5aqYqafdLQVxHKYopJESBseca0VZGRi237g/vYXKncV4EEmUcVYl7bBydNAQ4/yqaLEvk+Uvk6emZn396YlkyOXU94hqPUdcXF3z5svD0eeH9O/j5h489JKDFiB8rKWbWZeWnn/7GDz/9jdN5kaB4aRi8fDZFemRv9ztuH3akmljC1l+ghbgtvDy/YIaJqh1rgnVLDLZhXCV6zWg1rUZiSsQYyLni3dyjnorUKqRMLWB3E1Wdwc+0FqlFuo2U8cTzJkJjTtL62Kp016oiBWTK9Jd5RTtRv1MWuF/pR+KiDRd7y7+vlT+sG7fTyC0NUqGZUZ7lnLt9VVPU1Yuk0WYk5YYfGo/jzL2/4bPdOLdfYeG2Tr6ofS52pWGoLvyYntO9JoOu1AvdMa7UTnI0fUcjdf6vVFZQC9t2kt9MV4x3NNPAaIz35ArbugpyNCWmeaKiiFnegSk1ctUoPbBuK5dtlVhdMyxb5vjTjwISK+JgWtfwOjJotFeeb6lSF1pbwVmFc4Zvf/eBd9+8pRnYwsbhdGBZVraQKFF8xVobqQrJBeHnyfVAa0NuWRr4mvxeUhcqAlGMqZNCGjHDekkizgE5JlRDjrxaiTHC9tFb02j66KJlajMoXbHOdJ+zwzixAtI0JUth1fm08vT0zNPTmW2NpCSOJJr0uWojE4DaGynk9JD57//2Z0LIvHvzwDB4tm1luSykUFiXjW3Z2EKQ7yQ1YshYZYQM0l9SxmmGQeMM7PYjj2bmm3ePnC8Ln7584fjlIxjFfPso5WFG8EMhJrxzXELCaigYUtWyGZTGWMFbjbKOFirLJTLMilC74JMaN3rg7f2Ol8OBluG8BVJDphX9hJW7qwslmwiAylk8xk1uLLrXc3o/UI3mBcWfni78fj+zH0eMkmuZsorJSS1o7ZWtORaUMbjheofPTH5kGuVob67i7y+5cI2RneIq6V8BcF9jfj3wbHR3ydAXaJ/v9j04FzFmSIVJYphvpNQ4ZekbbVK1mVqCZkitErIQ8lNMnaZoyEumIdGshuBFaqtssbKsmcuWCKkQc2SLRUqa+6JX3UiilBavswREBZFaK2ipTUkk3rx95MNv3tFMoyDJk23diKlQMqLytn6fz7WjZxpVCWiuVuFhXRXD6yzyOgPP5bq7AalJRAxeW8uhi1QalFGvWetWC6Y1jK44Jy+gGGM3TMA0TzKSM5bWDOdL5PnzkafPL4QtSWP91TjTG+1Q9DrP9ooiktpPxSUn/p///mf+Xf8FPxhUj3lKOkhxZZEpbSRHW0RgzFk+G2lfzChSv7NLBc00Dtzubri/Hfnp6YWX8wtuGFBuoObaC6Zl8VorGe9aFVXbfoQ1pNLQDQQdAzEU1i2zhcr5eKFumdl6vtnf8jjPpPRXcinkUuXK0VvaUkoCfahymtRGCtVyj/4ZY+TUZqyIgtpw0Zq/njY+Xwof7MReqf4CaH3BNxmZWoEK5tRwVWSrtF0wdmQ/OubB4ddfYeFeF6JQA+C1ja/L9FfKo6i8pt/P+LrIOzWuqkZumoSiNEXMmcF7Uk79eCxhCWUdBThvG0vMnXcsX1yKwsWtTfU3cpTxT9rIJRFyImZFSO21nDnX3tFihJ3VqghBYSsYN/Su39SdM9KogIf3v32HGRRLCqSSuawXthhIMVM6N0gkhSYc5iaNhaa3ll9b2nOWMYzq/+3LV4b2MX39HIuYKnI/0VAFmC3qcl8cilfRxPVwf+2CYW0a6+SBVs2wnDNPT08cnxfWJVESoCQsf/0ZJK7Ze2WVCIOtCU7FWnH71FoJUYrXrvnYK/CvNdVxtrKAchJxrzXhZ2Eqw2AZR4uzlcE3rC7oVtFNUVNi8o7v3j+SfvpMuBzY37+hqU79aqJYgwct0b9UkabB2si1Ycv1GqdY18hc5OdPa8bURksbx0+fuH285zfv3rKVnwm5UIrvqaTIlQ+eiqjCKE1RDedmmRn3EZZSum9UELXiUAt/fjnw+8Eyu4ImoNC9EE9esoqvL+JW5WqTVWL2cL8fGa3G61/Bq1y7AKN6mNtaS7mOcbmGD0RB+/u+m+t86rpDF6VYauHGeCEdJAVakaUC7XV225omJ4mwlZT6gymZzRgL5/NKTIWYC8sm2c+cA8ZaSqvdJ9zIucqLon+IBbEa5lTIKePcJCaBCkY5jNNgGljF2+/eMd/vSEXiakuInE4X8QmHJG//Ri9uUr2cGPwVjKYQvnLJ2M6p+vtweJU5hQT2u9WslEJrV78x/ZXQ39p9l9FaoVXr1SWJFpXUhFqLNR5rJra1cTwfeHo6ELZEK0gtZ5Vf2PQjt3xf8ioROLv4ta+hhJQ66aK74SSqKdjbSkVYl5qqBMhWrzSHRmeQ8dq06J3CWUWtCYXtC0A4UGg5+t/vZ376/EIdJ4ZhR8yBqjVYx7Jk7OBAy05ZcxOUUM7IYySpo5Qr43nFNIM3ltqkW/h0OvF8OhKMQiEKsELst61PQXIpIpZ5jxsG4UsaOXlU1ToxUjzR8u8IZwN/vpz4523i0Q9SW1ITNWuMlqtLrVnqVktvgnTyuZQWuJ098+DoPe+/7MK9DpKvaen21WojoQMjWVx5acuWUOi0xGslnTUUVVlzodmZXAtblJJrjafWRggbziscjRgqxmS0lrnwab2wpUgpsOXKEvpwvyTald1bC7XfH1vf1dFyTBHmU5ImjqZoWmyBRoG10u6urUJ5hd+PvP/tO5Q3qB7yjiERgxzRW88vzvOEopeVGbE0uv8Fige+Z2ljSK/NhlcdQLUmuJvaZENt7fVzbZ0kITRD0e1rg5wS3hmsgkalViUEC+OwZuR0jLy8nDhfIikXebF0pfr19y6lK6VKPOZa+moLMtIrtXURTYIjxohRQ4IjReKcWqpUjRb6R73ypRGiv5YvAlV7TapVWCuGf2vFKCIuJjDIQz5Yy+08MzlLTKv4iptYZZvRUKDE3NNC0oFbq8yNmxLOcwqB6XTGGsPsB0K/5pQqmN1Q5Z8ZvCUn6QPGGEpv0ZPaGocZRlrNMl/tbjNqfd11VRVixxH4qRT+fFn5zc7zfp5p7Sz4I65dRmKzpWlc9bQM2EZJK4Mb2M1DB/b/wgtXjg5wNYCWUmlXRE1Po9AZU/K3iUlDG3GSlFLRiJk7JMOWqkTEmub9N9/x5fMnUoo8nzbGyeB9E15yXvtdWlFbIeTM+bzKblogZinWbkhON6YiUn8VUacp8eFuMZGjOHj208TkvRAjjGIYDPtpwDmFGRRq0MIY3glsrqGwbiCls4w3Wg/vdyfPNbgujOCK6S4lwYq2r8vUalrRr6YIrRpVyQjNOXEH5SL3SykL119fmv0F2brVUc7VPf3SZJ4Z18Lx5cCyRkKsxCx32Np3VIllXvlfYkG1WnYdo7XEpotoEkVJ2zyIp6AiLxX5HuRsBFIL2poSQkc3zRglR2d06wCFhreKyXuGXh6ujaMUiLmyLAvjuENbwdeoCpfjidxkHm8GecgUltLy17m7knl2SAtGD/KctUxphePpwH6eeyBlJNUkhGZnUSWSYySVxuA8akI2hCoUx9IqTUEzYsi5In7oV4Jac1dsZDaPV3yOhf84XvjnxxvulWY0Bjo/u19IZOn0Lmh5IAqOyOwKN5P5dbqDrr7La0dQQ4QPqkTvqPm124UmxxaqtMAXlJQZt4pVirhlLpeAHsUVNY4juTaWWMRWVgrn05kUKjnKvPOqAOcew5LmN9nItVb4cUIZSyxLN7K3brzQxJh7v48ski1m5lGyu9PkeP/+gd//5gO3dxNuNHw6PXHJgSUuQpHIiss5cL5Eub9VaFnunSlGMhlqpX+9WPUV7dO6IUNrzegcW722BeZ+54ZpGtjf7IkpsW2BGDIpGzlm1ybkDVlColQrjWugMmy5h+A7WlTAbJK3pfXb9zX4cT16y4Yuc3ajxXL3OhcV5GnpCrtSWhT3/uBJfBNyfyBdZ1hrxGRgtPx6qgr4XZoZ26tCT5U7cEOTinTItuY4LwltFLWJ+WPZIto4mpbjJNrIDlkkJFE6L6q0hJEpDPmqEagGOlOUlM8pFN7OWG9oOWC2xrYV4WQZGacZ49CtkVvBIO61GmU0pNtXc46Uw8mHWDrsTyVFroqPa+Gny8K3o6jnWlnxJleFNR4oVC2/xjDsaKqgVUS7jbu9xv5/Z8X9/5jjXg0XurfOg9wTrIWS+w1IxBndi3e0VtSWXxe5PBZyrzpeFrze8fTlyJ/+51/Y1o0tRmqBS9yIYQMM6brDVTmq5T6kttYSc2Kcpo5/NcTcSBnWLbNssXOhOt5GyctmGrzEzkbP7e0N798/8n/813/lX//zP+MnzcvlmZf/9n+RDispF9Z15XzYOB4W4pZ7eqYfCdWVZFnlXl6rkC6V8IVaaV0IsoQkc+5cG6nInXXwlv1u4sM375nnkTVuhC1xWTbWLbKuctRdVvkMhSpTcFb6eEsMr40IaLmblnYVy+RkRLtmta736q/H5WtvrLealKVrqdUm+C4t15prc/rVm16KiG+tynhHKRFbnOldsNYIkytFFBrvHbvJMwwjpSpi1xeIkWVLxCB+69Iq1iGf+RaIOeO9hCVKqRgTac7JKLKK6Ni6y6cVSK3glPCvOpqOwVnmacZbwb4qbyWc8PLCIX5BtUTLmWEwkCqxyL23lkyNCWtLFwbpVEv5dUttPe0jVMtaG01bLrnxt8PK6e6Oh0FOQkpZMV1o9Qral1KE62cH1MrNbmb+NY7KVyeNfInygAJCPrj+QHJDQPfsp9jTKs5YGkXukPSdqlUOy8LkLT/+/DesNcQQxSaYgwgbWu6/coSR4Xup15GNNAr4DkC/LBvPx5XLsrGF1IME8hVqY7oCa5gHx8Pdnn/8w+/57e9/yx9+9xv++PtvuHm4IeSVP/31LxzWhdgqa4xsq6SFcq59FCG2xlrFFXbdxa6NftY6aEaIjP1Em2sjZnnQUhZxZ5oHHu9u+O133/L+3RtKi+JEWgPTNJBz43heOLwcRRzL/WisNNZYvDEobUkps4XEFpLMiY3pHKnad1pEjDK9maFdL9k9vaVlFuy9Ytk2uZerggac6ffr6z/TR0Bi61RiMNAizI2DFzZYkdY7jYRCxsFzeytwusuWybWSijCIz5fAeokoFNpqrFukMC0XET+zvKCralKaVgrTbicl5UoM5C01MfebJmf6VmRDGTzUQk6RwTr2+xnlpON4lyv+tKBjBgreyfdXqiG2Jjt3ypTLQtVWeF+ll7Mp2ZWtFRySGKE1qcJzKXx/WPm83PNh9Pgqc2etZEpgrSMX8Qm0nrQruYJrzN4zu19hHPQ16SDMXMGuyhtZG9ODB9e4ieroTNkq5bj6Yb4VAAAgAElEQVSCCBVao7Qlq0I2EJXApU0WH24tRcYLujcJdJxnrqmHnUUcqUWOJ5+eT5QqjqzTkkTaR/V5Iv0eLbyhwRsGC3fzwH/+l3/i29/+lru7HU03vhyf+eHj9/zt+RNFAdqiVOmKuLifcm6kkFHKYLTsWLUVchYYnlL0L7hHERuELfafV74o7x27eebudse379/y/t0b9vPMeTnIMRi52ZYirpurRzb2z6UVxXoJZK0ZjBzFdLc5NmsotXaggIxJri/d1k0eqv9/3dFCRhvZhRV9vFNFIENOKc4YaqdNXv+aVki+uRe8eWuZBsc3799xvpz5+PGjdB8528MempAylzX0WtBKCKW7qyTIr1pjuwL3m+gSYsyv/X4L1RgCC24aUEbLZ11bzwxriqrQhLOcUpLARlKsSJn6/tbLlWWaGYaJ/OW5V+BIuXTNGlVkvtdyJacNax2h54LlBS3XhRSSCASt4XEUGlUrfjoHvj9s/PFmFreaNeI/76QQrY2Ia0P9OvumMQ+W+/306yzc1sRzKeMI8Z3Sca10kvyV+ojqlRf9bqRpvUjqWkdp2WiUUvAK1DVFpBumKZx3fdwk+JfccawNQ1VCOVyDpDlSFsUwV/11h5Xwr4wslMLoxuQ1b25m3tyM3M4DrQaeXhZy2VjCwtPpC6Fk0JZUtj4W0dTSBB/axaHWoFUlQs91BqqNLJ4mO11Km7ht+pflvYwFbueZ+4c73jw+Mo8DX7584eXlmfPlyLot5CSh+xiF5tCqQlfppS1VjCMpZbaUyK7y9v4OmmEJsSeZdG9W6EdJ4GpTBTrvXC46rYmaba3pR/GvM1p77bFtom+QxP3VPRfSANjEcHMtfDscj6Scv44BlVwbDheh/p83qaW8xt5alRf8NcAioybxCV/rRLYtSoikZ76bTqhioY9ztBZ6iDyHUqKFUsRUyBVMk56m8/mCUpppmjDANIx4M9DCRssR4ws7byhbo6juD9gigRW6d8E4EWglwJGpWmHQaFOl8sRZnkrip8OZw+OO29sBVUXks87Ksb+JQEstKESoi3FDucjd7tcQp7obBGTepxBaozW6704iYoDuzfQSt1PaoFpBakrlnonWFCUKbGsFY1VXnhPSpNZ6PYejKWEYWz+hrOe8bFzCJib1LAu5NFE4K6Iit+4Lba/3csX97Z5/+PYd39zMPN7vSOuJ74+fCaoQSiCTO2hc7qEtN1r3Ha9rEOpE7btBkcRP695trejiV8Ya86qya2sw2jKOI9M88+bhgdvdJDjPYRBWVNo4n84cj0e2beUaSkAJ3ibHSstgm6PkvqCjkCbHwXKzu6W2oyywXKl99FXF7fEamf5fZvtXe2cpFNWoWgq8UmcfybxR7mW6i1iS3ZUF54zwx4wC75wcw7XmeLoQYySVgtKauEZOl0BIkdhV59pEvLJGDPu59VyyFnW6KUWqcopRCJGz5ooKEWs13llyCjJnVhozCO2jFWlQzKX0mhXJVlvrKSnTouzAtIqbZpz1jG6gKINXFt+kHM0iV6rudaHka2+vIvVoaKXKadMaQNhZzUqhmzeJH7888fL+hvezdBGrKhC+kjPKWJzTkhRyqnsTKnZs3My/wsKtLffjcB+BGOnaU1p3sJSoZ621Ti+4iiB9fNQtdOKg0j11UVF+ItbC6Dw5XoSfVBtWVVqOlGqJauCyFdK2ci6NyoCePHVZENRnlaM7vBIHaE1mg1YEjQ9v3vIv//BHdi1ireJ0OvL5cuZSI3iY9jMoI+DrVDooPJFi6aYFcQ+VfP399OtIRWvw3jBNMw/3t3z74R3nk+A+p3FknnbM08TNfkcrkW2TpMrhcBQBKl5b2GV3L4X+cBryFqlF7JUlFkrsVi193W0i9moGKFDNV5GpIX/fda4uoQGFrlBVfW0RjFnqVELKlCpdwqqCV3I9ahVsMxIg6dD1cRjRyMxZuneiqNLaEGOWpFYtnTUlbY/jOMiduTa8s5Sc+r1Z4OsARvVH0ujXpFWrBVVEtEIp9nbGNCU20D5Wa7q3+iGbhXjDm4iC/YWTc8C6yN6OqFLYe0vzFnISVbw02e2bIeaE0pIO08oSe4F7aXJaVEZOMdpdYUzyPMRS+dt548fTgT+8GdhpJ2JdkySc7iRP5yeqSmjtGKwjm8p+9ys4p5wV36ZWUl4tbpBr1UQ3WCgJIMjO3OdW8t6Ue5Ux5Fxfd2RtpNg610aqlWkcULXRUkTXxM4bai18SYbnUAXKPY6SbYwbVRkRIxSyu/N13uGMFUK9E9jY5XAinI68fZh5OZ/44ccfqaNnfJB6DlEqGzlBCIl1Ex7VekmvQo9ka//eqy1/3D/c8c23b7jZT6S0YV3j8c0NRht28yxMZHWlgVhCkGzo4eXAuibWJVDb19xmzY2WKyXJ7HEcB2lyq5rLWWBx/y9tb/Yry5Wl9/32GBGZecY7kayRXd3VXVC7BVm2BLfb8IPhJ7/ZsPW/GjYgT4LU0AT1IJXVra4qFqsuhzucczIzIva0/LB25KUMw5AAEoXDi8sieTMj9rDWt74ht4onE2wjWFVTUdWCxaJkjq4KxIr0DJ4PkkVFObVt0V2tOb+1K2WMaRRRcr/HdhM6w5pTv3W1VF7nWSsnDC6AGMNaKksq5K6tjl3qaY3hME0qOdxIJkpP16Q/38EzowisIvYdEBMVZBir1jfGqEcznQPunJqySa0KZFnDuqyAw/qgKX9VaI9HmtUJx+ihjeoi2krrMknbb0GNEJUeymZ8UNvV2Flxoowq5z1WAt4YBLWIPRrh8znxUBM3glIujcW6QEkzLjiqZIKzFwJJKyuD/w5uXDCX0N6NQWNNPxWdDvZVQ6pudjobbLgQep+30dv0pqhN098Fvb2DFa5HT5sLSzry0fNr/vYf/gGzjfzDv/yMd6/PLEQmKci6aO5LKbpovfYKWVp34Wj9c/a5Yy2cjzNCxgT46vEtv3j9Bfff/4hgdpTcOJ7f0kQ1tafzzOPjIykVagGa0V91ienTMEIcAi9fPON7339JHAxpOespjbnESlofaBiOxzOn4xErjvPpzMPDkzpBZh2llVx00VQ1hDMVJucZxwlbC0EUZb/eR1JQEYbxljEOPJ2S3mx0Y4NvsrMutMmtt9VNYLvOtLQNo6BvmA801lZ18VYc0vRArlUD0pZ57iYKFWs0GXHJWb2nexLDBnJp1CaX8twqOICxnmpqL+mLBrmJUjsafKjwum+YSCOtiePxzAHL4AJGnCLYYmiUHjquM7GUExhHEHXZQISU1Dhht5vY7Sa8h9MZzucjXVdKkapMK9TJ0jjHsJsQu71P/Syu9+bOBtgISmUltcrrDG8k8Mp4KGeNIGkOO+xoTRMRJFd8UClmK1kzg7/tjatpBd13SrT3sNZivOlfZMt4cR1R9h0ZlS6mb5d/h9ZwRvsD6yxWhOgaL64Hrm/vGeSKTz/9FHt9wz/9lz/n3335lmQPNDx5nVlPT5hS1Aqz9T7Tu07b67hUfxhZKlIyz+/3DLvIV49vef34hsPLG+4+fg7Wks597luV7LHMmZIMJWsZaKSbhnfrGGOE29tbPvroFXe3V1jbyDn1flq9peIw0Zrw/vHIu3fveXj3wOP7JzwREVSJQlf+iCpeDMrPdmKZoroq1HmFUlCcTFMRg1EPr1wK7949cl6KukE0jV+hs/NM23YvfeHL5cdWNKOob07jLM47bNVxDVuP10RvEiNYGqE7l6jjh5q6WWs5LYoDrLn04DWHd1o+BqexI+PQ55RN9CbLyrZrrV1KZpFuFVSVMyDSukmhUjJLaV2SGWjGsXdKHzTeYkxQmmE/JHLOShbqt3dtiqHMs2UYA1eHiTg44uB0XptU7klV+Z7ZenyviQZ+GBDfQ9l7NrSzikVovKrFhYFiLF/mzK+fKp9Ez8vgoUDFUqvOyKUKbW0EEbxvqnL7LvS4vkds2g2NrA06sV1pYBpk7V03Ra+tn5h6utee2wP0I71dhAvSMrUtXMUd//nv/5RDMHwxC//rv/wF/+RvHjjKnlYbrh5p6xlLN9XuD1YxIjWZax1ptIDYRiuF4C0fffKCuB/44svX7F/cEO/uWVqhZmEthSUXcqqU1K1U0RFQqzqeaU3IZcUiXF0dePnqGVfXWhqbKiqK95r9qqOOmaenI/Np0YTB9w/ktWIpF1dD0z+8AK2oSqisK5MPeBqSK2Vdsc0QvSd4S3ABnGHNK+eUmJeZ45zIpfUPqpu0RzRtzMgP82ajJXMpKhV02gSrI4NVBQym6mG8VRcdcfbWEfsBqeb43UJHhCVlPTxdLzVzIbpBzevQFquVeqm8Wpdqti4EEVFCR+tzYuedrrmmJBdpYJziAKVtrLhFTem88s2N0ySDNekGcEZv9lJytw6uCJWSF2ibiktN0GsrlPPM2gwJTV+klK6F7tGwTgFYF7yOyEyvYvrIsQHGWVKzPBTLZ+9WPh0Dh9GpFVVWQlCuK80Do1VevgMTBf7DbZX/Y9RB2wzPdb1q6O6NFqmlpxV0FLcLC4wxPehIN/G2cY2x+B4SXfppOwbPDz5+yS5Y3i6J/+0vP+Of/OI9X2VHcBBboi4zrSSo5eLIIf1qMM4SbSCt2kMbaZ14ruFTNnrOJZEdxN2BDKRSNXFtUQCjtsaSViWCZJXtaXK9kgIMShE8XO2I0dB6LvDmrt+yLven4yPLvKpr5HllPq3kdbMOVWcKRA89nTc2Um6c5xVyo0RFIqk9jCoMVOsQI5xTooiQm3BahFNauq2objHNYzVkKdRO+BfReXZji0o1va/v3Hk0k8mL6eCTznIbCvg4MXhjCc5cbsaNP72m3GmIeiNuPFxp6oRiO+reSqFYvbF1wGCoXUHWUM+t1g3hlWqpwI+2QYMi4L2/tlbxlbQmzscz1jqG/QStIUbXxGY0iHQmlOhaEGkYM/TWrhGHAFimPHBeMmNQAoZbE9n0qB3bLm3GRrPNVUkia8pEF3Sub5XyUxEWa/j8eOa3p4lYLa1kSlvIuXCcT5zrihk9TSrRaVTM4faWP/62N+4lcmRDi41mmm5SNttJrK6vFKXOuZ56wMX1gb74nXQamQgxeq4OI9dXV8znR/7RX/+WP/3sSx5NxLpEqCukRCsqHu90INXvWhXlW+/0MKDbXTYVMjuveamf/eZzpn1jPBxYjHro1qZAVO5NYR9HI+pP0DW1FrEQoyjzyzRiDGCaGnynrHI5UZqnwXA+LTw8PFFzQ/OfDbVoNKQYUWOxpmVqKcKyJOa1KlWxwmAcJo60ZVZqHwVjC7UVci5UoKBCjaWjx9bqTDR6j7MO22CR8mGxbaQK9yGm015ANl2UTRpGVRVK50NvWd+JIVvPbI2S9c/zoiHdgImum5erk4Ox6oNdVq3EQuh5tqKGf9Z2aaBsHLumIzajZa9GgBbU6tUTQtDERrZyv6uSamY+n7DBEqbh8hn0+3UQtFM2i1S2yJXSuc6taWvncXix7ELEOIcVyN7TciWLUk1t6DptelVnNj557aISr2KcVlgtfLVW/vzzL/jaCC2tqBRQR4mzFKrTNRWMxuuEr9/9h27H/4iNiyDWaDlmlfYobRuHbEQL328RndmpoqjpwFn6S8cokCBV+yppjA4++fh7lHjFP/yzn/O//+o178RpYn0t2G6UJrWq+6AoY6sZpY9RIS8rbtC8U1rBuMrgHbv9ntv7G6adx4yR0jmjtTbWpZDWtRt5afkvteKtY3e1I7iRGAacdaxp5nw6EgfP/mpHLuqz1EoD0ZdYs5ILtjyi1qD1YX7qWmIrDiMqss4ps8xJQbAODmEg1wZO0VDTGtZ9AHW8D5SiG75UXZSK6YK3hsMQidaxCrSlXtRN0vtZU1UiInwQDLDxe0WT453TjaoWOt1k1FmqdZjuOpLmhVR09mmdwXSnD+fsRb9q0APfdCpocPYCTKVLFdP7W4PGmTrwfUPnqvazijM0gnd6SKKothGgaruznA3G6abVds4gRis97y2p5H70CLUm1vXIMhuiv0HwiNWeNlqLEUdaV/3sJmFptFaoNSs3AMEJ6u3sdZbhrOtgnko1hcC5Cp8/nkmSGWpRQM5ZxBQ9oJphMJ5KJcmK6wftt7pxnWmI/SAmlqbLRW05ttt0syzZYG2DM+qvY63TNVIa3noETzPgZWVwws39Lf/o53/NP/vVex6aJTqLaY28ZIwY9VgyDWs9Xa2mfOAuTJYqVNe6eGDPy1fP2e1HXAjsrw9UyZSWyHVlTSun48LppAJ5a1SkLpfk9ZHoBw77a3bTRM6JZT0y7Sbu7m8A4XzWdPpcCq1oWV3W3IkZpkvztH/LVVncBXAoJ3tZ0gfPXz4guUYglcLT05HJGcagwAlWv2scAriGCY22rqzdWcM5FauPzjA5yzRFciucUrqEnJmmgNTGYVbhhVYnyqmVC/fYW7XJ2UgtOP38tUeg1Np74h6ZYvthrsb4eoj4zhG3HevQNrOoIEL6QWZMT8TQfWWM7VxoLo4nDbmEdgtqal7WRAxB6axeZ715XVUHbDUbd8sdMihGozNdEKmIVNK6MLvAbn+NcR7rFXsQdYBXWyBvdL5Po7SMpfe7cnlptG0cWZTPbJyhGGFBeGiNyUgnmRiwmlbpjMGL9vTGabtgL0y3b3PjelTy1F8GWJzRpptL+eD6wu1Rilg1X7MG0/TWGEJAEGpVNHqIA7vbHf/m17/mL37xGW+MITrDSOuodEGa3gSloica3XBdVFTeSmUaPIODP/zZ7/LHf/z3ePb8lrfv3/GLzz7juC6kJhR0QL5m7T2XWTePKlogp4qzQRHDZlmXxDIvzPMZY2AYI+fjzNPxqCZgVasOaaJlcVVQrg+jlHZXGmIcTVRrO69qe9NZegoeSUeTZOMpK6XOhZHQb4uUlIcdIoixmuznDSyZnLJysZ3jZjcyOctynpXCVwBndKzhA8F7Stp8tmxHby0YJbFoKc2Flmi6k2ZOKgSvtV1u0hhjB6kSRvpmR3N4JPiL+VlpWb/zEJS6KHprxU7IWEq9lOymb2TXMZKcM80YpAtUxjESQmTu+cDWCi04TAtdF12QZvE+KjhqQES55BswVkqh5EyxnmWeMcbhh0AMgdKq5gsjTN7SxsBJHAUDQasJHfgJtRlENOJFY3c0QQFRRpj1kRId56rabNsazih/Qc0Wt5RL9Y529j98OvsfEUGicysxvRdCH5Lr5IrtALJds6txEBVvjbomtqZ+s0EzXq0UxDrmMPLZSXj8zWtqydxNIz+4e4avha+/fMu5wOlcSJtQvVuvtKo2JVIbIXjGMfBf/L0/5B/8g/+BFy/vqVL5x//sTzktTzytqybwpZWck5qlZS1bBUMrdEmhkFtmpVDrCW8dpWhItPeO+TQD0g3nepAZhlY1E0blX2rR2kSooqyyLfF9SYVcvqGLbduz1Z7MbAizgLWe/eFAW+ce9ahuCmtK4LQ0B8MQHC1nTBMCBlMLV7s9N4MnLBkrlSVl7m5verRHo6SilULnKmMglYwLht00MYSRJWceno6UKqSsZaug6LrvyLI1CiZZUQ2yt3pQdwsSUkp9UWgJrcCQvZBNNBqUXp3oaMkY6b1pF/y3btggluCsxrrU1gEyr7d61UPvA2C59cEV1wk+0uRyS0rVeNWSCnVqWBvUdlWM3np6AmNNwzsI1lOqXjziNW9XabXqoilo8qAxOvoyxmCq0mAThgXLYMFX3UNUPTQNKFMOCM5dyCTf6sbVB7453kUdO2yQJEoCl/6S1CxdQSu6P5HBdIBLvYmMyVQvvFlXzsfMXoSfffycv/sHP+QwDTw+PPGv85nXeaEl7R1LQ0kW6MjACGC0L/rZz36P/+l//O95+eI5MXp+/cXn/PUv/4andSaLamDnZSEtmeWcLiFSOWm5vPkfsymTGiRJl/53XVL/Xh9Q1Va7rE+ckvub0hVTVulebcq6Oc/rZZPoiLQjr8jloNsAo21T51IU+OkOmJK1zq0bSpsVcIoxUp2O26iC7QCZt7CLgWfXBx5PR6Zg2Y0D8/nMNAXmlV4FNE7LQkoJJ44QKtZsXl6JVNtFNK+jJC2DpxC1JA5KhQxOxQGl1l7W6u8FaKaP/xrqUCKGXBu5NJqxneGlt7Cy8bhsXNOrF2PUjVJZS5r2voGlBpCikaNNRKuXVi/AaR/sKsAmCkDWUnqkKVgTiEWrkGraxc20deWR2f5M0fXezAcAzKD9OaKy19oFHM5oLKiuWaVEDs7gRD3EW62KdVQN0rbRM9jvgIDRqqa/+f5xN5bOZhq3ncS19fzXpnC8iqT1wbmurcQ5GoEkQk0ndmR+/9We//bv/QEvdhoB8eIqsj4+o5VVb/NTJS+bw4bB0wfkGO7v9vzX/9Ufc3tzS22Vr98+8q/+8l/zcDyTREvLvJyhGmgWbyNZVqUOlqzAj7Hk1AfrOtXR79ezfhUZ7uCH1bKMpiHXQPdzMtAVH2vKnOdEqV0435/btmH1t9IzmeSDEKDPXLXPfeJqDFztJtKycs7KMtputGkY+cEPfsCXX33N26/faYrDmjmezgQjrKJAz34YaCmTjYEeTuWsJa2Fx+OZtVaaVaM6lpVUYCmFtTVyN9/wHbXebhVq7qM/NRT3xjJ4y34aSV1JtO30IlpmS5/d1+7Omav+tP6sYRtHKZIpTScQIfjOxdYS1fdJxYYWG/TGij5gxCgQWGtPvxNC9Cpg6VWChUuw2BBj71f0QtBWUI3TBaO4Rb+cpAmtCK57iAk6HjBW2VOCp5ai61xqJ2V4MoZVKl4arhUMSSWuRj/z6B03uz3jd2FdA6r9VNPwiusnod4UtpcLpee7an+qin8tz7xXbWYzemtmCSzLzJhP/PSTHf/dn/wBL24UwQ3Ocnd7h5TEmhJZ3nJcHzXcqzvk++AZhoh3jU8//QHPXtzz9t07lnXm3dN73j8dOa2JpRRqq1pGNR3FaC+R+4Kx2G+MukyXhxnTDcdNj0tE+xnbje9KUl/e1jd57Uyf1DePivn7DWrMh7IY+cBmkt6z95uMDhwh6rIxy8o+OMbBcz1FsjE8nhaOZw3vstFiEXZDZJ0mlpMaCYzBU23j6XhCDAzjiLRGXjPSVEBxLpXTvCpwZhRgsV4XWWvCuX9+lF/AOETG6Gkl6TgP6dRWwQWn0juj4NduHDmeZ1LOWKd2M6XpAVeaEhpKg85CVKaX0CVwekMrut113hfKYsOIx/Yc2c1J0m+3XSlqOLIdkJvUrx+wposmTAfrhnEE6SF2rXY5pJJJKhZcVDEGit/YhpbJ1XTLJF3rFtVBIwZnB2WtOS2Vs7OcasPXhq0FbypWMt4oar8fAqP3BGOgfAeocpZGy4oaxi5yF+PITbrNpY54vNWISBc68GEqRSrWB6oUFXdbQysLk134Wz/9mP/yj37E9+93BKseQlPcMz89MUXHpz/6HmuxvH9Y1c4mDhivJJBx7/no1TN+8vs/4le//SX/6ufvyDmzpJWn85GyJlzvd7AeTAHbOoCRGYIhuImSs3JYvevJcYqal86/M7L1792wrekt0UQtc0ovqc49KyfndrGu3RZDn4L0Pqtv3F4SbkSV1sEpjKPSWJuAs3hvCFJ4dXNDuznwyy++4u3DQl5W3rx+Q0OjKGtwLDnxuC7c3BxYjGb+PqXCOASm3aRjrGXlXHrfalVqmZtAEaXetazkGoFoIQanecbekSq4VvDAED1j1CT7ED21M5rWtLKuq6YJGgXfajNUA2tTuqd2JVq1WGPBSN9YfSbdPZtdv9EV8lPiTgx6S9aatZ/th57p5fYmw2vo8yyl9M1sAKcsNOexxqss0Sh63rAUYynGURBKKyrLQysKb5V4gXG4GPqGBhrYLvc0XlsZJx5xjrkpJpELeDsRbMa3RDTC6IQoK75WfHXcHm6//Y2L6cZiXTS9uf1t63DzU7448NGldr0GFKeghKA9m0lH/uhnn/Inf+enfHzt2I8Nh858a60sS6JJZb8bub+54v7mgPOaK2O9I+w8035gmgZef/WaL99AlnLhti5pRURLn5oTqWTm86xC9UUdH6OPGIyyeYzF2cIyJ71FN6bMBZRRt4atX29iNG0dZVblpDmtqmrRR9YvT1zftBs98wJBbOi/qCxNR+R6o4tRKdhxXjhYz+gN6XjEBs/NbujEjYaa9PVRjFfXzIfTTDaQxdCcztXX88pSar99GqnfsuqWqOKGtCq6a8XiUErpGB3TEBm915I4eHXEtFz6Wus8xltyVWfJklbtEXuLpEWZrpfSNH+ngVZAdEdLAYyar1kxbKL62m/xaRj0Z9fn6utKylzygp3TeW1pRY3zeoW0WR3pVEdv3BD6qAhhiJEYA+fOQKuiQvpilIEoHXRrTXAiehP3MRXmQ2i7iL476VRgi7+I+o3TKBaKgogjjr0z7IJj7z1TjHz08jkvnj//9jfuEEIvPT70H7qkLVscpJK5te7feoXShLjbU1BtYysLtMR/9rd+hz/5O3/Aq9sRkx/UNdGpXve8JB5PJ0quDMPEs2f3/NEfXpEl8v505P3xkTANLDmRamLOhcN+RxwDPnjevnugtIZ1nrWHZq2ramuNWIINGKfxGOt8ZhwC3keM8SC+ExxUHmb6pm2l6kilx5aUqpk6Giuh5IOtGv7/G8d9k0ds+j9rvgEm2q1uNgp8LblS6+aoWbDSs3emQHSw2w0afFZWHbtZLe3fH89qYmBUcN6aHi6qzTVg9YBtqEVq3vjCGIKFIUR204A3whh1VBKtwYpOCjb6Y2tCboVaOxtNjDpfYLpEsGBxFNEKRuNT1YK1bUBbfy6ybfQORnmjFFoDmotLAyndbqcpH96oCslbg9SMC3RwKXd0X+11BIhWD+gt3yoGJQxdXV0zyZ43j08KYKZENYZqrXISOqLvRD2iWyk0Z7pxRLuU4IqBaUWGR32xTTeP8KpzDgWuTODKO273E89vDjy7uebZ/WyAa2AAACAASURBVB3xu1AHtaaKIGfNxZqmn2tsToAfXASVytXkg9d9RYUIVhI/+cEL/uTv/oyPDo7BJobdCE2pfEsqzKmw5KrC9PuP+OFP7nHxwOsv3/Iv/uJfUVgpBubTzOPTA/vDjmrqxfoml3wZ7jcxLGsmLZlaqlLuciWvWfnFHX20Nncgasun6QZlalzV+bKi/61cWJPeHLLdsF3KqJxYPYEFLaVE6F7Dm7WKbl7b2QFG+qjCGO0daWx5O87Qjc6VkDIEfWWpLHgxGCkEaxljoKXCUip4lVvqza+AjtblKhQ3FqyrWhpmNbBrVd/v4CxX48AQA2P0UJtmFFUdvdVSMF7nnsu6sKSCC4FzrSy5kqp8AJ2Mqnyc7bzhqo4n/94hJd3ayPSKQ7ZfNxdF043uVNYYvCP4gDRhWYQmRbXBrXWXFTBS6Uv0QtWUb6xTZywxhE7DdFhjuNpfY8PA/MVr8jqTraM4p2seFWE0ESIwlwzWI0YZU8aofU7tPH3fiRx0zrU4Q+kThOsw8nywvLq94vndFc+uJ3ZDwDnw/jsgYEhTGh6iyOB2E7kQOyBVLwP31hopdYNsp1aluWps5fPrif/0D3/C7QRTEKTqhsVYddezgdwS1/cvuL2559mzVwy7a75698i/+at/w+s3r5nXzDll3j880KjsDnt81LQ6Zw2Hw47jadVyuxl2057BV3JKLKdVrVXQvlxDrVR7WrJ+9lKqzknF0MR1n6ymoFPKlPIhFAt6xduvzrb1XHwoibf5oapbvvn3tVRE+oI1QqBT6YxhMIYBoFT8bmQXvJaWVX2cdQ4IfhiJQ1SvJKCsWX2b6RWS0ZZhN43sponzcmatiXWt5CL9UNZ+dh8dV1PUGBWlKumtkROtNcZpZLcbWdaV47ySaoNmSKLssFwLS1Kgp5rWzwvphIUOPm3lM9/YsPRZcF+UwRiis5ozq3KHC7LtnQr+N6Wad44hOqxtFxWTDqA0gEv/HC1jfdSTNPjwYVM3PSSvpoEXt9fklvjy6cgqW1eszyBEjy1aVSy14Nyg4ex9ItFt5y8xMraPR431ZClYb/n49hk/eX7g+fWO6/2ArSvWdh83+x3Mca1xih332ZjpAIKWIYqyXEzAOwvG+QA+kKSDOjlxf/2M51cjg9Oyuol+sWm3Z/KRXBvF7WjNEscDcXfNX//qM/6Pf/xP+OrNW9amaOfTacZYDT3eTZFhcCzrmWU+KyEjCjUL4pSR4vfaaL6370nrerGcaVXLMtV8KsRpemCVQRFRVcAo8FK7xYyhXjaFYSv3NjSTCw9Yem+L6KFwEWT0/m5zxsAIXoSImqR7C5Oz7I1l8CO7/RXr8YnSMskou6dkoVkPpWFC6D2XUd2s01LVWIOzDucMg7cMwVKK47Q0UmdDOWv7pvVcjZHBKsV16OHMUjUx0RjdME/nsyKv1rH2+KPSNKtpzWXTo2OsU32wNcpIqorQ0p+BFYPZ3CNFe9nBOsbg2Y+TltE9fkVHT4A05vmMtA4G9TLVe08Mak0rrfuDGTC4fqEoCr6tzVorcRyIMWIMlHXBB8fNLmLsPeM48ubpxPG8KDEDZdiVViFXjfQUFebTh1Kb0EYvtS3eRQ/95gxh8Dy/v+HFzcg+GAYq1mp16p06hn7rG1dEOtii89rWr361s1GChmj0ugJCtSrjxTlqEdZ1ZeeET17ecz0FSk6kZhjGkRAHaoO723t2h2tu58ySKnGY+OXnv+Ef/p//iIfzierUU0gQxmnko/t7hmgZoiHnM+MYaVX1sFuhNB/nXrKKglFG7XVyUYlZoXXaobo7GKObNmfVi66pqGUNmkPU+rjEf+NW1RvWsAnBzTf6VkO/cTvquf1qjGaLOWMuiKW3MKA33xg8h2HgJoxcHfZM4wjrqpvUR86p0SSpy2WukDK1VzYGIToFUUQqMVqCV3XOMp9Y5pW8Kg3PB09wjtEZdrHrbY0O+KSo27+1hugcGeG0LMxrAmtJAlm4tCabNW7rBzsbR9qqrG2rLjAbrWKz+tXnEIyqm6Y4cLXbYRBSWvqC3oTtyguQbqlqrWHwkWCd5gp18rfrMsENK9jYWBvjyxrlIDiryLW0AgJehNEYXt3ecHt9y2+++JLz+UzJBWcswSrrz2O0QuwItpoYmD4i+5Dcsdn6VGnkqjGtjkhA87EsaOpD1U38rW9cFzpQ4B3N0mednZtrRClbrWGtUJr2lmIszVqOdaaReHE78Dvfu8PJQm2GbAP7MCpbyXjGMBC959n9gdQMv/36Df/8L/+M98uRahpLmQnTSLSWaT9wfTVo2VRX5rVgxLPmTC562sdh4OHhxNPjE+t57mWR0tFoehPRoJSsgu0qSlNLpfOFewaR/L97V519bmXkdrKK6JzYbsjxZVcrnU7NKJUCGiz4JgwGom3sg+d62jF5T2iVaK2it84RqeS3b7CipnDWea6ursjyRFkSYpTP3Dpbi+5WMXjNJBqikkbmVfWza1HTuCE4DuPALnocfd6ZKlka+3FAaHgfGMeR1QfyMpOLkIyj4lRe2AolF7L0Z6IgNc4reOOsVZO7tcsPje33k+p1Ed1kg7WM3rGLAW+EtJyQzZzBitJdjVoelSZaTbimoFn0GJw++2rw4sgGQHvq0qNcVQKuAWnRe7zR9EBQ5Q61b2hUJfTi5pr7KfDvfvlLvnwoVFGq5+CqEo18oDl1s9gA2yqbRvyDNthZ7cnXUnkqiaWNXDuPNSpNLaVhbcPb7+DGhc58aaruUQ2iYIzDWiWD+15yNmPJXUg9p8SaVoIUfvLjH3N3PTH4hrOenGE+rRx2B24Od3z95TuGaeb6+XNWgX/xL/45f/3Xf0Xzin7GwRMHqy6SXbxqrOH8dGI+z5josVbdBHMSkNRtQI0mxXcqojceK5actQdUixph7ZxgTZzTTftNx8SN/XRBgfuGth302DZp7f2KEZXKOdP7JPRED0YdFMfg2MfALjpuxsDLm2tMrbhWiUbDs9Z1pSxZ3Qxtt+TIjjFGxiGyNqHiSIvKE5X0orTT/eS5uhqJMXKa4cu3DzycEnjDEDxD8OzHqObttVLq5kpRcTRsDBAiPni9UeczqVQqatBeBXWoRDrg1ceFRgEl6xw5q4Nk26oyNlGhgkUbQj0Gz9CJHcFa5V8bPaRqq1RT+8xW2VtWukVtHJgGj3cbXG/7AaszD9ONDmyIuBD1HVoFCY2FGAPSMusyazUWIsGre2mwlpd395xPRx7OmXPTW9pW9YwyDgyqBtrGfK3on4vp5JrNIBHLIpWnpXJaCznq+Mx27r5Bx07f+sbdkGRQyNs5Lb22ZG/XAQHjtAz100S2ljnpPHY3eV49uyZawdSExTG4ALVxmHZIqazLwpoSc6384je/4S/+/M9hK2WtqnPi4Agh9rnpyrt3b1iWs/Y5Vf2wlvnM6bjy+HjifFrJa0LlkGpgren1AmJY18Iyr5Ta+t/vm7O3ASIXgmLftpc9q7/fyuT+e2tUeG+QDrKAFwgIg4ODd+xCZAojg+kG6Vd7gql4KTqiEHUhlFKJznOumbUmjLE4I+S8YL1hco41Rh7XpMQFFF/wzjJEz931nh/88GNyE/7iX/+K07zqc4yBfRwJ1nYdbSWlrFLDqplGtpt3LznB7FhyZs6FLBqfmku+mNLprLLrchUAUWJK1hDy3Hrnt1na8gGQilYYgyV6i6e3DyjAtB2Qvtv1NEEPspoIDibvuBo9h9FTqjp+rLmSceSmvtaN7ov1jfIYEeIQmaaRw24iJ8t8OrLMK3vne8i5pi5OMfDy+Qtev5s5PzypioiGS4VMu8gg9SxqSsBwm6jmg+k8ITLnxlfHzOOcybuIHQNb/hCigopvfeMqxK3kBmvMhQBuUOaA+u+qxlK8gxA4zTNzWgim8er+hue3B4KRDsELrSWVz61P1Ba4vp74/PVvef35r/jLv/obTsuMeIfzaiLtnPZq0TssjrVl5UTbSK2F9WlGZGFdCo8PJ+ZZ83NbNd2dQGmMHzbswrrmrk9V8XVvQpX1tAEniiVt8DHQg7W66JumG9UIOARfFRW9GiK300BEQacxGA4xMNjIYFTwfnt9w09+8imGypevf8t8fGJ+PHYwSEkDwRb8ZAi7UWmPS6JaMLVSa/5g6WI0QX6MgeAMh93Ibhz57dfveDqdkf4eY/Bq2ZpWUk3E4HpsKt2AXlhywQwDGMvpeOK8rJxLofQZc+0tg/Wuz4XbhYhQa0FSoea2tbTKjOqCxw1Bjs5wFR3ROabBc7XbQ1VdLR1h3UrPVrt9rVQGZzlMkRd317y4v0Oa8HTKCnpZda8IXV8M4I3gbSMaYeguIdYYpnEk+kBLiTGOOKeVTBM9mKxUgjXc7Pfc3t7w1XnRKiE4fBeMbBiP81ZpmV7x7IaGBRgBbzzYQPXwVAyPa2WphipqRK+Hid7g3/rGLTkpiGC7eN4o+tpol9vJWFV6mBA5LgtzXgHBGWEMjvV8RPYHXBz1JTY145qXJ1zxHNcjb99/zZ/9/Be8OS3dZ8khTZi8J8ZASZn3bx5ZUyVnLdWNU3ArLUrMz6mS1kIpOqqgWRxKCKndKmbp9ERNDdBerJnOkLqcfB/GFhuw0ltb5aoag22CqzAqC5PJGW6d59X9LS/ubhgQbM0EXX4qFROLa1o2+3Ti61//O6bdjuPbr7vTg/ZHjYILjqt95JMfveLHP/0pv/jNl/zpP/8zUs56wHQwyveS0BjBScEbT8mFd+8fef3FV5QqhBDwUccganUTGKKa16eaKNQumLeUVMlthaShYnMqKqQ3ygQDMN50EXiffVd1xKjlsu96Cfjh2W2ViEe4HQfudyPjMHRGkycnYWm1j+UK1RhMC2B1dOg7cPfs+orvv3rJ1TRxOh0pMXBKheANaUlEC74VdlMkBB0DOa+xMcEqn/rqcMUYAi0XglsABcmmIdJaUJpkLR1A6qn1zRCsw7dC6vxm079g7Q4WtuuA9f3oSKhIY26VxwzHIpxKJVVH8J25hiO376DH1WqgYV0gp9JTuU0P19rGIrYbScM5aUQkVjjsJj5+8VxdC3OjDR7voLaCNZ7zecHFyHE+89svvuTd+cxqPA3lO1OFoQ49EX4hpcpyLpzPmVSqnrLOkucVqeqB3KqBarswQkcWKSXms27YUpQcYvpoJveZ56U0/v8YqZlv/OqrwTchCuyt5dX1noiw8577GLkaB0YaLSeCaeqb660egKJp5t4HBm95evyKp4eG5KJOFlawQRj3kZu7a37vb/2Y7//uDwn7K8L9nr/85d9w/OIJukuF3xYJGhLmgWgttVrevH3i4XHGGM84DLSmcZRbuLWzsHZE2vrYQ8EbgiVtRJUGSR16Pkj7nAZpldZIPb1QpKPEfb0Yy4W04zpZW4pmJg/WcDeN3E9jn3sCpahGV4RUCkqQ1VEN0hi8ZQyRm/3ERy9f8vLuGVJWUpfQOeOwTZiCJ9K42QXuDhNXhwHr4GkxZDR47TBNyqtvFtMcMWogWIxR4y6lsSwLZU2UPuJEKuuciNOOIOAaiO/stK41ds50DzTfZ2JaKdSSqM5wpvDufOZpHVlGbRetUSlpqd/Bxr2Ympd2iXgQU7DOK8JslRiPD5zWhaUkKlo6hqDk8a+/fsuVFVp1hGAoy9xlgRUbMr9+/Zpfv/6aOQsyepY1Y61hXRaOj0dNOsAwzyqZO56WblpeCMHTcu43pKMV9KeJRmXOSnustduzOEu398c4RVSln1Abp3gDqYALj3Eb7wwiTEZLvfshch88d7uJaAyj17lpLSumZk17K4Xo1fxaUGbNMEQO+8Dy7j1Gio62QsRHuLod+PFPvs+PfvdHvPrBK2r02P0Nd5/+mF99+Zb/5X/+v2hNEwiraTTjVIVlO+PKaWH6/vHEPFdytYSoE0cRzajdQtw0glpRYCVO6DdVAb10NaQ6PXyQ9+kjKd2idXs2Gk3Tk+5FJXj7ITINAyVn9QaTytUUuRkj19Ogyh4Mp5RQh8p2GdNlUafN2HODrvYTL+9veXl7w+Ady9K6C4rKI1sqTNFzNXhe3e75/stbrvcD4xT54iHx5fszcYrcX18RgmdZ1MqotcoYA5NXc7xxt8c6SyqFNVVSWvHA7rBXFVUqnKtm+/aZglJA+8PY2gbnPaZzpqtUzlJ5v1ZOKbFkx8FbSgVjGs58B+OgzRITROV1DtQN0YI4ShVWK2QjnEom92Gmd5bzcua3X3zBw/mJ8jhzffWoRtQOUlrU68dZPv/qDcc1s1qvQ26jPj3BR3aHW8iVN1+/5f3DE7nBmjqMX9RNUNtQRQxLE012XwtpUUMxRPsrdRNUJLS1D4QS+rxPOt3R2S5ebL0UbRVv1NvpLhg+vj1wN00crGMwMIWgKXPSWObE8XykloQXYXCOJqJaZVPxwbCWE/a4chgNwzDinGfYXfHi43t+9Lsv+dFPPuLqesI4Q7KWeHfA7fb8/k+/z2d/9RG//fw9pa0U50jisFgGB5aqSHAznE6ZZWnKA2+aOpCKEiFyF4xvbg4b9zC3Skm6CJvRjB4XLd50y1Wr7zuXwrZtXT/wvFFHjJ33eLF4Y7mdJqZhYBGhxoa3gevDhJPCMp8IIajBQioX9lk1OgnA6Nhqio7D5Li9GXh2MzK5QlmO5HVV4/daaeuKzZXoB55fXfODl9d89HzPYRwUiLqC73/8gse5gEkgjsfze1I6Erxl8DBGp+MlC7v9nrqs1LIqmArcTwPGW9K68FgayW4EGtstlnrvL01HjDgda7UK3jAb+Dolvno68b3RsppGjDttHb8Tszi3lQTSSwKrPUgtgNVAYmBplWKgGqPm3a0x7fbsr+6xVViy4YtffA4W7u7usM6w5hPHZebt0xNLbdjBc7i+ooqw2x8IMfD2zXueHh9Z15llzYioG59tDtOUU4qpFBHSmllzU4ua0vQK6ahia62bjslF9rVtaJrgjA7wve/ew1U36yhwOwVuxoHRWe7HwH4ciM7obVISc1nVQ+m4MC8zzhl2w8AUPGPQuWE/WvDBMEbLNDrGITAcRvb3z3jxvd/hhz/9lJs7zzCuiFGH+1pXTm8+J3/xG65D5u/+7d/ln8r/zfvliRVwTbWx3jSMUWXKsqycllVjIq2OdJQoUboWXzqhxXSbUaGV2r20+g1qlcihKLCCRCUXiggXewCzIcTm4tV0HT23uytME4YOhg3DQHFW7Yz6bV/onlRFRz0iokBUUQucGC1jdFxPgZd3B3700Qtu9hOGqsmAaVFcwAiBiguOF1cHPnl2x7PbA1f7ievDpJlDPpKrYRwKT0vi/cMT6fE9VgzO73DOEWK8YDZ9oehNOwyMTicCdvBEf+5Ok3IRR1zC363OqjF6iShKXVQG6j2ZwjllllyRnXLgnVVThW99427p4+rYADYojay1hnMC1pFa4dwqxVrEqf7SWsf788pnXz/wey9e4Z3l6eHEw8OZr9Yncl559/COLJqJ4YPn2ajSLYvl+HTm9HRinWdKzgg9wiEXnHSfpe5guKyZ83kh1UZqUIsay23l7/ZQNwsa0zR6YzPvjr7biwA3h71yrpdEFOHZYcd1cIymgyvWUpeVYyucT2eWtHJeV4J3RGs4HCYlxBsYHMROY8QIMQaG6HC24r0QBuGHv/MJv/NHf5urj3+Hlz/7fdZ3v+b41V8hZUHKrJpfybTUGGoikJhGy26MrCURcQqkGIMNkbl5ns6ZuTZS6z1Y+6BekW5an4saeDcxFw0x/UBz1hCCihLE6HsvpdvDQKcuKlUxIOysYx8dr6733O/2XI+jaqKtOoIsqWEGTTfIZWZZEuekA9FcK4RALlUNDESjKa/GwIu7a55dT3z/5T2HySMtU1qltUyTDK1iWyJIZbcb+cHLW773/Jb765FhMDjXdPbfsko4Jw3s9jgkOR5PC5iJIQTV+nbsJouoCZ813B8OHKc96TxjilfzeBGsfGAVNhRLuYhGAOug9ShRDR23FOs4lcrTnFj2A0E0isS176RUVq/b0CM0VWkDIXpyU9H3XCvVOYrR07OKoRm1fPnF2/c6I6TxeF55/zTDw0otuhl3+z3Pn90xDp5gV01yL8K8JMq6Ikmd96zxeBoxGAYrDN7oPzcX8tKwTfOELN3tAOXb1g4efACYpM/3lKrppDFay+1+YnKWMQQGMQyHA8FZ7m+umI+PGMmkdeWrpzPLooLz4JRpEzpdbzcYgrXKXDLCENRhwVoIweF9wwXB2EqcPLfPDwyT0NoD8+kL3vxSsGbGUbC1B1wbT8sNSZV6XpEsBBcZgifalSoVrAo9mnWUanh/WjgX0XfQudjW6gIrtVxmjBq36S7MJotWJd5pILixuqlV+nfZsxeTuIDyqu+nkbtp4H6MXHvHzoIZI01gdFYtdFDTgGNVH67cU/qaURJPrhWLEK3l+jDw6Q8+4Sc//IRn1ztsWVnnE7l1Z4vaecetUnLGGeF6Cjy7nnh+u+dwCKq4sUr7aCVhXdMg9WCZ7vYcxsjX7594qp7JOzWJ8B7rIqTUPaqF62nik5cv+fKr16Q1MfhAtBlXleYpVs0DN3vZzcFD6/h+8GGpGFYc7+eVp13mtBaGUfCjEla+g42rUSM5J5zz3Zy80qSRrWdpjblWivHgtTTobrFaouXKL75+i8krVYq66qnEBm8dboiUkpnzmZW1vwyBKkrJCw5nKs92I6/urvjx957z/PaGN28f+fm//RW/+eKBOijRniXhjGNOjXlJbNEYG7lcba9cFwUoy8ih5X8tmYonNSFap0FP0vj6/XtKSZznmXlZqVj8ELDSCM6yj5GrYSBacC5pvxQs3jaca/jgiDEwjpH9YcKYyjA6Xry45fr6wP2LG66vAo0z69tfU+oJ3xZ8aeQkmh4nQlkST8czp+NMTQ1rnDLFcsL1Q2rG8nCceXdOLBnNULqMY/QvFT6IIFBwxHTyg8aeWMahW+k29YYu9d9X9URrOATL1RD55P5O+c4GrmNgcI6AIVc1YSu5UCo0Y1lyYlkTNCWumM7rrWtSuqYIV/uJ7716xo+/9xHff/mcwQqP784s50V1vk1Y10zqHlalg6eH/cRuCsToUNP+xhBH7eW7PtkCLWcawug891dXDBLxYcRUwXa2nTeWwXpW5xR8vTrw8BC6HjcyxIxfhLmUC7oMism0qlY7tXYqbP9frjCjP+/nleOycnU1Uargvwuucu3BScbprLD1Bd8QTnlhEYv4QOska2csrg/PBeXK1qpz09qdBkBDib1zTONAoOAks+aMGEtwnt00sHNCWxM//PgF/83f/xkf3x3YedWSfu4dX//mHV/bmVrPiFRC9JTSA7bJapWa20W+hihApZtW+1lr1EHxnDLZJKKzzAbenp96fKh0YbSKBA7RMwRNcdtFx84bxtDwmp+IM03ZPZPncLXj9tk117c37KeJ/WHEeRgGy+3dFcaqs2FaZ0pNiuI2dayo2dGS9pRJGinPPL575OFpJi96iIag4vaWV3COmuD9sTs6WJW3tc4L3uartY8aLSprUx2wgkxDcMToAB1llAp1Q+D7v+cMDAZuYuT79/e8vL2mnI6YrG6YMUYqmsOTa+a8LNRmwSgLKy2FZgQfvSLtpjOvOqvp+d0Nn7x8xsu7W0bvmI8PzKeZlKoGf9eKGLUaWnJlrcLkB+I0Eoegpg1VVEjgdEjlYyDlQmuNh4cHarUcru4ZXMT7CUIkYQlWqbPGiorpTQ+3S1phlZIRN2hOtEnYjulsqjLZRA5b9m3TA9Z27nJukIzhuCy8eS8cdoHoJ4bvgvKIVUOszbyrVWWOZAMJKBe+bu97+wLfhOvST92adFalBgrdjazqgp9Gz/l4JhUYhsDOG1x6wtvEp5/c8Sd///f5vY891CPG7vjNb9/y5z//NZ9/8cA8axaQtQ5TOwAlGeeU3ovoGEdvHj1wHFxmt6Ald+uUvrkoAuut9jHK1bJM3jE62AdL9MI0qAxtdIZgK1IXrGlMO8/dnZb/rz5+zrMXdxyuDhcnxzgEHb6TqS2x5KUHMat3U8qZdanU6qhrobTKnBeWZebp6cS79yvnc9Fev1aaFHITshjeHlee5tLN3nSnbsBi37/6l/ZhEzrRUc9uGpRJ1TT6MVUh9ZGQ/nds19iqM+Y+BvbOsT4+0tYFK8La+iinVVItzHlVIr2LFxcRjFMDudZ0zOR9t2Vt7IeR26uJ++s9uzFwenridDqRGzQ883JWmiZCwXBOcFor1gvGefWlopHnGWcm7LjH+cCaijqSimG/P3A6r2Aapa5UHDEM7IdINYKh4mxDbBcLtEJeF9baOJWC9Um9sETAWk31Q0X10sdIm72Ns0GF9rXhg7aRc228L5m3rXC/m7iKkea+AweMug2hi4ZhuW7Lmmplbb3Ob2pZIx3EUrxZb5OWM1KLUt9EUUX1rbJdQK0E+pwXog0MLbOXxn/y04/4w999xe/96DnXO0toM8ds+befveFP/+xv+Jtfv+PxyXLOYPygN2qb0Uwa7StH50k0Sq20Bs6rfC1YdVZoqgdTsrfVW3RLRodGsBZndEEEU7iaLPvoGJwwBSEa7cmcrbjRMR0iL18+53sff8zzZ/fcXh/YTaM6/5kCDaRlMJFSCmmdOS9nUspY60mpkTMsSyatlVJQR8acOB1nHo8zczGs1dAd6qlNWJvhfaq8fr9wXvv/1T7Mn4GLZpT6QcTunSpidtPE1dWekhNlXslZlVG1CeLAo+MdNa+Du2ngdjfhRahdaO9DpBo1mE+1UFrhvCywuWYCxgbG3aTpi07lgN6qv9hhN2JFGKOBurKcHnEoTjIviXleKa2ylpW1OZIYzqnxtGZMKJSqbLYgDVMr6bRQRjUVqKJ8+1oqu/2eq9tbSm28effAnPl/aHvTX8uy87zvt6Y9nOFONfbAZnOQSDqirMSOnCBxAAfIAMRB/tkADowYyuDAseNEkSjJpDiIVmTQ+AAAIABJREFUQ6vHqrp17zlnD2t6/eFd55Q+0gD7Q5NooLqq7jl77fUOz/N7ML5j2Gz0cvJwXE4saaKiO9ZSCwmYq9Cdmc3mzNZGY2yAtRacd5jSrK6ihhGsUEumGMtSHcfqqbYDCXgzIGb83R9cSm2TZYtxumdLThRAZq3GLBqrEjipSiiwzcBVCqVEbM24plmtNdG2qnTB42TBLBPPRsinA1vr+G/+s3/AH33/I643QjALtkTm3PGbLyb+9Z9+wi8+PfHqoRCTgAnYoLT8MybFWbW0VVG7W1aCJgJ0fUdoYnBlSyXVszqDbe4aoRIAJ4UuBKyB0TmGHgZfGIKwHRStuRk6drs9w8bx4uUtd3c37Hdb+uApsjJHFZOoLK5lKuWFNS6sy8w8L+QMpaj+OmVYlsw0zcQsLDFznBQV87gIazHMyZCTo5SOORkOMfLlceV+iaytjz07k519VxZbo+aHELwqmxq7uOs6lnVhXWNz9Wh/Gtqp75vedzSWq77jydCzD0ZXUM5hXQBRCPy8LsQSMc4RK42SIpfEPuMsoe+Y4oxQ8bbDGUPNEe/Vn2ylEucZa7SNqCUr8jQn9UtjOKXM4zwz54qLkYfDkZRvmaeMs8Iw9tg247Ai2Frw3raMI4Ozyp6aYibnqIfCO2ItGqVSK31wSNXhXTGWVKGkCq6j98K0rpxDyY1TP7qKYWj7XW05fONSrVEotmMtmUKgiGth4l/DcMobiw+dpqrVSnGqt5ypJFV3qyC8Fr1Vm7hXx+JnTKciPRBlJzmniprng+EurPzxD77Hy9s9n3/yCS+e3PC9bz1n5yI2J8Tq2+7T1wv/3199wk9/9Zb7GZYaiBSoCV9VheW8x6SsFjM55+Mo4qSKDlvmZYHeM3iLk0xwlV3vuLva4K2GWKeUqTHrpNqsOBe4HgP7TtgNjrubkev9yBB67m5vubrZ4kJlO4YmEY1My6QImPXM5aotxbxSsk5Dc06sa6ZUp+FhRcjFEFMlJd3HHqaF45yYi+VhqRzWzJwqS6NYTGvkYY28nhLHYsiN+XXGwYpcqma8NdyMA9dXV8yL8o+NgZiixp00hZltB37stCrqLdwMPVe+Y2MdgQrLjN2OBNexzJE5Khoo1UI537Jdz9X1TUsySCrcSJmYEs47rrY7fDAYSSpblIqppWF/K/O0cDoeWXNlTZE1apzLIsJSYSqqA5aUeHM4cP/wSC8ebyviPMYFhn6kiA5TQwi6q61a9fVdh52SrhtFGIYBSia4gK0zGC46YjGm+Z7bhqCJdC7yMaHFnTSlgJx7Ev3wlZ+luuRVKsc4c4qBOfZs89cBRLc60ClVEO/Vslcjq4BYTermjGcVLh5UqVlXPiVjpEAt3N5c8/L5M0z1zIcDzG95sg38g299xN5XXg7aA5oyk6PHDSpLf3X/yJ//5HN+/MvPuJ8qU3F6aG0l5oTPOgqLOTZAdWM++4bUqRpPWUtVMHeAwRj2Y+XZzYZvffSSj95/zu31nul05Je/+YTD/QNxjqQMznXshsDNaHnxdM8H7z/hej+yGUaC7/G9RWxS180aWeZIaiXk2c5Wqi7kS0O6lqyrDWnAOcXkcElAiFFth0uszLHyEDNfvJ15dVg4xUohMKfMacksRYgWEg3bIu+myGcIm/OGbd8RnGM+nUgtGjK3g5RTbSA7VYhdb3rutgP7vsNLYhc8LlVCBSmCC57tuGFeNLJkKZlU1X/bjxtVWeXCvCY16ictda2z9L1XjpPVA1pLpq4VvxkYux6LBsvVKk16mJljooihGK/9ZizECoSebOBxXjgsK7c7yzAGlrhymlZub2/xmxHvAkO/AQNL1DA1YzSXKLe+Pje4+rKsrNNCvxka8M7immzVWnWGOWnClFpwLjSveFbShmjMtcFp1dkEFtVCIlF84VRWHleIsiGW5Ws4uEYFFWItJvjW21aq1R0cmIaoFExVUJY1SpSQtpuzRjW8ORUe7h9Yl0Q6zbw3GH74g7/PTd/TlyMPcUZsIVbBMwKGai2ffznxi1+/4u1hZclQjCJfRQTngkLpYtJEBdtogG0oYIxANdRciFmHV723XG073r8Z+P3vfIMPXz5lOwaeP3tKik94+f4HrMvMp7/+lGnR/y4vM8+f7vm9bz3j+ZMdnUdN1RhKjaR1Zp2yJjCkxDwtalBPWUHgrbdXzbMGXiMKpitSldecVSCRSmWJiWmpHNfMYxS+OiY+uZ+YszCnShK9dVOG2vataqETNGi7UTnQnesQPN5aclEfbm5Ey1zKxaNs0eyhwVruNhuejQM7B5uuw4qQyqqfeddRjeXx8cAchSlF5pSIUhjGkZiFkhZAA750QqiKKWc9zuq8AZL+ue2lH/BQYJlXjocjx+nEtEZi0WFUtY7khNOcOKXMWlRIY43hYZp4XBZcf8Pu5ooi8ObNA/Mysxs2iuFtVggpiZIqKRWtKPseHxzTNHGcZh7uHxApuiHxoa2aOvxBGAelRB7XFUNpNM/SPvOKMx5T5RzC2DKCVaMeJSEexBrWWlhKYU1JUTu/64NbEMXWNOfGonwYnAs6zOGcXtcYVCKXm7aWRsZHyf/zaWVpA4tgLdU7us1GTQpG/ZOmRCUfRIf4nhQrp0NmmS0xqbSsGtV2GvFQHXNeSCk29GYA4ZJM0IlRaLeOonCiDprdZs9uf83jMfOnP/op03Fmuxl5/uIFt0+vudqNhO0tMR759M0rXn3xBaHv+X0fFDbmhLIWSirMxxPzemKehLhGYusTS1HqZYyRXDPeO1wDn9ei9ruSUcOECFbdAKQK01K5nzNfnVZeHVY+e4jMAgnHmqWBx6G0tsC02viiV68Ga4VgDL13BGMpKanbp31n77zG9rIScipdIZ0mUlFnCxs9qCKVbADviav2m1Es1alunQrzGvFNtqjT/Xe2ui54+qHTm4umT26uIZXsW9Y5kZZITAsxRYrRlIHaWFfHGHmcZ46pYEOnWVLGkGrmuC4kBBM8wVhun9wRrNMVj3EtbaIlFhYNkEux0A8j1lpiySzLQi0KiFPoufa+fefYdI7e6VCva9ErhqZ9FyWCUKX5vM8phY4YdVPhGv4pJkMSxxLhNFfm9bc+t/9heNbqA8UHplSYMUQUkYm0gIea9QcwLdaw0GR2mjVkq5Yj1eiOlarWqDeHyL/4t3/J83/yn/Bhbxk312QD6zKzLIUQMrk6Mj3VDhRmUk1k44hVG7h1nZhXfRkMQ491HocygUvOYBzVqDzTOX27p0V482bhzasD6zyR4zkWFJz7NcOmU+B4zBwn5VqB8PbwY57dbhCB3uvAIy8zNUdyKuTiWaNhXXUHmhoSphhDqQ5JijNNsbSJsOquMT3HJTLPmcMyc1hWYq3cR+HztydOa2ZOUKwlN/vkeb2jhgwNzJLSNK8i7UWoeUwGQ84aiBXPO/bzbwIXiWYohVBhtJa+OW6iM0zW4oPXxtcYElWDwTIc00JGGdQqdMlNgWSxJrRS02AoKgvVUwqi2mh35lLnxBoXclzxXut9sY6YC1EgY1ly5XDUgV81+jMb2w7WbsCOO6LxLCmzG4e2N++xBJzzrGskJx0SUkByJcdImWZqeKSaoBWCM9heI1YXUT71xgdCFcq8YEVthJ0PmlElpX0HTk0ttfmVjZbSpUDnFeCeEHI/sqzCw1y4f1y43n8NJgNBp7JTqZyKIZsOoSgOxlpVSjW5nHOaXF+SOmucOWeqWQy2rSksQaz2pMbzF795zZ/86V/zT//oO+y6kbiuzAvMdaaIZUZ4uxRitcQspAJrEZacySWqcL5R/g7HhavdltB5jC0tGgWyEaxt/4hhXROvlgfG3hF8T9fXdwxd79mNW9aYlNG8CgpWEu5Pmf/5X/wZ7z3b8+LZNVe7vmmcBXtRzsAaNdzaOIN1HSJFd39RhzM5q2EjFS3DY6m8Oa68nla+ejzxuGRihUUgVj1ohXcMLIy5ECZVVFL0r2hMSw9E6Y7OKTe6RZBAs4q2yuhcRvcWRmvY+sB+6LkaBnbBEy4hXy342hnmuHI4nSjF0HUj1lTyOgPKtnbB0ffu3TNhDCF4QAFwwRuQyrqsSjUJof29VfVbRNRP7ZvyDh0KrblymiMxCxgNfjPO0AXHdtzw8bc/5jvf/5jNUMFqwLrzbdtRCvWcGm/kQnNxxuKs4TTPrDYgJrCuK9WoGETrXUPNmcEG9v2Gt4+PEDRFXlJpGoEM4jDO6ZDAKAujtE1H17A5VYQsjuQtCytLKSypMsev4eBWq0bqZU2kqpQ/43zD2TRrXNsW6nSuILVcXCXGWApgnVN9a1WMiL654W02/F8/+jnfuL7mj7/3krQemY4nxBZWl/nq8JY///Gv+M1nJ+35jgtrRumCcv7zHUYq03GhpkLdbdiNnZamGKCwWiU5OGvYjAOuZm72W672e5ZpYj6d6EJg6DqcVbDbEDThwIZAzBFB+OoIXzzeE371VveaTlPfhq5jM4RGCFF3jfOGrnMEB4OtCmerTt/6RuWEj0vl1SHz6nHi7RI55UrSq5TafDgibU1VVTCib9QGKqsoNbEI1ht8p6WhYmeL9rRVr2fNxLYqujDCxlqu+sDVOLLrO27HESdCZwy+zREMohGk1rGWxOE0c5gXQjfqjecdHT1xXdpB9Gw2vSYstOmtTlwLtkHWRCrB0spNJR4WQbNom02uFsgipCpMJfE4rcyxUlEJqW0Hfj+MfO/b3+Yf/af/kI9f3pIfP6Mur4mpgMl4lNC4Lqt6sg1t5afQ9GVZeYwZCoRuo2onb+lCR/CeuGr8y6Yfud1dK/IIczZugyjptBpzSbg4JyeoUb4hkHQIoZWYMcRiWAscl8hp/e1r5d8eXWMgipZY1fhmSFcomKDlWd95jMBxPrbMVNSqVFuwk1FmbxBhbyrfevmC+9ORr5bIXAJvMvzz/+fHPL/d8tHTWzjMvHq8J60Lv/jsgV/87WvuD5VUTDMwNycGzUZVULqEhRQLb14/MndeFTghMPaBmCpxVZ5TlURozODpeGCaZxAhloRkpVxIEzdgrGp1jaciZONIxWCyoSalX1pnqPUE7aGsLafSWwheJ5eDVTD50Ie2glEL4mEtnGLVybAYinWKOwUtF5saTBFBBlt17YCAvThVhK7zDEOHdYZcLfM8X9LnFQ+rZbU3lgHhput5vtnwdLdlMBaJK2NO7ybyRnlKpWpS3TxHjuvMKamqSh/cQqUSc8R5yzh2jENPHxzeGY3ybFpisO0704McXMA1Yb40rW5FqzjFnaJ9YC0c15WlVKp1FNGBEVWnvdf7a95/70P2+1vG/R2+c7z9dCaWicF4KEXlpLVZPfFY6zU9st2+qRRqyvheL5qzQ807z9B5epdZ1oi3Hsm67ulDh7crpkWxGqMqKuN0Zyst+K7WQmgaf8FRjKZdihvIuXBaE6c1/u4PLl3PNEWyaIKaeAWTI0o5UESl/nvvPTku5KKlhBelyGf0dh5s4aN9x//wj37Arz7/kv/zRz/h81JZK/zmEPlf/s2P+B//8T8k0vN6srw5RH711cJhMdSW2m1KBRTqbdo0W+mocjnUgkoHX799ZPKBfhxJsShPGS0bb54+YTOOfPXqtYK+jaEmQeYV3yj5uUKplqrCTsRCNbmlzGnshpom9GbTX0XztKpk0uSiaq6q2FZnlvbG1yHUeZpUgYzKQY16EaHtyZU8yMWwbaUlANBMAaFj3AwY7zgtOgBMKbf/3JwraoWpSWHfeT64ueLp2DMiSFQZnw56oOt7fOcVsZsScyqsFU4xM8WimuoUW9mtwobddsPYaU+bmwklZgWaq6uxgjV4q5sI03ai1qlTS8tLHZoVHBk4pMxxTRyXpOFxKEXEJjW/aJvTc//4wF/95Ke8eXPDy+uRmgxb40nFsuldCxA3rc/NFyplCI6+7wlYcgjkWul9x267YbvdqvbYVoYwMHsoSasXKYIJ+uKQZsDQMG21kpYzVUW0WlKouqFWBfsX4ykukJ2nuPL1HNw5CbHQ8n2s4jub/7O07BURoaTUnBF/p5yrouWREXpXuTKV//jjp3z3Bj7avWC6/4p/+fNPebCGUxX+4tN7tv//T/jD737M69Xysy8PPJwsvr8lpYWyLhhnCDhK0xZjtV+Wqi4apfjrg5qrcEqZKR0vhAuM9n/TvLBMK2sWkvGUWhWAXispKX3fOo/3tpWrupMtFHJWSn1u2tzzQ3eBoJuzUksrBGn9vaG1QKLi/2qaqsdULkG6qPBfL9VzasRZpmgaAED11lfbgRfPnuCsZY6J14+PnKaZVHRKr4lxNFCAGtm3UrgbOu42ndrvcmk3nsV2QXvTTrnNb04zx2XhFCNiHWsulFZpgSHFSOgM46bHWFhyxKC5tIjgfN+qoybEadsDYwzBONWPW03HyPWdXzhZyykW7k8rU1TTfRF9yfnAhYv85PlTbp7dQe84xoXffPElD28t175y7bNyrJ3Dup5zSF0/tFR5Uezvpjg6NJ60osq6/W5H3/UsUa2nIXQ4p1EqZ8plRd1Eiv3RjUXMGYsOYjW1wmglqGNn/f6tRazTJAhgzpk5fw0HV8t/pddX1Clj1EWMMfYyWJDaFukt8+W8s1RnSqUzhWfbnv/omy944mYqjn/yh9/hIWb+319/yVGE+2z5Nz/+FWusfHV/4NOHRCmeUBsd33tKTXivg4VcNbvGOUMAaBykrg+KNKkVsV5dS9ZpcHMprEukpErXDWQxJCyxtIMrhmKUFWRypbdcIkQrtbGQGtEPtXRVo2mADtcePn1BaMzlOcW8tNdZG3ZJQ4Rb/XxVl24vL4hmfMOg5n0j0qJLdK2y6x3Pbq/oPRxPJx4PE8dp0Qe89WAa9vxu1TM6x5WBkUqZjqxWjeXO9whGtwdVOBxnDtPE4zypywcoUoilYFxoSjjoOs84BowRlnXBeU+t0kQwWh0FrwiXcHYXOdoLUAeHJSsBQmWWqrM8LJG3p4XDWshYnakgGFN1leQd++srbp7c0m0H3BBU3CCVw5JY0sShzri8Z3C3DEOHs4FahTUupJzwwasGoKoQo4piirp+oOsG+n7QvXGNSBtQhtDhgmdKkWzshdyRatELxGrYnWlZQOcDW6voW8E23XPOuns32sfP8WvocZfSEto50x31A7dWmga2WcvQL8s77VsUEK70O18yNzbzR9/+Nh89fQ6y4MzKh1eW//4P3uf4+JYfv1o5VOGrLPyrv/6MznWtxMgNxFXpjEdCm5S2clxRKFyGDrXdcLU2gqCowYDGzcpiKKlic8anRT980JdAeUejV/yIMMWlHTctaaUp9MXU83i2rcK4rFcMqsnVsG+drFq0pK+cMUBqr9Z+SKUBbU+iSBWnpaQUIQh0xrDrO3Zjzzj0eKvBU6/evuWwJqZcqVWn+N6AuLPMUuiNoTPCPgi3wXK96dj0PWWNihvKGXEd07QqczonlqyRp9Y7FdtIaSVmxXeBblCweK2ReZlA9wZaseTc3Fq66+1b5pQJKsaXWpnTpDQOY6DdQIJhPkXup5VYhepsqzwqvhlcfPBsr664fXrHdr9RDpqIQuqAIprC6AoYpwB9I4VhGLHB67PZBfqhQwTGXujXxMZ2jNs9426HH3tF9mJb/ZPZbDfc3F7zen7g9Ljqy1gKwRiKCWqsaVWdtYGSspbnbQ5TjJpfTMmtpSuthXEcl6+B8phBJY31HShcaFpYHReqJDJnatWxtjcGK0oIzFIZEG7Hnj/6vY/Zdx0mJ3zfYdPKd9+74x//8Pe4/9d/xXLI6vpImlDv0Ycvi6JFRVTOaNviWyFlStuoCM6dPyaD8YEY18bH1UNYspY0pe0wkyTOsLRq9CbQ6RWXav9yaM9lZ3mXtocRrDO6vytqYVTja/Nnnocx7UxXFI2in1u7gdv/nDNj9SHUisKTCc4QMFyNA7thVDIFlXnN3B9PnFJirfrQW6MPijUF4zRk2iD0zhJqYdsHnlxveHJ9Q289h4cjU4zMy0rMM8ui318uRdPpnEWoal0zLf09BMLQE87xnkVY87n31psp1RZtaTSVrxpVPpkqBKO760v0ZusQliKsSXe0sQqJ1n5Yo0xqp+yq7X7H8+fPuLrZ0w0doVOTRHC6yisxgu8ITkU4b9++pe8sznkG1zGOW+2Uvf5smxGemMBVv6W7fkq/Gek7bQfqmpshwdIZy93dDa+nt9zPRzKqC9Dpsb+kFxjT8KzobMI7r5VoaxectQ1AqDdySoXefg0mg/OD5b1VJ0M7MNbortYaNdsrXMxhzl9IzToQsboG+tZHH3K76fA1N/WQxVv9a/zBx+/zdpr5Z3/2S746JoJVeZ5caIIGMZrr2DdlVG2TTWst1eg6wZp2ezmvJUrJVNQFVKVexvTOtiybKu9acqElzal++OxjvfwCaTdpu5J1kqg3YrlYAXXirgdV3rULALx7qYB+aTrm04PexHgYo2qn3dDRmY5A+5mrICWypsqcEodVw6yrFgAqoLCK3gm+I9fSwAUVL8ocvt7tGPqew3Hmi9NMTJW1FKJU/fWihM0sugfVCMgWHWIdYegZd1uVW+ZESgmqyjXPTDJVDJ1vUn1xlKqc5IAa1VNeOeulcrOIzikxrSu5Vmzo2mcqBGcJIdCHjt31Fc+eP+Pqas9mHBmGnhBUKCElUrKW5pubK249BBsZQ2DsmoPJ6O8lUintpd0Fz8Z0rK5n7HtCN9B1HqFwOE6IZIwpCJngaZJHy5x1T4u1CJZS9f9NdZSS8d5TS6LWhPP60lJtg2/PIi1griis4Hd9cEv7Qn0/KjnnjNloiA4MSMlIybhWTpaUdIhi7GWC9/B45DDPRDeyCUHfVFYf/K0TfvDxe/z4PjL9zefsxpGaMnFRv6xF6BtsLThPWjPVWaX6t9JcRLA+6CGr6sAJrg2xRG8LK1w+pCpCdep+qn9nyHQ2+evBbAdZtAQ0GGhBT9Wc32mmvaDMZfjUhEuADpT0ILec19ICwZqiybRkus45gjUEY9lvRnabUZ006wpFBx8xF5ZGfkiiU81w/scaNqFjO/RYC3OMLClTqv55g3ekmHibMzkVlpg4LZEo0uJFoG/hz3hNV7fWYdDBVtcP2D4Qa2FaF7IoNdLU2oZqelBTbLN1q6sqEEyp2k6J0DUNQBaNGcm1qbCkUrHUBlE3RvNtvXMM48j19Q1Pnz7har9nGDT4TPejmjI4OMumH3jx7DlPrnY8GTzpzWeEPNE5o8FfrWqzFiSJXi4iIJYcDXmNDMOWYB1rVmFR8I7gcws9rxiU54xVmanAxWhT3sVsEWPEWUFMoVQVf3jjSWlFuhGcb727kkJ+5wdXUL1laQwhaIoopzdujpGaox7eeoZ+nsf+okZ5gb/5/Cv+tz/7MeGHf4+X+4H9xuMN2FIoLe2763qur3Z884P3mR7e8vbLLylrZgyB/dBhxLAsq+pyg97aSdSgT5VmFtdAMnOuCqz6hKUhN925FL4k3BkdoMgZt3meEJ+J/1YJIPoeUvkiLf2gTXrPwzpn9CBeSH/Qbl0t5YNRwYap+vA459lv9mx6z3azwUllPh7onEWWiZQKadWcXlA4mlRh6AJbo4er806B3p1XTKpV65i3PYgwJ/1cUqlM08pMJee2uzQGaWXaGSaHaHiYTsULIXhNcXeWNScOy8KS02Ufa+p56NZ+9vaC820AV6vKY72Bui6sRlVmtuuagKQQpNJ7hw2+DakU8Be8ZdxsePriBdd3d2zHkeC0GvNN4OCMoQuBpzfXfPTBN/jww28weMdYI49lZXq9UlE2lT/n9hou03pn1T8bRGksvj3jNVetppoxxTmDJFVg1ZyRs7GmuZswDcTQKk5d+RXdwFjtb8+bhCVnat+TUOBe/jpCv2gDqSJVBzml4nwrC6lIPccz6pcvuTYHiMWRcLVivedUe/7vv3nF1fYz/svvfwMcbG1B8EQCXzzOPJxWbm9veP70htTBriyEXNh0OpCJa+KLL15pVeoMxRtSLIjYCz5HeyJVqpzjITRkWYmHUitWDN45rRik0SHNuV6m+RLbTkmaMZrz8EPp/7a9mNqlogexlc5gcAa8dS3bx2AdXG03DF6jJK11bDc7uq6jlsQ8zUzrimTNnE3relFMbVuQs3cd1UDXD5ffe+gCUjPeWYa+w3eBUyq8fjwSY6SKBjE7pL35derrnCP0Z7SKkh8lN7pDPTO5VFrofeC0Rh6WibWoLNGK9mmISh2D1XWTb4SRrgtabVkY+sAQVDc9Dh2bcWC32egUuignGQMpJR6PJ8QYYizEUrl6csfVs1uG6z3DuFNzC6ptNga8t2zGkWe3T3nx7CXbca9hX9nQ9RtOxpOL5i1ZU1sLdP6ZK5hE8B2dNTijiRCcnVzV4UxVMACobLJVTDVnrBioKsCwJrfBqN7CzikZQwEvCesMlIxYiI1BLsFTVtOGv7/jg1vFaKjTBfasXVktSXEcJekBgPagqfvFiGGwhmfXO06pcMzCmwL/8t/9gpvR8YffvENMxvkNj8nz8y8fOMbMd7/zEVfbkWV6y/Z6w9PtnoD2KPdvH1g2o66gYiSLo6fl2aJlk0WJjudcFmPbxLZdwSlrPKhvPTqoyN4agxRzMb3bhl1Vj6pqtLoQ1EzQwGOg5uxSdOKqnCG1FWqesFOmkhFlk0vBUzDekHNhOjzyJmUFmZWCERVp6L7WcrVx3O5Hxq7X5HXQXrSIprF7T8mZKEopEQdi4eHhkfu3Bw03s17ZSOcOp/X1xmj0pClFCYfWtUDqdviCHuyKEHPhcTrp4Ej0s+ytVYOAbUmBwdMZ5SwHa/Cu8bWCZ+gd1/sN1/st4xi4u75i37uWCF+hFMZxwACnaaaZQVlyQfoBu93TXV9D2DIvmhyp/mYtZa+v9txe3+JdIKeseUC+x4VBJ8tr1PkBqldPuTBNJ0JncKHgrOBKxpFVU14LBh12pbRqskVWY0gXOoaLXn2UAAAgAElEQVSuJ8ZE7Tw+aoJDkTNzRN/5atXUO+DcfMlZNGQtGUOxlgSY/DWUysYNWDTEt0rBO4eUhDNGpYC1XoYqNRes9TrMMJlno+W//e43+PLtPf/q8y94azo+T/DP/uKn9MMP+N7NhpRP/Hx+5OcPbzC95/ndjmsioZzYjIYnu4AxAcQxP8LVpqdIoZgWhSGqK5Y2pZMmsTuLLXJR1ZbzTgFlbQhVzqyp9vCcy2ZEA7G6zjOEXie8ouVusBYfLLUd8JyzarFrG2Q1aZ8PXs3wOSK5UEtWukO74atAzJU1VbJOdOgs9Nay7zzXm4HeGTYdbDsdTI0+NDaxBaOl4hJXTlHF6rEWyrSQcuEYM2tqQ0Dkcsvq5FmZv6ZCWVZ6/+7wOeuxRgc8tR3yjGGOial5f7FKQ9RAL/1MHEJAfbyuDZS64JWCuel49uyWJ7dXbMaBoQ9sh4HRK+XTu9BuakNcJnVdWUeOkW7ckq0jWmEYLfunN1Q3UG1PFo91gbHrGPuO0A86CHUWYx3Wd9y9/AamJL785JeKcRXfdNyREDyGgqlGUxK7RMqP1HxF6J+wxhWn0YpYZ/FiCQjbznK9GbSSqSqmsUadUBKzroKqhrx7ZxSM5zzZiFLSSyXlSpLAaqELPQNfwx4XbMOxquC85oqpWhDU2nqYNlX11jU8K2yc4dvPbvnhB89I79/ywMpffXZkKo5Xc+RP/vwn1B/+Prvdjp99+SWHeeXDl+/xdDdyVeHu+RP6Wth0G5zrmJfCfjcwp5XjMqvcz3tS0tsstRCrc6iX0MqaxtRFNAkBr2ut2lZC3ruLGN4YnRobMWoBi6nNglXI4DAEC8H5FqnoVDxu1G5XUuNGTQuliK5UDA1CJ21Foje4znMsXmD0alZ/enPDru8xJbIdevabjhw12RAxTNPMWqoGTWf9eR+nE7FWjPeX9DuxFhdCk+cV1Ti3lkFXEgFLpQ+aiKBtjm2849r0IXozx6SI1TMRs/MBby2hMbokKwgQBO+1MgjOMnaarvfee8/4xgcv2O91zVJLxlvLk6sbRcVUOB0P2s/6wHazBWM0mtVUzcTtO0LvqOuJ66fX+GFPpQOjJhKHIDnhXMGLOpNSVdaTD31DBEddzTR12jCMGJOpZcVYR8ASU9bMp1o0ApRCrImYEtVaBu/Z9j3bvicWw7QmxRPRVGHuvDE4GwsybaDS0jRUAy3F6IVCyxv+7Vvc/4DhVENRXtA01mEE4jJrnY+WkVQufWGwlie94w/ef8GzUDC28t/98Pex+Wf85POJY+359RT5k1/8LS+fPeNv354wOD56csOVE0apuM6xCz2960hJWEwhdJa+04BmbxKu9VmaOg4uWIzTh6ONtfVTbD2wMQbjVAVmjWn0h6pkPpqX1OhwzaKSySy57WN1BeUwICu0Pte5FuxdyzvYeFXRuYFWQtuLntoBnbPNz6w36u02sBk2DKFTEQOGPnQsa8USmNfMaVk4TCpBnNZ4oZKUptqRvDL0A846zbuFlkbQ1G2ih9NIxjvlLQ3Bawo977C7VWBNuoaLVZhi1Am9tTirAhtnDaFFtoQ+0FnLYB0eGLyj77Qc/taH7/HB+88YB88wqKXPO01evNptGYYNh8dH9pstzglSEjFbjDNs+hudoRjIGGKcOB0nxmHH1bDFdc2yua6kdeFwPGm/7Rxh3DFur9XAb5QPZZ1aCBGdiYB6lEUgLyvGdUgRpsMjrtvTb/Y6T7COLFG190Yn14P3DB10ueCdQXL77q2F9mLSc1MbepY2fdc1pe+abhNwTuNXfucHt9RmPKYxk1LS/7iie5baetuWwq3DlMA3r3Z8+/qKIc1YV/jA9fzXP/gu6/JzfvawcLTws8eVz5ev6DA8vbnjGzfXDDkSUmQMGg0hVUX63gpjH7jab7l/POJbieYt2FovfmAXLCkJtgJOg5elcUTOGFnVx1bEWUqTRvpzLGJRH+1546pQa3P+9ClVqQ3OtkyYqvtha3S6rPohBWOfg6ctmsK+6Uc23rIfe1wVUkzsNz3eadaRobKuCnJ/ff+WZY5UUd9uQsmap3lVzbhvyiinU3FvLcPYt73g2ZsLob0kpFaGviO03tg0cYRpLx31NDhyRYHqxrA0wBvo+6+zDmehDx4jmWA1AcFSCc4xep1ub8aBF0+f8PLZHbuxxxCJ80q/Gxi7DXFZ+fRvf0kIPd45rnc7Sko8vH3DsBnp+w1GDM74C4x+nWfWxwX39CXlcM/98VMOD0fmaYJSmdZVdfO1UmzHk/c+5KMPPyDNM8t0UiM7ELpASokYmyQW5XsZBy6MnKYjrnurhx2Fv51TAYO1dM4x9gOH9aSzTEHfdvbdjMdQNTTbO6QJbYyxOsNwrp0XLdWxSkn9Gg6uTokRQ0kFbxwlRkzVAUpFAdlaKWhhuXGG33t+x50L2BqxCNcYvrXb8F98/ztMf/kzfjlXJnFMUSMa37vac+3ALhODEzYhIDlpSSjaq3XB0wfPdhg4hpXoLcnp1DSJunRsLXjksuTWUtk2l4ZmH3WdLvhNM3/HmFnSivOqsDnv5qzR0rAWFSZYVLPsesWR1nzu7xX3aZzTktyrkiZ4z9V+h6mZkcrtbmzCCkNeF9bZIEZasFdhXRJLTBRRCN66JJzzGO8buqXQbXo2my1d50hxJljHZhgAYVlmpCY6o6sjgw7ghq6j7zdshh5nNYkwRs0UTlnLOJwliU60VxHWpKhWQbTFaKs0b9Wri6hDKziPE608+t7Tecd207f0+oIxOsk/tyvrsioapnMMg1Ivp/nQzPqKu5EcW55O25GLJZ5myrLwtz/7a0LoWZYVqmmDQq1Sht1I3wWiRB6//ITDxtNbAUltmFj0u0QaK8ogePreUUSrk83Q4U1FSsJYr7t3owqomJWf5ZwjhB5jVoxptMd2HgQNU3NdaKYb3XAY1JBvrcUMnixahueS8V9HzKZtWTvG2Hbdo9iPQnuYz1GMbVLplKLwzbsbBnEU6UAcI4FaMt9/fs1UPmb68c/5IoLN0NnKy/0Gu5wweWFzs8fUhLEK4Z7XhLPqNz3NUfuhwbOshj4Z1qwidtv67NJ2rxUB35LpBSxCTufpoL9Y8XrvNTWuBUrVtuKwbedr2s6nd54+qJzTGn2hGdGDEbxKGVMq9P1GvZyDUgJLXBm9xZREKYVjikynE6UIYnWXGpOiR7NIM3QYTGiT3l5fJt5quadztoKzQSmFMZNyZI1KUjTo7WgtbSDU4YPHIG03mUkx6rBLdNctRjiVyJIKS2MzOds01o0vHboGCmh7V2+1VA7WMThH3weGTifJMa+8evMVKU9st4PmxkrbvVqnw8yi8TZpXXTAFEataorC9VRKKqS4Mk0LaZqJc2ToBpVP+o68TNRciVUorjAO13jglGdOb7/EbQaCE4xRAUUIXlVOxkEjolhrKDXro10KaZnwvsf0o0bvWEsh6aoRSxgGXIQiBmO8tkRVS2/jlX6hdE9tuqpUDE0KbA2lJHLNiFX4Qdug/44P7sUPapqIOlOafe/MkbWWNtQRak7c7J+yHXqkDSxqTUxTogaHLSfe2w989/33mD57wzovDNZw2/fIcmIYA846nIFSLLmspFzp+45UtCQd+46h99zd7OiHDntYGXNFbAAXqCkSmxwttqmqpXmHqx7MgG+gakdBb3VpIsTaPJbGqufWimqHq1XF05OrK7ZjT14V2j0MHbVkTseJYRy4u7vj/s1bTo8PWKvT59kZ4jLrjrDJOCttEk5lWRM0WohzDuuD7sCNBmgZp6TMuC5N6eRBYCr5IugwTrN7Omf/zg627eBrbiQMVZPFBgmoQIqRZIRjWlR3bAz2gq7RcrvrAt65y5pbQev6cDqne/LzcNA4wzzPOJMQMtMyEayj7zqc0cGedxZDvKjh1mw1bcIKOS0ahhWUzHg6ThweT8SocZntulSqJ0I/9HQIFL2tu65HvIU4IUFhBq5FnWjxoHJVY3UQCdJmEq75l4W0nAg+tMm3IyJtF6uDv1hP2mIUzVW2xuEdiFHyiFijt7ge63aaRFerRl+8xntdfdnfflb82x/cy9RLd7M5VQWNt4fOieDb21TQmv7Vmzd8cnzCi/dvsSWR5srnrw8sJlODJfY7XRt1Hlvhbrdjay3b0HN1NSrmxAZElGzfe9cQpyps2IwdT9krvaAKV1cLp9PCshTmVClBg4MyKNRcVAWkB0X/rjnH1n/qAyyuBWQZA1bforQBkxhHFl3F1DUijwc1MOSItZXHSUX5pjpdLTze8/Z4UNWNVb2vlos0XKeW2pfJvAgR0R653UpSABf0Rq5aKVxkL0LrtwvUrPm+wbPbjIxDf/k5jKE9XBpEXoqQpCNjWIzmwJZaSCURSyaJYlOd0eGVt7YlHqjQQdVxzczR0gucUw+vMaZ5ZnXoF5yhAKc5Ma+ZYB2dz6p8an1eabau3XbL0Hk2fdBe1OrKMedIzYV1jphqCa4nOE/oRuVpVeFqGDHGcjg+KpgtVfoWXCbzjBkHglPqiDFySZq01ik3irPJPtD5HleEnIW4zgzjSJVOZbcWXecZWHPkcX0km6SQBZEGTDdYMXRWAwQKZ+ea0UviLFgSdaNV25HocXb7NRzcJqggt0Tz0nonUL2ysar8EEPXB6QInx8n/uQvf8x+8/f47n5gOh15jAvZW0LvOabEq+OJpT0EH37wjLvrnqvgGQbtbc/Eh9IQr946DscjJa0EA/tx0Ae+aAyGN2BlQe14KmQvqeLasEjfPYbeK+nAWV3euzZgcqKMYRHBd8o7rlXAhvNrGoAuDKwpcqyFwTukZI0PFSWCOOt4OE2a9G5Uamcw73A0bYXmvScX9aCKbXEVpg07SsGKJr71XWiVQW3DqFaAGfBdj5WOsQ9sh54uBAxK/6jSJqZZSZO52clSzU0bDKuopllEJaemrZGsaWQKdx6Jit6GLiBUrA/6D6Y9GudcKMMcVYhQO09N4KrgmoVx6ITgC764pgFvrViKrDmyJAWrBa8eX5ZMiQkpsN0/0blCSRgctUDXdepWCh7sjul0IsYV69pt5yzenT3kugrz3kHW7yD4DlBBB1bXnppeIVhTSPGIhBEjK9YkrC3EZeXxdGCKUfN6m6jDGpXF1gvQzzafr6r3Khp/oggiNRi4iyvoaxhO0dwhKrRvhAvRFDNH0bejQN85ht5TUiFKz0+PmX/+V7+g+/vf4247cuWcmtCHns8/v+fNGokCT4eej997Su9i65G8DkmWlbml0VvrmE4n1mnCe8+40UMrwLJG/aByhxOhT1q6T5OhFKNoEWNbKa/9h7e6s/XNSH62YKleXveyzvmWfNB21d7rl+0soIOHVDQITUTL74phWlYMKmOTNqiqpVLaS0qdKQK1tBJWv0iaSYE2zFHtb20hXYYxeGozaPd9x+Cdykqtpff+orfWfbW6UXJ5pyPGOcQ4gu2Y55U1FaaUWbJqrp3THjgWjYmpRuECWjo2jpLo55IqpEUdYcGdhQbyd6iVwoinMwrLM6Llbxczu+2oMaXtlvLWQlYtQMqFzheczbi2C5VcGHzHOGzad9ThndOXiilUUSVcFWV/Tccjr15/wf5qz7AZeP3qM/rtls12py+D1t4hDWRY9DNV9IxeTMG35MT1pIIe/QXQXopzyixVFFiIagbUbmqw3hHbBaDn116iXbFK6zRV9HtGLsPQ3/nBdUBuemSqkh7OZgJvzs4bz9YJT0dD7RxvVsssA3/xxZHuz/6a/+mPfsCLu57ldOCTZebz08RJ9PA83Y7cDoHOrvRhpJRMzukC0fZeD1ZJGdqEtOs6UlGsSC2WjXjiLAQnpJSUIOis8p+DvwR/lfO6GaP6VbEMfU8XvGbGeGUzG6MM3mrOPOLKNC3KlJLMuB0V6J7acCWrqsY3qWPOGSca02GtRRxAuNwyoPtQEa1dBKCZ55XYqNrvTdDIEHUvaWVgjCE4uBo7hr7XqiRnaOAAPbxaluufZcFZYkmkqrXHXCvHGDnFTD2bDIpiWL2BmgqpqeKcNXTOvxs+Nn0xTaFm2y3mrcVKC3JLhTFVBq8uHoMiXPvgSMUy9Pp7h65j6AMxFZxUxuCaRTThraH3Hi+6A50O94SuQ6xmAmlkp0JknHcMTsPcJCcQrVRiXDgcH7i6fcLYD204p0aNznmVw5pAygmR2uJP1U7oLaRYiWmlGNdUZZaYT0xL4jRHpjVpNWZUfpmq+qBN+15LewHrxkjJKep8Ko2gAjhPNV9DjwsZJOsawRQMhWoKzlRMVVdEZwx3PvPHHz/jarPh//jzn/FZClTb8+++fOD6L/+a/+r7H2Or8OuHA6+imr9dybzc3tCXrGW2wLosSC54H9qDoZPaGBPeB/quJ3QdZFhTxDlLPM4YaRQEo2VL7z2lsxSchltZLmWqMdq7IYXeW653I09vrrm92rIbR3w3AJqa8ObtI29e3/N4PDJNMzTbmbUWvxugVnLuKLWQS8YYT0znvknXBhb1LJespL8qBe/PvS5KcnRBQ6O9Y9N1jF3HbtzirWeaJ+K6EGOkVPV66g5VJ6HGgTGOXNT0Xmptmb9GI2MwHFNlSolYV6ZGzIjNJaW9t94sqTbjhagQSM0NWW9y52BZL06qs+3ROatDHGtwKTP0PSaeGH0kTI7z2K8PjlM1ODPjDIS+I7gFby2b4JWC2VlNCzAGGTREW8vsrgmBKikJXRiUfoFWgsbCuOlxZq9HRQTJQo6VtEZVuJV6DrbSnhXDGhOH4yPDqLMV79QuWQtEKpIzPgQKuodNqTKvqTm2nM42nGv8a0UenZ8dZY4VfAsB0D2jinxqKTjfgc9k+3WEflG0oc6VWlKTzCkyxjY10CZYXm4df/hix5P9Dr8843//6W/4XEYmN/BvP39DtPDx+y/4zZw5Yohl4doI720GfMy43Z6cBarRVLtaQQyHw8T9/QPbzXVLW3OtNFIQ21lz7H1orpesNxDqbnFiQDTPpYrasZRko2Xq2Hfsx4FnN3vee/aEzTAoFMBYQtfxzfdecDrNzOvK69dvdKAkwvFwVOVVLqxrBBEt8XPCGh2eGEPz8YKtPTlGhErf9zqFLbpT9tbT94E+eMauw0tlP4503aglW9zx+PhIjCs56+4vN+KI9ruKDlJqfrmUrWI8RRxzzhxj4ZQLU1ToWVIQVhOPnHnATbDSAAk0m2QsTcvdbvXzwM0AtgtaphbBi8VWYbGZvusoFhVqOI8zlmg92Wh2kOSIW5KGSJeCq0o2uxoHnuyv2A49a07sewfW4ksm2II3Qj9udMDF2Ryhu9k1tR2x8zrN9YYSILhBdQi5Ku7IaTWnucNHSla8UC0Z620DBi6ktFKiroOc70AglkUvlyKX37MYC9aDVXGOoACDNqtDaFY/jOrE0Ypot98z+I75OP3uD66UCDUrRaLZx84TTYtl4xx7qXz77paPrraMJvGff+slxlX+1198waex49Fs+NHriU+WTxQcbT29c1y7yvXGqUEfB5L1YTBGYy5F9URG9BCGrlN3RXuoRNS5klMipaj9sBgcumNMLTHAWUg56q1sNPjKZpWm1bjQuz2Dt6ynA7tgGcKAUJG0QqmMDoZx4Nm3PsIG9XPO88xpmjRMbM2Mw0g1hcPxqGsxqQxDp5NX4/DGMk8TOSeGoaeWfKFsDF2P961MFFV9DX1gv7/B+cDxcKAzheMJYjTk4jitsEZ1ZtWiWu1UDVEMsTqdHMfCUoXHmJhSYUr672KsUgoboULvCH3InLVYz6VHEwt6F5t3xIe2IrTOK9uKhuQJgX4YFdU69vS9ow+BMfRshkHJJu6Mbilq/TOGOM+kdSFYeHF3x8fvvcftfkdnLV4SxzdfQHwAVsbtwO3tld5uuTCMA6lG4nIix4QY8F3QXKAlE2NiSIWadbWmYAcVZczTga+++Jztboez1zjr2pRfLX9D3+YKstB7z1z/PW1v1mvJlabnPWuOiD2dITOZJIusrqoeNFhSG7ANWzc27Dv/ZlmyLRmG3QIsC26py6rqqi6yikNmnjxnTxGxRl986xy2Lwy0jCoCBJNAMomzd6xY3/C+z9tIJbLkKLMPBDOrmkY1TUqVWnXPrbLiAa9NokuV8Lq0NqIVKNIfJ+Cc/wACDNUTocUVVDqETTixTVkGVbkzij9+85pJaUJrWKX4z7/8gkVZ/sUvv+NhtVxwpDXijBiMPY19sOxGyzh5GaI0WfaLPM+x1IJ3hu004J3Beytm5L6iyrlyvcyczxd5aytNi5UWiwRHxUozrvfnFa/EH5pbw46WwRt8ixwGz48/e4sqGU1jvZ4BRS1dgtjfrs57wsbhvGE0lWkXaA289YQw0lojpRuxCRpNShFr+ls5F6gHzueTTG21eIKv1ytdlEgxsnKrFFpOnB4+UFvjdL4wrwtpjaRUWGIkN0VrmlqkbFurIqnAXDVLlZT6cy1cc+byTMOQkyl72vZsJoBn3bV9Bt/9LVPCMx2kIrlPufSDbhxY2/tByzCMjOPE/uaA95bNZmCwmuAcg3EE4whO2h+jNcHYrnk22FvNNARe3d/y2SdveHt3g6kFbxytFL7+65/z/a/+kqBkH5tKxLuADhbjLSVDbYtk0DpLI5HTwppkSPSsYKLr1aW9rKhWRPsXV3JasW7svbxhCIPctDp1amWGCnHNpCKy0KqkOlTpBzi/Qnb+rTVME+1AbkLAQLc+VJVggZwzwVsWrf6/jt///4Obm9i7Su7ITZSYqBVoZxlc4bNPAp++8WhmlDYE5bmt8F/90ZesUfGvf/2ed6mwGkei4Eph7ww/e/OamxDwGnJeaTVKVCe87A5LyTjvZPBTWt9RatY5cjnNnI4XUfosq5Rn5W9nxGSM8aLUoaF1FWmdF2rEdghM44il8v677wg+iEZVIUHdfQIpVluFbpG6ZlIWHpNSYpZXGawXKuWgFcE7SpU1kWpyuwRtUQaytZSS2QwjSjW83pJjlsyaIpk6rU8oRTWUOM8L87oK51dplphITfA7uTTJGSpwzYkVy7VVjsvCNUfmLOuf8my66HNm3R/i0voAsAnT+Lmiaah+M/Oi9X7+tXUyHNJGMYTAOExM047tdsu0mQjeMY4eoxpeS1Kg00ZiaKztN58M7oYg66zPPn3DH335JZsxoFujrAvGD5SUOV5mvnv/kU8OgZxkaFTSKqvILuZzdmIM8vtPx6McSuX7Cqm+HGAXPMbQ26nGbreVyqE9gxdkLea0AxreCK5niVXid5SjVVHYoQWFVPsZea5dlH5WujdS+qGyqrXPBpAWL6dCNq0DBH/PBzelIqVSrThlMS0Loa6HXQ228qNPNhyGjCsFzUStYFXhpkT+6ZdvyKnxF9888gHDkhOuZW6M4Se3N+ytEyliW0V5UiT8OKaVZV3JJWGs7OtilL4hp8LldOV0vHI9L93cbUhZVjRKZD0ypImJcfA94weCU4QeT3K723FzOHC5XPmrv/x3oAyHm3v2m4ndJG9f2+1rWisRHeRKy1BUpWkELVoVdVlx1qOsJZaEdQZHI62LVAdJcnNVbZhWWU4nvJdKo6RIiStpjZSUyKmHdCnNsibOF+Ebx9xYS6TUJjdok3XVUhpz0ZLSnhLHkrjEVQ6sQibHvfTVPfn6h2T21odT5sVMUVv7WzvHHhdppKh23uG9YxgGnHPsNhO73Z5p3DKESWDlzvRYGkm0s0pjlYAJrBX4/DNsHgXjOHC7PzB6R8kZZT0+jDRtMYPj9ac/Yj2+p5zekxPStw6elDPzdaUiYIEYE+uycJ2voPrLL/XYmW6xlNmDDCinaYs1o5T9znRSiUFpTU4raYkYM4h5pimcCUzjhtEPDCUyF16GdK3RLYNSoehnuyjdRtpXqfL/19ScX5xdfxsp+Hs7uFQxbecWpSfqDiCDwtVKUJrPXr/FKUFYmmpYteaaL7jW2CvL293I/sOZa9YYNBvd+PJ2w503mCJTN+s15EQzPYe1J8gb68hF4Fs5d49o7AHWWtQuuWNMShGaRGmSd1N4du1IesHgYD95Xt3t+dHbT7jZbgFYpg3LnPj5L/6G9x8vvLq949XtjTx8tSAVmO66X1kfrXGl1tx3qZaiEy1UEg0XLFEhw41SKDkRbJDJ5t8SeqgmU+51nUkpsa4rKWVRp7VKbZo5ZpacSU2JYb4UcoW1NtYsyrE5N9bauPYsmqVU4Rj1yaml72JltCbZT/rZfyyVg8wZ24v98Rn7A4iww2i8c4QwME0jm2nD2D+P4ALWerztul0lD5g1htHLSitYkbLKntzijOV51Bp6rnEthWVd8QGM9/0mVOxv77l9/YbH9cyyRIIbMPrZeyw3X1WZWDJNJXb7gXW+UlJjXSTz1RhJDdRa+tKmDEY3rIVliV1gU/teVYZH67rKwWsGP27RFaYwsBlHxiKDqGtNYjBQojKsVYQV9YXRVjuowMpWQclQ0mlDzpWs6gsZ9Pd6cC3ighEtdOngLC2pADSuq+Lr72d+snnNRMblRrMS4lzXyPl64fFyomolIn0cn3j4089ecTtJj2R6nurzRFQUORJVqbXFWwGLPY/RtVZYbbHaMIZALElCpNdIAU7LyjlmllpxulCawTrPZhP40aev+eyT1xw2E97KftKqlVd393y4v/LL33zDur5nXpPgOrtp3GqFszODEzG90Y1aIlppyZ8xlst1xhmxIorfsXR9byMxywQceUZqbZQyApUYV9Y1ElOS3qdJ/7MkETTMMRFRrK2RUMKk0o4ZmEvmmmsfPuUOdZceuyJ8JLlIn4dNz9lP8kAZbfshRW7l/k+tNNZJ0p11ls1my2G3Y5omQvCE4EWnrHUHKCjMi3VQPNPD6Nlutp1HJeVgehYn9BJ2cB6tNfO8EJyTV0v/ji/XC+/ef+D08A6VEj4Ehn451VrwwWODF31wXWUPW8QPblQmzY0QpNJ6BtqD+K4bMvB8VpYdnx5xwfghb5sAACAASURBVHP36l4Goc6x3e6IK1wukSWfiNowBcNhO3JMhWwKphTqKi1Ml1D371+Uf8+O0FoqdKBCbfJ8+xDYTBPnx8ff/8FVpULOL9Eazcg4XVlpuo/Z8K/+7V+zx/Kf/eiOW1txplFT4zInHpfIN5czx6ZIyrDX8Pe//JxPb7d43904KFzr00llXgwMomQS8cUPdL7eb2rFNImdbY0La5WVQM6CDWnGkFqGmnHDljAO3N/fsdnuuZyvXJ5OfP7ppxx2u54YrhnHDT6MPJ0uXNf3DMGzHSe80ThjxCFDlWhIK2oxYzTqLLtIY7rRXEkyX02y/x4GLyhQpXpfWlmWFec8290ErTIvV9aYyFlsfimJdjgWWEthqZW5QtVWIOZFbuNrSiypsPb4lWboCX0ytVT2+WnqgABt5EbpSQsSlyKrK9nbapyzGCMP7ziObLY7DocbgpfgNe86ukbJEMsoTXADgx+42e8ZB89hv2PceLxzlJhkwNkP5rquXC8XqQaModbC0/HItNmw320ZvIZaOJ+OvHv3Dk/hdr9nXo6U+YJSHusMpWbWS8QGS62Z+ZrYTiPOeeYmEH/ZpdtekRVyzqIGa4Jikum4Zl5m1hQZppHtdttvc0PTIq0sMaKBwWo2wRCchWcipRHRYi0ipZVsKXkHlvwcTyIFcekwQXlZzTBt8D78/g9ubklI8lo0nGixMlnrWEumNMvHDP/zv/8V3ir+/LMbdlWyYa5V87tz5tvFMONRqXA/WX729hXOSRrcGEYJO1ayL5bJsuJ8uXK+LLgw8rzQfhaWX68ncqp9j5v6MMuitKUg+JiSGl57grX8yc/+mLxcWZbIz//qFzy+e0fLjbefvOL+7pZlWfn4eOayVDZ2YP/JlqfHR8qaOS9PEk4cguxcVZU4DiXYm+Bk2OKdo9A6GxlGq/G64q0SftU4StnfYXWSY7MyXxW1JcZpYFkXqqrkklliZElVgrz7gV3XxErmtKxci9D/Y1WSeG4E/B2MrDxy7tTBzordbjcsS+K85E4VVNRul1HGolTDGZFTbncbhnFgCAPOB7wfCWEQS57ReGvZbXqpbF13/gx469htNuy2E7c3B8Igg7h1icQ1yp85jlyvV06nIyllLuczyzxL+HSp3baoO+USbnZbtt6y9YrydORyXkBbfBg5np54Oj4xbjaCvCmVy9NMvKwiF1WGlAouJ6l6UuLdw3u8dxy2W1orXNczrcGbV28wzuOcJ0UB+illsU6MGEJRMXjj2G62+KdELXNXERZiTjTl+soMnk+uRoCFSksMJyD7d2VZ1oXr8nff4f5HHdymWycPiirJWtm96arwTfS+qSm+nlf+2b/7OY2f8U9+8iklJR6q5m+eVi5MtKbZqJWfvt6zD7ZrfCvOG6ytxLiQ80ItsCyZb779DmMGrBuFpFhzH6Z0FKqDOK/UlnHWs6RZpqBNCIo1FQkk9oFXt3fENfDVX/+S6+OJEuVBv55XlvkdKWUJLK4GYzyTMmRr0F2zmmql5My1FJ49F6VmjDWCL0FhdKYqTTAaT8HfbNjsd+wmz9tPXuNCj7/o02BrDWtcKDnhvCXXRMqJXCu1KE7nK6fzzOPjkfO8MqeKu868P1/wFJqRHaxGTAqT1Xx6u2EXDIM1bKaRaTNRaiaEwKefvuW8zPziN7/jfF2xw8j3D49c1kxFktSHYNnut4Tg8IMc2GGa2Iw7NputDJeMZRgC++2Ow27P6AecFRyvAimVneuDKICAwbygTYML7F7veHX/ilIKjw8PPDw84KxlDPJsmf65a+sIQTzHPgR2h1csxxOpVM7XK7VWpmnDNO3YDBORhbheWRdhfdemOkhBDksphcdHsVpOIUjCQHdrDW4CNDEnqqroWikIzFzZhm4Gg8Mo25M46CqpJoCFmilKk4r09vW5J1IiFJLommc7oYAOUFKFzP8RauW/uzuoFBFFN0R80DJeG26D49PbW3733SOXZlmt5Xep8M//w69JzvBHrw58fS18cy0saqCmlRtf+PL1gW2w7KcRpwItR1Ai7jBW0gacdYzDhHMTznjSmqXz7xNQa80L5C1GTSmyk5SdYyPnJPpRa9hsAjktPH18IM4zChjHke04PauE0Vbx5Wdf8Ph45nJdUDWzDQMlF3KX2605k5tkvlYkaS3lwlol4sQYDVWQtPe7wGY3sT9s+OTVDa/f3BPCBtf7udJ74FqHjnbtCiaje4I8zNe1I2fk39ecucbEu8dHrimSlOW8ZH7zu+/58PBEK4mbKTOYzN205cdfvuVwkJ50GALDEMit8ud/9iXXeaUqzcfTlfMcucwLl2XF+kCjkmphu9uz3R/Y7g74sMG5gFGGcZwILrDv/W7DyFomJWot0ioYSY03WrGsK+fzmQ8fHhiGQf5777FGXgJv337Km9evhQfVh2epZC7XCzGv0tcOMrxSzop+vGRqAesMporLK3hPcI6HFFE6o43FOM8wbSitkEtjspY//unPyDm9cLGD27DMC+f1LIxrCtppWuvJETFKhYRjbZVqZVApHV19WfG0rlxrVaOseel3n00Mzzvx2ldOpRSU0ngfGML4+z+4tgM5dAeNB904OPiHn93zX//9n/Bvfv5r/uIXv+WjsizK8fVS+Z/+/a94+PFnPCyZJx0ozbAx8OP7ic/vt9xsRnw3ZfdP4MXYVEBuvyJigVrEQSHxmiLods6IMJxMjDOtuT7N1ALu6hEo3oCqiV//h59T4oo3mmItuvS1QOtmCRtYr1eohU3w5CJlXYkysndODu6aE3NpxJKJSZxRaENufaiWC8Ngubu74f52z5dfvuXVqz3jNOEH6ZtyStQoKenWK7wJ5CRcZrHtSfzj4LzY+kKAKqbx6zJzfyMB1k1pXBhZKywxCec6zeT1Qo2V4Acx0mugLegURfDvNPfTQMyV19sD43YvfuNSSbVyOp94Oh5R1vPqzWt2hzts2OEH8T8rZdDaodCQJGJDma6IqYU1xz6VDuKySQmrDfvNlmnaYJUhrUmsmFZM6s8qrlZb/44bm2lkt9lIS0JD18Lu9oaP32+Yjx/QLTEGi9Kaeb4yhJHBydCsUcCYrqDyrOlKKlKxeaUxPnQhUXuRzF7PF1Y3M0wB62RYapTB60BZEnHO1C5ZDN7iB4t2Gl0MxCRxKRjQllqfJ/TChxE1Vpc/VlmtgXp5Sdc/hK3POfEvGqVFvK8ybwbLP/nsNT8dFK/+7McMrfK//PprjgRi0Xx/bfxv/+Fr1HbLYiaImZ1q/PSTW3ZBxBTPpAlvHa0kaOpFDXU+XtHK4m2gtIr3FlMbpWYaGVoVFGrOpLjQ6IKC2mi54JqgacbBMbRCPh/FDIBGKyMODqMYXBA3SS7UuEiEhnEELTm3KBFfmNaw3uOtITTFZY0Ya7mkCFXhdAegm8L9Yc/nbwVJ+qMffcqw8d1S91wu6b6CMf3nkWzZ0+mJuK58+vYznHFM40AsVfyxNDzyQG1awTiLNU1UOz1JHWpHpkpVcLlcWK4LOSVUk+/RedUJFRbVVmpa2Q23TJsdrTUulwsbM/Jq57lcZvLpA2taGV8bdrsb3GZDU5YlNlIR8cez5U1191jr+a8lpxf1lUKx2WwxxrCuEW0swcl6yBqRBmrVXsp/o8AE0aWrJrr4VhTTYc/9mzd8t54gL8RlFbZTa5zPR6K1NNUYxgHJalKkFCmzxK6IKUKqx1alYiq5EeeekfssgFFgm+m+2UYu8HS+knRAu0ClkopA/XLucD7t6AJdkdT2G/Z5d1xK6X5g23XLckF9+PBAvM6//4NbS8F2gbXRjVHBmzHwk/sDW1WYBvjv/tGPsaHyL3/xNU9qIhP4WCpqTVgfMTHz+mbg9W7bd3liKh7DQMuJ9ZrIS/9Ai0E1WfWUWtlsAkpVcWcU+WFLKR1OFthud5yv0r/UXGhrZmMc02bD4CzbYWDwXoT5zyqjmLksV7QRRKm1hrwmMURbmWhbrVGl9HjOSM3QtMJgmaxENlpjuhFdyqLRWT5/84o3t3vevLrDOSvQOWMw3QmULrMkC2rXP9fCOMqXPA1dNhkTqWaalb2n7YhVceBYObi6P4ial32w0xaFprnGbj8xBk/wXoTv3VQh5n5xd+23E4PTaGTiPXiHNaIKW8eReV45HS+8//UvuLx/YH/3Gu1Hqh3wmwPOu76blmqsGAVJVHYpZWr+Ifx8s9nhnAg3rPUY+7yGUjjbw7KBtMykkqSaUYbggxBElUACpv0ObR01XvFW1oGlS2Vr30H74HspDCYb5rTIC2WNkgjxvKuuipIbKQsEMOeIiopcwAUFBk6XhYfTldMl4XeB1hTzIu3FEhMpQ6uG0gTdU2vpir/KM4taML6qb0uKKNSUDBAv15l8Xf4AB/d5rdBdKJNz/PTtG/bO0lTCtsjBZP7pP/gRs1P877984Ckb8BO5zei0cjCaz+4ObILn2+++55O3n3F7c+hwrsy6FpokNhJTQdAyEgoteNgsiJAqALNWRTJXMtIreVBLQqNwSnF3EGq+t5a77RZrNEtKDNsdCY0KA99+9zvW6yPXuHAzbQiDwTQ4zzMlVl7fvaKFwOnpKLxlFLWIw2P0gWtcGbXBukCplWWZcUZ63N04sOkRkFmJtc5bofZrYym1968IxkU12O8PzNcLp+NZIGi5orQi5sg0jHjn2GymfhigBcHamJ5qp3VBK0NruTu3DMPgZOUyWN59/w7rLNuDDMgG71hi5nz8INZDO4KVB9NqS9iIOWC0npoay3zh9O2F45Kx2wNf/OzvEcKBqg2ldIaS0bRmaM1zvV44ny6A4vb27uV2tcZ1CapMGFqtEpxdCrUmclzJccW6gDKVagwVwcLWWrHeMwwjy3zEe8c4DmC0CGJaJq2J2jLDGBjHAY9lWSeulxPLuqJaxfuBqiRZcLmuzNcFWkaiiw15zlznC6Wc+Xhd+PbhRDOBTdjCEjmdryzr2hGvSsrj3rOq7hEWCaWgfUrNvKQ5NqFzPMskl1XwPL/3g0sV7Io1QlzcD/DF3Y6xLRSVaFVhmuHeFf6bP/mcGjV/8esnHrOlKUsrhZud5cdvb9mOG5R37HY7Sa6PkWUW1dCH9+9JWUT9SjlybthmaTYIK6j9EHPYycW0rKjFyPBMkqnZbkYOu5HNGJiGkcFaSoocpiDA9GnHj3729/jpn/wJv/nlX7E8PfDqZkPNict1Rh8bT48XrvMJpy3jNMKyirCh/UBaNEqzxIhFSAg+eLyK2JZprfDw+IjbeAFer5FYGllnvLXEDq0rpXSInWeezzxezoTBs7+5gSY5R+u60voK6el4prXGfr/DGIexSjS3rclwJzXiUvjw7jte3d9jBynLsHC9zmijOB0f2Wwn7l/ds5kGYi5c55UlXmkxMk0bEVYoiw0BqwPrdYXS0DkS9prUznz3q3/D4dUn2P0dxo8yqEkNVSuXjx/46jdfcXy88PazzxnefIJzTjTORpjQzila7rvNWiklk84nrk+PzMuF/eHAMG6wznWet+jRhcYiV0mlsRbJ9mmqUGvDDgFlHdoPGC+JheMUiPOFtK4M1pJTZo3yd1wTOWViXOT50JJov5ZG0Y73pyuXWAmbiawmTufK+6fE6aoQ7n6H/vWkPujOOS14WTrxUTQJoltoSn6GYgTlmtsf4ODq/pu9UgwU3h5ueTONhFwoOqMIoqaqiVAK//DLL/j6CU7HBaUMthbevrrlzd2BcQgEK4qltETRa6bC49ORD49POOexNgjbSCVyicQkuTbaatH21kxcREq4rKuokErPm9Ww20/c3u2F0m+FVFitkBlyq1wuR54e3/PFj3/M7fSPeXr3W2wT62Jpjesa+fhw5nS8cHo8icwS4RfVLBPXdD2jESWY7fQDWmM/bQnOsswLy+qJa2QykhcjgJMCBulztWKeF6pzGCOIE+c8u/0ebQVLGqYJbT3rPFOTmMHjulJqIcyC8fFeVEs6B2iah+/f891vv6Ouhbv7O4ZpwPTpbU4r33/7DXlNXC9n3BBQaMbgsbZxus7EVaH8KMxoJaV3LpXLPJPLzM3tHtsqpiauH7+lXYQw4e0IzbAumYff/Ibzt9+Ll/h8RNVEcAbnDc6JOUEb3SsEWbW1Wqm5cP74wHz6iF4u6P0ezp55nnl4+CiXwGbC0chG+tWUI0UZwDBMG/wgHuYKzGsWnTkK1eRFuSwLxiSWJZI7EsVooWqWKmVzSoWlVC4l8+E0U3RgDBNFex6OT7z7eOZ8jaSYUc79gAJGVIUly6rnmSctU+Tac61kKKu0UDGejfi/94NrNAL7KonBan786ads/IBaL9jgeo6qMGZjrMznhZoL2/3EPC+MDe73A6NXOKcZfaCVhrOBNRbO5ytPj2e8H7HWYYztu2ItMLX+l2h6pdTJKffy7Nkwr2g1451mHAKbaeSw3Ujq33ymJlEzpdow2vHmbuIwWd6fFlRLOCvSv1IbYfAc9nuomu+/fcdv/uZ3PB1nJGhZs67lBT9XEcbz5CzaWHabUcQDMXI5Xfjq119xe3dDA/yw6b3aMx0B6fFroXX7mUFUSNO4xTpPqY3VRZqqaAKtVKYyigMqZ9b5AtXhjSa1imqaHFdaLeSY+O3XX3N7d8vt/R3jNBBb42Z/IOXEu+/ecffqnmHaMI0ja0o0VVnmlRwbrVkGv0EpxWY7EUZPTjNKi+l9tJaKWBfT+98Sq2OcDmzDji/u7iinM1FrrIK8zOiWMVhUzTSlWWNDFyFdGK2ovRVzKNb5ytPxIx/y2tsjWOYLSjuWYcPgDEaV7nUVf/AwDuwON/hhlN4zJbwT+sayJHKuzJczerMRYL2WIGuamFPWmIm1EqtiiY3znHi4LsylMu13FG04Xy48XM6sNctzr7X017RuzLAiM33WOfa1j9aWVou0CPpZm9HrRiPy0N/7wW2mdVZsZS1FKPfGsbqAKQkTNDmvInZfK+/en1hSIquGUZl90NxMkmiQkiJbhxNqNOsSUYjY2juHc76ro+igblmQ0w0Ea4qiGdYCShvHhk6FkkXJ5Kzh7u7A6/tbpkEGLa1qht2O/XYr/kxr0W3h3be/pqaIMw3vJUMn58IaE7Ybye/v9ygUv/zlb3g6zTINDQ5KZvSW/TYwBsP9/R23t7eSW2sNa5w5Ph1pT/KGRyusHwS0bgzOOYyR3tRZg6a+3Ay6GYYwYZxjjpEwGsI0UnJiXWbiPFOzRJzmuOKtQjsvw48M+91OdtRK8fT0xDqvxHntYV0Opx2n6xnrPEY5nh6P3GiRBRajSKoRlysla2qqbKY92ljGIaAny5pmxn5jxpTAGpKBZUk8vvstxo6EsOEf/YM/hWmH8gNh2ksygZIDKpQThWlVIiZVQaXIcjzy1V//NfHjOzajF7VeS5LOUBOoRIoLyluGMVCNYww77DCgraehxeJZGqrzl0vJsrHoQW6nflhSrZQKujmWGLlGAcDFZjhdEg/HK3MBFQJRWZ6WxLUK4LBoTdagnBERhpK2T9C5lWeB8rPZQGu6RkEgi9pItIo8543z/IcgYDwTCI3jXCL/6i//HZNq/Pnnb9krjSWitGZZEpdV8c3jhVWLBcxQ2Q+em9EyWIW3Yg9EN+IaX8xMWukXAf5zLykJdyLfa12In2Nk2G77FLLhm2S4DiHgnOZ0vjB4Q4xXbra3pLQwbSacMRjvuD/smfY7Hp6OPJ1OWKW5u99DrX1KrUBdWeKCVpb9YcJow7Iu5N/8jsu8CqAtF7aT4e2bPd4qbg4Dd7cb3LjlcLhBG83pcuLjxwdyEdTMfL0KMaN2dE2fEntnMaoxjQPGKIYwEteE155h2KCs5BzFtFA7CqekLKuvUsilkFLBO9WROLYD1wzOi8SSplmukdoKj09najXc7O+xdmDrhv5gCxDAbCxXFfn48MTXf/MV93dv+OTtW+IKyjRJLugQPLEBVpTOGKdQ1jNfIzGdyXXBW7jZbxg3QWYVNtC6Tne9nHh6/57zx/fUEnHecHr/gXI5oloP9lYNasIZ0GhKEmj8GldyXtnZG7zz7A83souuPS1B6x7k1ogpk3KWfe+aeP/wEecHhs0GlOQ6zTFxnBcuMROr4bwUYlMo5/GbHSaMLLlSrAUfKPOC8n2lmUpXX1l5bpWgdF/ws8+BApL9IiqukoWcoVT//v4ABAxTwWoFaJof+W5Z+Gf/18+JFf6LP/qEQMTXRq6W7x+PvI+Zq/PkVpkU3O0mfKsM1gjx3UBcZ/Ge5kxOkhYuKijJytE9GtM7g9aNWiPDGMD7bjboyJchiP4xa8Zh4Pb2Bmql5sS6XEVZ4z2XyxVtHfvDbWcSKVqJZKXwYSMkRqn3Mc4RtDiiUlqxFl69viGVxHfvPhAvC87ANGgOu8DNYSc0fqcE+aIbfgjceOlXU15fvqB5nrler6zrSs6ZGCPXyxXVKvE6s92Jqf7p4xEzJ+4/ecNud8M1LmjvMdZhtZW1T86UFJnnC8fziRgLu+1e1nbq2WRAX330nw9DGLbY2rBuEnudNygtgx1vh+6EGvB2gKY5nc6cHj+wP9xg3A/WNKVLTzwEpR3eOJQW3tPzLnd+/C1fPXzD7ZsfcffmC9y4x5gBg+bxw7f83//Hv+by8A6tK+Pg8EoztJVIRBWhZIrrK2N61IqxhqIKuN6wVAn1doOXHa0xrCmzzrGDBldiybhhZNhs+f7DR+bHK8Mms93taCpyPJ85zQtzqqxFU7Ao4/FjIEwjdhhQTVO1QZUslAejBcP0DD3vvClljISENdGBKdVv4S5QMcbKuqvnET1H1f7eD66vYHKj6kZBsWB5vzb+x3/7V5DO/JOffcKYpSd4d7xyarBAn5g27nY7bvcHYf645zgQ2Xd571hXCVJSWpNS4nKZe6iVFZmdkbG5VoocU8e8qBf7l1FOyg9l2G03okxKkSXOeDxl1kJbsI7SIMdILYXL5YwPoQ8WFKb7Q8fNRC2ekiReYl0SB7vFesurN3ec3p/55rdfEbxMRsfRyXqBSi6JNa5oI3wsYyxu7Hk7yL5yu90SQiB3I3XNmffff4eqhcNuD1WGbfvtFmMDOQNKVEaqNUyFYCx5vhJ7ZZNS5jrPxCh91BjEsB7XhLNOJraxYpxl2mzRRkQwKC1hVnXlejmxH3cMw0hTieDg9rCXl8PlLHmx1aNDoKkmB4gGVUsPV0RgEmwfOjnNqBeO5wvf/PIv+fDNN4TplldvPmW323N59w3x8T1mvVDKQsmesN3hXOO4Lr1XsugGxlmMNqQlyRqFRotRLHkpscyLlODGEpeVCqwxYrpEVtxsGusDBZF6qmtlmjOYyrzOxJTlljUB6x0uDNjBy65anlAqSna+WpC3z+aB1p1ZtXusn51BzwdXiCpimSxVKI+mZ3JZa6nuD3BwURqvM6PTXNeVYgMLiu9L4n/4+a/5kDP/+IvPOS0rXz09kc0oMPCaeHMb+PzVHu/dS2+zLqsMFWIhBE9eE+u8EELAqCATPm3+X6l5aJk+hmGk5Mwyr5SYCN5DaiKesI0ckY/YykGMLVPXi1itjomYhZI4X64iJ9xYPn78yNtPPxVVT1z7dDfgg+yuh41weLdxEMbVfsd+7zifPtIUxJQxWpLIvRU3UmupY36kxBNUr2EaAylnrNWMm23v3Qu7wxZqwynNdV5Zc0VXg+5rMa0UqiRsFaeKtRY1eFIWav84CSb2croyX7tn2HuZBYwjVS9QMzUrNFuadTQCeW2sV/mMW24s9UJaFnLKaKOZvOew3fDx45HT+cS42WEqGO9e4jucMaiWJW60JIko8UGem7Bhrwd8aJTmmOcjv/vVE9tpQ7qcIa+ShZTEzXPRzxZBSaJoRLCKWDKqBsJuK5rgUolxJi4zpd+ua8+oVcpgtO+Dv0ptGR0gp0yjorXnvMhG5FQXgtdCw1Qa4y3KDTg3Mm33EDzGO2iGVhRLyVxrJtaCru2HFEcjZXpG8E5NIchdJSSqZy62iD5qV5OJ2o+mKenvfBr/7gd3NJbXg+a//E/+Ht+++8D/+auvWPzAquBDbvzrX33F07ywtYH3pbAGEcxvneHT+xvudpPY7rQYRVsPSrLWkJOwhi/ni1i4bnb4IYiKpgkxT1WFtYGSo3hJdeN6PfPuu+/Yb3ZM48A4bXCus5KaxljdOcoF3T2frYmNDmCcJvHOOoNBsy4rYRjkC+gJ7qq/QKahu1+UIEfWJfL6zR3n0yMlrVxPZyE6+hFTM6VGWpTy3nkrqXC1YZrDWoMb5XauJWK8FTC3t6hOTrA+cLos5JiI1xkXvMg8SeS8QiugRYllnKc2geDVCjEW3r37wLfHJ6ZxxFvH7f4ANVHLynY7EXJimDbEtPLh8YmmdOdFbSi58vDwyPl8FqBbGGQSrjXXeUYZR5sXNtutyBBV7WFkoilXiLdVYlkk3MxZcYLVJoFauUi0R60Lm20gLWeBvdXGuibZvY8bVFTEtIjskQ6PNxZrFGRB7lAb67zScLRi2B72KGS4GdcV3Y0pRmtcB9VNmw3jMHFcpTqp2qA7KEE5S5i2YqrwgdqlqqVJXnCmsdRO2qiiRiu5UHWPAzUSqCaCqR5B0jHDSllaK3TuLXQBSq6V9ocgYHit+Hw38Z++vcV+ds9WZf7iq99xVJasLU+18u/ffWQynmQDM0DJ7J3is8OB0RgmH0jXhWVZCMGwrgvBOFoWti3KkDOs64wfPM4JV7nkIqC60vA9YqPRuLu7gyrBUuMwSCBVSyiswLm0Jzjf7YCVYRh+uAH7hxSCobZMKUoIFFHM+iEE1iiAryE8GysbwyZI/Mlmw7Qdub3fscwXlsuV+XqlpMrD4zvsVRLyNpsNjQGVJGrRKUHRWCUG9UpD1yqC+P4lGhTGapzTPD2853R84tXrVyzxwnU5E/PK7f0d0zShtWWzO5DSwHw5A4a4Zl6/fcv7Dx/5zde/YvADr+/vmYaAVo3zUhguK5tNwnjP1MxsZAAAIABJREFUEhPjtMEPgc1uR46J2zvP4eaOlBKPj4/EZaa2SghDTwcQrXgrcoOtUSB9L7l0HUr/jMOptWKU3D6b0VDRlKxog8Lbe7aD5/HDR6Fp1sYak6ioAJTolYcw4GygtZ7voyHGlfNpxroF5yeG7ZZx2AoFpSaesThaNxFc9HjOm8OB168W8scTWCvDPwVuCDRjMMOA9q6Hhxuq0RQFa62srTCX1JVPIo2V1k8SEcWzKYey1h9YXqUPpVTHMrVuOKDD+f7upr7/mOGUqXzx5sAnrjKS+e//0Z+y8Y7/9Re/4kkHstZcqyUrsXeVXHA18cntgdebidFoaoqcno48vn/P/f0NwyBQ7KwKjYbv/eAaV0pLhDB0AqHsvVIqZF3w1mKMgNe22428JZGyPJfGNAa07lrVvnbJRYYoPgSJZdRCfqi0vqIQB4dW9gfyXhV3yuPTka+/+orXr1/x6v6Om5sDYQxop9kMG1zQTJuBkg+0Csfjiffv33M9LUBhXS5dVC6GCecsNjuYBgCWee4PYoe0WQfItFarSryeSdeBklcupyeG7STTXGvRyGdhjIDH0prQxhCGgTBuUMazpsrvvvuA1YohSGTJZhrxIRKGge1hjw87rB04X5YXoJp3Hm8dmwb6emVd525FlHVTzom4LLSayTn23Wg3DDSJYJGnUYmpQyOghFJwVqNto7TGdjsQjBAgn55OzNeFlMXFEwaPNfJdSj8uQWwKcG6ilcwSVxl4KoXFEC9LB9LLC7C0lbwIrN4ZS3ANZxSvXt2yNsVxTehhxI8Dbhjw4/hDjIjWsk7SohxMubDUTO6fg26I9rhI5hF9vSdoHGFpC1dM2rZnS18pVfy8WlO7N7u2P4Af9yYoPr3d4MqVUAuv9MB/+/d/ymH0/Iu/+hUfUVxRLBWcajhV2Rv44v6WmylQlpmlNqy13NzcCVcoZ67rBYVEZl4vC8+wj2e8SAhBlDdpkX2n0Z0PVHvp7ViXmWW+stttaQVKriht8C70Byjx8eMjwzBwd+de9qeiIUWMzMb3HgYS0qNJ+rjoS+9f3eG84Xh+Yo3PFYFQDIfBsqSZmgulNKbJ8/bta86nE5fzhbXJITDakXTuOUhwaAfZJSa5GaxVGCcJ87VqjBbHVM2RmpO8pIIGJz+bswEanI6PYowwmmkzYoDHduTNJ69QSnE5LyxXiS45XhfmJbEuDeczt/ee7Y0jpkouSuj/TncKo6wo1pzINHSQGJXz9QJKIj3zmqhVMn5IEaUcKIkIoVvmrLZinyviYdZa0bLwpFoH2anguLnd45yTCfbpTMrSYxsrL9bWRfppFUpmzrLiqaWS1pX1emHa7FCqUJdILAnnNVoLDzmX7idXFe8Vh8NI2O64FkUbNvhpYtzuGDYT3777nuP5iVwq2nmyUlL5wctAVLWen4x6qQI1UHPpax4ZSon7SMQaAhoQlpfuKgxBgXXU6+/74P5sM/GTu1sml9Ap421l2xJ//kefMLfKv/zl33DMK2bwtFpQOfLq7sDbmz37MRCaQmOIppKV7BidcRQKOa04pwmDJRVp5EUtpVmWVYY3PeclpQKt4p2nVQkb826CZlHNcDkfWebCtNlQa2WcpLTdb3dYZ4W2WAvD4SDRIV2BVYsEROnuimmt0nS3/qmKD9KbtCow+BRXSm6sa+N8AWdMN5E3shJR/2ba0Ir0X1ZbYpKXwOPHJy7nE5vNxOvXr2UgZxoxZ1QRekcpDYNDFSnT57hyM96yu92TkTjMWhVGNcZxIC5XFBVDw3vDYT8R1xuMMeQk1snrZebjxwfiEklrJi0FdYSb1wdqy+QaX9CsMUVQEqYdxpFxs0FpWNeFp4+PXOcLzu0wzlDWpZtPLIYGNf9QAeVCbZFSkXBzxPOrtGQGVRQlSm6u0o2GzAdQMmOYl4UwDDQlAIfUqYlNScWlaOQUWVdYFstyOeHdiFEyiMq54ryEeOlu5zOmYU3FKc2wn/jJJ19wePtH+GlHzJWH4xPXNXJdZoxrFG2onRbaEGur6OI7+UI/A9CfB1BIimATAqXpmculVQmzzl1kYzSGjo7VmRL/AHvcn00jh9Zkh+YdzSpaXHAofnS347PHG7797iOpSmLcVjX++IvPuT/s0Ii/1lvpPeMasUrwIFZBjmIJCt4wmIFWFY/HI8fjkRAC2uouxGjkVFEN1pIkiwYZGlgTSDGy3R7QSlNr4fj0iNE3EHr0oZL82euysN3tGcLAu3ffc7lceXX3Gh30yw0tUYkOFDjv5LaMiwxHaC9TwRhnnNVC6/OOuEZSjIDCObEVOhdIMTEEiwsTIUjUyLquXOf5xUiujSblTGuQYqZpCayaY6Eaxe6y52YIOB8kA6k2YlyoKVJSlGR1qqi6WmO7mTg+ndjvNmwnMcA/Pt7w9PjI+XhiXhbGKZDLSiWCKWjbQAtVpJaC9aaLCgSArp3MJuK89sm2oc7PMRydCSZOcUx7QS6he7QofZGXYqbWSIZ+c2VqKuS8cr2eWNYirYAVz7T17pksS1WCLnJB2gQYWOPC9XyE0jjsbnFeyJygUKXivSP1qXdJkVYyRluoCWoihMAwDrAm5vlKrrmvgGrfjqgXgUqrDacMrQe4/YBS0l1YIVJYpeUGVX0NpJX8+tlI30o3JqDkRVn/ADfun326ZTQFZwMxp5cyKhcolxl1jYzac7UOlSv3YeTz7ZZBy3J+DBt0BacKzTTykno+aUb3SaShyC6vyY18nWexYCmNdV6GQm6Q8jJmmn2O+xSsjHOe1ie6xgj3qJVKjlk8sTlTq6HExHKZiUtkPl1pOWNo6CaGhXle2e/3PX5CMJ65rB0x4kgpoo28hcdhRGtw1oisToFxMonWWpNjIpUVDPhhAK0Iw8D96Dgfj3Jj1CQDqlX2AcY4SaWrlawLpWVOx0c+PHiqLijrGKaNLPs7RD0uM1k1vBe/rzaWabvn7aeG+XTGkHFO8+Z+z+1h4nqaOZ7PPF3OfVVq0d6BsyhjaDnjvH0p658Ro7rBZjsILK9mmrYEvyHGyOPxKjrx0NuRZ85TeTavGylXAav0ywOecyKukY8PH4mp0xAdvazWgkoyCmXEN5trpuYiN25rKFOxBpbLieV84fp0Ypp2hGHAect2J/QQ24rs9k8n4rKiw4gLhfX8yHz6wDA5Hk8fOF7fs8QzPhiWVClZXtRUaE1Rm6YWhVUGauzs5CpVIQINbIhxga41UCisNjJ1VoXcstBSETSweND/AHtce7clB40uWVYR1VCTZ82Vd6cLH08nlN0I9LoZ7rdbNp1wIGJ3SZBz1qG94hqT4GV6uv0aV5ZuezM2QO8j4ioRE6Wcxa6lPcELOyk4i9bgraEUSauPMeKc3BjeB0qpDINwj1LOQCE42RsbU7k9HChFkC/zfJXSriZSWtGLk5ycnPoSXVNyxRrXD5iVpX4HZxsUx+MDo58kB0mplz30PM9o6/CjyBxzzSijpE93mqYEV2q0OIKU1mJ+r1Vga6VxPZ8oRXTBfhC3jypCxUxxQakin00YmOdIreIY2m03nJ+eOoJUVkj7ww3GB5q1ArDbbJmmLcrKIdlsRrHaFaFYiF2tUmvsCKPG+XJkChMWS/CByzHydDqSp4H9fi/KN20kVBzRmz8Pc+gPq2qQ5sh8vci6pTWGzY6baYM2kpYQBk+KkaYKKUXmy4UlRxGdxNhf3o1SJFIkLifmOb4A9q/XCW3AWHmZpigkSas13gky9+OHbwiTJy4nak5468mlYjRoFWXSj8L2cHT93Jsq+hUqALhcMuoFMSwVSKUjbFr7f2h7s17Zkuta74t2dZm7O001JKtIipZ0r3V9Lwz5wfAv94sB/wI/2L5WR0kkxeKp5pzdZOZaK3o/zMhNPkpAsYBCoYCqs3euXBExY84xvtErjysiVxZ3qRWNfr2m/KgL9//57pn//NWBe6UlzLlqitK8xMA3L2fOBZlDlsqoNG+WI7MbUJ1yJ3uLkYzYJpjXUESSmDrLdg0J6ycRViRJOm+9jd6qNH5yijw/n5jGAWcN1mgOy0xwllHDMEhy3L5vlFSYpkXiLDrTKkbBzYx+pObcZ5BQW6a2q9VM9ShLOf1AUs6dk1K6CngYZ63EiVAFDG4t43gghcTROJnvNQmaKqnIl2UUgxdvseu5rtYYSolM89wDo6XArP2L9rYyDtKVzXFDV8sadvGM5iSz7T56WblIWYekxpWUUaWyr5t0eZVinA9o7QlJWEeHaRYkzTCAkhLPqEZMsaNnRNmTU5XKIooMNO474RKY/IRVlpIqcS2E8zMlIKmKSkuch+JP8ohkPBSTnNilCEN6nGfe3T3gx4naFMY6nHdoDfuuQTVstoSwyV2xSewnRbq2fphIFNbLRojnvrAq55OTKJhBqjbVRzseyTxSw8h5e+HffvNPVOtRuSdEKkHE2lQklrNTTql/QhLpAMX2Osi7olfrK2GDKvfrJrIqYaspeRC1FowyYi5Rf4ZS+X//v37H0275219+wV3/8JdS+T4GPmbFbgaa8RJhSUOlwn6+sAwLg3Vo6CnrmZYTujVqyuSYpetWAQS/ORlBomqtuwRRXmKlDPve2Led1gR8Ti0oIMedLURQEm0ZoiTaGeulpOyNglLkTlKG0jE2keUwyc9TQiZ89YWWTA6JYRwwRjqhpWacMrhhQBsjaJbaRF+tNDfHW+oopvZ931kvF1HNFMmMqTlTtMzfjZexiTYaY3w/yWTnzTn3EZLudyLR5+bK6wmvtUYbaXSUksmp4K3vQgXwVtOwFLJYxhoy/lKKUluX2rk+H5U4kKbkWlCraJ1LH11cbXely1T3feeH73/Aag8HhVWWmio0zfPjhcs5cOgESK1l0VX63z0zNqbMHivKapbjkbs3dyzHW7S27EEki2gB7tfuDNtCJFfV/dGmB1TTJaKVPUYhVVrdkx0dxhm5n/c8X9vTAVvXDjuj8TVxPj0yHO6ZjJHyWPAGWCWqsFcVlFadQyWOo9x12023V7GFzHfFBXadYwsrvEH358oCNlALtfyRBPmjLtw/xJH/4//+LecI/8t/+iWlRj6dVv6/bz/y28eNTTla1bKgtIaq+eH7H1Bt47O373FuQJXEvm3slxOX5xOqSdNqD4UtbMyHhWUZccNIbTAvC8ty6GWqQRtLjIhSZt/koVuD1VoaRyEQwsq+r5hBXtRUKroUmhYhR84yopjG1F9+KbNVKtByz081fSwjod057jIqakU006mgrSZGic9QHRZW+y7aSpVF1yRPaBpHpnGWjnYMpFaYxqHziATrqjsDSRhMii0GMFqImuNAyTKgH52nKUQy2QXuVxSKHzxxF6yPNQ5aJtUkmJZrRz0XUoxoKzGXpooXlpwpAYqSVPfW76UaJTlM/c5utMFgCFvk+emE0wO62FcMDUUxTAvruhEfX9iTIHVTSqLxrZmeL8o4zfhxYZgH3nz+luPdDapPEgoNbSGX1Lu0li1EQijkrGjK981bU1qhJBkLZTRbypgGxo8oo0Xj7OTKorT8maZPD5zVOANH6yTpUYEZRva4CWPFKoY2scWC1pIgqYwA5oVgIYzx0s/c3o7qSRHyb63TS1tDKqDWpJHYo0a1NlAaKf0ZmFNnGntu/J9/91v+/sMjlsZlXXleVz7FxnR3gCrZuXtNAvKuirujI4dIM64vWmkGnV9OKGXZwoa2mnGeORwXpsljpwmlrexWRjJrhB4gZnmlNMZ2TKwTF0rOgaIat28eeOveYjuBIsZMrYnWMqeXE3sMWGN5Ob3grJMBfSkYk4FdzPtd5pdC6NjQAk2UOkobnLHEXRpntVZGP8hMWNsei1lJHQ3rrCOngrOWqgop7GLo719erSJM38MZYwzLsmCMI8b4WnHIgSIym6Ya2lh8d/qoHrycdaNmCWLLuYjYH7m7X0+FnPPrlazkRK0QUuDp8SPLYeCgFuxgcX6UEjwVYkjEPaGa7uO0itYOmma97LQUKAGs1zhj8XaipEJpDaMU5/XCljZSToSUyQ2GeQaleT8fuX944P0X7/GTo2kZ4VTkc9QWZZH3sV9KlZQaKStKtpQi7Raa6uaOAsZStBZXmFfYUdCqxjkaYqvTBvFGO9XdOQg4v1bC+YyeRHoa8yajy2sGkFLCZq4VbeUUJ6Yubew8795f0lp12WPrflzRuhslUuDWy+5ae9h20UJQ+bEXbiHQtOasNL95XrFK05pmL56kKkc/kPoQ+Xxe2eYJd3tk3wKn0xnTFPGyYoCUMnYYWbfIniuDE8dLKolcM4v3EhZsrADqmuxluUlivXXycrUicHJouHFAG2hGY6eJwTmsF+WV1oqUNg43t7w8PZNT4nLeJLYyZ7zzElbtB4wRxVYIZ/EM97xU7wUPk5N0fnMTU0NrjWacpA+00MtceWamn1DUSohZTBbaAJUUJYC59VO/lSyJCaV0h9NNN1o30TQ33Y0X7rURIj7TRAwi0zRYvPPEXKS3oISbVHvUibwwvLKEY5LObNgMYdtwzqDtTAyJx08fX6mEOQukfhglaTDngncTg594Wc+cLytqF/XWPCS8HUA1tIFpmVjcQkXx4YdPfPvNB/Se+NlXX3P77jPu371H+6E/T+FqtVqoraB0H3mlSi4IFdFalG1gKoIeSCJ0aGCUeHW181zOz/g8ShpFn6EaaxjHEW0UfvT4cSTFyJAzVlkOy5HLXnHacH8c2J7PVKRBVWplj4k9N0qWLNtcrwl76hUDm/s15hqV07pdz1pDQZ6l7moqWjfaG0HCig/wR164ugqgrSlFVprWfcJJI3RA0yBGSojkVDivF/Y4cWkZ007kPeC1IoeVHHdeQuIcM99+/xFjGg/3N1TVGOeJ9XJiXo7y0vfuXWvyAK1RWNsJCtrTsggytK3SOTSahiZV5AEB2loGpzF2YFluBIf5cobWWM8r62Xjcrn0BWDwPnK5rB1goDgcZlwsjKNnGjzrpRBTlh2eSgkXUNccIUepCqMNOScZTXWucMtFnCmmDwmaOHxKyZJ5073ApYkRPKeC6QQHP8ipXksVGFmTpIZWhO5RCzQKJdc+a9Y9oV0wKtZbDn4kXiM8a3c9DbMwrasS1VmqhLACinEY8YPj5u5GJJnI50ohC6TODWgbBBNrHeM49AhSJyQSZzneLDQ/UpQlmZGtWm7fvOOXv/wLSS7whlILOSdqUR1lKkVmTsJBzhk5rasIGDAixihUVDPkFCgloxEiph8ntJ9Zs2JJMDhJvZiXA4flwDSOInrxjlQLox/JSYiXxhlSabiWmAzse+ByWXk6bVwCVDVAq5QSJRO5V1dVQ1dWy5VHy+badGdN5dJT6OX6Zrp0U/f3INf8yqv6URfuaB0pJaEtcEVOWrx3aGfJSWR5OQVcbax74odPL+jjBG2TVHgKVlUu5zOPp8LH543LOXJcPCVL3MZ2FtxlzJWbo0JpS+ut81oKuTcAtPFdqC2NF1UVpSq8H/pCbxK+ZQR0VnuQs3OO1naUURwPRx4eHmSjOZ14fn7h5eWZj59+YNs2yamNmXme8c4zDhPzvEikpBNvrDagW8EPMnKKIb5at5yRrm8rhWkaqU0aZaCwriuxckE1JTNJZXDedmKgjIpkxqdpqfVoCyEhai3SOpqSk6ZkmR12gUCtmXodWdRGiJu4skqlpgyISCPkgFYHdHexXBVAgx9ww4ifBug6alUbtQSGYWI+LIzzwrYntBZ/7/F45P7+lnkeUcicdxwGijFUZfhynHn47AuW4y2Hw5F5HqVjHERICK3PeyWYqWQR3ORSaaV1oJuDmmWxpCqSyy7g6TG+XC4r6x6wOXGcRu7nidmN3B0OTNPENI5UYA87rcParBtoOFTVhHBmDxstV8K683IOrHuiqQFQDH5CpwjE19Gd1giNhN6AQppUpfzxm6xFkMMy3+7/XT8crsKOH33hLn4kKkNIQm5XiPqj1EIrjVJ2lBJNqnWe3DQYT1GWLVWazmhVoCZezisfnwPr1rCdaHhzXLBaSH/GGtbThf0SWA63LMtBMlqVAMRKTCzHW1qpeGewurHnQE4JZ3o5pMWZIXcl4Qo1NLk2QbvcHFGqoa3CW8eNu+Hu7R0xRp6fnzmfz6znldPziZwrl/PG6eWJGD+JxlSJyMN7xzwODKPDGSPJdaPA36ZxxHZkyboGtBLsaYpCrZA4F9XLwcJyvEVVuXOXJkn0RvdMJATBWmtCK0gduK20CBk0YppIKUETxrFYIqV51nJ+jWWpWWiVqilySOxqZVt3pmUihsAWV1Kt+HmiK0wljqPm3l+wwjWeBoZxxBrHfLjh5v6Ow42QQKzTveSVl3ndAlVb7u7uuLm/57AcKDlJ1VBl4V7JiLVji1rtssFS+7VF7rs1l9cucu2ihdaaTCYaLMvCDy8nzuvGy7jx/vbIYDwWqClyyYlhGmldv5xTRDsrMSBNQQ2k9YVSQNobFms1qQpbqlT5+fseqDTxiisZ9dHqK1tZliRc0zmUkrib61+1StKBlBFdUvVjL9zDMBK1wWnDZQ/dciW40VakTBSOrNzZqlHY7rgIcSOGRC2RVjNbakSlUF4xDyN3dwemyTJ4USZp46gVSm68PL4QLpHj8cgwOL795hvmoxAaxmEQAkNJDF5mbgItbz17B3KXEColcwOjRYEzjEO/v8r9JZeM047lsDAtM/u2odBs686+Bb7/7hMvTxf2LbJvgRAKKQVSFDKEzF8z3jk0lnH0PDzcv5IPrDVdihiwTrNfNqAy9djK2hT7JaKaMJBr787n1tBKkgLW8xkUDEOX//Xhfc7yhslmKh1Mq5TMaXPup2yipESKia4Gp6KoJdOaZd9WXp4V4+yJOYEVaJ52EpdimiVsF85PH3HO4qzi9u7A5bzh7ChzUu9krOYswzTJomyNkiKlbSyHA4fjgXFwKFW4rC+cTif80MdtvVRMKYmQIiZKToJeLZWSIcf62vMQlnRfuMh9OpXK8xYIqXBJlZAb6xY5X1aMV1gnG7uiMTgvQe1dHGE0lBihBEwr5D2g28g8HWHUqC2xxco57sQchYPcF55MPuQXMV0hJUFg8ufXPn6TsLfcG1GqL1xZ4tdN6EdduGWP0CpWabx1XKLEWTat0BXQPVahQaqRVCzz3ZHlONPOWsTtKdFqJSRAW5TOTPMgL7RqaGuxfhT3B5qaG48fP2KN4+XxhdubI157HEaIhW4QwFwVEYPtg35pquhX/KbScl+staEMItdRvUtbGs57amv4YcR7R04ZP4w461mWG7Zt4/bunrAGYhRMSk47+76xbxcupzO1BzC3BjVVXp6fuZzPvTpRWOeYxpHjMjPNAxpJtMtjwxmH9Z7UErVcsE42GW0U1WisFli3kA6hJPmdS58hX5VIuWRqysQU0MqKWykn4TV1xIuR1jgxBxnz0CjF0Jq4fHJSYr4/LNIhzxlnFHlfqSGKxFKJom1wBt9FKfT5rsRYatZtRXUnVyyZYZoldsRZUI09rJSShJWt/yjKCCEQo+i9a63d0LH3+70iR4HCy8lVSTmSYsBbEagM2sk1ZRgYrGVr8LxtnPaA2hQ39kBujT0mSusjN+swsbGn2kPFBWCosVhluZ1mZmuwLnDaM4/7iZRFz5xKRWnZtEuVJqB0jmVqfWXGGXvVOrdeJtfe52ivJ+5/ADn1H6A8FpmZ5pzlnpsyylqMdZKfVHuLW4vJueqKdoZmFIfbW877zpYrVVWanWg5sYwDy3ygNSNjGDOi7YwpK9vlwvnpQsmF88tKDN+zzBP3dzMxZJoSaeDxZhH/KFI6OudF16qhUXHedtVOJScAcR2VJrlA2miR1g2y0FEShjVd3Ue5yElitLhMmqhmdDsK8LrJzl9KZr2sxLDTUuRyubDtstBjlFM/hsLj05lPj084qxm9xdsVamMcR0lBPx7k9NG9jHcGbyQpkT5uaFoR99hzdUSk/vz4xPPzI7c3twLQJPcyrZJiFEOAF+GMMZbBemJnVDWVxY1DlpfVStJ8rVUW6r7jlUGVhDdanrWqGF1pNXE5rxit2AYnm7sXxRNakXNinI/cP9z3qMtGTMJ8ttagtTTd1l1shylESjfRg2BMG5kcIylWShIKRq1FjPKqMS8TN4cZraFECZArTbHmQqXxtDae1xU9KZrV5AZ628Vw0MUgqmmKMsQkFVssii0qhrs7joeZ0IFwuSS8B20qlfInlAt1vaZ3NGvDGNXHZyK2ENGGjKRaqyJfVRWqjPaucIcfdeHKXVZ2xdyTB6Zx5nhzJ/LAErn+HlprrPfspRCqXNTdfAMX4QDTpOt2sxyxxnO+XJjGBT/IfA/k1LTOYrVjO+2ENZBjYV1X5sPGQ8gczxvreZF0uXnk7dsbcowMo6QqaGMYp4nWioDilER+SEnSmyDa0HoCQW5CdZSmwR9lh6VVueM1Ta0Za71IN7ugoRRLzZnjYYKayWkF3pJilu5zKmxbIKVGTpoUN7QSv2rNVfTbSlFq4vHxoxj7DZRWBMy+jBzniZh2GoKpBSsI1lpQVGLOhJh4fHwWvE4DjIgzaqnUBtpqlsPCm3fvGYaJ8+nMt99+4OX0wrZeaGS0s/LiUV+fYa2Kbd344cPvoWU+e/8W0wy6aaiKFBMvL2dyqSzLzHJcMNHiB0me9+MEPcFOqSZi+35PBymNQwikJJWFjIQqlETOO5Ta0YBIkFYu1BwwqvDw9vZVQhpCoCEpffcP96hd2GJrzfzm44kVuMtwkxSuh2+FfafVJhGow0Qr0m8ITbNvDed29Bywk2dysHnF7TIyXYS3xWt8poJO5mitYqwWM38HNrRWJXaEHgPbFMYMEmqXZIMqfw4jfdXikW39XlUbKOPESaI1e5DB+GhEaZOdI+RGKqJ4SlnRmgDTdKmM2jL7Ca3g+Rx4987KC9syuSScc0xTYzsHGbM4S1Oa1DRPL2dO5xPj4Li/uwdgXSZ0TUzzRO4BSsr0trzcUOePAAAgAElEQVRWksQANC1meSlFJXyrdfNALZVSW0eApp4/2+esDXIFg7CPSkm4YaDpzjY2CYcYpJVOeOf7vUw0qzHKuMOoAZoEmLWSCSGINrkpapOwM21Nt7NJ5MphHHj75l4iOGNgGEZybtSiu/gkEUvlwVharqRdSs3Sh/7kinUeZwc+//KnvHn/HmMs0zSLjHC7gGrc3EqSXq1SYlvj0MpQlcDWtRtIW6ZVg1EO3QLeTeR8ItdASJ1GYTTvPnvPvByoTRFywbZGrhUjEz6ZP8dEjlFGPd1s0q539pwoYSWlIIKRUkgxCxgPjVEwLTPLPPEa7dEUVTWsN0zekpSispDCzg+XM+f9iXcB7m/AWZgGEZJQG2GNjFljjGPLhb1AyIW4b7QQMJYummhYFLo2VM+/LUX809fmktKSvnE1118tkjS6PZV+QmtyhhzlGtdbWT/uwjXaUmsm5sgeE81olLdsKQnFvbshDAqnNTfHG4yy3U2jWaYJdXPk9PiRkgveaA6TxxmFf7jHIE2MZRow4yS7bqic07m/wIaYEkZbWpUXRDHw4cM3WGcJ+wIlcDweGEaPMo/c393g0YzTgHKSfNAaKGPQCD3RGuFROecE86plbJRi4YcfPkpMZw9AriWjjBEBvPEoBFNSycSSRJWjNXZY5GeYhhn6+GdsrzpurT0pBXLSLMeJsAdyavjxIGSJcZIoC2fINUuMZ2r4+RY7ZpRWDNqilJETPxcO9w/klNnXlbjuMkcmcTmdoQd4Lzc3jKOcLKlVjg8PArq3SoT7tTJ4T6mi9VZOqhQ/jgyD5jD/iv1yYrusfPfhg4hKhoGYM+fLCTc65pvPeXj/hrdfvMO5QbAs1mOc9BvQipJkApCu99mcRcOdCykEOZEAiZa5tqx4DcgupbAsB5Z5YRxGGoqwR6ypFCPkRYXElE7HBe8GjLLEdeXDxzPfPb4wDAbvDOM4MPoBq62Y660j5kpoijU33FDFe6vkXX9ZA48vF7Y90a4dQqQcbnS/rQaqYG9kNGj+aCJqotXWyInPn5yy+s+xcHMTf2QqDbScCGaQL7l0l8RgHLYVnNK8ub3BWwu1oVtjdI7h5oBJK+ey8nBceHN7wBh4ftppOVKSQs+DzF61JajQubMNpSrGKAanmaZbxtEyTeIQSimzXVaeH19QTea9ioopFVUqqzMcbmec92jr0MZDR4cYpamtYLWWLmG/m+QuR5Q7S+kvUaUUaSgo40lbEjRJjCIzrLIfoy1aO9zo/vgAq7hLyDv7HkTDvIiya765I2wZ6+QlNK7PqKlQFLk0nBtotK4GgxAi1mrsMOBGJV7QlBjmhRqj0CFTkPmz8wJgK1WSEFPBjAPzcQEtyqwP3/yOsG481R9w08KoRUFl3YTxFo2hAn5aBCzvHaNxKFM43Cw8vrzw5v4dv/jVX/Dui/f4yQsUrUqINka/GhSugvucYxeEJHKTOa3MnSslJ0mTt5oY9m6+0BgjMkzvJoZhJqVMawqlDNZ6So2M2nCYJ15i4/bmjveffU4MgX/73e/59PiJy35mrRW2jL5ERh8waAELWktugBtI2qD3RHw+oUNgj5HH08Z5FydbzFmQOvVqLhA6iuiS5USVPkm+hhrITLdTHl+7zErGXerPsXC3KKnpoVQKCut9F/pIialqb6dvO/dv7nl/f8eAYrQyplGt0lTjzd0NA4nP39zzcH+UkcruWJaBwzKJyyVnWhLCYutNJO8M93e3HA8Lh8OEH2TkMo4DKWVeXk6Eyy7ZsSX3eEMYvNAfS6rEeBat8TCi7YjpQcwa6V66rltuTea/796+7RLEitYifaxZXrqYak9W3/nu2w/EFJmnhWkeUUZogcM8SVNIG7yx3RlVeTpvPNy/RbkBbSxKa0avGNzI3pPQjXbUmhi8hZhfMbHOOVJMfP/xO+Z54uHuDdo6nEagZkle+KaSOGOUfC+6ajCGx8cnqvG8++IzqYbcgB8GvB/YYyRtm8zhYxIMa2kiflDIZtcJl++taME/PT6xzCN/+Ve/4n/467/k8598jh0MaEXTujdiBDSQYxQoewikKCkOrYrLS84uebbC7uowNm3QyhBDouQGXZW2rzsa+Y6tk3A4bz2lOPYcaE3EN+/ff8b/+D/9VwDG5e/5f//7fycWQcqiCqUVImCVIcaEzbVDBTTaT+hhlFl2yKwhE3Mj5EpsMgwtHYJ+Fank0rqQRaYdqgkor7Ty2nwSVxLS2Ozo4Nw1zT/6wk1KUWol0WQndJ7WEM5OK1jVcA2mwfNf/uoveXs8YmvGX+V+pfVLeOH+5oa72wWlM9ZWhtFSau4CeoV2lqZgUObVc2uVZjCWZRpYpgHrDMNgxWgwWO7vb3ihgCqMy8DN7Y2oZJYF5yXlYA8Xasucz89YGzB2ZBg8TVW89yIdrJKxU2vXt9eMUQLUzimQY8WaQZw/GMLlmacfPmCszKG1HtHG0RB2cNOQSqLm/DrCcPNMqI3TaWOaJoZx5LgcMNpImWsM4zgRYyOXiB9tN4kXkRoaz+F4J3fblJmcQ2kBvGnVSCVjnSGFiNFV5re5ULGUpvnuDx+gwU9++iXWO6Zx4u72lk8xiNIrJbAFVWC/BDQO7TsfuGVaq6QYoCSmwfD55w8c7x5499kbxsGC1aSe35OrMJVLTNQkVUAIGzFKmVx7no9prYv0JR/qar6vVSB2KUn14axj8K6LS3qUR4yAzOy3fWVLiVoa4zjx7t17jne3DOPAXyrY4s6v/6kQw0YtEUWvpMjC52p/bMr5ecaPs5A7OuNLGUdqlaIbxltcpuvs5Ui9ImONsoAWC2PnpUF77ZabrnHORe63/xET/X9o4RZjhdLewPYXSxtDyqIhlpqg8Pm7t7y9PbIMFtf9jFJaKmobyDUxGc0weJSqjOPAthta12qO08hxuKGERFh3bm4D5+cTLSUGaxislWG5kQcR44a2FhRYB9ZLCPW7L95jnJTErYFuhsE0ct5xgyWnRgobKa5C/GwL1nnxoVoreS4p4TS0mqgpEPeVVhSmKpwf0C2znZ9oZWcYDxJKpSVcuhk5ndDgtWbQFpCoi4YlZ4WqwqrCaZrVlCL3bz+OkqQwDNQojSLRbF/LRc+7N+9JOb7KIJuR8ZegVRulJFQrGCWQAIXkva6hEjLM08J+vzMhc2utZA6e9o247dSqqdUyHQfCuotZ3UCMG+MwYKlcToICMnrCGtAUakmiUtPCi/Ki0CdtGzlH9hikyuqqKd0QKWvpOutarw19SqGHTUcoCm8cYU/EFPGdDgLSmBKhTaNUSemjKWouvJxeiCkyHifevLvnv/63v8Fq+O2//jOXl0ex1RnFmjNaN1QTs/Q4DNzf3WPcRK2ac4qYq/OrCJ610nqZLuD91v22xkjDS6nOPddSyV2FHoLilcOBV/15e5Vs/qgLV9wLWi7k1uKGUX7RIil9xhhsKvz88y+ZtEFXeWlsVUgxpHDWMy8H7ibHqHtLnsbYhRfTPHG8PeIMrKyoUqk3Nyw3T0Ch1EChYL0opoZhYhyP0kzKO2iLdQ4/DvjRS1e4iZNDyiyL0SPWGIwpaC20xvV8JuyJcVpwzpOiNCloSV78KkFTORSxzrko9xhVieHC4BRDz+mprVGUoEdVqzhtRbmki2THqAbda0xvbjVVKXknxoLSlT3sxHQVkXi5cymDtpqqxGhvjFQp2jSsFSN9K9KYaY1e4iZibYTU2LZCSBCTlHopFemmF03K3a7oB7Z1xaApMRPainMjzjhSyGivpEmYU1eoVXTLjLonBEpBIdrdXh62WqgpU0qQZ5MFnqBqgyIUyWu53LL4oQVZW8i5kopiPtwTN0Hw1pIkizcluQ715s61J7unjaINpVly0+xJ0EfOz3h/5LDc451jdJXf/0uUaBoFN4Mh5kIqjWYVt8eZaRRhTG6aGhSxVT7uG6EUUtVdcFHJNXcNAFzTFqqq0Eo3m+TXxpQ0N/sJXTubChHF/EkM9I+3cEtONCUn2jgPNGonADR003il+Pzulp+9f8NIw2stQ/v+cpZaoO2i3c0SztSaIeXEej5x9+aBYRARd6tyapnJoKrm7u6OGFZhFyMYUackxMvZiVITIWyAoWGY5kWwL62Jb9Ka3oY3cgcElAWy+CpB8YcP36Iw3N7eS+SG1jirGEfxGOfc2NZA3CJ5zCQXZePp0Ova40FLqbQUGayEQKVu78qloXTHciolmuGWKUZjtJy06Ip1GpQIW7QWLbSthRALJWZiijQjm4AbNHvcKVFOqZISuWN/YkjkXXCxeyicTjshyfx3GEe2feXDhz/w2Wefyfy8FuZDZb1IjKl1BmfEkphTwnrBr2orKXM5F5lPX1ZarmAnxvnIfllR3qJrJTXpNqmme7dVFAr6qhKqUg6X0lD9rleaxHGElClN89Offc1PfvITfv0P/8i//euvaTny/PTEFgI3N7eSG4XoDGwPlI6lkICmPJf1wsvLidv7twxdGXd7c+D2OHE5jJhJY7reeI+ZNWYilslqvGqMo2fLhcV6om5wEgNIzvUaVvDq9KJ3iq/381alr9P6NeCqnddadyNJ32Sv9Mh//xj3379wlZaLtAROF3Lus9IGtllci/zlL77k4eCwJTNohzGjRHoog3Oakldq3kkt0pTFuIHc7V+tNkquvDydmUcvWbbOoO2OnyzKQlwDrSW0kQBnaxXOW0zVbEE+itaaECPn88rdm3uUUcQs+FaoxNCpfF1kYZ3l7ft3LDc3nE8r3/z+Wz59eqLVxvHmwNu3txzmSSgXpYESAX/VmpAyqjm0KmjtxEhvJGy75kJF9MbWmFfm0DWBPOfUDQKCIcpVifNFCW9X7GtadL/aYmwhOUNOmv1y6aol0b1ShYofYySGjbgH1vOFtGdKrpxOF7a9u4/cgNawvhSerWGZZw43N9hhwbiBYyicn55e0blKN3nm2uA7rrY2ha6KkhpaD0zHiWmYKDHwcjkzzBNmGEit9GUqd7k97KINL6KhRoHTDt0gR7qYBULMhFh4+/49X/3il9zd3PL9t98BhhQEWGC1jJC27sSqNLYUhTmNIVDAd9h8k/GQ1YUcA+vzI3m94IDJeYauKNtCZK6NUISMoUuihRWrDSjLOEpCYSyJXGUcJA0nI03aXipfw7xKa/3qojqsQbJ6dR/5XqNLrt1kpf8c46DrL1ALJcpdxBlLy+DUyOhGvvjsnaiCMGg3SsCTURLQVAPOwH46Q4vs1eGtWNKmQSh+NVcOs4jQZQ5TCFYzHybmw8zL+YlcUo9LrChzVYRCKZKSYLpBYQuRGxSSpiHqHwnNlkhEmvy/Eobt0NYx+Jl5uuHDH77jX//1N3zzzQ88P60CRLeGeZyY/ESygtyhFBSCUGnNEmNmHhVG8RqzaJDx1Cv0rii0aR1bouQuVzO1KZozXUyQqSky6pEtbDQ6F9podAU/WUI4czgcYVWUVGmlgFHEWni+nDmfzlxeImGT/GFrrKTVI17SnAqX84nHpyeMHxiGgdoMbjzgxkgOG6kUhlbwffHm3FPnYiLvkRIKGscwLnLnpHJ3PFCUZg8S1FUppG7kzylJVZIrMQgkXnWY+DUXOabCZRNuFO6Rv/+Hf+SLzz9j2wOlNC5r6FAA2GMU0ILRaOek7G6aZiwYKVHDtpHCCiUQ18Dp0w98+M2vyeuJu2XiMAxYI1wrZw17KtgstkhdM8SdpjVJWS6pssWuY0AmKqIq/2N32RjTP2OXbDa561on14faHXVamdfAsFZ6ePufQ/IokByFtaIIr53MYJSwnd4+vGEZZiaVsU2/zqisLnincdrRlKMoRdoDp7ATt43jzS0FGMapkxulOzoMAiBfmCktcvtwx7fff8fLaeX27sisxK5nFcJ30vqVIuj8gJsGUmkY59FGPmarqjtiBOSltEUZS+04ESEkaH721c+4vb3lN//ye6z11Fr49T/9mqen32GMZ5pmDvPAMlje39/irMFVwXbWnAVxqqVx0prkEKW4CljcAKjeVRSdsdVGFF306I6+A4sRvzc4zFVzLU0rZRoYy7gMtNIxpd1uZ4eB1BrffzyzhhUauFqY9CBVQOtpeSXy8vLMMM0ordn3Xf4cZzHVcTo9UWrG+7fYCiXIzD6tQcZ13X8aY2CYhw6zq4Sw07nx8gyy2A0F1NeLnU7noERaFh5Ya41cKuu2cb7snC4b//zP/4y3hpozeQuYKjr0ivC8lKIbJSooIxVRQ/ThVtNyIpxfOD9+pMQL3/z2X3j+7gOmJo7zyOGwyM+tGRUNTSdyk8gVpxW5RlrVZCovl8jzurHmTNUGo0WZ15pYUWuPRbkaJuRbbF2vrHsImZY8oU4hEQmibF6aP8fCRYuoXYp6Oe6biN8HFfjs9jNsilC7C2UuzNOCoeJNpaadHC54Y9DTkbJdyKny8vyCMoblICetsRqtG43CfBgpLchDQZOrYg8F5yYaRsYFrWK0JZfcXww5zZwfuEax1FqwvVoQWBwYZfDDKOO0KnAv4wxaZUrK3B4Xfv7Vlzw/vfDp6UmQnlqxxshLLHz79MTiHSEVfvHTz1HaYY2Mp2qO4qV1XjqktFdAOsQefaK7O8ajtai2tBUpXO0QNH3lGBmhE7Yi9yhrHc5LFKhwpDTKOgbn8dPMdDxy+/Ydv/jVX7OtGx+++QPr6cR+WeVVUo2q6DTMwBY2lrqIv/g4s28CaffDQEqRsG8YPeNHR4pB2EyXC+t6wY0jMe/sccCpKwBP7m25SCJ9il3Mr+VuKPmwV9146rzmTMpJyv0kdj5jLNRMiFFMLYg3Vr5AK3JVJCHA9GjU1p+3UZLDRA5cnj7yaTCE7Zn95SOOjNEV4zT1df6t8NNE04bYRDhSSpYNtTWK0mwpcckF5Ueslkqp5NDXRy+LkTLYGBFmyHdeKeVKOyldZinGHeEsq9crxI++cGMqmAbzMstoognOxlG4tYVbV/jhd/9CfvyBn375nu3lW9r9AzeHI7UqrEbwld5DMmhfaTmwrhvaWWnLqyYhWvNEbRXn9Cvc/LJuGOs5vexsW2Y6zDjnXxO9j8cbnvqXHmNkbMhpiZLypWQZnSiw2qHQjOPSu5O9TKmVTJSxgKrMkyIF+PS0M86KQ53QoXJaI7VqAnAKkTVm5sUDipoyrUj3UGtDqyLuF1taRhspoXJOmNagCd1RdcO9td3iRSXFbgtrhqIaSsnXlXYhVKJF3K41kpCHPGO0xVuHGzOHu4W3nz0Q141P338k7YFPnz5y2S6EHDEM1JppNWE7SM06w3yYsU6znS9cziuqQVx3kSYGuUvTCs4rhkmYXTk36cxmSbrLtRFipmU6FFwE9mIzvMZ0RlIK0BQpJdZtffXx5iQme0n5ayhrAfMqkCl9YqBak3fMeMZ5QluPHUYycrd8/O4D2+mRZTKMTuMOwitzg6MZJSM5Y/qK01jvKFlcWAqFt5Za4BwCWy6kriAUpnPt33P9I98si3S2QR/7iO1RoQRyH+XzaCVRLCIkudojf+SFW3PFW8dhOZByoYUdlzY+Gwz/889/ws9uJtSW+O7Tim4iIkjnR7Z0YTnOVKuxRjHMA6oqgm6kUHE1U2qh5kRLET8NfPzuD4zzjL+5wRuDVY2yb5QtsYdCLBb0SO4vrTGGu/s30ODb7z5wOZ2YlkliNq2jJSFr5JQxmH4y6k46FPay7IaJSqa2RNWZqgLjYvjs3X1vikF63GVhlQLWcNnO/PYPv8Oaz3H2yOEwClqmIaMrZ6GI9zKEgLOdaawtmcYwgVTyIkRPXWHTgFKl2DJ6EFFHiyLU16ab86XSqDTGxaGAbZexi9KqQ9RE1OLngc++/Axq43B34MPH7wFxYClb2MKJ29tb/OAxgybsO1BJayBeVs7bMyrXrg5KhBwwXq4ZStnO+e5GEkSjnmsVMwR0+WNH09SC7nbDGCQSUynD6Swlcqk98qModBNTh1XmldlUan2VrGpt0VrhvOihj8eFw2EWVxjyHPZ9R6mM13CYPFrLhmltV3j1PzumSKHgBou2SkZnaaNgOEXD9/vGKQdyqYCR8C7lyLX0zy7jIa16UkFTwslqYJRF1asVvHaJrJAxXlEAf445blNGsk9VweqKUpkv7g/8t6+/4Fdvb/E14IaRQ3vPMMgOYp1lGC3WIKxf57A4agI1TXgngv5t26QLlxL/+A//SCg7X/38FzI7jZFxsNzfHnl5vPByemRdN3ISZE7NlXW/kJMID6w1bNvK4w8fKbVyvL3Det99whLJYZ1Dd2GINrp7O5GWfk8E0EahrcIUzc3xgNaK+XAktR84nR+5BjSFlDmdL/zumz9gtLB2jVM4J3eWnIuoglKmlISuwk2ONaCMRamA9VkabqZRc8QPI0r1U7pBywnrr5ia69xTAPOqifb35dOjRGQa3Tv/0oPQShFTwltJvK8pM9/e8IuHWxSiNspJTrg1bmhnei/DsvYgZmcd++lC7aHfbrA0NNp6AbkbKQFTKsRUSFkkkrEkWu1guqo70V+LwKPzncO2U0pljyuPzydSaa+sa0Hiqg63kxNNNmMpP43SEi9jNW7wHO9uubk5cjwsKNXRva0R40hKURIajMzHtZL7uExxWt8IhVzagFyKkC21ZSuFl3XjvK09t1cUUKX0HKzcN9t2NRUoiXrtDC/VN5lWZHFqZaCJNtk5T82dz/0fEE/9+xeucSzTyNAyvkW+fHfL3/7FV7wbFbMKuFbQudAGhVGFmCJukEU7jR6lnYRZ2ZmaKlHXXh5Jbszz0yMvz088Pj3yk6+/RGuJAVFdRnZ7f+TdFvn2h2e+//5bvvzyDVofKKXwze+/4bvvfuCXv/yad2/e8PT8ibCeeUG8n4fbW5QxTNMki1XJiSkNBZlH510YUs47mtWoBFpNeFMoUTSzqTUe7g6kCN98+0lSDZwFZdhj5XfffM8aMrd3Nwwe5kXGQNPgJEmhysmvjWwcpgPHWy4yGy2RcVyo1xeB3rRQYt9rNKzVXWlTCXuWUUUp5BjBOawXY4PkBGkqgvFBdyC6UjRrr71GvLX4wXPNI358euwNM/GZTvOM8pW8R85roJaESkG6sPOMtY5amnCtW5Ms4xhfWVO5iRGjRlEHhSyxpqXrkQU0kNg7vznmjB/HfhJlkXpCTwYAUyrWycbirME5we0sxwMP7+5YlgNjD8G+ol41FaObhGRbTasyDgwpvTLSrugZ44xYK003CVhNzZqMmAyEJqmwxtDQPTDddmWb+HNbF2YoKrm2V9i9aBRkhi933C5sqhKC1vgzlMpaw2gabyfF+/nI33z1U76+PzJkCWFW1WCU5+b+gdPzM6WK19SNA9ZY/DABUqJWVfGjJ+4R7y3zJMnsznu+/vprDncLxhi8H8gdV2oHzd2bA//r//a3XXcrZVDOmY+PH5nmAWMl6mKZJ86nE/vlwjaMGG0YDweUpQsrLPXV4Nz+6AVtCuckFAslgcrNQTQZjObeNJoyDG7idD5zPl8wFtzg0Mawp8YPn868XHbmeeT9O5gnmR87q1HKdNeIdJJ7+xGRbu6c1xNpzgzDwjgsoKQBh1GiijIGZUUtpJEvfbtI80krxcObB8Z5xo4DTUOMVTYirWlIbpByIo6gkzqFbyWVAlqiQeO2E3rpqO3A4B1+GqnPZ2IpTMPQZ5EKlKh/tn0n1/J6D8+pJ9iV9DrXTDGTkizYfY+klLmcV/Y9cuU8GmNFPdsKTckYyVonTigjz9kYGLz0P+ZpZDks3Nwdub1ZsN5hrcUbTyiBlCOtSpJD/3UlzjRGjNGvp5xk3Aq4XHUeds3i315D4XENXPbYK5lrikEXmLy6ev74T4UoKq5XOYUW2F+DmmUkVrM0eFtvqPY2/I+7cCdTufWNrx4mfvXZPV+/u2GqhZYKwzBRUqR7xjF+hiTZK1ZbnB0Yp1mybZGSMJXUdxgp51KIvH33ToKZvCMXiKWijcN4D1Yx3c483H/RSQJVZo+18p/+y19TstAxCAVK5rKeGYeJ9XzGOo82Buc9zjrpFNYr96cTO6w0yJyTPB9joBVLbgXtLRbwFO5vNfO4sMfA3/3d3+OspCtoLcILYy21KmKsPD698OkxM4+ecRqZx1HKI9vwfsB5IzzkXGgZLJa4JVreMcpTSuxURbmLGe8wTebBCoWqAoH7+N33lFLwzvHtt99x+/aB490tVUkTByWLTBvdwXK8ngo0AehpI9zn3OU712cSYiBmOb3t6IlVxl2H6YgfBkoVs3mutTtjWoekNRnxdKZwzplapTTf98geEvseWLfux+1G+9pAK5l1GiuNRa0UqjW8E8KEtTANlpuDeKVzKbw8PkFt3D08YLxib5UYck9v1LKBUbrjjA6FkBMSWs+qFeGktZ5YJD1iDZlvX858/3ImdA12a1k2lr7gS5HO/lU3fR2F5pRFXUXDKFnQtVY6WLv7chF9RCt/nrS+o8m8mRVfvZn5+ee3zBZ0UlRnMRhqE1uV1Z4SIs4apmEQqn2HbZveAFJavLV+HtC1EdetWxRlx//9H77l4eE9N/fvUKZSLwasEXOAiphRAN56MIx+Yr5baKVyejqJPnfdeKffolCEmHh5eqKWyjTNME1y1+qDcgDvRGopIViDfBEKmrEinBf8OpYspx6RX3z9GUYlHj89YbRDNy35SE0z+JHDccZ5xbZdeL6sfP/4jLOOw7xwWBa8T4yDYF1rE+ypswOSRK+FvdTlkrVoMBLNqXuIlFE9kMoYvv7qK87nM7VUfvOb37A8feKv/uY/M0yenCPQevRjFwR0OpsspopRCKuriz+gG75pMs5Z99e83MUsDP1e2ZArkTSMICeJ3xTRf4crIPGmKQu6JcRCiJWUhb2daiO11n3dEklZU8Rqje1uLevkBKs5MIwDyzjIHH0cRFOQG1sMPIZC3CMPD+8wdmDbAsooGR050xfqlUutX5tJNTdQTjrUvdxVSsQqz9vKH54vfJ2RiQMAACAASURBVLoEMmIaoTZqE0ugUTLHRRkZdV0ZylVm1ZJS0Dq8XSSx6k9wrBLHCUqZjgz6kRfu/aD4q6++5KsvHpichixYT2M8KiWmHg+pqnTvdE8yN/8/be+1LElyZVkupWbm7PKIzIhEASiQlpmR+f/P6CEtPVJdXSgUgGTBLnF3M1PeD0f9Zj0CI5khEpJMMq4TU9Wj5+y9th3QxhNjYRhFvXMRyauq0dtGTTtOpxPLcibVTEqZcbNBWUvKK8d5Rg9emjO2Ymxj9KMILZzDWINqCmsscV059vnZ4DxjTJzPK/PLCzVGVCuUZDHW4pwX5lQTd4fuDGOUCMiVMcjAruDMhLVQUoRmMF4z/P7XhPVrzqeVl6cjtYDVHmsGrNYoGsZaTLE0VVhWiQjVyrCZNtw/iA1uMzls5zsbXXtjQ0ZbWhuGcaIVRU7ptflklURaqELnJQ0oo/nd738nr7kVSo4UJfNCa2QGf5HklT6faTkTa5FSXF/4v6oL17pbR9EjNwvOORnR0Wiq9ZBvJxxnFCGk3mHtY62SX1nJp/PCGivH88qyRonJrJLWaJ2Vpo0SbrLSl2uF/LPu16vt4LnZb9ltByk3mzSVbBIk0fJ85kMoOL/BeM/hunfKnRaTSJeHSrqeIpeK8Cg01npQkrVLE6zgmuB5SSy5Upol9GtaQ/fKIPVFLo2vWjoEvckYSCod81NodZNZdmta2NbIPBv1C0ke//hw4M1+i2qG40vAxsbG7jAYclpQuqJKpOaIKgXdpFWPszTjqBixeqlGUwmUIC2rLkwHQ6qKZXnierjnar9DqcqyvPDh8wdSKmzGEes0xlv8IHRIra3kCxXIpUoIU23sr26YT2es1gzDxDAOHJ+emc+P1DKznSa22y1OF1I2NDugvYR9GStKnNobBZWGHQ0GB3UghZWmFoiK3Cp2GDFemh5pFfuZ6vLGnCvrMpNyhJqQqIlCjInH5xMfPz2ymwbe3F2x2U74aWDw8hm5bElZRBmtrR1r2jXO1lF0o9Dnzwaqko3y9uGORkapDBdRSmk0K3wtpfSrislZS5PWDzEs/YrgUFWEfKrnGKMrSoubquRCLg60oWZxFl265yklGqbHm1RqCrScKEUCy0MqvKyZx3Mg1e6LqU2uC522iNJo7WXxq9rzkzKD91xtNtxdX3HYb1GqsdZV8qJKwzolkAMMp+dnUv7C19+8Z3AKpxR5TULjaIqWE6ZVcqq0Zmjaoawl98+y5UQzcCqFH86BxzkTmyI1SXJUTVP6U6L7KEl10qPA3IU6aox6BfZdUiY0uvcCLhlDcqe+hGD/7Av365s9h9FDTjx9+czBT+z9llYT2kgantaZ1lZQiVwjm2kvC6FGlHbU9lPwr7pk0TjdYxwuvNkiUPJxkE7z0zP7qy3OetF7Guky5xJRHYOilBGVSw9u9t5ThiKbiOY12CvqlacvT7R9lnJ0CdhpJ8iTnLDOSMOiSw8bWiSCyvTxjMQ9ausZlEYpR4iRnXFYZQh2Ji5BfKWqigIoZdZlpdZGKoWcErVpKprjeeV8nlnWlWmSnJ6r3YbtZmAcRFzSQmVpi4gcnJFGFYqsRBr5aqDvYWLyMLR+45KcoVe8S5HyT+IyHVpZrGRniJU8Z8ISoUkpTpNudUlRTonOcM65dJidbFK5VFJOXPJvG4LzUUWiQkKrHOfAh8cjT3Mk5kZpPR60FpyxmP5gU2tvZhWqKgxO5u6H/YGH+wdurg/QKqkElJbvy3lRvCnkJB0mIYd6b1CIdVNp6c7XojpNo6DsgMJRqxgFQENptKY5r5GP55m/Pj7ztAaWWimqW1RrIdckm0Wftdce7iULWFxVTcn7uSzamqU0l3Fdz8hFVFYX8srPvnDvtiMbC2k+svGG/W4AHTseNKFUTzFwGnLrCzKgiDg3iLdUYDwCfEM8jDUp6E2h1DuR281EiiuPnz+Lfc25HnDduqtCINlGO8wgZWc2mrw2Hj8/UXNlGibCkvny8khNmRplzqia5vPnZ0qq3FxdYcdCqxmjLdTCMp/RRvJUc2k461BNoGxGG5SWbndrA0o70Cs1J6w2TN6z+jOn55mWIK0rOWYourOX22tkSKlQtSXEiMuQ18RYIMcX5qPFathtdl2bbInLgh8s1hqSE9+xtvLbdwVZzonaehBZrTSKbGhVOrrGysOZW2XwIpro+WFyN6u6B8bJ4lmWSE5RYlJbI6XMMIwoIyduLoWKYEhLy3305ISrXSQWNdXGU8z86bsP/PD5iTkWKhJcbo1l1BbnhNrotcY0oESsbihbiTUzTCODG0m5sgbZYJWRyJeKxI5qB85INlMIK4N3HI/P+EFQO7qHbFEbxoxC8mwahbyOYn4in5SqeFoWvj8FPiyRc1UUI6HiNHletOopBVyCymRaQG9MCehcurXSp5Dv5DL/B14X6iVs/R/59Xcv3IerA5O1WO/wxqJUwVjxG9YkOTRi4M6UKncGow1GNwwFrSs5r6/teOMsJQXJeh1GltNMSqJXzSnwcppZ1zPTbketTQTpgB8dxuieBJ/wgwRHoSQA+ur6ivkkSXspR7797lvubm45bPfUClYb4rry/PSF1ioHDaNqDNMk8sLXdDWgaYwzHWMjTQTnveh1sTQnYPWiVEfBQi2J8/c/MnhJeRcKY6MV8WC2brAWeaKimcqcMlsj82BrXbdNFlYt+bsuWYbByrxXg7EG4z3KOqF8VI02PWxMCxbl0v/ISVRaNE1Nl0zeSkbEAyLmENVPyf206xjSWgrrEqg5ywOK2NtKlVMHrcmdxKhNv6shFIpcCnOU2e+fPnziOVXe//MfWWLmx0+feXl5oSwB3TSDG3HWMVrLxmpck4ZZqxVnLaP3zKcT63JGm7dc31zhvAR8VyULwLQLnwpMllC2p+cnlIK31oKV8DhhZgupsyF/VZ14pe1ADIWXdeXTnPj2eeYxN+ZcyD2BQXU3l7KixeZ1fXbmVP8MjbEoGrk3pC5Rp0bJJg7yTBl1WeSC9v3ZF+5+v8cYjR03cm/QoGpj7Xwga5y8wOagOpQR4JkED/d3h/QZa6uYriEepi05BMZxy9JHA89PX0il4a3MfVVnGXvvxS5XZP4VY2LwmRiSdGEVrxmoNRcOVwfev38vYLJWsNZjzMDVZoMfHKfTM+fliOoluNIKbZ10Fjtp34oeXOBgPUpCeigK3ToMDYNpslFY53jz5oGUKpvtgdI0nz4/0WolpdA1xxplFLo0Bu/JeaXWgh8802ZksEq4WlYcO8MwMlhLiivz6cQSArkp/LRlu9tRYo8rqdL5dU7u69opaBaN+Hxbk3JRm0aKC6HKCEkaVxXTZZetZc7nmXVepanSRMlUWpMuv0pd3CGL1nkvm1JPAgypMIfE8znww+dHvv/4SKiKh3cTv37/ltv7r/j3P/+Jl+cXwhxYU2KJmWgNxSoGMnbjOdxc8ev37zmME1qJ6mjabIRo2XXKxjlyTgIvzIkYRT9QsgAMwyJAdWXoG0p3EWlLofRpUEKVSiiRY6z8eF74y5dnvns68rxGaneiQROgROufSa4MfqBQuwOoB5vn2v/cKjE9pdBQ/dTnp42yXwsu4deX0vlnXbi5VkzRjH6UzmdJlBC7DM1CEbmhN1O/q4o2uLaEMZXBiXa2tiLOHO8pRUFu1BpxfsKYE8fjiZQSVze3hPPKZKw4ZJridJr507/9C7///e+4vr6hFFjOq2hGtWa3GbHGo5oilBXvPTd3t5yPL0JPrArrBoyzbA473KQ4no6sy4wfPDlZcRFloWvkLE0cazzOCfirtiJ6Vm1QpmEGi0qVkgq1WwoPV1YAAtrSlDTlPnz4TMtyP23qpxxYoyqoytV+wzfvvma/G/FWJJPWaWJOqKLQVVOCp4TC4+OZlzkQyxEUTNOA95rD9Z7ddgMops2WzW4S+kjXKwu8W+79tQgwPVF6qFi/jy4zGgghEdZLmn2VrrGxlJBYY2bs8ZulCANKyWCS2gQdu4TCx+cj3358ZAnSUf+//uv/w6/+6dfc3NywHSayX9EVYtftOqvJZcWpzNXNLW/f3rPbjuynCaOVNISUfNe1GxZiFOOIlJuZFBPn88LpdOoLIXA6zRz2BmOlkyxtJfm+lJY7OwlCqzzHyg+nI98+PfLlPBOTEnNDjxVp/apXGmIhLO3V3fPq1OqoVt3n572QRhu5Rl70AyCHWmvSyda/RCK9QgDcCtHKKSW5pSUtTPst1lvKWihJcnScE+2mNaP4GVPBeCsDdaNeW/+5dVuUUt3iZtjtdozjyGlee/knLXXVCldXN9KK10JVLEUkdN7JbDfl3ojR0m43zrPZ73k+nZhPLwx+4fpwwKhCWE8M3pFi5vOnz+yvrtnsdkiWaXvV7V4aYNqIb1eYVQIVa6WitQMKk95ALkQVGYwhhsJ2u+Wrt5KW8MOPHyVsKhaovUDLmd1m5O2bWw5Xo4RnTw7TecemasiKsibM6Nnu9mznREgnljATc+LleKKpgvvwkf1eMn/9KTCdJg77nSi7OgZHG3EwlRzFUqcEzUNtrwCAnDIxSPZr6kIaeria6vrlfMq90y0UQ6sstVRSKSwx8enpyIePX0Q+iBJecc787c9/5sdvv2UYxMrYurxSaTq7y/Pm6orf/+5X3Bx2bN2A06J00sZSFazrSgXGzQ70JWALcm3EnHl8eiasK5vNhhjOfPvtd5hf/YpxMwgPXIkoxfa4FZG9as4x8/EY+MvHJz6+SMYuZhR5aGvUnKXp18eGEjgnpnhrPekVKVy7EksampJm0NCI3v8ifVV0l11Tr7C5n33hHjZbaeIo8B2fymaSOAqnZegFlFipEdaQBSjnDM5tuqneCF+JSpijmBaMpVqNb4bN5AmLF7pfbl0kIcoqhcL7kYf7BxHGF5HCtZbJIZNq5Jx6DEVTGONwTqO8Q3XgeUqJmF5wVvH8+ROGwm63FQbTEilJHEvbXcN6j8paJHa24ZxQM6yxr1I/rRsGS1VKolhUjw9RDpMVzjTWU6QO8PVXb7F+4K/f/si6nnHKUmrC+YGvvr7j9nYDrGIBVAI4tx0MkGoiJAlarqYyTgP+HHEmkVFShtdMCIXMynn9KDporRnHkZvbK/a7DZtpwDuJH61lAZVwxkMFjaFlTcsSKF0zxNj63LKirJg0yD+Vd7k2jJXye04CLV9i4LgGjqcjOUUsMPnuxOm9bqUUmgructcE1Qob13h/f80ffvOOt/c3DOOAbdBShQ4kpDVG36NheolqrNy9G0kqKutRJDRaEuNj4ng6Yr0VYoWSqqfSDfTGcFaKT0vlu8fID18iT8ckfSTbyK2jdho0JeMcbfTrQkuldAlqQxnxkl+oHnTbqXHCT8uxiLxTi5leN7r0VnpbP/vCJS/dJiZ1urEaZUaM8RgRXZLWQtMK4xzPz08MreGmEVTpDzss64q3IoDIOeNt58t2g7tSivPpRMyFqhW2D67P5zPDRthG0oEXmp61llYyKayEdEJh0Fo8vUZP7HYTdbB4809s9wdOxxPUyv5qj6Xx8vKCcQPTtGFdI58+fWSZV65ubrHOsN3vMFVORpSIR7SVxau6j7Y1g9VakuQ6lpMkTOZkJWHAWcPtYUdcVkZtWdfMGhq7/cCb+we2mwkJuFOcjkehgXgvc9MkCqd1WcmxYLRmsx2JpZDPK7l5YhBZYq5QoxAfvdUdUpaZz0fGwTMOjsFbhLEmCYPTMPRyWbMsi8SIFvr4TqJLSxEJ48Vfmov8/aC9cLApxJRZ1iRRlT14uwLWOkYUPeMUmqiXSpXqqKNDOEw73r+94+HmIPp1bQVEUDPaVqlAbA9E66M1bawY6BV478mqcHt3R+rB2bWKgT2VQm5FzCXG9lmzISFa+Jeo+fAy8+PjieezlPrFW2oT/FEpPwkkLv5g6B5jLc1ZkT+Kq0gUjkoAAMoK7Lwq6LLL2lVXtG511Jcwt5954T5+/gE/SFiz7icBVZRBFvFoKiNf1JoCVUGhiixTN9wgpea6NCm5taBecpYYSo3MI703zM9n5hC4urmRWWaTL1+2JNEUp1T6iVu62CFS4iKdOyPZu9aIyN4YjR8HdnsJtcoxQJlwWmH9wDD04KgG4Xjm3//879w+v/Dm4Q3kxrgdO9dImji1yumhtKBitPFgLNX0jmHqX4w3uLEI0SKuPK8nWl54/9Udzy8zj0+FzeBx2kj5WivnGNhst3jj+8kn6QkpinBjOa84NzAMms3GEuvAEmX2einnaylopRn8wDgOeG8ZvJdufCnUkMUYomR2Ps9HEY7QF0G7GPTlLimGcnlIUxRRh/VODONFyR1TWc5h5fHlzGlZqA2GwWO9jFf+8zWrlkZpDePFBE9rbKYN797e8vXDDdtpYPSeVBUlZXLNlJbx3mO9wABzlyb+dC+Uu681inGacNYS5oVaC6mHqy1xZRiFEVYapFQpxnDKmR+OlR9eFj4dF16WQChQq+pWPVH61X7CKtW6m0gse9TWiadAq2iEQQ5S/XnnBd1EZ4O1SuvgBpGZln4I/N3r9u9fuM5qrg5bak1yp1P0U1IRYsAoQbMITMCgjWG/38ldUFWaKoSUMFYehhx6vAaGGDM1rmwGh/MWazVhWTm+HIUgj8X4ii3gJosIDzqlxyCzyn6vEFO1lUYEtQczKdAwjCM5RVqnHWhjOdyMtAbH4wvf//A9++2B7XbLDz/8yOnlxPv377kqB4ZpxFRNraIdrk3hxw2lXMKKBe2jlDhCmoaiBP86TiPOa2o9sJ0kLKzkwDortqOlxMDHxyfevrnFGycA8RAFUJ4yIayksGKUxjsvJ2CrjKPlWjtyScS8UFvqvYjGZrPh5rAVvfgoD83FXWaMYjM6Uq8EQgjEnNBdopmqQO0uBIdSi8SstoYA5gXFkkpDmYTKmSVGPnz8xHlZBF+jhSShe4iaav0O3V1IWIM1cs8f3MD7d1/x9VcPcid3QvMwWoLlQg78+OUTV4ddZ5A1lLHSEzG2V2rIe3SanGTRaBuFUlAFv5pqZTKuPxPCCH8JmacI3x9XHtfM07Iyx0RRQvLs8wO5HtTy2nNRfQNS7YJZLRj6sx2LHGJKS9So31BzIeYg1so+0zWt74b/P379/eOgwzUg44+chPrujKLEgGqNkkSEcOkuDlYI+aVVSiukHKSppYWxLEkGorApubLMC1YJBd5aISAuyxk7jJzPZ0aU5MFm+ShN94vmnLr3UaG6/csNA6rHRtiLla7LGcdxw9O8klNiGC2jl9P2Sl/CiRU1NZwd+e7772nff4d2hlgiu/2Ewooo3RjWtbIxB2IpWCMlqNjXVlotOG9Q1VIttFDYHnaM24GwRG5udyzLkVpWWvHcHg6YKjTAkgu5KVquhEUiM523UBAvc5IOcFMNqzSHjeM8K9YkiQd3tze8++orxt64KUX0tH5yDINnmkYG5whBFF3OeoKVjNrSKtZ6oVj2EwQKtNwFBqJyqy3TlCLkyBoCT6cjj8cXAfI1JThfOhhei9RPEDvC0jK932E1PNzd8tWbO+5ub3DOk1sl5IyQajTjduLt+6/xzomSK2dx0ujuyurIYJSWDOJaaEW8sLV13pXSxAjzKq6jajTBeB5T5dvnE98/n/lwnDmnQGpJ+ja6kVrGIgYCEAtkbSKF7d4+FOCteTX+t+4hFhD7iHUDuSWMNhTC65qSt6B7tVc6GfJnXrjDJDvh4DUKYRTRsgz3q8DNcipYpRmdZ8kLIQQ27DpiJb7SGEUTbCT8Kcl8VSsjSE8kSsJaSyyJeZ7ZuRH6oDwXMSi7QR6uGKXzjNYiq1SNqjTjMCEGXMk4Qok4wVrHfrfny5en3tAwuL7gLwL3lhXWTnx+fuF//OlPxJp4/+4tjcx+OzKMXh4aI2OvHhtDzGKzs7oK8qQZhnEQ8YUGWw21ZbS1cldrheV8ZDM6VKvUnJlT7I2u2HNzgb74UhBWk6BmiwgBlEIR2U8OVOZwfeD3v/8t97d3pGVhPp/5/OXE/rDlcH1gu9vgnMVqwxC8gM2HjFtWhsFxnM8UJQutZmFp155KUVUjVQHySZNGUvVizsxhobQqd+MqlddoJCPYQM/kaZSWBdwPbDcb7m6v+Kf373i4v8MPvmfSBgHCmypmDuPxkyfHjDEWXSQlz7uhTyJ0H90JBkkpzRzOhBiFf6VlvGfMQKkWmiVk+LJGfngJfPt45nFeeJ7PLHEl1yTc6NpEHdfnrkpJg650HI1W0jxVPR9IJny666w1FYUfJ7wZqakjbLSm6UoT5cjr+jLdBPKzL9xmJtw4AEl2uFT75br2nS6Q8kpTkVTONJU6xylCK9AUg5/IudFyYZnnrkYSP+gweFoJojxRMmYpuTCvZ9ywQ5mzlCY7h3GKHBNFFdZ1FeeINzjvhORYG2vKOOdxekBrTUKCobTXuGbZHQz3d/eEkMhJ3tNmIzt3Kw3tIr/69Tvm9chf/vo3ji8v/Jc//rMk95n2amFsLeGMjINqRuZxpdBKFpG89TQj4xBTNLnY/gU3truJwSlBj8bEEgLKaJFKltLHbgLnjjHInazRf1cu9jNrDHe3B3Z55OHtW+6u92y3I8UpSg3sDhvu7m/YbLdM00DOPf1cSaQIVUZ1zSj2znBeZjlhe3wqSigOFwA+qNfXcV4WcpHRYMiFUnRvYjV0Sr2RI68z5sToHUqDM4a72xvevL3n+u4G4y0xF+Z1FaOBMa8OrlJLXzCJWkUXjJaNy2tPbYUQFinpU+1ZRJVUoTSDH1xPjG8Y60nK8LgGPq6JDy9njqFwCpHzMpNyETWcNHEkHgapNGoTJbbUfACCvJEu+0Wv3LpgQzGOe7QeydUQkiQ/kKUaoGubL0u39erg51+4WpoF3lmUKRg8NQdKqQzWgk7Y0RBSQrmMaiu1aYzeUnLC+Q2tWmqKsihLZl0X0ZumldqEQfRqbu73kHVZeHx8YtfJgNZvOQyeEhMvxy98/93fuLk+8NW7N3I6IOVlbYG7+22XFmohPzhLixmrLJtmOZ1mljmgjWG3m6TTqBXGNJwuvLHXaP1H/r///j94fnrmeJzxo8MPEmg1DCLLs1bscK0WWi6sIbxeBYxVAgRXCm0cvgrcjFZRdcOpJJbzmRhWieJsjVykYWes6eWsHOlNySlQuyhCqFYa6wbG0XC/ueb69prdduoVhOX6/obr2xuJMulsZtEiQ7VQYiQVmQbUCspKIJt3jvNxJueGMo4YZdGUnsC3lkxGZqepM6q19pzXIN3o1sghCPep36uVVpQSGa3nzf0Nb+5vuL29otTMGmQ+6pwIbsTc7yVutDRKjq/2OesszinRwGtFCgloxLAS5kjJihiTNMWso2FEz6w1qcFLbL1EfuHzaeXpFDktsS/aSlUatGywhq7l7sRHUTuJCq3m2NeGkoxbrVHGoCrY5hiHHd5vCWsipf5ci1IDjUxZLic5rV0a1T/vwjWdGuisRdXKy+mMblWoDsqgdAYlZW91iRRXAbrVPt9CE9cgsrhaiTHKaKXLDGNYJDBZ0T9AkRIq7Tgez9zev2W333c1CkJkLIXz6UQKM9fXe7waME5UWbk01vUkHWk/QH/N+80W6zSqWaIqECHmyBIETKB7SegHj9Ga+7sb/vCH3/P//t//jT//+a/iG57vub+/BuUZt4awrjgnrCcpncW2aJ0TY3ifLYeUmbwTH/BYGbq8Miwr67JStOhaS+6LM1XmNQkpwUrYd8OyLoGWFSkmtApcX+9wTsQrORecdTLLtBbTWb3WWowS1I/SFqUqNcZX1pTW0qEVq5uof4ZxQ62rXHObYEdrrsSSWEMkK8l1TbUQs+iTlZaGo5zCjUxl0orJOtnAN7JoH+6vOewmBu+kUWPNaylpreWCYL2MXkqRXoa2FqhMmy1aWcKapPrKhXVZmZeVdYnEWADNOIwM3svJ7QYyjqc18N2XFz69nDiulXOIHE9n1hjJTVEAVY2QKduF3yVGd5GAa9FIIwruRu0NMKkWNUpiV61BU8lx7W4OqQa0oX/m6nUjNVpcbz/7wm2t4owTM3cnNkh4k+AtwWFsY5gaIaxoN+A15ChsnRx6A19JJ9EqhRsGcgwiX++MqZJTbygotHZMk+X05ZHj6cR2t0OrRgwLxsDoPd+8+xrnLArFy/ML2/0OPwzUGlnXWXbv5FjPK/P5TJg33N3eit7YKTCNDz9+wBjF/cMtqoqXchgHNKKeurm94g9//AN/+rc/8+HHR06nlRAytRmu0PhBuqdOa3LrDp2mcGYUNU8SKFqjQa2Si2QtpRZ2+wOtilppPs9d762JqUgjBInUCKXSspRTy1oJ80orjc1ksM6y3x/YbAbZ/Wt7zWy1zmG1+GXFHKN7ky9SCt3TLFMCoxStasDJa9IN6zzWGDZKM6+JeDwRQyDT5EFXkC7mBC0NnZwbTVsBnGfhWavWGE3h7cNXvP/6ge3kcE6Rc+o66tI3FAl3Fj5xIsSlR7Q0mpZRjPODlMytENdEWCLzcuZ8nFljIISIUbZHkvaeivcsynKMlQ/Hlc+nwJxhToXTmlh65VF6k1Neg/CvGpIyiL4YEngtlVGtJ1l2ZnSU5APlIiksxDWRlgVKoCRp5CotpJDWqvR/cpbv+ZfhKidpOrRKCgKwtn7EWoGL5xpQTWPtiDEDw25kfplJoZCjdCaVEpP6JayaLIFVuSThzSppp9fapGllBja7LSFmPv74gZura7y3aDVQkwgLrq+u8N7y9PzEf//Xf+F//z//D66te30Y17CgQiCH1Odv/d7c079F9104zwvXeU+KK6oP+kUaJ+L2u/tbliXw7bffczqt/OXPP5BS413TbLcDN9d78adW2YSGYeoSOPtKAik147RiGgZqitKEUQrnHW7wDFXiL2OuhPNCKRBzJpVKQZOynCQpZKyCw27D1X7i6vqKu4c7xtFJ4kKPgLFOhC60Xgk0oe2XnIUzneXO5pywKUHQQAAAG6BJREFUo0TVJGVtKmLlc84yTRusNUx7sBvPtGz5/sNHzimKHFLrbvETVdKlrFf9M645UxLc3d/wm3/6hrubLdZo/OhlXmwEAgCmky/kTp27jxh6blKfBeve+ClJZtsxJtbzwnKaWfr0wlgn93etyChCUzzGwudz4sfnmaclMzdYUmFNSebbrVIAY7xIKauS+T3y3oRMAs5ZYuhlcu8nqQaqj4dokMPK0/oBoxw5CzecKjP9mmUtKHVJL+hpf7+E5NFopImjay8LrdxDtX0ttWrVxFwAz9PTM8fHF1TVGDMyTBpjFd4L+UIhyeM5JVIMot+stfOK5AIvncGMao0wn/n84Qec/QrTGVBKtS4d0+SUGMehl5qIX1VLhGMuhe3+ICe9EfaQVsLPHQfP+/dfcT6dKDmymUYp3/oXKcwjg9GWd++/IqXEp09fKAX+4z++I+TCu3dvcMayG728t665rmti2AyA6Q0XCTOr3dkybSZaTlAnxs2G8zyzxMCXL8+c5pVS5TWuMVEatGZZ14jVit1hw24/cHt3xf3DHfvDrkMLOtNIi4VMNYGLtybWMprY9WqVQq90RRhcHDAXdZAs/N1uwzQOKC2NqA2WVCPGiGZ7zbUnDgoGRk5xsSZaI1l9G+/59Tdv+d9+9w03VzuGQfzObvDipKEr4C6sJkzPd5LF/5NzRj4Pyd/VMisvldPxzPPTC6eXI2pwTNsN3jqUtlRjaN4TK7zkxPePJz6fVtbaOMfIy/nMaRZecioZjGwcRklkay19PmwkoKw1Qfrozu1S9Nl27aSRQofBJ2iGqiIdBolCHFYXfFDrcscLQ9vYv1/I+A+YDKRcrrXTEmKSWMkOd25K6BAlFayb8L5iTCTH0Mt7uecKJ1hoAK2WPhJK3XwtnkVao8SENY6b6yvO5zOfPv7A508f2OwmFI1pGiRIulbCGthsJv75n3/LeVnJe4HRoQ1KSac55szoPCgjUsDSoeJIw62NA6fzkUhjcA5vRbRQtKbpRlaFaTvw/puv0Vrz9GUmpMh3331gOZ/JIXHYyqLfHa5QRJkRo/u4r0iUaBerp3VFF+EiG2uZNhPKamIK/Q65UppcRXJtHdgucZESzdK4vd3y29/9mvvbG4wpLMu5l1uSS9TQDMMomtsmo7OL51Og3nLCX+SbuXdvY46oVtntNjgvrpqYApCwphDjmZwDXVtBKTLbRAse93VWa2AaHG+vr/jdb34lJfKg8aMFa2i9eVdL6xuldGVjyK+zZG2FJSa/dFfGSaRoWuW0PZ9mwhJRTaG6TNNYSbHQ04ZoHedU+XSceZ4XUlPE0pjXlfM8d3oHaGPAaEmEbKOQQEFO7r7ghDdXUFr1WE1pmNFTCVo/dVsqoKoEXF8OinahX/TOeF9Z9ZLc8EuMg4wz1BK7eVjIeE1limvYvgPWGnFWUwL9JJUQ6ZQSY89KKT3bp9Qg2a7avN5VLpzji/6zta4lNoav37+j9rnndjNQipzg1kqZZ7TjanvNHD5Iud1/ntGWwQ8opQgxUnThHCPf/uWvPNzf83B/z+g8LRc5jUsXHiBzOmMdehTUSC0VY0XIoe1nPn78Qlobnx+PnM//k2/efc3D3Q21nhiHiB9WmZl6J3faJp3F3DNb06uETuOmievbG7HErYkUCs8vJ3IBtMEqjXWazdWW3W7i5mbHP/3mV9w93GCdJcVMU9JUUrVKk69VYgp9w5XxTqmi3Ek1k7IkBLRaMUa6yeu6sp6P7A4TftAY66QzmyNNQUyBafBcbXekdGYuucv9Ck61jlSVk/b6sOX92wfe3d/w1dtbNoPGDwbnLal2RFvvFNcs8IDSvd3tEutXdZ9MXe6GgmqlNNYlcno5M58DyyqLXSmLNR5vB/Tgyc4TMTzGxJc5cC6J0DQhReY5kPs8vNRLD0Ch3EBTRe60lxSC3odpfYNRpg+ji7xX6GjWbogfnP/pee72wQsSWCvVZ8Hiw0Vpmjb/kMvg7z9xXW+jlUpcFmouODfI/eVSo9fSyzABo2krPFtUx6hkOUlTCCzxTMwRoz0xJEY/4P3Auq54N2LMJFrY/tBvnXx4rSaW5dznavLgx5SwzpHbwmF3kNGDatSWKFnkkDnLbnc8yvz463ffMA6DIGRaI2Xh8G42E7U1DEKdx3TsqpLUhWHMKLVHa01MK7zA+bTyt79+z/HpRPztb7i9uWIcHN7BtBmwzjJNE6rDvlMuaGdeUZ01dQODMWy3W8KcaBm8HXh6OdFaZRondvs9h6sDVzd73r1/y8PbOzbTSMmFkCQhsHSLntYaZ3TnB8v4TfoqncRRk7xPY7putnR4eWO/37LdDXJFcJ6mNGYcsDphg4RBbqeRZcmEWOU6kjNWg3GW7bTlar/l3cM9b+5vsC1RlzN62Im/NyWMdZQmvYzXq50SoIHgcVVXFhk0VoAFWp6zGFbW88rL8wtPTy+c50ApCjeMbKYNg59wfgDrKHZgngOPp4VjSMRWWVPiOM+cl4WYU7/f02WrCmuNMNCM5OS25vqzJyet0eZ1piuagyJm/dpB8HTdeI9OxQiVpGr1Ok1xTrro0o/qir1fAhYXU6CmiC7SVa45SWlUEljVQ5otsUQpCxGSgnUONMzzWb6QUvFG8nNq6ULr1k3eueLdBNrJJmEqbpSEAo8nl8jj5xPzvODcyNpWnp9eCDGwO+x5ePsW68XnWUsmLYkvnz6Tc+Dh4Q7tPYMVooZznoYiF2nvD+OW+wePOGZOPC4z1niuDjeETnxQKPwwMk0bnDH8tn3Dx09P/Nv//A9KSYR15fHzE600vDN4C8NgGKcBN/jXRpFxto97JKVcNK6JlKLwoo0WPfFm7CfhwOAHrPfcv7nnzddvuL2/wnpNrZmYVrSRP0/S3ivWalQVIUhtsrBQspClJK3Y10xXgdOHmDosoDHyU+B36Z4z6yw3d9fs9pUvn07M58R8DlSl0ePIZrthtzuw3WxwWjMYTZoXQlwYBsNmO4pByGgZCzZeU+3CunJJ3NNaKp1x3GC0BIanKpF/MQbCfOR8PPH0eGQ+z2htya3h3YhzQx+NeRKGEBvzmgUJGyJrKrycTrwcz6xxofwkgRDFnnFigOGnjOcLi7r1cY7qa033/16TVDOtVdFX9/+/VXolKqer1QYzTn0zkICZ3CNV/9Fff/fCLXFF1UpYzuhaMRRaXqhJo42Xer9UYoiEGCROo0QKg9T5iL4z50QuSVT4aEJMPUfUEGNks9lS+1jAaS1hTU1mZcbIKdX4KSj58fGR3WHPNE5oBU9Pj5LadjgQl5nv/voXptFzc9iiau1uD00p4IYRGr3Uqf3+J2kE2mhcF0S02qiq4pzA3WIOKNW4vT10ckaWQX2WqMjn55MgVg34wTBtRpz3+FFUS9oYQhJagtWWEjNKFwlLq0JY2Iwb1hCByjA47u9uuX/zwPXdLYebPco0Yl5fpX7S9KoobSQUS6lOZ4yEFDtwXGGMpD/kFCVXOF8MBHIniznx/Ycf0cOvGHd7Umk8PT3hR8VmI1p05wZaMcynSFozG1u4ut5z+3DHtNlgjaGmRImR+XjEqIrbjp0SKSVlKRXj3Gu56JyV5lbNPbysh4K/5h5L4PUyn8lx4fRyZF0WtNFMfuRwuGGatgyjbJTKeTKG0xz49DLzMkdCqawxs4SVVGSTal2FpoyQPEH9lHbRS9fSKpTay3XJBpKwuEYrkkNUa31lJ7dSulDjp0hQcSnJRq07vlcklPAKCPslFm5eF2HkhgWDqKW0VqQ4U5HGi7CLdOf6KKpu+O3ItN1SW8Oj0DvRA9MU67ISc8KN/nXGOIfAvL4wbfevGlSHRRuxoL15eEvpftAQMjc3d2x3O6ZpK3NAehsfKbEGN3F92IsG2VRSSoBQ91QDZStVGagCnzNGmmOD89CT3tFSspErtWVqywimqXG43vGH//Jb9vs9P/ztA2FNtAZrWDkvGTUr4qcvTNs9Vzc3/O1vf0MbzeFwxTRt2I4GVRQtNZYUCOeZmuIrpWGzmThcHbh/88DN7S2b3VbCstZFJIAlSidbdUWW0egKKSZq6fignCVJPhXWKhZAYVpfgOKCtxmmkZ21DLsNV1d7lJKrxb/+67/y9btbtD7gnEG1ivGO/WHHclyZbrdc3x7Y7rdoK9iWZg1m2jEOllYLu/0W5xy1NUKMfHp8YrvbcbjaSxna3VqyWJPIGlqDZghrYp4X1mVhXmZOx2fiugByjZk2I95v8W7C2EZFoYwnY3kJkkJwTpXUYAmB07ywxBUJRu+0xnY5QS/PcHl1kF0SIHQfe11OYpocIORKywWV2yuqRmuxnwoIDugnbmvQSjfFKNWzki4/N/38C1fFSFxnSlppGnSTSEeaRqXCdruTYOMopZq2lsPNLZurA9ZLmaiRy703lhQShcb1eCtdwlXkkykWljC/jmBCCLTi2O6mbj5wtJRQqg/9e5ShJKIZpu1eEKgVzvPCfn/Fzc0tbpROZMkZ7yw1J16Wzzjru8lA1EQCt8vEEHDKco6BgYnRTEL/p0p+KiL0RzXsoLn/6ob9fi9Cj2Xhu2+/43jKHOeVT49HcAubzwsfP34m5sh+/8LgHaNzOCXwPU1hOwzsNyN3N3t224ntToBw43YLWrPMK7q7c0pJpJK6Z1l0zErJyRCLdIZzzaxBHCmly+5kDCEVxqWrPXiP0g2M4ubmhmHw1KJ5+vKEtx0GlxWpSqMFNIfrA8t5xWDZbiesN5SWUKbivMUb+d4kg7YB4hQ7n2dykpQ7hekETyFvaC32UGuNGBjiSgyFtM6EZSHNM3mNaESbrq1B6YLzoHSRJo+xpKr4fJ75+DJzTo3QD4Xn44mY5LTlkrnbGc+1NsxlYRhD4ZLFq3pHub1SOFo/YWsutJRRHU3T+hyf7pIT+F7tU5OeN9Q9xFqbPhuW01b+v5954bZUUN3p4a3pzSG5U23HnTSeivxWynA4XOGnATdOnQ0spZJu0ujRTXG4vUZ3ZlGKA+scMTZxp29Q3bRNzRgcqrYeRKx7udnzY2tlXVeM9zgUwzTSgJQKp9PC5AZikra8dJjlA80xiBAhRrJzTN7jvJXUvVX01LFFoc4HxbgZe7L8T1kvRitZON6yMZZhaOx2W55fnjguO+YUIFqissxL5jnOFDXQnONlLZiYsWrFqsr1Zsvbu2turq+52W8EjL4d2GynV7ljSFmQNKqR4yJ64y6qMMa8UihyybQGKcRX+1/L0vE0RkKnL13yJtwadHPknHFaArJbrZRUuT5cdeJkQTVDLRcihFx3pt2GHJLwtJVchfzk8cPA0I0YcwxC9jQGleH2/oHrWySNsfZ0hCSSxnEce5ZTIYaFsESWcyCskgk1n460phjGqac/eEqVJAN0RVtHqI1TWPl0PPPx5cw5ZUJrnLokMuYk7POauaDjSynSSO3lsVICeihVcESXUYNC5sgld8FEv6uq15ls11RVsRPKs3KBA/ZDUHWt86ue4NKY+gW6yiUrQXB4Re2hXVRwGmqeKXEGLRGImIYfJsFVIoxZoxRrTvhhIyVtK1itqEV8isZbgVxPBbd6SoxgA9Zb8fvWTA6V3DQvL0cOhx25+0f99Y2UH01Rs4gbrHVsttdohMBgmzSlZIhfSVkJZbJWUJlkLKYqQk5Y40VUUCTHNMyRMASm3RatLWiFMb4bIpwovlTDWU31laoj79odtEjKH7m78bilCdEh69fxiaGy2wy8vX/D29sH7g7XTJNjGh27zSgECWteIypKSRhrXoO5SgGUFfpHTdSa5C6bEftfTiIp7GIL6S6vr3PdkBJ+2OLsiFHSsCstcXx5ZrvdYbRjt584nwVN2jpXrCLzaK0qzhvSMjPPi0TD7OTeL3NOiN15JIIZI1lSnfRfa+2bkTRyTNO0VKm6ENeV+bgyn2fiGoVgsaykGBnGDZvtlu3VHmsF3FZpVNuoFtbcxPkTIseUOYfA83zkeDqLLVGJduhVrNT9wUrRRRYKmqj4pBIQuPsF4Std5EKJGd2bm627hzSyEC8M5tdF+59FUUWacuIO6iwt2n+a7f6MCzfMM8pUvJcdv8TcqfdKaAFAU4XUk7jP8xl6S/zu/hZaZRoHmWkZ8KNHtUKzUjY03fBYSBltPG0qDFliRcK6CvOpiiVwmkbiuopAvlx27MrQUwFRsptZZyUfJ4vBPKUsUPGUXhlXukeL5FzIposytMx/ayvopsilkULBuoJ2Av4qPdRJd9tgbVIFVJXwo+fm9ordduLt27d8+8MX/tu//AfnNQkOlYzRjZvDjl+9/4qv3j4w+S3bYYt1Cu801mu0lfR0EeCLiqvU3IXtkqQnZ2YGlcklyPuqlhQKRiPG9iLOk8bFXSQPuh8GxmnEj4KsrUjKnnVKoOeqocjy70vH1DSIglMXZVateO+Z57kzqXUveS/dcykrlTVyMlpRpV0EDarBMs84Lb5oZyxxkQUbzoH5NLOua6d3NtwwsD9csdluexyMEFZKreA8oSrmXPk8LzzNK2utpFo4rytrivL+S9cXay2nIjIbVn3zaka0eZeEAq00yjrZjHKUHbPWrobtEk/dXkEMQgq5SBqz+Hb7iWuMo1Z535dUi9qxr78IVznEJESAAtaCVUARt4gxIpfLTdiw1puuc3W9NJO7oHFyulUEpwqWUgTkLXBrg+kspBQibvDgK8fzgrWeafBsaH0AX1jmlZfjkeUUKMVg3MSkLUqLmqqUJP5ZijRnoizgC3q01QZWyhyUJva2frXSIZfkudotb+3VSO3cgDYOpWUxVSp26FBxLagdp2Qs0armfI58fXvFpy9HgpbZ3VdvH3hzf8P1Ycfd7TVaDyg9oLX4fd3QeVqqyFin9dCtkkWsECXVEKNfiRSSgFChVTabDQrI+YTwsYRyGVYRUmjXMAbc5NHeSvh1U1g3UksBJXzkUiRjVu6AnQCpIeVMUeCUYHxKdyGlnPFasDDSk7k4WHnFy5SSBWt78bWWRk4Rr8RzO59OPD09cz6trOvSddAN6xzjOMnYab8D31VgpZJKJTbNUjSPy8rn48LzGjgukcfTmXPo1EalaOjuq5Uvo9HIpeGNqLlqrXIY9fvvRd7YijRhqdJg1aUB5nXcIyQWcTddDP3WOC6BXq3R2VKWWhsl1R4dc8Hh/N3r9h+Axa0SUowGo2C0Gl0qNaxQg3QBFTjvuL0b2Exb+l7G6XRi2g64jr5pVRMRl0fp5UXtJgPZkTJ+nPqYSLG/ueuSsIpTDWph2EydQCDpbktIvDy9gFLklrGDsKtyCoxDTwZsBZEPyIdsjIRRl5ol57W2Hj7VunCjyT3bSjBZrQ2vrWQfKS0lIw3vHFrLqWQHh3aaEjM1RLY7xTfvHA+393z6/MRfv/2ezTRy2Euw2egtTjcxO6iGsRprpZEjY4RMRvyorUO2Ywo9f6gK40qJ3K5keodSs9lsWOdAipXSZaTnJRBDYrMdMYOm0CiqYrQ0TEqWPkDtd84YIyEshLB2zavBmoEcSz8tC8o4Uogofcl3VaQiONyaSicjCsWzIgHeMkapkqucC84aVBHi/3lZOR5Fd3w+r6xhxTj3OgefdlvG7UaSIKz8TKMHYY81xfM58P3TzOOaOOfK87x0r23r/GTRFoNUD+qC29XdhtmaZOp2ealqDS30dfFV54xu9Nm7WBmBn2a+VWyArWf9anW5Q7e+gOXPpS/iUvpoqbVfxh30eW2cloUlCFRsP1hGEiYHth1kPWwmdrsdpTR0qVjnuxBb1EGxLxZrPbUGQIQBzshiMMaTU+itcbBeiBRuGHpHTtQ9tpPktbNsdlvWUDBWNLbrumC86WJ6KWdy7MKEKvPgRkN+hJwstRbyRbpmLLnK6UUV54aMCaThIJ7n8pplRJOGjNa8zu60Gak2YZoW6n2Sk/hX4wNXV/+rvTNZctsIgujrBQDXGVljh/7/Ay2bJIilVx+yQV2tg8KeCOSJwRsZKHRVVy5XeUh1XqSVqvbXuQwkvNX3tTkkrMtK5w0lB3UiRQHRCqeqOFvl4pFSa9PAe8P373diiMzLSmkszudzxnvPcDzTDSLpb9Q948WeSu300Hgnkr9tL9NqFK6dssy8a2sZob6sf1JpPthZKXXei9JqvHyVjNEKpaZKLBZyobeeoe+YxyfjOHK/37ndb6RY5CLae7qh4/p+5fJ25Xy9qAsy6vhSTkwBHsXw5zPw1xx4LIH7tPCYJ5YQKLXqBdYKtuLYjNRpa6CYlQpv6ibVUzFKOF+V3r21wgUo20Xl5ldG0xHpxli+yo2L3Frl0ozntQfWYYRRMTv3C0QG0VrmYhhjpcTI/Jz5ODm+vZ+49PD2/qbZ43IhxMRjHMklYFHeTgxBf4CTRLBakQNsMxw7dCetkqLiKFLJP7SUTrxkYzpy8thaKSliO48zFaIUPFhl4lQzcDgOLyF/DCveO33O2m/KHbPlt3hLDoqJzDlodjGGEhXInOLC+f1KqVlF6p2c6I1M62oR6wtjwVkpUoyKImewfYeJledzEouq7zieDnhnGB93pmnCl6JQ7OEsJlkzH+jdgDOVbBUinZsQo+LY4kVDSJrxhyPKpdHqK4RFvksxaeYfej4+fpdl66HDDx7bspBSEm/XNXbVPE9NZJ/1ksgtAgSx0kx7kKuR+L3QkYpWUSUlcZzNj07FtihPjFhdsXGELXKDDCHynCe+//0Xt/uNZV0xwNB1DIPncBx4e79yuhzoj51Ov6oXb6pqk2+zEhTGNfJYFu7PUS19a7W3mTVlhZ9VowSFfuil6PJez8NLRFBkgGh0wJQiOyWTZVav4sztrsO+TtGtSF+SxGZql/O2+pFLpqSKUnLlUrDuF5y4w3GgWyNdFNezlMzxcOJyPvHt61n7xusbGMeyPljmgHGW3ttmayJrFN3yZrJJOjWb/2+Mq3bDzZpFHCbdhFqvVqvrPNV3IhRUtTHVFPrBi3M8y4h7mZ8UlPSmVHVxTmmtz6aFdA5SXiX0j1HcWCw5Jrx32CJvq3GewBs+zB8KeEKnnms6Uuc8tMzTnBsTx1j6vlPLVTPjIm726XJpJgJav8QqqVdcJjwznSucT+e2cpEbRjRF3l3ov1lmURT7Jp6wLdTaGiXSlSzedYiiUTrn+fLbF6z3HE4H+n6g74Yf++Ck+U922RWQQdxGOgirCBwhR6qt5DWI1bau0tX2HSSPDSt934OxdK9AKzS+pASuYNBDSiM9xJwYp4kwTUzTxDg9CTHiOuU4HQ4Dl+uZLx9fOb9dcZ0nRIldJKwXUSWkzO0xcp9mxmnh9rhzfz4pUZ0S7dR80aKNw2t5Lj5AMzeoJTcOfCNTVAVgbwW6jaFigZVXYZbtN2Gaak3jzlbU5qXKanm57RbZe70oc8mU+u8JGOZn8kp27Njx/8DPs5t37Njxn2Mv3B07PiH2wt2x4xNiL9wdOz4h9sLdseMTYi/cHTs+If4B9IYcTwslULEAAAAASUVORK5CYII=\n" - }, - "metadata": { - "needs_background": "light" - } - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOwAAAD3CAYAAAAewrhMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9e7Qlx3Xe99tV1X3Ofd87L8wAGGDwIsE3RUokQUpLsmJLK1IUP+LEUhTJtKPYy1leXomTFTuOHSvO8kOKvewkfkaxLSWyYsmWbTmyFUuyFmWREkmTAl8gCYJ4YzCvOzP3fc853VU7f+yq7j4XA+CShMnQmVoY3Hv7dJ+urqq997e/vWu3qCq32+12u319NPe17sDtdrvdbsdvtwX2drvdvo7abYG93W63r6N2W2Bvt9vt66jdFtjb7Xb7Omq3BfZ2u92+jtq/FQIrIr8gIr/3q3SvCyLyzFfjXre49/tF5IOv0Xf9CRH531+L7zrm/Z4RkQtfhfv8sIj85L/p+3yt2isKrIjsDf4lETkc/P39X61OvlpT1X9XVX/ia90PABH5cRGZ5TG6ISK/JCIPf637dbSp6p9T1R/6WvcDOkUU85jtiMgnROTf+xr15X8UkU+LSCsiP/wq54qI/IiIXM//fkREZPD520Xk4yJykH++/bjXvlx7RYFV1eXyD3gO+J7Bsb83uHl4tRv9/6z9aB6zu4GrwI8fPSFP2L8VCOc1ar+Rx2wd+NvAz4jIxtGTvgpr7YvAfwP8s2Oc+weA3wG8DXgr8D3AHwQQkRr4OeAngQ3gJ4Cfy8df8dpXal/WghGRbxORF0Tkj4nIZeDv3gquiYiKyIP595GI/EUReU5ErojI3xSRhWPe7/0i8iER+asisi0inxeRf2fw+QdE5Ify7588ggw09/evHjneaVAR+eMi8qSI7IrIZ0Xkd34543K0qeoB8FPAmwf9/LMi8iHgALhfRB7OVviGiDwuIv/R4LlOisg/zVbno8ADx713hu4qIn9ARF4UkUsi8l8PPu+g48uNjYj8niPHpyLygXzNd4vIo7lvz7+aNTpuU9UE/B1gAXgg9+MfishPisgO8H4RuTOPyw0R+aKI/GdHvmYsIj+d5/M3ReRtX8L9f0JVfwHYPcbpvxf4S6r6gqpeBP4S8P782bcBAfgrqjpV1f8FEODbj3Hty7avRMOfBU4A92La4tXaXwBeB7wdeBC4C/jvy4cisiUi3/wK178beBI4Bfxp4B+JyImjJ6nq2wao4I8CjwO/qap/eHD8m4GbmAYkf++3AGvA/wD8pIicO8YzvWITkWXg+4FHB4d/ABuvFeAa8EuYUJ8Bvhf46yLyxnzuXwMmwDng9+d/w+//eRH546/Sjd8CPAR8B/DHROS3Hj3h5cZGVX96cPxO4Cng/8qX7QM/iFnE7wb+kIj8jlfpy6u2bEF/CNgDnsiHfzvwD/O9/h7w94EXcp9+N/DnROTbB1/z24F/gK3PnwL+iYhU+fv/uoj89a+0n7m9Cfjk4O9P5mPls0/pfO7vp458/nLXvnxT1WP9A54Bfmv+/duAGTAefP5+4INHrlFMOAWb4AcGnz0CPH3Me78feBGQwbGPAj+Qf/8A8ENHrvlmDI6+7sjx0/lZvvcV7vcJ4Le/zGcXgGde4dofx4RsC7gM/NPy3Lmff2Zw7u8Bfu3I9X8LU0geaICHB5/9uaNj/Ar9uJDHf3j9jwJ/O//+w8BPHmdsMMX+88DfeIX7/RXgL7/K+rnwCvPb5jHbBD48WGs/DPyrwbnngQisDI79eeDHB+d/+EjfLwHfcty1nq/7SeCHX+WceGR8H8pjLsCfAv7+kfP/XvnOV7r2le75lfgD11R1csxzTwOLwMcHfrVgi/K47aLmJ8vtWUzDvqSJyHngZ4Dfq6pfGByvME39U6r69wfHfxCzxhfyoWXMkn+57S+q6p98mc+eH/x+L/BuEdkaHAvA/4mNWThy/rNfRl+OXv+WW530cmOT25/FEMEfGZz/bgw1vRmogRFm1b7c9mFVfTmENXyGO4EbqjqErM8C33ir81U1iUixxq912wNWB3+vAnuqqiJy9LPy+e6rXftKN/xKIPHRL97HhBIAETk7+GwTOATepKrr+d+aGtQ6brvrCIt2D2Z151r2i/8J5jv8wpGP/1dgB/iTg/PvBX4M+MPASVVdBz6DKZR/E204bs8DvzoYk3U1CPqHMLjcYhaltHu+jPsdvf4lY5bbS8YGQES+F/g+4HerajP46Kcw9HBeVdeAv8lXZ8xeBE6IyMrg2D3AxcHf3TNnYu9uXv65v5L2GEYalfa2fKx89tYja/atRz5/uWtftr2WLOUngTeJUdljDJoAHZHwY8BfFpEzACJyl4h855fw/WeAPyIilYj8h8AbgH9+i/P+DvB5Vf3R4UER+YPAtwLfn/tT2hK2IK7l834fmST6KrSfB14nIj+Qn6sSkW8SkTeoagT+EfDDIrKY/dovJ9b8p/L1bwJ+H/DTR094ubERkW/ABPl3qOq1I5etYJZuIiLvAv7jL6NvX3JT1eeBXwf+vIiMReStwH+KQdjS3ikivyv7w/8FMMVg9qu2PAdjTDZCvsfLIcH/A/ijeS3fCfxX9BGBD2Cw94+IEa5/OB//lWNc+7LtNRPYDD3/DPDLGFlwNMD/xzDK/MOZ7ftl4PXlw8xCfssr3OIjGM7fxCDa71bV67c473uB33mE3fwWzErcD7w4OP4nVPWzGEP3G8AVDDJ+6Et9/i+nZVj3HbnPL2I+749g8BLM6i/n4z8O/N3h9WIJI3/iVW7zq9i4/0sMqv/iLc655dhg5M0G8MHB8YJa/nPgz4jILkYe/szxn/wrbt+HuS8vAv8Y+NOq+suDz38O4wduYiTf7yroQCw68Tdf4bt/DEOD3wf8d/n3H8jXfkuGuqX9LeD/Bj6NobJ/lo+hqjMsbPODmG/++zHFN3u1a1+pyatA5v9PNBF5P0YqvRKL/NXqywXgA6p64Wvbk1duuZ9PA5Wqtl/b3limE/BtqvrM17grX9ftduD+drvdvo7abYH90tsWFsK43b609lewsbvdvoL2dQGJb7fb7XazdtvC3m6329dRO1bixD/5x/+bBiekJnL95g6TWPE9/8F/wtLaOpcuX+Xnf+5nuXn1eYK0vPe97+Nd7/5mfvFf/DzS7qEpUUJRMUbL6lCIbYtzDhFBVYkxduelpIhI96+0lBIppe73QZYICsSoOOfyefmclBBNRzNUiDHSxhZEUQVJnpQiGvM1bUPEcXFzmw/8xse4tr1LjA0aW1Q9iKNyDiH30wXqesTB7iakhrWVRc7fdZZRFZCkpNSiqaFyglOIbUOrLa1GSAmPI+FJOA6nDXHWMJ1OadtIk9RSYJxDgTbZc1TiCCEgIsSUSDHmn4mkedxEwIE4cM7hnadSh3PgnOC8nRKCpwqB4DzOORDBe48TwXlPqD1VcNTOU3mP9w4JjmpUUfkacR6pA2E0gpTY3bzJxeeeZzKbkvK4D+fSOUGx+XLO9fOoioj9HdtoayYlvDiC94xGIySAuhZtFZcqmgjbs0N+23d9J6dOrnPj8iWe+OzjVOqQNCVUkVYcqAcEb7OGd9leieK8w3mPOIfzjpgSzjvUC8HXOBdwzuODfe5DjUqFlHHKz1HGTqT/23vfnSfBgYAg9j35MxD+y//2f3rVOPaxBNY5GyycZ31jnavX97n4/DM88+GrPPHEU2xeucj+1lWCS2xv7XB4cEBsI3VeYEXAOgFUcJU9rAkeWXhtorxnTljLZJeJTSnZwAybCCmZINp5JvhoQvKCKUJervfBk7IwO3GkVohNa4vde/b3p3zm808wbSNOHCoe8ZCikhBcvUBVj3CqeJT9vW3QxNLSIg8++ABnTq2T2khqI0JCJSExkpqG2WxKM5vSxAZtW0gg4nHO87oL9yEI169vsnX9JrPpjBgTKQtujJG2bWliy3Ta2OLwAQmBgI2Ri5GUTCnZ+QlNJgyNhLyoFBtGNYGWgQIajL1iAr2wMGJ5PGZhVLMwqhkt1Hgv4ALeh7wABRdqfBVQAec8zIW9ez1yK6Vc/tYkJOmvU1vTOIEgEEVIYn1XVXwI7O7u4iSCQD0aQasEBZEZQQRx3pSzCN55XO5D/iUrXkGcIziHeAfeEUKFc5UJoPeIwxSU8wTvcd7js3CKcznBUDqD1AmzLWy891muPN6VEO/xXNNjCWwQh+SvrKuakydrPvqRX+fjn3iMne0DZoc7BGlYXR7xgX/5K2zf3GVtbYHgPUmks55lYpw4NGm2lmLaNluElwjiYCJVtRPaoXVW1DRjGi4AQRU0JTRFVBMxJlRt4QugneVvSak1q+OFhLJ/kHj0c1/gxc0btAkUwZE1tLQ4F5hGIWng7jtOc+PSs6TZIeNxzQMP3M+9F+6h9kLbNGhUxAm4hLYtcTajmRwynRzSNDOa6YzURpoE1cISd5w9S1XXLK+t4EW4ef0GzawxoW0iwTnG9ZgZDdOmYdq0TGYtKh7nK7wPVM4RgidQEZMJeNKEE48TW7iQUBKQEUm3aLQb23wi01nLdNZysDehDsK4DozHNcvLi6ysrrB+YoMFP+oWrjpBnSdUzCGbOc5EekUMdOhJxHWIwASq/+kk4QUoylMV8XBq/RQoHBweslBXrG6cYO/mLqIBpwJkg+FNQMU0Boiz9ZiPiS3CgbX1+FAR/Li73gQ2IC7ginX1vrOWSVN+Lo84+1k+E+fxvuqQpmAW+bjtWALr84CZcVTGo8DaSs107wZPf+EpZpM9Kq+cObXBHWfO8OlPfJz3vu/dSDDo1U1+aYotniNwaCiYL0eGdRo4f25azSBISkXgi8AqKUVSVFRNc5aWUiJptmreEWNZWDCbtTz+1BN85vGnOJjMcL6irkaoi8S2AVWiOBaXV3no4Tdw/dIL7O9tM64d995zNw89eD9LCyOERBUqGz/nwSspC2xcXKCZHDKbTJkeHtI2kUkbWT95irX1DaJG2BUaElo5RPOEo4YcgIDHecGHwKSJHM5aJtMpSadUWfv7YNZPqoDHoKjPYyf5f0rMfzuUl46/qpIUnHgiiWmbmLUTdvf32dndY2F7h72DQ86cO8fJ06cJzha7Dw4iL5lL+1u7RMZOkRfBVIgxdXCyQ1jeZwsYcGHEqB5x6uQGu/v7LK6dAoQYExHHhde9nu3re1x+4XmIFT41OFHwinjBeiAGdVXQYvlEQOgQgwliRQh1VhxkgXWI+A4OD2GxYC6Tc7YOxTvIwutdjXfBlJOAquBdOLbMHi/5P6ndNHfWkzi1scJb3/QgTzz2GGl2wGh1kQv33MVb3vIW2iYyqkzDq7qXTL4mcKKdgAw1ukHnl2rkIUQrQj6EVCqC686zf6axFSehOy8lsyOaEinZxKWk+OBIwHTS8uKlK3z80c/QJGG8sETlgy2cGNnfi7QYTDq5sYY2E158/mnGwXHfPXfxpre8kbXVFUJwpNgCQvAhWwglaSLWNW1TUdU149GU2cIiTdNSz1rO3XU344UFDif7TA4PmDUt6jwalKiKEoitcQFeBFFHCI4FFxBxTGYN0zbSpMQsJmTWkI2T+W1AJREnkhedzI1loresSRNoFljxINH83gwJvfNockz3Z+xOrnJj54AHmsSdd54DVfNzj+zRL/Nns57m5rY7JylS4HDRKgLBezQ4GC1z7u4H+I7v/A5Onljgl37pF9mfxIwPWpok1CsbfPe3fQ+fevRRPvmbH8HN9iHNwLWIy3dWwUmw5xDw2Up2cNa5bB0rnK+tHw6D/d6blXcF+tr54pzNywASz/3uClY15WmfvcYW1lwF2zUkZA0jiYfuP8/rH7yH7a2bPPDg/Tz00IOcPnUCFII3pz51QlgIJfs9iXZapfiUBp0N2+vgurKgesjU+wHl7wSI68+F4WAMLHgWdnUOSeU8R9REG5XdvX0+/uhnmU4TwQVIStKGZjohAdV4hIsjFhYWkWbCFz/9m6yMhIcffANvfPghVlaWshZWvK9xOAR7NoBEwntPqAJtCKRQEUYNsyZSq7C6sY4qTA+n7O/s0k5n0CpEgaxg2pSYzRoCUAezBDhYHNV4geDEiKpsiZ2AE8mEEubP5fEpttbl39PAGJbxVlVaFQ5nLU2KpLzQvBO82AL1kpg1e6T4FJX3BG9+oCtQ8AgqglsLrCl0JUYbpya2ZZJxwSOhQservOVd38qZ8w+xdeNpxivLtC4i0XiCFDy708TEVfz73/cDnH/oIT74//xTDvZuANNeGai5Bz77sC4TTkX4EOkEVpwHzMI673DBLOwQ0ncWdoAYeqF1nd9un1kXnHfZJXwNfdghHPbegRNi27K6vMgj73knu7u7nLnjDMtLS4TgaGZTUvSmlTKjidiisC90QM/cel8eWEjJzU2gLaoBYQVzwjp3ng7JKof3ZPJpfmGUYzZQEEkInsnBhI989FGubu4wHi3StA2Hhwe0sTUCxdf4ULO0PMYD1y+/wIn1Jd75jrdz773nGY9GOKI9HpkYUyAJPlhnoiYSgRg9CCTnkbZGq5alaoT3nunkgP2dbaYHB/iMQiRjsZZE5QMNDU3T0swaUwAhEIJnXFVUztFqQiQLTRbY/PS4TNbYWEivOFX63ZxC52cpyizCYdNY/5MhmiaCQ3GAd5mr0MRTTz7N+bvOGnHjzOUo5MqQOBTXz8mc0Cbt5qiNrbHMYr6tupr3fuu38y3f/tu4unmZGwdTVk+dZbSkSBtRifiFMcmPuXbjBvenxHd813cjs31+5Zf+OSl5nOF0RDzBBVuXeY1nqeogrogn+KpYKTP2XjqI7p2nX9YFErvsbhU/Ngsr5v8yYMy9lzlE+WrtWAKbiIgKThyOwoIZRX3XPefY2VlmZXkVJ44YW5rYMNudsrS8CA5StmKiksMXELwjacwWEbSwta7Q3AnnUnbgFSViVHkvrHOwOW+o6CF0tg4oSaM599Bdn8ceJaEIk1nDJz71GZ546lmS1gTv0NSyMBrRakWbhLpe4uTJU7i4z6UXnuH8Xad573vfw9mzp6kqC7F4mQ85lZCVx9sijYmYIk4qIzuqRNO2uLZhcbxA207Z39tmZ3uL2XRCShFxCklxXvFJkcox1pqpczRNQxtbZrHFN44qBJw4gqvoCNA8EpniQAYuiEjvcvgMPY0M0jx6NtdNNC4geGN/YzLFJwpJEoJDvCcBh4cT9nb3aKYzfJ2o/QgfzM8LefxTIQsH1ndIJEomIdvUdmE6xRH9iG/9Ld/Gm976IBem93IwfRuzyZSD3UMkzaiDY2l5OUNbx/LSMpV3PPj6N/DBX/tVtA2ItsTYdmEVY4wtolGUuHcOH4I9V7a8zuX15bIL1hFNRRizi6YWujPf1nXj65wHN1yj5t+KCO61FNiOhHACKXYwR1WpqgVm023ccm3Qsm2ZTRM721ucOHGS0cI4T7pDoqKSfS9nnKtp0kiMBg9SHOL7gC0BI1pSmiewCkyOMXaDVfra+bdlYCiQPA4sFhl+CV/84nN87F9/ModsGtq2sM8ebYRRVbO6usTyUs1zTz7Jvfee573ve4Q7zpzCe6GqHClFszbezwnt0P+OLiJROjdARAi+pRHh+uYmVy9fYX9vl72dPfZ390lta9flZ0+ZAJLsRyMu+7QWo540LQ6HlnFSQxJDK2twtvevClTrvX+yFVCbt0wCVT5A8KjDBCgmYhtBHMEJ47rGaUtdVcaOD8gtX4gZ7xHvqZ0jxcym+hzOc75o0RzHMT9aUZrGLPv2TLmyuU2LZ3eyT1TPLAWSq1nbOMH6+gp1FVBVZk3L1sEBo6Q0qjTJFN9CXVNVVQeDvfOdIjeUpzgnhBDMz80+q4i5NCUeLs4PLHGPALMOnPNduxjtEX/16LWvicB2jrP0ZE4JyQjC5PAQBVYWl9nZ2mJvd5ed7R02r21y59134fCkWOKdRW8XSj/PUNbokdQLFI6Uet/VuQEzLNIlYpRgdecbDSyvWZkSly1xvUKEJFSES5eu8aEPfoy9vSZrvEgbZzgXUCrqsMDq2irrG4u88MIXWV1b5D2PvIuzZ8/gRC0WqdqRXkdDUyWZYxhPLn0vlm26t8tvfOjXub55o4dVyWKnKMSiADJaUTBNP4zfqYXHIgLFTUMgaocmJI9JYWO7xSJGSPlMKrkcVikWWlW6RY4T1BmoST72ITGNxKZhVAcEqCpPHSoqXxFCRagCrqrwVRaQ1MN94y4KSyymdDAFD0JoEk2bmB3s8A9+9me5eO0qL1y6wvLqGm0TmU0b7jh7hgcfeoCNjXX2Dw7YvLbJza0tbmxeY5QOuXj5EidWV1heWswIKmUftedEhpyJy4IsJQLkHZIVoNL7vR1Z1c1D5nvKc+U4LQMB7ten3HLNvFw7duJEGUjNvpElOSS8Uw4O97h69SIry2MODrbZ391iOj3g4sVLLK2sE6raBFOThSU0mXYKmWm0oeoSAwpza9AswyQU21tdNJGzz7vnlLn+duSWph6ydFoss8UC27t7fOBXP8TVzW2Lj0miHgUms0iMppBW11a569wdPPnUZxGd8d5H3sed585ShUxCZNSQHZRsPUsIMyuNHGsufZsT4gALiwuc2Nhgb2efySRDYbGFoQLqHW3b0qYEknAi+NQvLiOYDPCWZJB+WIoCG66pnNHlpCOnvLd4uxfFOVOElTdY2LSJpommBzLZ5JwQRMA7vIPUzPCi5hpUgRAc4wVLLqnqmlBXhLpCgrd5TdLxgZ2Vz/MtOFRszsV5fA2uaRlt7/Ppj3+Yz3ziY9TjMaPRAtev3yC2keX1VZaXV9je2SbFxKlTp2hjywvPP8/qUsXZ0yc4tb5KPRplht2INhfIllI69WdIxOHFQi4WRzfCrltqmUgaCmyma+YgfiFJ5RYCa8/+GlvYchNLOCg3syQEJDKqPU9+8QkuvXiROni8h6XlJWZt4uBgRtTG4q5EnLPrNA9IeZgqVDjnCTkDqjwIWGBckqLJ/Giz8LHTgsbADq3qYEDyCA59yjJQewczPvihj/Hscy/gfAUqzJrEVCGqsYMrS6u87qH7eOLxz9JOD3jkkW/i/gv3UNeWtue9INpxFTm+XGB7D+8tdjrU3n2ygIqgOE6cOsXe3j5bW1tMDidoSkTVLuUyBEeQAbObejSiUmKo4HCkHFslHxvmGgl5XDKLXyprWRDKmGJJiqRIG0FUSCo5xUJzcoHBRoO7ZpVDVbO0NGa8OGI8HlNVFQsLS9SjMaGqTIirYAkrInjm+YgeQgsWH5cumcPjUGkJwTFySjM9wDllNj1ksnUN5z316pibl55ja3uLuqphZczOjRu0+1s0ssjS6Bwba6vGrJvJzGSWduyw64TL3CWH78mxjnAqy8oUnCvhnwyrNbtxczB5YI2HfvvQxTtOOx7p1IVXesjQNJbrOjucoNHhXc30oEFG4MY1PgRWl5Y5ffYu1k+c4guPf4HYHhLT1G7sLTczJWiblH2eGSITvPcsLIwJladnkxOo66yviP1UTXMDMHx46zddLLEPFXliTDz22Bd47LNP4kNF0kiKLd4HFEdVLbK6usKb3/R6nn36CXZ2rvHub3wnb3nTmxmPKpyzheqdy9ZK80KzJVesZ78g5zXqUHATMFpc4OE3voHz99zN7tYWVy9d5trVq+xs7zCbzYiFOdW8HFKftYWY4CoOzTl8SpuP5eNQRI0+zDWf36tGR2USyex1VIv1IoKzjEZKhhIYwgnBlMloNOLEqQ2W19ZYGNfUVc1oYYWqHvWWZpD9MzQqmgdJKYjSLLjPTnWM4KK5Bvu7ezRty9rqmnEbMSIoKwsLTPb3oGlxIaDNjNn+PkGVpSpw95nTbCwvU1WemBWWDPoxTIDoBCkVoUvgSujH5rgQmSLS5XRbQoSRTS8h0sR8YSd9mu2XIqxwTIFt25gJoUSTs2mm04a2NS3uq0VO33E3JGU2m7K7u02oodUpV69d4577X8fK+imCh73d62zfvM4kTc13CMbQVdUY56w7TdNw+eom43HNyuoyVRU6n0spPpjD2GPfQbo854OFUPwzbMA1GquZEo8//iQff/TTSKhwUSEqLniq0QpRK06euYMHH7iXxz/7KFcuPs173v0O3v62t7EwXsAH60PIVjLGspBtdTlnGTdlUQ9ha2FGUe1glzrwrmZ5xTGuaxZCwMUWYsPIC+1slvOBo1lEssuQ84YTEFVJapsAZk1LjGaJo2pWbGS3gg4y21f1MNDgNOQzM69sbkzhgcpjJjEiKYSaURCqyjMeeZaXF1hbXTHYGWrq0SLOhw6Pu0FSvGQHuV+zA4WHZjIqocn6XNUV49GIFCOV99x17hzOObZuXiepcted5xhVgf3tHdaWlrn3/N0EES5dvMjywoi1lWUWFsemcBKID3O8R+lXJ3wxgS/ClXkU73DehLVk1aXsC5tw5mSdLNw+2JrWkjMvfXy2Q4Nqrt9x2vEENiZmB4ccHhwwm7WIBJyvWVnfwFee7YPnaJoZs9mMpmlQH/ChYrxQc+PmdT79mcd4+PVv4777L6DpkI9/7MN87rFP50VrVnDWzBBNiHdUVc3Jk6fZ3t5ia2uPjY01QvCIi+YHe4MxBvdSJhRdHqgCpSEEE9iY2m7hIY4Xnr/Ch379UXb2phaKaB0xBuqFJZbWT3H/69/Am9/0ML/wcz/Lxeee5j3vfCvf8NY3s7g4giAW22TeUhZCIUYbfO+H4Z1M0mUhLaZvGDMGjCzKwtjmJJJRXRHyXB612mQfUMUsb0yJNiamsxlNY8kHilpWl2bGVSGpM8uUSSzIYRbNPrOmQawwg9IO8yeCd3gn1FXFuK4YeUuUGVee5cURS0tLhHqMcyNC6FnSlMfMe2/5vCWjn+FYCIgSaWzuokHIyoH3ytJ4xPK4QpzjxNoSVV1zYnWJGCMb6yuIRi4vLXBiY4WzZ0/hJdEe7LC8OKYaBaQyziSIyzFYZ+M32JwyZHahJHr0pJT9dJ2QppQ6P7bMd/FtO3eyy9zKrkT+HmPuX2Mf9vq1TaIFwkjqCKMxr3/z27nrnnv42KP/moNGCfWYlYUlSA1oiyZl2jQcHGyzuHWTqg4sLS3j3Jh3fOO7aVvl+ReeJromp5QAACAASURBVLUTShYIeStcbFpS6zixvsasadi+uc2JExvZz6CHHkPbIH0yxHx+shoz6gIxCdeub/NrH/4Y2wcz6mC1zqbOU43HLJ/c4Ld913fyyHvfw4//jb/GM088xjve+ka+8RvexsrKMiqChIAX7XYAOWd5p93WwUyOWfxNzSomg6dC3/cS01NNNmHZR6x8YGllmbP+ThaXl9jf2WU6mTCbTjt23u6VeYQc1+0zhCJ1FUg55GIhs36XkqX7F/ehwOTeL1bIKYmFubd+OynZSUoo1sM5qspT5W1ny8vLLIwXqUJlPqv33aJ+icCWBZp9wZ4xtawtL27O9XHiSUkZjerOPx6NRlRVxerqKqr22eLSIqury6xvrLO4tMTGxjprayuMF2uqyneJP5bhZOhOnB9EInqiaC5f/YhAiThcCDZ33jYQuJDRnjgLp5Ute5SURLLAZg2stkvMezeHEl+pHUtgq6rCq9K0icXFNe6+73VceP2b2Z81XDtQ1u68nzSdMfJAnHFz8wrN7BBNSlVV7O3vMJtNsyXyrKye5Bu+6b3sHR6wee0SzglV8GgbLUHC2WI8PNxnYWGR3Z2Gg/0DllfGDNO4ep/QJr4MhBTyMTtEpgWFnf0Jv/6vP8X13SluvITGSEpKvbLE2fP38F3f9Z28/nX38Lf+5x/l0V//IG974+t5zze+jaXFEd4DJflci5ach1O2tU+yxrUYXnKCat7tlAo8putnSoqmiM97gaKDalQTRhssrqzQThs0JpqmmdseGGMkxoa2aWhmM9tU0DTMpjOm0wlxNrU9t01Lm/eUaraqbUrmB6stLksACJTUPFN40RRBVhIm1jb23vcWyHtPqGtCXbO0vMTi0gohVFRV1YVFXN6yZnDQ/k6qiJbUvWzxi8L1DnUupydm5awCREajESsrK9R1jfcGX1dXV00RhMB4PGLjxAbra2t476hHNUtLSywsj3AhZ12FnC+cd+o4sUyxXhrpyFWbJxmsLekI07JTpxwHI6XMwvp5QddBXrG35KMUo42q+GOXkjje9roQ8L6ixnH2/AVGS8t84eln2J20rJ25hyuXrnD6zAan11eROOOZJz/P9SuX2N26jkgkzKZc37xKG1tELUSwdzilGi0T6gWcYDs7XAS1TeWxjajAdDrl7NmzpJRomhlV1Wc0zSVROGM+i4/W+SYJVB2TWeTRT36Wy9e2kFBbSKHyrK0sc9+DD/PIux/hxpVL/Ok/+pe59sJTvP7BCzzyrneytrJkKY4khJ6NljzJbdt0EMg5QaNNZoG/DkG8aV51qbNqKcYMnS2LSCWHWDqrB762VEhJylJewMUqK6ApMptNaJuG1LQ00ymzyQGTw0PS9JDZdMp0OiW2rSU4qFlg83czDeVCTmu0kEuo7G+bgzbvp21xxeAKuFAZ9+ADo1GNH43xoSZUtTHCdW0bHgYxShkkDVjYRm1sGCYsuJ6NzXnPBZEUyDoa16yvr2ZIauz0yspSVpLC4tIiZ06fYbw0RjVRhcDK6grVKOC8PZuvqy7WKyJdAkS51zDK0MHibAkRoW1bug3qmUQqWlgz6eTE5KZsoOiSVHzeJFBIqGxdjomIjyewMRoT6aqaw8mEmweXCQurnDx7nhc//xS723ucP3cXZ86cZXVxxAP3XWD35g0+/9ijbG6+yMHBAZcuv8jly1eoxmM2NjY4d/YszfQNrK4sc7C3zcHBLrGZolHQGHMmlLHR44UFvPdsbl7qAvpl4svAHmXchqxwbODFy1e5eu0mC4srrI4WGC2MOXXmFAsLY7RN/MOf+DGe/NxnCGnKQxfu5n2PvJuNjXWy6TYoTrItaj5g8da2E1Yw1jhnhhBTzFkxmicxC4iQE1DsO1W1ZFUS1bJovJaUQEE1gheiJnOjUk/SKIILFZUIMZ+btKbSSJSWJJGotjvFeSyzyKmFgzpCrsSSE140bx4wS9iS8OIt2T8vWuc96oRQj6hHI0Jd46uKUNX4MCKEmhBqIwpd2fzt5gTW4LFmxC3d/nZLjBHbjxp666WqtG0LNIQQOHHiBDHGbEg8q6ur3Z7r4D0bJ9Yzr6GEyrO6spJjxZUpFl+REhkS91avE6qB9HS+ZlY+3fpCcBmVDEM3qcyZyxvspaTyknOK+62qZZPf8D6v1o6X6eRCB50O9vcIC6tcvXyJxz73OJvXtjmxvsE73/ggp0+sW2qeJCary7z4wtNcvfoCKUV2drb4yEc/yu7BhPe851089MB9XLhwH+fvvpudnRs89fSTbG/foDnYZ7J/YHBMrHzK3sE+h4cHuEzezMUwVTtnv3w2F5DOC3N5eY33vu+bublzSEyRlZUlrl+5xqP/6te4+MxTpNkBC7Xnngvnedf7HuHkHXegzrYIWjZWtER3Y40o7OBczFcykBKLXQ6D5mW3TulXCHZsmKIoKeVggS3iFFOOr2rnY7Wx7ZSRy2mDSTM15B0SPK7yqHqcBrxWMAMXhbZpjd1Wn6mkTJq5XEQgKbG1HO6SgE/OrBLoLWUIiA+Q/7ngcJXBats7GjLbmpNj8r5czb6Ly6l9xW/TAeNdYDrOWd4yytDlCMGztrbGdGouVlVVrKys2Pg4IQTHysoysxhRkvnWK8ukvLlfJODDCKdY8gRiSmyOYOot4tH00uKPt7HfUHJ0zXkx16L8PcxoKiFwinLI6+VWG1q+fIGVlGFeRFRZHAUWK4dM9qlnB8y2lcc/8xjr73kX41EFCJs3rnP5+nUmDTQxECSgVU2Shqubm9xz792Mqpq6HnFi4zTj8TIpRfZ3b3Ll0iUuvniRre0bqAtcv3GTrRvXOX/XWUSNkIjR9j+W4L2IQ8VImOJ+lIFJLrGyWnNw9QZXXvgCly9dYnJwwM6NLfZubOFSy/JSzf0P3Mc73vVNnDh9mhAs/9ZLSaeEDKJIXdUK6SYmaTcTpkScaVYnOeHEaOWOmLLO0yVH6HBy3UBIXwY95JXOMGzkfSCFhE8J1QavCZsNITWt+YFuviaW5I39Rlq1KEpsTPg1M8v2nMbeumCsqpZqFQLgcerz4uszu8RJt5PIhzAHiW0HTu57CbZ2RBhosfzFpdBEDIHRaITTRFWH7Ec66lFlta80UlWBaiEg0yltNItcLS3ZhpNcUKEaZCWBZXgVpd+v+WLxeoVcEnUMMfRJKw4sXbNcn2PN3bMOjEx560cnrCXM91r6sKoNmqBtFKdWl+DBC+d58bnn8JJwoly6eplL169zxx2nCc7ReI9WFS6MWVhZ4OQd51haXaYKNUriyrUrnD97J2W/4epShThYW13lzB13cu6ee3juuWe4+NwzXH7xBVxSqgyBukElEyGppAX0OybKCUkVR+Jg+waf+8RHeO6Z52inU4NQsxkLNSytbPDg6x7ijW9+E+snNhAnVN72e6omW9R5cGMsSbomWGQra5xwP8FC2WPqQBL43ve2nGDNfm62qNlilokX1IR9GMah1+giYhsxXLHWtqsqhBpV8rx4gjS04mllShJv5XDKM3Tjpp0l8wjEhkRJR7XiBWW3SkmWcN1us1QkzJ7F0SXLu1xDqVjqfvHTEVzD4nv9eiND9f5ZVR2xMp85OKjqiqZpcF4YjUf4toVmhveOqq7Md5zZ7qIwsgJ73lkY0YhiZ8kogzEdWsm+L/MwuQv5SMkJkC4i0D1riTHnNmSejbjL341mqNwNzau2Y6Ym5sWWErFt2N/bJqXIuXOnqZdGTGYRN3I8d+kF9poZ3nm2d26wvLLMgvdsXr3CmVNrrKwscn1ywGR/h+eembEyGnH6xEmrjyM5PCkeFxynz9xBXQce++TH2dve5vxdFiSva3vj/NHdMC+l3SU/oBCbxJXnL7Jz7QaLoULFaHy/ss7aiZPcd9/9nL3zHPV4nNnGXBWQees29FWGydpDyFRGfrj5e3hNSsnqK6WXQiqzckeqQeYYakeIQL/v0hXyyhSKluMiqLNqCtHNDNKrknwLM4tHi4gl1uddMZI0FzrLFjimfruY0aaWOOHAB9txI9I/bz8Y85zC0XmxTCDbZvnyY2o3GiYYpJQIIVCPajR42qbpSC1jpM0vDiFQVVXHpHvvGY3GWMG50IfDJJcWYghboQsxDmLiviAA+rBdIZ2s76bMujh5Dnulwdx36zTzz/mbjDgbkFav1o5nYVPqoJv4xGR/h4O9XbxznD29zqxVvGs53N3i4sEhK6sbbO9ssb29Tbu3S5wdsHnpWSp/HtKUOIWD1pjjUxsnMgNriyNh+QD7O3v88i//C77w+Oc4vbHG+voapZTG0Fct/s0w8H0UPjrnOH/+PIsLC0wOJ6AWblpaXmFxeZl6NOoWecfkMcybnh/48vvQx+k/n9fQw9S0oXIpvm0RRNX5Uq9DgRVNOZ6Xd++qGmtr2DMvtGwNO3RhtYWieFsaKZFizpF1DW1ju52KWTDhLUkgOQzbpeI5W6/B46saX1eIeKut5Cw00vW7xMaPIAO7V0EfveAOW694JacMytw4e++pRyMLgwWPyyysrys8FZoheBHilBJVVTEejxkqFls/ZRNL2YVWIC9zcdOhMejDePP9NcXSf7dgfmwpryuuQP58jbNR0Bx7dLcYr5drx8slblvaNhKT4kNifzLpMmtCZVlPk7TFbGePhZWTvLh5k0k7RTVysL2N0ym7WzfYWF9jdXmFa5s3qeoRN27e5ObONhvrG0DOXY2J5154lg9/8Fd44vOfYmN1ibvvPMdoZGTGMBZ5dHEP21yyf3CsnznFWi5fE1PM/qUJZhwwyjaE2lXHKGRHabe653yIaT6p+ygCGBJm5WeM0Sxlhs0xpuwbK6RIioPlpp1IUOCphSiMvHHOIFqMBtldCAQ1NyTGxmKcIeBDS9M0xNhm5rkQPqb9fdb6LpNGeCvPIqGy0je+sgJvLuAy0VRCPWCuSBiMQUomsJ0CyxByDl0cGavh391uF7Flq3VNyLHpQnL15UOHm8ZzfrCEfGyw/zQTiJ1Aln+ZYS5sbp9AkZWJdGd283y0lvbcnGfikPLd2bKWSqElH/447Xikk82jhS1S7MqG0rbEZkISz/7hFMI2bTPjwoNvZGF1lf29mzyzs0U7aXGi7O7ssLpygvX1E+wfTrm5u8cTzzzDW9+yRhDH9tZNnnzqizz5xOe4dvl5Tm+scMfpU4zqEaGqOgJmCDfL38PqeuWzrv8ZPpaMFudDX+/IGTgrsT7V3tKo9ta8+64jVlyP9GlIMgyhUDm3fDbMJXUiSM6WatvWiLLCgOc0SCN/yBDKDcgu63fK2+VKH2xxlbpDI8Q52mZGkoBUI2Lb4nN8NmW2WrKwqpKt6qAYmQ+EeoQPAeeChXFyce2y2dt7b3WXZB5VdILnehhZWPXh5z1a6Td1zG30D8EIomz9Cstennk41pZYYoilrmuL9wpdYoj1RyikXfmOYSsF+/q/h0JpJW/7a+b3thp/UYoI0KE1MlIQyRllHd3yGlpYVTqLoyRwSgDUWZ2ilJSFhYB6T13Dxokl/KgmTSvWlpdofCIFy728fv0m44UVQlUxi5EmJp55/nmmhxPboXLpWQ73b3J6fZW1FUsdtMVNN6hlkOZgcOpzNDWTOXm7d07S73eCiH1pPpYnK+/x7H3JsodVB3sd9ZYLxA0WYtkK95LwkvQb18t3lc+cD8hAAThne19VE84FUmyRBK6SuWeOwwLdHRK1X0rFyhgdqp4QamIY2fxpa8Xlkr0tANWO5W5T6r6w1OW1Z8vFysXn2KqFcYr/5gsxFexY52d3C3w+XtmvLZ37WX4fsuZFIR8NufgQOjSkYGV0XL/PuBSVt8oRWenO7RTKpM/cICag39fMEO6/jGAPm4iUkLsp2OyqDJW+kYkthSi16172K+fa8QTW+U4ASvwKjd3zJXFIqHFhDJr4wuceQ3xlqX/a4mqDT6gjiqMV2NrdIbYNNzev8kTbUHuzAE5nnFxdsFKSGZpYEqrhQuccaCFg1GrgAppzE2wfp6LRktQ1V7fv/V06K6qDBSRg+1KLQOYsGy8u77IhxzwtuX8eBg8X3BBKFeEq6Yi2qyUlNShaJln7HR4maCkLW8qw3XeLpM0lY4aIoKAFcd5qt4jm4tk6UBwKo7pbqIX4kEzCpJw2GfNWwdwzW2DOQalyUeApA7hZmFM3XyXR+uz6kqr05IpNbezGfz4OaxNqc2GcgipdgoViCqkQOIWRl4qu3IymhE85NdK7no8go5QhvO39DYZsdp+xls/J89hxLt1z9KE6YZCLnV0WWxrZZ9dCTtHdS5gPKb1SO5bAXtncoh5VVMFRVSEnE1iJj5haFIe6ijBaZrS0iqtq7rjjHKsrK0ZEPfcMB4eHHBzu8ZYH38C5c2f5lV/+JTS2SGq5ee0Kq0uLrK0sMxovdH6DKl0CggXG7Z08ed2QS8Llgc9kQRkE53K92bKbRwhZ0EoVfMFZzm8e9PIeoAyU6Pwb1yMMywPt32bwUha5bEqY3wtZ+mzn95ZRpGjlgg56K1zWkveu83Wrquqgs4ixuah2GTuaiREjewd9IGX/1g+Ead6nLhDTEMqQEDMEkgYx33L98N0wt6pvNMyhFSmlVW7FO/SuxRBBmXIA1JRc+Z7U7VO1/pTyNd33ZgtcFElpbtCXl/rKw2SHXo4lO7YiNg52hzKHfR+G8LrMseS1ifTHSs70cBHI8eT1mLt1rm91exfrUU1dW3ZLihGnQj1eIBFZcgtM9JBqDG+/+x5OrK1z89oVnnjiCa5f38JXFVdfvEiaHbC3dYXgHIsLI87feZqlBXvNg4rmhaMdfhWxKouxVKrIGnX40CVI37ZtF9Dv6t4WS5Mnx4mjJMYeXTid5TkyoWUhV6HKv7syVZm77a+XDMOK9rU+FcOhnW+qmSUk/zwqRM657F/GDpbP+cqxhTRgIkuUBrMO5UVWJkT9Hs1SY6h7E4IagdhbbIOFQi5yVxhdmb9/78+/dM30sHE+5FYIp4Lhh6GcoYIbknJHv3M4Pr0Ap1w94qXCeFTJdP0YoKOjMLcoahluAi5zJWWm54mxo2jrqF9dWpmHGGMPyV9LSHxiZYlZY5uoUzNlGqcoJlgkkL09FMfh4QHia6rRmF/8+U3qULG7fZPD3S1IidF4zKVnZmxfHXP25CqjumJUWfUGSbYNLeYdHD477ikLb+cPONeRYJD9WDU4a1X4ygBIJwjkBR0znBTy9i3tfcYysAVqerGEBpsAOh+ZZNlUrkyEWBnXAqVVJNcLylBVzIVIqpaooHatk4HFyrOW3R06Cy2CBA8xL0RnhcPKm+qS2OQPWexu0dCzpj6TNWXddERSIYBS6mBrIUlKDqxTtR36WcCGGUEhhIEy6wWqwO4jDmI3XrdGfy8VsPL3S5MrbHxS6hFDjLET2LLz5lbk4FGW/ui4df3M40Tqk0pE6GKrrs+UeQnKGgpqzzAPiTgr21q+wMbuVmPy0nYsgX34gbto25ZZ0zCdTZk1M6aNvVHNNiNI9m0cUVs07jPb3ic6YbmuOXV2g7qygLZBF7N2HoXU5NKmZquEUnYlZ+DkZIFSqQAkb0vCSIYOYvU7OpzL1i/7Yyq9zzevecn+WrGVdAu3EFDDCUlt6jYiD5O+PZboXZQBZcFKEZ6e9SyooX9hUr5PKh5NVihFmES6BIYOrsZIK7bDKUZ7I16HQDXXds7oofczC3YYwtjcZ++73SP9Jvk+plzeqFDOL+0o4TYUts764TsYbAJrBdvsFS5x8B2eo4hnvj+9r2hv8iv9D2jenSXllSiDft5KAZQ2DCmV+93KWhb8VNJgUzZW3vXu1JBQu5Xl7u9bNouUn3n31WsJicVFRmPHaDxmOdaWrdNt2Had71AEyiCUdaa8wEhz7aGmmSBqg6siSItdXyrliwWvU9t29XYMRkachI7VLfs7y4IphdhM4w/pd/JeyyzkxT8R8OKJmjrL2z2viL3yIVrCQiEeymZzwN4jK/R/z0GvHvqWfODiO5XKiqpqwXXJbK8wuH4gTLnPHTM68EGTgnhyMTbrf9M0JMQKjXWbpgtRYlAZKTZq8MxOirNmz5otQHn1YsmyKu3oxosiXEehp5PQJebbuJLnON+re7a+1nVZS0N43MPkHk4Dc1yCF9skf1QxD8N+t4KoQ0Vf/raL6X6a0u3jsqq2eWqodI9+9/D3TtmWYebWCuLV2vESJ4qjrSUMUgZY0byLp4dllhDftjOURKuROIBYiBAAVwgEX/JnbT9j2Sni6FPxCs0fi18TY8dkFoHofatcB4iiM7TDYKp01tksB5mxjXP+kMErW9XzBbHLSGeloFIy+/LECaUG0TBG2Plpg77YKx+1q+RRcosZQlO72C4lP1CuJoj47GMqs8NDrly5gqqytb0NwLk7TnP69MluC1nU7C85392vpJymZN5+cdUkr6pSUqbsPe1cOUpnsi+e5yh4b7nbOd3OlEMuZ4r59gntU/bordJcQQC0Q1RFARclpxrnrC46SB+NMRcXMMKxe/evm68D/VKo2sfhyz0ttTAZJC5jQu6L0GV3DYXy5RTCvAUefkD2Gmysj9OO9/Y6LVYHnPdWVc9hoRQB1WgDqb0QlTImdOU2y98QXbBqfE5wKVvVrN1TtLdtW+lPW8Blr6LGvvpBTAUGClF7WG7W2nXW0EIypepj6vxGZ9JKqXRQrEWZzEbz+1eys5KyVrUaPGrQOAlOfa6YWHJ4+yoN5MWu2b9SB0JA8XQVIHOtZqDb3JyErkKDumBZOtkdFO0zblTtZdEf//in+OhHPooqHEwn4D133XmOd7/zHdx59g7OnD5lguKdjVUTcfltdzirtNi0rb1EpZ3Rh6NSx8w6nFndjGScWH0tVPrkdbWNIEJxYzKUcWTXxYS52Elf9FcqGwoMnVlILeX1ZIkYFrFqQD1epHuDXzJNnvurNqfaIhX9nOd5HLoxRZDMlYqQX1hm68t1/AMDIdSO0TOXRVPZ0Ro7BZDymzF6A9fdzNZmolub4oTygjMpceJXaccUWO206FBFiOtflVGsSckwKcZkuOezPJQPFeR39NhAWjBb8yJPpaBVHhwYsonl7x4uOWclP+ahENBp816RdP5oslzSo30fvmbDXI3+fay2tqz0pkvZmpLQ1JpAhQpVl8u95dc5UBI0BJUK5+1t3sVqeVFLpne2ML33g1c9ZDSR+xxjS4wNZbONE9jZvskXPv85Nq9eZpbfHt+kxMH+Lmk25c7Tp3jnO97O2bvOgnquXr7Cjc0bXLjvfhZXVmyeEGatpS2Kr1C1HNwupIJtSZMcxiOpcRVFMSVTbjZ/ue60kF8XkrpKFaJqhGHecCUpJ7c4y15KannT5Iowml/O5X2g7F4SsNBVLnLHIBOqkIxdWZsCsV1Xevkl0LPA22LBpTMemv/r39jQ8yPSuYGpKIjOcg+/c3BPs2yZyJz3a48qkldqx6w4EbsdBZrmSQDNkinQZc6kaIW/7F/sBgTylrOkmVrpfQDvPZq8vXCp1ATKxZ0LU1jehDdHCOT0sfKGsPJSrU5gky2gowRDScUrCqf0pXyv17KB3KozaIbzmploLemATju/xqWISo3mt4OLc7kSQ8BXIwgjfH7Bc0qRlBpSaq1MTGt1q7Zu3oA2sbG2zsH+PpP9PcajisXFBdpkAtvGhpgSCwtjdrdvcPedp9DmkJ2dPXZ39jk4nBBi4mBni52QuPjsF9F2j8XlJQ63b8DsAGbbtIctEkbgAge7N8EFXF2brzabZfhtSf6jYKmp4gKu8ojPMDZFJObXlJQFGm1sYtuQ2hmSEyR8IeLEWHQnWFWOzqlO9moQKfRbJmRi22UMDdxXhoxwPjKnkHtXhG5eYT7XuPiVfe/7tVF4mKN+dedb5/XNIDkHJKOyl5JPXUZWdic0K4XU9eHV27GT/5mjpbWLEfbVAi0LpwT1Y0zE9hbCIAZ7lH5nRaepMhzpsnhQNPYxyKMT1glgDksgkmssdSfkd9KkXLrDQi29j1hqxWaBVKz2EQXO2efFB08ZEjVa/D6B5AmVCSKhoh4tMRqNTUhDZZvKcyhmMmuY7E9omkOa6SGb1y5RBc/JE2s4jdy8scnlF15AY2J3aZWrl69x7eoV6rri4Tc+zOkzp6jHFe3MajeJNiwvjnjLmx/m/LmzbF7d5Plnnmdra4vDWUNILedOn+Dk2iJxssuMGSeWatzqGJcOaQ8afD2mWljk9MaiwWXvSQptm5jOGmZTK506cSG7KtkieI+vKot/YwXCg7faUK72jHOKYptaJgd7Vk1DUmdtTAE3WbgztEVy2dHMlWtCJWJ7bn1XXWOOXR+uLR0YgWGdX7m1sA7XkIgeOZaTG2SwzmDAdxQyM+V1Ip2ikVQYgXniqVhZyf56MTaa6z4dpx1LYGez2ZzZHjryw0R82/0Ru8SHNGRK8znee4vtSU9WJDeo4SODEEZibiNwedvwkByCvryGhYAKOZAJH5Huvacp+8Dl1X7GJvcbtYdMXnR0CQMJsThvEVznqRZGLNQL1OMl6mqRqhohzqPa2ntlJzMmk10uvXiZnZ0dxnVgNt1jcVyT4iFL4xGnFscEccw2L1NJy5pElu5YQURop5FwYky753niySdYqJXV5bfh/RIaZ1aAbTIltra/dnFxxMmNFXx7hs2R4+Klq+j0AGlnaDulaZXUzjgUZTqbUNcjQjUijMaIC1R1TT0aUY9H1FXNYj2GUUUTlcl0RjNtSEloZg1NjDhxtC4zzjmmnRS8Cyhiu4WwNNSLLzyLpJblpUXWVtc5feYsKysbjIMwm01JufqjkoiFfCtsteRUv5TyK0NS4eHm3KQ5K+j6zRFDN+6o0Pbk1ZHQj51MSmpFwwfwt/+eHNLUnMvcrZ8ejZW1Ogx7uSN96f3j40ns8QR2Ms2ClIcxm/YUjWgqcLhszO4haRaf1GtWTSnXpzWnPiXz9jQVvnuQnpY/LxNR6g4d1awiEFPTD3qpYaOqSwAAIABJREFUG8ygvwWWzEHj+dTC4fEmeWJOmscFQjViYXF5riqgamJ3Z5dZc8j+3jaz2YRmdshk/5Br1za5+OxzfPYzn2U2nbGyOGJhrDx4/72c3FhGlxaIByOu39ziic9/jrXVRe659y5cJYS6AqlYWgrce89ZqqD4OjA53Kf5f1l7zyfbsvO877fSjmef1PmmyQOQACExFE1JtD6wXHb5m/9WV7lctmxRZlkqqooWCQgccAAMJty5oeOJO6/gD3uf7r4D2xxaOLdu9Q0dTp9e71rvet4n+B4XBrJG23bsdiUhWKS3w8gMi3Adsm9ABLq6ZL1eoY0mimLatmWzWZPl2Zhn9BD1mOYZUZYipCLJJkgTkWQ5SRQTp4fFl+BdoO/tgEEg6bxnty+5envFarVls91TVu3wsxOBqtpxgJqiKOP49Cnvf/gJ/+wP/znpZDncX73F+x43bvreOrzrEGHYnMLY0RycEr+7wIfndvCdelij4gBePiqSw4HwUIDvsqkOhThY2r67GcADF/g+quMwthwfAyD6cMAdRk+DyP7RqT4u3ndQ73/k8b0Ktqqq77wwhx7dv9MSPwZ1hicr33lh7oXmYZjPHgp7QJnHjVWC8B7vB0tK8XinBPRoQv34GxzuAg+gwKFtOYwEhn97NzrDBzeiuwqt1DDGUXoEuhRxnBOlOUk2IYoStInxAcq6odk3dNWK7faWr778nOPj+ZC3o6CvO3bbLbffvubq669p717TVQ0i1qQnOVQTogm8/fIrhAtgA9vLt7SbhEkSkc8y4klG71usA987jAapBW1T4bsOiyRJM5wF7wJ1VaOFx7UNwVuUcOTx8L3sNmtC6AlSDo782mC7nl2/HQy4vadramzfk2Q5Mho6hSTPEcagIkOUJCRpgok0SRSjpcK2PYLhRBUuEGOZJRpZJCRaEBZTsiwnzWLiWBFcz2a7Zburef32LX/z129J8glPnz/HGE0UaYxWmCQmlnLccB19V9F3Db63+H7wrQ5yFAaMi/6AEQ0SysfKMh7ejmvBOTec3I9vk2NRukNioD+s9fFmfrgD+wDy4RAZ0gsfRW6Mj8NddbiCDU6Y9wj0CJwdXES+i638Y4/vWbDNfRt6KLxD8TnXv1s8j9qOoT14F+i5v7d6jw9yGA/dP/EDP9ePULlEjnC3FANV8MCPdQcUEMY7Kffk/eEHNoJKYgxAFmFEtbm/RwQhEX4g80ttUNkEkxUkcU4WSZz37HYV29UtCkfvPZt9idvc0pUbkkjywUJhVEVdtkRpilEBkwuiJ3OmxjOVlrurG4yUHBUZufCEekeMp24qRJBM84LeSW5vtpRNw5ELGKOpdzuCdeRRQlbMkFIh4wQHQ9I7ljw22EpQ70rq7RrflPiuITIjm6nr2d3cIZWgWa3QWhFHg6n23lsQkraq8Z1FB02/rfEESrMmmeSoJKVxjiSOMFISKYFRkjAmCkht0FEKQpMlCYsnx3g/GJ/nxWQYU/khyWE+WaJ1xMfvn/PNqyt2119yJWpUnGGSlDhKSeKYOIqJkgyTJIhJRjrqsF3b0LclwbXYtgZrByBrNAf0YggE13KI4RBCYMOhNEfZTFAHCHpAbENA+MOMWXA/E+eAOY0h2gP3497Ncngvfw84Pqz/w98fnep+wFAOxJd32vfx474n5vT9CrZt2/si/O4cCx4g9McnqRzHFIf3e9weHP6uJCgGIQE83E05ABuPRjeHYf7jE1xKec828sHdt9lyGLGOL9qouwtuuItKgyAGL9FJQhQlmOD59uXXLE3MNFK8/M3nhHpL01TcrTbkiUFLRz6dooRidfOaX/3i70kixSeffMh8scBI2G/WeAJ91+OsRwk4Oz0hkYquqjBBcvfmlsuuvXfxSKOM9a5mW3d8+/oV00VO33Qs5gU3l5e0VcezZ+/Tuj275oblyQlJlpBlGVp6OuWxkWDblFTlDtvUuK5jULMwtK4ClBdYLLYFt29BSeIsRRtD37TgA+Vmg5AC6yxRbNg3Fel0iokSuqZlV1fgevBjKrzzmDghXRyTFVPE6Kq/3a4RQmAiRW8t1b7i7voW7xxJErE8XvKDD57Q9tDWK5pyQ6MTKjP4Gps4QSUZcZoQJSlJEg9teZQQxQlCeFzX4bqWrq2xXUdwFh/cKPYXuBCQYhyuicDBvkod5hPjMg4DC2JYf4fT7r69Pfg3HzKbxo8Ya/+73eNDTTw8HoslDuv/McPpu5zmf+zxTyrYx8SCh8v6A0Pk8KQGEEjc3w2+m259L0hW4hGoNNAHhRijFDgU+gPn83CqujEu7vD1/LjLDs+HkQwQxkzTAXEMI9FDRTFpMsVEGTKKsK7n87/7W/7DX/0lxSTlT/74j9he3/HqV/+Z3WbF6cUTzGLK7eaGfFYwOzknjwLHiynO9dRVPQ77hxO5rEqqqsa2DtdZ6D2u7ym3JXvbDy78fY9EIYWioqTuHV5KApKutvR1z+Xuks3qDknE1198S+8dnsD1t68pJgmLxYzp2QkqiihiySbWVELQuqFzYdzgBm3mYymYoG36wd/YC5JcDkQB4WnaBikFZgQGu7ah3sB0oTHK4GA8MQVd19F1Q4KhTAvy2fAzu729YbfdMJ0WlLsdXddxe7Xi6y9esr5doyP45NMX/PD3PyFPc2zX4htP1e9wQhMlGdJEyAMIFsfEcUqapKRxRpSmxGlKEhdE+Zwcge1bqrKkbypC346btyeMJupinAWL8ddh/n9AnA/RkIfHfSF5HkKsHq3fx39+PO6B3xYVPKzjd8Gmx+/3GPH+xx7few77/0S3OnA7D7uNujdPHk82HnaWww6kRo/Z+083sl+GzznS9MKDCNmP76gPIbyHDzsUf3jMzxzuzQGBQwymaigUEd5WJKkiyzOstdTNmt3bFa+/+oLPf/pTbr/5NcnzZ1x+9WtSFdNtN1SrFV9stlzmCXGicAScToZ7r4nprGe1rfDrHd4PWtW2qem7nqqs6esOW3e0ZU1b1ngfsHagNKrD7h+GtjR4QCq6yvLm5SUieHzXoyPF9e01u31Jmg/3wWvhKCYpp+tzlifH6DjFlSW2aQl9oKkHn6aBNuiHjXFEOz3c0xO7zoJsUGYQeQcknR0Q/t75ERm3bDf78S4bEWlFU5eIEEiSjDjL0GlGbwd0vGkqvHfYvqPyDt9bys2G3WrLdrUBet7mmuViwtHFBVeXt7y+XFO1EHRMWsywwRNHmqPjJdPZlC5KaEzC3iToJMfECUmWkmUZeZ4TxSmzbEYsA221HzqNrsL29QBcMXbBh2yjR9cpYBQ/gHN2ZC6FEf2G4A+kiEGs8ECT/G1a4uOi/W5xv1PI4gEIdf7A6Pp+j39Swf622uXdAfXh6w7f1LveRQ9I7wGKH4s6DDTCA92Oxy/C+EkP9+UDC+kgM3tMWB9M+QZRgQ2CoAcPoizOCJ3j53//K05PC/ADivv1198SK0lkG94/XbJ9E9FsV/z685oXF8+QQGRiys5TVhYvNZe3JVG/pu89bdOxWq9Js5TIaLIkIo0EeIEICiU02/2Weldiq3ZAVv2Q6M3YBfjRaeKe4yk9nXWsu/2gRg0C2VRIo5kUBVLJIfhKCurKsrq8wzWO+fER1XbP9nZD13q6zt3f55USmEhDpAcHDoYwKyUGagLWorQgjQf01wqLkoLe9ff0UG00IjI4KdjWNc560umMfDrHxMnIjoLeWgRiTM+zdE1F6O1w3wwNaSyROiHPJwhpQGqyyYTNL7/h1Zs7ehRBG7x3RCLw7PkFn3z8IcVsRq8jlEnR1Q5lDHulMVFMnGUkWc50NmMxnaOjjCJOCMHStRV1uaNvGnzfggjY4AfLoBAeZTApDuiVGKt7QHEfF9ID4+3xmn487jnUymGtPz41761rOABd4X7Scvj/7/P4JyWwP+7T35VhPRJfi9+mWd1TusTBVOtB9YAIjz4/PLYKefxpDjNaHr0IwR9CfxnupkKBNMRJjklSTJwivKNq3/Dk6YIskrTljn/42Wf82//1r3BCMZ0WzIxiMltycrKAYKm2N/RtTdd2OC8wcUxZ9diuZntVst5VGBPTdj1aVSRGkkWapydHHM0ndLbF94G26ekaiwoK6T2ZiZgWM0QQuN4ixBCwZZ2najra3jJQq+XgQOEF2nsS7VFSY/tAsEP30Hlo6PD9mv2+oWo6ml1N14F3EnAj6DYgzb6zhMig9LDBaSGIECRKYYQk9oE0S4giM5hzpwlOQO0cNoBIc5K8wPYdm81m6GKCwIjR/kcI6nJHIBBFEV1XU+630DoUlvkswRcJcZpxfHaOMinWWRbTKR8+f8bd9Yrt7R1OSqx1RFLyqqsoIkHywfuYLMf6ntArQju0s602VPshOHp7l3M3mZNPZmTFhDTPMOmcWTbHdT1dvaGtK5zt8LZDjuwrHgkEHhP/H63++/X9+Ep3AJcO//dYqXR4n++K/Q+18923v/01/98f39+XeMS/70kNYZirCiTDBXGcX6mHVLDHBXt4eyhyGBU/I+f2vu0OjzaIw443mnq5EXHTIozEi8EjyguFijKSNCdJMhCKtmuoyx3l9gZtN2gadus9u7std2+uoO3YlC2rVUkUepazBK0Dz86P8Vj213akWkrKquNmt6cJgl0f2Nf9YPNpFMFbEiXIlGB3t+bFxRnTYkJqUrSHREoipZgt57z/wcccL5bUVcXN9SVaBer9lsgkrMqG19eXVH03zFn90JPpILCtJwjLOMlASkHfemrbYluHbALCRBiVYukG4E3oIZDqgHj2Qzyl0BJvh0jLPDEUUcSsyMknKb1tmc1T8ixHaYMFGtdjhaAMGgtEUYpeaDa7iv2uxgdNTEKWp8RJStcG2rqkqcrBX0uCVDBfTAhI4rwgmeTDZlBVFLnh048/QCL47PNfUjYtvbPMpjOm05wijzlaTsmnU2wYBPW+t1RNi+06vGuxQmKbPXW5Y7ddk04mZJMZWT4hywoiE5POT8imjqYq6eo9XV3i24ogPFiH1odTb5zey2ETCq4bi+DRnF4c/nw4dMbRThg3W3FY94cRkMe5w/p/uL9+V6L4OyzYcdZ6aGkP8y8O8ybPQdzAyKUc7pXv9vkPLbWAIEev2IdvEKFGtkwYQpN9P4ZBQT9IPoY0cjmsgqASZDIhzWboNGO/3fHZzz6j3K54dn5EkRtsuSH4Fudq2qrE9ZZpkfPBB+ccrSua2lHXW4RtaPdb6q3CSGjajoBCKMO66rnedDSM7B70IKIWAaMGQb110FqPd4LzozOmScRSaWxdEeuIxfKYSXFEtduzXV0xnSYkkaYVga61zJKYOk1IYwPKsNrscBasZ3D0Z1TnHIj2YRDOBAupKTg/e4/f+8k5X33zNdvdFqMN0zxnPplQ7/f0VcX2bjVIGBXEUhAHQeQDiXfEfctufY2rt7jJnL52Q2ZsojF5zDTN2LseEaXkWUGeFqA0cZ4ijKZ3Fms0bVMREBipQQZssChjoB8Wq+t76nJDpgqMH/AEYRQXT49ZHBUgJC444jQhSRK0VhTzKVmWDetpNNjr+kG2WTUdTWexrsN3nq6v8fWWbrehTCbEaUGSTUgnOXmWYZIZUTzFphV1taFvS7xth4RGBgmi82FMoxgYboJh0HBwNglS3DuKDCKHcYwT4GBAMJ6fiHvzhMPBJe9bYsajS36nTv6LC/bxjvAOjC3CKIV6FzX7Lir23ZZhmD8ddqVhT1Ojz5DSA1ASvBtfrBHVA7QQCGUgzlFJQTZZIKME7z315pa//qu/pGtKfvR7nzCbRATfk8QJXd3TdoOwW5mYxfEpOo5pNzs2V7fc3kHXlUziCOU8sTIkUcJ2XxH0kGaupUKFQcjuRECGgLGe2Almk5Tn5+fEkea952f85Ec/YBrHXM9n1Ns9fdsN4wgcxggunj6hDT3rzYZ929DXAytoOslJnUPHCVmac3lzR9+1qBHcw3s0ozQwhCGtzkSIJCFZLpk/fcJf/NE/Z71ZU+/2aASJEGwuL2lWa54fnxFsT9c17LcrtByydMpdTbnZDObwdUt9fYltLHGSMD+Z4boG03bE0qDHDbmYTtFpTJCBNlhc3+KaGuEckdK0Qg3OojaAswyungGJw+0rvFR4qenVQE90zpFmCSfHp8RpPHRT47qy1mK7DmuHDNwhfT0lMYYkHQgtzoP1gc56ms7RVluauqYu90gdEacJs+mcPC9I0ow4TpkkMd629E1JXW0JrkUGC8GiXBglb4PckxHgRBzIr8O4R4gxOlOIe3vToXt8uLd+dxz6uHV+3Ir/zgq2P4jNEfcv4iDg9sjAvdpmKGpw1hMkw6BfHMgKoNTYQvMumiYe85SdY4A4FUg9GF9LgzQx0iTEkzlRsSSYBO8D+/2Wvtxhdzd8/OyY6fQ5SgVsuyE4cL2jrmvatiXSmkmRkaYTJouCfrMiokOqmuATTpZzEqUJ1pIkKULUlGWJt5AajXQeGwJOBAyC1EOuNEdJxkdPLvj4hx/jfU1dbvDVgIbPF0vyrGC33VLtt2RZxGQ+p9OSrD7GO883v/6C7e0NoneYIDheLJkKSTafs7q+ptqsHyxyRtKH1pq0mJDOZszOL5g+uUDMZ2RPL8iePaHZ7pG2J7aeWT7h9ee/pLpdIfseX3e0u5ZeBkKikbLH9y1aKZQwNFWDFhovAQsmKKJ+iP+s24pWKcIqYnl+htAarwzBemzdEFxP23VDwYXB3dDaQEBi1BBf0VUVbVMhdxvmyyX5ZGBg4R193+DDECStlCJNh8DvrmlomoaqqvDek+cTkjQhiuLx9xAn6QK0raese8q6w7cO1wqaRuLKNfskJ5suyIsFySQnSSZk+QwzmdO3JX21xbPH993IOR/VN2JwHwmjAGIg5gxgVRiFKkIcsJmHwnwnvO2+JX4Ar/6/xkH/vwv2ndPxERlieOvGJzEyOcbEsoFYP458nL9/siEwKmYecXx5hDpzuBNovIgROiKKU/LZHDM5QZgEj6Dcb+n2K3y9RvY1sm9ZZJpyc8uXX/4GYwwX508HixLbY4RAeQe2wUiFTASpjBGuQCcWbx15miGtZ7dugUAWR+z2NQaN0JJICLwbhOCxkCQeijhmmmgWi4LFoqCsPPV+y+2upNnVLGbHBBnTdD2r2yu01ExmU5SJOD56wief/pD3P/mE1199QbPe8vblK1QUc7w84g/ef5+XX37F6vqaNE3pbEeeZdze3aKNYX5+RrZcMj27IF2eoIsCkQ1gThIlxD6g6gZfN+TTKVdff4N2nkRHxHFOa1taO6DRuAEtlVFElA5caR1JPArrAs1mS29bvJHoSU5Vb0hjyWQ+p0gS0igiVpLEaLZlTfDQtR2d9YTIjIkGAWs9ve2GEUrfMsT2eCaTgt45dtvBobNpGkwU0+UFJhoK0dqhiK1zrNcr4jomy9J7j2KtBsLOZlOzK1u63rM8PibNUspyx25zQ9VZiuUp06MT8mJBPl2QzpZEUU6cZMT5jL7aUm/W+H6geh4MBQ68gmHjPFTh8Nsf7rCM4Ol3Rj4PXadgAATftaT5nZ6wPgxJ3AcW0mGO9DD/HEgPUo5ppELd7zTOHeazj1lLg+3mvZv7411GKaSKCDpBpwXFbEkxnWOimMoKqv2etlzjqjXKldDucHYY+Let54tf/pp/92//HUoK/uSP/5iPPv542DjsnrLcUO9rjk+PiTNFXW5wvmY+z2hbi7AghCJNco4XmuXsmKb5JfumR1pLNM6PpVRoKcnzmOl0wvH5Kc8+eEo8S2lFR6IkLkgQhh7oAR3FtPuSm+0eLyT6eMHZtGBbV/QSnn3yCbZtefbpp+zLht6BUxqfJJx+9DGffPoR1zdXnJwesyu3Q65RMWVydIzOpog05/TpC/ow2MSEpiMVsKvf0FiHyTKevf8+5XpFYhKS5REuBGzfcXf9BukNUgukMeRFTtt2IANd59jutljXoIzEdwHjB7llc7ci9gLRgogSjouCiTRMVYIPguurayrnUCHgI00QYPXgHlGVJcE5mrIaoh+tJxnvqV4Imq4hcgHrAkob0jSjbew9KNS2HbbvaatyyCXCjxN4yevXN1xe3dG7wPMXz/n4048Hj7C+J1WCZvOGvtqwz6csj88pd1uyacFkOiNNM7JZgo4mQ6tcrvF9jwoOMYIGYmyNYbi/KqUHSd3B3XNUDH2XlguHU/Zd5dv3LdbvXbBCyoGELw4KCO5b4wPj6XAHfXzMH8jThyHzoFf87Sc77Epj4aoIGeWksyMmixN0PMEi2e8r6v2Gzc0bRL8lVRbEiLpIR9vXNKXn5nKFbaCzHTdv3nI0L0iSmG5/g7AlJgTadUdoJVFkMImhqjoM0HeWxewEpx3zxCJ1hDKGt1d37LY7yvV2RBQNaZ4zXc45e/GUpx+9TzRLIdakiwWRVJxdPKVc79nebtFJwna7QwSJa3uu314Secvi+VOqqiQoBUmCjCOOnk4xmx1Xb2/I8jl/9skP0HFMlGii0wVCQaoWw+JXESJKR/AtRSUpeZJxdvaUl198Qb1a0VtHPp1huhbleuLEYG2gSCfDvNp7oizhzTdfErqa0LUIG7DWYW2Hlh7vW7yw6MSQZDG+Hq5IXbPj9qYmnezQaQaLJWU3zG+NiUnLBm0dOkmJZwXeKPZtw3a3Q4XB5UJJjescez9Y5foAKjIYE6OjGKkN1nmCUMRJhnUW5yxJEuibit1uT9tUKAGRGjrA7d0dd5dX9NZB3yBsgzCG+XLOhx99SOcsXe9R2hL3O2TZ03Vr1tWGdrYkTSdEJiKfpSSTgr6uaHebAVV2HinDeE4+rN2DSuwwSXl8L32XHXU4Zb978v4OC1aKgUb3IFmS91YZh5mqfCccKIwG1kOLfP/vQuDuYw6GQF2EQAmDkxplIqLJgsn8mCSfYhFst9uBPdTU9PsVm6tvEf0eM0+RZshyDXiM0ThtWc6nvHhygXcds2mG8B191bK+ukLaBnwPCorllGI2J0sLjpZTbq/v8MpjbY9SEbOjY3yQqDjl7PQE29Ssrm+pdhUmSTB5RlxMOH3vBYsn54gkRkUxYYB1cR50oTnJZkTSsNusscpg8gleBpQUg8PEriSfLZFZxuJoSZolrO1vOHr/OX/6Z3/O8uyC1y9fsrl5y25/Q9eUZHk0yO2UIKgA0oHo2Gyv6boc6cF2O3pXkUwi0mRK4ytCc4dB09QWkwichzSdkBYR1zfXrG93OFsTWYdyAlvVKOlJUo00cqBaKk3XtigE2nWE1tKlHZP5jNgryrIEKcnTCWK3x3iL8ZDEHUpnlFVLqHtiFeN6N3h4aTDKYJ3D2Z5JnhPHGWYMcA5CDC26iUYyDbi+pamiwRXEeQh2NOfzpHHEydGMMBL3v/nqG6yADz58jw/ee0KRGJyRRInBRAJnhzu1txWtq7HRhCSbkuYFST4hSXKiJKPerejrLcE3BDuY6Ac5UD+lYIx+GYvRHxLqeDiUDgjteMj5EO4dNu79on4nBSsfEsmUHMKQDsDTMGUZFTXjOGdQ6ofBVOyAqoXxTisGUbINA8DtnSAYQz5ZoNOMz794Sfvr1wgp2Ww27HdbJmnMyWLO3ds3bG+vMKJndZRxclxwfnZMZCQ6StFpz5PzBZn+GCkCUaJwrqPd76j3O9rdDolDGo2KM7KJBhHTOYGIU7zTyGKGkjG6KEjijLSYsphmrG7fUsxylIyou4YgBel0RlxkdF2PUgN1TxrYrLc0VUtb1nT7PUezGc8+eMEsT7m7ekNvG7LFgjjLmC9P+Mmf/UucMWSTGZERRHFEud9R2Qa/uaGzNTpYEu/YXL1B5TEmjXAmIsoK4iilsyV9t8F6CV1PaHeY3g2nZdOhaZhPNNu6J55ovBh0p7ZxmChBzybc3jh6I8gSQ4rG9j3aWXoHsRbQW7xyOKtwTUfkBFiH6yqEMGgTg7ND8HIE3itcZ6nLNaLrOEkzMi+JpkecPX3G9e0lX776hkgbZtMCi6ASAzHEeYkeMlIGJFULtBnUON4HlNbEacp0Psd7T1PX41XMk+QpcZoQxwmXlzfcvXpL4wOL1Yabq0sm+cBTdrZnZzc0TYf1nnw+JzYefIsNLZUt6fuCOJmgk4Rp8gTbzNivb/FNhXA9iB4p/Mhae6Q4Cx7/XbXa6J4ix/nsg2XMO1fe//KCvc/mlGOk4P2pOewsBwd4KeX9nwdTMXUvAh4KmfEOLEFGeCHJ8znzkzNUlPI//5v/jZ/99D8jhGK7r9hXJYRAGhmKLEV5wTSN0DSsri32gzOmeUocK1TXoFCcHBWcLYuxfXfsyz2v62qY7zmHxJMkGmUD3b5h43aIKEHEBScfnvP8+SdcX68h1HgpePHBhwgcV/steh5YzI6x7Z66aWitp9pX6N4jO8v+bgtI6qahyAuarqHarVhffsu8KDiazjh+csrbt2+omoZECF48vWB5tKAXgsb27DYlCk+mBbur11y+ciRaM9OCJ0dz+rsU1zToEOjbNa19jY8i9CQHKWjqFl83hHKF7S0IQ+jBNR2+aeiaGp2kpCYnEorWBhrfMj9ZEu+Pudnc8M3mjlmSM8tiMh9Ttg2JFSgvaZ1DuoBrwRnNdHmMD4KdD3TXa7IoQhqHFQ0SsE1HuVrTVHtMFJPmOTKdkCjDxfEpzjtaZ8FCpCRJmiCjCB0bpAh0TcNB15zECUoZfAi0bUPTdETaYJIchxookd4iu4TYREgk6+3Dz76qOlZ3W7pGo5Wm7Sx3qy2r7Q6lJc/ee8EHGhbHp6gQsNWOurmlT2akkyXZZEGWzFAzg0srqv0d1lbAMAo6nJJD1/lg5ndoew+F+10Rze9cDzsERol7Jz0Q98JwKcW92fbjMCSkwgsxAlbcj28QCi8MwiQsj05ZHp9St45/85f/J3/7d39P37S0TUPbO+qqwnY9XaRpy4pEpbi2pYg9iRraJCkEdVnibUfX1HhrOTs9ZTKZcLuuCY7CAAAgAElEQVTa4nrLxfkZqRBs05TV5RVt3eP9jrIOqInDFIonH3/Mv/xv/wdmx+d8/vmvCc2attyx8pJJYjCzCTqR5FmE0aesVhvOiwV3mz3r7Z7t7TVlVeHdYBmapDFJHFEUE2oJlzdXfPPNV7x4/pyj03Ourm9xbcfnP/0pL7/6iuL4jMaD1pLQ7uiaHemkwCQ5r15+zS8uX7OIFSmCtqzptxVNOTxHoyQmi/EKXG8JrUV0NYO8QA0kj97hum4YbymJVBHo0U8reKaTgqcXz+knObtX3/Kq3HPZlRRCEwvFxXRBzKBgERZkLnBJzDWCfblnZiKK3uFtS4g0rb1DGk3oO5qmJdgGfXXDyfs5T07PCMbQ+cDF+QVWCPbbHU3XQoA0ilBpPJIOHL3t6dqe/WY9AJujILxpOkSmyIs5UWoxicH5Hm8HmZ1te4r5gjS7Yl9t2a73bLclWk2w0rG6W/OrX33J3a4kiiNAMZvPmRUFCosKYRQ6OXoZqIKlNxlSCFQkSYuCtoJyuxpALyFAHKSl3DuwPBbAfLd44bcJRr+Tgh2E55oBIBPooQoHSH38Ylo/RCX4MOwkchT5CiEJSiNURJLNOH7yjEkxA6H4X/6n/5F//x/+Gu88zX5L37cIqdGIIWajb+lch4k8KslQAibZhPm0wPUd5XaL6xrU6LrQ7WPe3t7w2S9+ibOB58+e8vTsHNlZym1F0/bUVpKZgrg45Z/92X/NH/xXf877P/wRl1c3RHnB+ccf4qzlzTcvWd+9RKcGJUCFkrISnF5c8PTZh1zdbHl9eU202dC+fk1bd6AFzdjyqCghzyak8yVtuSedTDl9/j4mn7Pdbrm7vKS8uaG+vCU7PkNMUnbbW9IiRkWGH/zwBzS7Das3PWXbUcyXTOOUSCXYesnq7St839C3LUEJJkmGF451O9i/Gq3Jc4MWUO+3lHtwnWUnWnojiCZzUhmxfXVJ2sHHZy9oO8srecVuu2NrA31bU+02nC3nGBQ2dGijudutuN1uEM5zlmQ8NTEnUiK0IFUxXgpaJBUQa400hq5t6duKLJlTW8fFkydsq5oiK7i9vaayNX1VYr3DmEErnUaGxBj2CNq2HzjWWjOdJmSTgkkxdlQi0PQttu/xzmPtBqSg6wfrnv3OU1YNp2dHGK1QpiSKY3KnmM5mnJ09I0sKbO8GDoEC4Ty2rZBRTNd42maFUmBMgm0Cd1eXvH75DbFWnJwck+QZ4cBv/w4A9ZhEBHzvU/WfXLDDyToaT8M4gxp0q0o97B6PxQFaytFQWSCUROoIaTKmyzNmR+fIKKIPgd12z88/+4ztaoXrevxoYja03QEjAloEIiU4mgqmmWdRxLx4eswkjynLQXOpXMBoSCNNvb6lbyyJA9t7+vWOVZDEUcrxxTOiYkHnJR/++A/507/47zh/72NMOsGHgW20Sw191xCk4eT8nI1sqNniQ4Wra3xQBAK7quH44jkXH/8InWa8fv2Kqqwoq5J9W+GCo6wapDDEWnE0nyCEwvWOH//wR6xuLnn11a8J1Q7blSyWUz75yU/YlRveXr3CScm+rDk6PsWogBKO1CSk0QQlI66//Rq33ZDIHO1aXHBok9KWLfkyGa4f3iMjzXy5QK7XpC5gnWR5/oxV3RElE+6uVyAlRZwR53Pkiw/JleISzfXdmto5rlcrdlVFHMc0XYd1DuscSZYyiWOqtmNtW5aTCR0BaS0SjZgUJN6BrfHO0+53vPnNb8iXC2Seoc8VyksmSUItVhhpaK1nv9vR4Oi9I50MwoNskpHkkmGCMoRdJ4kB7LBeBEQjM00wTAGUFmRZzGyWESUxeZFRLBcYpei85/eyCT5o8smEk7NzitnAWQ7OYoTCOk/verqwow9bnOvRKpCYBN/D7evXvPzV5/R9z83ZCU/ee8GTp884WMcc6uFdVdu7pyv8jokTxkRjwR7sQMciVQOVUNx/4fCAIIvR70YEhDHE+ZTFyTOS4giHorGOpm3YbLZU5R5cT2oU6IjO2pF04ci0II81k0RzcZTx/OkpsyJDeMt6dU3f99RVRS4kZV9Tb2+ZZRmzfMGz5Sl3N3f0qw1NkJBkpLMj0uMzjp99wIc//iNO3/8BQSdYFE2549ef/ZzN9UtOzk9Jp0uMitDzBZ16wjZYWrFlpiJMHCNNRNlZtHZkmebio0+HOzyOqm8pZgvqtsf74eowyQ1db1nd3LK/uyURjlPZs7t9Q/CBt+UK//Jr8iwhzgvqpuPy7TVFliGSlF21QeYGM5kQZVNUvUWtpwTbMMvndLbH94FIGDLZUdclbe+ovGCZF5yePuXqbs3q5pZcR8RGs7pa0XeWfLlgGae0XcufvPd7vHd8zN///OdcxQWv7+643axoq5ZdXdOLgNSGLE2ZT2bMixzTd7yYTJl6j9iV9E1LmioWL57x7Pl7rF5/Tbu9IYoNotzTE8i04fbla4LQdH1Pv9qhTSCapgil6b3FKYGKIozRmCTBewljsoPzjqatcFU/AKEMOIv3g0mc1oqjowXhow+4vbmlmM948f5zJtOCtusxaUYxX2C0HKxuYoENPVIoehewYlBJbTclL998RVV3aKkwAqaTiCKPoHeErublb77i8s1rOttxcfEE+ciE4VCYj++070pNv//j+7XEepBQHYyvQji0v+N8dvRgkiOKLNAgFEErVBSRz4+YH52j4pzeDW4FbV2y293xs//0N9DvmRcxWmosilwKtAqkBjIFszTmeFbw0ccXXDw9o2kbtus17X5Pdbeh3u+pWzsgmlWFmkpcucFgCK0lyzLaxtM7x9Pnx+jJApkmxEXOrizJJgaDQivDxx//kDdGc/nt5zwjYEXEarPGKEE8WZDmOb51BJGw3Zd4enTVcHv5LQFHMckRSYaZzpgUBcZIhE7pesvV9Q1NtQfrKIoJyw8+QKg/4dVvfsmr3/yK44tnJNOCYHvee/IRr7/6ivXbVzjRjU6BIIOkKveIKEYUU2YvXqBtjbA9mQvsbu6wrqN3Db3vBjBEOKquIjm5wNae7DTHBo9vdrhmIBi8+OATeiuod3uW2QQbr/nw/JijIubJ6ZTd/pjbzYp1U9ESmMzmxFFCtdujqjXTOOb0aMpEGdokoV2tsQiatiGLciZJjK4NUfD01YA5JFnCZrPC2YDvPW1dIY0i7Rbo5RRhIMoj4mmG1BHOBxrXglAoEyOCpmp6yrJBhBIlNWk2QWgDQRBHMflySWY088WUYrFgfnIytOahJJ1MiE2EkEMmkBeS3juUHbTazius97x8+Za/+U+fsdqUGBPjbMtyHvHpR094dnTOLCt4cnJG6zr2m1u6riKP5wg7WuW64Up4QIbFQes8lPIQ9/m7LFhtzAgkPXgvHcCnwfjZPUTDC4UQBqQhmUwolqdEkwVeamxvacuSar/l+s03vPzqV7z58guezDN6K3DBEKWD7+4sVUxjgXI1T04WzOcF+dGcKE0JWpO5QLurafYtzabGVi0meIwQlLsOKROarsYcQIAgyNIJ/+pf/WtWzrP3PXVT09sWYwawzJgUERsm+YRQ7lhd3vHs4w+pbUNbrWn3Ja7eoeIp773/AmslAjPOoB1tW7HZb4ij4fSqdhuqpqbzCucFzeaGy1cvWV1dcvHkKSdnf0E0mfH00x/RS0USx0RSsts33Hz7lt3VmmZb4foGmcfkccabr1+iTcS+rjB5QXF6Rru5Y7e6o9nXrLd7pHVkecHy6Ixyd0dvPWXTUr15zcX7P+Ds9Clf/+3fcLW9odpdkS9Oee/JKb/8h98gXcX2ek+3v2Oea5J4woVeIIVidbei8R4Zp2zqhl1Zc9N5rFfoKCKbHfHixQuk87TrDdXtHWXruFndYXcbhO3Z3WwJEkyeEbY7CALbWiRyADedoF6VaKkQKaA8KlHU1R7vB5ZQwCDTQJIV2DTFjQ4XaRwRx9GoMoowSoJtCL1hmRyTFTOUNnR2YNvFcTzw4xmSGLquIzRumI0yGK+tNiU//+lnvHl1yb7qQQjavuLNG8duvaP+OOCbht455sspp2dLcC3BdjTVnr4fbHSKSTGsQzUaCYqRojuGwfG7zNZ5HJD7juVLeJjDCq2wAayXCK2ZTOfMjs8JJqcPitA7uv0dv/i7/0hfbemrLVPp+PM/+JCqdvzqm2u++PaW3oOr9kznKcezBXkkOD9JyWcxfSTobTvYp7QN0oMWhnrf0TdDPMU8z5jkU6Q0mFSTaIkPdjDWCpaf/e3/hcsLls+esdvuiHdbknyKNjFZlKAIWOcxyYIkaOJJwUUR8e0Xa9abPTQdrWkoti1aRGTx4EColMSHmGS6oDg6QUQRIXiyNCEWESZKaE3gH372U7744gtWqw3T5QmLsyfoIiM6WkJrWd/c8u2vvkT2DsXAUa2rkvMk570X7/HlL37NZr3i7PlTphdPYTIhzmdcvXzNy6+/pW96Pv30U5q+o88mIGLK1Q1ZnHF8ekqaRaxuXnJ3/S2hr0mkoN1u+Nl//GuauiFSPRiJsi1CCKbzKbOjYzabLbEe5t2T+THZ/Jh4tuCzX/2a1ndI7/nDH/0E73puri+xQLvd0jcdbVcPbhdK0ytNMpkwPzvn4qNP2Jc1m7sNTVmjheD4aMHZ+Rn7rmFd3yFqR+PXtLbFRAa8xAdJ39Yo78mTDLKUpjeksUaNvsVaycFzqy4RMpDmBTpOOMSuKKWR6pAwwaBiKju6phlEowF2+5Jf/uYVX3/5DU0TBtcjEdA4Quu4vdzzmf8aHyxGO059TbFI2a5u0EohfIdrG8r9HiMcznvyyYIoTnGM1khikE+G3+Ud9nG//ViMjg8YqYYsVQRBKVRkKGbHFLMj0CleKLrWcnf1mtdf/Ix29S2ns4xiNmWRGPq64Zv1hmZ1y+2b11RBkikQW0i7DRcnKZvU0lMjkpqoieirFtkH4uDRAWIdEYQn1YLj4hgtNPtdRRcENQ7rW6KsQCQtd9dX2KpG5jmtjiid5/Wb18RxyrKY4duW954+ZXn+hL4dNLJp5Nhf39FZUFHO+YsfkE2O2K22xAYmccp+vyUrpkymE2SWs6vLYeapJMfnJwPlspjyr/+b/54//Rd/zny+IChN4wJCD6CUdzUiaHyQnDw554e///sIY/jql5/zD5/9lEU+5ejoBC0FkRDYpuE3dyt6F/jyy28ot1uUTrCTI64u31LXliKZklyk5HlKMitwoaXdXyF9SehrDIFYSXxbo/sGLR2uAyUV0+mcNC+ITUIV7TDOI6VDR4LZ8Rw9W/Dj5Z9wMpvTbfekJmK9WfHsecRb77h8+Q27coWwDbERXJw/o2lr8vmS8w8/YvnR75FPl+zLmuvLa+rdlnq7xk5mTKNTTDOnqe/YbC9ROHT3YEPT+i3Nek12dMpkcYyS0QCC6pGYP4rMURptksGb2naEIFFiMP/re8e+3KG0GQ6UuqLa7vHW0neON1c3vPzmLU3Z0HYWE8VoKUACZvBafn19jVcSgWW9XiFcwPWBZ+9VLBZLYi0IiUEGS1WWWBtYnpwhpRoymMaR5yGp4HdSsI9P2EMBh1HmJcaAJI8kSjLy+RFxMsGNcYZ929KsV/zdv//fWaaOH314QbVZIfuGPljurm/ZrzaY0JOKjt6NLQMaKQPKGKq6xUtI+56u6/G9J42ywdgswPuffAqd4O6bb7Gdp9yu2VflwIhRApVpWl+xKl+x84LZ8xd0fYfpW7RtafoGu1/TXL/C1zWr3/wDH336YxId8cXPf0G3X9MGyw//+F9QnJ4xSRa4xmLkNb7rqJuWsu0JkWWmDVoPOTTffv0lr1+/5vkHn/LJj/+Y+fKEpx98OsQjykEc7QAbPBKPmnvs0QXnz54TQmCHZ/32DZc3N+RJzl/95f/B0+fnPHn/A3xvebNZ83a95eXbK2y9o4gU00XBzz77exZHR+jpDC8DRsU4aVmtr6CrkPs1oh9iPAyK4DxKBKIkJs4V6+0e6wMCTVXW1FWHq3dMlAcJ3X7P6uqa1CusNHz99ob97R3BeubLGUkeIYVkNpsjQ8/2+i3S98McO8nJigQ0XFU7iiynOD9jMZszqSrq9d3/zdqb9ViWnWd6z1p77XmfOebIOStrYhWryCZFUpINdbesbgqQjAZ81b9G/gf2D+hLXwly2wC725pHUpxULLKqWFNWZWVGZsxn3vNaey1f7CAN+0YyUBeBcxNABHDOd9Ze3/d+z0NbbDGeIgonSOnYXC9w2uAFXs+KagtCX/bERU8gA0UYxFjnIeyN9PtmZznwAwBcW9GZHjQgvQArBEVdsdqs8JUi8Hw2yxVXp5e0rUbrjtW2pNiWmLZFWIe0pp9+CIdUglqXVI3FBQlRENI0htPnCzzhSLOQYZahlEJJgTUaT0JnWjbLRX9/juMbzOqXbK/7VZH+fwmI1jk6r6cyRPGAeDjFqQDtFAKFLiv0dsX6+eekZsNOlGLKNZ1u2GxqTjYFzgmSbMSdQx8lOk4Xa8CxO8rY2R2RpHFPWNew2sxxpiPwQ2zr4UUD0r0x+3cecvXsBf5wyOL8vMd/uN52Z/HRrehHQ4lPFMfs7u0iBLRNRdz1eWPXaUxVYjcF1+st5uKcsmzZ5gU7x8e88Zv/Pfsvv4JTina5Zrm8pq5LPCdwQjHdPyDOkn5g3jRkcUzgKaw2DLMRg2zU6ybEjVrz5v2RAhQexgqEUsiBzyRLUUJgtKYzLU+aAuX6raedowMa3fLkyVNeLC55vtySN5qhpxmmMavTL0h37jCOA1xTsqkKIs9xdO+A9eULytU1gS5xbYXnHG3b0tkOMAgBy2VB21lG0xldXbNYzHvAR9sQBhE6FoQ7E/Zv3WO4e4x1isvz5+TrHEfH7YcvY6Vltn9IlAyoijnN6jZPP3qfre6wriPfrNl4vakwahruJCnHdx8QCNDbDY/ff4ezxx8RSY9ZlhEIBSrFtJowTClWa5CGKFb4bYHYXuNUhJMBKIUnHXVd92OoJEUFAWW1xpqOznqoKAM/BNd3gblRc5jGsF5vWa1ypO9TtxrdNggsvifxnEV0/R44N2uBorP4ThAIibQW5QtG4xG+H6Jbg24tVVVRliWDwRA8yWp+zfz6mgePXu6DRNb0SJovq2B/Vaz/b00fCE9iVUAyGBEPJjgRYugxL3VZU+dbTj54h/nnHzBLBabQNH7KcrHl9MU1y1WB1paD3Rk7o4SHxzOOD0bkeU6WxoSBxBMWU7Zs1xta25vpslQhQ8voYMad24+Y7B1SO0GSJAxHQ148+Zx8u8G6Dl8FxMmANI0ZTcfM9vaY7e5QhwGds+iqwBcdQvdfLqKsoNhy/uQE58ccvvkWt7/2NaYPX8Z5cb87aixd27Cczzk4OGS8s4PwfaTyWMzPyKuSnd0Zb7z2Gl99823C4Q4oH2O7Prbm3E3ovQ+itNZStAbpexRlwSCMSX0f3/PZ2d1hOh3x/OOP8eOQ+XZLXtcsioqTF2d8cTHHKYWIYduuEU4QdTUXjz/uOVnWkASCPdmgt9f4tkEJi3Fd32zDp9aux810hnK9xr/5+x6GwDWgO/Aigp1D7r/5Jsntu7z09m+gwgGmcezdvcW9l1+mLipGsxm1aciSGCcDfKmRpiEbjnBVQZFvEIGPCwJ0GGBNy8mzp2gD4zRF1jVdsaVbvCA3IJIBTVGQDYfknaEtG/JVibAl3iQmCT1EmeMHBrwAGpDS4rYbNpdXeFHCaDqlLtY3Uc2QdAxeKgmjiEGaYY3pzQeeQrcdq/WG47v3kKEhWG/+n7SStei2I/B6moYUPpEEJTw80zJIPXb3UnZ2Jyg/oqgajO64vLxkPp8zm+2yM9uhrls2ec50OmM83QHVF+2XVrBCSnpF8Q3hnx58Jv2IcDDFTwcYqbBOYEyDqWvyzZbHH7zHZz/7PrdGIZWTLOcNe80uRaFZLUs6rRkmIYE0BNKghCMbZQyHER6SpqipNw0eoMuW1lqUH1KWMBxOiHduM7r7Cg/f+jp7D1/nk5/+mLX5GWPhEW0LTNtRW8Hxyw+5c7jL/OoFYZoQD4dMDw8ptKYrc9xmDdWWRCgGu3fI/Zb733kdf7bL9ME91HiEkwKwtHnO6eMP+fCd9wiilL2jO7gkYbGYo/OKq+UVg/GAL05OCQKfvf0jbH7JYLpLOEhwtmV5fc7V5SXTg0MGs306K0l8xXq7Id+sEZlBDcc8PbvgH3/wV/z8J9+HpsKZlvDilGVekQxG2GiHe/f36ExLs73mk9MXxB4UbcfubJ8syhBG4OuWq6dP8FzBKIuotcNYix96PYBAG3RnUNIjTCOkH7Baz3uvq/CwYUI0GDPc3+fo7kPGdx7iOslmsWQ1X9CWS5o85/ryivC5TxD6jMcDAt8hpYeWHsdfeY1um7NdbQinM5KDA5KdQ6zweH7ygu31FfXlC9rrC9r1JcIPqBtDeb1FOcFyvqLSBmEMxaLCtAWu7rA1iLAiSFNUltDR4UmL0y2JUmyqlrKy1DXkm5y2nTO1htRqVDfEWkFnWsqiIs8LtkVBVdd0nUHiiLwA42xvW3e919gKQc+YsAQIfNPiWUssQhLVc8o669B1Q75es7i44nq+YbFo2BYVk9GA7WrB2bNnCCeIxxOs8P6ZKvz/UbC+8voVItk7UqUX4qRPnI1RyQgnPMBDm4Zyu6Vcr/jog/f5xY++zyzosNZjnRsabbn66Am+6nGfcegRKIh9CP3eq6nrkryoaRtNta1QQkHXqxVb3REkHnEUYFTARmvUZsXOdk0jLEtnWErI9ve599our7/+NvN1zmgyhnJFZTSj6YS67khFyJ079/Bcx+LpY0LTsF1taUjY4jF59Q3kIKHxPELlI6xDr9dszs7Y5BWD3V3qxjC9dUiQxbx474T333kHbzDk937/97k9GnN6doGf7VLkBcoLCDrBxdMX/MNf/BfqKufBK6/wla9/kxeLNSoZ8Oz5CVfzKzzlk6QDfvbuL/jrv/yvXD5/gmcNtmm5e+8eb37tmzw7v+LixRUvP3qZ87MrLs/OuHj+lOPdMcJPGE8cQnQoNKkS2LoAWhrlEfoZQRJR52W/0+l5dE5jncNPBgRxQlOVOGOQvmQw3SFOR+hG89Ev3mO62CB8n7LIqcstpq6pywpnLDsP7tOUOWu9IhnEeASUpkEoiRhkYCUuG7N7/xXSncP+iWm8w+bsBcXpM06XVxipmB3cJhvuUG1LVqenNOs1uJ74GKmI5XrNtqvRlaHD4fmKdG+Cn/r9lpYHSEmcpoTpABnEGKFoV3O2ZU2pr9B2QeduCBbLLfm2pCprAhVQ5Xn/4bcaJS3g9VRQIZEK5E12WAiJR4evBKHXN2LbtiXPCxSO5XzOar4gX1Vsq2vKesWDe7dp6pLL81M8pUirGi+KvryClcL16E0h6YQPXkCYTfCjFOv6Pf+mrvniyec8+eRjzk6esb54ziQS3Ds+IA19njw7Z7Eu0MaQRpYojEnTAYE0RJ4hjRWdNsxXG+aXS7CSKEjpjEM3mk5bTNlhnMbb6anw8XTI2eUpn33vKadXZywuzqm3W77zzW/h377Hmaf47T/4Q24f7PH8o/doTcUgiakd2MpytHeHdJgxTYeU1xcE8YZsuEe2bbiuS+7cPgBET6+/XrB8egKN5ujeI9789iHWCYIkZHF9yk9/8Le8808/gcmUTWf499/9Dwx2j1BJyjhO8SO/X6GSsFgsqIoNb37ta1xfnfPjn7yDSIZMphP+4ft/xwe//CW/+z/8O37zt36LD977MY8/eJdBHJGmA4rK8MnjL3AyIIwTPvz4Iz795BNs1+KJgKtcw/mKaDgGZxjJjrKqMBjiMETEPrJT1GVFVfZYRik94iRGa8tk54DOOeqqIEr6veB7r77K6fMLlCexuqJanKPCgEhJOp1D3eA3fXCfaouuC1rbsllYxumEYDjAi1PS8YzZg4x0ekA62aEB8s2W1WpNXdVsq5oGj2S6j/Qk01t3EV1HsVkh2hqhLdumRfkhfpjQNhVt09B7fiq2VUM0iti/tUcwTBAYVBT2rOc4JfY8ZBTT1BXr1Zr59YptUWOMpCxqGm0AgZIe1SZHCAedJlI9jN2YDodFBYowCPpRlYFOW6QHcRwSRAG6M8i2BSH6g6esKLdb2kZj2hBfebgoxJOW5eKSoioZTmZfXsFaejentR4iiIiyCUE6BKmQFoqq4PFnn/Hfvvc9qvWSri4Zh3B4uMM0S5gv16w2BXmlAcc4UzhnWC8XRLJjsDdE1yVS9I8haRQhrAKnaNoK3XS0VYutQTuNLVuGXYfeblist2w2OS8uTtls1symM5baMBKSs6srxAfv8Tvp29jE49Hbr6O3W4wVRIOMNIqQHURxCtkQ5RSzo2N2VERues5TVZU0RUm92tC0LW1VE+LjxRltXvDi40+4ePaY5598ROBaalfxl3/9f/Hs9Jw/+MP/iTgMONqbYLOYJPCZzIb89u/9Lo3W3H3lNa42Obt37nNxfsb5+XNOnj3h4vwF3/vef0bQIXEMBkMmgyGhH2KsYLnK+ca3fpPzyxNO33tGNk356pvfpq1KivWSfLPiwydPWAwjXj/eJYo8fM/HOkFdtkjp6FpD5Ps4aWmaGlzPGfJ9SehJuiyErkaiqaoNe7sjJBLiGH84wiifOMsY7uwiug7XauaXczZ5RWcMQRiwLTa0smbnYB8XJ3hJTDrbJRvv0jlFlW9ZLhds12tSPyTKRsyO7iKt4fL6iottibKGsqkpFgtkZajrmqLTpLMpummYX16iG9MbF1YVTWcYTsYUpmPZ1oQTAdqhvQjpeSg/xlYNzkqU9NBlTUeAFB6drntCpxB9197rRzi+8oizEGs7rLMEYUiWRiRRiEBSFhXGdkRZTBgG/T6stVgpiZKELMtoGsNgNOT2vTvsHR3ijEa43gzZNSW69L+8gnWih0oLPyIaTPDCFLx++78zNW3T8NMf/ZCr81Nk11/AAugAACAASURBVCJ1SzoYMUljri8uKWpD4MeMR2m/L2lquqbFGpChgM5S1QWjcUaWSowWtJWlqTSiEyR+SiRjVqYgGY5pOseL0wu8TUEUxhTrNflyi3UCbeDTJ08oGsvu/jH/+MO/ZzF/yuu399mLFVYZrHZkg4BiNccJxWp5yfrsOdV8zfOTc+6++Sa7t+/TNC3Fcs1kMmY2HvPCPaW4satvVhuur685++KE/OKKwAom2ZB1HPDZyQnnl0/Y2Y3527/6C159eB9PayIn2d/d43BvnyAd0liP9brh88+f8rd/+d/YFhuatmaURayXV/yf/8cfg7YM0gFxMiCJE/wg5tnpGbpruf/oDufXz2naluvVFXVZ4llLEIeMxhOi0COXHoMgZpAmeK2hLkqEq28SQz2SZbVZY01LOhhStwWODkuDlAY8y2g6wll4fvKUW3uvYiNJJxWtHxKNM6RpMGXF2A+5PrvGd5BlGVE2o7Nl74WdXyJWSyamIy4aOi2wwuJLy3iY4XcwvHUXDm7hex47yyXXV1csnz9BOIHrDMa0vXR6NMBh8KSkxXF9cUXXdojOIRtLVWiqomRdFSSdBFVQONHbIHyPpm7oWoMSHnEY0KEIhgme16/5SdeRhTFKSrZVz3LycfhR2G+q+QFREBBHMVIIlOdRtw3K93vJuTY41YvLoyxl/9YRw+mMMIrYu33IbG8XiaMtS4KgxGiDaeovr2ArbVFhSjSYoqIMqXrpb9tUtHVJVeY8f/6Uqtzid/2daZhELK4WuK6j0WCNRTc1od83Osr1FpRAJQFVERClEXghyJrOGuq6oWsFmD5rmSQp/tGQjbW8eH7GXpyiWos3kQzSAW++eYtVvsEKy2K14PPPPkTalr39Q7abDR9/siF+dIdBoBC2Y7FcUrW9MSAZJFgk5bZknc+5/dU3MLZD+T5plhFGITi48/Ahk50diqLBYhlMRwzC1/jleslktsfjF59Rx4ratJzPn/O9P/sTnn/xlJ/99B8YqpCXju5xfHTE2dk5wlOczed8+vRZD00TDuE5Ag8GkzHDLGW92dLULVk8uEG1toyn/drXyfPPeXPvTeLBgHt7B2Rxwvvv/pzYV+imYr66xowHpJMxmyBlGKVMEokVElMVdE72kUI/ZnSY9aOLQCGzjEEa0+QhTteEwynEGavtBpNFbGnQdUeYjSmbFa2t6Yqc7XKN6zxG0xn7h8cEUULnDFcXn3P5/CmeJ1F1ydWLL9DuOdZ67O3vszfbo7OWRrfIMMYpyXh3n507D8g++5z67JxNaxDW0gnHIE0wgHEeSMetu8cI4bg8u6BtOlzjWK8LDB3OWcy6IIwTbF2ysdegPDrXkx48IfsrUtfh+Y4s8zGtxHeS2Jf9qd1JXNfRFv1Cvud5ONHRNgYnWoKbTL3v+wgp+9Pea0BIrN+PEQfTMaOdviudjMeoMML3+lCkJyW6bsnX2y+vYJ0KSUcTvDDBC3qXSV3V1FWNrgu6rmU0GnD6VKOcIUvGCCFp2waFoGtbAuEhPEckO4QvqVqBB7jOUuQlwotpzPpG1qTA1XTaouuOLBxgGo2RoLXGs46rk1M6X4GviAYDvvKN3+Ib3/kWTVfx93//N8yvLsnX16RRTFtrvElKEKVEgYfRBbP9A3b37yFkQK0LJjt7TMIBedVv2Yiw5wX5ccDV1SUfv/8BwkqOjo65++ghXprQAXI05Pill/ind3/ExWLD9WbD7QcvsW7W/MOP/56dwZjT02cc79/GjFLe+O3v8Df/6//Ccn5J21ZcLa6Zz7colYK0jGdj4qifEfoCrBSURU7T6t5nI+D+S/f51ne+zSrf8NZbX+f1195gMhwxHU6JfcV6dc27H/yUeDBADXfJceQuZCdNQXdY6RMGCYNkSDqaYp1FeT1BRPmKQRpRrlKO9ncpNVwWDeFkhzSLyDuNMSXlssK0BmscelsxGe8QJv1SgRYSFYdIP2YnvMNifsU4ibn/+quYNKa20NSaDg863QuilWK5XP8abuBazcmTLzBFweZ6wXa9pa4qyqq9ya9bhA9xFDIdDyg2K+qmoe0c63WOUL2N3ZiCoR8w8T0ulmsqY3FKgfL7cZhzBMoxmmYof4fJMMPWLa5qaIoGX0ga3aJbUJ5Ha1uEp/HTBN9KTGAJb+TZv+I4eaIX0ChP/noNMIh7455Qio7+d1QY4iuF8ho63X15BZvuHOFFEdILEELQGU1T13RtQ9c20GkePbjP41/+klgljCf7rMuScKhQVcOrtw4Js5DnFy9QGAIVEHohTV5hWs12ZeiMwQlDlKQEfoQSPs7rcLL/VlMqQFctyhimQcSmaSnqCi9NKNqGn3//L6k2J9x/9SHHhyP2ZiN8Yl5+6VX+4Yc/oK4GfPBpwrcfvcQkGzDe3cOLPMr5NfPLC+IgYPzgDhMnabTG5iXKD/D8kGw87hs8773PdDxGxT7cBB4IJLN7d9m7fZfZJx8zmg54US6RvmI8GPKNt97izy+vcDH86L13kEHK9OgRH33+At8TrHOD8GKEF6C7louLBZtNTpkXWGPA9ttRnh+wc3DI4b27/P7/+IfMdnZZLi8Jg4hBOkIIj29+61uYruHFiye0Xks2mFC3jnJdsmotYnKbIJlCW5MOx8SjKcl4RF6VvxZid7ZjZRrcVHGlQoQvCbwQfzAhCA4xbdljZusSRU1dF+i2ZXZ4zOzoAcYGLK5XrIoLwiQgCmC8ewvnLFpl+MmQTPnshCnaWJx2eEawuu6xPONxxvzslM9+9g7rp58St2XPa1IRUXQDnfdUP3LqOqqiwmGRvnfDs/ZoG4vsBL6yvUal8PAjn+xXmk3jaHRDpzTSk8RxxCiJesZyGlAtNuQXc7pOEyt3s2srMLWh68B4Dq8rSbTFH8ageiug7UAq1Yu2jAYjkZ5EWIvv9VgaJcWvdTNeGCIdCKkYBV/iHTZKBn1cUHp0RlPXDbqpadsa0xp0azg8vsXewSGxCnAqQEnD/XvH7ASKSFmiLCDMLNW67L+Vq5rG9nOttrOIUpMMYnCSyI/QkUUEHjq0VKVmu8lxfoD0Q3ZmA9Znp+RFSehJjHM4a3jyyUc4r8EqibUes0lE1WzZm0148eIZ71ZrJlXFW6+/RYyia1ref/cdTk9OePvttxmOJ5RVRTqJSOL4xqPaEQU+b779NY72j9nd3UMIDyyU2xInBGVec+/uS/xy9E8sKUhFR5DG+BI+/uRDBpMBVljWmyV/9dd/wfHhAy4ul9RVSZaOMLZms1zTmhbdmf4KEMfs7+wxiHyqsqBqNYd7+3zz7a9x++CQqqk52NslCCKEU0jZy6+WyyuUUn3wAti9dQt3S+GMJjrcRZgGYfqNG618cqmwsULyK3q9QziDbSrKrkNKSRjG1MbS6RrrHE7GSN/D04JQaboAVpuS2b2ILJ3hBRnOaDwlCH2PYTRmuVxQlB3n558znM64d39I03UoKQmikMF0yuToqA/kdBZRFZx8+AFBucWU/f1QKZ/BeEScZrRV1SemNktM15KGMXYM27zqwW3ihngiBXXbIrqOMIhw0uHallY3BEIxHGQoz0FVIKKAwGha3ZAoSTqdIIKYwmgckK9zqqpF123vwnWGOFa4UCG8G2LijZlQt22PkA2im5XUPjQjhey3dBwo30MJ2dMWw+DLK1gpg5vth/4faeuKpi7RTY1pW1ptqJsW3VnWyytGccr9/QmjbMxkHOHMhijyGNsM3wrKdYly4N08RigV4PDQrSAOPGxr8OhN334Q04mIVtRYPyDMUq7KDTIO0ds1+XyBpzxsq8hGPuV6zmB3QmNb1ttz2qbEdR6YhuuzDb/QLUOVMJwdUxiL9ALG011Gu0fIMCX0IlZ5STy6gac7R7EpODs5YzSaggzI85q6qNluSgbDIcPhhDBKUWHCdn7NcrVgonbwpaSwls51mMYQ+R51WdKakp2jGQe7b/Laq1/lR//4A84vnzOezTg4PGK7LXjtldd4cO8e+fyc+fUZ0lM8evVVdg72wZo+SST6PUrpCeIoYm9vF4RhMU+YxCGb7Ro5mXB09yHD4ZCmKtGNQCYKKz2E1++BCmTPahICJ71ewSJ9hLN02lBoi+caus7iVEAcjdHtlrbc0OUtvpcwmx7hVEjRdYRpRiQkTZWT5yWxHxDHAzZ5yc/+6V1+799/l7aoca7tU3Fd1TeN6LDCQ0l4cPuYT6xlcXZOEiUgBFoIAtsxCEI8BE1VksUpRivCKCANY0J/RWMM2lmccBhcfxeVAl94xIOIxPfphCNN+thrV+c44VB1hW1aVFuTRQFJMuRiXSGAIAjxMpgOPC7m11Rdr63smhoX965b74bMYk3fIENIgqbBl5JWawJj8IJ+FRDX4d1A+d3NROJLK1ilfIzWtE1DXdcY3eJugM7aGNq2pS4LNqsF0nQMphOOd/apNi0fX10Sx440FOwORwRCI2Ng2iGFw974V5rGIIWHNY68LjCtw5MxYZrghx5ZNkJlGes6pyoNe3cPyYXm6mrOIEnYnWQcHuwxHo+JkggCn6btqJucTvf3su3zay6F49Mnn7N35xHZ7hG37j0iGwwZ7+2D9OjqGl+V2F6agi5rLp6ekMUZ56enJIMR0TBhNBphneRquWT/YIdwMublf/UbvDL4N/zwpz/g3fd/ynyxYTxOCENF5AccHt7m9OyK56efsbM/IExatvkJv/Nvv83Hjz9jZ++Q117/Kp2D48MjBlmGJ1qS0Acp8HzFYrnA4UjihDLf4IzGCov1fTwpuHv7LvlqQXv5lLrYIKo1ma24le3yy88eU2w3zPZ3CZKwpzMI15vfnCPwk36RwwBKIToLdOhWY52l6/r458HRXdZXV6yLGk9b6soSj6YMZ3vktWa7yplvcoTteHH6lMPdHcbDDGUdL06e0LUlzXYJpiHfbFjNlzRlixfEBMkAJQROCQ7u3oIqJ/ADwmyAC8BozcXlGYOoF2nj+/08uDN4dAyzmMZ0NNay3KzoXJ8fRnqMZ1MmuzuUTYUTfSf7aG+fLz58H900yMYgyhrVapIkJAkDGr2iaEoi0TEdDxgmGUmqyMuSWmtaremqGt9LiYKIII6xnUFqhaW3IBKEBO7Gtt51NyIzr39c15pis2GzWn15Bdt1Ha3uiXum1f2Pvnk1BtsZAgGT0EdiuTfKUFXJ5bqhERo/d0wThVdvGCUh2ShkkCXsHOyw3W5Zr7YsFxuENTjrUZYNwnoEwwiVpBS6Ix5PuN6suC7XkHiMDkY8TO+SDELQFudari7OsNKw4+0QDwckvo8SrsekNA26LPliOSfNhhy/eMbbR7dJB0P8KAbRv6lRluJFMRJHkxf88p/e4eTTz/jWt77DFx99yGA649bD+6RB1EfXopAXF+fEkwlf+83f5mKe829+e0S+3HJ6/ZTzF9dsV3Neun+fr77+TTqrkMtzrMsRdFxd5KyuL9jdPWZnNOTO0QFh1Geih4MUbQ3D0Yj1ZsV8fk0yGFJXFUVZ4nQH1tJhyE3HU6M5Or5Fmg64ff8RO7t7+Erh6pyff//v+OjnH1AXJeko4Y1/9VXS2Qjj9Y2tMImxtsV3CiEFYRAjHWzqCjqD70fMpjPiwYi2bIijmDIZUGpDR0e4s4MfJ6SeoVn3o5yd6ZijW8egaxbzSwpTsd0sePrFp9w/vk2XF1ydn7FZrnFOkgynDFCEwyGLsmRweIDrWopNTjIYsrs7JV8vuDx5TmcqYl9R6ZIo8vvTrmuRUhBFIdJ2XC00YInSiJ07txhMx2SjFCqBwyMdDNk9OKJcFXR1Tb3dUi620HZ0XkujCsLQI1MRni/Z25vgW0sgEyJnKSys2gZpOqTtH8GTbIjpDE1dg9c3loIwxlfhzYHUoQJJ4PfEz85amqoi3/7LusTeH/3RH/2zv/TuB+//Udv281bdanTTd7Xatu3FRrqhyTeY9ZLDNOL2OCPoDFGS0HqSqtGkfsjeKGEyCiirLXESs7M3JYgUQliEtUhriaKEJMnwVEheaVwQszaGtW6QkaSVGht2VF3JYJiSxCGR6u+add1QFiVN3WBtbyMI8BBli12XBMYyzFKmOzOqWtPUDUo4fNUnV0SPAcBXvXVhfnrGh++8S7ve4JqG+3fvsLe3i0JiK81Pfvhjkizl4PiQbJAxyjLOP/mE9ckzZmnCeDpl9+CIy4sluu54/uI5FosKBK6r2c6XdIVhdT5Hti13D2+xN55wfXrK5x++zyQJMUhkEJPnJXVZ4fWLnuzNZoyypPfLNHUPZ9eGqqrxpM/h0R2yyYwoiXtUqNbgSYy1dMDe0SFRluLHCSpIePToK4BPVbV0naOzAmscddkQqpDxeIem6diu1ng4JuMRzvMQYcLO7dvs37mD5/vosoGbz8hgPCIIFMvrOVeXl7Sm5We/eJe7d26zO9uhLDVIDxWE3Hv0Cg+/8hajvWOUH7OdL9B1wXg87AMPQiJ1i7KaJPJQ0hH6AtvV+IEEafvwQpxS6x4St9msmU7H3D4+4uDwgK4zxGGAc47sZs+36yTCSxkPd2jyitXlnLaq6HSLEIIgjonTiMiXTJMY/wau3hU1pmwRwGA8ZDCdkE4mZJOeroLy8aOYIEoI44QgCPA8H27usuqmYIVwYHvt53d+9z/8z/9cLf7LdJO6wegW2xm0bvsRgzF0XS8Acp2BtmI3jThMIvzO0DrLFy/miCyjaRqORgnKl0hp8H2PPC8Iwh4dmkUhajZis9jgBz5tK1jmBaWVrNYL5m3N7Yf3iTOfgAnrCmrXUrY5Unn4WUgkU6wS5HnO6fNTnj15xq3jI24f3+KlO4/IXcjSOjwPitWaUCX87B//jl/8+Ae8+tqbTPcPCQYpw8mU+w8fsckb3nvnZ6RByPGde3z2+FNOTp4hfZ/VumQwGHHn4QMS38PpFhWkzC8u+OHf/Bl6s0V3HdnxIbdefpmnn19Q5Qukq7i+usQKi7AN+dUSs7VEVvDa3i1GQiKqivXFOddX5zwfJrz5m/8a6Tw8C6PBiMCTZFGILyzltg9KRH7AaDpD2w7lB2TpAE95XK+uaRqNC0Kyw0Oi6Yxbr5qefTRICeKIIE5AKKpGYVyIDFPaWtPoDukgHc0o1iuy0QTYcPL5Z1y6js18j73DW8RRwt7+Pr7nUS4XLM4uCYTP8fEhTkpWywZjFYPxHl7oKIuGclvTNo5kfMDeIKOsKwbDKeFkl6oydLVlOJpixrs0izOs1jTrJcv5FY6WOAsQxlDWNVjThyp0hcDdiNc6/EBysL/LbDYhVAFmW+G6FuMrPE+QBgHWeZyfXuL7MTLqG56e8MF5NE0DsiLxfJTzsMKh11sGyke3htAKJlHKJA0xsU80GCDTfpWvcQIVxXiqbwQKHLpt+5BFIGjbGrex/SHhHNKB+hcC2f5lBVs3dE3bK+qtwdLRif7VaUNbV1xdnDHyFXVRUDnLXBtO1jkqr0gUaJOxLS3b1YrxaIc4zKjWNVWxxeqWrm2QTpMvr9msDJfrmjke11KTzYbk5RUqGmBMjdIt4yxCJCkWj7ZqUXFANhlx5KBebagWS8JtSZQ3nD05YXcyYzAcEQYBy9WCixdfoHxFW7Y8/+RTVBiwf+82451DPj14iaLtc7avPXjIaDRit21YzOfk6w17ewe89tqrDCYjzjdLugDG0zHj2ZQ//I//kc/ffx/p4GK54c1X36JYl/zd3/5XOrNFqojlJkcXJaH28DvLJIhgW9FVDS+9+hovf/3rzOfXZFlCGKW9WPn4gLLKmV9ds94suH72OeV2SZRNiCe7BJ7CCUNTLtgsT7G2ojUGawVpNqJrOzzVu1SRfcopHo7Z3TugblrKqsaPM7IoJXMS5fnEYcQgjPj804+pnWO6t8fs+oJP33+P/PqK4uqSDsf1F48Zj0ZcXV5Q5FvS4ZjxzgGeHzOZ7vPS62/gnOOXH7/L9XzJk8dPeXT3K4z9gNH4iAgo64bL6w3VZksgBdr1sPP56TnzJ49p1tfkyzkNFhn4RELg6pphHJGkIdJZxtkQGSrCZEw6GiKkh4eirTuQijpvEK7DE5LAF3QO6mKJUjn5RtAVBZEUiDBBG9UvfdQNtoEgjrCuozUS20AWpnSRxKUh2heEUuJs3zhLohAviFG+h3MGa3XfKTY1Tad7HEwQQ9v3hazW6PZLTDp1RtPdNJlsZ7BGo3VfwKauOX1xysmLc2yWMgpDVuslxvMZZilWa6RryNdL7HiHnrHYITzL1dUVbVEwTFPKbUFT1TgihBJEiUdxNafCoG2HLmv2jqakaUTRbJCmIrYd8/MFi9NrUj9inKUknkdX1niVpixqHl99gsEjSFL8OOb+Ky8RTfc4mo5ZrxYkhxH5MkcFitlkSt1oPvnkE15//avsz3aYXy3oELz+jW+iuw5PetTbHNlq/uZP/5Th/oTfeeMP8D3JaDwmffQy9w8O+d/+039CxQPq9ZadbMDDW3f48MNrnl2csFptiKzhcDTk9v5tvvLgEfu7u9y7/4jxbA81zJgcHiKEQ9MP99vNkrPHn7BcLrk6e8H5s88Zjse8decldo5vYaTl9PQEpQS+r9DGxxce2lg86dFYjZI+nRX9Xco5mrphsViwLXKCMCSMYgaDEb4XIqVHqAJs25CNxmwrw2Cwy9FLX+FHP/oRxfULvvjifZQCFacI6VGXOabVSBWgwowoHvHt/+7fcXDnDs9Pn/Nnf/HnLFdLfvzTn3K0d5uXXwEVBkwOj/CkR1EVdNYh/ZDhbJ9udc1qMWdxfUG5uKKtaxokld4QS0ksQDrRJ4iyjCiJ0a5DKEmS9JmBpmoZZCFBOuFscYYruv4JxzlMBzbPwYvRjabd5gSdIUkidKfwQoUXKwx9fng8GKLLGutJlPJZ1zXSd+zuTCmalq6qCOIIlSYYAdJ1NLqmsxphdW+Dlx2+8uks1CbHaEMUBSRZ/OUVrNFtX6C6RTfNr191XZOvlpw9P0MbmBct67LBdA6pNT6QxT6hlEyGKZPxiHprAEfd5GhT4/s9PlXXGmf6eN5omDGcJcgk4fHlJZu6orWWzbkjPdrj/vFtlsWa+ck5dlVw5EUEVpLUGltv8DuLNZJBkPWmgeGE0dEhajhERiFVWVFvNcW6Ym0L0jgjihKcdiRxzCtvvMF3fut3+PmPfsJHjz+DZycwnnD3wUOsMcy/eMzV40+4/OTnROY226cfo/cPWC42/M1/+Qu+8vAB0zRlsc3RmzWUBfd2D7h/8F2Wm5L333uP/PKCN156yDe//huUVY0IA7RUNB1wwzFu6hLnKpYXz/ns3Z9y8tkTbt19yLe++W2uHz6kqBsefeVr+HHGulwxHE6ZTEeURUndVOAsAqiquh/+S0UUZ+AkrWkIw5DtdsViuWA8nqBUQFnW1PUGozuSKMbqBtNZBpMdGqc4XSxZNxUy9Pr5pjXESlGUBZ3TCAVFvuLqyac4AtKdQ+689DJ/+ud/yp/85z/Bcy0nz55xfX3F/u4lVsJwNiUMI6IwwA8TbOdIR1NWysPc9EiqskRrx0ZrGmNxvmI4HuL5MXgBnZU0taETjjhKqMuGuqloiookSohljENxfbHAWsP6coW0Ag+P3G5xjaZranwl8cOEIAzwkhCRKvKqZDDOmM3GzM8v8cMIP4iIvAF1Zwg8x6bYYmufzgl8L6JTik5YqnJ1Aw40lNstUkIURTTkFEVFmCaMJ/315Esr2N6y3mE78+ti7dqGpiz59KMPyVc9F2e+LbCdJlSKSECWBgzjAF0WhGqI5FdjHEeRr0jjiCyMca0l9xV0DtdporAjSRW7szvsTQY8Xy7JdUsWh0xFQLyt0bUmDVLivQle3WG7GiUEnQe+CjBNh5QBOwfHTO/cZbh/xJ1XXqOqG158/oR2veKNr3+DZ9dX7O0dcn12xnaxJhgrXn37bVwS8nw959Fbb/LgpUdsqpqLswu6tmVx8Yzl6aeo4oKnP/mMT3/xA8R4hvFiVvOGsCq4d+c2wzQjvzwj6TR50e+eHsZDwgevcCo97h8c40vF6197m72H9ykclG2DpzU0Hc8eP2a1OGFx9hlPfvEus+kehwf7jA9vM3v4GhJJ2zrWy4rFekNZOdrLLWmSIYSjLFakSUgSRSAUYTQkCGI2q5xfBWt0UzNI4l6uXJXQdpRVQ1GU3Ll9h2wwYGXmXJ4/I0sHWFOSDBKWizW57jDWIMyCOAmxN86bRnnkQtLWmtOrS975+c/44//9j7m6OmecRozGU7721leZTHepLSyWCw5v36UqK+brLcPBCKtbmrZFhSFOKoQXogQMQp9JlBBJyWwyJvIFySBhs12RevGN8CxG4GGNoakL2jKnNGumwz2k9ZjPr/B9DyUVnutxo0WxxZOWNB7gxwojoJMWZzXZIEYpyIsNQjniJKEoSqJ0QOSn1HlF5Byek5SLde/tTSK001TlmrIuUdKh65ogjmmr/tDbFiUqUD3JUXyJd9hfPQ4brek6jdXtTSxsy2oxR7nejma0xrkOTwqE1oSZz954gBh4VNslL040QsDubIKSkk63GOlhjUUqSZgEeHgkaUyc+ZR5zsgThAcH7N2/R355QbW8RqwKhkmIDH0O947ZXC9YzE9xUiHTG/6rMXhdxyhy2GrJF7885/SLTxmkA0ye02wWuPya1nl8fHrBZrHEdZbX7zwA38dLU/71d79LKHxGwyGbbU5ZVMzPz/vdYE8wHA1Y6ZyuzEmTMXfvHFIMHLG0iKbk/MkXbIqK6SijvjonGYwo1jnH4wk6iZmOBrzx1leJdmZ0nuCllx4hghBHr7Gtthsunr9A6Ir9vR2iJOHk4pTk3stEMqYzNb4X4sch/zdr79FsSZKm5z0eHjriyHuuzps6S2RX1VRVd01PC8yQQwwGwrjkH+DP4YJckGsYzEgYF6DAEMYhDLARGKKnu6dVVZdMcVNeefQ5oYW7cxE5gHHXi/oHx07EF+7++fc+T0vBOQAAIABJREFUT7sCafvYtovr9mibmrqs8W1BHPokaUkcjRmPdthsUtq2JV9tMGiiMHrzKgjatqYqcqLQZ3cyoi5L1qsFl2ev2RmN2Cym9Poxy43DMmvIqhJtGvYPPJCSvKxx7JDxjTEHk2OUFvzzf/4veHb6DAFURUp8eEBT5XhRwHabkhYZ2rQEoYelWtoyQ6oG13Xo7eyxc3wbx3KRrcY4Hoe3bmO1Ck8KVFMRxgGttHEtSbJNQHgYIxmPeoT+gLoo2GQ1fS9iMtpDVarbuhsLaVn0Yheja4yusFwL4QjqskbpBt/xifyApq4psoReHGH7Nuk0oVYtYRhRZwWOAeqGNitptMFEPqVQVHVO1VTgOujGYPe8DswmXRw3wLY9km3eqTu/rYI1xmC07lbav6f/65btZo0xCqFAVS3CtHieJLS69H2x3ZCuJZNRgNIWnusQhjFVUZJvEgI/JE1TtNJgg7Rs+uGIqD8EyyJNVjiW5PaDd/ngxz/kb/7Nv0KsFLY26LwiUxmJG1FWJbEf0ds95uY77+OHMV/+8qdk01e06RJdJlitwNOK0IGsXkGzoFjVHJ28i73f46UylFXD3u4++ycnCOkQ+xFVVnB2fk7RVIzGY+68+4D7D++zev0Rf/tn/wpHSI6jPuPJbeLeDkbnvHjyNSpP0FVBICCbX1NvloQYYjdg+vIZtw8PsCyYrpf0bYsnv3jEdy3J0VsPmC8X1HXJYHfAMW8xDGzOnn3OaruiF7oM+iGrZME6S/H8iKP9Q05uHlNUKdPpnCCMUE0GSuM7ktBzWC7WXF9e0LSQZynaNLRtBRhq6XV3grQgLULfJYwCdNvw/NlTXjx/RpGnrJYzRNuglaIf9bl5fItKteRFwnQ+RaG7CJsb8Id/9Kd88O6H/E//3X/Pb379KW3T4loCoRWeLbi+Oufh7/+QrTZgW9Rtw97uGIZ91heXvH5yysX5GUp6vPe9H/LNz39Ku10TxDHj4QChNGWWdakbPyK0JHWyxHE751PZdteKBgvPD/CbFqFrgjBkb3dCmmRUZdk1ioQk8COaUr1prCqqWtFgUKbFkzatarAsyPIUjaIoCywjWKQZplY42gVtIzQ024Q2T2gciXQtpAZdGxzbw/Viol6MjaEscrZ5wTpdYuTm2ytY3XaWa20M6g3TBqXIl3PspgIlkMKCpkWYhqqtOdifgKnYrhaoSnL31glawasXZ/RDH9MoNstrdnd30dpgADf0CIcxXuR100fDIdttSV6u+Mlf/TuWl68RZYHt2IRBiK0l6fIarSEKewzG+9y8+y5C2lw8f0a9OEeXOVWVsk4q/BOPQhhUm+LZLXm+wCoTjm7e5vz8mh//V/+Q7/2Tf4rjOFyfX3H16jXr1QplNOFw2E28+AE3j28x2L/NH/83/y2Xr16QpxmR26PaJJx+/VPqIuNqs8LxI46OTnjy1TfoQnE1e8nuZJemyCnjkNGtW4T9Ab7rYKmaMlljGcXOeIhGI+0jbt2D7WrGF0++oDfZx7Vdnnz1JZW2kHGIJSVVXRHHEdLuUfYqLi9eUW5WaKVZbzZstkvquuM4XZy/QrourWre5JkVbZYjLQ9L2jSqU32uNhlZVrFYLKnrips3b+L7Hl9//ilVWyEsg+s6tJUmDGLK/Jy8KLFdxbv3vsuPv/9f8n/8b/+an/38F1RVSuQKhpGPLzyGcZ+yqPDiPjvCwXFdkuk109mUJklYnV/w7JuvyJVi9/iA2w/f5XJ6SXnxmiiMaNqazfwapcCJh+wMRpSzc1xbgwtlldNo0K2iygokGmE0Ritc24Www+dIqTGqm0Cq64qmrHBau0sD1zXKaFTZsMgbbE9i2YK6bXE8lyItkEaSZwWmAakbLMvFDaPOPVx0+Bp3ZwiuT1ZWSMvqyCCd543NdstiuWZTKLLfjcH2O66w+u81750WXlgSoVra7ZLQtGjLpmxbIs8lEBrfhV7s0Qt6JGnnziyKhjzJSDcpgXSwLYkULlXRdk5Poem7Hn7PwfMttKghELgGTF5y/vIpVlEiDGg6LE1TVuimwrYdNIbVeslf/9Vf4LgeVpVjOR7bzRJdd7S7b758hCUFo6FPL5S0lsXlxWsWhWB0co+dd99jow3t5RUvnj1lf3fMya1D/CDA8bxuTtR02sbPf/MZ926/jbNzgzAuGPouX79+ymp2CVVJuk64984Rqmm5cXQL9/AO56+eky7mGEtTty03794jigc8fvRb6nKD06TMnn7JIkkxrsfhjZvEcUyyXqCMxe2771KVDYukgCBidzRmPNol2SZII0g2KzbrGW2ZYJru3KR0N9SvjEbQ0oVcLBzXwZIueV6AZRPEMYEfURQFPely48YJji0Z9COWiyuWixlxGOL7LoUrMcLHjiLIC+q65e6dtymyEs8NORwf87/8i3/J//mv/4zVeoVvK/ZHMXcO9xj1hpzceEAUjXnxxRPSoiRdzlCrK1YvnlKs1uR5iT8YcfTwXe68/wG1ZzO+c4dZmaEMWI7AiR3ieMz4+D66qcizNbLJUAhsy2AhKbIU01bdMQ6B4/hgZJdfdR1c7dPrDambhu12SVW3NLUBy6GuFFo1yBqKssX2JYoWDVhOQ6sa0AlCSSzlIKTXLWba4DoeQkCZr3G1wVgdFbGuKiwVYJkYEBTZhipPqCuLze9Ysb9z0+nvMaeWsBACHGnhSYHt2bTKoq1L4iDClwbXAKqhqcG1XeLQ6/CgBlzXwQBVVSEdh7ppaHWDG3Qa+1ZpmizHjw1xf4A2hjJJsZXCCIssL2haQVVrlGoRwsJ2bIRjc+vmIUnZkmQ5B8cH6P0Rjz7/FIqCtLomsAWWgTZVpK1E9kLu3XvIsnY5vvcO4XBCPNphtU156/3vEDoWp599xubyAimg1Yrp7Jr1Yk5dtNTTa2pE1zmfjHn21adU6xXUDabIUWnCy6vnJJuMIOxx5723ODa3+NXPf8o4tPmPf/OXRKNdhnHIQErOv/wMpMHyPbzBkJfT12Bs0rLmvbffY7x3g7pReDsVL6eXzGaXZJs1ZV6ysG2S7RKtSzANoecQ+D6NUtSNwTQaZWoQGiEktm1188O2Q68/ZDScUOQ5y2SNsGzKrIcIPa4vX9G2BXmZs91MgS4j7PUijOXiDyB0QywFr168oKkbPv30F/z05z8jSVKGPZ9JPOLh7RP2hgNOTm6zf/M+rt9nO11SFxl2sWT54hvUZk4/jNg5uoMaj8mMYnZ9xezsNT1dE0ddc6k1hv27t/F7Y6KdXcrNgooS22pJiwbPkp0nSVj4vkBqia1srFZTZTmtpVCWhR0PiPZvdLLvZItuSuo0ByNpNLQt2FohWpBKoWhxPQel66651oDEgDJgSxrVUpcVQRCgTYNULaKt8WSIa0ssSxN4Fv3IBSPY3x0Q+zabQhOkzbdZsP9ZmdfF7ATpdoWjG0LXpqhaWsvgqBpbQOBY+I5DW9cUeYalFDYWnuPiOi6WFDS1fpNaMAgJo16M47kYI3A8F9u1wVJIyzDoxeSBzzZ9g+GwLMqqwXYswigg6kW4gx5tm7FdTnGDGC01Tn+X7/zhn+Ipxd/+u/+Hej7FExD3hxyc3GZelrzz/keslYe3M2F6NUUEPns3b2Ch+flf/Hv+7v/+cwZaIZuCrEi4dfc2wWKB3pZ8fTFjnZdMdidknoOeTimXKwLbYSeMefz5bzm8dYd0ucJ2BEXTEgQuk/0JnmtTCcXxwQTHGF49OkW1CYOhjxN4hKMJdjhAuBF7tx8w3DvA9nuUTY4tFAGQbjYUVk6/1yPLt7SqRNDguha2b6MFtEqAcEFKbFtiOw55XtLWHRGuaRWr5Ute85qmKsmSDUVZ8flnvwBhWK6npOmaLM/QaFrVIB2H/miXw+O7DMYTQjvg0edfcHZ2yWY+5fz5c9wy4/Yo5oc//DFv3bzNXtxjejUlHI6Jdw6IJ/vcvnmP2etn2EnM+uILVAXuIGDnzhFPpjO++OwL+r6PbCp+9L3fI9jtY3ktbZNj2RrHtyjzJUU6x3YMwgmQlkdlLHr9HoEF5XKK0C1CC+osR4ga41q0biez7k32aLRitLtHOb+mLRvqRlM1qvPQ8iZVpgAhuyEMdGe1t7qjYF3VFNR4vo/UULQp2lRIB6gqXG2IbBvbkYwCj75ro4zgaGdA2w8oW0jrb7HpJIRBYxCWhZQWltCsri/whMa1BSjw+yECgWkrLEOXfrAEum4pTYknHcqqIB7ESCNRxnTeMGnh+d05RmkNUoIFbV2T1hW+9AGLsD9kvc2RngdKEEYh0BL2PWzfQluKbTLHqJyqNlyv5kz6E9xohOP4fO+P/4T5k8/JV1Ns16WQJZYveXV5Tmr3eHj/PtGgj0uLaCss2+Zo74AP3nnIq9/8mmw+J8s2PEsS8rphNN7nOx+8T6EN5+dnpFlC2zbY0sHorkmHNjhScnx8xGKVEGmLzfkUXwlC2VEILs/PuHN8o6M3IMiqFltYbOcLhhOHOB4xz3Niy2YQ9cnXORePTjk+3mXl95mtlkjbIQgjHMeiaQuM0NRKgO6mmyQSYWmMlLRCIKym+0+DGG0gSQqury+pyhR0TZnnJGlC01TYbqdbqZuKWjWUTY0TBLRJws0gYL5c8eu/+wvOnp2itxn59TW+atmxLfY8j13P52gygUYz2Nnj8O4DPvzRj1mVDYWxGBwesVhfkmxzVNFgSFk/fsSnj74m32yIxiNu3jxmPInIKwhwMVlFUyRs2xqlYbOco4DeziGDaAzizdBHnqCTnDRZgWo74J4raZsKpQ2OZbBQJKsZVZXjuAFNYFC2QZUtlm1hpKA1hrptOyWk6VJmSmksoQCDag2gcAOfIAze7GIsjKUR0oamwUcgjUGWDdVqgxYWnjT4jmTY86n5FrnEXdG+UcADtgCpayLHQpUNNgbPd8iyHN3UCMujLEtc2wZtaMuG0q6o2hJsgefbOFJi0X31HbcjOChMR/dvWmSj8aWNtloaZaO8kHDvkCjqc7B/RJFnbFbXCJ0Txh5J09K0JW7ogh/w9nc/5Ob7nzBbJOzEMU+LGfH+mCRbsE5X6HyDPzjg1XzGJ//4BwTDHqqpWU0TJsf7CARe2CPeOyA+OGR/f5/Z5TlFXXJy7y6//8f/kHvvvs98seTe7Jrnn/6G86++ZHN2hmi6UbiqVjw5fU4U99mdHLK6mnH14pR0MyevcpzRiLPZks31gigKuPPuh5w8fEAwHDBfLhnvTJgc3+quqhwfy1jYGKavXiHKlIc//BFxGHJ1dQmWxnYlruvTNA2OdEE0GF0jbBtHWDSiS6mARNoe9x68QxjGHJ8s+fKrL3j+4gnptkY4NsPhAKPVm+eaEFddcigpsi56qCwunr7ib/76b3l1+hQPIMuJlGYQxwSAV7Vcnz6HWhH0hnz4Bz9k5/iYoB+jZMHlq2tCrVmdLzjcOUL5AUVTc7lZ8/LVU4RqGcU2w50+y2SDH0eEozGFVqgypyw2Hejcdjh492OO7n6HxjhskpzNckXTSvxjH7fYYjUtxSpBGI1tavy+h+crFrPnrGeX6LbCHfaovR5V0eLZDoFrkRcpTd1SZgrTdHO/0hJI0cXnLNsi7MdkSUKpa3q2IBwMsB1oy5yyVTRZ1S16piLVLdkiQdkWvX6A54HrWl2tfGsFK/6z4t2WFhLwHYkT+qzyCqMUuqlxLNGZwAxoZWh1jYWFMN3WIQwipGd3XyBp4douju3guJKsyEnKjPHehJ7v4hpoi4pCtSi7R29ywN7tEVHYp6lb5ptXZLXBNA223/lUsASN0WjVcjG95PrnP0ELmHmCzfKMvEgQjkMUDbCkg7ezz8d/8qe8+8MfcT1b8dnPf8bh0X6HGrEkuzdP8FyHvC44f/wYe/eQP/z4uzz4L/4I7XjkSrAoDXs37mLVmnqTQqNYvD4j22aEvSE7hwc8e/6Kwdjg+A5KQl5VnD55zvCg5MPf+x6Wa6NDm9sffZ+bH39EBVibLbujIel6S70uiHqSOklw0MRhQFnXvPrmayZ7uxyP+mzSDVmedZR6RMdzrhPqak2rG+xgyPjwLkifeVHgBRHS9hDSwfNDwrjP9//gR/zH//hXFMkbpYgQFGnB7HpOkWYdOLxtqJuW2WzNcpawmm1wTY3tSELp0PdDItdnZzTg+PCQw+MbiCAk3J2wKgvGjt2pOcsCr05ZXM9ZrpYM4gjLU5RNxunrR8yKAl2XeIsZD6saXwlG4ejNPXEFUuJ6NlK6jCe3eP+P/hmDvRudCzevaIqKJkuoVjOqzZz5+VOmz5+j1itsUxOPXPyRzXQ1x5MZjScQ4ZCPv/N9LDfkr//9n2M1KZZsEIWFrrtdiVYK27aI4qDrnUhJFMcIxyJPE4q2xHcH2JEPQqO3GW1Zd8QMy6bdlDRWTYmmSDb0Bx5IEL737RWsQaDeWKNdy8KixXFEV3zSBlqqvMKRNsJYtGWLtDueDUYgbdkZAIV4s5UQbxT1Dp7vIW2BkN3Z1bEctLIw0qWqK7abmltvHTI4vEEtBLVx2Du5Q4OP7XssLr+hqCsMDbbTNcHSquDFkxwlXFzHw5EWFg6OEzA8uYdn+1SN4cH3f8zDH/8hVhDghCXecMT48AjLsjuMpu8wuHnCD3f+KVeP7vA//w//I3mSsfvRJ8RDj/NnL/nyN58S/N4HNGnBeLDDwSfHTA9f8OyLz2iTLT0/YLi3z60P3uPF6VOc8YRPHr7PdD5ntDMhHoyJRn2q2GP/7bdppEtbtzjSo6xqvvn6EQf7hyTrhM9/9WtGQcA77/8e/Z0h5y+e8+gXf4cqt9hBQLS3jyUNtaqoSgPlhuXFc4qmZv/OO9B21zRKGdq2JS1KSmW4ur7i8vIMmwZdZFRFSgWslkuePXnK6+cviFyH0HXYbjMiPyS5WqDLhoEUHA7HjHoDXD/mnYfvc3RyQhxHCGPAaA5ObnLjrXfI2pa4N0BoWF3PeP7VlyzOz9hMXyP6Lko2LOqCx1dX5Fg4fsi8rFk0NYeDPqLfQyhFIC2cv7c+ehFH999jdPsdLM/FFgKn6d4xoxRNnkBTcXB9j+ef/ZJXX/wSlVbUooZqQ12usS2obYc2CDGjAe+8/zGXyYpvfvUz3KaibgT93T66VoimxRWaMPLpjwcYofEDF8uBukkp65y6TAh8iev5xLGFVTTYrovr2FRV19OhLtmkW4yKwHWxw2+x6QTdsLQNOEZRpBsEHSDNcW3qAtAdneDvV1PLSCxhoYxCSEGjayQSKWx8P8Bx7TfngxbH9hkMB0gpcSyJLSSmNUyvlujWZna94mJVojyX3s4B3q6kf+ceW10SmYJyc0lTr7CKHEdLaiUwroclNAKFH8YMd4/5+JMfYCvNq2evUDjcfv8jZBBhEAwGfT747ocM+z0EGl0VlEVBWTeYssRzHXZGI+J4xHKxxvN97DbHUxXL8zOefvUpZ89PObn1Nm+//S4XZ8/IipTFcsHO0QnK9fHiISYp6d28S3TjNgbDqiwokw07vT3S62vEOuXqxTmb6Yzjk0OCWnGwMwEp6f/gR5x++SV+EGK7Hke3btNzLD77f/8CtU04vnWPVNeotkJKyPOU5PoKP+pTrTb8+uxvyOsGzw1JKs2nO59zfPsOtoBHX/6W2evnNMWWSimifo/Tp6fkmxRHGTylyKdLmqSgsAMOox433rlFGIf0XIfdvQNu3H/Ij//RPyMcjCnqmjRJmF6e0SjFwa07nSjblszPr7m+uOL15TXjMOAizchXMwaTIctFynaRo42DG4VUpuHlYskdy2JRl/T6A6K4h+e42K6HFw5xJ4e0joNjya4vYtPJkh2J5Y3AGLwgIklyZospm4uGdbnBSg0VIY3jMLp1h8MHH5Abl1VV8/CTP8BxbF58+ktaseDk8Abb+QpTldhGIywLN+r4yGHkImhp6zFlmlFmKRIIgwjP66auGmVAONh+H+oKUTSoSlDmCjdrUOW3mNbJk4TZ1TWmLJF1Rru+ZBw4hMEAq4a2KDqQlDJvGE1dJ7ltGxCg3+AzLafDU2rTYtv+G2aVRVHVBE1L6DjUZYGwbIp1is5zHHfIbLGijhQ37z1k7/gOt99+wOBgl8ZukXdvky+nvPzmZ9T5ChyLwOvhDw6wnYgo8lhsFuzdfQBewIsnj2mMAumS1TVD0XFlXbezf2vV8OTxI04//Q+srl/TtA2mKKDoZkrDUcho0CeZXvPs80+xqgxP7jLZnVDXFZOjffrjIX6vx/LqCsv1MI7DdLHkYr7h7Q8+hjBkvV7w4YcfsFnNUcmCSNX87N/8X9y4/RbltuDs6SkXn/6WwY0DQsfh8OYJTl3R9x2K9YrTl48pWk1oaeKDA+bXc5JtyuTGMenrjCB0CYc7XAsbWZZsX73k7NU5BoMtAzZaYI0vOXt9yunjx7z45muadE0c2Ny6c4fJ3gS1M4b+EO+WZPb8OekWtGtjmZb9vs/7d2/g+D5FmiDbGlsY1usVhbEwrsv46BDP65CtgedSlyXPvvmK2fkZ+7t7vPe9j+nLLph+/uQR6+mGdLbBqS2UrvGCGFyBiXq8XqxZpBU3Tlwc32Po+wRxTCsEaV3h1RVD2+4K9v+XLe1Ii8aPGd18wGGWo/0+VZEShBF+EHBwsM/O0U3i3UNmq4R0uyWKIt77/o8oy5pS/ZYodrBqSb5WRH6MF/UomoaqqruElOcznuyR2BuKPGGbdkzp0I9B2ORFRasNXhhiRCftDvwexmjytCat02+vYH/y13/N4vqa2Bbs93x6sqbWNnE/otcPqIsAR9jo1lBXbacf0KqjKzgS4QqEY+EEnSHb97pgr+N6OL7XMXCEhW4USZLTSod8k5FuMk7u3uHGR9/HTA64ff9dijzl+VefE59FLOczPvrBD9k/OmT3pxNePP4S23PYO7nPzbc/5OpyimpL7OkrUm1xudpytUkZ9fvEowmTwyOU0gjLoHWLZUFVlnzz9ZdY2Ny5/RZtkZBNL7Aj0CIiGI5Zvr4gX814+cVnHUirrnH8mMlkn+F4yGazxgiBO+jz3sefsG3hxr13+OAjh9lySZrn7B2eIIzFOBpwdfGKv/3JX4EXki/XvPfBx9y6fdLxfqqSYj7jq4szXFvi2IKL+RnOMEb7Lq7tEuwfYZRgdT2l3x8zDEeU2Rq30sR2QLpZUxRrqstz1vMFBgfV75NPLzhbrlhM58imYbcfs78zZMd1uPzmK5qi5vbJLXzXxQoCItfD9TykgFHs4JZbHGnw3W41zOYzfvvzn3H3vQ958N77RJ5Hawyr5YJZW+HZFtVqyqtvvuCg9wmBsHn8xddkyyXDXo+L81ck6ZbA9xl5PfrjCe4wJJzsk2qJLXywfbRWLGZTtssFZdUSDvZwvYBhGEEnysCYNyO1dFtn7Uh6R0fcDQPsnT02mw0nt+6glCHuBTiuT207OAMb6oZtkWNJh4P772J0jZq+IAoMKuuioa7vk9YtaV6RFxm9yMezXcLBECMMTZlTVzVCFzhugDEGbejm3W2BMvLNb7NoKkORf4tb4qePHxFYcONoj3s396FcE7uCIHDZ3RnTi3ykkRR5RZYWiPWWuunEQa5nYzkgpcF1LQaD+M1MZYjj+gRBjDSGpshoyhzRduQ+I22UtFjlGW8NRxw+/A5eP+L0J5+yfvGc0bCHE8cUdc75Zk4T9dm59za9fh9/vM+iVuSujxO6ROLkTXLniL3Dm8RxSDQYI6MIIUWHEc1TBv0eQeDxJ//onyC0jY1EpRvOP/0Fq4vXXF0tkbbm6vQF588fEXsBRVFgSw+jum1Yully9vQxbV2xf3RENOgTORE3jo74+S9+RdAb8NFH3+XV6Slf/N1vOOyFnH/5GD3d0JIQ79/i5aNvyJoGKR1G4wlXL17SqorjvQmWDW6d41RwcnK/i8NVFX3X4dXpc55sc/z+iKZIuXrxNaZYEQYe8+0CVxkoq64J5XnUeYbMco7CgFDGHO3uMOxHpMsNZDmx62GXNU1R0fdDtOPhWYrQtYikwZQpduBjWS6ibZjEEcKWLJ+dci0Ek8mEp5/9mvVqTl0VhIFHmaekl2c8/8wmtD1ef/45nisZTUZoF+TIJ7KGZHXLrft3KVBkdcvOfp/R3jH90S7p4pLVdE6ZbHC9kH48wtYKjP5PqZe8LHBspyP1YzDCoCU4wwH9GzfZigtMr49nuyirQ+W2VU0Q+uwe7EPbYpqGURxTrc5YJ+eIRhDFAbP5ik2u2BQteZYgdE1ZFMS9iMnOGINC+D511o3tNlVD02oaSrJWoZVms02QFjjaxrgGy3yLXOJhv4djGt55cJuDkU+bKXqhy2Rn3J0PfIc8KRC2pGwbRntjqqalqkqELXBdC0u0NFVOXVqE4xDbtfHDELQg3SToPMM1mtjzcWwbK/Jgf4T0JdOrV8zrmltv32e7mtHWOdm6ph8HuKrm2aOvUVXRUf6q7lqopiBvCyLHQ3gR450Dbj14hzePDyVs1BtebNvW+J6DbUsEFr4fApK6bJitNqyLivOra85fvSatnjLev40twBvu0D+KGewd0lQVVZZQJmvy1QJTltx+6y2uri5paguVNVw8eYRxfPpRjyDwKeuSn/zsU24NIizhEghJvUo61rOUDMYRoRuwe3xAnixYnj1HtCVOaNPWay7LDWVj2MzXpNMp169fIZwe977zXXq+y+tthqprirzCCJ+4P8EYG+U4DPf2OFaK1XaD0Ia2LPGEhU4Kyvmag509+v0+QlvkTcXdB++wivuUmykODf1BD7/fx4t7jCZ7tEZy584tkrzhm68e8fw3v2Qy6JHNLxFvKCVtv88mSQkth/z6mnVRsrw6xwl8nEFA7cLWtJQBxP0+ti8RlcLzPBzXZVtVXCw2RHaI1xvhuT7Hxyd89Af/ABkM0HQ2CaUVeZ4RBAGe5XXbZNENJljSJu4PkbMFs/kcz3WwhIUjLXRb4g56eI5DEPWylqDKAAAgAElEQVTJ1mtW6yllmeCFPulGkxYFRZ6zLUsKbaPbGmEamrbGC0NqDa02nTJFdODCNC3JlaIGWluilKZKM6QAt7GRQYdf/dYK9rvf+x6b69eYtiJZZYz7HuOdIZbd+TAb1WA5FuN43AUDhKQFsjwnyTYYOiC1axxUU5NnCX0vxLZtkmXG8mrGwO7a/a5sqeuCsOcS+BEKiaNzivU1sXjA7Zs3qXZGvHr9ApVtefXoESd37rAQAguXsq5ZTuc0to3newSBz97RPo4TYWQ3Fqm0pjQWSjc4psb1bDxb0tYNShsEEte2Wc+uWczmGMsHJ0JJj7JJGO7tgGXhRhHHd+8zHO5gtTWvH3+Jyipiz2W2mDGfzRBeyGo+Z3U+Raqawq54+eIUJwxoHfjj//ofMwxdfvW3P8GqWlQ/wu5H9PsDYi/CCwOKImd+dYEpU6rNgrjx2cxy3CDEciPyVYLJEga2xbbMePLlF/i2g2e5bBuNE8fs7PRpmpqDW3dopEVd15jliu/cvEuWbJldX6EbhWUEe/GYSAZUScXO0ZD+aMz+0Qm7e/u8fvJbdLHBSIug12M42WV8coNNmlO0JUY17I0i7HLLiy9+jVdssTAYaVF4Htu8wkgP7849pus1mVKM45CnVxe8Wi0JD3YYDnuM9w/RKKTQSKPJs4y8UggnpH/jBoN+H9e09Ma7tH6Mcjx4Ix23LEG/32M6m+J5HoN+H1s4CDpot+u4HOwdsJxfkyyXtE2FbYEwNeXGRQqL4XCHy+cvuPz61whdg5Q0RlBrg7Sd7srGCJQ2HZaVzs6QFgVNUVDVNVVSUG4LirqlFoJCa4zr0DQNbVNjWwJVKRxp46pvEST+D777PR59qlmdPcGOBMd7xwhdUyctrhvgSZe43yfLSoIgwCCwQ5/e7pAo7XdoTc9FNAWO0J0i3hiqLEc0Nboo2VQVypYUodNtYy0fXJfhZJ/4YIe+1+fl2SmOJcmrnMOjQ15fnLG4PmO0M6BVFsL1iff3aS3JNs3wvIDRaJ/h+AjX8QBBN1jW3SVrIajaFltXuDg0bYsQEkspqqKkynOOT47pvfcO9z96jxfPXzKfLRE1OIHHzsEuvX6PtigoyhR/EIIvGN8zDG7fQ3oBjhex/9ZHFOsN6WLGVmkefOddpKV59cUvqTd9npylvPvx9xHC4Xq+wJKCXi/EVg3onGKVsT5/jN5OEU1Fm3koaaMLRdy3kXWLGw7R7pAP3/kAGQ356te/QqVL0m3JTn+Hg5v30JZgMZ+TbFf4doAnU5aXl2zmC6SBwHU6zM1gD235LNdr7t59m+vL5+TbOdFggBIWRWuIHZd+3EdVJWcvTpG0DNoN16+uqPH5+Ec/5Nbb7/DVf/hLjG1x+92HbJYbkq8ekWw2LJZLZBQxunFEKhW/OT1l2xY8iA/Z39nBi3tUaUrc65GUOaUuGcc7bNOE5XbD7iDA8QNkHLOtGmyhEY55EwuxsGwXx/N5df4SdVZz6+QWo+EOQji0dUXg2hweHbHdrFkv56gqh1aRblcI1VAvrrl++ph88ZyetGnLirg3RsqIaGxYP3mJKzpyqJQGJ3ARrsAYjWkE6bYkT/OO2YRAuj52oxE4GGNoTY10XILYB6mo6vrbK9g6v8AVKTsDl6P9MWEQQGtwlI3IFNvpitzLsWyHtqgwSoNS2IOIg9190jhD1zXLyxVWU3N8+yZYFpbqfkEUexR1RV63nTFcKsrCRQoBwlDVOUXVYjsO621CkWYopfDCEGlpZvNr7J0bjPcO6O3s0gBuLyPwXNKswAsyXNfuBjqM7lQJAmxhOlq71jRaIz0X2whUnaDLHFvnZFlBf2/IoH/I+3v7VFnG5VdPWK5WmDJlm6zQZUmrWrzARTk9bu0eMBiMkV6AH/bIi5oyTXj81ef4ts3RyT4//bd/TrNe8fg3v2W0u8diPufo5Bau6xL6HrbRNHnO+ctT+qEDdUFTFeimojZ0VxbCoJKSqrWYTPZZLdZMdg9pMdw9GXH66Sk91zAKXGLXR1kOK7Vm0j/Acx36/pjTL76gzufs9fs4tqCuG4rFkngw4eMPP6TYTNlenOG1NXHcY3e4Q+J6hL2QzCiyzRZUSbtdsKgKygr8ndtcXU05vHGL8OAAJwq4/93vMb+aU7WCJNkw3y5pijWVI7hcLallw97RPsY2ZEXGdLWFquStBw94fTnDDsY4jk9dlaTrDW26IgtdhAHHCXDKhlpCFAZEfoQERsMB0jrk6ek3PP76Mw4Pb3Dz5j20aqjaFi8IiUY7DMYjFpdn2KZhu5lj6pJmm1AVKXW6ZlkUSGXwwoj+uEdZGJSpMaogCgRh6BGNe8SRS5XVGNumQJJXndKD7hNC3WqoO9qo0XRmADeganPSrPj2CnZ+9YSmXHJyY8JkNCL0AnTe0mQF5Sah2GQIryYeDCi3CU2WY3s+Q9vByKqDcrcl0rFwcOgFPSzbJd+u0LrCCz1QA1Rl8AODsmoauhifMtD3AxbTBYY33pnQo24tvMjHC0O8KGZycpvBZI9cKaTjcDwesZjP0GgcW4GpqFv9n0BqnudjlEa9AcoppbFQ2LpBVltEneGKmnVWA4K6KKg2K1S2JXA1qt6STNf40sFGMBwMaB2LYDyhUZrHZ2dstil/8IMfMzk+4uuvvsLdGfPw3fv82//1X5JfXnOws4vKW3q9AU1bIy1B6Dnk2w2Xsymu6ALojtHEQcjAO6YoSyw/Jq0hHAy4mi3Z2Tsmb2Cz2vDbn/2Etkposwuy+Rm6VSwuHLTwcfsjelGP4/tv4UR9Li6n7Gkfr79Du7hCOoZwEJPnNZau0OmSxatTytk1V4sFOi3oHR7hHdwgGPUZT/qcv37B8uUzTFUxv7oi7u/hScnVy5dsVhuEa9GgmC+uaXRLtDtm29bEwR5Pr59gbIfWMYwPJliBx2qzYbF+jWuHHIzGpJstVV6SblO2qw2hF3Hj8IDl9JzNfIEHDHyfQs3ZViWD8YST4xOiIEAIGPQH3L9zn2S1YLNes+mtSMuWli40XzcNvchHCIPrdvZ033dxxQDLdqiyjHozx0bTmh6uaqgKySD2qETBMAwII59gEKGFQstOD6IBpQ1Nozvif6VQuusKa2NojaEoa6wsp2orquZbXGG3V2vG8YBeOOh4QRq0asg2KdU2oxf1iSdDhJTUSYavDb4fEUkXrRQOLfF4iLszQmUlTd4AClNrorCH7wrMICAMxyhZIGzFcDzA9lyyWmPHA4JSs00XYEla18PrRUg/grCHjMfkrcEqK8qmptEtStV4nocXB1xcvuj+pEYT9Qb0ewNa1SlGpAHXFrieT1s1NEUGdYEDGGwC32d6cY2nW159/gua1ZTDhx9z/OAu6SZlO1vhxwMaN8DpR3ijMVIZHox3Wa/WZHWNV+RcTK+5eeOAv/yz/52Lp9/w8MFDlJIIHBZZRhRHVNrg+T6T0YgnacZkNMQzBdPXT1FNhSMFpbKxtMv7n3xCkmxZbEpGO/ssFxtoGtLpOapMoM0ZDydoIUhL2KyW9FyHvf0x6zrnrYfvsXYCHp6cMNA/4OK3v+D65Sl3799nenVFvllx8fIp6+kl0miapma2XNL0h0z2jxhODrhxPMGqG+zGInWnIALieACOi+tKivWMqt2gC8Wj3yS4QUytBVmT4w161GHAtsyZrjcski1Br4cf+ERhzP27t5CNZjWfsZxdE0QDlrNz1sZmd9itoEEY4mK4PH3C9PKS2rTsHR0zdCzik9tg2WgsBuNjhsMDRmnCfLHkenaNJbrnXlUFW8dBFTlt6EGTo7FwLInvd9NxuTKUTUqhSgQJPX+Xw8mAzK4YxQGu72B5gqJu0XWGqip0XWFpAwpQoku8GWhRKAPKEhRFRda2CGn4HbHEv2PBXm7pH/nQdqFzrSuS9ZqyyFBG0wt7RF5AlmUEjo+UHpZ0aOuGOAoxdUO56kLZpgVHuOzuHpDlGVg2tt9n7+Qt7r3/PX77xc8xVkMU+fi+x8uXL5kmOTKM8G0Lx/P56Pd/SDjcoa4Ns8UaN+6RtJo0TbAktG3FYpoSRRG1NGTZlp3JLut1QhgG9Hp9yrqlbjXD0McxLcvLM9aLNW2R0/MlvXBAUUtGe0cEfkC9vObi6VOsfMPOw+9y7533UBq2syVoSZLnHN46wUiDahW2tDuqve0wWy2QEvbHQ5Znrzja32P/zn1SZZMVBR/eOCFLUrJsi6gLXj97jG11Vx3ri4TtNn1DKpAIx2PQG3D67Dnzq3NA8OLRV3iuz62DCeV2wWZb4wcjBnsj3MgnzluOb95hUWdk5Za2UrR5xjsP7vPq9BkvTl/SpiWrdcpisSbwfFrbohEdYWR8cIOsNYxv3mH/3n3SRqEVnH51ystvvmZy8x7vfvIOr0+/RmuFwu78P66LqwKm56+hTKmrlLUSzLKCzXLORVtQa4XXmzCwQ4ajEWEUMpkMcGiZT6fMpjOk5ZBs5owGA+oKzv4/1t6jyZYlO7NbHuGhI47OkzqvfrpeFURBUhiNHHSbsfk32zhhkwbjDAQJVBNAAyiUfvKqzJvqaBE6wj28B6c4JgbvHxw7Zjvcfe/9rXX9jmdPr7CFTVs3ZMsFj+9fI6jR2YJREjEajfCTMVgSZcCyJGHPY2K7CNGxnt2w/nCH0S2NsQ5518DFloKSjroTWI4kHJ/QNi35zqapCxxhMHWJb9ngSGRnMHVFrWscL0QKfeg2SwvHdqjMoS9i2/ZhDms6OsyhOWuBFt0hU2v+f8vw316wiSvphx6+a2FLqPID4MsoDaIj22wp1juM/r1ezxIYaaE7g65rKApc0ZEkPbrAJS80bq+P9nqkNQRnTzn7k/8e++iYiWjZLO5I65zGwPDsnLooDtCsMMLxQ2arHU6uCeI+V89e4QQh96s5WbZHNRVdWx0CxrSkdcXJ6TFxlFCVCt+PqBqF50dY0iPdr/jw23/l9a9/xfnJFZeXT/CckG1aMzq5pD+e0LYNeAHHLz5F51scNwEc7MBheBnR5A37Dw8s5ivGJxMcz8EWhiiO6LRmMX/kJ3/wI5p0iesKPv78R8jBlF445NOzKVQF3ftrrCbDEYImtFgvF8zuLR6ub2i14fjolKLIGEwm4EiKNMMTUKU7irzA6feR/R6+Y7MRAmNbtBY07YETvNtlbKs97iDh5OwIozVx4BH4HnnZYssQNxhQ1w21rvACH6USxvIpYdTn/PSKq48/ZV9mJLZAVQX7fUbbCqLAJ8t2JIMeThTQCoeybrHQbFYls/WKrm3pX1yyFJJm0Gc6PubpyZj7x3vWywVmsaAqSgLfx7Rw9/CIKVukcTk5OSNTCl1XxGEf0ykcx0HaFvL3//OLZ89wpUI4Dvluw931W06vBE2r0aojSiIsKQkDD/fkmMjpyJeP5GlKawRKaaymwQs8mk4ReCFO0GNw+RLH73FhPqHcLtnPHzFpRpUVCN3RthW1KmiEJh6OCVybJnJxHSgbRYVN4PWQQUjTdbR1Q14VCNfh2ctn3D/cslnOkOLfVrH/poI9mjjYdkld7egaj7aoMNowHk/wfYflw5zlhwdCx6f1FEF/QNwfU4iaThWYssLxbLq6xulFOLHH3WbN1YsvePn8S+gfUyZDss6w7wyFATcIMKZlv1mSb1ZMRkMmxyc8Llbc3X7Akj62F2KMzeXzF0wnE5YPNxT5BlsemkpCdqi6pMxztts905NLXDcA4WA6cYBvhTG+62J3msmwz3g8IRqO+XBzQ2+coOqUD9cfiKOIn/67/4U6zXh494HFzR3RdIwbhmRpynI2I0l69McDfN+l04r1eoltWXz+xaeIruYf/svfMT4/5uKjTxDJJYQj6mzDh+++oV2vuH/9O54eJVCsaNMZ8iji7PKEh9sZQdJDmwOKtMlS9vuUdr9jP5+xXS1YOw7JaEw8Gh/gY6Khsw751Ui66FYTBz1efvkTjl5+xsN6x8N+zZMvPuLy5VPISv76f/2P6NU9vu8jrQ5bhcTxgMnxJfHghKLquL+f8/zFFZWqGYxGmFaTr+4o8hW2K+n7l1TSonUleVqyazuCoynCdKQWDJ6+4OT4iuUuY53uyIqcoirBOmSjHdtivdqglUsv7vPi+REy9Pjq+2959/odn336OdIWrDcbjsZjzi4uqIMAnUUI0aIti7xRLO5vME3Ncr5Aty1uGDA4mnB2+QQhBE2t8KMhn//ojyjrluXtHbv1ijiJUaY73M6iimK/x9I2x1HC6+2/0jWgy5o2zUB1lKqiURXaMVi2i+v52L5NOOxh/ACxbQj7J4T9MXWnyddbwjwnHvY4vTxltV3hhyHOD1mwTiixA4+us/nw2/fsH1dMz04YX5yguw43L7GCFUa3GGPRdhDEA3abDxTplq5IaSso2hrZNoSjUyzHYrFZchz4jK+u2KuW1eMtu+0cWygc18XULVmRozpFXhZsP7xjv9shlEa6ATIakxUVaV6TbWdU8zuWt9+zzzZML8/Roz6B75MvCgolSAYDwt4U25LQKWzAWAHPf/KXnL34HNNUJL2EfLtBioqHr/6F3YdbZrMZwo3YXLyg3NQsFzPwPOKTM46fPqc3Pqw5Op7E930EGlt2nD69IEtLOlXzt3/1v6HLjB/94Z8xefqSm9sloWUxSELqyYhf/Oaf2N69ZVcnqDKlSXcs5w5OMsQOLD7c3+Jio9uGpi6wbEOd76jKFE8KHGGwVE2TpkRRROd67NISIV1UsaOSDQQ+2+2O0zDk3E1YzldsmzsCV7K6n/Pk2QveZzuSxGGzmWOEi0Ay/3DNfrlCeiFlWfAoLcaTMevVjDov8MKWJt1gLAt8DxX32Gc1lpYk8RTvuc98dU+ZK56ePGH07BVv/u5vWD3c4DgOL168JAgTut8TOV3L5Xh8jDEdURxwff2WsqzYLBekqymBZePQ4ZuWZpDQd31W2ZyyWaLFQThezQTptUe2TzHGoIXBcgOWV8+Jw4SyKlHCpj+achT0ODp7yutvvmb9eM/JeMJwNODm/TfkszfUm4rlKmD2+jXF4h5RZHR1g+g0dV1jBFi+pPUVSuX0zq4wrkvsGTrXxQ9GBMmIsssON81egOPalOmW8XhIEPlI+QNuOjUaAiExxiJNcyxpk1U5eVviBSH94zG6rdD7PUVRU1Q5cZ7RNYa21NT7EkyDLBvIa6qsIpmcIA3cvPmK4PgCJ4rp6gJjOsq2wYiO2HWJ+gOU69C0DeV+T1vVGAPSOyQzXLtjPfvA4917dusFZZYRRQlBEGEJwfz2hipL6Z+cU2eX6FGDLQMUYFsWVV7gCoVnW2RFyird8/71a9r0gW63oF6u8f0QaRo+/Pqf8Z0+vuNhuw6BdGjrlqpVDKdHFFVJ0Wi8rsP1bVqtCaOQ6998hyPg7PyE0ahPme9ItzMW9zf0k4SeJ3n10QtcndLVKY4M8U1Llqb4wsMNegdBU9GAdFCtReDIQ663g66qqOuSaDCkMoJSK3zH4/R4Qq834P7tB7LVgk2eIxyLj/7wTxmePWG3WPL//O//idCCsqoIfA9tKppWkad7LGMR2ZIP332NtMGJYsbnF+it4W67RNqSQW+AFTlYWcv67i2KGeG5x2df/AlnTz6mShf8zd/+n+TaQkR95ps9a/09gevwo8++IIxjLMtBOj7TkxMc18exJZ7t0BlNZ1p++/VvsKWk1++zTzdcnR6zvX9Pt3rg7X7J0PV4vLnGtRscCUorqqamUQrddQhLoFqF5fgs339z+N2DEf7giLtvzhhevCIe9Pjo40/42fV79pstUehz/+GazfUbyk3Ffa6Y3X/AbXKkahFAUWu0PrjrA+FSlQ2ys5CdQTUlAkV/OMCR4UHh2R06xNIS5NkeZRquri5ojD587H6ogn2YbfC8Pg+LGwIEJ6cHIXBR5VSqpkoLoiQkr3J0aZC+Q6sNWdYQuAnKLajLPabSNOWe8v+7AqkOZ/LIw+17Tp5/xMn0GNXuWC5y1rsde9NhI9C2i9YCKS2kY2P5EdHoiCCKMCiy3ZyuLfF8j1effobf61Ebg3QFk/6IdDmjsRw8aVMVKbP5Eq1beqGPqAqKfEM2u6Xebnjx0WdMY480LWjUHkxBT7ooVSCVIUoG5FrjB8FhG2k8pnc0RguBLxxcVxxOcCMIbDBtQ7PfIIWmKPd8/91X5HXH0eQE16rYrzbUtiTsRbz6yY/YLm5p8z3KdWnKmtALcfyIIPGoGkVVlKgdtG1LNBgxGo3RVc5y8UitWkqlUbnA8iXz2zsyb40uKromJxCa4vGOb372N7z687/EtTURmuMwoRn22TclFjFtp2iEi21AdYe0VpWtEa5ku5nTPzqlVIZef8TZxSU67vP005+SrbZ0tcZSkqQ3pnd8zt3td9h+xPmrH7FuDNu6Jm4qXj5/RuB4lGVF18HV5VOOzy7wgpC2VQg0dZmT5VuEDePpBMcS5Ls1rcrJl4940ma+XbClI91v8WxJHEcYo2lVTdtWYB2eR6YF2/fIq5SqyjHjY8L0nH9KS85e3tGbjHn1+cdQpSyW9/iiok23tGVJpzuCIOD86pJ6M0dnGY7lIUMwwj7oLVVFU5W4HawfH+kcC+N7jE56OG7EdHTO3ft32I5LladI1dDrBUSuwJOSfyNH/N9WsKvVlrPjBmEMD8s5SS9ikAyBjmyzZ7tY0WBhqhLXlmghkI7H6OyK1fwee3SC08RoVWJ3Da3QFF3HIIqptGKz3xGlGSfHE6S4RLQFq7amUw2dFmhLYlyJtEPG44SzZy/xe32Wixm7Iqctc/qjESJ2SSKHZDghV4YwDhFaEcZHFKphMBjxMLtlt91jdElFjV2mNJtHrDKl3u25rxek+wpLlXRtg/Q92k5Q1YqiBqk70lqRuC7S88jSPfGwR9gPCH0HVW1YzpcURY2qakyZMn/3La7UDMdTFDa1qSnrjKrI8KXNdr/Ftix6fR9nNMDrh7hhzH6+BiVwPYk/GPLy7IK3b99yfDJlv1yQbpZ0RiMdC+k6SGOoypLQ6rG8nyMti1VVE4YBw+mYrC7wXE2zfMfj25jJ6VO+/PJz3n79ms///C8YPrni9c9/znr2SHT6nChKcDpFE4esb97TFgWe57LdZQe4wGbN7P6G4ZNXTE5OSE4uEZZhOD1jObvjbvHAfP4OJ06YXD5HNgo3ywhD/2BVd0N0e5hhX55fMhxPQTp0xmBoyFOBZbV89OoFvcAj2+/xXZvH+YwIQ2BZqCzDdg7Uh9Orlxhs2qqgylLIdgjdYguQvsByLbSpkTRYqqIrUvL2kcem4RrN5ubXpLNH6jTjsVpg8i1R1Of0eEqdN7hHR2wefOrNBlW0uK4gHowpm4a7hxva8hCsUNscGUdEvQH96SVt4xGEIUZ1hLY87CMYF1sYis2Skhavl/xwBRt5Pk2aEXsux5+8xA/9w6BfdZBXRMbG1A2m1jRKIX1J2O/jDceYOKRsciY9H9cxZPslyoDfGxCOjrGGE4wNeb7j+s0anc7ZXF+zWc7wApfhZEppSVoj8N2Is4snXL34iM1+jxP4pNsMpTVOlRNRovYbtvmS5OgCu3UwtsfgeMju+jW3b7+j+H3QgHZPWW5R+zUq2+N0CscSfPjuESMkQiaE8RAviqhKKCpDMp0SnZyiiobO90nLEl2WrG4V9ZstVb7i+uufc79M+W//x/+Zx9s7VL4lDhxqbVimGb3hEeEwOugckwTaBsf3EMZQVHucKIRW4hgbt9WorGKxmmEXORpD4LucTad8k6dM4nPS1YJqW1GoFt0oHD+iE5Lh9ILzyRGz2zs6aZhcXLJ5/xpXGISpWNxd0ypwlUstbbTjojqJsSOKpmN8dMSzTz4jGg3pf/SSb/7p57hNi9Q1jzdvOBpEbDcLXn//HZu7t/iBzdMvvuCb9294fP89xlLUpqIyBuP18RqDNxphhDmM0/oDPvnkc2xjmAz7h0UH26FS3UGHKRyEqnG6hk9fvGASx9zd3vE627Pb74kc9/fkIhtlHC7Pn/Pxlz9lvtogOo0ucuoso8myQ2+FhkpXJF6AW2zoVIuNQZqGxZtfEw0T3u8/YJRCmo55eo8WkqB3yief/5jvvn1LlW3pn5xTeiGL61uiOMaNE0Dw+ekp33/1C5p8TTw6Znx+hQh6HE8vuX1/z3p2T75Z4scukSfpqhaqjjTNybqGqfcDvmEDx8alI3JcfFcCHU1VY5UKXdSU+8OwWKsW44W4QYAf96k7wasv/4hVvqM3ium6HGe7wLIdbD8A20FJiW5zTLXh8e6GNz//J4rt6nCVcWwcy8Ltj0E6WK4Ntma9vKWqKjy7pZYgtIC2IF+/ZX77NY60iKfPsJNTovEJio7lwzWWVohWY7U1utrh09FuU4bJgCjpsd1vScIDfrU3ec75qy9ZLdfcvrnHTSL600vOP/0M4/sYYzN/PJDqK3J2i3eky2vy+9ccDZ/QD0NGn3zKZvmA7dqsshQlwIuHCMcnjBIi36MtC9psS7VfYawAzz2EsMOpj3BcyvWSWpXUVcrjzXuCIGJxf8t2u6EfD/D8Pu7II0xG7NIMHJ94dMTps+cEypA3hn26Zb5JGY2OmYwHhKMhaSsotyVFV1I2OfVuxZv5ksCWNNslr29eky1nHD1/hR0EVELy/JOX/Oof/zPD4xO0KnHimOjoiNPpJWcfveC3998zK+Z0ukYLwyrfYbs+pjj0LsJiT288Yjq9YDS9orM8xoOYJPIxbUNb5vh+SGdZh5CGZVPVNUf9AY7u+PY3X5HOZqjtBmvQB9dFdYZOCSwC5u+uKYoUANd1CYIAy7LolKIzFap2oHUJpEOZrjC6oW1qaHIcfIxls9otCKTEsgS2E+AKKLIUW9qESYQuNFgCbAGio9INMupz9uQJdZ2zmd0gfI/pxROytKFe72nWMzrV4HYZwoSopkbXFVIKfCHRwhCKH7Bgh73woMsrMrRtCJMYx7XRXYpfkV8AACAASURBVE3btIfkxqCPVi2lhrAX06iGslK0WvOHf/HnVLrizdtvCcdnCAuUMWDZWMaiKXbM0xWrD295+P53dE1DMhrgxhGb5ZKT3gjPldii4eHd78h2G+I44ezqKbbQWI5NgkVndxhqdosVTVkTjAtMlR6IF+kGVRXosqGrGyxz2PEs9zUYHy/yyKvDYNuRNqPxmKpuWW4r/P6Enp/g+i5lWVG1iqcvXuE4Dg/ff8Xy3bfcv/01qlrjWIqjfoIDeH6I7o+Zb9dYXsQgjhkdn6ItjzBOEKZDGUGbbWnaBl9KTNscxjdWhxsF6NpnPB2x35SUaUOVdUjfZTQe4VgRwgga20MOPJ5+eozfH/L0k0/otOJn/8dfUbUKOwg5Pbtg+fCIY/fonD4uAqEkfuAS+i6/+Lv/m8Vixx/89Kd0+Qa9XbBoCrqmpnd6hWcL8mxDvlujTIuqC4RjIaMejQz41bff8aubX1GLgsFoiNsbkJUSU9UURY0bwdmLFzx5+oLJ8TlJf0hZNyhjaFXL7ZtvWM1mfPTZFyTjY6pWU+cZ+XZFVxfMbm/Zzh6QbU2AwhWHTSctFFK4pJs1q/ffopscy/UIkx7JcIi2HRw/xDYBPpLO8gjsEE9A0xZkeU4UBGAEdVlRFQVuHCJdnyiJcFA83LymUSBFR9eUxL2Eqz/9Mz68fs+uavAwFFmK6wUkwyN2dYHWmjZNuZvPafM1fuAwjMBYLY2usG2D5zo4lsC0Atl0P1zBWpZChuHBtuW42MJhn2UErk2JQscOw9Njem5EnhUoq8Z3FMIJiWMby6nZ7Zf4vYSuNVg2vweI+4gWnKakWj2QLh8piw1dZ3h29gnecEw0PsZyXALPp82W3H37S7aLB04unhEnCTIaoY0iT3OEloye/gTlP1A3DarKWN+nNLpDtBVWW2NrBZWibTuyqkZrw+PDPY9315xdXgBQpzW/+5d/oPOO6R1/ztnVM2YP79m8/grz+i39q6dYnWF++47rf/kZm+9+garWeKHHaDqBuuD1V78kHk7p9fpY6uBadWwf2/JQwmazS8n2G3RV4GiF6/mU6wckDUhzyAi3AsvxIHJxmgAvFASeTVNXVLXC6/VBWEyPjpC9MYOTJwwGY+r9nn/4q//EV//8X/j05SWO57HdZpQ1rDYFjn0Ath8Wzw0/+cmf85t//mfaSLOezckKTRD2GQ4SstUjXq/Pj7/4lF/857+FtqaucqQlDjlWLMKBxy9/8SsW2x06ssnzkv3jHNt2ETIgGp7z9NM/4os/+kueXF6y2aZ0qj5gY7qax/kd//jXf8X2/p58/cgXf/k/4MVDst2CbHVLvn7k9s07eq6BOMQJrhgNJgRuiBsK9ssFq4d3mDrDdV1cx6FrG7q6QkYejhcj2g5XgvEbRHfgGQvbg85FyRalLWxlGAQ9XEfgxxGfffklb756w3a9oatbXCFolCA6Oufs1ZfcXK8Ruxl6OWe9WWCkJI4HJNMTTKvQ+YZ8do9nG2rh4oY+tguBJfBDHz8IMcKiW66xyh8QERMlffwgRhvJ9f0jeZaRJAEvnj4jk5JOSro8pzGCOA7oOkWeLrh68hFuu+f1v/w9ne9iRT1s6REmUyI3xov7tErRpGu2bUGQ9Dl5/jFxr8/x8+eIIMD2QxzPJQh9jO5x8epHnFy9ZHR8id8fY0uHcr9Gdw2WgNH0gCmdzeY0VUmnG3RT0VUloqoRusNoAUiyTUnouAQdqP2OxZ3AH4zppId0YtxoSjQ6Q9sRTjSkj00SDRmfX+H5ETdpxubxAautiKUgcA9ESVtoHNGxW864v35H0h/Qnx5jdR37xZxO2vTHE8an54fUkWOxvH3LbrtFOi51W1BUBZ4MCEfHwIHq2GQZrtVy8+EGSzicHl3SKkXgOTjSgrrg9vUKq6l4MvC46XL2778lGR/hDad0osWNxwghSaKI3W7D/e0NljFsi5rBySVtp0nGxzTbBVWeUxcFVfDATaXItyXxeEoQSwaDHmWWU9/e0wrB3WbFLs8pKw3pns1mw9F4Sn8y4Pj0in/37/8DcZSwXC5QSiEAx/OIHZ+71QZVFBSbJa9/+XMGR8cML67Yb2cU2Yr9Zk5T7tF1TRglXJw+YdwbIRqFygvKfUlbtShq4mjI8OiYKArAdFjSJQwj2gNeDExLWxfY/kHPaTsxWimqVmN3muFoiupKhOcyHJ1SVl/R1i31NqPDOgTUzZIP19fkWUYY+OSrBU2VYTsO4+MT+klMWRQY0yI8gbEMwrXANkgHbMehLhU4hg6FslqKpv7hCrbCZT7f0XQ2aS1Y7VueTc64zRSp5VPmNenDLT3fYxyFjPsJRljMHl9jZmB5DjJOiI4M+Am9no0fJBjPJ7Mqdk1NqTvG51c8/fhHuEFEUVcoNK7vItA0ZYZ0HIaTM7wgRPoRaV4QdBX15hHyFSpd8fXjW3w3IJAulpSoriF0JXmu8VyfIjsgQPNa0eiAplYEgceoH9FaLrbbIx6d0etPefLqJ9jJKY+zOWEQM0oOzaJomJBMj/jvLv49sp3x279+jxd4eIlHBwcRcddR5jWDJOHo6AgjXbLdDtXW2I6FrEuaIMGLh2jhY4RPUQl8N0RYICX0kgEy7BH1Tsi9nC0zbKGYXL2gLFo6GTAZRXz/u9+gOoMM+vQGE5Z3t9TvfovscrLFnjJLGRoL2esduph5SZPnlPst24dHHm2P6bOP2FYNn//4D7BVw83v/pXN9bds72/JVxuS6RXhYETW7DGOR2UU72f3rHcbHj68Z5mW7IqaToKoFU7n0GQtK7Nhcl6wXq7Jdjmqzgh9n66pWMxy6mLHbrnm/OwM8i1VW7B5uKZoc9piRZVuaMoM1xb40mZy9pLPvvwLBkFIs92yXyyQtku627Jbzugsi7JzCGSIZQ43FwsbJ4qI+33qqsAqUmyjsZWma2swHfu8xLZtktBmt11S6pbe+CmXn/wxTudw85uvMLsNerth/3DHLR6OLbE7Q57mtHmKJcCqWtrsMO7EVgzHPZq2xAs96rI4dKmlhUJjSxfH9+mToH7IeN22lnz3YY30E4T0aPwR3z+mWLM9nm0TRyHLfUujLLQu2O/26E6DZwilg8jALHbk91ucaEj19pEWsAYDemenRJ6HiBLsMML2QtI8p9UaVwpEXdA1FS2G/nByAL3tCgLHpl4/4EqNLBbofE69maGyPZWRDCfHWK3C1vUBlKYVTaOoC01veIaoDfGLM7wwIts8Hk7HpqPXu2QwesJmveE3P/8Fp88LqqqCJqduMrabFdNiA7cRJ2cTwp5/eDu7HXmbE0YJcX/E2ZNnOLMdTduw3OwYHocEEpbrLQJFOn/E9iKmp09xjo6IDCTCxW5tbCfGd0JEZ9gu1ziyRxAErISNkQ4//Z/+A+/e3tLr9ejqPYu7G47HI46Oj3n5xcf89fvvaQOH5PyMfjXBsnwaYyMaUEWD7flEkUeXW1weTSmzkiRKaGTDNs1AtaRly/ffv6PdzJgMR7z4/Mf0zs/47usV+7sHbsuUr67fEk0myDjm4vIZ3iogigJ6vcPWkhAW67pm+/jA//s3/xdXl5c4Vkfgu6iuQ7UtSRThC00QB4wujinzgrYtqFb3mCZH1dWBMBj2GQwSPvvj/4anH/2EfLlgnWVI3+Ps6XPaVrGdPTJfLOlPjtBo6nKPpaArK4JkzNHZBdAxe7wHpXAMNEVB29Q4IsSxLaoqZbct8IKANO1ITj/h44++oCkd3v3Tz1BlCeWexksIoilFnqKajk4JurZhtZuzeZxhpCY+ihn0Tw8md12jVY2REm0sWhS2A2HfJxqENGn+wxXs42LPNm3Q2Z4oGVC1LWm2IwpcJnGE3/M4Gh4hXYFSBa7nHox3tiAvcqQG17g0acP+dolqKrzAQUmH4vwctz8kGA4Onc3RlPl8zm5b05Z7VLGjyXbEoYvnQZbtDzlDnWLtt6yzDbLNMfWOareiK3Kk9Mm2NpZlo7sDnqNVClUqysowdEN8x2NTd7i+hTc8pWwqjDCstzVVO6drKoqmIkoOKJvlhw/sZtfsN3Puv/41MulzOx3Rbu+JdIcoanCgsSo26xXlt9+S5YrLy0typZg/3pNnOwLPJYl9kJrN4p6b2S1vW4XneFjGxp+MaVqLaNA7CIdNR6c0buxiOwd3aVrWtEj8uMd29UDiu5SbBWth81Y4HB+f0h2P0ekGu2nI0op6k4MRWK1mtbrGHE94fHxA1oI0b3F6X+EdHeGOx+zykuHRlE++/JLf/f3fsV6v+ObNN/zFq2c8e/aE7776LUVaMpqc8umf/pRhv8fD9Q3r1RzHtjC/twom/R7EPo/7mrytuPv2KxzbEIQBwgYhDbUfEbguUvz+Sug6FEUBtUB0LXQSNxhycf6S6fEV8eCY3WLO/etvSR/vUWVB4Mf0hmNUZ/CjhC//5M9YLB7Zzu4IHAfL9nBcG0uC5wWHk7asMK0i9EOMVsQdpKslDx/esZsv8QKXf/3Zz9DRiFjGGMehFhaqU9i6pd4t8WRApyriJMCKPUzTsLi/p8wypG/oGpu62OOEDp2l8RMfAo+sKsnaln4S4o/6OJ1BdD9g00lVFcejEVnZUuYptmUYhx6Dfsh02EMVO9piz/T4HN/xOXItRF0h2xpLwmqzwBUukZvgSQcagdQ2oqrIv3tD4busQo/th7e8/PGfkEQJabrHbTN6Vse23EPVsczXBIGDKnI2uwVOmNDUBW1bo+sW3YHjelw9fU7eatI0oxM2li3pjTxEZGEWBetdiow9nr14xouf/AFlnnH99g35PqUpSrJig6MNgeeQpytsYVOnO7qyZOA7VKt7Yt/CbzzqKodOoZTCkhLXtGzurjGLnLKGo0HE01evkEnCw/U1+zQl7vXpRz6bm9ekszvqosCyXZL+FNezEcMxF68+YbVa4bghYZCANhxNp2w3c+7ffAPCY7WSDJKYq7MTNg+31GnK9Zt3WGGfZ0+fUkuPPN3QaZtJPEDlGbOb9+iuZSkaBsMRq/dzTsdTqs2aZNgjkTalbRMORySvPkY0BbrMePLjP2Y8mTI3HYNnz3n2p39GPDnGDSNu3/6SfHFNX9ocD4c83N/hhyGi2mLweTW9QCYTlqs12+0SW2hsaSNMia9tLAWN0AdzoeVgOrCFQUofJ+gxnV7woz/4S1Qj2c4fWbz/HrNdkt/fHOBxR2eIMKFTh1XArCzRls3w5JTIcbEtG+O5pNsVuZRI18EL+lR5iek6hLZRVYPrOYSepPVs9usFd+sFdhDx93dvGJ+ccXQxYVMtSfMdQtegt4SRTZTEWAKE7ijbHWnakAwiBpMeWIYGhReGtMJg+S6600RxiJPEdNJG1S1V80PqJhsFRpN4krZMMZ0gGQ6Iw5i6qch2a7bbLX5g8eRyguNb+L5HnaV4novnSJaPM3KxJ/Z6SDugKTtMXVMXBbbv4I5iStNya/8ajcX0aMjReMx6dkOAxjIK1SoWsxvaqsDxY5LJGYEX0RiB1Rn8iYPRNbPdHmybzhaHzKRqcaWP5wSElWY0OWKd1Xz3q3/km9/+K9FoysnlU8bHJ0jA7jTb2ZLOEtRNRas6Qs9jcHLOw91bvCikrHLyWc1wFNHvf8xsfo0RGldKRtNjlAmYL+dk89e8V2vi8Qm9Xp90k3P93SOqzLDqjH7sUBiIk4iXn33KsuhIxiPKNEW3NXHSIxomPH77HdV+w+lkzPevXzPoS1S2YpNvCANJZkPQ7zF69hmrrKXc72iyjE5pev0ep2cXzO7uaKqCrq2ojIXrBWghiAcJma5o0w2ruxtsL2R8es43d29J2wZHNbz79it2TcPxi2ckZxc8+eQzRuNjFrcP1KslXbqgk4J9vcXKc7o6o6hKcsvmFJuB6/PRk0vWvYi6LuhQaCUIgh6WH1GZFmMUtjEE8iBLozP0+2MuLl8itMV6vuS7X/2S7PEdVlmyfZyTRDGWEZR5TpQkHD99ghIwPBpjqQppDLbt0OoKpRu0sXDchDAIUaqhbaETNg8P72i3c3yrIwwDhIoo8z1S7fBJmAw9PqwrjDT0hgmBY4OVIT0fLwqxbImFzbQ7oV9FuK5NELnsyz1SejRWh3FtpBcSuRF+5GKEoGkaVF5S/ZDECdcN2O+3JF5CGHjgBGSVRngGq9M4QYRfNeznW9pRnzaSeIGN5waYVhH5IQ95Tbbd0fg5UeAjpYVRhrJqORleoLSCumTi2yw3OyhsluWSpt6RZcvDG0Ab6iwDrbGw2d7dILweMojxAx8nCjGmQekSVINjgekOfOTdZsFmtqVIa2YPtxR1iyVDBtMrYtdQphs6pfBdn66u8CMfLTrKrAB92GvVtmR8/pSuSmnqAi90GCYxbbMn9hLydMM63+JFKUlkE4kd87dvkY99RmcvsZ88QdRbRFMQ+Q4y6tM0NY7tIP2Eu/kKLxmzmz9y/fprbNuwGw4xumNxe4fnJ+y3Uy6unpFEAR+++4rtww1+VyAcg3Dh2RefIG4XLL79NV2bEwcBVuAeGni9Ib1zQb5ZITsYj4/xvugdvvjSQ7UN799+x9MXn2BZFuFwxPnzZ2xe/46m2NFVGZZSBI5LmeWopMJxBKH0SNyAOl1Q7reUu5K2qnFcByeJEPs1+w7qbI8bhQxDiekMWkR4UUTQH9H9/sOq6wrfk7jSQWiLOBqgypZ59p7Z22tWN68Z9yOqtuP46iVZXlIJCcKQTI+Ix0ckR1Mwiu38Hq0aoiQiX+5JejHYEtvz0UKwLyumx6cM+hN0vuPrD9+wTXc0aY6DpGwNkg7Z1uSbGel2hu20hD0LS7coYbBsgRGCzkg6HMIkwJcdeb5ln5U0Vocf+hjbQjoOcdxHG4ERzaEJ6UqaoqJtf8AusVYNQeBTN83BDlambIuK1XpHZClePDvh6acvaIqS3XaPZSmC8zFpnmEZGAQRp6fHfDv7mk1RI/oRUejhuT6VqVnMPhAMe7iErBY3rNZrtut3uL7AsRWq2aNVjWMf2DtNB01WUqscS2YEcQLWMZbtAxqrA9MYVK3QTY1qa+ptiq0VjuhoygxbOhyfnzA4mtKohmq7IN+sMNYBkB5FEZbv4PcDulr9Xh7VEEoPN4wJXIc821Ld3uNaDVarkFrTtA23736L5zlYZo9jH1jJ5Tpg60mcICSKEnAD4tGUcDBkv9rw+OEWyxhOAkGdr2nLFdpo9uWeqqqxLYv5IuXpaELie9x8+x0P128R9Q7L0bieRWcr2nrHxZNjzK5HsVVYliAaR8TjPpOzkNmHRxYCppNj3ry9Bsvm5MkTkDZlmbFbrllttwSLJUnco2iHbJMh+WrH0NjU6Z4037NfPuDTcnv7iLFDeoNT1ukGqpwu31PsM7wgwHckajWHfAflEms8wk4isC1cx8IXEkoLx4kIbQe/P2S9nIFr0+sdIbSh3KeoPGNga8K2Rm3ho48+x08G/PxXv2L69CnYHYP+8EDbFxZ+EJO6AZb0CPpj9GqGFcT0j8/weyPyrCCoO4Kkj+4agthncnbKw41GKwtP2gS2pE7XZLstghLRbJBWTWVyVFWjWk2gQ+yqBGyMBsf2ybcbtvs1Vi/g5OUVMgmo2wZhBG1VUlYNeblHtSW1KynT7AAu/KEKtqxyhGUTxD2EMhTpnjwvsIxhOAjxbY3rtOyrNQ/3M6R1DidTHOlQ5Bk6CBgdTxgfT1jfL6hUTSR94kEfbdls9imiKon6Mfcf3hNEHtK2CVwHrVvoNGiF0i1aWezShg6JbQkiGxLvEBjXbUunGlRZ0hbV72eumk4bPOnRWhXSPbhXnCBiOBlRVjVFWmEhaXQHng3CJx6GdFaH7bgI28GpDRoH/BBph5T7LcKNaLIGISCUAVYIwq2pugptUmy7QEoL26kZDhzi0KMVNv3xCdOPviQ5ukD2RmiluHi8Zf34nn4o0HnA43WJqRqksLlbrxhMj6i1oRdafP/rn1Pvd8Sy4e7uPfFRH6UabM8i390xHSeMJyFCp2gjEI5hvZ3hyxDT1fi+T2cM46MjskZx8fEnRJMJr7/7ing4Il3uuL25ZjDuY3shJy8/pbE/YEsPVwhEtmO1WVFMRjS7HbbwOD15Svn4jqKaI5oaz7KQAroqo9ooZOBh2j2YGq2nOFGCJwSWMpT5Fs9r8eMExxZsH27xpMDXNmE8PiCGVjPy1SNWumKRlkjHJ5peMr16xvjsirLcs0+3FLUiOZrQmRZLWghxWG+0jCbdbyCMMH5IPOxzRkex3bLZb8mrgv70BCtIcGWAKgp8G8psx5tvfk5ZrJCmomtKdrstXdOhm5a6rg/yN0uimpbQj9hu1rSi42x6RdjvkzYldVVT5jldt6eqGwQdpmvJOkVTVYgfMq3TGUOaZqyyEi/qYRD4rkfgWvQiyXgYkiQObe2RbhzQLW1Rok11OCXyHMeyuHz1BG26g5UdCyVd7ChhFPVwfQ9huxjVYgkbadk0TUvXdXRGYoxLXXXss4a2lbRa0OvFdLqjLBWef7C9q6qhKVpk59JWLZblYIRN2RTUqsVyLfwgwPI8OgSb1R5qjW4VSb9PqxWOAN0qLEvSlDVWZxG4HpfH5wRRzPt3b7H9GM/zqSwLoQqM3dL7r6y9SZNt23Wd961i16fO8tavxnsgIBIQSdmk6FAw1GRbEW5Yv0A/Sx03rbAl00GFJFKkAJogQKJ4eOWtb2bezFPus6tVurGv3Fbj9bKXEZlr7jXXnGOMrzpjnkoGGp6//jVBpAQJLhrWhxtacqanD6hWC8rTE0Q1xaqMEAVOS9bNntu7DRmGajnHtT3NZosPhmfPvkRmE158+xu6fcvmzWs+ev+Ui1UB7oCMjmglr779R4zvSHxEaUGIAusNdnAM3Y5u2xJcwsEahM4QItAOPbMso5gtmS6WFCrl5s1rnBuwISCj5uNPf0Bb1xzWG5rNmm5zy4vf/BKVVbRt4JMnF7zNK2oXUElGmUiciEQZcNGCAYskpp73vvcB1fKc425DLkqsr9EhgulphwbsKIY4xBQW40DmeHvF3bdfYrsjk9mMvt+SmCW/84MfkGQ5MsL25hUyUUzmBa9ePkcJT1WWbDY7XLulP1qOxw2b29fcu/8IXESFgFKS5dkFbV4hK8fjh0948/RrzNDx8MOPOPQ7rr/YQO9ot0f62hHeXQZu6MmTkZQ49D3Relz05LMJRVmw3WwYvGPoOg6bLcYEsqxgOpnSdA2m73HOvMtZ/I4KljSnr1tWZ+dM50uiUNzevqXKE87PFhjTI8g5XZ2grKBMcmLbs769JZlmCCERVYEuUh59+hG3L68wnaVzDuMj0+mUYRjwYQT1WhcJxhGwgCP6SPSK3ljaztA0LcMQcM6zOlvSWoEcLBFBIjSJKLDG470gRIXQiroesN6SKQXWoJWjq48UWuJDAJUghEcF0C4Q2g78uCt0/YDdt7z5/JfMlgvuPXzE3fFIb8dkxtb1CF3gkpy6PZDOMvLFKb7bgAxURcr28BZZzHl8+iHPvv0lT99es3r4MdnsDNO3HDavMcMRJSSimON0ip6eUk5WzNMcfdiSpAXIlEpJyuoh3jegI13bQfSkRUnwPbv1WxJdglRk1QRdlPR3d4hoyZVnfzgSZIL1AlXN2d68ZrJaspjP2b5+hY+W+aqimhVsN1vauiGJkr5rMMcdx7pDBsH61SsmkynPvn7OzW8E/fEtiJx0OkOnGqEFIYHAiK8QqiB4RX/omBQWjOBmfU1V5QgM3ll8sKwmU0hz2t2G0HY0XU/fHJEyoZivePLpR+TVHBsE9fU3SJXhwwgZP3v4gDRRED1De2Q5KbBdTbe9w5ojQUv67Rv62xesTh6yPH3IdLYiSxLysmN/aEBotFJs9zuyLKPKJ7jOY2tDV1tcD9YHYgyIIFAIiGFM+A8BWWWs7l1yPB45HI/4OEadmtYQg8D5ARM1vvckSUaSpfjov7uCrXuDSHOMj1xd3+CsQRJYTicomfD86Ss2dxumeUWz2XK+mKGSBFpHHwLFbML6cGC5XDKdT/CvAnhH1x5pjv1oc1KKoRtI5hW9HRAxEqVFSkGqkzFKMnXIJKMqDN4LnFQ8ff2KfFLxw9nHSKHwJjC0Fq1LMp0ikAz9Dj9Eone46NAiQydQ390hSMnLkrZvaQ97lNLY/kja1iRVgVAC+p5he0e/37N7M/Ds87+jbQeyNOfk7JykyNFRIzLJZDYjm0lU/oDQVbTbG5pmg1YRb9d89eu/wamKrN9x06yR2YSkyMiLkURvfUpQFb6cEdIMJlCWS5L9GhkiIUTqeocMKfbg6QdFkClD13KalESV4aUmqSqSNCdojU00qszBDCRWMUmhPR7wNpAkilw4jutbyukSESJSRrJSYWwNvmeWJiynJW2zZXFyyvrmLSeLc2J/5Pbptwx31/Q40iolmywoJgsQgbJKsXY0eQzejQAuO/D6639kd/MUITPquubs9AQxmeCVRkpJlqV0fsC2NcJ0yChItaa8fEQ2m3P64DFtvaV++4Ld1TcY66lmK6rzh5TFHD8EJsWUY9+TiIQqLWjCGCYgvAHfMljD2qegZyzvnVJOZ+QT8OGGly+ecfvsGYerFzQvntHtb+nWe3zXYHqDtx7nIyGAiOMKSggwXiA1rE4WpJOCN89eMBxbpNbIJEEG8C5guh7XWqTWFFlGMS3Iqu+QwH4cLE3bc709jBNNKRAhYHxgc6jZHSxKZZR6BNe2ZmCoD6jBI11KGAIkHqUlm+2W29stldBE2RB8oNnvAAVaU5xntK4lOCgWK3SekyhJIkH6SDkXuK7HDp666RDbHafLFd70WBRd3dLuO0LYs5ifIaXm7u2aoe9QicCjyIslWha0zRgi7rwlYkm1IMSA8ZGu0dAHzs9WJFoynS7J04zBGHorWFxMEGlKNZsSCEymJdNpQTdsafZH8mpCebIkqgJZJ/ihJlGa+nBLkFtSLTDDxEQKZQAAIABJREFUkagUVkt6oVlcvEdSnSHzCq8rhCwg1aTFgmx6grQWawbEbEU/tMTpHHVygfIjAKyYziEryCYzRFYRsxKpEhI8/eGA8WHcfyYSlado6RmGhv3tFdtjAzJDuIHziylFKTk2not7F6SUDH2LyhWzk3MujOPFV19RAMlkxUrnBCnIZlOyaoY1lv3uDtxoMsiyKZ988CG7w5amWdPUN/TNGiUSMkAMB4Yw4KNEiJTJfEGeV9hiQCtNlU/Q+YzF4h6qmtAOB14/e8rhzVfgBjob2BQLFq0nTabksw0okDbw/MtvERFEVKhsgixSYpqSz86QyYyoEzo3kPqxk9NJSpnnHOsj9b7mWO8JrkUmGccajI1gIQZBcAIRA0PsEanApoLV5Smrx/fxznPcHQghkFUZ2XzKxBRsNztA4m0coW1dTzHLx4vhuyrYenDYCB5BcI4oFVWRs95uodBMqimbuwNhsJwuKowdKLRCRIkUmnq9w5eRfaIJA0QPTklUBIlgfzhijOfswUOQCT5qVFqgp5cU8yWpBoYjylnUO8kbDFQh8uT8nNgP1LcdqUrABkLf4UxkQNL3PfXmmiR1IxpxssJk59RdwGnB8vKCalrQHN7S7W7p+p50UjE5eUA1OWGzXhOHQJWdsros6bqGjz/8jIuPPubYNhzbmq7ZMisTcu15e1UTTMbJ6hGPv/d9rt68YP/2G8z+huawwXlLXW8IQpGVc4wwRNPhe4mNcPnJGTLN0eWMGBNkniElzJZn7N5eM7hAujhjNZvRdYfRjjcMuL4nL3IcHgcInWF1TqIS0mDJVEprPHZwkOQIVZEEwSRJMKanKKcUheKw3rO9usPNCpI0YbpY0LUtrauZns6gSPgnf/LHrO7d4/VXX1DKSF4UJEXJ7bZmdXrByWrJr/7x51RFQlqkSJVCNWeajF7pxWyK6faIGJDRk2iBty3ORqrJAhk8s9kFic5x3tMPnulkznR1yrHv8caA85i2R3iDkDm31xs684xoA+mkIptMODu/pN0fiSGSJRWOjNP3P2b5+MmYKaYyvPUM3pNkBd4EJlnKbFFihpqXRYbZH5jkmsPmmm9/84+EmzcIOoLzOPw45IyWoiyoVjNOnpyjq4z6Zk0gkk0r0tUCl2qCiKTzCukE9B7T9PRthzhI+vgdrnUOnUFJiRCa6MfUfhEcBMdx16JnU/B+/GI0A1p6jtZQ6IxcSdp2QGlNu+uo0gkyaAbrKCcztIKhNe9M7xXHZkAXFYuTC4rVPfR0ifcDIUi03xGcARfQIuK8RbmB3XZHKsfgLo1AR2jrhuvdfgzgji3IBOKM5cVnfO8P/5RidoqaTJBFSde0fP3Lv6d9+jlue0tjPB7JZz/+A360POfL33zB5uo1B9dzNAPvXz5g8fB94npLOulZ32lQPcbuKZRAa4XrBkRImc0fUeZL+s0LrvzPGXxNKR3IfvSCBoe1DcicXbNl0vfkZUBGgdBjMNdkMsN0La11OKlIs5zJySmhKWmbhrSE1HtCcIR32AcZBCoq8JEoBKBIkhxigCwnhASd5ghn2O6eU5YtSSpgqNEkxLbH9h0v19ccjjvy5Tmze4+5eHhGVqScXM6J7pLN1WuG0DG0lsViTts2SK2ZnV7ywUfvc/bwPk+ffosfegKeLM7IihnHWDEMW7R0KBEQEnzsiUNLTMdhTZoqyjzF+4Hu+JZn9RrvIJWj4KI6fYK3hhAlx7dPqV+/YLu5ZXpywur8kvcePyG7d4/tdkde5pRFxuXjjykvLhFZSYwSmQoKMY580lwgQgSX8+kf/U+cPH6Maxy72zuK69fYmLOpvqS9fUnfNcS+JwyByTRjeTlHThOSYkSTWBHJF3PSIget6YzFDYZUK0SEIALWOXpvSHw5olK/q4KNKsGEgIpxlBYGg+06qionkyneOPIkIVWaoe1JyxwXFftji0kj1bxEGKiHhrpraeoeJQXDYNF5TlFOQErq5si0OEPJjCStkKokypwkKXEepOnxwQIpUioihiQtWC40ONACmv2OpjkSo8BFgcwSgirxUqOLE4rVY67rwO//k0+pnUNWFbMTzYUbcYDPdnc0tuPvfvVzvhk8/+u/+t/4Z3/2Z4ihY/vqOZ//7Kf81X/8vzn5xc8pqxWPHo1ICZFJDnVDv9sgvKM9tvxD09NZWE4nRLvH+shg/ZicoQei8mipkDojzRek8yUiyUjzMfRaZ5qIoG1bJIG0LIhKQJphhWR2eoHOGmzXYdpmFAVIhUIiEUSpccbQmZbjds/QdCQiI6sqMl1io6Debem6li9++QvmixnTxYIiLRmcp+/2EGvssKWiQoSGb377Mw7HjqY+4rsW6Qx5EHSHnkhGFCn7pCArJlw9e4Uq5sSg6NqG/eZuvAFVgVQzTu8vMe2BYI8I05KicNbTty3DcSDNFJNpgZLQ1FvMYFEyQ0+W6LRkfvk+9bHBdR2L5ZGr19/QNTsiAa1HRlFaTdFZQpQKKTWb9QaX5cxOc7xS7074GCSOECghUIlGqCmTy0uG2tBHTV6tOL18zMuvHvLsi59THO/o6zVdvWY61SQTTUgjxndEC14JbCKx1iJ6iReC3lg6M5CLBOUFxlqstyRpxnQ6+y4LViKFIDpHjBElFcF5RHjX3gY77huFwjtDDJIsLQleYG2kOQ6kjNEnvgmjLFEEssaQqxSJoO8HJlVFsA4Sz369QYeER8tLEq3Ybde0+xEJWBZzUp3ifE7TrwmJw7qO3WEHIXL28CEqyxmCIGY5RkR2my3nn/wOH/3ej/nLn/ycfDrl4sFDCqF4dn3N/nDHLnQcdKQrEk5nZ8yKjNdff87LX/ycB8sV65fPcc2BiWlwV8/YxVe0L7/h3uMHfPKDT3i+v6buDGGokWJPu18jdcHdbaAoE1pn8EGjhUalHl0mCF2BnpCW5+TTe6ispDc9WdLTmZbgR8yEUhCjHdMmJbRNQ+b8eCMEC8IjYWyL7YAUIxqCGLBdS7PdMOz29K2jnFvKk3OWJ2ds33QoBadnp3iVoBYXuLwkxsBidcrm9mv6Zs3d7Vt2x45DO5BkBUoqdBZBQdwfoT1y+2bDo4fvc/f6NX66pLt9S4x6NIX0Nd1+S288pxePKcoJ85Mpa+cIwRH1yOWNwo14RudABmzLGDIXHCEayqJiOp8SkgJhAsl0gXCGNFU4tyfLEjrjSRLJ9c0Vk8WAyjKcdTjbcHu4pdjdcu+DlnJ5Pn4cxSiD1Ho850IIhEpIi5x6u8VFw+r0BOYLjt5T3HvI5sWvWD/9BX0t0bInxB7vPGOQSUJAYAWYYSBBIJTCu8hxd4SsJImaEEEoRZIlCPUdxpwOZiCRmuAcUkCmJalORg5skiCjQyk1OmKsozn2pInGuYgKgsb2BJGRJAnOwDAEkJGhcxzCEYYBoQRlVdGyQyvwMdCZwI1KefLwPrqpaW+uCS7gZ4HF6pIPPv5dHjwy7HdbuuOW3fqaaHtm8xm9j8yWZzz57IdcfPIR/9f//m/xeM7PF9xfzfCHHXK15D//zV/x01//I43dc2huObk45egiP3zvCVkf+Ml/+D+ZE7lSCukCaZJRTnO8M4Rhj+k33Ng7bH2Fi4bh2GObA5NCI5BoLRFS4mwkS3OUXhGTI6qyWCDICfnkCcXiMTof+avg6LsD1gUSnRCFZPAGISIIgTc9fV1T5AVFXuCGAWd6iqIEIUh0grMWLRXeDrjjHtfssU2NPRr2w0B9XNNsXoFpEFhIZ0xW9/j0D/6IZ89eUBYZjx9fcvjbHXa9xnYG7Ue1zrSaju/WJGHoO5r2NYOxDO0RdzzQ3N6wubpClRNm55ejt7fUzKSiyATf//ABVzd3vHn6Fdevn1Pkkum0JAjGaaqQEAdkIpFZikoTRJbgO4UqS0KWQKLIswTTdzTbGhd7zh5ccn5xiZR6BFNFh4+ONMlJMo0KnuOh5va6YXPYMz29x/n9J0zmJyilmE0rxDsFQ4iQ5AXLkyVdfaTtd2iZMlmteHTyEb9q77h+OsYTRR+IYXySMKh3ooiAUJoQDbYbkEITbMC7iJOR6D1EKCYFeZkTxHe41iEEfHR471BCYInkWYL1AY+EGEGA9wGExPmAtR2EQCJSgghjrk8a8X3EeRAI2rbHNg5pDWmaAILJ5QoRHakMWN/Tr695tr2hFA7d1DRtjx8CzcHgrGQ2WyLQJElBmo07x7e3d1g05cljrq83HM2XHLc73r58xl//+/+DzSFSZzWvX73ir//hp9x2e5pwJC00t+stxfySViToSpDMUrRpEYRxin1ygqpOmBea3dVXDLs3dPWOl7vX6DSjyDU6aOpDC2lOLBKKyQKpYVJIgjCEpMCnDVZq0uohxfJT0vkjun6gd45UDwTrEGiCAGcNyAgEBAIfQUuNCQGCx8dIQIBK8EKQFhOKzIJ3HHeG/e01w2GH7zpynTDYGnuo2dRXlEVGns0ZAjx59ITTB48wcTTQv37zCpEUrE4fcTzsqJuGuu1ohjUyTVidnCClIBRTmLQ8/mRKLhKyYof0sLw8ZXVa0R1rjptbtq9f0puepwruNms2Vy/p+5rV6YJMXiLTFJ2XaK0gzRCJhiwlZhkxRrKiROYTBhER0VKUOcF7ED06jcyLU6YnpxR5SdcP6DQjrQpEIpF5SplqDqbFWw8i0jYNt7dvEXlOlmVsD5aiyAGBUmo0IMjxpu3rA65vMMOAFnOCNSDAGoOK7l0BRqwz+L6hD+CcI7oATuDCiDRNdQFR4azDOse8nOOCGbOsv6uCjUJifCAISQyBXIEUAi0FIY76WUQkU5JEaHwUeBcgSoLyKBXRQhGcoHfjclkLhbMAghgkISi0SBGyYOgipq+ZL+ac5Yrnz5/TSUHoPYkqWE7n3Kw3pMOKq998zXG9RSaa7N5DPvuDP+QXP/0J18+fEvuW04cP+C9/8e9xxztKFVDtFu1zHr//Ab969i27Y8OLFy9pQ89kNUXlLcPNLW9urvnjH/8h//yf/wvszR3Dpma73dOKiof33+MP/uif8sv/+ue8/IcjbnODVJG8SHjy5DF16Lhra7rBMZ2vOHv4hN50yNBihCUvMkKQyBDQOkWlKVGAylP80dINPVqmaC0xpicEh0ICkeAjWmqSREPosMYRVYoLit4YtIBEKWaLOX3bMU5zLMJ1JMIh0xQXJXhPkVcEL4gBHj08wze3/Ld/929pdluc7eit5cn3vs+T3/8jjseOX/3dz/jm67+nb16iMskH3/uIi8tzSBXz8xnN1Q3pNCVkDhpP/eoNX9m/YRgaQrujPWwI0XN48wyhBJIepGBo9fickZLFckm+WpLOJrgIKs0JQuK8pygnJFmJD4yYFTegJcxXK7KiIERJXs2wxtMZS6ol3g1kaUZeTVFpwb0HC/q+xTqDCxHZHeivn2GlHDcEWUExmXNy+YC0rNgf9rR9hxKBwTa09Y6X3x7Y3r1EBIuKEdy7nazS+MHRDTXmnfgnDo4QBSFKovNkY+OPY1x1itQBFs13mJooxIgj8BGUkPg42oKyRFLkGineYeCtI8ty8BHEaLb20ZEiQUh8HBUvJoaxRYhjeqJSmnI25+T8gvN7j6iqnDevntPua94agwoOhCIvcoa6wdY7CmG5e/0lKjhEt8Y2ki4EvspLHj28z3F9xfr1S0R0ZL7nkw+f8Oblc158+y2nH/0IVeR88oPfI1st+fO/+H/4yc9+gpADDz84oe5qhnrHi2++5mU1YxoTynLKZ/cf44l0ruO//af/RDzWzM4ekT0YAUvD0GLSCcX8gnM8wjkyqei6ht4OJFpjRMT3llyXmGODCZaYD+RJQCpFqlKMdUgxOqGc90TBOBThv//9A93QE0MHSpOWixGr6ML4fwgD0VtkFCRCUKQJ/bs0fK01Wkm8cdTbPcPg+OR7n9Fvb/nt3/+/9IcDl6cn2GHcb37dweByLj/8kPsffcbnv/otXb9jUhQMUfL3X3zFYX3Fo+kUfazHHXk0CCWoD3te//oKZ3omhUQJh0oTEglCS5TOKecLytWKZDbFBU8vIrkSo9xQSNJqgtAZKZKsKEFKpHUI5wjGkE8nEGFyEhlcpCjmmM4yxADR4rqeYAQuSHRimc2X5DLF9xvqt68IzkL0RECnOUFmJJMVoms4u/8Abw4kypMlOb5pCG3L7uo1sTm+s25GRJCEICBGogv4zmB7N75pQyQIhffjjEEpQQgBqWFeTaiqlDTRBPcdTomV1mOLJiTE8VAEIApItEKnarQhRZABnPdjUbtAjB6pJTZEBBHjLC4GHAEXIzoGyiznZLVkUlVMptN3QgZJ2/bj7wt+dMJgkDiCbVlNS0Qq0TKlSAPbt1sy07D/5kuEf8CH3/8ev/jJ3yGdwx62HDJJ0xqKk1M+/vQHvDkcuNvWKDy/+/FnHHd7Xr59zbPfPmeyGFMJbt685Is043/53R/z9Ne/5kZrPvneJ/ze7/2Yn/3lf+X22XNkmfDP/uWf8uC9D7n+5im77RUnZ2fsDlusO+LcQN3WeCnpfUKal6N2OKQgcohz3JBiekEUEYkmlQIRPMhImmZjx+LDiJyIYYzfweGMJckTzhYrZvMzDvsjk7zk9vqK7e0a5S36uMV1DTEEiIFgB0xvOR5aimzC+XyO2W349uuvSNOEe4sZHz56wN12T2YEj37wIy6/9zswm2E8fPajPyALnro/8p9//lP+y89+iux7PloueH8+5bRIKbIUhUZVKQ/PFhzrHeu312RZwrSYML+4x3S5pLGGyWqJTzXZfMq8yol4JifLMelSaYxIUElOMV2QZAXD0BGVQXiPJxLSBIInz1JkknJ69ojQO6KA9rAGH+nahv44UFSWPGqa9o5695y755+TCY/GIKRmfn6P4xCo3z7n6+unbO7dQ88nZMWSkC2ILiIGi91umOkMNTll++qKXAliFPjoiT4gbCQO489KSGL04CNKa5CMmV5KcX65YDLPCVKxr/vvrmB98AgieZqiYxhJaSrigsNayMuMQidowPaGECPGudH9QiSNowhdSUmIHiEjIVg8glRLyjJHJ5KqylEK2nZgWlbYLmLbnjxLqIqMIBWzRY40fuTTBsHZ5QkueqLekwyG2UTRth0n77/H7PSMw5sr3NBwYxyinNAOgqYZ+N7HP2Ty1Rf89D/+B6JO+dPf/zGv9x/y7/7iz6kPhrwKtF3N51/8htNE011dMYTI59dvaK+vqXdbllXCdr/l2d/9lC//9qd0w0BeZXz00Yfs13u6QSCyisWDC8r5FO89Xbcj+J68yPCdZ7K8pDp9yNGB9w5EoOtrjOvw1jCdr4hOIIRESoVzFqkVITh0VlAUU7wNvHn5GjcEqnsFmc5ouoHY79m9+ga3vUPEgFaSoWvo2pYyK9EKNm+vuKqPVKmmShOOx1tevJYMXtOrkt3xyGwYSJqOSqU8uv+QbrvDGEez6/GkpPMJd8YyaQ3dbk8lYDGdY62H5Zyz0xOaQ005mbJYnWOdYF8P5MsTkmKO1AKdFnhGY0aSl0RnCAjarkMLRTqJ2L7Hh4hUCcYHnFRYa0cyfd8jgiTrehgCXinyxQLbD0gMYhiIsadrt+w3N5jjFmk7skQglB1zpPbgjSX0hn4jeXOdI+fnLB98TDZ/iB0CnR/ofUfwjkm1wlnJYANRCpxz2N7gek8Ywli8WoIYW3gtBJ5IkmhWyynVJEdIgZTj8O47K9jgDJmWiOBHTomCLNP4vicIgUoEiRbgPCEGbPQEASpR48gcxnYhOLSK5KkmU5oy0ZwupsxmEyaTDCEcm+s3WGMpk5ToIyoKqiShSjN8XhB7z9WrNxhrSRYVq/sPIfMkxRHb1nhvaduO7aHlhz/6fb40f0OzGSjmSy4//JRvr9b85u9/xu2bG45vvqasX1GrgnQxQTjD48fv8fmzb0jrltViytvbW/7h819zL8nYvV2zdmMwWnW6IM0VZQj0T79iU+952x5YXVzw9WpGSEqK5SnFxTkyS7F9g+3XvHr5jGPbcP7oQy6ffI/3P/odYpIRNzuGoePi/JSnz77AxQ4fDF1fkyQThJRjS4NCijEZPwLNseX2ZgNBEnyk2W5IlSZ0HeG4xR82hO6Is6NKLJj+XSh4zeAO45c/WKJ3vH1xTd8PrJ9fofIll+99hrvb8MVf/zXWw2ANIXqkc/THjifzU15PV2SzCQwtHkOeJ6TdgGkH9oca1zZY44kxpWkD7rZmebpiVs6YTBcIoUgTRSo1RVFgvGVoB4SGEAPBO0zXcNjcglAEod6xg0GmOcFbgpI4YxG9Y32zRpKQVDOKMhnRMb1j2L1lf7dj93ZDX98SzQ6lNWlV0tgDbTdwXN8hrCEVARU9zoEcPMzOcHpC7wRWOCiT0b4nMhJdMNQNAYtzjmAizkRs70FAFAGdKKKI6EShEsmkLMaBWfT4IEnSnG6ov7uCVXi0FKRCkUqBxpFqQTafUGSSJFXk+WiN6weDl5GoJEqMSEctRzeDkoL7985ZzRdkUSCj42Q5J00VusjGVqF35Ara7QYtJc3xSOhbhvaIWuS4XUuz3qF1Rhc7dndHOtPSNg1CGI79dtT3Hhs2XYtIHGkJXjm8tPzwR5/yt3/5V/jdc/rtLanWeG+4ub1BTRcsVnPy65TD7kBVFqhqypuu4fz8fDxQ6x3TR/c5u3fJk4f3uX3+nObuLfOTE9Q0R2eS61fPuPj4dyjPFxzx2MOe5vaK/dUXHNZXkGSAovOKl2+3LJdLnDUI59m9vUUYh3AW7DC2hoUkhhRIicixFYwCgWDoOmzfUe8PeGMx5WTcmXdH2LxEbK+JbUNTN/iuIwxj5I0RmtN7D3HWENqG3eaWYbuBIRAYUBnc+af0+5bTy/vvhoiOdF6yvl1zXO95MpvRPXjMb7/9Gp0JilnK6mRBZRxXz19DlmGkZN10PHr8EeeXD0YVlhqpb94blJdEJ2l2R4KfgJIkWYrxkSzPmc2m9MNIawiCEXbFuL+UWYZHolVOkhfjTaZyUpUjpWTwjiSfc3m+ZFidI8RT7p59xeHuDbgd6t1OuzOjjhlSsjwfLyYCXVeT9Y65TtntNvggwQ145wgBOtMzqWYMhy3OgPMCnMIaT3g3JEzkmCEVJajsv1Pj1ZjtnRTEKBks3G2/w9TEaZmP/j9jcTYwnxXkecK0TFE4bHTvclYlSZkhTcB5h0KglURKQaIki2nFbFqRRM9wbJgU2bg3PT0DLemt4bjbwODRIqHKJrzdHzBmoJoVJL1GDwFhLLb3eOfYXL0lKTSh79Dao9KAdD2yPXIwDSa29P5IplKO7Q32+kguD4T6gFYpvjzhk09/j+LeE15sN7zc3fL9zz7kV7/6nOdPX6IzhZQgs4zf//Qz1GyCeHiP6vweRiZcfv+HbHYbqiyjurvDdHdkkxnJpMCrcehm+hrX7Oi3d+QiMFuueO/xE+5M5PrNFdvbt0RviC4QrUEpT5a/G9C5Hq+ycc9tB4TMsNa/u3EDICiyDJ9qBmdo6w3eB8LxSLi7Jmu2YAyHwxHXtWANnQ2QVWyfvyQvMiYqMtietEixwoPIWJyfM5mveHP9imOzIYmaZFJimVFkimIx5cuvvmFe5Hy6OOHQ78mUJBAIWYKeTVmtTjg/OcUNgZPzByzPL9ls1jTtjqpIUBqs67AxEmQkCznWQeIisSgQaUXUmkzn/3/4uHOBYCxRB6JQREbFXJ5mqDxlsTylrw3ROmKQyKDJ9QQ9mXDvUhLWd6zNQHNY40XAmI48yUh0gs5KTk8vRgaxs7T9SC/Y396xqXu8GIHdqQlYB13XkmUZaZKjtaKuDwghkEqSqgSh4pirrRndOCKSCg0+jH/vUhKRmGGgG77DPez5fEbX9LS2JQJCSvJJiS407z95RJ5pXN8RjUNujhy7t/TdniAFIkaUj2PkBgKz2+GcQTqPDRXHEMjyjKhAakWGYn+scUJSzOek0ylqKJBI7GCwNuCFJE0SCq0xm1tiocdHQprjpcT0NTkL8iyj3qeItIAksrl7MSIbYsRK8M7hleaDP/wXHFqLePacZLcjLSsu7z3ixbPn2IMhRsfz/iWmbfng/SdcFAlfrV/hd2vuLZecXzzCpROWHz3iuL9DiR7jHcXQUxUV+XKF7ztO1KfIJGV6eo+Dl4RgcF1Ld7cnDEf6diBJEtIyJykSisWE6Ads34GKEBMsAV0tyKcLhqahae7ojzVJFHRtix0GRAzErubQdNS3e4TpSYhopUEm3FnDzc2BTWPJ84RP75+wQpOnGi0F1eIeIp0gZMKyrFi/fknoDLqaIdZz5hf3aY4DWiWcnpxyUuTsdilJITCDIV9UfPj9C+7ff0y9rcFaom3Zr1/gnEVFQ4pAkeKwOBxnFw9xQSAipElOvrggm5+AUkxKje87ggs4H2j7lsEZXBgvieD6MTWzk+wOPbYzJDoDKWnclvXba4wxhGbP9uoZpumIvSB4i8cSllNUMhnltPWAJpBKgZQQ7MDu+hWmDwihMDpFqfFjWSSKkGpmqxNSrRnMK7wPqCDJtCDJFV56EI5ECYJ3xAg2OIKM2CBJRcHQOP4HdRP/gwT2oaVrG5QSZHmGUJ7tfs3l/Y85OTuj71tiBONahFJMJhW0Hasip0wzojUEZ/HWMp/PcM0RISxmGBfG+9stQXiEhNBago84qdjst+STgpgFMpXQ9IfRnR883gd61xEaQ7EoSBYF6IRiUqGyAiF6FJqqSGFySTItUYli8+aG4Dq6rqFIU5p2TyIEx82BN7/9lqTuOS+XmHzKrUrpxfgWSfTIE3r2+gWt68mEo8IRkyc03jGb3uNf/tP/GbKC+nDF11/9Ej8EEj2mE67OH5I+fEhrPV4mtIFRZpimaJuPCAvjWBUTiJKm7jDOISRE7zCxxVjwuuDebEEiI533+BBQSlFvt2y2m3c4ioiQEj9fkaYpV0+/IVeC09mS+XzJL/725/z62Q0cDDzZAAAgAElEQVROZGSZxrrAD0+nYzAcHtNHFILr/RrpDP1gUXiKdDzkzd2aspxRXlwg05R+b5llKV13JE0g1xoz9DTHA/3hjmmSsL66QmiNLkvK6QxnHbHrUZkiuIjrAsV0icoy8qLkZL6iOjlDJhoRB1pnxrmFTlhdPmRb79ns1qNE1guaY4NvOjZtS56kJFJizEDTNjR9i+9qohkw9YFIJMknuGFcUTpjWS4L1usd65trFpOSSaGJbiB6gZQSYR3WBEyISDXuvCfzBaHrkC5g7UAqNShBMIZEC7RSxDhGFJm2R4pR9GJxVKuKrCxJqxJtLeU0/+4KNmJIc8Hp6oQPP3iPLFNkaUQpwb7eoqUkyxI2NzVNvUdrwYPLEybeU2YZRTqn3tc450gYkw4E46TzcKjp2hatBFpD8AIXIirLGExPNalQWUqapMhkTi96BtvSHWpCMMgkkiMp5wtkItCpJssFKnUY25OonrSs0NWU6eKEdmfYbhuUkCAMOnG8fvkVSXpCuVhybjuScsJkfkqZZLy4ekUxKxApdEONDYZmaPGZQGWKXXS8fPo1Hz9IuHrzCr084eRkxfz8HiIv6LzEDIE0KfFFgS5BSY3te2SEIqsoTs+Zn97DDZbmWKMlxKHhxYtvMF2DZDwk12/v6CPw858xWZyQZnMWsylDW4Pt2Rx2JMnYJr7Z7viTP/lj3rx8Tr/dUZQT9OqUL1++4pv1jqPQeKEZguabu+PYjp8sWTpIY+RkVlEmFWboeP93z9nevSS4gSSJmOOO4AMiyzEhI42RGCJIyeW9Cw5DDyEw9DXN4Y7N2zVme2AynyNPVog8RQmPMx1FmqM8dG+3RKO49+F740Gva/bdwOAN+/UVpj9grEHognK2ZDpfMEtTetMjkoTQ9ygZ0Qq63S0menADoa0RbYPo9ljjQGZ4mSB0SpIkWNPgh45me0ezWWO7Hi8tNiT0xz06yFELbCPKRezgOLYt20NNPzuQ6JSuHifv4t0wUItA8IHgIlpJAmqcAUiB8x4jAmfTGcm0ICaK2VnBg+Q7FE588sn73L9/nw/ff5+L81OkCigCEYdONGmS0jct9y7PePHNU3w3UASB2B/w/UBvWqIboLMc+ztctMhUIZJR3mgGMw6oGNVUKk2ZZpqsSJguKooqZzCWJEuxIaCiY1ouMaYlCk++mJAUBWmmkNKTpJGm2eC8I0sEq/mMTnRcv/yW4bgH25EoN+pNYs/zr37Fn/3rf8OLb35LkkTu3q6x2jEpch4+fEA6L7i+uyHLS9zRsr7bs17fMp+mBCv57OHHfPbp99leXaH2a45vBK3rWTx8jChLopQorUgnKyazKcZbsr7He49CUJUTIoLj4QjbDVevX7Le7vnNsxdcv3rOtCyYL+ccjkde3bxleX7B3A7s1t9QZjnLxZTL8yW//OI3zGZTbAxcH/ZUXy64uboe0x4k7G+uuL69RlY5cd9CiNjgEfL/Y+1NfizJsju97167NtsbfYw5cqqhq0g2SywSksCdgCYJQRAE7fTHaSVo0RAkbRoCBLRIQKSkYlfXmFU5Z2REuIdPb7T5jlpYQFtxkTsHfON4/o7da+ec3/cJrpqeMs74k8tnzE/OoSxxxpDOcj7+03/FF79z3L75iqE/YpuRsa7Jl2vGPkKMhiKOiKSk2+3R3uKjiEQlPP/oh/z26h8RXhKLiMgZ8tiTKcvoBV47dDcyGtg8bLC2YbGueHOoGRHEWcLQbpFyEl9bEbG9fUVWFDx++oyAAJWQCIOqcsgSCJax3mN0jxt7EjxjlOJVjJMZWTGjLDP8WHPYWnCGvj5i+xYVAsGMdLpnbAf60eDHQKpyEpFACGwPB0zT0RpPWc0YmxajNUJGhBAAB9ITHMj3NMU0KTDWTJ1vwaTsiCRxlpAmFSrPv7+C/flf/idcnJ+RZzFG91g9slpUSBGRFxNPp1rO8SFisz9w9eoNu276oE5PF7S3dyAsIWhUCCRZTH66wAVJGDVRFNHVDdpookggVITFI2SgKFPyWcosKXEaskVCLCPGYaBvm4k7LAIqlbhgyNIYpSTOj1RlTlVmJIkl2EDiWnIMmsBgHX6wjMcju/p33H/5R8zQcb/fs3nYsDED97pDVjlpmNOPI+1xaqw8e/SY2AtiAqt0yY9efIKpG467A8HUZGXKyfMXlLFi/cFLRm952Gxx7wkDKo4o0hTrPQSBFXICohUCDNhizyEIruqGh35kZw2FMxybI1aAqQ+8ftjw0x/9jBdPnvGbX/8HfvP7X1K3B2rb0+uRxemaL77+HCkj0izh5vCA61riXLJazzhuD8QynZZbkDgluDWWcxUhRMB5y3xW0HU1v/3sj3RNS1YtKJKcnb+ljEvKxQI1n1E/bBiPB477DTJRpPM5qkiosjlnl4948uGOh29fsR16knRADT1iaFFZyYglmafEVhLalsPtNxzvDDio1qcoUmZywLsB1/dEKoKh47DXhG5DVs4pl0uiOMWpgiTLKdZLRjPQHw84L6iKOb7MeLY6Iy1KCJ6h2dPZgUyleBTCu/frsxo7GLR2BCeZlSv2mwOxNORxCs5hhxGvLVEWMfTTK4N2DimZloqEn342FmfsFNcTYur/xBKlFCb4aSFJClSsEET/f2X4Ly/YNI3puoam1lg7MpsVtE2N1iMn4RRkwqvXb/jF//Nrvvn6FXoYSaRgkSUYAh+9fMbhzRs6O5BEkriIUUVCMZtzNlvy4sNPePXNt2zuH8hUYHf3Dh8cg+4ZdUepMlzQxFnE8mRJlmUcD0cOOwgu4J3D+nHq+GUVWlv6vkcIiJOYwUxANmUDkZOs1k+4PTZs728RLoDS/E//43/PO2t5t6v54Sc/Ytjdcveu4aHekXjN6ckZr796RS4izKFhWeZUKibvDOP9LdZ70kiQxxZvLX1zxPQjCTFt23O5OKGaL3l4uEe3HceuxQUBUpEWM2bLgvOzS8r5isXpCc3Yoso5sqxReYKLYFGWbLd7tAPvI1brE7aHPYPVbNsjKonohcNETGRBPVLOJ0fP6A0Bh3OOTvdkqULaQIgiZJqg4hiXJrxuj+jgsUWP0CVKCGQSI4NCJTM++cmP+d1g6Y8tCY7VrCSMHbreUxY5WV5Qrc4IWcn2dk/fjJTVAvnBx2SrOSfPL6d96iylqkpUEmjbGqznk/Ixb7/+A2NzIEsUy2xF3+8wuqHrj4Q4RqUJpm9x2tFqjViO4AxJWeLVSJh5ZCSYrRaYccBEU1Df2pinz17izMibV1/RHfbYYWTsA9bCerkAHxjamn40zGcnzGfLiUmtE+xgGEbD2Nb0/QBBoOIULyVxWSCCR2s7rSK+F315Z8iSmGAtTviJOJEpkvdIGOcDThtiMaJ7+/0VrBlHgtM4p1FxNBH4rSPLcvrO8sVXX/GP//RL7u4OGOvJkoysyMjLmLgoMEnEiz/9MYebG8bDgSzJSGc5yawkmmVsdUP1+By1nNNubnm5+Jjt2zeYoeH66g0qgxB5ZrMcFWcM+ohKHKt1gR0seDExi0M6pSXsdAWBCGcVWgf0YDCdxbuYkFSIPONt8w7QLOaBT7/6FPH4Ec9//qe0IWJz36HxzNdLglAsZ0uqbAb9gLKOl+cX/OjZM07LDNF3+GBwiWQ/DsxWJ3gB9bGl3h7I4pTNu3ua/Y79YUeSZygB1niyKiVXEbkQJEJwe2j4wxefcdg3PH7ygs32ARFPMmBnNdYF8jinSBI+//xLXrx4zp//xc+pVhWff/UZ88WS+WJBlmYU8wXr01OCt2zvbzBdzf7uHuMc5ayi3fXISBCpmCjNyZZzmr5h39YkbUfv7vjk5UsiY4gcpGnGsWupThcQLFJB19UY21NUKVoG0jgB6xmPLaPzyLFlvz+SLU74+X/215x88iFRNTUAj5sbvGsxd28J2hDFkiiLyY1ADwdur/V0KgXDMLaIJMHZFFxABIWUCVImiKAwgyMkA30HSEmqMsrlkpCV5CpFdYb9/fXk5rm5AgT3D0f2+5okiSnyEhVlZJlDqcBicUaelfSuo5oJbDzSHfcgJEkaI0SMlBFeTA/ds4sz2q5j6DVZHtN3NX1bc3q25v7hBm80cZ5Qziu0dOwPB8Q4IGRMLY4T9+z7Kthu16AyB5EnSc+QUQWRx3jD1Ztv+fz3nzIc9pxVOVmWECvB6dma09MZq9Wc+bwiUxHLR0vG2+8YG8PoBYOryYRidBFxUmIji8hjhLHIIPAOdK/ZPezJihilBIO2eB+IRCCKpgheLBJiJdkdRox1yCgmcgl+tPT9QCQKbK8ZtMeriNG23O82JJkAVdIMA8/OL/ngxz/l5rDlu+srbr67IgjF+cUlVTaj8oK//eu/Zhx6SgU/+9EP8ccGP7SsV0uc7pmXObt6ix4DcjTM0ERhxDmPcyMP9w/M5gVxMg3+wZFFnjKXGFvz5qtrDp0lT1P+5t/8Df/0T3/PN198hkxjejuB1KtFziJf0NWWvrdcPHrB5eNL3txu+Kv//Cn/5m//C/7h7/89V9evmeUJzg2kiWQ+TxmVQXcJcpwjdIQ1EqMN1kwd6bIsccZhhEdWc9pmoFyvWRQJm6tvSUVB30qKzFOdligUURooVjmdtHRuul00m3u0mUDe25ue0TqSOJl6A8sznl0+YXYyR6cx27dfkhYVNtHUY4+cldhRYVqNMyMqVsgoQqoI/IQhciIjXV0gijXq7BFZWYLTyFjiBDgRIfOSXBWYpieOYhaJZ/P2NQ/Xbwnecvn8I272r/n8u1cs5opYWE6riFjBarlGSoHpR4TTSAxxbEkzyNMFUiwZB0c/ONT7kEFQkKwWaNWRzhcUZxc83F7j4kkRKgLESYJXgn3dcux6ZBSTqBjd9cTiewywf/nta6pZTDXPSJMFSnTEFkTsyBLBi2cXPLm4oCgq8jTF2pG8yji/OGOxKEnSDO8d/fYO7BlxrpGdg0RRDy3aWaoykMcKIUfefPsFftcQBwlxxNAzxdBcye5mQk2mCSTCotuBiBgjwIcIZ6aYkx0s3kpa3bI8qYjTFBtBvppjpODpD5+RpRmbzYYQTf9oTcd5Ivnx+gm/pWdbjzxapJyfnmJby+nJmh/99F8RxoHbb77FtQ15ouiONYmSGD2llco8J8sTxt0d968+o+kH2r5HSI/eJ8RZgoxjBmOp45TNbcEQIkzI+OAHP+Vht+fX/+GX/Mdf/IK8SEkWBdIb7u4OZGmESySLR+f86Y9/zgcvP+Lk/Iy/Xa85O5vz7/63f8vd3beEMD3tg0sILqNtW6T3hCAwg+b40NHXPcF52lHjiXFOcDIr6TAczEiE59XVFWXQDIctnT2Q5xbnDKkXCJkw9i0RkkzFkAbavgVrySKJNQ6sIE9zyjKja3YsvAXjuH59RVHFZHmJxNL10/dAzZY4009pLmdRWUpVViAC4ziCA+UilufPOH3+CbPVGU3TIPGkWUFalnRDRz80eKHpfU/veqRVlNWCe1VQlAXri2c83jmE/mdk7zCdJ5SzCdSXWIZ2i+8dMRArSZQIvBeoSDGfL2g7g98eGfsBaR3OaYgi0ixDJQnlrKRuD4xjx+xkPUUMVaAfR5z3ZHmBiFOcC1jlGMbvUYb1x6/fMCsTPvrwCbO8xY2aSDhCMAza4oTCioCIM+ph5Pr6iixPMMFRlC/JyohIZTjOGMxAkANRpEnThGxeIhBY7Tjuthxvrwm6R4WADAEVp6gkI6+WeKc47mtSpRgOR2Z5RDCeIANexSRxRqlijvuasZmu73laEUlJ0zYsz5ZcvjinHnuSIuH+fsfu4Z6A4cWLS6QKk4/VBxafPOLhOHC726C1BqfQWPq7JYWK8PWezAeUE9zd3XN2fgZphohiTk/O2bdH6u0D+/t3ZHlB33cELGmR4yXIJIYoRkYKF+cMUY5IFrz59kuSosL0DbptkMEhZSAYQ5GnlKkijTOKsmJ5uiItK+4e9hRFwedffsa7629QskebliSPESHQ1h129MzKiio3PPQbtpstiUgo8hxtPXFeoaKYKEqo+w7RNayyki442vsNydBTpvGEr40ETiiMs3S9QQlJqlKEk1OowTqMnVhF56sLdu2B2bLk8unZNCJMIvS2IQQFSU5RlEg9MHZHLAEZJcT5CsyIUBJZVeR5Rh4CkQc9GMrlOeV8QZSkJEVACjDvUzL7wwHvByIMUeSIhcQNA13TYKxAGsnb19e4tubFumKZO9ZlThILbNB0Y00cFGN3JEiBqnKkivGRgSyGLCJJJFVUEjaWxEmiYBmGjiydIYMnIrCaz6mPBoRA5YpBtwy2m97zT84QaU5vHMMwcjwcvr+CfXu3Y1HmZElGjOB0XdHVR24edrx56LAWhl6TpjmxijHWUBaKRhus8/zkJz9mvq5IKsU8jtCHA7JuEN7hugY3vichKkmWFMh0jjADwTnKRc7Tl5fMlgtev7qCOCItCqxrMVJQLmZoPYXlD7sdmUy5f3eDUILLk0csVivuHx5o6h3z0wyJwQ4tm/t73j0MNDrgzIB4e8/JMmMxS6lShck8eVLy9OKSrgm8e7uhu7sj+vADjvcHxocNy+Up+MCqWjArZuAl1XxBJGLa3RFteow19NG0SOBMh4wjVJ6RFvnU3VYKNVtiVYmNerphxEUpxfvIoulbwtGwmFXMVUWVJhAiijzBDA0P9+/YHRr2hw34A7GATEmitCQYwdvbWzbbmjzNWZQDruuIohgZxcyrBQIoS7h4+ozrq3u0HtHe0bc1Ki9oBJRVxTDs6L0g1Z40UYhYEWcZGZMbRltDVZQEF8hI8AOoNKE1A3GRooqEN1evMPWRqEhIi4zZ7AlaTtgXaTTJ2CLLBdvrN3C4g6EFpzFxTJJXlOUMJSWnSUYUZ/go4tAfcX4i61vnEMZhQoe3PUIGVCSww4iuG3a3d1RJRpHlHDd36Id3PJvFlHHOcOzonIEywiSeIqhpXKMCQRgSnyKUwGDQ0pDP58hMEQWHEoJj3+GcBGKGtkP0LSFYlLXYMJIWMSQJgx/IZxWr83OicoaXin7ULNvu+yvYwQZ8PfD23QPrRU6RSZp+4N39kZuDBKEIIaPXMSqkhJAw9A5/0yK5oapWfJwviMuMNFYIqZBpPi2jAzAi4sCh6UFlRElBUJ6slJxcnBBlsG3uafSB9eIMLwKaQJJkHF2gqGb4YSRJU/pjg0oCy4sVZ8/XeCDTihfnTykXJdZ77u8PbDcN90eDqpYESppOoXXHu9tbfvazH1Euc7KgCCGlUgmXxSk3d/ccr6/Q/Ui73bPpLXGacfLkMfOsxAWPcIH9zQ2xsyxnMxyB7f6IcwFn4f7hntlqiXAOrTtiCenQMagCmy4Z255d7/jyq6/4zW9+SbVMeVo942xWkooMqUd0N5CPPf32hgiP8AarjwzNFuUlujbEqqAbA6vlBc9f/oS+bTlfL/jst7/h9PyC7V2D8YE4EkRJzKg1q/WCoa1xIbBvaqr1Cb97+4YfnZ9z9ugJ9e6WRZRjCSxXJ3jreXR5ynH7wHG3QUWg0piyTBGHmm4csTaQ5xW7hw19NyC7kVeR5/mLpzRVzMXHP8FnM4ahQ1YVj568oHn8gjdf/Z7N7RXYAYLDqpyQz8kXS6qipK5rrDVo4TEEvBDEVUmSCBKTsLtpCSGwmC3oXE1v9lycnrC920HfEtojw+YOe9xTB0nbtZRnC6RLMVGHDQI3jMSpom0HDFAs5yTv5+qoCBcAHxBaYw81PkRoHRgHzdGOpHlMVqU4NxDFHudH0qpkcXZONp8hspwoycm8o5yV31/BWgTSC6ybOoo2OIwPjAbMhHFCxQmoGOJ4SpFYw3H03O8G/vDpV0iV8vjlU8p5RlxWU9IizUizgv5wRPcDy/OEaN6jk5idHYizlBBF/PGLL4lihe56XO9IVY4Qgn4MvPzwBxyOLcp1BAXaHikXc0QiqV2HiAXVRYlMI+phoO4Ed4ceFwqCOzAetjTHkZ0QpKmnWliMH0nnChlluEGx39bs3+7J45T7VzdUy3NePvuQb7/4kvlS0Nct3nryLEH2BqNbFJbD/o6smjGLYrJiRliccnrxnCiR1McNY91h3MjQtqjVGUYHjgxsO8P1uzcMY8dpsZhSTCLghxZfH9nfPtBnO2bOoscaHynmRczxrsZ2nu1dQzHzVCdnfPzRD1mcnvL27XeYbo9KBZvrPW3f0/txAoZFghBnpCrj9HTN9nDPuDccR02C4vPdhjBLWUiJcQ4VSbQdaPY1x9t7Yutp6z2dCBR5zmp9QqEEQzOSWI+tLZFKSKKCZydnjN2B3Xc1xne4SJGdPiFNY+ww7aqvTy8RKiaulhwfbjC6B6Xw6YJk+ZjBB466JThJIMFHEVk5Y3X2mGFo0Md7pNoxNHsyNAQYg0Sg0IOmftjSN0e884zaMrQN+EBaJ+AMVjo0EMsI6WMiIkYdSCykImK3r3EypjnUdLcPmG2Db0cCkrHVaG8Y7AhkeDHgYxAevPScPH7E/PwcmeWIJCUQEM6Rxt8j+T8Q/r/Bb5DT/mVWzpHJEetahAhTHtFE5DgCAu8lfZA81Boz3mPt7xjHnp/++Y+J8ooonV66RdaTqGjq/mlLf3+N23tEHOjMQH17z7uHLXGsKGPJfDWnPdTkRUlcZBx3LW3TEeuesW4hBJSKKGYlu8OOh/0Dq3lJVKSocsGbN+949W7Hs0c/IFItoTuQ2EDXdUSVID3LOdR7VIioSoXuDvS7Dd3DhtFFE/LF74kXCVk2o2s0ItqzPFdYbzncfIPCEEWBVg9YqXDvVyeffPADeuco04onnzzmN01Hu79naGvGesTkK6Lz52RlzsnFKcNwZFbmpLHieNiT4xiODfvdnqIKJGPPWMNsOZuE06bnuDswtBNjK5/PuHr9NXcP76adYd0zXxTU1weMMQQHBIcTAf1wT1nMsKbDO4NE0vU98XLF9WGPuW/402XJTV8zTyMO2zuCcfh2IAvRZITwhjFNGZqWLC9wfUeR5sgkYmhqxkFzKy3z8xIRFQz1Hd3uGhVnVNWcq2++5MYOnL38iNMPfsh8seTm+oq63oOAs/NLzKg5bneIpARnqfKCrh+Zr86Zrx6TDT352SUxgduvPuV4OBKGgRDF1KMnXqwZjMP3HWk1x4wWPQ6o4BmtxreaIANKOuK8QMqYSCqcdzjt2W0P3NzfYYzFNAP9oUHva9zoMS7gEBjp8UmElxMwP5IeHwTLi3MWjy7JFiusDwQp8NqAM5PN4Psq2KmgJkqh94FI5QjU9MeFgOn6KaAeoG1bkjRnVs4ZjMaHaS7rtEeMBmc1KkAIgihSqDwBPyCMo+6PKKmR0qJiibVhWlfTjiopKZKI9rjHjgFhPUWS0/gNfdvQ7XfoocfjiPMFXSfYHTcI56C32BAIomTz0HN9dUT331EmDtd22N4g/cCiqrg8XxMns8navjkw3DYkQhAFjesscZRh+z0mX5Eu1lQebHdADD1tbxDEFEWGEB4jY16+/BCE57tvv+Z49SUnl884vntHYjyn1RnLbEYzHjlqzW0/OUd1EuMjx3Keo7TGNh0PTUsWJ/S7gbw8pTo/I1mdcOhbdL1H9w3W9nRdzTAMyAT6Zk9sO/o6xphA19asqgLhDYtZweHYMxqHUgl6MPTdhjpVzPOCWCaksWK9XlJcXmC+/YpOdyR2JNYSYQLCB6JgiYgmEiETu9oMNbayU1AEiyAQB0+lHKG+ZfX0I4w1jMc9w2HH0xcpszTHH468+/pXyG7Dajl9vienFzgUAk+RFdT1EdcdKRcLum5g7DV90+CcZbfbsVzOKU8W6HFEa0PsHN4a8uWa/MkF6+Ul25t33L35ltDUlIcjS9PTbN8xHneYrpvwPG5EtyM+HElNCpGgcx6Dh8HQ3m3xg0ZrQ9sb/OhxLhAEpPOKaLGmOjunre/JVD+F9l88Izo5R+UlkbOYoUdGjhACZvweETGn6zVj00xPY+eniJA19G2H0B7pwZjpd1LFeDdi9AGlIpIcMhmznKdcPj4jSicMDMFNNDlZoEoFQ0teGoaxY3gvqHKjpUglcRKTlQJrBprdkUgkyEyi2xYzjuRpwn7s6fqG2WqGEY4sjkjLnHHQHI4DeVQhnWSsG/rjnvthJD6pKGLwkSHJBfNlxtlyTWxixrqhq2vs6Li4fIrVsHu3RaKIbMzZ4wuMSmjubzle36Cae84fPUacXOIYGf2IUBl9iBBWEEcZ427H1W4PUtHfXVEu5yQqopQCryRtCq/urrh6M6LiCFvXdMCgLdv3p1YsFIvFGRQLoiyh3z9gTEeeKA5NjcGTzSYZ9bFriZ0GYnTv0GOHbmrSIiNEU3JEivdrcy6Ah3EwNLbHBQtB8OTxY9r9njFM4XEvIobREIxH+EASiamTjUCKiCwrsNbStQYpYox2ZCJQFdmU+XWO5v4atZwhrGafXiP/QhJyhXUD48Mdd6ZDqIzLDz5h8fgZC0YOhz2vrr7G9x192zDWO7S2mGFE6xHjDU4K3inJ60jQ3L3DdwcSOXHFkuKcj3/yZyg5w4qCoxHMqwo7atJgaO6vOd5ds7u74d3rV/SHDcoNRKZj7DSRioje+3EiKWn7BmscrrOMLmCsx4Xp1Ezigny2Jq1KjGw4vzxn9eKC6PSckM8QKsFLyzgMIATWe/rv84TNYkVaVUTBos3EwX142NA1LcLF4MXk3REe4xzGeZSHPK0o40AROS7OFyxOF8R5jowmRhEyw8uEoByxKklFyn7zwPD+y2O7jjJPEKkiCMswDKgASkpM3xHyEuEs/dAxmoFqOaNaziAVtH2HC9PDZXvo2F/d8ei5JeiRMg5EQYMeiBJFNU9Iy8DypKA7HHF9iwwebS1kCVpFUGXMz5fofTfdNnTDenXJm9+/xeqO/eBp33pWxrE4m7M6OZ0WQOIMieN0fcHd62nlbr+Zto2Cf0Q6m5FmOWSKPpHMB83r7RZUjGk0Q9qqHj0AACAASURBVN8TzzwyjoGUi6cvEEnMoGKacSDJEupmx927a+yoyWcF9b7mWDcsVgXzLGa1WGIyx/27nlHrifInwDNF86SQxNHEm7bvo4syVszKGcE6TNcxtAONN8TvGbwKSSQUToCRE8pHqRQjFVGeIQWMbgJqx9lECqyPW2TmCLlFCU2lIob6wObNK4ZiRyEcyzKm21xz9Zt/5PDmK+Znj+mMRSjFMPbYcSC89wNZHzDjiPMO7ads62gtx6YlGkciHEZ6iCXReGB7/Q3NEQ7HDh8cZ8+e0PWaMA44MTWuRJITxRmbN99iDg+gNdJHSGL6esAYA0z4GusDuje4cTIeuhAAaLUh1h22GZmdZqyfX5Cslvi0IEQxATlhUWWM9iO9MYzfp1snluClRHhJ03YETun7HmfNe3C4w8kILwJCCuI4IlES5QdWRcWHzx/x4sNnqDydoNfGI6QgyhKEKid6uhpxXlKsHpNXd3S+QVtB0I4kEnjviIOagOXGU+YFBI8zhlhFzFczsjJndBrTWUY3ohKFR3BsexAKM0wn9moWk6qCKk9ZLguSmUQkmrRI2W/27N/1pHnKyZNz8pMlsiyw0XZiL8cRtW/55tNfsXi9xu8PjC7w7M//ArVY8u6X/0zd3FHVS/Kzc4JxrJcrvri+Qs5OOXv8CP32NdWspBsn945IBMiITz7+iPMo5diOzNdnvAoxX37+GQ/7K0yc8uRlwcnpI1aPznl33CKjgSRR9G3Lw8NmitrZkcGPZGVOkqYIGXH/sGF7t6M/HlkvKza7LaPRJFmCJEwAbOfeI1Ym9KWKEzabDf/nP/wD5njkcZIh8xyjR2ZpTpHlSCmxup+uiSphuT4lz0piFZEmanLk1C1eSEZryIqcbC7QwdEOHdKMlDj2n33KZrBEpsW5AS804/1r6Gqau2s646iWS+Ispu86UAkhzwhi4lj54CfKvx3xo0GMI9F7qiJIvJd0fcfr168QzGg6zU//7M9Yr9e8+8MfkaZlv7kG3YF0LM9OEK6jU2DrbiJ9CmgHix71xBqTAu/cpJ0M4EIgShRFVTLalnGMWJRrzh8vyeYFIp/GQtY5AtO+MQi0dlgvCOJ7BIknSmDc9N7ZNC3GWKQU4B1KTHwnHSYDWfCOJARmScSqjHh8tuTFyxdERY6TkmANMkiE8AjXkRSKSGUIlRDN14TTpyyfd5hRYlVGc9gQ9Q7lA6b1ODeRKcoyY4g9y/mMLI+RiUJEgmZ7z7FuKasCKQTjMKLSCBVNnWUhDOtVhiBFqYgoU8RpPOFCjGNwBlLJ4w9fUqzmhFQhkphyMadpBlSRsrCBw6Gj29yigiBKFT//r/6Oq/2R29//mua4YzSamY85fb7gZrPj0Uef8Pb2lteNxZTnXD5/ht3c0rU77jcPRGnC3ae/o3GCaH+kHjxGayyBXmtG7Tjs9gTn+Ku/+iv+h//l33K6jjk8HAnOsagqsjRlu98RxESrzIpJ/fn27Q3tsafMEkZrcW6SRSWxAuGwRqPdiFKSWMV47TF2pHmYZuUlUFQZf/KTP6F79wrfNKR5znK5pK4PpElMmqREUYzKUqQUOOFZnq0IWcbd7YY0qZhVFeUiZasbOu1pu5G0PlDXHcOxRkpP5zusH0i8x/cRpmtpu4E4jOhY0A2aIQiO2nLx5DlpkqNUQggRQkZYoXHvUTUqiliuVqRFTrE4I83PmC8fc3V9w3EYaV69xhyP9Lef023eEQVQcYo1HqGiaVwkBXoKUeHzDJkmeG0xw4CQUC0XGOexbcvp5SnzRYX2A4vTgscvL1lcniNnS3yaEgIM/ZHwXpBk9DiRJcN7rvH3VrBS4kXAS7DW0DYtJ+tTLs+P1M04PXkcjNqSRpLz5ZyikDx/fsIPXj5nfX5OVMwYfCA3FjtqvNEkKkE/3CDinHg2J53NydfnPPvXc6rTS9JvvuTu9Xfo3RZ7qDHxSEgF8SxHnS95/PSc+TyjbQ8Y63B4vMvohwPea/I4wclAmsf0rcbXBxAjUSrQg8aHmG1zRHWC5arA+4jF2QmnlyXWB66urimWC9YXJ+SzOfFThW9HCDs67dBKI7wjBf6vf/c/c/7hD1mcnqNjxWI2pw8xo4nIFnPWzx6TX17y7uHI4+cf4szAru2g24M31LsdRki63hG2DW/rnmtvMD4wXyxYnF0QRMR3337NL/7vf+Swe+B8fYEZB+yoJxkMUOQZKk2pdy3XV1dsd1uWy3P+9c9+TL3fcdw9kCUpH3/wIUJEvLn6hjSbcTjULGYLpIfbqwesE5SzCt3ULCLFerHk+u1bVNsQ6XHy4wnJxcUZVVFy2O7Rw0imFN4b8jSiPXT4fY80BmkM29sdw5hTnJ9QLRbkywWb3R19GDFdiwiw7wbKRUW5mjG+Z/suigw/dgxtDyhkiDneb7BD4PLiGY+erDipKkSak2QF1jnq45HlfM6iqgjWIYJnsIEsk6wXCVdffoq+30BTM2xfkUiPFBEyneMtiCAJIkLmKXmVMSsLWq0py5L2WHP79g1ZLFldXDAYjegz1pdnZGVKlAYsPbUbUE5QxAt8pOiGPc1xhwuBOM7oR8PYDxht8e57LNi8KrChwVlP8IG66Xl0uaKcLXD6gPCC0VgyARdnS549PiUrIp59+Jyzy0tCrDDWoTR0pqfbPdBsN4xNjXees0dPOHn+AoFBlGvi2YyTH/2AxYfP+KSuyUZNe3fHMAzT0DqJKMoUaxrMcGB+OmM0lr5ryKTjSZGC90RI9pstygSUHfHGvOfxKFyAph2QUiKBcdQkiQIEmgYzeNp6UmHkcUaaZwQV04Ru4kfFk6JQSU+RJXRvv+XzN9fEcUFWLGh9RJJnuKGm8S2/f/iOcrHktgk8+fAnVHnJ45cfcpMIkvmS8eYaZw22OxKEZDUvybOU3WiwsaI8KdFG8Pabb6j7DltEPJSSse+xdqSa5VhvyfIUhERry8PDhkdPzrl89JjVyYLLJ4/47a9+Rdve8e31t3zy0ScUVcHZ2ZrLRxcslyvur2+o90eO+x6MRjpPliakicJ4x/LknEqAtiOrR5cE49nuDrR9R1WWrB9d0td7IjfSbzeozpDImGEcOR5qhnFkdLAQMVU1w2mNlwanQNhArmIWyQzlUtrjHhGgWCSk84LrXY3znjzLSYWg3m6pdw33dxsunzyhXFZE+Yyf/OyvKedr3n77FbfXr9lfv8a3e6wNZHlJhKfd3EF9xLU1uj+CUsg4mZSXGubVjHB6yjgOIMFGAqSndgMGy+PnT7Bjgxc9QzCUl49JLx+x399SCcXdQ814/8AzMp6Va5KqQo+esR/xPmCUZxgtXdvTdz38y15h/2UFe/HsKe7Na/qmIXio2550f+T2YUOkHbGUxGlENSv58KNHnJyUlGXJarUiSBjGDmV74gjM2OP1yNh3HPc7RAiUVUFZzyZbmYggtwQVQSKJ5jn9XqPOV5RKEqU5cVrgvaM9bomGgkwF9HZLLtUk7ho7vLN0/YDIUxg0CVPyJ3iJ0TA6y3bXMisXeOeIo4ix8/ihpSxnZHHO8tGS2+t72ocD6ZmiHVtMsMQJyCiwmM+QEZSzGUGmNH2ApKJ3EWlWcnK+5t13n+NMjzGaP/7zBnHygjibMZ+VuKBJl8/50V9+gow8/fHI/uGBq7ff0bRHXr99xVnwvN7esnn3mvtNS9dCuVjy5IMPaZodox7JipSsTCnKFV3Xs9/XdF3Ls+fP+PjjFzjv8d5MJ0GS4FPBYl6yqzcg4PbdPYv5jL3dcXF+yeGhZrepcdaRRdPSxmKx4IMXL/GDRRyPrHPJix9+wte//iOLsyUzNS3VnHzwAcGNtDfX7G/upgkCDuMlT158zP31NfXDkcFZjmYgrmJG40nSbGowJg67r9k2U25YiIDe7Vi/fMS8LLnZ1dxcveN2eyAp58hI8rvf/Yo3r7/mBx9fEKVzkmjGD376c2w7cry7xxz26Id77DAwhClk4seWYAbGrka8J3+miUIKg7ca52OiNCJNSnAePQ4sT095c/WWTEY8fvSIzc23QAdeI5KYqFywu3pLPww0rcWE6aTf3L5h6S7R2jF0E3UCBcNoGPqRoR8mY9/3VbDPP/gYhOTmzZtp1GEc797dsN9sWeU569MTklRxcbHm8vKUOBXESoHRHN4H3YssxpuBNII4zxGxYn1xgdeG0UwC5KQYcOoIdiAE8N5jhp6+OQKedH5CnlXYIBFRjKxOiIqSsTvi/ZH9viWJYpyM6IaG3jSQBPJFhdUGJwKRiLGtRoaIcl6w2xwosxynBcNBMzqD7GJm65QkUWQyRrc9tdoR4oAZOlQI07VtNkNlESKNuT/0fHdzx+i22ChFRBFD2BOFbtJBCE/o9nzyZ3/B40crPvv6K7Jqwcs/+UtmTz5k+WTNqz98zjxdYkTGrL5jHFvMWONsjqg9ap1zSD2Pzk/xQ8N2f0ekAnGmCDLQjT3HroVIMD+tePL8EdoYRBBI4Ykjyc//4uf84pc9l+tTSpXz9ps3bA57UpmgfMzrzVu2myPZrMI5R+wdceR5dHHB3/w3/y2//vQP/Op///f8d//lf40NhsunH7EqYl6/+gaHpJUCSUxISqxIGW3PYn3CerFmvTghWLi+u2ZsNF1XY3uLtj0fPnuKcI5ut6O73xE6PWFcpSSJ5oy9hrRk9DHXdc1hCOSRZ73KmM9K9g/vuE1rXjz/iF//H/8rb//wW548eYo5HpgVC0zWcTi2CB8I2k1eo6GBYJgtc0ZnSdOU0Y6IRBBiN71uWJAoqvkSkRd8/PGPOZ0t2F+/IXjLcl3gc0k8FwzthsN+y0Nfc7JeUM3nOOP58rOvWJ3WJFnJsT7ig6eYzwlSIlREUIpBm++vYE8fP8c4MNrh/BVD05DnGVmeUVU5q2VJkiqqKkUbjRMR/eD49ttb9ocDWZYSi4Abaj54esHy4oRyMadIM4J1jOPkHfWjobUPJHGMNw6rpwyoxRGlCmTAWINAEt7PD32QRGlFefqIIQTq/QNpUlBEEJxmcAMqU1gzaTS6uscHixSeqkpw5v2VN47p6p7YOfb7B8JooTPQjnSmnoLrpSKSntF65rMFxaLC+JHBjjxsH9De0TkmPo8K3NY3zILBA+1+us59+unvuGoajDPk7ZFuc4d/fM6rP9ywudlyvN3gupp5VbKYlxz3R05mOVm14PWm52F/wxdf/JGnHz+iyhJELIhThYojjPNESYweRuYnc4ggEhEPNw/U9cDJ6QVSQDUrJl2K1axmcwqREXzE4b7m7vaOtCy4fPmI3faWZOyYh8Du+mv+4y/+nv/07/6O3avP2N68YnG6YNO2fP6715wsVuggSGcV1hrKMidRCitBOoPuW77abokSRXmx5K7Z0nUH5qvZ/8vamyxJkl1pet8ddbLRp5gSkZlAAoXq7mJ1NZsUbijc9IoifAO+H5+ASwpFmguypFuKrEIRjSkTmYjMiHAPd3M3M53uzIU6SrjEIlf6AnpVzz3nP9/H7BPHacR2a2zXMp0GlNAoY1FthzeWbw4j42ni4xi57TPjLJBTz/E8cNlqvvzsBV2TeXq4QwXNn/7pe05/3HCxvyZVK0yIkDLTMFKUQuRF8pbyokjJuSzL+ZeXnMeBl9c7ZK15990t+4sXDC6jhkC36iBDfz4idcG0ilWjUXXgw/0HpMgsFimBKBI3Bm7vPnH36chuf8U4TiDhMhVM1yxpJykYw494YNvdNRchM04zbp7JaUGNdG1N01ZUtUGqvECmnMJNkYeHE998+4EYM9ZoRJq56Cy7jafZRupNYZgc1lia1QZtDPM4YWyheHBToKSCqapnEmK9NAaKI8wBhF6YSGKRamEM6zdvqfeXuKd70vmetvbMp4lcElVlF6saBasUQhZCili7mM1jUVglUbLgppHzfWF8OBJdYL/d4P2Z6RDRnUXv1xSt8DHy6f4To3OMx4DJNdM0I8pI1QpKk9ldrrno1oTrl6xfZjZvv2JMiU2tOB3u+O4f/3eOH39LlhItG7bdmuay4+Ond5zHM3NMgKJRhtjfI1Lk8dM9643h9ZevEGYBvKFgwQ5bVN9TNxVaKKbjxN37O56ezkipePH6msv9BZ22HD/c8/jpDi1q7u9PHA9ncsy8/eJLfvL6Na0KpIfA2s2syplPv/t7Dv/6FXvT8+H3f6Q/rJljpH8405SRp9PAy9dv0MDTp0/IONBpaEiEuScTqXY71i8uCIfEZl2jrSHmyMlFzv09FoFHsrm4pGjLfT9x93Tibpo4x8wsNHME7yKEQBXPrN9ecPP2DUUL3r37iC2Ci1VFnm9RLiLSisFpJj8zjmeqzRZlDVpVJBdxOROEgFzYdStqpeidw6WM7tZUuwuOd0/suiU++aATcX5kvTaLd9YYhBJ0deHFy0umccXpdEI3NXXXsttecv/4yN3HW5xf5HC2qbExoKoKKRWIH5HpZFc72hC5vOkJ00j0jvPhgaZtqJoKpSVCwjR7Hu977h5HHgdPPxe6bk2WgrmfsRp80qQEw6mnCMV6o1FWknwgerc0nkTBmhapDJWtMZVFCb10l11AKYuQZuExSdBaEVALPW/TUbdbGC+ZDxsmlxlOB6SSyFzoNmvCEChxXsDOqXAaBpwJlK5CVRrV1pxPIyoKZIKhTCgjkUYQ5oQUi+NmrhwoQyiZ4ziTpOLuPLNCcXN5wXWdoJ8wzZp6s2Z9s+e/+w//Iz4Ljj/8gT/86pHz+YF8mDG6JiE5nSoetUGv13z+xc85Dmc+/uk77t99INw9IE8jlMz3v/kOlQov3rzAbA1123J0Ayl4mq5l1dXIIDlPJ6bBsd1uWa9bbu/eU0rC50Jxjsv9jg/vHzj3Z0KKvLi+4q++/BKtMlPO1KuWi86wsYmOE+/+83+E0yO7rWKzLbS6we8bkivsdMt8+Mg4O8o0YXVCGEFwM0lI9jd71LZiDmdWK4NpDf3kIWTGmEAa/vjpnmlybLzicRi5O42cQkY0K6YsKCIxzh4tLRZNoyzzNBCmM9urK4zWHO4+cbV7zcV+A2lCSMHk4PbuAZ3g/CwkRxV0XSGaQteukd2W+2HmxcvXPBwe8KHw5S//Fl8Uf3XzBYc/fs10/5Egeuq1oF5d0+4vGN2IRNPUhd57BjfRjxNZKpqYl0pBGo7nE85lqqZiOg8L90kvmeYcf0Tyv7YNVdOx2uzZX1wxHR+ZzydKDBRRiCVhkDw8nvj2/RNjMGRtadYdpmooOWHqjpQDD4dHri4WUp1t1wvmNC33q1SWIf56s6VZbUg8ayqzQkbJ2Q34EPBuUV9KoTCVxVpL164QlSUgFo2j3cC+sI6R/L4wuwmlFLpqkHKmoEhxQgsIrsc90xuVVtTGILuGNEXSHDlNM8YrbGWQlUKeHcE45slxSjO354nHaDnMPfepMJzOfPHigi5rptsn3t0eef3Tn+I6z6//+f8mFYt//IAWhbYRZOHouoreDQibMW2FA5xXdKuXvL6G/uuPvDQVQ57IEVzIHL79RJkSF68vkFrSdBWBvCzIIympkEKmrmouLvZkEZmcpz/0dErx9vqGWlaUrLm7P/LyJ69ojWU4PVHmnjok9tbyuuu4WUmadUM49dRGETTMJbAVBlVrpNGExxkRE4RAphAqTcZwujvStSsaW3N/eETWYFVmPh6QqqEpmu9uHyn1isOQULblh6cjvQ84qUlGkhLECFN0FLl4hUJKrHdrrJnZrBvwA+50QIqCbmroNPNwpndnRGrYdQ3TUw/eE3NAGMnqYo1YG1S3pt5eMR9H7g49kmqZz+uGFy/e8PGP33H77nuqNGP1wKpd0W5a0DVhDIi8EBNjiUx+Bq14PB55OvesN1sKAq0Nzgdygv480KRIVpKUJX+hHvYvFTqD0RVVs6Le7Kh2O+zhnuhmQkhL0gPN/dPMGCS6WaHrBikVQsAcEnPImLxkLs/9QKQioanbjpDiIsZVCq0NWRoymqI1kcR0PqF94PsP9/z26+94eBwoKJSSvHpxxeubK169uGZ/fUW1XhOA2SVghbn6ip1dMT7dEoYDuAmRFyJCPBaEkUgNyWeCi8xaU0xGa4VsNZiMG2ZC8MSckU5gqFHSkVRmToHT48jjPNOnhSDhwszvv/2e9vVLdKgwxXF6fGDTvOLdP/894+z54u0bYspYveL+cCD4TJaS2i6ANSIIWejvPvLdr3+FjIFOGzoyDqAIpvOEFI9UxlBVFes3e3abDSc/koNmPvfUyvDm5pqqqzgMT+xvLlgri84LcuVweqSuN3z2kzfLKDdGspT827/7b4mPd6T772joadqKoi2Ppxk3eoyOXPoKuys0TYMhMYeBceyRSUOQqNwQwsScE/vtiiIFTx8fuHl9jQT8aaDatVR1y+PpB1RQnA5HlBSsN2tqVRNjIU4D2Rgmv+BptbWU7LBpZi0Lry86pBacTz1WSup1hw+Jw6On+EiZPFddhYiG+dwABVEmSIIcapILaFNjhObtV3/NP/zDP/Lick+Miffv3lFFxzf/6f+gnB4wNtDuGtrLFtVIXJgZfSImwTgVclJcXt4wu8Dh4YAPntnP2KZmZTdM8cjTqSfljlzkstieMvLHDE4Ini10xlKt1qx2F6y3O2LfE1xPzCBQ+CTRtsOnvPB3lUaIzOw9IUPSmmH2jJNDWUndZJL3uFIoFJRWCydoduQoEHWFqBSlZB7u7/mnX3/Nr37zLVMQrDcXaK04Drf88dsPXO5avvjiM376sy+4fHGDlgqUxVQVpqqQpsJJSZYH/OQoaqTdtZTi2KaOuXdoIRG5QBb/v1jb4v7MsLiDhMCfPaWMtNuWMidWquYUJ/QcQChUJXEh8N3DiZ2UdFpRxUw1OiotceOB+FRzf/+0LBb0EZM1rz57ycfDAd9/oKiG9faCVWs5KE1sO4bHMyut8SmRcyb7jHs4Qtchuppqv8ZsVkSRiCkiSGhTUJ2h7SpQG/Lk6WyFEZLhPPD4dETJmb/6xb+hHwfubz8uq3pu5HrdECaLHCMpZr59/5H7o0dKzcuLBorEdA3KWESSZKMWt9EYKF4wT5HgErZpUI3G5Yl23aKrmkJmjgKrK1xI5Jy4XDfItGIezlx0ljRGvn/4hKwqSl5csC4kspLUVrCqDKtast92nMYBW9dsL7Y8PBzoh4H3Hz8iY+aibtEpIcWa1c0VImVOjx9ojeHh6Yj0kMbCSu3Zv/wKY1vGyfP5Z5/x7Tff8s0/fkd4+gFdEmZVo7cNar1iTpkQAqdh4tR7+pNDCI00FfPkaNqaWtRIo0hyGXtJLZicQwq98IiNQAYP0v6IB/bPEGQpUdpQtS2rzY7xcGCaRg7HnovrjiwN4+wIYoEjl1xIyS+lrhD0w8ATkuNKU1WGQQ6kGFltVlR1Tc6RkCPj/ETbrGjFDpIizoF3P9zx3e2RbNf044hMClUESRaMKAwfjxyOZ24/fuRnP/+CL3/xV3T7joBA2TVmFSjREwq0WVKEIa0SiidijGgpkRFImRQSJRacd+SYsFJjtMVHj8gFMSdKWbAoLnuMtXSiUESmrRtmETmcjtwKyUkpvnpzTWxqBu9ZZ00+zpzCHY2uON4eyFNASks6TaTHnixGQoSnb78noljZlk/3Z2ppWdsW54cluJ8LTV3xtqmR44R79wGtJJt1jROOLD3V2mKVZR4ca1PhJwdzxJXMOM5cvXqFmyLKGt7s3/L06Z4ynbn9/T8RpePVStM0mnn0PNydOE8FbTRuZZlC4uE8sl5pOl1jui3VSnDsn5jHiZKgd4ksI2d/5nw+YdoGtKYfJnKzJkpDSDPzMBCHA28uOuRlxeA9F5uW7+4K690OVyQP4xPGWNquRaRI9BMlgMiFw+GR169e0rYW55qlEWoMd3f3yK1iZTS6mnn9+RXONaTqguH0kZwOcE6IEKlfasScyKNnKpFyFQiPj6h0JmWHriyTUJRS0dgdT+cnjueeh0PPNEfmOaKlpp8feTqdefHqhmb1582oQjGSpmvZrD0UScgJGSR5dKi/LEr8Fx7YZ5FmERKkQmpL1XbU7Qp5PnEaBsZ4z/3jicGL5yX3DEagpVosYWUpZ85zIqFJSRBcIPmZeTiz2W2xdYXLGTc7UvCL+V0ZHu6P/PFPt3y8e8IXgzIVIWaKVvSjw2hBoyzxNOLGd0xjD0j++t+uMd2GiMSsLqgry2wrhLb4DMo4upiYnGfOE2VOSCQ5ROZ+pkSQQiCUwlSGSFj2gfOCLXWxPA/XBTebjpVx2JyJdUUUkVNKHENCP40M3tHlnrfrLek8cXqaqLoNuQoE5xnnzG9/uKU8e3SWFcZMj6Fa7anrjqfHM7vtltEvAfkqZ17sWy6tYL1bc5aZ890npN9gG7hq17iY6Y8Df/in36CD4CdvPqPZdWQj8atFaambitP5xNDPxDkxnB84PHlevdkjskXVZmFTRwcZ9ts9lak4Hj3n6YntNvL5q4a2WVGMIwlJFpK6qha1pZYUVVhfrqnXax5PJ37zu2+JorAdZuqm4XJtYT5TbKZdtaQieDj3WGuRSjMPDmMsWmmyj1QlctlU7IxF+mWZHB9otcTut0QhudltmQ8DqmgMmjANHJ/uSPot/+F/+p/53/7X/4WHd7cwB67ahng48f/+n/8X4/HIerPidHdHnk/sdppx0Awh4Lzi2u6gumB+HHh/+5EUoWlWVM1iRJyyWLhYfqYSFaa2aLO4bKsWqi4yTR6fFinh3I/E9CMynZTWaG0wtsLUizxX2QpdNVhbMXrH4enI5CMxLfzYnAIxRLarBucWMbHKEIri6Twv5jg8KQysVjWCzHq3w2oD4hmXiUKIinfvbvn244HTeSALgzE1/TxjzcLeaNsGodTyokT44YdPtN03bLZbfvLVV6h6TS4SoTrM5sVC7y+CMJ6oUqGZAt4FUkyUVIgxopQBlo2MECNjcSxbfwWe1/ZKBlGgpIRVEpc8cYoo3adOOgAAIABJREFU2bJvVtydBh5mT4yZsDb88mVHLIUQE27wDGOkubgkpkIsGSMts5tIPqKeZ4VKC4QUVF2LqiuUVezyihWGN5+9JudMt94QKCghqVAwB54OZ1bbHRrBw+/fMb8/0KL5/qGnvt7y6udfsNuseffhluk04dSJNCeqDCsp2dcV5plmefALvfD6pkOdApuVIcwTddPQ1FuUKHz6dMeu3S6IUb9Ij8+nMyFHNhcNTdsgGsHsHOM0orQk5by4WEOgVpJVW9NUFc57uu0Fp48/0Kx39JMnFpBKEXImz55GZq6u9mytpIyOGgOhEKODnFmtVkwa3r68REWFEYLKaKane2Zd88OHd8zzSJwdZZh4uv1A35/BWl5e33D98pKUHeutRDaFq5+84pt3d9SbC0y34TwFsjCAJuWIbZplZdHPbKoOrwRCLvgdVdXoquN4njmcHY/DYhHQKiOsZDr3xL9sDPuXHVipJNoYTGUxqcbWS9e4alqaumYKHka/iIDyIslKgBGKECJ1XZOnsHTREDz2jpIObBrFqlZoudgETsczVVVhmmW8YuuK06PjTz984nGIxCJpqhrvwwLnDgFUIeVENBlJQRPJteTu9sDvfvVPNFZy8fan2GaNUBVJaWSBrbVMT59ISLoA2WdO/oHoZ4RepLsxLaKokguJTBFLA04IgVKSUBY1ZokCYyRFgBcF4yNGAXOADOPsGFVG6R22a2E1M7pla0Z4T9ttl463VZimJqbINDlyKazaFpcS0zzSdC3SFF5tLtjsGqISvD+c+M///GvmJLFdy8tXN1xdV7xaX5N94vT4xGtVc/36DTJExsnx4eMD3w0Dl1++4aptuRseqQEVI29fXLARho1MiOCYU6TdNFRtRdV1fPnVnvOx53QYySFhZMvw9MRUMnqXiC4wDj2NtHg3Iw1Q8tIgS4aiBau25tXNntkvIZgQPB4BRYFucN5xOnvmYnkaA3fHM2iNajqKAFtXxOmEJi+0ibNnfXOJ0jV933O1X4PMRN/j55HPbt6QxgmZC2nqyfUDv/r1f0RZz9XNJb4/UWRBVZ7t1Zr1lUY3nmE4snvTkkUhjAm73aPbFbN3+DKhtKZtO8CREczRk6Sg3W64bCzBT+jKkLLkfBi4e+i5PzmepkSMBasiTcoIpeh09WMeWIWtLFDIYsGC5v1MHgey65lioBrcMi7JEcgIIYghcAoTtqqxVQtFMYwnhJ/JTrOq91hbkXIhp8LkJsZ55qp9gVaKDEze8/HhkafBEbIkz56clwXiHPPzjuFM8hGBhAI5KjbNzHQ8Mh4+sb25RtYtuVgSBtVuULXBaI2WGqNqdJZMx540eUQsYDUgiSGipEILBbKQ4/Nfl4LQEmU1aEV5llxn4RFJQkiYAiJElBRoAeN55CQlL26uKUVwuD+xbVourq44Hk+EksmUpXoRC+fKSIlIhcpajFZkGdhcrJjCiafJ8zAHXLVmztXSrfz4yPvvf2DT1Hz19idUs6MVgpdffkZjNfPseffhia/vPnD/26/ZX11xWTTXVUNbZy515KJrEG5iPE/E7GgsnL1HtSu08TSVpHSC2Y0Ed0+JjhwLOTgEhWkacPOA1pKuM/h5op8S9aal3jQ415P8BCEjUaRpJsyOLA3zceTh3ON1zeMQ8KZD1S1zcPh5IglBVJKGiM+BalXT6IrLV6+IqmA3G1RbczzdYxrJRjaYpuBjYT7NaNPQXRjoBq5eXKGmFj8f8WFGWoWqDXIVCZXDWoVtJC4UhpOjaMPxdEK5gd2+o0iJ8zOPT088Dj2bqz2bywtkXVMbhfYL6+p4HHh8cpz6yOBhLgopxfP+uMZWAvljbuvYypAEVGoJSWghkEURw9IB3oTM5ALD6Ux0EwlDykBxCCFw04x3AWRBlIwRAl8Ufch05XnGNkYKBW0E42miJEU0A0/TQIgBXAQUPucFBrfoSCFFYsqLKxaFRZG8ouSGuu5Q2i5SXSK5RIQCg0ZLSywSqyo2u2tKguPpEXJi+nQix0zRBcFSZieZEUCRmfg8NGurBqnFUoFISYoRmRa0ijWKF2uF7GdqI7mxhjZI4uPMcQA/JmSWWKmZ+iPR9+SSKBKoDdv9ipwVITjyEAmjpDILnP3dnz5xd37iIQicaUAorMh0XUVjJTGyeEzPJy5Wiuk4EoLixfULri8qrirNm43m9vGINA1Ns1r4ytst5AnXn6lFoLMKaJhPjjk5xOnE6e4D24s9UknK8wdtu7skuQgIZj+jtCCkiCzLXTaVwjCOBBIueXz2+BjIRZKJUArmWcnhgufxNGIvNggVQURsZchCkFPBaIkWCVsifh4I+0uuXlwTdc3jcCR4z2E8s2oUq82eWhuSC7RtzdPkafcb1tsaVKLEA1QSYRS1bBC6II1C1RLbVYRiCSXjfQDj8WXA47GqJhm9oF6U4nQ+Io3l5s0bTN0yZ0GKGVmgPzvuPp25Pzl6n5mSIqVMLQuttZQEUwgo+SMeWK3t84u7LNu2nURKsyzeBs/sFpSJmx0+ZvoxUsoCpFqq5IIoCZEzQgkQklzKsnCcyzNEXFNY7ndPxzNCWXTJaC14dXPJ1H9iROJzwcdEKZmSBaIAQpASKJHoasW2Uxhd2FzskfVSYsbo0XVFCpFUIm448sPv/8CnHz4Qs+Tq+pLXX/yCe1ERHLjjGZny0gCShZIyuaQFOaoUOWViTuQpobWixKWqMFJgjKVUmsuqBuHp6oZ9bcmDwyN4yjM5RHJKvP/ue0ylURaklqy2K0qOuHkg5sQ8TMQpk4KmzJKgE7E4nA8ovcK7wOgDFIHJNUZUy/aQihyPR0zRiOAY+8L9beLF5Q4tHK+2NdbPpASVLswxUstCs77m0c30w5m2Es+Il5p5mBElklNh7M9IY9DWLKbAYUYLyRSmxZMqluRbKTBFj4uBJCCWjIiJmAqlyGWRXkqUVHStpRhD13T0WfJ+nDn2J2ZlEFVDTouUraJm3Vh22x2rrgFd8emp5/Dde6aQOJ2PbFeKf/93v8SYwjidKSnSNiuqLhGINF2FscvdswhBETXKCHJefhpIiXOeORWSkriYcCEwuxltDd26o1l1+Jjpthu2V5cIqdCVBSFRSpGNwYeZ+8MTH2+PC0Io5aXCo1BVGjCM0wyicH159eMdWCHUAgUjoBAgJbrA+uKSFBwhBoKfcd5RiuTweKKfHJMPpOcXmecPSMmLwDkslxtSymxWHXVlCSEgjMBWFamAFRJRMl0lWdUKkQUmAykSBPz5VyuERCNZaXixbXhzs+Htl294+fkb1pcXSK2J3lMYAFAkzudHvv/TH/kv//x7UqrRpuJnX77hq8+/IgvN7dffkPoJigSRkVmS08JBElIiUeRSljRRzojn+65ScjF750hXa9Suo7WWtgjc0RF8WoLnRUBastA5BkyS2LrCzwGZJcM4UijM5xGZNDlL5ujYvNyyUgYzwOA9ySX85KiqluE8MI8Dp7OGybNpCj+5fIlMhtgPnNzARb0gR3f1hhWR4TxSk2nrmtPDA7tmj0qaUx9Ic0aZQi3lEu2UYsm9IqAIZJH4aSAOnjAHattQfGEaJ1zv0EIjhaBqK+q6JRdwPuG9x1QVJS3EQFGgkDGVYhwGKqM59w9EH9hebumdR/iE8B6RIslJginMlaC3mnnqORyPqGrD42GmrvecBjimkeF8RMuCCiOVtUxPJ27eXNOtdiAUwlh0u8V7TwyO+/sHzg/3IC3CVqiuYhhmDqcTp3FAOk3VtoQQSQWUtWwv98DCyXIxII2mIPARTqPjPDkGB1POFDJWSbyCYc5IWbh5ecOrL7/68Q5sLqC1RhUW47WQ6CIwKdPtLtnNE24eGPozbnZclkJdWwYX6PvxOUr4PCIRBYvCaEWKEWtWaG3JReJ8JseIjxnrIzF43DyjBWxbiwqZ8+SIImO0euYfs0DEhKJViUYGGpNYryy60fiSSG4mpoKJEWs0qURKChijCT5wPieaVvGHb37g4uqCn/3bv0Mbw+233xEnh4qZ4gO4QMmS8hwjU2J5eaNf5rglLXd8N02gwTQKW1fIksl+puRMfDbzLeOjpeKIY2L2Ge08YhxBs6xdlYwVBjc7Ys4ICylPSGtpKs1pCgvoLQaUiaQQmMcZPwpaJdG1IvuRTWsxlcKISFtbrN5QZUvUBl8KaZzQQqCj5P0f/khOjjwlvIxUjSLgyGIZAdlKodC40eOmQI552arykeIEyWWm3i3y6hIxlUZkjVKaVPISzWO5l0uhlnANYimRQ8RNPbrqUD5w2VS01hJOPcJHNsZSKYEpiUZK5nHiQGSzaunaBt005JKZXeDbP92hFcxT4ObqkuR7qnVFZTJJLbNhXdfLqme12M+9D7goePfDHTELXrx5TVMbYilkIZHGYO3ycfch4lJCKEm32RCewXUueEQSxBgZpoXGMvnM7AtRgFTLB38Zc2ZevHrBF7/8Gz7/xc9/vAMbQkAKsYwahCAKgc6ZZC2mrmk2G1a7C3ZXV/SnI9HNGCVorMJsOs7HnpLzUqcXqJRCPMO/hBSczz3n84CtKmyjUFaR83K3zTETnGPVNuRxxo0RYZeZcAhx+SNrSW00V5uO631FVSuUgRQ98zyipEbIwKoToBXee6TSXL14wc9+/nP+n3/43eKSUTW/+91vubza8bf//f/Ap5+954+/+S88vPse5GIxyyFSEgQXEFIghaT4pfyrq5oQJ0L06KJJc0DXmlLy0hGuNLIUsk/ktAh+U4zL3T4VvEuIkEEWpJYIKYgkRFkUGKYT1K3FS0ljK2o50SqBaCuUhHpdo1SNUJlGghYT205ytW3ZNC2CSNVYbOmwWTPPCeEczkUKkVxACdjvtpwe7xFSMp090QmKBVUbEhmRMiUuuKAFj1qQUZNyIXjISVJQz2IxsYDKBIBEKoMQMLkZWQolL1LuIjJVK5CiIHPgslGs9hccziNtDKxthTEGLRfXTy6JKBJ9ApsFtlkR0szV1Yb372/54f09Uihm51DmgjBNRJF5/WqDNBrMc/RVaFL09NNEP0wIbdF1y/HhiYJEIjHG0m02SNtQNS3r9YZEIc4TMS2Nx2mYECUjisDNE8EHhmFgHGe8X4TiWRaEZJk8CMHFi5f88m//jq/++l/x8rPPfrwD68YRRUEbs4DMSkEIKCVRBGizpJ/Wuz2b3Y556DEhkHJAysJuVRN9gJIxWmO0Yt3WVJXFu2Xl7XzuWaEwlXqebcLh4cTxcI+bIjEIjBBc7zekIujHiQBYLVmvGrablsv9auneEQg+4IaeGpBVs3zFn9mvSgDKsru+4efCcjqOfP3b3zOeTrhO8OnDLS9/9gu++K//G7YvX/Kb//T33H3zNYwzRSwvqFIaESH5BApiToubVipS9KSyBLvRGiU1qAz1kg9OLLHCIuVzFrsgslzu4yUhREHJjNKSIDLKKLr1mvWuxiXHMET8mGi0Qa9rnp4JlmslqK1EaditLS9fXHJztaJrarTWVPWGqjYIUZESlFVF/foSP82k2XM8HPFz5GH8RNIgZbWIzoYZmxVWQPaLP9a7gOD5I14klayIYsnWKlET04R8Jm36MSB1Ij9PbowxyLQchpAywXmsNaQUMVZjK8Wr69WyVFIcF5uWjF4sgDEiVhuGaUJbSw4ekkGXSI3Ez45Vt4bnxudTP/Dp8ZH9puWp77kp22XRfg4Y2ZBToOAJIaCUpqoNL1+/IQvNuT+jjEJYy3qzZXVhl/AQkLzHGosoSyLOh0ARDqEN2fkFfRMjMS79HCklS1+poJRkf3nBX/+bv+EX/+pvePGTz2m32x/vwJ6fHlECJMuI57kwJsWFuOecI8aAEFA3DVXVEJ1booZp6Q7b2hD84hxddx21tf/yxwbBZrsj5YwUkjAHXApM48w0B9zsqUxLVS2jmJgWgoNa19R2iTlWlaBuDLqqQFU4nzgfT0ipiBmk1Lh5Uf+t1ivquqa1FqMt/+7f/w1dVZj6ExdX16zWa8aQ0UJy+dlb/jUZLeDw/Tumpydi8Egpl9U+IShCEedloaCpDHVdM3tPmiPCZoRVxJSBhK40tW6Xhf1QmGfPMHpKeu7QPXOXlxoUhIGqNlSNJZEY55nZwzQFTucZ1TbLSxsjupJcbTesNhVCOLqVQdcS2RqQmmQVetVR1Q1FKJoXF0hpELHg+n5xBHn48P6e1U3gT19/zzhGJBqCoJTlaqOlJLq4pI5kIcXMnEZCXJp/UuolQYUg+UKYl+BFlgVpJYjl0AqpGE/Dkot+/vBraxCVZko9cXbsNi39nDnNCU8h2IqkGnxTcQqBcZr5+PRIKwqvGsnaKJpVh7YVicIcO2J2mHqDFoLHc8+lu8AJSaUSShuC65ftJpYPrzaaZt0xnHumYSRNM6rL1GtDLplpmhcvbFkyACEEtNaEEMh+mRKkEAk+wnPgQySeP8SSzXbDT3/+c778+S+4uHlJs96g6+bHO7BuPNMrSaFQ1d3zVzUve6ElQXSkeWDuz8zjAAKk1thcUVDEskhstdWU4JB5aayIIpYXWYCy+nmGu1jBQSCkpK5brLHY57+7lksMsanA1stqXcgBVVnWN1dIrcklI5VYhEVTQAaNNaBlAlE454hzFe1qhdCG7fWa/+rf/XJpgNgV66vXtF2NLJC1Yf/5T/kpUG3X/PD17yifDoRxJhaP1npRNFhFiBmRAk1dL+VRTogUKbFQckAZhTYS21jUwh2knjVSgp+XlyUhyRK0UUgJTSNpWk0unrn3uJhIWHwJTCTc6Eiyoa4V1b6huV5hWoGyFX61JuxvWN+8QGuNEQLb1qQSiC6giiamQpIwVQ3nOWKqivZthTpO/Kxp+cOvv8aahhICyQ1kPyFVQRYoEQa3rIvluIC1EZARi8lPaEQolCIoYbkCMC+OmnbTks1SbSBZFvCNQrWa8zRQUqLVCukyQ4qgDQ8+4CuDjpmMZsyJSQhEzFRSkEJBtxKpA6pSfLo9MM+e/X5LLg7VaoIWDBjaak3EoDKcD2fWqw4fHZPzKF3RbVc47zmdeoouNCqBXCq942FkHGeEEtimWp6VIYyOGCNEBRiCByEVyEAui5eqsprr6ytevn3L5uYl7XZHZSuqvzBM/JdFE6UgRr/gLcQSUYTnL8fziCaEiJsm/DRCDli18GpyASx47ykpk5D0k3s+kMsWTEgBbTR1VRFC+JdnLnkpn+rqGdyc/yVpJKXEKMV6sybmxeaOlEilGMeZprbLnz8ljAVBRlcV4dlZi1SoyS1/agm7/ZaYCqrdUW82IBePkMsFiWD/6nOkrmjWFxy++4bH21v6x0eK86gSkApyAJ8i+c+8ZeQCljMSU8xzZNNT9BJXU1JSdR31qsW5slAHpFjmxsljpEBryTCcyLMjkYn5z4chL8vXdoPjOR22a5C7NS++eMWLz15j2zXFGLS1KClQFFxwhOHAuT9TQuT993e8vz1wHhyzS7gQMUZzvVrz1fVLvvjrn9H3Z2LIbOo3fP+H3yFKoUSPjwXbrnGTW/y3z0seuSSKkGipiSX+C4c35UgumeAT0idEKVhtySLS1PVy2HNkngekFBhtyUKgkiQ6xRgL0zSjs0BIQ0QQM2j93BgymqQUmczUnxZ3q868/OyK9a5dYqyrBtPtUfWa8iz8ClEwzovVYnJLo0wKi6kaHm7vgMy6XRGPE5Mr3H184OFwpGpqbl7dUNWGIjJKKooSi+Q8LaAYJQpaZKwUyMqw3224urpkf3HJarOhajps3aKN+fEOrHczShtyXHwgMWWsMRhTYasaU9UobZdxhxRoyaLjKBrx/CcRQuDmZUqSyKQscCGT/EQ/DKzXHUIoTFMtGdMYEBSKZJmVSUWMmVoZQvAEF5bVN6BqG4zSnB9PVE1DW1fE6XmWuGoJdUTmjhLjsuIkBX4O+HmmUQWVHTk4tG3ZbAzaVghjQUqE0mRA6prdmy+5ePmW80++4Ptv/sD9++85393ij2fyNCP8Il4qJS8NhpKRzw0GIQVaq+ddxYUFtLvYYyvLPCe8F8+Jr4QS4KeB2mrOpzNnNyKzZL3f0RlDjcKsWi5Mw7e3J06n80L73wh+dvML1p/9lLTaMWlN1TZEKYglEd2MwmKqDe1eMRxPfDqd+f13tzwcAvX6gkM/kfLMxh5o2jW/+OlL1q5BlJrh0SHbFamfmWdHiCwA9rhoR/NzmMU+N4iEFChT0bYdQinGeXH25BIpZRlvGW3IUoAoSFVIJdE0FqEUBUMyhuQcx5PjGBegdwMYU3AxElJCSIUr4KqK5nLL2hbwM0aPmDBi2kKz7Zaqr65IyjD6iBCKkArCmMXhm5fsQMgBpQSr9Za6W3H3wwca9UTBMAU4PPTcfjpi7IQQFltrYnk2GzQNUkNMCUlGlrSAB62hXrVcXl5wcXXJbrejW62x9aIGUfpHPLDnp0eUlMvcSigoBZ8SxmhsVdO0K9r1lqpdUzUtOTiWEfSi5FhuqWK5ohVBLoEkJEppvItL1naaCSFjtX7uLmZijAilcT4yuYnKVkuIvEhEfE6gCEcpivE0E2Pi5tULhn7mcH+LUYVKSNq2Y55GfIjYqoYQMbFGi0BUiXHqicGz2dfkAjFF9KLYA55LfwlSV+SY6N58ztvNjvryGnd64vjxjuHxidPDAfon0jwRgsPIpcmSnq8P/nmGaxqL2XboXYesKtbKkouiZJiGEVKkSw2qZLItvNkaitZsrq6XJYflqss0J77++BEpA21n+eJnn/HTv/qKzdUVWVVIpdBWkVNcGkSVQRaNcIsqYo6PuCRIRfPUj8ThCSdZUkXAr/74HauN5ovPL2nqPaaduL+9ZwiPtNuaw8MTbpiWDLkQaClZrzqUErRNvYylumaxzSMxjSHlQA5+CS3IZQ4tjUYZmOJETAl0oetaxhnmnHkYJh4nxzlrimBRtOSCj5koCgVBcB7wVI3kulGsl78GbdcQs2Ny/XOTCeYpIZWGvCxuxHlmdA6p9HKIvUMITy4CYVqGMfGn/o66XjOEwunsCHFR1Hz69ERVSWY/sr++RCizCK5SxgVHyZm2adBVS7vZcnVzw/7ymu1+T9OtMLZaGph/Dir8GAf2eH+LFtAVUHLJ+IqcQEJlLOvNHj/NjP0J7xboGUMPwpNi+pcXX7BswPgpcR5nmlzQxqJ0hZsnDk8nrNVc7beUDEoZYiqcB8d5nPn/WHuvJrmuZN/vt9w2Zbqqu9EACNAMx51zrtH3/x56UChCutKZGRKmTbntltdDVoNzpZdRBMFAEOwIooHaO9fKzL8rdeF4niFG9huZbUMqjE9HdBEz8PGyoFShpsB23TK4C1mL6ZVuClVplDaS+VkT5+FCDgspRfptIgYP04COBde2lKhpGktVilSvfyZj6fc3fL/+N9K8MP00MJ9nvv7yK+X0xOX5M9P5GRU9JQRyTFRjKBoxk9vv2X78wO3DA6kUoVamwqpfsXeOEgKWQo2ezTxIbIRtqN2Kdr0mxURYZtrzmR///IHvcPz400/86U8/st+vsc31JieioqeGBasVOUaCD8zjSI4Ll/OIM5a+b3Gucnx5ImiNblu86cW69cuB3ftbbj/es7lboZs1n/+Pf8Dkyf/338j++nuHQPQL/apFU1A6oShgA1kpus0GlS0xFOZLZNU5aDWYSrtpySqyRMOqb+X9QZNV4bJ4hjkwh0hUkKikFHBLkIPLGaG0Fni8eOZ54Pu7NX94+4bb9Z6mr9QchIdcM7ZWtGtQOotQJVemyVNxGBpeng6cLxdSjPT9mrDA00WKum0VIVeGGNG2wRihSy6zpwJGO0lkzJXzMDJMC67vaboNrl+ze3jgux//wLuPP7C/fytphM6hK/j5d5TXPX36B1rJKWq0RfUV3TiyFu1r1694eP8BY+ScMMZwfPpCMBdyCCRVURRJ+64aSss8Z47ngdVKLEJKgRQDl8vMqu1prUIpKAWG0fP4ciGUgjOGlbWEmNm07hpUnAlLJKaEjYVaAq1TmMZgJk8yF8wSMG1Du4qs1mtp2VRhmj0xLHSNo5TCPFzIVaG7SgwL696SYiHOo8xcTYdebVBtSwwZjGP37j2be8PN+x9p0sh8eWI5PXJ8/BU/nJmHEYXGOEvT9bi2x2y2fDrNnIcJ72dKSjSN4/13H7jf73DO8umXvzONM6vdjt2777G7e7KyqFJoSoKvf+cv/0uDaVd8eP+e/W4NWuYyTcZpBUXCgo+nM6eXI37xuNbSGEujLG9ubzG6oW0tf//HF17OC1OGvmkZhon/9X/7v6hW0d9+x49/fM/3t/fc//Uv/PK//5/EtSGejqiYZBTIke2qlTiK4DHWsL5b0W83NKs1cwjEeWH/sKLmSCBTdaHfrVBOkWpF24Z5WricFg6nF16OMymLJSm1iMSx1t9ohEq8QcBANQyp8mWIFI683xX2a0NrAyUkdNuwVj0VJe4mGIbLmS+fTyxLxuiGw9OBYRhIKWLdQEyGw3GhVIX2E/maMnd3u6dtDCQv6e1dS9M0KG04XwaO5xnTrFj1a/qbW27fvuW7H3/iuz/8lfc//MTqZodrW6iVFBb8NP5+Bfv117/J0lsyluC2UmovUI5xaK3pV2s+fP8HVqsVb959x6e//w8ef/0bw+FAtCPWerT3aC0StVJbci2chwt929F24g3sfeB0urBqHW3bUFB0bUfbCP+2VshFEWIlWLDVUFQmKE0yjqw0q/WOfiX2G8pYnG44n0dcn9HaEa1nyhlTKxpDv9pgrSScVa2oFFqgaoWPlVSDGIgrTTGOFRFde1SupGpJWoNesbnbYtQGe9PT7Na43Zo0ngjjxPl4hKqoaCKKl6/PPD2fSVXjrKJxmlAiTy8HhuFCSZGXwxNWK277DU3RdLolYFBGkfNMf/fAj2/e0a42tFajuc7+RaFzYPELw/nEMo784++/8Pz0TOMavv/+Pc16i0qFOM98eHvLw9sdf/1//BJqAAAgAElEQVTzD1zGyN+/HPj7pxdCdVireX488be//4PV/T37N+/ovrvjz3db/vBffiYcDxw/fybOM2EemM4n9vctq67lZrelu/mnXUCBeRjQSEzk7D260WxvtyzJ431G6YbL9MhlnglJLIOMKaIdfd04y3ZDOORF3qdcEo1tMbph8JEcBqZh5q7XvNm1dENhd39Lu85QIsoKC+rz5wOPh4Vx9GjlSKESvLDwlE/4FBmT8KDd9VDXwBKDBJIbhVFOuAHjgq2K02nEtmtubu+5f/+Rtx9/5OHDB+7fvufm/j2rrRRrLYoYPGGaCPPvGOg8PD3xdBVqSwKcZlVvafsVVmlyDCQUbdexf/jI5u49+3ff8/7LLzx9/sTTp1+4PH9hGQ746Yy2CaUqqEKm4KOAzNtO1C/z5FmmkZvNGuss285S92uOw8Q4BZRS5KoIGdTiUaqirYOi0V2PW6/QNuOcEDxiKOhqSUsht4kxnPBaNtBN14OWB5HHhRAWlvOJ1fpE1zUseUGViK4KaOi6LbVobDuy3m0wJlHjiWE5YG/fQdfhtitca+j7nvnwlZFH3BX+GcaZL1+f+Ns/HjmeAz5r2q5lv+u4v93ILV4rS4rYxolZ+35H07dYjaSaV6hO4ZRAQlVrSk7EuEAMqJyZzxdOxwu//PIrT4/PvLy8kGLg4eGBOAbGcKHWgqZws11hGodRhf3thvuHHauV4XIayCHQmcLly6+8/G3L2mpqt6Yqhd5o2ps3fP/9Aw0Q5wuHL59xRtF1LaZpJDOngqmakgv9MhNzJOXErTHkKlBbmSY6Gl6eznw5feLgDYepULKiMYrOKkxSGCSZrghpjlwqRoMqBVNmOuPIuZJqZa6ZM4rVSpIKl5BQlxPNasPx4nl+mTmcPc9LoVTBz00nxm85BXQphJQJFGH3aeHUe78wLAub1VbwbSrTPDPkE33IuG7Dux9+5v1PP/P2xz9x/+4Dm+0t69Waplvj2oZSJP7DT5NIC39Pm9PxckHU25aKvdLNqpDX15V4lQZVVXFNy6pb4xrLdrPm3Xffc/zhJx4//YOvv/4nL0+fmU9HtB0wzmK1ISyeeVo4TSNd2+FcwzwuqHGiaxvWmzXrvmXJhcknUi3UlGR97xNWK1zTscTINEycLmc2vePd3QZlHGEWsrnSivNpQKmMIdO4hvUmk5PEcpAj43lgrjC1F1arhpIWao7EUKi1QZsO2zl2dze8ff8Gt+rZ3lraWlFhpNprASWPouDc1b9qmZmmha+Pz3x9OnEcAn/78sKSHf16zefTxNsp8HIwfNivef/2lj9+eEuz2tBt9uh2hWsa2qZF1YIxCj+ciTmQkZe3ZI9KkfPLC7/+7ReOxws5i7nd9mZL33c0zjIMJ+zNjnolow/DmW6zkvnTNbQrzX/8+5/xS+Tr508MxwPjdOZ0+Mr6a0e32oh8zijapqHrNtRuhW40tdUcx4GmBrZ2R9e/xXY9+apVdjlhUkSVjCkT3k9M08ScRqbxwt9+/cKnlzOHY+RwXDBALoXGKBqStNHXHGJhECkxLtCVjdOsGoTvnQutVXStRhuF7VsKCr9kJj/y9TjzfA4cp8hxTnSrNTUKbq5KluxXICmFz5WqNClVzFX8UCuylCqVUjKpVHRVuG7NT3/+N3788195/9Of2L39jm6zw7kOZxu0ttRaWfzCPA0k76Fkcv4dE9hziEyXAaVfi1Vu25IimUyt8sqEGGlyRmmNbRq0dTSrDe16y839G/bv3vH517/x+I//m5dP/8DoAYdm0gatDedp5rJ4WmtxTUfVilTEsgUENnBdh48C0pdcIIu7Q8gVnypLzEzBMy4KHxfe7W9oa2W1EsPxSmYaznSNYbWSB59C4pIT55cXGlVZtQ3Oaabe0ThNLpnTaWSaKuiW7c2G4TxwOZ0xjebD9x/Z3OzJCrQq0DSomkHJrZdzks8nRC6Xkc+PB57PkVAdpyWxmEqZE8f5iZ/erOm0Yr9b89PtjvXdG7Jtqa5FW4NRgRIWluHC8PyZ83CmGs1qs6FpHOfjC4+fP/H88kSKle32hrbt2Kw3GKtY5on5dCFEz7LMXC5nMIVqqkASGmpO3N9tKUXRd5r//B+eZRmZx4HL4YUaA1+/fmGeRlarFd16x+3dPXe3N1RdGZeJ85QZF88maG4e3kHfU5wjJYPRjhoWxikS5sD5OPDl64HDy5lfPj3yeBz59Oghwn7VsrGWeLmwNhmlDF4BqZKrIlMwNbOxlruVo9FV7HWxtI1hu+3Z3azZ3PTkXJinyNPxxMtS+HyZmRJkZcTMfB6wNWOzp3llMSHWQzFXjMo0zqBQWNdINIoVu931ZkO7u+XHP/07f/iP/8rHn//I7s073GqLbXustRL0lqVOvJ+JyVNyIHnPeD7/fgWrKpSUmM5nmcNyIfmFkiKxZLhNqFoxrsMXGcr7zRZtLcb0dKbFuBbd9nTbPbv9HU+7W55//ZXT169Yd0G7hWKs4HvLQikItlshJkkHX3xAu47WGV6OJ4KCRoEqImtrWktUkSVE8aU9XVClctM4+X819I2hlkpKkGLh/HIGNMN5IC0Lu3WHLYYUEhpF79bigawzpUSs6ZnHSE5n/CJwwfnlyPuP7yXy0Cis2ZBCEDIBhWEcuJyOfPr0ldPxRI4Zvyxo5Sgl8Pj4GWUcfVtxZebGZt4/bDidTtTO0e1v5bTPET97luMBfzkxHY7y2ViDUZUaG5ZJWEK7/Y6uXdF1K7SRl8r7hefDE2GYeffwwM3NFqVkc22d0O5qSQLhlYgxjv3tDvXzH3j6+sg0BF54wZ9nHj9/5fn5iTdv3tCtJuI44+p3uMaw224JMZJj4fzlb5Bn9HZLdq1g7ShqjESfuBwH4TCPHj94LocLh+cTL6fA2jZU1WAMbHojbS2aOWZ8ycSiSICphfuu427Toqv8+a2V9vXNwx3aQMyJlOHL85lPjwOnqDjETNIGqwsxZhSgc8Ilj22U2BBdIa6KIsVMUBFzNS1Aa4oqaA2r7Zrv/vAHfv73/8aHn//M/t17mn6NdR3aWsHjSyHnTAiekiPkRJgnptOR48vL71ewxhgq4MNCOhWxZ8lCEPDldUOYWW13WFZkH/BqxLVCrLDWotRKHNuNxShDY1v69Y52teLx118o+ghK0RrDpGCaJsYlsFn3ZGVQtQKK0+lEVo6CQl95vKVkyWptLOuuwxpN8AuUgveBS05EZ+itoaYqhO1F2nqtFZfLyHSZZJNdDQpH22rG+UJI0HUtIWpCVLycjlhVuN1veH4+sMQLymj297ccjwfoepQC0zps61C1pdtuiCGwvdkQQyElkQUuBYy2fPIXrIXWGdIyktJaZGLRsyqREGdUFcP28XzCXw7keSIXKUzTtvgQObwcqTGxaleU6sVqlsqyzFirWZaJnBOn84WSMvd399zdv6HpW0qp0i0lUe2gPM51KOtwXUvTrUn+wnSZCaMnLZnGrjmdPE+fX3jqv1Bz4uG7t/TrFa1pmPIAeeLy/AtmWhOVxTYdzlgRws+RHBIlFEiVMHmsMoJbHmdK9mjVsu4djWvpk2YOhV4bplqYUyVphVWZvnFoBHMvKeKsFtWThsUv+BAoOJ6OA2efWIoV6FCJPtoYTcnS3hrnQBdqVjTG0lqE/FMqtWaMU2Aqs1+IKnJ7u2WzW/Pw4TvefvyBm/t39Os91jaiH65KomiSJ4VMXAIxirXr5fjC+emJp6+ff7+CrVc/FvFp8lxOB3KOpCKawByiODLkymoLumpqydQcxRGvX2Ndg3ItuoLZKbRy6Kah6EJWBYOiQTNbjbUKbS3z4hnnwLJ4Vm1L3/Vc5sSSMkWLoL0oQOkr3huwTcO2aymN2KsqEeKKFM4oUepUxDl/9uRcuZwnSlU0rmOKEM8jSglZ/ziMVx6zY5orx+PI27sbnO1QwbO9uWe7u6Pf3OC6Do3chDmKN3O3XmNKJvvA/V2kxMw4jLzbd3SbLeep493WUFVDKIn72xs+PNzSr3tubveAZh4WXG9YQsAvCWd7jK0EnRm9p0ZJADy9nOiMRY5XATtCkNZ3nie6vqFtG+7v3zANQiQZx5nJe3yMrLYrnDNM00wuBdeKmbmPkXmZGccLjTOQC8M4kzHMfsEpaID//OVX9Kbj3XbDNM4sS0DliC6ZNEfQLcpFdNuijBaD+XnCx0DVCuMsrmtZryIP+xW2KnY3LV2vsanisqEQqVWxIAbvOIN1lkhmWAq5FIzKlCKpfuM04lqL047BV4ptWCj4UjFVsXKW7a5nCZHTNbeoX61pFDgXiKnQWSda7lJQJJrOYawmzDPGFdrecf9wx8P7d2zv9vTrG9p2hTUOSiWFQPKLtME+4b3gxcPpwPn5kcOXLzx9/fI7FqxWlJJFeaAUJSfG84kQAvMSictC9oEURLWTcqRtO8gN1QVySnQr4Uu2jcMojTIa3RiqUhjtaHXLi/0VdXxBWeEEG2uY5oVpWpj8SNM09KueZVzIuVCUKEAiFa2Ek9xnRVMVq9ZhlLs6HSqckYxUpeo35lUplewjWoPVVoj8JYsfj5bUPZ8L2moohbZr6NcO6zQpB1abnt39jvu3D+imEZqbUt9+71KEihlSpl+v8eOEsYb37+5pG0l1n+Mt8acPGGvptmKo7pRive1RzlGUJVdNmgOL9+SQcdaRcaRqCEsG5LA0yjFcRrQG4yyXy4FpmWmswerK5XihVIXVHbbRTB7mKMIMqJyHQr/uWMYBaxU3+5boPdHPOFPRWixzkgKs4nwe+PL5mbcPt9y9u0PpyjgMTMNA1YZqNClYnDJXBlmlqAIklBYO+hQCU1gwCrKpuFZzf7eibzUqQ9dKS+yVopBpnSalQiITiiIVRYrga5LkgZCwJbGoxM6s0drQ9yuyKTxfDiyxkKrCp4RVgqsrkHT4EHHG4WPGtQ0ZSYBwVuZWrQWCa1tD0zjWfcvdvuPt23u++/iBjz/+wMP7d6hmjdaN2AhdnSzCsuD9wjLNTOPI5XhgOD1zfPzC0+fPPD8+/n4FW65zqdayHaNWaq2EeRLzspJROZLiQoiBXQzc7Hbo3FG6jM6FXLLYozYObRRN16D1HqssTrc0rsP0Hc3XFaenR5Q5YxuLMUKJnJfAsEwShaFFrlRKJihIWmR5plRcydSc0dVgrVibSBFVlLIUVaglY7QcPs5pajXknMilUIsGhPdrrWG12tI27ptaqF9bdCnE6mlsw2rTySESPD561queXBXNakPMkVwT1EIIntP5QtM13NxscU2DdZZbe8uyTDSto92sAcV4Gsg5yQtey5WOKH+vnCKnaYRcOB5H1FXKVUthWWaG4cx6s6IpcDxPzN6z6Ry32xXTEvn165FxLvTrLVU5ak2M00TXtGgbaJqJjS2sOwN4QizUIoYE+9sdRUkIlW5ainaEJTHNM89Pz1gNplY64+hvtsSUKF7+XNpa1KqXGJGl0LteLHYwaNuJfpRK02gxu4tKjNyplCIb2op0PTEmYikkLD7K1w2FGBP3656mGkypjEum9QXtC7okFh+IMUEBrcA1FgycLhKGppQGrQgxMxEoOVFqxhktSqfG0q06Nvue2zdveXj7jo/fPXD/Zs/m7oHbdx/5+NMfGRc4vZxlh5GCECP8wjgMzMOZy/HA4emR49NXDl+/cHh65HQ4/H4FK5rV335drylztYox1ojgnSkXYs7iG+wDeb+nLwrbK4rSpFxIqcE1Da5pUVjUWmO0wl0J0ut+JWyir18YhwtKGZqmZVk846QZpoWUCk4bYk5CmC/guIrK6xVyqgUKGKOg5H9yzDAySyuFURqqkmDpAsfjiWma0NqwWm3YbFcYa9BGY6zoODfthmUcmZcZ1chhEEIAC7UWXp4eaVcznV/EwC1Hkh/RubLb79DX2dt7jzYa5yypNGAdVVuiD4zTKIB6ShTT0LQ9KJlFx8sAKVNi5OmLhGgts/B5G6dBJVKIKG2E160tSlVOF8+nr2e+ngL/49cDbT9j256qJHtXe3k5W53ZmExvFVofWa8cb/c925sejHxuzlnapqMxLa1puAyDqG1qxpiGMAfgwrzM+HHh+PSMbRr2373HrLfkpIhVy7OLCFlhTpSsMLpFNZaSNZfjmTCPwoJLEds6StVENKEgRVsVRgvEMufCoXp6o3FUlrQwlgPbObAx4myhckaVSqMVjTGEeRYBvdNY20BVV7M58b02RmOoNCvLarPm9v4NH3/6kY8//5mHjz9w//YN7z98RLuOn//0b6SqKdNZ9gUxEP2MXyb8PDOcjoynZw7XmfX58yeOz0+yl5jn369gtdbfbtla6z8VL1AryzSJuj5GUhKaYPKeFDzbkGi3mXZVcE1DLYmcJFxJlD6tUBo1GCexDFVLoJD+/AlnzjRuonHQOIW1lmGKLFGWX68RlboqmrbBWUUlE6I4CdYEzhiwhhwlIU9pcewrumCsFcfBxtGts4jdjcY2Fq5zljVStF3b4poGrZVsx5Uil8I0TdjGklIgzZWcMjEEYkqk6FEl0VhLjMKSaW2D9wt6WehXK4oy5Cya0ZQyCs35dIZhoGpH2/YUKjln5nEkzAth9jw/XTi8XFDaXP/usF43DNNCC8yxEmIhaYXG8PVl4eQ1ur9jKJU4ZtbbDT4ZUVehqaql5sDz+SQsK1/pdIPWgWbzW6dRS2WaBiHToDmdBhFxpxPjvNB3lhhmjHJcTlfMfb2mQZOz4uLPpJJx1krrmCRCNNWMsQ2rtWWZPPO4kK6WOpCxXUvXaqyaMTniUGgFjTUCO+ZMQlRDORbSsGBdQ9NaNAYNOFUwSqNzpJZM3zYY68ToPknQWC1FkAfj6Ncd27sb3n38np//8h/89PN/cP/+A+v7e9x6i725FYvWYvj8j194eX4ihgVdC9EvTMOF8Xzi8PLE+PLIy+NXvn7+xOnwzHg+E5eFb0Zhv0fBvt6w9bqpFbbT9dYtcrvm6BnOiZTFhSL6RX6GyCZGckm0fU/JDsqKmgvUinEObQ1tv0H2dSJ3ck2H0YbT0xeGkxS0thZlHMYG7OQpJROLWLY4NFqL+77k/2hxBwiB6kDnetXLXm1aasVaTdagamW4DEzjSFUSMIUx+CgbU6s1qVR8EovRHCOmabBNy+IDTehISdz5SYHhMmGbFmMMjRNvozFO+JghZ1rXkEJk1feEmDFtRzWZTmvSEhmHmeAjqWSmeaHr12hjrwdAZB5Ggo8Ml5HH5wMVy3a/x+jCeRhpHDy8f0O72oLKqFw4nRdOY+YUCrQdq6bFp4ptHUYbpmkk5cyiDTrOJJ8gJ/ySuOk6jIWb1mJdZQ4LGkXKQmK4XC48P59Y3+wJKZPTxI8f37LbtMTkmUZJlgvek4YBHwvLZSKlQN91aGMxRt4DXSshJnJI4v+kNblElDHyXJWiUYWVk+emrBw2VitiLChrcFq6tnJ9N0uIBKUISaSLq9aRqox6yjqaVpRFOWV0EQjRGEPbdPRtz/buhrc/fuSv//W/8ce//nfevP2JbrXG9Q3FNngfqKXwn4cD8/nIPF5IKZFTIM4zw+nA8fmJw/MTw+GRw+Mjx+cnhsuFFLxcOP+aWOdfK9h/Llop3P/53zLbFnKKnE/PV9tTT1wmlnHidp7Yx4XNbgfrHpUztl0BBZ0aTNOg0TSrNTdW4dqOxq2wpsG5BowmHwHvv4nUG2cwBiYvW+SSIiEWctUUo1AJGqPRtiOhqLkiaq5MVWKvmcqVkO8cthWnwZIS1jrQApbnXFC6Usj4mAWjrNJ14DP+Ucy6jFakHNC1ElPE+ULTNJTGsiwL1lpSLeiqWZaAnxeGYWK1XtOuE9U5Rr/gx4k0zdSUCSVTqmHxEVRBGU1VEoRdWHBN5P7NWw6D59PjgbZ1bHpLlzU3c6LrFRpFiELYGJfAZYGcIu01aOx0PJBjJAWPtoaKRuVIzolaKmGZWTlFii3aKOZpkeVP29L2sgB0rmG93VFNT1UwTIFPTwPaOJwS5U3bdcLGolARwkpJmfPxIqbwxjFOC/PiCUvAGsvNZk27XhFyoaKv2UmJGAOdMzTOYZxYqcbgyTlhjHiGaa1RGLlTUmEsku/rGklV1FWRBWIgxUS8phZopWg60Xj3qzW3+zs+/vFn/vRf/hs//PnfuH34jrbb4qx835qSUHOjJ8wT2Yu2ehou+HFgHi6cDy8cHh95eXpkODxzOh4Yx0H4ylcjh1p+xxtWayWzX63fTi25bau0arWICyIVhWIczqQYqCkSQmBcJqZl5I1/S97vyetEmzIpeUlEzwlrW4x1mKZlvbvDaodBYZSi6kpWlfPpBbnjBT9z1tAvnsFplsnj40INYJXGe8F0nXEYY69KoiqOf7VQa0YXi0GIGdaIg4WzVlbxqVKr5H/GmOj7nsY5gTusY1oW6lRwVmO0xRrIOaG1GI0bo3BWEuJBoV3FOIEGxvOF6AOqwrxEtrmgGksoBVUqcQ7EJYC1NG2Dtg0hSbJeVeBjBNuwv7/HdIEvp184T56+SouudCuHwpdHodClxLIsolBWiilGxnhGIdlHulZ0FTePqsQkDGPFzzkWDsNAbxJda9nd3dD0ItQOXkKqqhJdyMt5YE4wz4lcC203su/FYNtY6RDyIublKWfiUhjHhcXLYTsvAR8StRb6RiiH282KvIVx8oRSyakSqiGWJOqxeu2qlEShVqVJKPHPvqpMxaImC2/ZampO3wy/Q8j4LC1y01i6tsF2Pd1my/3DW3764x/507//d777w19Y376hWa1BX7nsPpLiTArSLSyLCPv9KJDNfDlzennh9CQ36vnwwjicWeZZ3DJ5DVd79Ur7nQpWNqzC+IDy6hUGClTVv5WqEhK2rhDmhWMSyxEfPH6eSfNEmh6I+8BmV2n6jpoVuikkm7CuwTqDsw673csJqTWRTKgCX0zqRFSKxmhyKlirabuGsfOM00jwV0/cVIlRaJNagzEaezXDVkgx6qwgiP2q04rOaPrGoq8vYEySXNf3K2K1XC7iBKjrLJYrWsJ5h2GS3JtScY1j1Xc4qwWzZJYNtjN0646SEvPoWeaF1jWslGaeEqZes1aUplpHMfWapAchLJRa8XGglEotha7toIoFLVVsbMISICl26xUpKlpjUUBEMfuZmCCGRKhZFC81vMK1FApaySsecxVbVyOtWi7gU+F0GXBdQ1WQYmacRvwSmObAefY8D56Aw1pxdDgPkVXjKAUuw4DNhWqED51Hz/k0cTwNTLPEdqQiLa2pkjIxjfJiZxRVafq+ZwyQSmKaIikGupRZdS1aiduiT5kpRpSWV9tU6Iym1kwu18SICjkXYk6UqrHWsuoaVquGpnE0my1vvvueH/74F37+y7/z8ac/st29QblW5uyUr64nC8nPpBSIYWGeJoZxZDm+cH7+wuV04vj8LMV6PDJeLuQohCN1HS1F/A/8axfsv3jDKmGA1CKbUKX0lWxe0IhKv1yHZtm+Qs7iJudfXmRrnAppWViGkfu3nmX2bHY71inhVits2wsJOkI2Dm1auvVWlDhO47qG1jU8u88sl5N4woYoM0iWBVbbWPw8XVucQowiDk9FZuslRsq3GRxUkG5BfHdgMRrfWBqrUUbYSCkDqXL2ExUpnlXX0FlD9As5RtHotmKrJq2kxzoFtYiyplRJwnOGthFDuZyN6G/9gJs8/W5Nt+pZwgy1EpeIrhq/JOZlxhhJIC+l0HUdgx8pqXK5zFCgMSJad0aLZWfbYZyj5MwwLhyvBImcxekx13LtkooYEiBOE1opIbVn0BSc01eqn7CNuJr+aDS9W5F85TyceT4tDCEz58TuZos1jvOcWM+Z3XrNPF0gebRV0FlImlohXPcErwb1soIQ2p/PMA6eAhjXUYLk05xnT86vVMKCqxmrxdQvZsl5qqbKQVkrMYnfcaYK2eZqJmKso22ETNI5S983rG5uuHv/kQ8//4U//PW/8v6HP7Ld3qCMpdZMCpEQEsHP5LQQvccvC/N4YbycGS5nLk9fOD195XA4cDocGE4nlklYZuabs0T9bcys/Ms//mWm0+tBYLS+Bl1Jvy/f8nUJVb/NtUoL5ziXzPl0YvGBmxCIITLPC8Nw5v7NW6Kf6W92dOsbWdRYDa6VsKJWsmj37i2r9YbtzR2b/S+8PH6W4X66oMeRlCKN97SmEFuBWWLIhJiJqRCzlcK9/sxF8M18XXylWohA0IrZZ3EYtArnjFhxRpj9a2aM47KANxVDIxBSgajBGrBGck+Tr98E+KUIUpiKpkWRxxmtRNWpUTifcD7RtpO0baWw6df4mDmdT5RaWK1WV5qbxvtMzoXgM+MoNrOCV0PTWJTRvJzPGC2eSeOyiGOhAZ0ztgjVrirISIFWhbTMtUiLVrN4FyuNW62kQJQhhcLEgjFy05QMbbvBmErOMz4kLpNnKolzjZTgqW/3KCzPz2dsk3lz13HTr2magLOOSvlN+VIzFUPRDShFIDP6wHQ6kwqEnClVtu6NNSgrbLeilRgN5ErIrxdWRRX5nJWu3/zGnHO0ztJ3DX3bylhjNf16zf2797z/8We+++Fn7t99oF/dgHakVxQkywwd/EIKnnkcmS4nLsdnLscXhtOJ88sLx5cnDi8H5vFCDPGbNLXWIlTfWqnkbzE29V8s2n/thkU8jco/FWp9vc6v7aWEH8kH8/p18bA15FLx88STD/jNQkoBv0ws08jlfGJ394b9/QPrzZa2bzG1gq34WrFNi7WO9e6efnvL/uED4/mFy+GJ4fTM4fmR08szYTgS5obkG2IIBB/xPhBCJKVEKRCzwDYpZfl1qpIucC3ifFUMLqGgY8YGJSHWWJYEMQa0kZtRUWmNotNV4jaKAqWoRZMD8hBQVGVJBXyBhKIsXswAasYaJQsU4+jbhsYGlBboZ74EtDZchplCZV4itULTNFcCeSAGmWdrFb9bpUEZRUyJ8zmKdUsRwztVFb1zGILU6mYAABF9SURBVGVIJZNSIZQKSjyQcxXhvtVyMptSabSmtQaDoA7DODNOE1or2qZFa433kaeXgWESYzyqws8eo0XT+zVmUkw0jWFYInP0PJ8Db3YbWl2oV1hGkueh5tcOSLYVWmmUMiglijCnFc62slhSYK9pEiUXclWgDVVdA7eUEH2M1uJc6Bxd61h3jq6xdI2laRqcMxjXsN7dsn94x839W9a3bzDNilSq2N8ET0mBFAMhLPhlYRpGhtOB4Sjv4+XwzOV44Hw8cTqdGYfLt1lVKxn2X4sW/t/8ht+xYJVS6CptZEZm1NeWu3LdmML1FFbXIke2u/k6G2lNyonT4UAIM9t5IoXAeBEq2zIO7G7v2O73rDYB3YlxVa2FkuUm09bSb25o+57Nbs8yvuP+3YnL4Ynj02cuL8/M45llHMQKJXgx50peijQJS6YUQ0yJmBUpXeeZlMlVCbsoy3It5kKYPTZJ0l5VGp8SKEnj0yicDMighZFUkBtVbnMIFJYEvkLVFlWFkK6VJk0LJWecymyWQtdoWmeEuF4ztQZ58RBWl8xeEpydcxXYqdTr5y8KkqoUGYVKcltqbSi5QoZWW5pWE0tgJlAF27geLOrVHhiDCBF6o+kbyTLNuRJzpRYRnKeiyKkKbXTx1GtbrlGU62FelCZmhFGlDKdpYPSV0cNlmHi366VDU0pYT1WsYErKpJIkqrIoLJVt34hqprxSS68vXwUy5FrxORNzua4+ZQ1qrME5w7bVbLqW1Vr2C921UJ1rUK6h39ywu3vL/uEDN3cPuKaTg34eRRubI/maUTtPI+PlzHg+cT4cOB2eubw8Mp4OXM4nxmFimZcrtqy+RdQo/Tqs/n8LVf2LFfsvwzpaSwv0eoXrKvajhdfWr/5P37jWevUPlg8vJYkWLMA0zEzjzDR5dnvPfNVl3p6P3F4eWO/3bPZ7+ptEU1aoRoTWhUTJRsK42g1r09E0a9puQ7/Zsdm/sAwn/DTgvcd7L1jwPF7jMJdv7UyMgRTkpsm5EJJ4yaYs4HnOhpIltCjndD2MtOTBqIo1EuhlnfCiqxaXPiWbG3LIjEtiqZopQ1KaQv42RhilsKahqEIMnpoDqWhqFZMArSW0Wmn9jcf6zw+5omg6mWuNkoIVtz5x4q8ls15tqFpTUyHGiZSSkECUFgeMEoUs/7qprNBpQ+ccrVW0RoKoc4r46xMQxABC9ISQSVnIJ62umAwVLQc1Fe+lJY0pkWqSAxGuQo3MHDrRDyNuC8LBhhAl4kUpK8ohrakkrNVUo4QMkkRgfuXNkFISDFjJlO20RjtJte9XHbveseo6utWapu/o+xX9ak2/3dCvt3SrLf3mhu3+nn67Q2lN8PP13RYVU5wmgWlOR86HF87HZw4vzwznI/PlzHA8sswTKcrharW+sgJfH8/rCfM6v74eUur3LVirzbUwX48Dfuu9S7kOza9wT/mtJX79R3EFsgXsNloTU+Hl5cg8L2x2W5ZlZppHzucz65s9uzf33L554GZ/y3q1FeuVrpFbyjSgHUYLGb/rN6x3d+zv37NMZ9LV1KwiIvcUA2GZmIYLl9OR0+GF4XLCjxfCNElhx0SMkoWSUiFlR0qVVIoUcpFYySrdrBR5LhCVsKicJVqBbjRicF2VYYkFX2QWe2WzyKZZsm0VCn3NzwX1bQ6u/7SPeC3VXMT+9XW7WKhoI7sCrS2lCnlgjtJ6Hn3EuhZnHXMQiE0jt6dzLavOokMgZOk+VIVOGXprMarIS6/qdRFVSFmkibUUQhTwpFaRmhkNqr6+C3KP2KYR7i6yzX51iEApSXpLhZw9WslcZ7TY6GSs3JYpYrRFKzmwTcmEnAm5klK5uj5cS11rlDE01tC4BmctTeuwrWG16thut2xv9tzc3rO9vefm7g3b2zu22x1d311TC35z1CRnSo6kEuWgn2em85nheOJ8OHI+PnM+PHI5nRiHgWUaCcsiHUi9HqBcuwF1BUCr/najvsKT/39//GtLpyuoa65wRwF4nTHqby1zup4mGi0KnwqoLLev0tdrWfJAnTXiPTTK7TcPEzf7HXGcGY4HhuMz0/nIeP+G3f6e7W5Ht9pcXQcL2iaqthSjr75PO9RuTwj3102tUBcrCqWtGH+FhbBMLOPA4eWJ45fPHD9/4fnxC/N4xk8DKS6k6FmCwEI5S8HmDDGL4iQWuXFTrqRYmIPCaC3QkbM0xmDV9cZV10VOkUovVEoV8oV8bkCJsoDIhlWx5Gtbxz8dgPrqXhdzvNL0EG2x0eKbjOTahJxZQmKMkGNC24oxkZoldc8qUCljbaVtZQ7tSqHkTI4Jp7V8dkpcPNw1Dhalr6+fdB1a26uRu5DzeWU+1UxNkpXrmkZGBlUpGSyVjX3dZkNInlIL1hhq1tQq+bNaQU1yKOWqiEVGgOILsdbrYSYQnVGSjuCsobWWrnESqNU1NH1Pv95we/eG/duP3L55x9v3H9ju37DZ3WGa7tolJryfqSlK+5si0c/EIBvgcbgwXc6cjwcuxxdOLy+MF/naZbgQl4UUfwu9Ehi0yiGi/rl0xexX85sLsUaha/2n7fHvULBwldWBFBxcZw5RycBvJ4Z6/e96bYurLBUkylDJw6PKkkGJbUvOheEsgPLNdst2f0OMkWmauZxODPcn9vdvWG93rNdbNjcSHmQa4R7Lx6AwV4F0a8yVfSV0RLQFKrUkwiIcz7cff2D6w5nxeOL58ROHpy+8PH7mfHhivJxw40yYvcjLQhQzsCIvsUmKmCXKIxdJn8tyNqFyZCwLjdYyP2orMJe6whZV/u6v3YlSCttYyWc1r0pWMborNV/JKnKzGmMw16+Le991mtOKXF634olUCtrYb5tweQ6ySzBaY7U8oJzEKaS9tvMRRa71yrAq6AKuKFqnaZ37p9dMfZt7S/2tB8hFZJhKKVRR5JSxSmZwSsVqg7b2igHzzee5KHW9WSvkRC6ZRCVWETmUUuEaJt1occ8QNhNiZu+s4KdWFFC2dfTbDfv7B/YP73l4+4Hbd9+zu71ns93RdmuUtoSUJOc1LOQcKTGKR7VfWMYL0zgxXX5rgS/nI8P5xDScGS8X/LLgvb92SnyTVqqrM6h67UTh22cnd5p0n9dHh1b6+ix/p4L91mNfmU5a62vbdzWLfgV3rls5riWsri+mwD6yPZbwqEwtWQj/iOIlZyHMP728MC4Lm82GzU0k+IXpcuFyPHCzv2O7u2V3e0u72dCtt0Jj7HqSy2hjxO3+GslgncMYh7pmkqpasMZitKbmTLe+YXv/wP7Dd0Q/M48Sb/n8+IXjly8cv37m9PzMeDqRQpRtZy6EpMT5vRRSkQMnXw8oqoR75XKdhSlkpb9h1yDNyVVXT99Y+s5hlQD8jm9Tjmw8rxTB15fBaI1p9JW/Krd31YWYC4uXJRWqomvFqnpNiRcOrTOWzlk6fd3MpgilUo3BGOHkLjETshSJMYqCpirZXFt1tWnNmVwE8xTXhiKeRVqylpRS/09717bjuHUE69xISqRIaTKbXRtO/v+zAiMxHK89I1Hi/VzyUE1qHg1kH7wAGxgMBpAwlMg+3VXdXc1DJkQoy/hijIEyGaLm+5NasS4xLXWvQCGExMEMvo+CBs7yvubWIJNMxhgLl7GW6rIMNiugXYZj3eDlyw/425ef0Lx+xuvnH/Hy+pl9yYvHEjyWceDW9XnB4keBTQOmvsPYs6Xw3ra4v13R3q64Xd8xdA8M3QPzNGCaxm0QZvWNtb6vtSYHIQfyWvZMKZFxlwist9fLQ/GtHHab1lHsGGL0lIv5gF8lSxYg/XTc9TVb1AMBeQAfKC2dLElzy3fXD1Sb6Hs0dY0wL5j7Ae37FeXphOblFeX5jNOZ6w4O5Qn5oZBdPzm8MZvUh7UOxmZwGUsaeXZgJSNEaJcjixXyQ0W8snzC65d/4Mu9Rfv7r7j+9xd8/c+/8cvP/8Ltj6+YhpFdVIuXem5ESkrIKv4dEnFzCBHylUFFtm/Sl3iIKSlRqBS5O9coTFEz2mhFzWSj2EmmePNTSEJkUO/q42yyNgbWOSwI3AIYuRrSgKUeZwxy65A7B7tuHhRnWVlXqw2cIWxJmg0MmdZMo+WECT6ye22JWHxk84ExMBAlw0iyLCY66XpgUzSRJadp8ZQHVYGHNztyIPAWWWZhjeY8s5RunCXJ55yBMxT5y/IDsrxAURxwrCq48oRjc0bz+necP/2A8vIJx/qCQ1UjGYtxGODnCTF4ii3MM/w8Y5l6DH1H9rdt0d7e0T/uuL1d0bV3DF2Hx6PdBlqiDD1AkQxU6yO+mnr+rH7CRJjpvErS1GG43mTleb6ZwxqpPSKtzqigFVdOcmdO2vAMtn/O1mti3ggrw+8RSU4ffiam2lEExjX7hiOZ2bZtMfQ9yrJEXdcojiMe3QPtrUV1PqOWBdJVXaM8nXCsTvB5DpsVSIETHtZmsMZhtlbGrHJYY8k0a83rcQqwGYLNOXdpCjibw9oc2hWISkNZx1GoeULuF0QfZOAhIvqAeZnhPVnTlW0OERKFA0IEa75IW5dRDNS99cIY8uHkIIE17HXVG4NIFtbotKVPSnNvDlN/IELS5YTNWRJ4yHKChVI6SbIdLZsHdaKOL6DglOZhoDSMdK3RYdkRFRR1tNYHFkohGUWeV7G9kutQgKg1ZvB+MiozE/CRDhrl/lurtzTXGE0cqkREwBj5Ljg77DIn7G+BQ1XjWDUoqxrN5YKiPqO6XFDWLyjKGtoVUI7L0/o7sWYM1CAL84SuvbJTaaBT3tsWt+s77rcr+q5Dd+8w9T2Gvsc4DgQCG6EqmZB8b4yqegtIUQ4wJYfqGtsMWN7Rml1lWkCu+VAF+L8ddr2YGHkaJwH+vKAnxnqGdZ4nUKKDIx8kfeiOSoqOmzgPh6SEQQVITgGIkVIec3vHvR9xPB7QNDX87DEOPR63d9zeKtRNg+p8waluUJ5OOFQn5MUBNsuhjUXmcliXYVQa1nHKxFiHLMue3Vra0FmsJS62DtrlKI418qJC1bzidn3DNA7UbPIecVmYRnWUAOWJPcIvkb3Mnp1ei4fgXQ5aT8HDi1zsejonic4+JKTExnatBA9pSYWVlr2yrGtrE+GDh5GbHyMJLa0c037hC2Ii281snY0ea/q+HpoKkFZKwf3gtYaUKNot9zxGOqS1DtoQi4UYN1abfktM7ecFPsmBnuKTJTcfHNQaYlCZvnGOqS+nbijbY2XW1ToLm+VwhwLHqkZ9eUVZv6CsLzhWNbLjQaSIcjLYISL4Houf4SfuOArLjGnoMfUPzq1OE6auxe12xaO9o+semEfKuPR9z6wqcD+U0sLqSyqgxDeQnj6SRG4HSsgl9aHEqfgda6nNMlsmxDT2Gzuscw5herZLJFneSxZzZTJJRiARw6y1wzWlNoYPVUpPEkspQGbBAZAcIT/DVjsEUkrj4jFfW3Rdh7I8oq4rTEOHsbvhcf0DxXuDumlwOl9Q1WccyhPTJJfhUBxlrV8uUTBQMzlzPMUzt+HfEBJgDYr8CCgOj9fNGT/+9E8s04hxHDALygzTiOlxx+N2xf3tDe9ff8X4/hvatkM/LhhnDx+4BDjGyCmVCNhkMUsEjkIKQciI9dROklZGJJZtYqJyBqiYoLRGFPyjU2LHD8i0pqQEbkRGQrCsEBLHA318YhejNRlNcC8tEIGoEZOnaHYMrNMqJcgmbb9XwtHHABXNhtOSEFo+RkSTSfOAREvH1Nw5I+2BueBTgzxzXMyV53CHI4mk/ABtHaxz0NrCZBmOpwbl6YKyviA71LDFEdYVEt0TfFBI0bPZwVOTyk+cppn6jrpT9ztu13c87i262xt34PoF88j53XnicuYQSdZtqb36SLBKV5ZE1XWL3zqOGdPKVyhxUnIZWKO0pjyvMUz1/4ypjwoSu+2221/b/lwc3m233f4Stjvsbrt9R7Y77G67fUe2O+xuu31Htjvsbrt9R7Y77G67fUf2Pz6BKu2K+FyzAAAAAElFTkSuQmCC\n" - }, - "metadata": { - "needs_background": "light" - } - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOwAAAD3CAYAAAAewrhMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9edBvyXnX93m6+5zzW9797vfOjEbSaLFkJNsYKxAMDrigUoRiKRJMKIMgDhQpikqRVKAIBIcUECgoqIQQKAKYxDhAKALExEUgKZFAMCI2siTLsqWRZrt37v5uv+2c00v+eLrP79wrzcy1NEgRuV311vt7z+8sfbr72b7P9+lXUko8bU/b0/aN0czXuwNP29P2tD15eyqwT9vT9g3Ungrs0/a0fQO1pwL7tD1t30DtqcA+bU/bN1B7KrBP29P2DdT+lRBYEfkREfnNX6NnPS8iL30tnvVlnv1REfnHb9O9fp+I/Hdvx72e8HkvicjzX4PnfL+I/OC/7Od8vdqbCqyILEY/UUTWo79/49eqk2/VUkr/Zkrpr3y9+wEgIj8gIl0eo4ci8g9E5P1f73493lJKfySl9H1f737AoIhCHrMzEfmEiPxbX6e+/Bci8ikR8SLy/W9xrojIHxORB/nnj4mIjL7/FhH5MRFZ5d/f8qTXvlF7U4FNKe2UH+AV4FeOjv3V0cPdWz3o/2ftj+cxewa4C/zA4yfkCftXwsN5m9o/zWN2APxF4G+IyOHjJ30N1trngf8E+HtPcO5vA3418GHgQ8CvBH47gIjUwN8BfhA4BP4K8Hfy8Te99s3aV7RgROS7ROQ1Efk9InIb+Mtfzl0TkSQiL+TPjYj8CRF5RUTuiMifE5HpEz7voyLyT0Tkz4jIqYh8VkR+6ej7j4nI9+XPP/GYZ5Byf//MY8cHDSoiv1dEXhSRcxH5jIj8mq9kXB5vKaUV8EPAN4/6+YdF5J8AK+BdIvL+bIUfishPi8i/M3qvCyLyd7PV+Tjw7id9dnbdk4j8NhG5JSKvi8h/PPp+cB3faGxE5Nc/drwVkY/la36FiPyL3LdX38oaPWlLKUXgLwFT4N25H39TRH5QRM6Aj4rI9TwuD0Xk8yLy7z92m4mI/PU8nz8uIh/+WTz/r6SUfgQ4f4LTfzPwJ1NKr6WUbgJ/Evho/u67AAf86ZRSm1L6rwABfskTXPuG7avR8FeBI+AdqLZ4q/ZfAu8FvgV4AbgB/GflSxE5EZFf+CbXfwR4EbgI/EHgb4nI0eMnpZQ+PPIKfjfw08CPp5R+5+j4LwSOUQ1Ivu93AvvAfw78oIhce4J3etMmIjvAbwT+xejw96LjtQvcA/4BKtSXge8B/qyIfCCf+98AG+Aa8Fvzz/j+Pywiv/ctuvFvAO8Bfhnwe0Tkux8/4Y3GJqX010fHrwNfAP7HfNkS+E2oRfwVwO8QkV/9Fn15y5Yt6PcBC+Bz+fCvAv5mftZfBf4a8Fru068D/oiI/JLRbX4V8D+h6/OHgL8tIlW+/58VkT/71fYztw8CPzH6+yfysfLdJ9Oj3N9PPvb9G137xi2l9EQ/wEvAd+fP3wV0wGT0/UeBf/zYNQkVTkEn+N2j734+8MUnfPZHgVuAjI59HPje/PljwPc9ds0vRN3R9z52/FJ+l+95k+d9AvhVb/Dd88BLb3LtD6BCdgLcBv5uee/czz80OvfXA//XY9f/eVQhWaAH3j/67o88PsZv0o/n8/iPr//jwF/Mn78f+MEnGRtUsf8w8N++yfP+NPCn3mL9PP8m8+vzmN0HfnS01r4f+D9H5z4LBGB3dOyPAj8wOv9HH+v768B3Pulaz9f9IPD9b3FOeGx835PHXIA/APy1x87/q+Web3btmz3zq4kH7qWUNk947iVgBvzYKK4WdFE+abuZ8pvl9jKqYb+kicizwN8AfnNK6WdGxytUU/9QSumvjY7/JtQaP58P7aCW/CttfyKl9Pvf4LtXR5/fAXxERE5GxxzwP6Bj5h47/+WvoC+PX/9zvtxJbzQ2uf1h1CP4XaPzP4J6Td8M1ECDWrWvtP1oSumNPKzxO1wHHqaUxi7ry8C3f7nzU0pRRIo1frvbAtgb/b0HLFJKSUQe/658f/5W177ZA78al/jxGy9RoQRARK6OvrsPrIEPppQO8s9+UlfrSduNx1C051Cr+0jLcfHfRmOHH3ns6/8aOAN+/+j8dwB/AfidwIWU0gHwaVSh/Mto43F7FfhHozE5SOqC/g7UXfaoRSntua/geY9f/yVjltuXjA2AiHwP8BuAX5dS6kdf/RDqPTybUtoH/hxfmzG7BRyJyO7o2HPAzdHfwztnYO8Z3vi9v5r2kyhoVNqH87Hy3YceW7Mfeuz7N7r2DdvbiVL+BPBBUSh7gromwAAk/AXgT4nIZQARuSEiv/xncf/LwO8SkUpE/m3gm4D/9cuc95eAz6aU/vj4oIj8duAXA78x96e0Obog7uXzfgsZJPoatB8G3isi35vfqxKRnyci35RSCsDfAr5fRGY5rv1Kcs1/IF//QeC3AH/98RPeaGxE5FtRQf7VKaV7j122i1q6jYh8B/DvfgV9+1m3lNKrwP8N/FERmYjIh4B/D3VhS/u5IvJrczz8HwIt6ma/ZctzMEFlw+VnvJEn+N8Dvzuv5evAf8Q2I/Ax1O39XaKA6+/Mx/+PJ7j2DdvbJrDZ9fxDwD9EwYLHE/y/B4XMfzSjff8QeF/5MqOQ3/kmj/hnqJ9/H3XRfl1K6cGXOe97gF/zGLr5naiVeBdwa3T896WUPoMidP8UuIO6jP/kZ/v+X0nLbt0vy32+hca8fwx1L0Gt/k4+/gPAXx5fL0oY+X1v8Zh/hI77/4666v/blznny44NCt4cAv94dLx4Lf8B8IdE5BwFD//Gk7/5V91+Axq+3AL+Z+APppT+4ej7v4PiA8coyPdri3cgmp34c29y77+AeoO/AfhP8+fvzdd+Z3Z1S/vzwP8CfAr1yv5ePkZKqUPTNr8Jjc1/K6r4ure69s2avIXL/P+JJiIfRUGlN0ORv1Z9eR74WErp+a9vT9685X5+EahSSv7r2xtlOgHflVJ66evclW/o9jRx/7Q9bd9A7anA/uzbCZrCeNp+du1Po2P3tH0V7RvCJX7anranTdtTC/u0PW3fQO2JiBM/9eKdVNc11hmcs4gIxgjOWmLo6XuPYBARRIQYARLe93iveIfvAiEEvPd437FpN3z605/mE//ix7AGRMA5x6Sasre7x3PPPcv+/i6977BW6LoWYxzO1Ww2ytdwzpJSomkaQvDElKhqR4xB2SNG6LsekqbC+r6HZEgpsVqtAEMIEe89zjm89wxpsxip62p4J+d0qFzlcFVFiIFJM8Fai+89RkQ/e48xZugjQAiB4HskRbquxdqKGBNGDHVdEwEE6qYhpURd11RVRYyRqq6ARIwRYwxt2+KcQ0Ro246m1mvatsVaS9d12t+6IoQAgBGD73uqqgKg8z3OOUIIGBGquqbveowxkBLee6y1eS4j1lpSjKTch5QS1lqMMfgQqOoasYboA9ZavS8MY2qtIcZI13XDc1NK1K4extwYQ9d1NHkMvO+pa+XJlzEp7yMiOs5WCKEnBO1v8pEUAiIG73uqqkZECMEj1mCQoe8ikufMEILOmb5vwBg9zwB1VdMlS717wMHFS7SbFSR9v6pqdI6qavgBiAm8h9Vqzeuvv87HP/5xXnvtJi+//DIvv3aLs+WatvPEJIiraJoZeweHfOaf/+23zGM/kcDGFAixR6IjBH3hGIXW9xgBQYaF3vceYywpxWGx931PCHEYcPIE7e7u4pyjcpbJpOHK5Usc7h9R1xVHR0f0fUdd14hA8dyNgbp2owGOVJVDBEKMgBBCxDlLBEKISJ4o33uMcXgfIB/re12oxphBEIrAloktAisiIOCqCgmCyQsRyGOi7xijKoEQdAG3bUtKCSESEpCSLiQSKb9DUQhFwI0xw2KFlBeYwVmHiApN13YY2Z4nIjRNQ9u2g3IkgRsJn4hgxeCMxeR504UciSENiuLR56NK0feUAiNjVNn0fY+ra6yz9KKKIIZAl9/ZWJ0nYw3GWoy1uMrRd/0g9OV9y9+aFnfDvPR9P7yf9z6vCSHFSFXV+Tuj900dIoaq0rlxlYVoEQFjLSnovAL0XYdInf8WytQXBRJD0DVlLLu7u/q3D5A8NittEiQSIhCTjpsRoapgf3/Ozs67eO/7XmCzaSHB6fmCO3fv8eIXX+bzX/gCr7x6i+VyzXrTPokoPpnAqsDE/KNCYIxaFCsGn1Rjbhed0PeRGMNwD2vVGoYQBg07qRt25zvceOYaF46OmE2ndG1LjAGRlK+XrNUFa2XQYmUxlQkPwRNCpPf6jD4LZd+p9kwx0bY9Mbb0vSclHlkApV9FMMUYUtJJIC+hsrA2XT9YuHbTqhXJCyt4fWd9B8NsNhsE3lZGF6qzGDHEmKgmDTYLdhkj59ygAEiqrDabTbY+EHo/LPDSp7GyCCGoUzGCJ4L3YC2Vc4TCS83zlVLCGkvf98NiLkI5HmuAqnKklLKiUmXi+35r9bIgSdayURIhWyGXC8tC9n4eUYQwzG15/2INu64bFHTf98QYhx9jLSmpkhaj81YUYAqqxCVbTBFB3HbMioSK6DFXWaxUhNBjjBBSQpLgqpr5fMbp+YK+b5EUsQhJPE3dYEA9ECCmNPC9dHQSgsEaHbNLF/c4OtzhvS+8g7b7BXS9Z71uOT17kuKgJ7WwMWKtwXtPSoam0ZH33hMRvA/EUCZRB69tN0AaBtpn6+q9h5iwYtjd2eH69etcuXyZyjkQ8KGjco71ekXf9zTNRCc5BKqqyq6xkBJ0nbqHKUW874kJEFErL4a271mt1mzW68HqxJDwPmQlgLqm1gya0hozsLcF0UFPKjgxJYwIURi0f/CeGOJgWWxWZADz+RwRMywOEYerhLqp9O4iTKZTUowQ1e3TMU6DZS/CWH4XEnhxVYvVHAuZsVatqtP+OecwZC9gSzbPrqenqqpBQCS79uV3XasFkjyXg0LI16pbrMJjs5CKmhuMU9c0pDw++VoRDVWM23pmIqqMVZgskIbniAhd11FV1fDccq/NOg7eAybpvOW/yxg55+hDTwScsfiYsK7Kz1HLG2IkhEgiERMYUW+gB/Z2doghEIPHGUvlKoyYwa0mJV0HecwSEWslz5dAslRWSMZA7Ok3a0BwQJKImzrmk4O3T2BffPGLXLlymd3dXYyxeB8G7RdT1M5nxVys3mQywfut5i2LzVqLQa3npGnYmc+JIZCsIfbqls33d0ZxFHjfYy2E4OlHsViMgRh1wruuw1pH2/ds1i0hJB6eHLNYLPLzEzGkwVqrQDAITlnsXrI2RmO/IhxlERhrSQLGWcQHYogIiaTaAucc0+mU+XxO0zSDUDWTCSHqYmzqCSK6sJy1BMAYGZRbsWzqWquiMsajyjAMLv9YuMv5Klxk66rmWco5CYgRUlIlgVreFILO10iYi8Io1sg5S5KEc5aqsoTsWobgcdYMghJ8wBUrnaByjti2SEo4McSoMa2ta1LYKo7S+mytm2br9RRPoqyfIvTjcKXvGZRMCAHrHMaqMjZiqKyGadZVpJSdblcNnlmJeyGBqLLAODxCNZ3SthtS8BgEm7FancMERMBkJa5WXR2QpMrcmBzHQ/CBygoF77V5Xnx4Mm7Lk4FOn/ksr716k2vXr3Ljxg0ODvaZTqcYIxB6tUgjDRmCLpDiaqbEEBullIgCITBo8nazobIWHzwpJrxXgELBo0CfY2WNP/XF2rYdQIq+7zXOAVarlrOzcxbLFW3bPxL/wjaOEzF5wBmOlcWvFs0SJWUFZFXzFkHIwJogIBpzJTE0TcXufM5k0mCMxbk6KwVD5WqqDIA4Vw9uf3HXYwgKirFVejpeIceNMvpRz2DABGCwKOX6lNIjgmmthZhw1uFDUMvbNNisHMZx4uMWSn/XRLb30vPjEOZUCDHEHNdt401rFOyJvYYblXWDO956ZemVsGbrUYTheOlXURxihOgj1lidoxgRsQpcGrDO6RTlWFItL1hj6TpPSBGyIhp7CdZadYEFJIkqeCKT+R7OOVaLBaFXo5CSegCSRMU3P8tZVfCVdbpeQgQjg+AWQxdCIiWPNQ7JIY99woTNEwls6D2nJ6esV2tuvnaLw8MDnn/H81y5epnKmaHD5eWNydYhBHyvKJ7JJrjve3Vffc+mbZnv7HB+dkrMk1IAqZStVUyBGAO2cvS+p+s6Qgi0bTdox9VqSdv2rFYrTk/P6XpFHnW8ZFAoGg8XIImtlxDjI9Y2xoBzBiMJH8o7acxpDKQQSaEARYnKOXZ31aLOp9Nh4RkjgyuYUsQag60cJltwkurZElOKyAB0uGK9nMkKqRvAPBXoretdXMWx8JbYsMTGMYN+rnJUVfWINRrHkibfs1hMDTk0Dk2JLJRxcNON0XFNMRBiIAVVXiJC6D1idUX2bYdT84MxgiSGZ1ZVlZVVGpDltlUQplj54gK7ymp4EmMG2DpSLAi7z+PhiDEN89x2HU1dY01F9EkVbVIrZ40jJVUyRUn6jDqHFDjc2cEHHXPJ6yAVwR55IOLcAGCSBESf48zW27Bi1BZLhGwogg/EEAbw8G0R2OXinLqqiH1Pu16zPFtw7/Y9JrMZRxcOuH7jOhcOD5k0Nc5q70IMhJiwzmZ3NA6WToxFKmG2u0vbtzx8eB9jDcknZvMJiML6OEWlYxQ2rcd33ZAGWK3WGGPZbDY8fHjMetXRdXlhW6cDlk3o2M0sgqFFKVtLW1pKaslBCMOiNKQUMUYVZnGtp3XFfD5lMm2oK4exhsqZvMjBOQXKjBGqyiAZRawrm7UsSEoYEj4GBU1I1JUjRRXwFEN+h+J+gbWl/1sBLV5CSZvoeWo1YtTYDCDF9IjLPY5/XVUhZYyy91M8I7EOqRQpNgZsRlEV1M1pmsoRjYYG1jiiBVMbnFE0ORkFfUQkp1mSotMx5HSKzkVJAxWQqcShMUZiMEP/t+BRJIR+Oyai961tTSJgLflZISPXls77YY2kEPAxElLC57gzBcE4x+58l67raLtAXVfUTaP9J2HtNt1X1lbM4JMhp5OkAKUaBoYYtmszJYwTzWakrbf0Zu2JBDblHFpKGqyHoAPT9z1n56fcunWLg/09Ll28wNUrlzg8PFAgw6m2SRb64DHWYK3DB83FEj3TSU3ftWzWKyDSVLXm+4q18V7TRkgGiSJ971mtVpydnXN2dsZm3aKVVJIHLg4ocNIPg5uZYgJRy5Cyi1wGuyyEAiaUNI7NSKRaZMN8OmM2m7G/v0tVqXvkKnWNnK0GwSnWqcSqfddmQQmDRSzWQ9iiq7FodACzfe+xuzpWQMO7jS11fq/yuWkagnjV7NmzsNYO1nacHy0A1NgDKe61zR5UAnzfUeLqMXiUUiJmQUxpmzKzxmDN1qqPAbRx2qn0wxgzKOiSKivfl9g2JQaBHiPsbbcZxjjGSJAw3K8cL7nrMu4a9idELGIMzWSCEfVwnNPzFAhtssDawcuR0RojA8Uuz10S9Uxi9lRijEO4WDydJ2UcPpHAtps1VVWS2Goht0l5zecdPzzm7PSUV199jYP9PZ555hkuXLxE09TE7Kf3fZcH0BNDj8SANQoIdJs102lDiIH1ejNMpBIcdNDX6yWbzYYHD445PT1ls8nIbwRnK5yrNB7SAHPI6xUkLy+pHFNkwN0WIdcBK8CPupHqqihhQHCVY74zZz6dMZ1OmUwaddetUeUEGSDaphaAnOS32KpSLZs01isT3Pc9gmCMG8gFJW3kqmpIP5TYcSxgwzxkAR6nhgoZwZV4GBS9tdvc59bjSIMQDIoOhnyuc2wXtLP0vafvPXVdYa0b4v6Qw4vyQ57HkMfSjO5dBKjJVmuseELvcU2tIE/BCfJ9HgeeiqCXmFaBN0PbdpkYESH0g7v9ONouuR/GWKw4Ys61X7hwEe97UgHeRuSK4H3GIWQY69KfYiTIMTJAJIE1mKghRPSBlEk7RTG+bQLbF+uagRHnKlIMWKfpgK5tEaNI52q15vT0jNdv3+Pg4IDr169x6dIlalcNnbdGSFG1jaDpjwf37lJVF1gulrT5ed57FosFRoTlcsn9Bw84Pz9jsVgqBJ9KuqeGpBNTVRWuUuChDOLYaqi7pmmWMLKuX4K05hjDCNRNjXOW/YM95vN5ZvFYnLOAWo/e90PMWu4zthzFahTLr05azOCUoocD2SHH71UW1pKKGVuyMWOnTPbW6mzTM1W2bAWEMtnK9TERfcYMROhTr5bGqKJKMQ3uY+Uq/Y5E1/ek6NTipq2QBB+pqrEAZRIGRZgKIUKGmHssoEWxpQzhCuB7jwBdjmedsY8oVHU1ZQDrqqoarPAWWc6Mq7aUoZLX8DbXm7LXYZJgXSZZOMd0PssGI+W0mFHlkRJV5XDODkpnzDOIKTGZTJBMLinzFWNU4otlyFnbEjf34808vkqBXSwWzOdzolW4fAzaCHV2NXOi2VpdED5yerJgufwCt27e5tLFC+zt7bK3t0cExDpsSkQbmM53OP3iF9nZ3aXdnLHZbAaG0GK5YLlYcu/ePZabdX5x/VHB0Ighmq1FlcyuySOVQYY0pDqKu1hApnHOc7A4MeKsYTJpODo6xFplY1WuIkYFg+paWUcllVOs39glLlawuIUhKBMnRp8nWNFDK0aF12p/27ajUBPLwoAvzTGO0zDFuhcLX44X162P3SMEjTH90DlH27aP0DTLePZtC4X8MMSuiqz6EIk+4kPE9/4xQdwCON57fEpMJ9PBwpXFXuLUgR2WBbP0sYA5NudLka2r7lw1eCRFKXadZgdUmTfD84o3MkbUQ4qQDGA4Oz2lqmqa+YzZbo0Pnm6zoetamqbBWQc2UdUVdrTGxkrSOTdg+QYhpkxoyX2LMa9HwGXE/G23sKHv6FpL3Ux0YKTwP+128ecFEyL0UQc9iA7UaX/OcrFgMmnY29vl8OiI2XymXGQMk+mc6WyH1+/co7JC17a0bcvdu3c5Pz9nvV7rZKIWamulNLXSI6T8JsYYTLAZ7NJYryCyurhHu9iNmDxjgbXWUjvHbDrh4OCAyaQeBGIyqQnRD0Lqvc95R72+aXSziDE7p67rRwgQJV6yzg6WLKbEkOZJiUkzGSiNZZGN+1kWYfmuXDcWhjHYNnbXyvFiZYplm0wmgxUvue7BYuaBFxTTkGGBCVVdPXLfmEMS5xx+5PqbkWIs4zMmVJTnOWvxheecCSkFV+ijcrxhlL6CL2FpiWSF4h9l4Q2COvJWprMZNglk8k/lHAeHh/Q561HXNdbYzAfQsCYGDXOKIhkrfZNFMuYsiYhAUG+SmEgk9Urz81Ww38YYtu83Su8CYqgpW5enGAklPrNO4zIkM4ciXY5RRYQ2KXC1XC64e+8+k+mUnfmM3fmcpq5597tf4O///R9hbz7jwf37nJ2dsVqtBtcYNM8mIsTybmKoXF5YxmCdze7wVssXxDbnmnRgjcnuoVIES0GDiNBMGvZ2d5nPplTOZiK+Wsu6Vtc4JmV+VVVFiglrt1TCMmmFITR2U0MMyp7x2/ywqyqUG8yAPgqQjGCrCmMlWyJFKRWACjkfmHJahWEBl8UzpF6yS2ys3RYE5DGIKeGyQikCV9zVMYW0rmt83+Mqpy5yUmqhK0KNYI3NvN5STKHAjYjJ60NdTSvKJHOZXVUso8CQH26ahrMTTfX5GAfFmmAQSh3bOCjEzWajBSg5pagKQFl4zlmsrZRcY6zyjJO6p8v1msYroaWaNIgY6smU6XTOYrnIrrDGqFVV5by1jl+Z16IEBvdeRK0xWwVb5qesS+vCEAbFNPb63gaBPV+cMvW9mvWJQubW+RzH1biqIqWAxMzPTDpZCZCqRmQbkIeQCLEjxMBqseSBuU9TWepaB+ALX/gCZ6eng6VQ16ZYjUJw0HSMcVWmDmZUMiWtHsmuYcm9KgJiSLJdKCWeMOJw1jKfz6kqx8HBPgcHBzgn+L5jPp8PC3oyUZpkAUpSSjhbDUhrVVXbKhizdZnULTX44BExBKvuZ9NMddJrnWRrjAozCnCFoGh5cVHLPcv9ve8e4T+XhVyALJMXlAJDiqgaEewIqLGj/N/j9McCgMWcJSjvOUZ5x+mXEncXa6f36bDOjtxiXZg+55sVTFwP9MhN24Ix7F04YrlYYI3BZWJJZR0lQaW0ya11K30u/S3jsNlshhCO3pPEDB6BtZYmREwEnwKeRIie/Z05IURC2xPaDAJWqlTBDFmGIoxjTrcxRr2RUSvKb/DidFGoQiMhMcKTyeuTo8RWLMY4hbzVBlDSJzFF6qrCOIcYIfiMiInJyX9HjOTkvyHlgSGCFfCdcPfuKS+//BJnxw8zoLFNUQyoYs5fafJZWTMyWqRlwYzdPeV2bgkMxTXSwbUDaR8YONLL5RJrEl3XDvFTjJHpdDosvKLpyz23CkYeYSAN72G0RDDGRFMrO2u5XA/XFoFv2zYvgkLUyJzlL6ngUbQ9hDC43CmlrYXMQiMinOd0DNnFLLEjKJBT2EQuJ//HC62Mf9u2A4DS9/1QMVPc6cL1Lm516W/bdaSo1MxC3LfWKpCZx7zdKCe85IFvvvYazzz77NbtjwXN1RK/kpYq/PAx263EvDHH3IVoUyCNcWwO6rav1ytc06jCFZhOGtZLBTvFadpOJSpR2He2qQehf5wpZ40d1vDg9hb0O4YhVtfna+WbbB2lN21PRv73nuB7gu/xptOOJ7cFIfpInyLi+8F1ds4hKRGrmuAcKWoJlDWWTP/VRWoMXfSqQZ2jzRqRHK8K5GoLMhVf00rYOCLyB8TGR+o4y+Qo1vSoVRienVHug4MD5vMZTVOrOy9Kqihu7dhdKQtgDGSUHGGZwHFdbelTjJHo+wFV932P4PHW0PU9rrL0fUXfd48gwZWrMEbos7VLaRzPqqXSooNMzK9rBEWd66pSr8P7QTGsU6LOPN0YI7XbEurLAi9A1eOI61g5leNbz2mrpMY50Rgjm80G3/dDTS3j2NWHbb4afbed+Q7n5+ePeAHFzR3H3CFnLYrrXsZlLKhjZlLJ1xZlOyjeUNJOWoxhINNk4zaWHxRCvNIAACAASURBVAF/w3xm93+sLGNOAYYslGW9jVHkYmlLVmB83tsisIvFKcEH+q5nMtW0jnVWCdoTj3UVVY5vrLWIEXzcuggpbRP9YpQ1KcYiaZsLSymyt7fLq6HX4FxkAIqMUW6nLhKXC49drrVUUoMRi7Oa3klRy+r0XBC7LcQuwqAorrqz02nDfK7WE4HpdAJJF1dxh8cWrriGBewpE1gS8WUBF1d14OT6npSgcqUgXGOdGDWGU21rMaIUwVL8LTA8xxizTfin/K8bRihjKaQnW2croimDlIb0TvEYxukm2HoLxfqWNElRREVgxkLTdR2TyWRww7fuun9ksZa10HWd0mAE/Gh8C4o6xHwpKRgTIqapqCeN1jNbg4Rtqq4otjLW45TWowDXlyqeqspVN86CEUKKNHWlGy/0nRbkZ164yUbEOpdd6oizW0poeT8FOeWRMR3mxmh2oGCdJVTUjMHbGMP6rsXbStM1xmVBM0DOK5HwJBwRiEjMxIMUCUZIyZD/FxEhiAprdqlLqsUI9DlXNk6Kq0CXASiToIumrhqquqGqaupmMmhqXdxuyNWJ3S7UMfpZ3PpSOJCI1FXe7SF4BTx4NAbZbDY455hMJoM1Ki5jObe4ZMVlLMjjuKJF2UNmyHkaI6rIkqKIBktl7UA8kIxSpZyzkyxQAaGuc+zsw2DBjDHqLZAJ8Xkhx7RVLGUcxgh0cc3Hrty2OiqOgLwtEl12wRjHvX2vmIczluSVpppSwncdsfcq5Alir5a9T4HQ9UMpICnH7mHrrWihuAwKoVjLMcI8TqGV9yqc7/JuA2svK9pEBlCjorqprklFsCSBRGLmG0sUQtjmvsch1hC3hy1qX9bHdg3pfI7d9rF38FbtCV1iRe+87XG2x1uhMhXEyGa1QmZTNfG+xBqSraoMiKayhizBeFJG2TRAByFgJLBaLgbEcCtUW6TN2oq6bqibSf6tn5tmghg7gD5lwhSNczkZ/mh9KZBdmp7NZkOKAddMstXxMHJ5Sxw6dskKgl0mClAUOGwBHdhal61lClkgFcHEGJw1mQye84QhkmxGtDPC7dsWny1Dk91eSbqbRIqaY25yLFtVFS1drkFWQE4k83dlGwOP87FjizhGu4GMUG+pdONYt1RoDQohj5si6PGR8KAs7hAf5T2PLbimb7YpKeUDK7EhiYZG4zTZWDC3Ht2WXaWusHsEFBsLl14riquEwHq1Ync+o7I2kxwyp7qules9AriAIZwoaLViJlsAb5wrV++lH3LP5fnjmPZtEdjgPX2b9yiKquUlM2VUi0di8FjncorEkJzVmkSj1EOJUQnOJoNAVUXyHpct2unpOXfu3UbIAptLnMQ6khhsVVFVE5qJCmjTTJhMpzhXIcZQNY1ylY1VMEoUSXb5by25ElKxHDYXeSdl84jRgmXrLMYqEt3UE0UlE4jNioOEmJw6Clp052MEm1TwfBzSKBSLlSe9DRtFqo1DIlSVoakr+hCIYoimIRhPSIEKS+g7RXqNYJsJoeuJMVEZtRjWQCQokSQJiM37CUXwAbEqpNYZVZBWIAixV7fNWg1XrLHYgqab8ZY1iRiNUj4zyj0s1AxkOWvphvK/BKGHFCEGvbfV6hrvFaG11umqcxXEXH9qtVjASU3ZCKDve4g55ZFDqhQjvQRwCs4V5VByunVVDdcYY/C9Wn7rHJuc5hEx2S0uMXZCUq6e6T3LfkE4OMQaowoyZYWcItHneu5cuCApkWJQbCUm+q4lmsJNVgWsFVbb9JtOk9aLp5TwfYdK0Nuah+0HAbBi6FHL6KoKVytQFDNaZ2gwRhlPJe/pu5ZS1ubzhli+V8vrfcedO/f4zE99mtV6gytpBwQxDutqbFVTNw3T6c6A1E4mk+2WIlWFa/Ln7LrHoLQ/6xw+x6MWB0awYpFkSEHJCroHUUdTV1ROAQPfK0vGWEffdtSVwyK0XQ9WqKqa1WaJ8ohtruCx2Fq1eRBD3TT0mw2Ccls7r8i2rRzB9+AioYqkyrCzf8RkZ591n6irhtVyydnpMZcuXkZEWJydEftW2Te+xxmhqRRtNU5Y9x7dHMwMhQbNtMFG8H0ACfQJTFKgSYxh3W+0oDtvSmClxhqte405jo6+BRF8SHQ+UlUWZyyRvIlYVhCFoBKCIuIkIYaEVAyWtuRm215jSmcN0ZRi88KpNsTiFaQt6b94Kl3bDeV1BTcornCfQ4aUc9lWLL7zOONo6gY/FBU8uv9WLFvcdGr9br9+mxs3bmShK+5r0Hy8He/9pRsXWBHqnGHYotKF6hoeASlj4QiIhkMkpb/aJ5PXJ7SwGc0S6VVjRHUnq+DpvBnSEZqqWGCMpW5qbKa7bTmvOdVSOdbrNV0XePjwIWdnp4TQqSaP2dKJwdiKZjqjmU5x1jHf2aOplUlU1dWwuVjTNIhVd8kZzat2wSNRUdQuenVvEkjQBeRESAaCAd9H1usNzhl29464ePGQVefpQlJubVMRe6UQdkld/y56Nn2iSpB8wEfYO9xlurtLg9I0rXMcTWekEAkhMQ+GWVOT+jX7uxPm85qdnSmnizPcdMrifIlZbRAnrFOD73eoji4Ruo6d2RxLouvWGEl07Zq07Fift9y8+RLr1XneEA+MsWBrduZz5rMZzhjqqmY+2yFGj49g0Xrh4D3W1aRMpKgEkgh9AieCN9A0lrqq6YnMd3eZTaecnJzoPlFAkJRLxixRLF2EFA1dn3BWF3oKhkCiMglLQoJHTA1BWT+u1vxtJGUyTCE9OPR/SikNNYYc69pMi8whV4gps6u2GyXoFjCyrc7KeIJzWmTR972yp0odK+oJHB8fk1Li4qWLOn7OZeHdbhwwDgFKWFDc+MdxARjluGMkEXTrHN+TQiR6r7sxvl0Cq1ojDjtBuLwfjojuUyOiHZrPd9hs1jq4mh0euVcyxBhiJBcFFwqZ050PDWqBsntaN1OmsxnG2OwGN9vYdGDPSCbh62o1CMHrHkk40V3yIG9PogCCsY5oLVJVNLMZs+mUIIlqb4/5xQvsX7vEcxcug3WEBMvNGh+hbXtAcEZolysWp6esF0sQOLp0kSvXLmtOMCROz89JIkxmc+U2W6OU1bbjsK7YcQYbAxITVy5eZLleUm2WnN5/lZs3X2cTDIs+8fCVn2I+n1Fbw9w5XPTEvmNWVRgPk+UZ+/GcnVlk1XbU8x1sPaNPFb3vOT4/RnI/utpy4egi+3sHSPJUq1MmlcERaZdLQr+ismvmF3eZHVxmtn9IXTfszecIwnK1Ym9vF+csp8dndG2r5WfJ42Oi3XSsVhsePDjh7t27HJ+csdko+YEQiN7TOMekqof64UJ6Mc5u3cW6gajby0yn01yOmWPUHN+WPCdpW/WDdVhbAZrOK8h1imDcCBQaZSdklF4ZYxwnJ/oO8/mc6XRCInFwsM+1a9fY2TmglEgW4HGcRRinw8Y8aAATtbY4GVEOAj3r1Ybzxdu4CVtJkhd2x5BIfozx0ffdCGFUNLgIVkF2lfhQIPktB1dhd8E6BZZEjAJL+dka0DtK4fk4JybCsBVK2VBLd9lRi1uDpn6cpSdS70355g/9HJ579wtEHK+88jKVNbz88otsbvasUs87qgkXL17EWUMwFdFYGpkRkjA3CXswo7p2gdR5jWFEcLXF9EqOONib4UXwxuAFEj02bEhxQ+UrDLUytaxDMOztzNlrrjHpT1m+9tO8/OoXqcRgqhqMoV1tMAlq7+nOzrn94CFt3+IlYiY19eEB1c4+z73zW9i//AzT+T6XLl1kOp1QTxqSq1l5D7bCEgirE+ooTGMLqzPaegUmMjnYZXJ0BXavwuQQxGJyPnxnd1r0IpcuH2oxfwIv0IVI23b4AM++x7BcrlieL7n92i3u3rnL/bt3OTk+5my5pFs/RAScLeBNwlpyLapaSXKVzWw+o2kmTKdTptMpknQfpKqqMklH409jlSU2rgSytkJEt96tcunler3eptnio1vejIGvkm5arVYDp/vs9IzFYsGzzz6Ltbpm79+/z9HR0cCIE9FUXdlYTxKkEOnKvs9o1VPMcS5Jdy8J/du4p5PLBIOqcljr8t8ZjMibNZcUSkHwJO+5U5CzUquaUsI4zXc6W2exKsogYV2mMg55LcnaUnC2GrlJ2x0HlGweM5+4QmLE1TVlVzySutCzvRlXrl/m237et3F46Yi261kvW65e2OH89IR3XL2Ic4nKdyzv3GLWr5k1FrtZ06/Xunij5jarztM9POPszj2O799nf3+f+XzGanEGIty6f5+9y5fZGOGsa3HTmumkwm9WWCKz+Zz3f+jDzC5dRsRC8EjoqfqOi7Xlzvl9NmcP2Z3uk9pIt1xRi2NuK/ZD5IX9A5b9itsP77A8OaXbnBH3jrhjLNZ7Lr3wTqplz/ntM6wYQhIenq1JRth0x/SLE5p+zSx0mHbF1Ag7h4cs5wfsPhvZf9chVJ5gMldY8q4XMKD4JFW5CaGxQjObkJI6sHvzmnhxnxeev0EIgdZ7jk8XPLh3zEtffJmXX3qJ84cP6duN7pUUyVvnJM1Xox5N2/akdEJKKeMXWiW1s7O73VfMGnW7246+b7UPQWNmVQhxAMzGhRIl31xa8QYLgjudTglBc8V1dtlFDK+++mquKFOk+969e1RVxSy7z7s7u+zv7T2yC+YQM+ctj2IMSEr0bZuLCt7GLWKaZoLNg1JyXwOVzDhC1PRISoVobXJ8uU2hpLQt9XLi6IMnxR5jKgYit9HEv48BS8JYyfsCC0mUAD9Ojpd0wOBulB0tYkKsKJhRVcwODnju2Rt8y4c/yOH+nL5f89lPfYKH9+6wN59z7co1rl05wMkhx8f3eXj/Lie3X+Ok23Bpd0o6P+PBKzc5u3tMv+y5MNnl+v5FDmzD0abnYNPi7F2wgqMnGuGd1vLyZ7/AT736MufRM33mBuHCRQ4axyz2SLvm5Md+kqs3nqGeTYfKkLu3XqU9vcf0/ppLpoIHKxanGyofaH0kGqc75i+0zGxHdpk2Ux5uVtw9e51uHXjhxrPshgXu/IwbVY1ZrXl4+yH+4RJcRVid8OCVVzi/fZsdV7E/nTFrZmwOA5NnLJevNjQyBdQjETwGg0k2S2v2snRSqZLGiaC1pQnR36K501gZSDVHkwPmR3tcf/ezfKT7+SwenPDpT36an/7MZ1icHCsHN3tHYsmxf8jrJ7FerzHWsNokzhYL6rqmaRqOLlxgd2eHZlT2ZqOA6CbzISpryYzCqHEetsnEj+K6TiaTwSsENRZKsNH0ZVVbuq4Fxntxa+v7nvv37nFyfDwQghS70YJ6Y7S+uq6U3OL7Dj+Kod8Wga2qXLXi3FClMJlMcjyZc59DPFlhnKUeuTVJcypgJNeTKpJoXGZFhT7HeIa+awkxEXLFT4yBJElj5aA85iQ57hGh61sSkZA8loZJs8vh5Ytcfu4KFy4eMZvtcOnyZY72dtmb1aTUsVmcs28N0SW649e5ff8O1jm61FOZAKcndDfvsFmccr8/58g6DlrH3qnnwa2HhFXP+c4R86NruvUrkZPlGQvvCbM9wv4OfeO4eOk53tU7mDek65eZfOD9PHt0ge7Obe7+zOeR1ZqX/p+f5t7JfRapZ+fwMohw5WCHdz7zHm5/6p+xXnRg5zT1jE0MHJ8v2bTnKivGcunCPpO6omprdrpEd/Me/mc+h68bZpcvYBrD2edf48Env8DNF1/DzKY01464HBva23l7mv051Z5TostsxZ1P/ySLB2fUR4c0B3vU8wl2OidVDVJXmpIRB8YMaTJNxWm6SIBIxEiCpNu4NpKobGASPUkc0ky4OL/KhcsHfOtHPsydV17l5hde5tbdOxwvzujXG5okuBhJleABSQ4RRxSPpEgMgeWqZdPeY1of09SO6XTC7u6O7vecNNVWTSpSzNVYTY3veiprMUlrZ0EeMSjKeEtMJxNISoidNE12rztFiqdTRdaNKrFiRGpX05o1uv+WsqxS7OlCgqSF/m3oOW9brNONAGbTKZ3vvrzwfSUC29T14OoWy6rVFY6mmqog5oQ0RpPMVrQu0AfPYrHCh8jFy5eo6poc8pEy79jEbcAeQqBxle5QEQLBOozov1hAUrbcmaRgtfLBR5jtzPnA+34O3/Zt38bV565QTTTN0LctlYOJjUhaISkw2atpLu3RnN+n7xqkqVmliMUQTo7Zb4VlEDbLDcu79/HnGzpf40LN2bKHWOHtnEUz5dKVS5wtT3gYKi7deDfX3/9B5s8/w0oiO9WEG12Hd4lwMKO5domZc9j1C7z7I99G3HR0qzXnqw2v339A7xMigWcOJ9z/1D+l+4xuJbI3nxCMA+dwTcPJ+TnLVcvZumNx+x6NiYSYcM2EpnKcv3ybcHCFZrZLXc+ZpJod01D1npsvvcTi1k36TcfcTri8d4EqOHbcHLdK1F9ccvpTn2C5/zlmFw6RaU2USDXfxU8adq9dhdkUN59h9nbYvX6FeroLriZarW8GIe/Fh4jm7GsCdOf0m1OStUi9g633cZMJ+wdTnr9+BfnWb+Vkseb+2UM++6kf53P//OOsTs7YtBW9qTEpgBOiibgUsmBZYoQzSdSi+9gYK9nTs+zszHXThFJIkJlIA4suxMEIlb2h67rGWNis10MmYrNWzzGmQFqkodSujZrHFiP43ufNBpQdqFz5vLE95Bpt3ats+G8TPnD33r0Bg3lbBLYwiJxz1Hlz7FLtYtwWWNIk/ZZNQkpMJjX1RIW6rpt8HAUKMgRfU4GPNK6mMxvqJFRRWESItcNKlTWtJqsJCcU2hWCFw4sHfPcv+yV84APfROUivjtBFitsG7HLls2J1te2ZwsmSahE2Jyes3zpNU5OFxy+990893M/TH24S396zubWXaybsIqG43sr7jxYcnNxQr1/gLt4gYvvfD9H3/4RLn7T+7A7DfVmyd5iw87OId18ympnQmoc2JqaRDU1VLVOHiSYzDEHM42tgXrRc/BgyfnJAxxrpjO48PAKF67d4JW7n+P+gxPe9b73somBaC3BGuykJ617fNfRbpactytc9FyfX+T8PHDnpdeod3bYePDGwqU99t57jbm5TmjmdCvP2d0TurM1i26DPT1mx8P+ZJd207F+sOD4C7eYNhWNdZjpHHGO890XOUsdm8pgLx9x+f3v5pn3foDm8BCzUyOTGsQhOEiOZDJLbr0knt1m8fCLrPtT9i9d5eDqh5hOdoimRkyFNJYrkx2ODqdc2xeuTs558ae/wKv3Eg+XQt8tiO0GY51a8h6sRPXErKEXTdshQnQREY/vAlYqqkZTOVpeaLb/8cDYbHC2JYpiElWl2Is12/21Y1JgKkrCSKLKRJwQPVac7oAYg65tI0NBQV1pUUdKUXkMvhsscsibk2+6t3GLGCXJ5xfI/rjSvBqMybnVXHNZ17UG9lmIY1TXqFyXUs7ZWZtf1NIk4XA24xf/a7+AZCOf/rEf596dB/RWaE2iT0qxC+jesDGguzdauP7O5/juX/5LeebSEbfvvsq9Wy/Cw5vYB8e0d07xa6jqOWGzobt7F3d6TrVpid2GSir25ge8+z0z5ouInTs2sz3233dInYRdO+dw7zqvv+uYUDdcePYGl59/DnvjOm7/EDOdEfsWtzTMLxxh7YSzruPk/Iy0cXTNhFntmDcTphgFVXI1R6nTjSJMphZzUairDf1qw/niIdPpjGfe+T4evL5ktem4dXaKVI4+JEw94XC+jz1vOTt9iEmBXixtNJj9C8z2d+j355zaGb7ewVzcY+/ZZ5j797JanfHg1m3mybFz/QLrh2ek5RKbEvfuP+B4ecL54pz1Zs1ePeXazhH0Hc5GJnWNf7BgFjqW6zNWuxPOP/cKt65/hivP3mB+uEO9MyPaCm8bcA3zG1eoDg7o4pqdeUW1sYTPv8by9ivI+YbdS1eJ1QTqOXa6h9iG2lUc7de8/z2XmTWJF9IzpPoyN1/7Gb74uU9yfLwg+IrklVRoAJ9359yWsSkTy/vAnfv3mU50fTZ1jZTN+kLA1VsMpMobBui+1DaXyUVdp87Qddu9qnzXkoaN3XpC2KLM+LxzSIi03g87i3SbTWbwxS/hm7+tMaw16paW38aU2lihD1qUvDNphoEaF1oPQJM1lP1rFRGOSATjofKRpg1czaT9S9/+HXzi05/iM7deJcbAxm+UEIGSwaMYqonj27/1w3zwQx9gdXyfj3/yn7NanTHp1oSXX2Ry7wHL14+5+M4P8vwv+g6mjeP1T/wEn/vYx2hv3aRyielkzrVml3uf/izLW/c4fPYG7mCX89Tz8Cd+kvWyZe8976H+ue9hszulT4GzGHCbY2rpmC5rWJ7hl2dMji6w6hPd2UZTPbM5HBzQ+RqLx8oUM6mo8789tEkXWpVAXMDu6H/WOxeLZUJ/WsHeHu/68IdwVYOpNby4cPEyjZtw59ZdCHB6/zZ3br7Gizdfx5oGX1k4OiRevcx9HOvWc+P5G6SZw7oDzOk9dqtAbWtmzRy/WOHall2bWJ6dcXK64M6rt7j3yuvcfe0+q2XLpdkluknNNEZ2XcOecYiHk3Vk+aBj4e+yePUO/aZV/nJOM82vXOLqe9/LlQ++n9n1A1wd8bYmnHva8wV28hqzrmWz7liJYA8PCE1NM9mjEoesz9hrIhMX8XYDlxoOJs/jqxmtOeTO3WMWD+6xXi45XXf06zW67VvUrXeMbrPb+4RftgP3uqmUAmlESLOpeo0YjIfGNRgjahGtCm3bdkp7LPxvFFELIWYiS+ENxxzPRkKf95WKkXbTZ+Rad0qEbUFJ2Rj+ccT6qxLYekQqd3lXQmuV9ldl9pLJTJlt3Sn5f9x4JpMG29SU/71pyraYSahJzLzHLc84+8mf5Pq7XqA62OHn/+vfgftniRc/9zlOF2d0JlHJhGgcB9eu8c3f+s3Mp5bP/f0fplucMXOGvXqKOVtx58de4uFrN7l44SLNJpDuPuThZsHDl15lJzjapWclnmr/AvddZNGecvzJF7Ef77l66TLJCXdfeY1OamS14crRL9IUTbciLc5p2p7YnbD2PeH0Hv3pA8LtCc5O6O6fsVi2TC5fhctX8NMZ4cJFmqamn9Qay5ArY8gVKOiErZcbwjrSL3p2TcXFgwN2usB8Z67gUXtOci0dET/tOdjdZ3//CjOzJnYrXn645PjBbc67BfvnJzx3/SrXj2bs+XOcd0zmOxxeucyxhbqZMZ3MMKHn/kufJ6SWy5euc7hOPHfjGv03Lbj14k3u3ztjs4HbXWTeJMJEuLp7xGF/iKTEc+98B3F/xr2Tc5KpcZMJrnEYo1mAxUuvcn78gMvf/DzPvucqPY7pc+9nnpSptL7TIqdLDvfnGFmxsQsW/essfAftOauzU477l+nMhOXJKb5bM7/xzv+Xtffq0WxJz+xWRGxvPv+lrSxzqo5rwybZ080hpRElQYB0K0A/UzcSJAGCOBxAQw4JopttTptjqk7ZrMz8vNl+74jQxc7q5lwIoKCT14VCoYA3I3a8z7MWj374CU9/+AlO1xE5DlmuOazW7Jcrjscj72+uybLjH/au9xFomrala+ueFWUseXHkQyX0w/ominp7QxiEhEEfhW2a7g83o7rqT1YMtG1/6gohaLr+WqvcDyypPiH8AQVj77PHf/AafRha4A//wO9iYD88Nn2oZ0nZ0wv6Tmr/Quw4fTpJfAiRA0maUuRH7t6/x+ruDwoKL/Dx45hxOkJJF89o/LIgf/kthfRRTy4YnD3ip9/7Huarb/k//+Pfs9MFsYpxgojjfEL+1Rfk+zWJNDw6O+Vuf8R3h9SrEhZbRn5KHI+JfY/917+mFZZuv6XKMlwnQHmS6dVDzn/8PbqBT3f7lvWLV9w2OY4FcxKhcXnyJ58yfvIQpiOczsdG93xhJTFdhadqwuqIuttyuF6R7fdIP0JXGoVLdBHhNUDe9lcxT6EcQZ8FtyhAWkUqh0RhwPKmYvFiwfHtc8L1ArdtaIcJwSTC8zTaCxBJyOOrZ5T7I29/9TW75VtCWqaeg+k6pDW4bcXE1JjXX0G7RI1iZDaiNDCYzBB+RKsNXd1glGC32ZIkI3brA+1xT+J5jB6dEnz0gEp57DY5fgf1dod3OqEqKoR0EJdT8k4w/vwxcnJCcnqC7wicfM/+5Teky3ds8iPLX/8GUa65+rPvEz54ihEhrEve/c3fcfuPX6OrDH8a4kxCSMEdQCgEES2aFuP4nIwC9jcF7c1b2tFzxo8/xW0bAi1wMsPQ9/no2Udk2YF/8+lThIAsO7JYLVntdmwPR27v7mjbDn1PsTBG9B1k2Q9wXZWURY6Fe8CBSxT2aacg8PC8D8Lp+2LGPbf6vieK1h3inlfctPfDeR/eMLr/PDRW07XdfQjlw+ryX/fzr/PDqt4JgxAIx8FKdQ/xAtly34Dof3tI0YfDW6HRyhAFHg6GQ5mDcmkaQ1l3RJ1F5zWFBd10+IeCxEspfvd7htMEnJBocsGffPYjilfP+ftf/AdEW+BWMTbbs339mijyieZDlq9f4muJpcbmgsHZOY8/f8bp1Rm4ChkPGT56jA5jls+/5cu//VtWX/6Wr377W/LEwTw4pY1HeJ//kOJ4pDM1Yegyv3jI4Ec/gdMHVIAWmmgyJa9aXMdjlM6wKmG/alhubjD7jCQOqaIBTeDR6ZZmt6ErSpr9EWeQ4o0i0vmQxHfxBDjY+8SLQIU+w/kMu55h8zXH5TvKMuOwX3HBKc4kgYFP+vAjwsk57/75V7RGYKOAYl9iLQyjBOOHnE1OeHx+SUqFyTOc0EXs9lDkSF/g+xGOF5ObjtYalss7lOMz/+yHiEZz2B0JBxOSwSml8VGrNe36lvrtt9x2e5J5SjiZYeYJ5SFne3xPqmoYCNzTM5rWpyFCexFeq4mkIHuz5bX9htmnP8RNhsi2I4oTpuMh7a3h9Vc3RB9NeHjxBK1qbJ3jKfhmpgAAIABJREFUK4VwfCoT0+iQIBkQCUly3OK++BV337zg8Pw96mjY2Y4STV1WjMcjzi8uSEdDHgUeD6II5/wx+2ePeHG74PXNgkOW92xma9FSorXAVRZjGqyUNEKgsLTHlqLsE3hxlBAGAdJRNOaPGpHegmDodAO6Z5dh+22GNeY+g9zdv5xbBOreBnB/2prvsF734cr74RW4TzL1wiqjenq+FQZx7/s0tldPoMFRAePZBTLqtY/TwZD5dMh4EBEDzWJB9/odcddQrzaYVvK8+wd++NmnyDAkvpjyV//9f0cpcn7+jz9DmwYHQeAEpIGP77kEwxRbGfxgwtWPP+HP/vq/pW4q0iig2G2RgxQ1mxE/uCL96CNOnjxg9cWv+Ke/+T/YbZeQenRKEKQTBicPcKMAx5cksxnexSXOcITtLG0V4CjJaVpj8gKRZygrGJ9c4P9AUU5uaTdrXC9AOQHkGdXihvV6A+GA4OFT0ssZg92Q+Sgm8SAOJcJ1kf4QqVyiSYr3+DG1bVF1w/bNK7avvqV5dYPahVyOZ4RuiM4qbA1RPGEj15TCxfqWtss4H0+4enCGP0ywZQPHlna1opOWqtNUMiA7ODRehOvAKD0n/ckJlfR4nRtEVTA9m+HPZ/jzc1wbEE4SxCJg2R1wmyODyZjw6grGc8Jjxcvff8vm9ppSGKLJEOFJzn/4fbrjOdvrt0zSkCJbcLtc0k1XSK1YvLulqUvqKEKex/zwJ39BMXYoE1BUVMc9nutQW0DFKO0iuj3N5j3Hu/e9NOtmiVN06Nbi1x2+6XlWTl5SbQ6oQcpoOuGoW3IB44eP+XdPn/KTT57xbrvmq5cvuNscyOr7TzndO34NEjpwtb4nX4DuDFVZEQQBSZLcZ9ItWt7TO0x338L5Y+DjA9Dgwwv0Bz6VUuLeSdv9oRX0nQ3sh/aB53r3sUSn5+jKHq9hpeVDJdLeR9kcIZHSpTWS9PwRj0+mTAchkWkxxRbyLWxWJMWayDeEnqDcbykPHdlxy+bf/y36dIhyFXgef/EXf83r52+5Wy8xAjzXAasZJAmT8wvwx1w8/T6PfvRTZJRQ7/qkicorZNVR74507hqrBP5owoPvfx+nPfLq5e85SEMtLSpU2DTERAkdBdJt8J0cT/g4novwQnQHOss53i1YvniFA4ync0ZPPmb85FP8tunDBKbBHpesX33FhetjJby5/j27W4d8kLKNPLzQ8PiTC06ePAGvJ8XXTUUHRKdX2LyhKwXHbU2VbbHblvz2SDNastnlbN+8w9cO2IAKn062CLel2N1gd1eYUYx0fBzrsXv+mla0OCfnzD/9lC4MsMcdQdHgxhHFyQwRJwzbDj9bk928JL99jZ+8pNUu1bLAbnccb97i6Irj7YJws8edzmncENW1iLrCbRuaKic5PaMSLuHJgOl4hL69oVxrBsmQtqnQxZFwNMDnEcb6lEVH++Qx/sUMQ4UtDoixxokHhK5LYA1mvaZtcl6++hbWByInxMtKtOuz73QfY2w6uqbFGktxKGiLBqqOui5RUvH2+Rte/MM/4l/OefbTP2X6+SOadMKLt7e8eX3NYbOl6wydMGB7SqYSAivvMUGiTyeVRYHr+IRRzwKzwtK2Xd+51j2o7V+WDP7gC7p/oDJWok1vNujjk+L/df7+Pw+svKc59A0diUD2pjLb78CkVX10TSisERih+lB7GHN++ZDLx49xHIvMN9j1DaI+4pcHqtUt7m7HWHhAS1m3tLolkgnZb36BfuMzfHgFKiCSPn/5k3/L//K//6+YuqHWhkYINu/vmJxfcvr0EwazM6R1kdYDHNzEp17cUrx7S4zEH06oreWwumPQ1YiqIyg12ilxkyPaekjloVxB7NSINidbtszcx4ThhJYUlEuLT10JZqMzzuYzVBQgo4QwTXq1oRSoak/5ekngtszPhlR5hq+PvN5mHOqQdn5ONL+gHc0pvQGedelaS17UhI7PanVNtT9yevWUUTjBVBkvXj/n5//pC27fH0mSlP3tO5q6Rtca3JhoHOHJCqc5EitBmiRkRU7oTRlfDml8SfT0KeLkMfE4wr15SfnVl3DYk45H2KpAVRn7r3/L8re/olpvkMZD6hBrFI4SuGgC38U3EvN2QXG7xb16SHazoK7avuaY+IhBRHJyirbQ+oICg39ySjRLUfMpuRHoxlB3oK4UodbogYeKFIk/JJjPkF6C9CPaMiM4rmkWb9i9/Aax2CJrS6k6hIwR0sN3LWZgaTqNY/oWze5wJDvm3GUliZB0VdkDCgKHPNvzdy++In10zl/+T/8jn/7Vj1h9dMmLr7/hy+ffcnPIaa3BCB+EwKoeuWPor7Rad/2h1VhQvXaj1RrT9q/EH4gl9xN5v8LpH2YR3LOI7R9O1+/0hJXyQ67yvpSMQWL7GOI9QQFxz21yPDqrSCYTPv+zHzGfTenaClvvUDqjzTZ4uw1qvWHWCkIvQdQtOnRxw7jn6eiGqthhcsPNZkt8ekGD4uLsgmcfPeP586/7AnqrUZ0g9ROuHj5GEVLd3CH9A4NRgEODFCXJSJAMJV2762kPXcFxu2ISJhg3YZGt6IaWurboyhKEFuV5dBaqrqNuW8IApO0w99ek6WBEWWnevbtlejpj7Poc3t/guH1ySm/3dHcbZKkpS4PoNPbmLXMVYtuOvJFsjIs7OsMJBFGkkCg667BY3ZJvtgyCABuntK2gUg7+g6fMooR9U7PbHDmsN1TZESeZkM7P6DwXaQsiE6CGPplo6eKETAncBxP88QAzGUGSIj3Boa3ZbZekpiWIXaStefvVb9m/fYvXtlA1ZNkeT8YYbdG298vq0YjSaKbzgNTzqY8Hwrpgc3vLenlLWmV0SnKiNUnkke92CFfihQPsZAbTU1ypcBsD4ZD2uKXKllidowpNm0m2yiOZKkLfJwoEXlFQ7V7C9g6vtlRG0ijFYDzFtAbZdswGQ1a7XQ879ztaLXqelDbsmg6MYBbGxLGPdUGWR57/3c9oyoJ/85f/lqIoeP+7X+NLh7iTHEWHVhojnX5UjEIoB2y/mgulQAs45gf4AP6xkj9YL+EPiar+R/NB0/Evr8FSiu92YHsebc9blffhf8E9Xf7+t45ULn48opUe05NLfvDjP2M4iqn2K0y+wqs2eIcFzfUrNt+8ZtBA4kd0rQXHJZ4nHI5HplenhMMBVVlwWKzZLXY8/+J3eMMRlw8f8pf/1V+zOezY3N6iChevrPCUB7sD0jPEQYoKLbI7Ui7u8Lsd2i/Iimv8EJqyw+xXhHWBPm5xjWZgDXVToHOBSiK8ssLxIrx4yGR8SiQ8xG6NyQtUUVNsMupMMxqc0HlDit2BZrWmOR6I4xQnialv39Ou9xQHg0yGjAeXJGNDvdsycRRu1ZG9uaF0AkqV4D9LcEKfYDAi8iImowmh0T3e9Lxj6gfMfI8nwnA47Ll7+5ab3/2S1ZvX1JUmp+szr7qj3m355W9+zuem4+rxp9iBj04kebujfL8kGE5JByP8aIBOB7T5ns03X/H2268QXUUqXHAjGuPSqCOb/QL3/kRIJ3NKa3n37bdc5DnnpyfIIOAsjjn/9Bm3+74HrNZbDt++Qs+mxEGKcATSgW3doPYHhB8CAu04NK5LoRvI91R3KxwnJT6/QlSaTmb4ToUot3imwHQFtW6QXoryAprOUHQNnWmhyAgcRZQm5FXJ8SgQysFTLvkhA+HSKovwFE1d4GoIKsvLv/8lV/6Q8wdzxPIO4fs8efwxVTyj8VOUF9EYSVEZ8sZwLBq6zmA6TbEvkaIFq3Glg+KPndsPeYR/CRT8l1RH7h8c9Yes/Xc1sIY+w/thXWNMzxOyUtIqh/F0xoNHTxmcXOAmY9LpKXGa0uZbst0GffeaUbslf/OK7Ktv0Dd7dpVETV1m8ynCt2zKI4WuOS5WVIcjDBMGDy5JTx9QX99yyDJevn/DcDRgdDrn/e0tomuxWc5vv/gtNIrLj54RnZ3gSA9PaWS5wGkz/NBS6xyzu8E1Dk59xC9zGlsTDX2ofdANbtPhWA+fCMcGBEYgNmsW6y/ZvH1FvVqg2go/PiVvPO6iU1Q4oetAtS2J55PnS95985wUTaoEOhziTC8Jnn5M9/AJ3dtvEVWGt99h1iuuX/yOo+x4HHjMLx9hlIsXBDjeKVIJAtfQW+4cWsBI8LsZ49MpdjLCef41x8Utc89jvd3QLK4xukbmGrHd82rzCyprsI5G2Rbfd2mCFOskJKNTBuNTpHL54mf/F9XyhsCXRNGITkis4/Dg/AFHb4kuKxCSZDTuT5zOsLh+j8lyBuMRThxiXYV0XNwqpltvOZYNu8WWq8dPka5HY2tyXRHUDYPZCTLwUb5D7E0YjTzsfs3rX3+J70ak6YSqrqmLI55b45Y1nvIIxiOCmSZbFdTHGjeu8CcjpuMTsmNGWVSs79Z9sN7pesCe9HF9B9P2qbm77QprNcJCHMbkyw0//5v/xHSe4MQS3wlQWjNJQho/oLKWwAs5uzrFiybkteV4LGnKiuXymiLbYpoK3RkcIXGUwJi2x7KKP0LCP6Sw+hky95SO/got1Xcow+pbGX19zXFdpONhlQTHZ/LgEZ98/BnhYARhhApCcBVVlWPbisBqqvyAOdyy/fob8uc3OLWHGp8z/tP/kpMHMxavf0m73EOYslceznDO6OqK6eUDXAzu5Xsuiz1s1nz55VdI12H+6An7Q85eW9b7Pb/5p7/neHNNOEiZPTpjej7AFTW4Aq1d0Dmu7dBlTXfc92pBv4OqRtc5bVmiATEzVFaQuj66bNi+X9Ecc7J1hTUBvudj0zMm4wc0IqYsNUq6KC+mDRPGo4huvaB49wZcySD0uN5uOVy/YfTsEy6efEydFdx+/RVC/w6xfMvuzTXf2J9Rf94yvXqMiQRCdlgsYeD2Pl7bl1EVGuMK/OGQ9OEjOluiVY7uLCM1Y3fY9p8VdQ5JxMXDj5gkEfXNK9rlLY7teH/3kuvNka+2LU56QlfWvPv9NySiwXUk1mzwvKCXl6URYeghhYROsFms8YOAURyyOx54s7xl3BUEedhnuzV0znuGjz/Cmc2xmw132YbaVSTzE4LxHCU8qs7gGoMXuFjhYBihXJ+TH7k96yixDLua8t0bit2CylYoGzH+0U85/wEsf/F7rr98zq7YE9kIpTW+qyAOqJoK777G2bQt+zKnrXv6iOcqlOzXKAbbY18aMLahdWrQPrfrW079MVKtcUfgDWJqU5Cv3pI7e9L5FYPHF9QokgcXlEVJcTiwXd5S7DY0bYkSgDR9FNUYsBpEH0GU/At5NRojDNZ+h1liad2+JmUdrPLB84knYy4urxjPL9CylwpJ2xLamvq4QrQ1nm053rwkyLdkb96xv9tRqJD0wSXP/urfMf78e4QTH1fecr14TjoeMJhdMDt/wMn5FYe8omlaJtMTStvRhRlXn33CXAU8lg61gUN2hKahfHvL16tbLrEcv65491IyGaZMTickFzGhVJTXa/ThgNt1WNdBVS1pK9guczb5DuFPGCUXJFefM54kkO2xw3NwE5Ltjv36Btll6GBOFc6prQdxL/9SfoD0A7rAw3dPaeucxfU75HqFqVuyrCZvYfbsGe5ghH/5mJEKiC4foQUUSF6/v2OVl5yez4kjj8LWxIOYOB3hOgEogabnJkkHvAAmJxHVwSfbl9AYglGIrlIcPeTk2fc4PTmju31LtlzR7Q84FqJGc+n5rMsVL968R4YDrO9zrA2eFgirce5JIkVe0eQ1iF5rImzfjvJcl1E65phl5IeCMAjRTUNVVFjXZ/XmW/w6owtippFkdvaQaDLAhh7WgbouqHWFyARpFPanUl0SOxI3kDTbt6y/eM7qF1+ggOjylPjRBenDE4JAcRInJKdnfPmPP6feH7g8PccTmsI2xKdzyqxmc2yI/RQ3hGCgKO/dw1IpXE9xKAs00NwTSzwsQz/go8tLgjBFZzVZeYNXJMggYBinaCzHu5J9tuDk6hmTgUcTeXTjlGcfP6YujuS7Dbv1ksNuT12UNGWBbsue0Nm1qHtAlEAgpMCIvo74nQ1s60YEUUw0GDKYzYinU/xBivR8jFC9EkI3iLpEFyvMcYfebmm7Gqfc0r19hX51i8zg4x//Fzz6yV+xR/KmKBBjDzWcEs8v++/GJELKhmz5hq5TRKMZtW0pHYs3Cnj8+Uf4F4+p/JjMQAfUWU759pabr7/h+uYOZQ1pFJFJl7usZbitGPoeZ5MzXD+m3W7QTYXUHa42KOMwNAmL5yuy8AXn4QPqV2s0FaNPH+OczRDn5wzyJ9S7DTUWmcxoCanKiqYsMVajRYeuNU7XMLq6YJiGmMWK+v0djpTU2R52S+QwJj0/xQYRurrACVwqbajrAis6jnVJ3pU4juQmO+AHW0aDKb7vYmWH9DyMcDC2pGpLBvM5NXsaUTFQlxxsy2R0ziKruHvzc8btEb3f9v8vkymBESzv3vPp6ZhOGzatYW01UgV9oUO0zM9nTAYpm8UWqyVl0/ZGeANlXRA4HoM0IXAjdKc4rA4AvehbCNrsgA5dyqZju+6reIUVyLhBdgbj+XiO6PE9WUZZFdiyQOgOR2lEvqF69YJRXdMaSN2AMB7jOAki8nE/9/CThJO65PZXX3J3/Q7fc6nKkrxYIztJ2BpE0xF4CukYRtMJ+6xAoyh1h+NCayo6pXBCl/mTx3z09CMc12O52eBLaKsGUe8I4pBmsUaMhqQnE45Zyerbgnh8ipuO8IIAK1qiYUiUnjI6mdDULU3dUGZHiuOO3XZJtlr0Kybbrz9FJ7BC/Wfq0//fA/vZX/83DAdDfDdAeR7aQKM1ddugaeiqCk9qunpPubnB36/wNjtsXlAfd/jrNR/HM27SisurJ4wfPUUoSdnULMojg+SCz/78v6beH8i6DfORz8DzcAYneGcPKWjZLB305i1iEtNOI7zpJQM3RuDQVDX55RXi8gzv1WtW1++4PR6Zpi6jIKTxU/RkwDFyqXWNlpKTdIRwKnAa/MGEESU6y9G//ZJXL99QeyDPJuTZj3mQzHCmEclEMBwOKKoDnaqxKqH0AgpautZQlAVlpfF9h8rziAYDujyn9RT1Zo0q16zaLYMQ0odPGE0jqkphHAcvDJGqv6o1XUOnDZ7nE7QV5f7I8m7X0yy6I0HoEqcDhLIYFSHjkMAk1OKAikacz04ZhjFuo9ls7pD5gUQaAt/BOnDMS6zqGCQO55OQ/PbAJA4oji3VsWB+OmAwHLIvc/Zdi+vGjE7OqcqS7XLRh/WrnENRksQRuu56CIHo+68OFieQjEcxo9E5uXLZbjNELbBehV1nOGFAKAxO0/B+v0OWBaHr96jUrmESuThGsasLpOfglRnN9Q3OJsMdD5DTkMaPOPnBD3Bdn9X1NW0QMZnNSfOScrEmaDvq7IBVBt+P2e0yhLDsd3ukF5CECdvdjihNObs4YzCa8dU339JUNabpGE1mnDx8RNc2bL+9RQuDOva57XA+BwvlosQRl0TTGa3oAWydMURJQjSMsUiqYkhTjhkdx9SnI46bFdn+wHG3p210Xy38V36d/qv+1Pjpx9hWUzctpm7RzYeFb4eloSkKXE/hdw2qLClfvaa5fod3qDmsdpx4Ad1ZSuR6LF9+Q/jsIyaffUrrjGk4Q+iGanXD9MEFHw8sMr9hd/uOwckMORsQBC5x1JA5BeHpOXo4QaYpsZfgaUErBYENiS/OmXgR5+MZ++trmuWSZrXhbl+Rb7cMhxGhMYROjHADFCFaNMhzH//MMhWaqikwXYPnRyRX5xha6sN7oqlDUeUgKqrDLX56juuPkJ7CCby+U+o51ELiRxFBHGGrAv/0hMT3qN57mGLP8OE53iwB1RIPUhARNYJaQmOh6gSR8JDW4hgDQUrkhOyaO6rdgbbJyA8t+TEjSROk49BaiQoU8dgh8lwi30N0Gr8zTJuG1c83uMrFR7PfbSjyAt1kJIMUsTckA5fUjdirHB04PHz8gNF0jFOGzM4fUjWGIEhZrdb9Y1J1wFMSVyiOh31PFvE83MBlPB6gbQNjH/dkSHp5wTge0QQh/mCCG6aUupen+baFPON42ICAKE7w4yFCedimJBlNEeOYosnIXIHNjpjS0O4K+FajyxzZVrhhyPgvfsTo5JLR5JTt27eYxRK137K5fkXbltQWOg+GJ1Naq8iykmK3w0fg+THVoeDX739N27V9La9tef/+jhffviL0A+qyJIoC0mpG6AisdDBhhZ8M4biCQDAYJjSi7SXWRqPcFGTIYBRjU584dugSl8kkpS0Ltqsli5sFh13ec6q/q4GNkzFdWdOYHN0ZhGdxHIljBFJrXCfFaWv8BqrdkbhqiaTPdrvGyyxHW/N1+55gFDGKPdY//zu645qTH/05/vycLpzgDFx8myFkS92t8GdDwtM5pCOQDtP5Y4bREPwIEw2w0sVrC8x6SfX2NdXNLXmmGcwe0uGxrDRlXpHEESWal199hT3mTOKYwTCBT54xm89xpMtgPENdniEnQ3RdYOqStnMRrmCXveHueM1J3hsIyrYlDSfgDKgrhTEujh/i+iWeI4i8AOkFKNmzchuZg+fhzE8Q6gx1MmFweonwA+Q9RtUXFoXAE+A7Lo5uUNkOs1ui6xyn7PDKlrI8kNdHKtPSZJLd1kFFKcaLCOOIIFaEUc8e8tQA0UpsrfAuFqy/+RVUNV1+wI9cokFCoyzudMB4CNPTOcvbFVVmGF9OiMOUKB2SRAOWiwW/++Y5n//wT+najrIqMWhqDEiFjBJsENK4kuRsjhtKTCTYD3yM3+ANQQ1DvGGC44UEXoDGUhYZKnEY+UDd4fgpajjHKBfHNhwPNzjDB4wDhZ9OUO4Qjc9hsYXFnlpvuT28B2HoOkuzX3OoCnwMRV1QLBfsN1vC0GXbVZhAYYqWdDRAGEG7XDBwHEAiWhiIADdJmV2c0aA55geybEuWb2ibDms79MKyLQ6M2yvCkynVPci9Vh2+GBIGfcZYWw+h6AkF1kcqQZJEaNfS+ILatYTBKaNhwuJ2xe3N4rsb2PrQ54CFtfiOJHRdjG7RTYNHg2kqquUKvVwiru/wjxXleo9tDJN0zHK9oW0ailzzOHyIub2jbTQ5kP7ZT9CzGUHoEbshbdHQeFFP8B/NaaWDMQKBB15Ih8IXHo5waY97rn/zG/LXr4jyjipvcIzL8OFTHg4H5IdHTMZDHMfhzT//glf/9HO22yXeIGTZ1Wz2K8bzM57++Q9hOqFz+7W2Y3r9RlHkiMxHFXtuVyVStYQ+dMbBsxWdrBCOQ2tEnzsOAdfBWInpBMKRGGE4HPe01iLikPF0SuuFvRnBgpLg2P5CpOmIbIlZv2P5i59x98Uv4LDGx9I1gJBY30G5HqPRmC5NyYVDJSRdEhIOYtowQM7OiKcR1h8Rzh6QnD/l7e+/IG4NrrE0RUY0nBKfzFHS59vb9+ig5Xs/fYY1PrtVQWtAdpLdfgnVgc+eXuH6go9/8JTBSUzbNuA6eGlMdHrO8PSCvK45HNdYSqJxQjyfo0OPzpHU9shuscH3IyaTGVGaEiYS4wcYZ0xdNjQqpHAl1pWE0mMUzvE7F6E0nZRoF5Q1IGqO5Q5sixuFGM+yO1TYpiWdSELXwzs7Q1tBVlY4sU9dHlA4hEOP3fWKcBwyYdh/o/opk+kcYwz73Za2a3Bjl9gLGJ0/YLfbUWYVxSFnsbhBHjwObcEpz3Bin7bJyLYhzXFMNApJxwOkiNG6Qrohyul5UJ02KGXxPUmretRNPAy4Cs5Ih8F3N7DZ+69BBQR+BGVGcVjTZnt0XaJ0jrQa95Bz+OJLqhevyIyhbSt8x8N3GgajhKwu0HnH6xcveXz5BLtao998xcrpiH/ylzjpBHwHW1uC4Yw4GmK8GE0BogPRgtzSlRqhO3BHtI1idPKMk+ETlBZMii13+zUyCRiPHzB1n+G4iq6qeSQ6RHdk/eINYLh7946ubXjz8jWMJ1z8yY9QcYwbuAgXXAlxnFArD+ElmGLH4bAgryrcZk32+gXTi2dMz74HUYR0Qbo9blUKCV4/vMofErhXZMtbSlsThAIpOsw92lXdayWs1Xh6h775kuU//N8037xguDr0pIyqQrcdGlBBQI3FJjH+YEQkBWGgIAmp7xwYTNB1iXEl/iQmlw4mTGhCn9ss53SQgDJkocvwdEKRN1w9fogWJbXbkg5GnM3mWBLKvOX25SvWiz3nJ1PC8/66ezm9xAEaY/FHQ+xwgPVDUpvgTwR1vaKoa4rS4MQJoe8gqWh1QVfewv6IMEPCaIIanqEnZwjhIDRkx4w8byiPJcXumnL5gnGqCD2PruxwjYc0DqLN2S3XhH6E9gPsaIgcjfBHI6Tr0lqBGMwYBDHt6pZkGPceoyzD70K8skO3DlHsY9MJuYJ4OEb5GqUrhgMf7XuoUUqUjzgs9yze36GVxAsD3HSA7BrM/kB5MFTGUGxnTB6cgDkjnLjUXY5oFb7f3RNHDUppjCMhCiD2aOqSxqmJrP/dDax6/Rs6N2FZS2hazG6DLHK64wFZHZC6I+w6oqwEIcnLDIOhNFCLmlGQMvAUSjZsVwtElTMdplTukeR0wGlg8WMHP4A4PsHWYFpFXjaYVpPGkq7agK1wrKDNtxC7yCRhmH6CrTu2qzui8xGz5pLWiTl0BtPV2Nr0OFWrCYKAQZJgjUCGHuFgQNcafv0f/j3ru1tGlw/46E//BDlIepC5FEjfIQoHTCYxVTFAdw1aV0RlTqktR10TxjHCkWjRUwM/gLe10BhXw8hjEMyJDltMsUc6Ei+MwXGxwqJFhyLHLl7R/PY3eO/vMHlBoRvqokZXGt0Z8raF0lJojdlWjMYGL/AwssNNfEBj/RX57R27d+8Yf6ZJz7/H1Q8+JnL/B25+/wtm52c0pqDYvWJVbQCD8mJUOMX40LkegYrxvDHRaYJ7dsYNYH/bAAAgAElEQVSDn/4U5UUYqXBNjch2tMsF1e0tVVNQ5ntEMkb5Aa7XEUcBbuQQDMboVpDtdviRQnoe00lMGjt0psUIjZQdjmfxpUR0HTIEB0HruLQ2oc4HZG1Jtt+jiop6V1NX0BpL5Ee0woBuiVSEDaFzaxpbYVF0bkeXuhR7g3s80O1KFtfXyKolNA6maZDSo2wO+JMxpSnwhgHDZAi0RGlANJmy2x1xowlqOKPtNGVTUbctnvCoqozD4Q4vDti8PWJ1g0FymoxIxkOM7Qhtg2gq0H9c3kgJUjp48ZDO1/R35+9oYMtf/iMHNeT08x8zOjun9Fz2N9fsFhVitUHWFbYqKQ4ZietgXUXdCVo/pJqOkOkUf58z8SB0QsQoxH9wwtmnj5l8/yPSSJOv33Dscozv0nQuvjNCCB/ddGS6T5UY2+EKF89z6GyF48c0UuKGCWni0bYtoeMjOojrijLfUxZ7ZHmk2ixwyoK571MVJXV5RDYlXmuIm4rVz/4jrJ/yThfI0zP8yQnT0xOUI+8bSIoknYGBBk1gzf3Su6cV3LsO/jMHmcXSYCg6i2MNvtuxur0h2m+Yzs6JBhOE4yG7Pfm7L9j8/J9x374nKEo8XA6NpSw6yqxEIzGOh+cmSNGRFRWH44rpZIhyNHa94Ww+xqs1zWoL+wNecooTJ8QXD4i//xn+IMLqFq/eUDkNu3zNaBDhOh5a9K+zx82OutzhcIcMI7zZBBXHONMxrYopNrccFgX5esvibslgPGJ0csHs6gnSdTC6pCiOKOsSBGMoDmg6fOlSlwVVvaNb5ASewBnkNEWGCibURuJYSVk1qCDuvT6ugz86patyIn8Edo3blvi+REQxxvHRSlE2NcqJCKQLTY0UlrppafYF2eIdqzfPMbsV+W4LTYejIeskooKm7ig9xWmsGI9OUMoHz0VbBckAb3RG7E/J13vi0TluGCA9iUJgy5zquGBzF7Hd3FKsNhS7hrYVWOEwe2iIB2NaUSClxih93yV3wHTkRXuvUA2I4ui7G1i92DH/6IxBFGE9xfDqAm8QEQ5i1r/K6JYlbVNTVzlFIzBSYJyA6bOPGf/J54xOz3A2B+r374kCwdmzK8YP5jjThCz2aI8LfE8SOpq2M1RVR6Zlv/IApqdDgtEA5Xk0ecZyvURT4pUVvpegtKIuW9zBBMcLkaHoI4Tk+CbHbu/YXr9B396wf3uHaVvwBdZ3aYqKrquJBwOy6sji+iWP/uqvqJZLtrsd0/NT0vEY5x6pKgQ4ohdrOaLXPVo08l470sEfpVQ9KYjAdzgWNTUeyckptsyoqyVCZDRdR/nuBZt/+js2v3/OCIfAC2gbjTEB2tbUoqGzvcak0IZOOPhxiqlaOumTDEJEV6BrS2dqbFmi11s2tWZ9/Zrq6ac4foxBgeOQHzrQSb8W8n1UFFI1BsdzEMcVm7cvcIoM11N4owGVgulnPya5eILA0LgeYn7G8MFjpg8eIGIXN3Ip8iO7mztMq5meXOH5UFZHdLui3kpCaXCaI/niLWV1BN/Hn16ikpO+meOEqCCFoOlbUx14ToLxvZ4MWa5w2nuIneMweHCFSFPctsN3XXS1odxuceioioLdcs3h9prIBT2ZE45PyLY7aDSOlrRFR1tUJGkEgU+mNa5yyIuqf31vJB4hwfycNCpRfsBoMsD1JG1bs7i5pmkrnHDCeGyI3JS790fufvOKbJNxXB1IT2YMJkOCYUgrOzylcJVLp3tFgsGhKAqk+g5PWC1jlJ/0J4ou0UKiYp/Jowc4+ZKdacnLnDZ0cdMY67gMpyecffYUd5oiIgHeEBG5HOqGza7D7bYM8o7JeUJQZ8xPUiLp4lnDMBnS2ZCuKcA4FMeGzvHxVQBKEQwUVrQoYQlsR7a4wTSC4ckZrefg2oqIjOXr3/H6V1+wff4Kv6mZSJc0CHCiCKk0Wmja2CPbl1TLJf6oQ9Jx4lu6gctyc8Obw4bhfM50PmeQhDgKFAZH+FjrooXE0CEwWNsDqOWHToYVKKFRsmE09unaENse0KpEmgIHkMri2hWbxS3F+xvwEuLJHHCIlM/sNCbRDdvjASsFjh9Qt22PSHUd6raibXu7e91ZEJIoSIiLgu27N6i2wNY560JDMmD+yffJbIIjHYrjjheLV1x89n3U7GPa1iW2G5rbkuWrn2PKA+loRGsFm1d7otMZAsizA9FgzOD8kqo4YrsCcSxAF7T7G6RR+DOfceJRCRCFQRUF1c2S7OaGar2i3G/JyxIdDPDH56STE6QfE01OmZw94FBUGDdEjaZMphO6wCPxAkx5oC4KtBOB52M87z6Ta9BdjWkbjuWRQ3akk4Lk8gGp72CthxIOXVGgixplFV3dcThknF9e0ijJJjvSdRppesnbvjJU75dEw45wOAEhuL1+x9l8SNOVVNkBakFzNGTLHZ6AiR8zQlEfNKsv31AfK5rDkfRkhIo9cB1a+r/f8by+shiFf8jpfycD2w0mNK6HrY6U5Qq6FmVcpLbYqsLzfNzplPR0ysknH3H1yWckwxGR77B6+5b99Rs6L8AmI9o4oUNhfZ8mGXAwlmx/xFCSJg6Ra3C7HCtKdFvhaAffH1EfOpqmIY6TPvHiSUJHIKsC189ougxT5zhJiNtmHL76Ja/+t/+Z699+y+bQ4nuKXZQyHcxIvBBHaabzAXXXYoXLZrFhtdrhOQpfwjSVJJFDYTyOhy03+wVbzxD6hiANGU0/Qnnzey2F7U9a0WschRUYC0I0uGaPalaY4hqnfYPRJUIKNps9lYiYjq7oPEF6EhHHHqrsKPYHOhxq6+K7DnVX4TqSKIlxHIcy77DaEDga4ymsqdBa09jeO1RpC11vAncOewJ/gfl/WHuPXtmy7NxuLLf9Dnf8tekqy5BVdCAkQMIDAf2E91MFPYCC1JChnshHW8ViZSUrM29ed1ycsNsvp0akpO5rZD9wGoEzgRVzju8brWe3fmCscrJXf4KuLijPLljSE7IMmZwR3Mg0tHjXkUhHPzRsvj9CSIhKsPvqtySpZjmvaad/5/C7nOrFcy6enaNTj49HrjKD0ob+7h1Dt6NME8qpp7v9QLptyKzgaFOEm+HHlMMh0O22hLuONM+YygeShw0mSclW50gj6ZXFzGfoZYUtEqw+EoeA9p7Y79g/vGfz8JF+/8Q0tORlSb44Ry0vCDpBaE1uFH4ciVmDyEf6Y4uXCgfsixnLm2tulCCMltCOKKF4uL3FtQ3WGIyWuGA5rj/iP1iO2weqbM5syPBNJE4CH3t0CEyDoigrClXA3nI43LN985HqfEm+XOIlZGWOTBVpmZH7QJL/iEunl19+QXp9DWWKOdzjjg3WehQZRX2G1iX5a4EwkWgE+8OWrFSUaY7pW3j/gbU2TK8U6tk5ZrEin89IU42SEzkzkizFS8VumjChpzKRqd9wf39gPr9E5TU+KYjzJcqcWNpeghpGhu2eqe/JDk+c1wr75l/57q//R3a//opx3eNJmLxk7wak6EAK6kLTju3JpJeffrc0hwPx/pF//Ov/hZe/eM3561dcvfqSLAZsdBx2t2y6DTIF8dnA/NnPEUmFjAIw2AiTHfGTY5oGhuaecf07ePwNavsVmX1PMFC9/in59S+J5gZLBtqgi5TV9ZLpvkUlCYNTjL1jEpK8mDFMPVM3gJEUWrM/bnDREZWimC/wUp86emVkmDqk1riQctgcMd03yGgRScLdb3sWZQmvP8dnKyIlRkHcfWT723/i9tf/N259Rz72+L4jOIFWBW4IRDcShoAPI2LsMFqj7IH+eA2pRCaRzTARZY6ZLfDmkSJNefz2O8Jmy6osydOcrvM4q5CqJkuhHUZ2zREpjlT1iGwmiipFtC3P5zVOL3iyntZISCtkJklNwPUNzf0dm++/IhzXtM2BEGHcF+TdhG5GzPycSRqchKoqSGZzbOEZlCHayPKmpDy/JJ2V5GmKsJKn2zUxRKqzFVFHCAOqGylkRPQHHt99j5gG9v07hubkdw1xoh17RtcyDAK2R+LaIIyi6454LFmZo1YLls9vWL24IV0tOfqJYQKd/ojgxHB4wpc5QpQQJqpSE2clw5Rgm0B9ecmL62vi2NKs76gSxTwE3McPDG/eEB8eEYsViTRYkyLrOclqxWJeUGWG3EgyrU5hYzsRuiei3zO7uCJf3GB7gYyaKAQxWhZVxfr+I33XcDmf/xAJq8lKidi9Z/z2t4iHB9rtwGANQitEEKdCbwOLOqGuUgbbIY1G4Ih48iJjdI7Hr99w+PAdrz7/hItPbolFRbWoORMj7XFPYw/cHhp26zuuP/mSbHYBegEiP3G+KLx1BHIEFXbQ9I8T7cOBdJaQlhq1uGZy58RpxL3b06x72glaH0m8xyQ5IpxUFM456jzH2R7lLanSXCxqWu84jo7t9oh14aRAxDEvUxIcdVZz93HDEPcsy0iZLVClJld7nHlg0BYT5gx3a27/6W94/M0/0D+skTFysA4ZQaoENOSzGZUU9N2O1k4ncEZGMgGh6whWEkWkay2Tmyj2gSihi5L1m0f6zY512TK/XKGFJLqITBWZSSnPl3z//XvGfmKcDhwPHSaRpO8eeLjbIq6uqX/5S5IvPkdkkmDgOBzwtiHEiaoqsUwoEZBRMwwRvzswT3KawxtsMDgVeLAD569eUZxfMLu+AZ0zOYfKAn2/xvYS10d2uyOrxYwyF+yfWj5883sucsOu6xi3B1xrsd3JaOgjTC7Qj5bR+lPZ2qmQmDD2p1i7CBgVYThgDy13j0/YY8f5T78gWS0gUf+v3OTHGdgP//obisOB5afPSTKHZwTtUaqkvJrx/NkLFnmJP0jKEFHjgHza0X//DtFNpNWMbLWC+ZxksSRdnTG/uODyckmRasQPjszoA9o6YprT7TWNtxTLJfPrCuk9U2hOcqHUUC3PcEYipCPLPOVM4qY1chygbYlREaTCBU+mU6oqpyokN9czlHInjw0RQiTVCfO6RglNOw50XU+YIs3HBtF8h3WeICzzVUFUlj6TqFFwaH7H7ume1YvXLJ79BFVeIvWMRGtCViFICFHjfcJkC7ou4ak7Uk7PiY8Zjw+P+KdHDu//neHYcnb2GS++uEBow9T3fPvr32B3awojOJMFszLFSImzA1ILSlWC9nT9Djc5JgJpamgHh48DR+fIzkpSHQi2o905pm5DWvyBJE6EyyvKamL/9b+gvvk97v17hP0hqyk1URq8MIh4ormqKgMd6fuWKUY6awkdzPKUeTVjGFqKJEETKbXG+p5hsojgGZ3ETQliTPDR8fz6hrrO2O/3oAT1qkLsjqQ6QQRFxOCtYP3unqSbyOqaeZHTpYL7x4+ni4GSKALCpERT4W1HdILdvqG3I50L2MnT7AeUHjF1gVORuRCUZwojEwSR4/qOJBNMIuKmCKFlf3dPLcGu31P6gc3bD0y7PWqKxOnU3+ScwwdQJkUZg4zgrMcTkCoixEko7SaLkj+koDqLnCIPX33LMA7c/OxTUlszqB+zl7gf6T98REdLMdMkOhDZI1RGSHIm6+iykn57QEyWShu6j3dsf/+G2XzOtJyz+PxzuptntHlBVZUs65I80RglkFLj/Mng7V3Ajp6RhPrsHJNWTB5S7UhCj04KVJ5zNl+AXdBu3iNjxEbH4+09dr1nEVKuXn3OP/3t74ge5tUFlxdzskKQaEteZGRFgTEZWqU0h5Yqr2ibnsf1hlQZQpaiihlpmjG1a5JMErxDphpZ1yxefkFYXrJzjg/rnvXmK1LzjsXVDWUxp+89zXFknqYkqkTlFyTPf8bMCNKrT4nFnIWRNGri2fmfUtVz0tkKXc9JigwdHNWzZ/zr//yfyP1I8JZm32G0IEkTjMlx0hCNZLaoifs9T9sd7QA+ekSR8OWffsnnP3lJ3H7P7/+3/5PhvsWTIboNX+SfkS1qtJeE7YbD23fkMZxIOi2JSuGlxomT4KodeoJyRJVAAsakaKHwQtI5Sb/eE4PFSINRmugtZSopNMRVwXE/0Y+RzBsmAttxovcji9nptn22mpNrydiOHPY9MQaq1RIpIsf9ng9ff8P97sCkBEILkkwh0pNbaRwnsjwnzFdEZXj26eds2xOSaA8NxXxCxJNYzYuEobOgjxQOyjxHK0PXH042w3Gi3W9oPnxAdS2iGei2e+yhQ9lIGCzxh5L+fdMSEdRzQ1HWiOSUr060IEqBCyfUVKiJcRjRQp8aJ5xEtiP7b7+H4Uh5XuLljxivq/KafdOzffMRNytJFeTakAjJbrfhoP+VxfklZ+cXlGVFUIJkMccuzukuzlDPbtAvXrN8/QlFtUTnKbkC37cMIlLVNVpERm/xQ4twHYX2TMcnpq4lT0qO+z1x3FDUM6JMmaoTHdQrydnsnDhFKlfRTne03T3p5UuKsxX+cUtRGBIj0cRTybaGskqQaKbekmpJIiRYTaMVXml6Hxjali46yjpD5oYpkZw/f46Ikd2TpV49J1nN0NoTmy2b+zve3n6FlpLEJCxmK7KiIBl7xikQ5YL58+foZ6+Y8jPKvCT97JIwDiiRMgRFO57uhOkw4WYrLr78Izbf/J5jcwLVhQWDJk0KVL0gWSYscZzFK667PZOfcALsrCS9uuDRd7RPDwR5av9jAncf2fxuz+XCMhyfCPsNhba4NBBSw+gDQUWsFAQfUBqGsccFSxSKLC/ReUVelDRth0h+2Ir7iNYpIoAQnhgcqQncPFvxdHS0Dz377YakThimkaFzpwQYgbEfwEMMkGUJOkkZfMuh6yguLhm1ohktRb1ABI8bR6SKhGjJypR+OjKKQFpWzK7OyKkZ2y391DD2EzYWRFMikxnWa/y+Y3v3QJkmrC5WqDQDGSjLgvwiofaw/u4bdvs9KkoGC649xSfND54oJyRSKYKQtOMIQqKSBBtOmVviydCI1Gh90k1OyiO1xkio0PTf3yG2KdX8R7zDLhZzZqs5D5st67sn+qYhJVCnhiLVFPMF5CnybEGcVSSX5/TdxPL5S6rrK0JdwWJJcn5JPpsTiQzdQJIq5vP6/9fLB4+UE4kece0aP/QcusiOAqMynl2fY4ockaf4RCFEhgpnDAiqKqVOVmTZin55iXx65PpXv2L6x39g22yJ8TSYRW8wiWQcjhA1zXZAIUlNSqrhfDnD2wnbnNSUrRWkLy6YvbhGnV9y9uIF/l9/wx/+y99z/Zhw/id/TvLyAjfLqMySx9st2/Udo29xfWAsCyodkDrj7MVPmX36BWF1hTAFNgS8SQm6IYwnE53tBoKSEBXZ1StW/21F9vOf4Y8HGEfafkDVc2aXz5jVc0J/5OndV9jjLaqumZUKT6BVhlgYJutwWiPnOZlJkL5me/B88/47vv7rB8psYOUeKDOBioJ2CkitiFqfRGXKEGIkUQYhFCbNSZP85DqSkvPVjHHYkyaaYCFMnqEbsVODMY7lZc3i5oxnFNzuf8fxuGOeLhjHlLZtCQGKRGH7gaEdSJOcXXdAW8vkJ1RVkM0ysosFxfklXkhiHNEmghkAR0wVptAMTw1uONA+Cvq+oT8+4o57SpMyBtB5RVIUyLzGeUu/2yBFpLMnpJQI86pkSiCkOSFN6Z2l3XaoSSMwqMQQJXgipiixztJbS6bNqcUiRGI8NShGfug7+2GQvbN4rZhiQI0BYR12HE9EX/sj+mGvr5Z8uL9lvijIz+bcP24IY08TJszzK5KXL7EXF7hPnuOXc9rZ6W47ry6QeYHMUnyEqA1BRmKQTFMkKsHggB/6XH2UJKmh3W2Ih3vCNGJCQe8VZr4kmIyY54REgQQVDWV2Tug7Hve3MFiSpCCulpTzGX/5H/8jV5dn3H/9e26//UgcHOfLCqk83bRDq4yx8QTrqPICKQ1d5/DOEmyPTSyqqBhrTfVHn7P8xZ/hg0T+26/hw7fcfvOex7/933n93/93XPzxX3C+umFRBNrlxMPTLdvNI5ttJC5KLs4qxEXJmGuiBBkjmQv40TO1Drc/0n28p9kfKBYLDj5QVDOcnhNnGTIZsF2HWWry8ytCvWKfaaQ/ktcJebNkPH7AiwGVGFazV6TFNe1mjxtB53OYItZqCqcx5UsytUT3O/a3v6bvGzJApYrJeUYbMVlCbkpSU4BSSGM4HjvafUOaT3jbk6aazDjk5NHx9NtT6xRPpBt39CJhVs94dvaad+uGf//117TDyHiQJEXGU9tw7AUaQWcdGscoNFWWo3XJJB3ewOy8wmURZTwhjmjR4cYdUnh0gFSXhEVGFIbgRqSwTMOR4/6BTkpGpyix5KsZwlTINKe8uiRVApEaVAZSQQiCJC+IZ2ec2Q7Z7tmqHf1mwPpT37FUJ9FblBKTZGit8DES4wnwN8acvDs+/uDTCSe3EgEhwY2W4APjFIlomm5k+jF7icsqpWhy7DCR1SVX8zlWCbKqoFzNKOZzSFP6MiNb1fhZQeclUyaoFiUmr0iVQRAJwTMeGvJEoBJF8BapxcnW7Uckiqw6hzRBG0HbgQkVeXGG1zAMnlQkSJngg+TQdXRPa1S/Z2hbqnpOUZagNHJ5xtVf/CWrm2uWN3/gt//X37LdrbGjYt6VmMyhhCSRAW9b5GxOVlecX1ek0xzyjPLyiotffMH8j79ELHNoLbIMzBPPZVHysX3k2//1f+Lt3/0DL3/x57z66efYdstV11G3DYexoV1PfPNeEmYlZy/umC1vmKc1ObB/vMU1O5LJkqOYzRdUF0tiXuKF4rBt8FTsx4lQWPIK6lWFyhWT7xlDR8hhspIYZ2TmjKK+xIoVbTMx7hxjY/Djkno2x1vPFDrSWUo1nyNlTbgIvP27LcduInEgkxk+KKJIUSIhxJMDSAnIE020I7634BWSBJNohBIkSqM8HKcjZakRWuFE5PzFK0J1zk+9ZlKG/cMaqQ0ulchygclKtEl5OV9wdn6BbXuUG5hCz3E8MAbL0/17Zstz8sUMK8G2DcIecdbSWYmclfisQCUZBE02n/P86opERvrDnsPtPU+7hofb71m8zJDljLRIMHGE4Ymh9QiV0sfmpJwJliRPWV2uyE3Kvf1ANzZ4Gxm9wguNcxOKU+lAmmUIrUmzjOgjiVDYvsM5i3Ue94OAXCc5dVES/UTXtkSrUJ1ANz/i0slKRUwS8jwnXZ2hpcJlBUldk84qTFGQVRVJnWN1ghSapMxRRQZaIZMfvDzekSmP0SO+7xh7C1qC1AihCQ6aEAkio8jnJ3g+G05+FTWw70eCmyinkloY8rxGGYGTJUo5gpJsbzfomWXoOsbjgbHZcX15wasiw7mWu9//Fj01CNGxXFZcv7ggKQKtDqjrl1Sf/AJdnjGJJTItUMZBaglZAD+gTUZ5/ozZ1TUcLMs0QzQjsttw+8//B2//+W94Wj8gg+cnn39Gtijp/UBUkubtI9vffkBimCcZVYy4445UeZI8Yf78BcoHfJYxHo9MPqBn5xSrFRevDEkyIVTDEBy74UiIHpMIopdonTPJiWxxxWRm6Dbj8c1bNl/9lubt94hhxK8uSPIMoQPT4Zb7w4FQSGS3YVUnTFvDsB+RBpLEYL3n0O05Bk9iErL09Kw+W8w4ti3DOFFWFUlUCOexwRMTRX5egfCILsEdDjx98wZx7khSw4uffYIpUryNvPjyU66ub/AWurYnyXKEMqzDLe1mR1ln3FzUOE7dwCJJET6irODh7kB3eKSuSq6XC0JaY8qSrCrRwjAME8FHpNaU9SXJ8gXzoSdEgReaEC2ub2nWtxwOe/regcpJs5JpGigLQ5F4vLOM3lIvKyojaPY9RysIQSKFwEiFiJHJOaIIp0ewkphEIaXBBPX/DVme55R5TmoiQlgCc/Y7y+O7DU0z/ngDu+sn0nlNlmmsDmRpgTcZOqtxpsDqHCESghVEK8lFgtI52mQnpUYYkdFh2y1GRxLbwNgQjntCjJhiQUznWJFRVCVJlqOjwPVHdLRMh/dM9oh2J11jxoy0UqhoEEojkxy8YNfsUd6wuXtCNHv0NBB9z11ocMcDxbNznqefEZtbCj2SrSayLzxklrRKyF8vMKsKzIxEnJ08oe1bEA3DKBA2UuY11ae/pP7yWx7+8W/pjyP9oMlnmpefP0dlc26acx4+vOfr736HnxwEqM8uELMaoQ29kBy9JcHzbFlTLiv0coa4XiAuF0zLHJ2XZFnOmC4Q2hCnRw67b5mmHcHM8HpFPwj8MOCPHfHQYERElGD7kc2bJ0zjuNIll9UCLVri/kjcN/Q2cEyeWKeeUAvc4QH9eIs6jrRtZKngJ5/eoNKU7aFh8gE3nPw1h65h7wJCKGyE9a5lGDWBgCgSCpNjtOTmfAkPa7Rt+fq//I7F5569s3gZSbKUIRFYnbI7HBj3e57uH8iyiikomrbD9keyvWA2K9CZQdcFaalIsxytapL6T+i614xdD+kSpVJiVMQp4H1LGiPCJARliEmBKBdw3CL7hsN6w2FzwPcDzWZDiAplcpz1iGhZrpZI5WnaLcEpQlKTXsxJVo7SOpJ2IsSU/abBW4uzEzF4dKpZni0xZUaUkJgEpU4Om7IsIEbG44Hd43va45q8XpJfLqjTmuNh+PEG1jvHYl4Rk8CmbUi0QpsMFQNOGaq8xHmPGCx4x2BHfD2QaIlJPGqyJKEnnxpU06D7EbvbM96+IyAYiiVx+Qy5uEGPntHu6YYjYTiQ+J4Sh7Q9Yf3IZAe2Hz1aOMYQcLJG1zlOKs5fv+YsE/Qfv+fDv33k/v03XJwvWF1c0eEIxlNVL8Cm2PER/XxBe16SFClOJ+wbj+7fovw7siojxp7txzdUFzdU1z/DS4FzDeZixeu/+gvKuuXwfocpXpHfPKN8cUH56kukFLhmR/twz/7Ne57+7Vvuv3vPu+/foJcr9PUl4XxOel7iZjlhWRHnNfHyGcWrn0C5xMmUZgpMVsM4QNMyNgPBgYgDYXwEl9IfG7A9RVCYaWLc3mzMWE0AACAASURBVNP2kC9vuLh+xnG3wQuJjJ66yKirGdtdy13foiKMUuDSJc0q0qc9rvaEZc3WeKrSoLMVs2qJDArfDXS7A93+9DRU2lCvzhBFhlWC4mxFmqUMux19kAy2wyVLlq8uGRJJ9/YNqR0xicFWNb1QxGnCyEiRKbabB9AFRTlDVCnu0LD7sKFvj8RUUV4uyc7OKK+uSFcL5LIin3m8FNjgmbYH9t2R6bjBDh31csXi+Sf4pKRvW9z+EdHvcf2EP1i0LlhdXKCXlyR5jfUQEAQ8ne2QWYqcAsgUieKwe2I5r/hssaIoVzSHnhgjw9DTtQ3zRcXF1RkhOKSSDH0HIdA2xx8csY64OCMvEsL2B2ijyHn9xQtm87Mfb2C18EhOQp8wjhCOaC8RAZQIZEagtCa4wNSNmJCRKod9aOmPhkIFhm6H3T4Smz1q9MjJ4w9bXARXHlARiAHFDdIIhm7N2G/JpCYrL5imknW7J0lS6qsrRHpGFHOQJS4KRK5IcgFMJKuC1cszxvGBfJ6TGAFlhsglebVCJtf09oAu58xuPkNnC6KZYb3DHj7Q3X/F8f4bom8Zh4gPlyRVRkg9vf1IqmckzxYspi+on3nKl3/KWM2IVY4/u0FGh3Yl88+X1L+45sWff0H/zS377+75eLfhQzuwtZG29wjjUUVghiKXCV5kGFGiY/aDg9cz+gEpZujZF9ihY7i/x94/MgwTbnBMD2uapye2d7d4lfL5n/0l80/mtNsHXLREJajnNTIExmBRiaAYQE6C4+Rx5wv06+dMucZoBXjGRGGqGVlSkRZz4hQYn54wxZyzy3Cqq5eGpCgQpmCQkvnz56g84yrTuMOGjc65fP5L9LNL1ut3HO7vCQ8bJiPJzi6Yry5IsBzv3jNFkErQ7DcMfUcxm9FuDvQPW4w7bXH3j0d2xT2ufMPy1UvmV1cns3lwRA1Ge5IwMuwOSD8wesvOO3T+Q2Xt4ZHoR5AZy+UVMpmT5jNaB9gJ4flB8xpxw0g5m5OfX2JVgcoKEjtBtIxZhq7nFC9TtE5YKo1JFEoGpIwwjmAdsWvpjkdEMsN1LUZr8qLk4suf4o4P9O2BdhgRQgLdjzewO9vjhhNETTLH+kCcRjR7gu15+/ARaRLyusLi2e8NLz+5QhNoNh1OeHLvmNaPuN2eKs0JU2ChCna7PfbwxNRMZOcH/PqISw1JHk8mbJ0Q0dRn5yxfvSZJTv/Uk6yx8vR3hvYIMuCEox/3ZMFTXF9ypSzSOyYXUWh839K0LVU5Z3XzJaa4RKXXODVjUjVeRlRZk1Zg1BKlHLMkJ118QtQXCBwmjihvT0BBcUH7uCZJItn1OSQJgQP908dTY78YCHpCzUAtNQtxQbFc8YmseNCaf/rwPYd2QhYa30nUKCnGQJE6vGtw1mOkZMYEU8fUtSgXYfSM2yeODx8pYsL47S379x85jiOXv/wVZ599ipsGprZhHHpKY7CjwwVx6sgdPYlJkW5i3Hd4BEmRo2dzWMyxWmOLkq6qSecrYlaiJkd90TI8PpDYERMCAYH1Ad87JIo0yZFVxSAdl3/0JbMvX+LUJYO1DB96ZKbZYknKJe1xZDl45qsV9bOEo8o4hFvM6NntdwilGfYNx21L6CeimxDCoY1CZhkf3j2wPzsjKskYIuXZgnKVobUj+ojRGYenHQup8M0BZVva3SPKnJ7XjojrGzYPj7i2Yxod3kHTjdy8eEmaarrmCEjS81eoLEcUBTFYjuPA/ngkrQKr2Yw0KwhSYDTYsSPVGUweGxWTBZNWlJeK4BzRD/SHJ5TJMbVinjva/QP7x48/3sCm11fIvEaaklInjGOHtR2egHcORyRLM9I6xyhBOavQRiDGI2LqydIUNVmO91t0PzEkkbHr2fWWbntgHCeiFjzEX2OjQBUlL372JeefvkSVCTpfY8oCYa/Q5QqtBVJnOD/hpwbjHW5ImNxE3xx4mra8uKiZP3uNHTrGY4NxEsmRaRjpj1uSeY63B6SUTP6AVwuESxkfDhz+/UAcJ6pVQn6WMwwnF673gqkJhHFNOqupk2dIPbJ9uKPKcsrFghjfo57egRs5bDakqmB6GBnWLeiCXCx599W31L/6E/7yv/kPvN090bQN1moeH46M7ntW5weqOic1Cj9B2K1Rt98T9nvyakkqI6rKCB8mpsMBPx6ZEnj+85/zx//DX6GWcw5v3yCOB9RgGZr+pITwka63iAmk9PhpICOQTxa32bO2DmmWzF6/xjx7iTlbMVssyLQm9wHVNvBsw/T0wPHhHq1OFsP2cMS7SGs78l7w8HSL7QpIIH+eIboGnj7QjTtu/vKPQM25vzvy7a//jd1yybIuCZ3DNhNu3zA9bWjHCKPj7PySaRjx00D0E9gRP1mU8Ey7J7LZjDIvCS7Q7lu6/sBsXvPi5Q1VvWCcjjg30IZAenZNVpaYfIExNeOhZ7v+FttuUELhpkAcPY9vj+jiFBMNWITSGCmQRY5Wkio3RK3QpQHlcdEigsAIAwIOXY+SBllUzLICGTxu6JjaI6F9Ytje4a3FI0m0whCp/+vCOv+V8ToUWb6EbI5LElQSEdFiTPJDojuQ5oIiE9SZIhOgpi0yPhD0gB8jdm9ZZRoxOj7+9iu2d0+MnWXsLVIbsqpAJuqEcCWGTXskfPiaxcpQlYJRRVRxDfMLyOeIdI7v3MmxmZe47BIvDdNk0UWJSxckpUaWA8W8Qza3ZNXIcX1kmjpscyCOAZVaVD7DuhY3nUigZLVAhZwQRt5984DWe1arGyKSyVp8WZw251VB9eWf0bY7Ht6+56bfMm7/gDo+IIDQG/TqnFA4ZLFm3LXEbk2iYXP3gflyxoXIqBLBECe6zY5j2yC6jrbKWZzPKLQk7jc8fPUt42HP6vVrXJLTk9Jm50yHJ2JScvmTZyy/+ASRBNqPX6HW73n4/beIwbNYLIlZQuh7ktSRlwbfDHiVoJclresIbUN/+x485OfXmKRkNr9ivpgjFGTHHXbYEURDcVZSFJ8SoidoR/3yFc22p394pH37Ne7uLePrc+qffcY0HOh23zOOH1nOEsq8xhVnlCKjPhywuz3/+J//Dt/2BO8xmWFx9pKyrJgvBRKIzjJ2DV2zp9mNJx+xEjjnaA8HZD9Q1TWYSBYt7eGebz4+ohKFLA0Xn71gdXNJWmRIItE7Mm0I40C1qPHGkWWnQ+x6c6TpPGH05OkCbw3rj4+UpGR+gc4NeZkxRovzMPQObTRpYmgbR7PfMatv0LrgFLaUaBF/+IwmSMcs0fT7NT5ACB4RFUr8iGjid7/5O+rzV+jFMxbPXyGKkzYiCIsxniwvyOoUIweYHrHdAwiHKjJUjPT7DXIXiNvI3e/e0K93mCBpmhE7emQi6IcdJjOkOicEeHj3SHPYsskj80qxqAty3RH0B0xVUxQ12gVKGZmMpstr5PKCYnZOYm4QBAKKKBKib/HDEd09kvQ7VBuZtmsmDnQhkpQ16IQ8L8l0QuI8Okaapw3LyaH6if2HO/b7BkxK+foTiutzGjcyFBVpWlPMwY4N4X4HhyeiMWTpDSY9JwrJeAhIP9AOPWfPn+Gj5Onbbzjc71FC4DMIODopkUNk+fyGrdtAlXF9/pzZf3jBFDW6LJGDQz4eOJpvOWTfsUs/0kRLs3tk83ZiriLucOB4/0h08lQuphSTtcRpJE8U2mhwIBLDxfmcY7NF3H5geLrHDz0xREQIaGdhHGne/4HHf/kbzgpDfX2NqBeYsyVTGOnGFDlMDE/v6X//L6TRM85TUpfAIdBvLc4ahsMOZZ5ITYIKEz4AUfLTL36GP/Q471ldX9J2Ox4+fss4DBAcY9+hBDg7MUwTUSnKLCNKddo7dC29s5hEEgm4YcSFQBQgqpSzyws0AhEnYhwgDnTNQGoU19c5s/KCzsJhhNVSoo6Wrh2Q+Zzy8hN0PYcfctzORlw7YDIDLuJ8B06gnCJRMEshNT1BC4Iq8dGc2jEj+GEiRIhOkiU1VVGRJQnrt4HI9scbWN08MimQqULEM2bVnKRMUQak8cSpJTzd0h4faacdeRLI6xlepIhuZFx3+Lsedzcy7i1psuBwbEDnKByjnYhKYIeBSZ4WWDKV+GOgbR1Dr5gGgfJ7gojM5h3ZhaeUQJzo/YQVkdidE+NLkjqQTJFUzzFCINyBbn9PfPrI5quv2b5tOa4lm87ic8Xq4gKTpVxcrqjrDDd2YAUmKlIhUVGwCJGlNkxupH/3Hdv772nrAnF+w+L6FXVdYiTopGJsAimOpAq079ccRc797Zbdv/2BeLRcXToaITn6iELioseXkpAZzl+9xmUZh37ASEnz/pb7MPGTLz/n/PlzwNO/3XH/9muOf/g93fojUljK3GC7Ef9uT2ctsYdh1598vSEShUIoQ5ZXSAFpldFwKuFGCoSLnFc1Q1WwmpWkZUYSLOHpgX59x8Ov/56nf/4ndmPDhzqn+OwTzn7xU2Rd05kzfLRoGYjudHMOCLrB4e2RJD+juPiEbuzZD2vU3YEiPYOoeDo84roR7QXDMPD2D/dEP5L4Fhk8k7UYPNNkTwZ0rWgmh3GWwHRq3hCSMFq6ZiJGh1KSVEm01szKOeHpwCF7y+yqIMojUnbkqaZOCvQsRZcV0ebYuGA+e8ly8Gwe7hiGCVmtIM1RWU6SGgL+5Dt2EWlAyIh0HhEnkA4/DQz9FpnWJPPnSDVDWk/cPeHWt2jXMbR79tsNXZoTXECMPUr/iAH215dXxHlNclORzQRKtcRwoKrm6HLG8cMDqtmihh6pKtLq/EScdA3jQ8fuzT3vf/2G0GhkSACFdQ6lBShJ1AkmzxBKnO57zqEyg1fgUawbT+cmkjQgdGS/39H1PbkL5FphtEJoSdN8wBDQiSU1LfbRM7RHct8yvn/P8c1HuvcHxrVj2Fq89TgjWT/2FHXB8P6WxSLFmEhZLglRk2Q5iUlIdILSinbqUYeW1raEtkKqhNYUpNqcDGQ2Y4w1h/2BfDww7N7Tm5JUGpbZkuPdPe///nf0QjBUKWJZoi9mFOcX1JcXLD79DJ+cwAQl7QkO6Z74+Ov/zOa3E6vFkkLPmM88yUVA44kKlhfnNAeL2/dM2w6D4eLsnHcfb5nGiUWS4oUmyxOKXGMHiy5yxhhO90cEF6sl/nLJap5hQ8fx/dOpBmW/JfeGy1e/4uHtH2i3e/a/+Y5+iKx+/iXdcoGWM1h8Sjt/4GF7y6VSxP0DsUhOz8JKM7tc0N0fcU8b1k/3dHc7ut2B4DzaJOgsRecps7rC9wKTGqI4Ia1WaqL3WOfQqWR0E0oKgvXEAAKJEpxIIzzWjieb3TgSGol7cFjtSGcOryd63yO9JzGeRCww8xk35z9Dls9o2oGkLjhun+hHj/N71NCjvMIoyKJn6gFdonREuIkgJsapI9iBNBqinIhDQtQjxjvs7Vt2X/0LJrGgFcE6gvA0bUuIgboqf7yBzYVhvpzjMui7zUndmFqa/ddcXL3mup5jiwVtM+KtP2kMRk/qHa4XJ0Z78LSdZwSsc0gBhUxP73oiRVWyOj9jtCPeWyKecewpspK2Heknz2QHhIxURc7gYf94wKCo8hKhFfpCU/SO9s0fcPffUWUp2o5s14+4bSA8RdQww8iRrOqJ3tNNASE1fgh0o6UwCek8R4mUrutpdw2zomS1Wp0AfecZDxsKHSh0jU4Ew9RQ+Y7oHUMrOMSS4uUlN89f0LzfMP7hFrm3qIeBUuRQSLw/3Q8D0I0jWhvSao43BVk+QzuJ3d0T2yP9saVMKqJyPH3cEaqWeZ2x/ItrLtycwZ6Ah2tzwbSzHO7WTHf3hG0gYikzQ54kiLxExkjnLSFAXlW44PC2p40TnT1iXEVoHpgNS2TX8fDmO6Zjh5xfI376S85/9WewfWL4/lu2XYe0CbmuMXqGnQtmPxec2zWuv0dt7rHrgSmOzOc5yrYMm5buzZruvkEOgkoagjRYF5FBkumM3dMeOw4EIZBpjhOSPjosmmYcflBiBrRSmFQhhMa7iJASq8KJ9XWeQ7fD4SjVEu96Bi2oy0tiUeOV5+AmiiTDWY9KR+qkB7GhNg6ZtCTFRDMd2G7WHLZ7llVFOJV1kc7naF8To4c4oXQkjC0mBA7bkcEZ6suW5dkN/TRwfPyOp/VbqrSgOrvGJHNs0MzPzxFphsp+zLSO9fjHe5SwlAXsv79l6O6Zl577f/+O9MXPuPmzvyIuS5rdE7bbYMeRGARpViA9KA92sEwq+SHs64DTlxuDZBhGbj/ec/3iGUYLDrsnEqnIlCaqQNcP5CohSQ25Tgk2EKKi6S1BOPIi4fh0YJADIg9UsxxVFEz7lmnTIkaBayMxwOD/H9bea0uWJD2z2ybcXIWHTn1EnVKtgcEQBBbVDRcXn5qXJMFZBAZN9BS6u/SpI1KHdG2KF1EPgIvKJ8iVGX+Y+2/ft3dDNI5ZNSH3gru7LcoXpFnOofYkhSZ1/BzaThFEDrsdUQh8iGRpArZBNAf8x7dQ7jh2G1CS40/3XH/yGXo2Iwk5E1vjOwhdYGuhGzzz1Tmy78D3mGKGW8xxckJWrMmqM8pigR0CHx6eiE8/olREvnxFyBPSWNLU79k+fstieUVIJCSQZBMCDj03rBcvGGeSod+z2yRs7t4znVZ4H7jf7Zkup6Qmo2k6hIr0rqMWPZSKdjyy//gtkhHtJcVQI5TG5xLmGSwv0TevmF29xOw3hDzDu0iIHUYHimWJ3Tyzeb+jvbtFupbybKTZdzifoslIJxnR90SXnfYfZcl+f8CkKUoq+iGiVcKx67FjjcxPCyEpOf0u0SNCoO56siylrApklAQfcWHEhREhAypE+q6h/tCS5qdrGqdSXv3dH1CLnFGMSOkwakSpmt2H/0IMkURqRO+ZhoSk7Wnv3zLcP1KPnrZp6MeRrJpgqgLrHVoJJJEs0UwnJTiwYyCMe6Ko0UXB5Kzg2nxJpqeY6SVtTIgRsjRBmoI2/ILEiXzs8K0gbBXHB0tzv+dw95ZndZI9fbn+HDkcmUwLknRC7AW2KVjnOdmDZPfvXxG8A+uQMWBSg1aSIjOn9bazoA2z5ZJEGvCOwhRoTtnRobfkUeFGy+A6rHMkAnQmCUrRiB7f9TjlON56FpdnPDQ9b4873HGE4+keLzORqjJ4ORJEYLpY0TmPevYIPEIKEBIfJM+PG6QfEWmKDydT9mgtyiSoxfSkuT8eGY4NcnogS66xWhBFR/vwiPxxS98G7GZPfziiTMrV3/yG+o9f8f77H8myAqchzyZMb96gXtxQXb4kmS8xWYURgasvPmfb7Hl8/57ly4REJuzvDoR9T+JLHh83BDGSTTTzeeDP3/+FfFLxuz/8GrHQLG+mDNsV++3AV3/6iqYemBRTjl3PREoKLZGpwCaR4uqSxc2KTg6MruHxu/+GCAlJtkKYKdI15P2BYV8Syzl9VuD7gXDoaO+/QY0tumkYHj8wPN2x/+kj41ODd3tm9cD0jUFNryg/uWTx65y2fkQ7QV/vIVjKteJ8taB9qjkeRzQZo9cnoEE/oLIUIQVaC/rRo41GJSlOQDeOSJ3ivfv5oOhJCRADIkYSpZBuIKWk27a8++6W5ecvSFeGMfSE/gnde9p2h4iWic5wrWP3bNn+cKR+3EA7IGwgcwEVwO+39Dh88HQ+oKSijYJtEOSpQhrF9u4tzdu/Mn35isnlNdViRiwyGmXpY0KWlrRdT99sieoXVHWkShG9xHWC2jvy2QKRFjTtjuryimp2TZFOiDrhWNfMJhXV+pJZlhB1y+zVOck3P+C3A9b2xNYynZdIY/B4jE4Y/ci2rWn8QAwjV+drjFQo7xGjpt7XoCCODre3BBHp8SS5ZrmYIeuW/TCQnV1iq0uEMExFw/ufvuKw2SBlgjEJu77HGP/zxXiHk4LlaoZ3muADgkhz2KCVxPU9YQyI4NGJQiSaLDXUbUeZF3hvyeMIfYPf7vB5hSYnHnu6+4an9w9crs5J0xylNE8/faDrjlAIDsJi5yvG+QXZ9BpBzvGn9yy6jvzyFU4opuc3LP7RMH9zx6AiNg6U5YzoI2PbM7Qt47jhcDySJGd88d//TxwOd2zef8P2+QOZhfX1jGKRc2w1/fcfqbcNso8kWcDrAb0sOfvt3zH/zd8S5hWJfSTufiQeD+y3AjO9xgY41iPJrkO392x++IHjYcP+7Y/0Hz6gukdkGOmaFuE8pU7oNgdUiGSVBDFDiRcgV1izxJcpYpIzlT3iw3tcNzJ99QqMQkeDyXM2ux2jg/DzSYQPJFJSFikiMyQ6R4hIYgTeOaIw6J+fhqQF6XqkCHg/orVCIAjNDv0cQXY0/ha/FghTI01AL1+S5i/oekfT9ohdzf1f3tF8qBHO4boOCTgXQWmEkAQXTugXL4g2MA4eoiJ2ntQIks7Rb3eM9x8YX12SX6xhsSA7e0NevWYMikGUeNVihPvlBta2A7rI2LU7spdvmF5/gizLEwvW9xyGgcpZysxwWV1hm5q2q0mTjKxIWLy44fzNJ2yevyMcPalRaCLjMGASjZKewYUTK6iXSBE45kfSRcUwjPR+QKUSHRUyz+lsj9aC5bykyhJmk5RaO8SYkC4vUasbzs7Oqfoj7ccfOO6eTm0KrfEenFeMg0DtBtI8JdEFaWJwLpz+ETFQTDRmmeG7ETc6lJFkRYaNFh01g/VoebpnC6NnPLYMTeD40HBsAt1zQ5lWGJHw7tsf6Q41SmmKqzMWn35OO5mgXr9Cvn5JvlyhbM/HH77Fjo8Mw45yOmM+z8hfTqjOX2J9IBwPWO15qg/Mzy5JX0zZ7j8gxx1Iw+Z5R9e0GAuvJ6/w2yO7oWbXtChTcflmTRhGooPYHmmbkUquKS5eMpyfIRczxN7Td4+Mg8O8PGdkRtP2PO/vOf7wPWrf8M0//1eeP7zHN0dE35FkpwVRolPKcsLWdQgpkUkkmRnspKTXM6Sak1CRiJSiKDg8f8WmHZhXC2Qi6fs9QSn0JMeLAyE4hPAgBJ0bQSRorcmFJNoIMtK2NWmWEQhEpUHnWBcYx45UaZSRCC0QYkDR0zcn+2I5BaUDQreEoiBOFGZWgIRmO/D453v2b2vGY0Nw9uRbjgIfT+/HSaJJ04LgLTFYiB6lBHYYGaIkCoXzDjVERN+zaXrM3QbOz1h+mpJfl+ipZvDq1AE/Hn65gRXJhN55ZDbBioS0qDCrNXmuid2W1nmO9QG7y5mtluRpdrJ11TviMODHwNXZFfoLxY9fvyUEj5KKoCSJVuQmQQ4DobNImaJ0QnPo0EIQ3ABEtFFkKsV7zyTNSI3kbDVFhIFuPKKXhovynFpOyWdnkGhSY5ivSx7eJzgX6HuL8OAw3Ny8QCaKvh/wCUgR2O8PZFlKmhla22KJpKlBSn3y4RQptutOdL9+pMgyhB8Zxp44ePat5/m7J/SoiFbg85HN20fEEPB9hzMC/eKK+ctXmKsL9M0VcTUl6owsGM6vlpSppZq0JOpAai2uzRg6hXaK5sM9+/cf0RbyLEFmJcpNEcqRq1OTJVELiqHk+cNHutstaVTkWrMfW9zQMUkzdJIyOosbPc0oeLh7ZHXzgpAoojLo+QVHJ9CmwscSHQyGHR+++v94/NOf0PWOqYx4E4hpBt6R6pQoDU7nJMsL1q9f4PSpHF7Mp/jM8Hw8sCoHKjWCP1KtF+jZPyKF4fD4ntAODC5hKAzZaobf7ZDeIaJAyhSLxI8OHQWpMYToT6ddiDhvwf/M41YZ2VShcHjfEVRECI8QASkVx7ql6OfoHvIiRcWUrvFgYBhh99ARawF1QMST0SEicSKeWFdIkiwjJpKhbfAhoqRCy0h0gYCk9wHlPFmiUT0QHMfDlvquZnNXU72+5+zXv6M4fwXJAr1c/nIDO/nsdwg8Z2XONijsAKKHIjNY57DOUhKZJIYkcsrtBqi3W/rDI+3xiPOWX//uS26uL7m7vaNzAac008UEMXY83d1Tb5+w0dGjoMrZ+Zos0xiTILTARcvYtkyiOW3b8pK7Q83kbMH8aoYSM5SdoCcFFzdrzPjE9asbHv56i+t6xngCikWraI+eSZXi/OmOT4iRQODY1Aw2QdmINlAYUCh659nWjzRNw7ooSFTCsXZ0+y2JEiRWkHiNGWHct8io2W4fUMqQo1He0/ue3jbUoUXSc5aBlA5LQ5JYVktBKQOuf+D4+Mi+f8IFTSaXhIPj6cdbmuc9YYCfhr9w9uvfMv/k7CQdw3F+uUJn13Tv71DbJ/IqxVgIXiPTksFP2T48Mm6OlGlGOZ8TMkP7fI/8679RfvaGOK9wXeDq7DVdE7h7/wy9oNh29G9voWswhUIk4INgaC1ZcTqdktkF81efM339KcnZGlnkQIL3A0qOnBuHDk/U23/naXvH5Or3TG5+xdiPxM5hVEa5WrC8LmnOH/jLv/5XfN1QCI1WCYNVBJEw2BP8KTEaKcyJwewlwZ5uH0YfCAISY071RhnxLjIET2MhXS8wq1c01Gz2d+T9PYvZS5RcooRGhGe6ujmdnELhIsSo0GmKR5ClhtEH2j4iVUm1OmO/fSaREIqM0PfIGJA6oRcQQ0QFgVSaUqak1iKfP3L4zmESyLIMl5hfbmDzV18yyxWr5Zz9saV2kX3d8N1X/4oc7rn85DUxTckvLxhRuCjRiaZcrFByIHmxphZw9uIFad1x9refImRKsTojUYLH779B/DHy9PxEc6wRUtE1A5GcspwiREBJiZQjSebx0bHte+yxZv7mC17+7jOawz26F6R9j9/eU4eWRaUosynL6Yrnx1sIAiHAZIa+6bDDwGSaMa1KZrOK5+cnjnWNQmK7ES1zMBlSn/6YznaMTrJrWvKyIgZF5ySpP4mtpTJMz86xusM3Fi1GQKBiYJIlxK4mDFuE3DFZrIl6g9Qjia/p7r9nKnpsZ9k9tEgnOD4fka5DmwPNU4NoLVOhaPue+vbAfRTk85TVtAEEoQAAIABJREFUq1e0fU2rNNV8ihkd5umOfrfFaEWRVcjza2KRM46Wu7cf2b19D0PHUO+J+YDyBW5/ixkaNj+9491uz9iMPN/tKFSJ3x2ZBcfq6oKgPSozjJ3HGYu+yFDLGWpxjZ+d05QFMkSMC6i4h7EluI42WozxBLkgX80x699izQUu7BlVhclKnncdQ79lPqu4+e1vePuXr9ltDkyxaAGjt0QgCoGQAikg+JE0yRFCIiTgFH0QYFKMNri+QWUz2p+hf7I4p0nXVKtXVOKK/f3/ixOQZyV5URHPzxkWBXQp9X7Ec/IaofXpfbbvEPIEwmv7nn09kk3POdYHpvMJdC3H7RNBKVSqCCKik4TUpEyrgiKXEHrax3c01QQzWRKKXxARU51f0j7fMr57ixKQaM3rWYmZaG7f3dN7h1Gacjwtk0ZShAQVFbLZYJYzmmCp+x3p+RpZTphcXCGzEhEiy9TymXakVc7T25/Y77Z0o2V9XlJVGVpFlIws8il9iNQ6I794weLFJ+hySo3G9VvGDx95/Mv3BKd5TAv2yxWzrODi6hX3W8ft0wZrR6KVCDsym5V42zP0EZtr8ixh6BVSSMYR2n1HV48gBUVV0g89TsA+CLa1RScpk/lLxtFhkpxD3dMcNxQuUCmFOgHzUEowiJHyYkbx5ZxXv5tjFx2mPOB8gzzs0HfvTmDsNhK3kCZzYpOA7yiiOxnm5jldcHhryVOB9QObtkXJgsnNFdX1EmUgtJExy9i7EbGtSbMeYR3RnMIf7f2PFKIn0Q6lA9XFElFWjP1I/f5b2rcfCXWDUvDpek5RVDwOzyg9oNKEs9efYIuMNoCPElsabJ4jJkuizsE5eHrENg3OHvHdnnq3ZQyC1advKD55QbpY4OQlY+3pj1uadqCr5clV0/Q8ATJdcPX7f+D9dz+weXxEufHUErIRnUjiOGAMeOeRoUdrjZMSlResF2tChHq/Q8mM2gf8JCErC7L1NY0ziF6znK4oVy/BJAx+j4odqrCY5ez0pW2PjN1AiJE4DqjokcHhfCA6S6kzZJKQJCl9WhJ1SkzBzNegAjpVZLkhWksiBd1QY8cek3jUJMNvHgnHDV78h0bxPzaw+75l7Bvc5o6JlgxjRzdJUXZPOgw8fv012WTC9q9fM7WRdLkmWE/38IHnv/wzld1i7YheX3P+25eI8zVymnI8bOn2NelyxvXf/z3p+RnLmwmPH99Tdx6pMxarNcvZDOEd3fMD94+3vPjdb6g++YKgJlgrGeqG7t2W7b99jf/wEe0kY8z4GH5CmJTVqxve/OF3jD98x7HZMfQ11lqGp5o8S9GJ4v7+njxLcc4To0AgUIlGGIHJEyw9IYmofEI6WSKLGVk5J5cpx/sNJpkwXQRMu0I8bRjf3zPWW5JUI6qU6tWay3/8nPXfvKR4VVD7jlwqXBcZHp4QP+3ZPj0hXUBKw6hr5pMJh2agGwM2Gjo5IGVgtijJ8xn9bIWfLQn5HJsv6GRJkWrSS0MYduRDQ/j+J9xzy+arv9AcjiQS2v7IbDmhPF/gY8T2Dfq5xvlA/fEdattSSEHTtTgd6G0H7YbEN7hW8uH9W8ybT5j//neE+QKZlLio6QbHcGyJz8/svv2WzTffokaH0pGkTJm+ekG1vMSZBVbPiUEjnEUHSaIrBhdoNg1x8CgtSWczsuWUX998Tuj2PP7wV/qH9/hDxzgITJKQG4FXHm0mBJNQzubMrl9TXdzQ95bn2490uy1OBkxhQGtUkhFHj+h6yBRJfkGQmr5/JEkSZB6ZXF/hrKGSWybWs14sePf9d7SHHakSqOiI3RGMx44W9zPIr6kbYjjFI9GQFxmxb9HBE53FJg4vOryzGK3wh4ZxtyP8kvewx6zATWbYpkYLgYqS6Ec8AZGlhO0Tj3/9M5LA4w/fkF8sUQL6xyfqu3d0RrD65A3Z9afY6oIkXxPGA93mI9EL8tXneJWjqgIzlSw+/YRlOmN0KUYXRJFgmxZb3pMXP3LsA/F2g04DvbPYvsFGRfrqC3pV0T0fkCJFqYxtP9B7+M1nL/n1pxc0m2eePrzj6faO3WZLbQUqajSBrjmSpfokLjYSh0EkJYP0lFXC8uol6fSG6uKSdLVi8HD48ITrHYONeC9Yvvyc4qxhNIZtbCARFG+umP+nL1n9j7+lWBeYSaSsHRx2mOOIf/iR8PCecNDIJCOfS5IcvISoMrwwXH72K54279n88BeqxTnx5RXD5ILF5TUBST0MxDEjZgohI2q+gNmUpCrY/fTA6GEInPAlyuJzw6AExpRIIWge7hg8FFEgjcF2A6F3HO62mLAhNiNKZgzCkaQp03JONb3Erq+xWhN9IG0HlNf025o8n5FPFjS3H8mWK+a/esP8izfk11cM4RSgt3qAZsS3CjGuUaknKQ1jaCHRdCLBy4x0VrE4L1legOqW7J9r+r4itlDffyAOltnVp5AVbMeBsL5CXtyg2g7VtijrsHbEzFaYzDBsn5lox1DveZaK8uIcrRK0UtgAKIW5WfLy+gvGzZ6nd+/Y3j/w6ssveXh/y4d3H1DhJE3DeUIc0XBqNTmLdz2oSFGUaNdh2z1ahFPO2WR4L2m9wOYGZTMOTx1xc//LDWz1u79HjS3t/XvC8zNmqHHdE+2TZVQZIp1grefpw3tEf2Q37pA+kHYWoUvi/Ixh9gqZr7DDgKk7gh8JyQyZwGGwOCGwSUp68xv0pSKonEpPsL3HNj0ubdDCEG3Ptt0jnKYwiiRRZGXOOD+nMimy63l8+4F633B9dsPaBUKREM8WEBwtkkSmLBdX6N0GhaTQBtkfodvQ9ltCoplcXJGvXmOmL5BFymSZsLg5o5caKwVdMSHEFG1TZkOK3O2ZKEHf7GgZ2JcS99kLJsspkzc3XP/D35JeXSONo60f2PzwQPvjWxZBMj4/4UQkO1+QLdeoqSIahSWjJEMMkfzqjJlpcO2ccrlk9uknTKtzfJpzDC0+WobOk5nT04jsB/rdnqevv8HtWmQ6I0xzXJWxqFa40bGvLWPX0nVHpEyZLBYIo2k2LU1dMyrQxrCrG46HhmJecf7yJb0IyARcv0WMhkpPQSpGExhygZ4ZqDMuP78mvigQVU76ckmyyok6IlpH/7zF7Xd02yM4gU5LVFpggkTqE/0wrVKc8vTHZ/rnB/rdd2hlWV//mkXxCb7XhGpBbj3l6gpdFqQS0sWCjojVllhKlE3I5RRRzAlEsupI3z6SL0uyyxuS8xeoPCdKiYgRNzqM1KeM8mTFfLrAzN/TvP9AOpmyXI74wZ7ywMFhEonSQOjQKpyy0drQti3CW2LX4ZRASDDSE4VGmAqfXTM7/w26WNEPvyCErS8L8sWEcjVH1C3jwx2Fq9FnF0gzRX78SPtwix9HplGQ6JxAJPiWbd1gU8dw6NG7Bi8TikFDsBAFRgQUBxyCkUC0kbyYUk0nRGmI0oEKFLOM9NNXVL//LcEP+HGg2R1wQwMECpnjY4RqznJ+hnra03YjMTHI5Zw6NXT9gL9JmL4yiBg5DyPSDeiuZ7j7kXGXMuGkNVz93f/C9OXfIGSJG3rssMObiPMe1zdo6xn7AZNkFNOK4+M9Tx8+kkhLebFm+Z9+w/RsTTYtSOcFclngQ0ezr1FRMl19gu5z3ObIsUgoXy5ZvvwV6XpNLUackEzyBa5t2f31W8TTPYWMZFJweNqg0ltmn02wdPj+SLaYwtBhm8DQWfzDPXc//YQ/NEgbQDkGImmRIBYVdJ5kUKcMbDgSrKXdH07bz6YhrybMF3NUUZCODlM/U5SCcmmQY0fz/AO1fyY5njO5vEGmBR4YXYdKa/LFkZj2WFcgpzNcZXBKInpL+3Dg+dufiM8b+u0RN4ykVYVIEuq6YTgeMNJTXS0pL86gyECOIKY47elkjs1LgskIF47Qt+Q3K/QkoSpznDIcjg1KJkxWU3rpEbogL89RY8+4e0dhLLPrivTymrC6JiYFAUM/jKQTjwgtEoUuU9LJDBEHRDwSK48qOvoj2Fbix47j7hntIs6ddJ9JYvA+ooUgehjGgI2BqCRJ9EzX58xuPuPiD/8D2cUbHJLK/oIgcdH+RBQnGe2YedKbNa4pMLOKvnecv/yS+ru/sP36Txzv98yTOaPKEVojGeg291SXS1KTkpy9JpstCNHjbU378I7++Q4RAmhDNV+SIbD1/kQL9J6ha5gs1qTTObPsJcF5nu8+0taBTBiGwwGdQG8d48+ajHK54PC0oRsGchRIQ+8dLinp0oxsUpBIB92Bcb9jaHKEnpHlFcX5GcnNl4zVCvojzfYt93/+dxILeTYFRpogECLDFBXDfsftt39E1juuby6YLkvMm9fIxYJiVhGUp4890bVkVYXSBi0UZv0Ce2iYeIdMDDKb0KsEqQSZNiidEbOCxVXN5v/5v/nx2z+RDi3t3rL95+8Qy/+T17//gurVOU33xJBPaIsDQaaMdYvXKZ2Hblfj4oiZZUTrCDIyvzwn01OaXYeoCpTw9HWN7i2xULhEItcV+fkFJs3Imgewe3xqYEgQ3YhDnj6oUqPSjCg80feMXYflQJpHqvkb0vkFVmUMA2w+bnn6+h3t7TPZYHHHER09Y31PFCPt5olcBhJGuv17Nl8niGKBKidMFiXZumQjWgrZkJaKfJZiFhI5HRFpR9AdiIIgRmxweGlQxYKIw/kOQo8PNZGGyIgyAsRAjAlSJGRGnfY19sB0UqB0xKSBdbZkVx5wdUl2NqXeBUKn6LbPWDkyHI54rxmtxkhBCCPROYyCoqpAKcgMsSxQ59fMfvV7Jp//Fl+cE0aHcL/gCSs+/jPZqsCUhiSb4WOOzDN8mnD1n/87iiiYLafo2LD/6Ue61hHmJWKSc3Gx5rC7ZXCeMsnIsylBZeg0IQszdN3Sf/1n7n/4geX6BdtJy3FSUMxn5NOKYlqxvrhGJQYfu1OaSeXMiop8vabdPDP0I5unWwbnaAZLMakoywyhByZKIPsDw9iiB0eCRFtHisAoTzIBkpSYnaNsijKSfLnGW+g/vKN/fsvumz8Tfryl3Tj2VtHSE2NAANII0jQySwVJotAT8KZndmaQc01Sgg0RkZao/ByEIkaBc5akDIiM05eVE+yeH6i3e+bTOWVVITODkgnCOw4/vmO432KkIu8DQ7cnDDUf9s+snj9Hv7zmkDWMk55icYaOGb3V7HrIizmFzpnOMgo0NJZ988TD+IS1Ea00wVvsOGKdJV1PEUZhq4y4XsB8QRKWJwJjkKyX58xVgjAGihSXTfEqwUePVEdyfUZ0M3YPd4yPPfM4oqKgP4zYh5bX8ytGMWF3/8jt7SOhPeJcjRQDCRaPgLwA6xFjj2yeEdsD9ceAfP2axeSC8faORt2SG8WQSo5WEmkxaUY+vcToOSHLCUEwMhLHA/U4MLYHwgCZKum3ljLfkAwgk56AISKRwhJ9z2HYkFJjhWNsjqRlzmz1mvyqYNZYDk/3iA8GaQTjoUZiSLMZ+80jxI4QB5RwaCnQVU51fUX54hNkuUDPLohVgZlNURaE+wVP2I//8n9gPl9j05FyskCqNXWbYqoXiNUXkBdk4oyb8XMmM8nTsyN//Yr5Z28ItscMv2J6fk6YzBmGHqciZX6GkobVZMnbDx95+3/9Ez+JClVOEXnCZ7/5FZ//4bck/YLm/g5hNEpD0AtGUdE3R4Rr0Mcj+2+/YXP7PUobEIZRSey8JCtPheNsMiXPSqQNtPuaceyRTwazzGh9y2gHUh0xwhOsoX94Ymw32H5gPO4Zng7oOMGnjmpdUWmJO+5xx2cCLXmWcLaes1rO8auc2adzYrLBuRoTZqSZQeUlyB6PYXCKwUX6KNBZhZIa23SMAWZVhQie58096TynKud8/Ou/E+vTo/S+6anSjIxT0X8Mmrd/+gF/35G/+ZT0ekZMIu7oGPaRl69/jR5Pvpeh3XDc1sjdiI/ggcOhIQZBpjNCiIwmsrg4Y3F5wZhmxHLGWEyJvqLKL+lCpFMJelIgUkGPJckLpMzoesuQaEaR4DJ9YoF1e8baI9qW7mHP+79+wz99/x3CWxIEqfckRJx3hOjAWgKSREWEG4jDcHo3TBK8dISHksvB8vTjO7btjhcvPjnJspAoIUmihjwhmyzQZcU4z6ikIfYdzdBgXUdsXhPbPTIVHIIgqQUqiSdgefAQT8kt6Xta29A3GxItSLMEho5AgQsZzsyQ855QH8FbQpCYec75+hO8GNHakSWRutmTLqes3nyCXr0GlROEwYuB6BuiPyWmfrGBLefXKF0gw5Fuc0TEgIwzpGhwxcAYBXYM9DFhyAomN5rzL68p3rzm2A50x5bHKHG9I1OWRBuMSE68ouFApQNrrfj4/S2t/4mQRJq3P/Dxj//CZFoRRCCd5KTGYJIZzp0WAnbsOe72PD88Ytv9yXciBD44lBEkicDLyORsxWQ6w7tAs9sTvEWoiJwo5jdnrK4uCYVBpSnRRoLz5EqSGslRaFqZMBqBnk4RZYZBkaQSUYJijzSW2c2ExcsL3Cxj+ckZ5ClWSLwSRC0RKhLcQJqXqLRCZintEAnakOY5Pqsp9JLMOVx9xO2fSc0EZSX94xPCDSid0MqRkYA0BUplJ1vCruZpd8fL4pIg9mzeb1kVJRNdoUaF8ANDUyMRlOWcofXEwSJRVEywLoDVROFQqSQMI2E8MPgd7phBPsOFFO8FqdIEe6Rz/anpIxpE7EiqNdlkRi9TknRCPptCvaX+UEPb8dU//Qs//Ot/I1eKxGjSIiVLJHmSMpuU2L4huB7b9wzjSNQKYzKCHagPB0YcKjVEMfLXf/sv+CqjWq9JiznF8iVWauxxw9PtnmR3y3rUmGVETzJ0OcG7nFIu8CESR4caTqdooMd2e8JgKfI53lR4IU87i04yth1RaJx3WDdB6JzASeI8BINOV8hzRTCnsv/oQf/s1jVGMRYatbjELCo6kxMHzzjuiEg8B4R8wHaBvu7gf/2HX2Zgr/7z/47RAR17kuDpDz2hk/SuxO5but2RFM/Z9a/oy4p9fUuX9AgNcjlntjpHJeWpN+k8Y98h2hZTCo7dA/N5wtmqwj17no8jLYGh9tx9/4BUDySpZLqckihFmjwSo8R7iGiaYaQ+NjBEkBCFI7gR3zp0Yki05ri/J5QHtBYUmUZpSZIadF6iY8FYe1QMHA57xmPH/e2Oan7G61dvYIgYLTGTiE4c3h5wLpClCUpnJGOLjy0jHeNcMXl5hsszfDIhmZwhk4pARhSKGBwxnRJFhsBgUoH1kUEoZJbje03nj+SZZE0GTiDGEXvs0d7irD05WUd3upcVnnr01MeRXd9g//1bXosEKyMBRSo0rvPU7+9RfqCsMoKWJHnCaEGRInCYPDlJnTLJtn2mvnvC2nvC1GJ0T1mt8GpJ00T63mL7O3Rygg5EDsTuQKIK1HRJNVvgxpbcdmy2H+jbW2g9Roz89osXnM2nVIs5WTVlspoyBuj7jvr5Hnt4/vnz4ejaDqlPxZDlOidPNSiDyEpEOaFYX5Eu16SrM7LFFWk2ozcbjvYtbf3I8/sfSdsjxfnIRAtEXp5ih8LgNWQTRewbus0D7nlL7I4kZxJdrrDVAmENopNokzDWO4gBJzOELkl0QlYpzJlBOsVY96iuIx+OtMcn3DCikhTKgk4JhrHj41OD3jhS/QjRkWiJRBBsoNmfuFD/kZ//0MDWxZws0RQ6IZEKk4883z5BAIMjEQHfNhysY3E2J64FfZETy4SkWqD0DO817lAztgdEGNjvDtApMq1JyglXn9+gMIxfPxHrEecl0mTIzND4gae7LetJQcKJzgDqtJUMgcAJpBaCJ+IweYWK4HqLsx6pE+wAWZLRNy0mS5BKkluJaaFvG/qwIY5HNJbcBY4fav78cE+a5kQfsH2H8BYtwQ+OnROkUZALR1pJjkdBFSfEZI7JVshsiVVLpFqjVAkBlHJ4oXAIAoKoToH0iMSNDrqO7v4jKlq0P5nU9ocDbdOQDePpsd5ZwjjgLDRtz2FwHJuO3guOd8+sX/asLy+IbaTd1YT9BikdQkA7jHQBghQQFQkQhMCNPU3XULiS0lQ8Pd8S6gPpymLyjPLiO7zZo/QSmWkemw50QqY1YXS44xG73xPVCjUpwXeM+48kbsN6PcGmgvX/9j8zbvYc7z/w7qfvWdgFexa8+s1vKNM18lmTimuGdqRrLNIrsiJByxYdW4yReJniogaZsjvUNIdbhBywrmNy8xnFvMAk1yTHHOcGkIb28IhUFjW9QWZToopEH/FKIhgItsM8tCSxI8Z3BCVRSUBoTZItwCcEU+EIDEIx+oAxGiEVJCU6nWDHiOtG3HFP3E1QSlBWU7xUBCGYCujqmvZwwDV3uG5P0zWEsT85i6UgMb9gH3aszvAhEpAopcmygdXK09d73NhSFSXtwbG5u2VoDdn1hBgFSnhcdHgF0mim6YyYaxgE7XGD8450uoTZEnV5xlUx4VAPjD/e07Ynq51KE6q8JEsMQz8StKIbBmKEclpRZDmJOT0a9l2LFJJEJeBOEUobekR0JFIxdB1SnVSPtu/Z3H0kxEdaC9F7ChMoC431jsEJRn9gtT5tSbu6xbdHtPTkxZQoUvrG0XQDlV4ymX2GWf2efP17VF6dqnxR4aUhCIEQkYghRPBCEIiARCt56mpKS5ValssEOQSe756w46lbqrRESkWa5jhxykPHKLF46n6k99CNgda2fP2Xb8lMyWgjemjwbUMaR3wMCDLGwaHSFImkG05uXGUUoe3oRyjSilyniCFBbTvc7QN18W9w9pLJ4lfEdM5Ztjp5WoWk3TbsdvecJVN0dk5MJghxCl8sLq+I5Bz2gu4Yyc5foC7WTK4vuVkuiFIQy5KYp6yrT5AClMpxQeGFQKuWXG1R9g7bHwlK0/sC7wuqg2T//My+vkWLAY45ZfEZIZ0yK9dEIs41OH+gO2zAerLZGTKdIVR26tqOI1KmIEuevvuG7viRyfX3zH/9B5KLG1R2ImNodRrSNM0YXAA/kkaJjJHgPQGBFxIRE1TIGPoOG1rSyZR8OgWhyFVJkk4ZM03MZ4i+RdiONBFIIzD5Lwhhs0HhvUcHR1Pv6Hb3mH6HIeCDodkOxH5EWc3xvsPKhMnLOcPmgCRHqgKtFVIEohoIiaCcThHDidW0+Py3oBVxt6XajojOEh5rRhLaeiC2DuEiw1iTGo0ElFIgJfkkkhiDwKMzhRtHlB1p6pa+HZASTAaNi2gZmC8myGBJs5QYHb11KBfxI2TZhFRPGOzIxBjSxGA7S7CW2EX8IBhtIGiNMCXWKJLM0BUVfvYZcvEFKr3+ueDMSduABxxCRk4mCEXkNKRKSCQRQovgARXvUbrlcKyRleRitoY+EETExcB+fyQoiRCnD0jnIq2DIQqilCc87N0jX8U/cVXNmGeCQoBQijQtSLIK7aDrB+quR0QQEYyWeBExGez7RxItmGQz2rajvmsYzT2JUOTZGlmkmCIjphUyakQ7Z7j9ke3dB2bz1/hkikw1kRInHEGU6PMFxTRBjCNJOSNOz9hutvjnJ+LeYaYTgvDIRKOyFDOdoXJJIgYOTz/B4VsyZTH5grz6El/ekKwgmR84bjYIk1HMJpRFQpoqlDIgwLmAHUe6oafuHwk6EINHpEuIKc4pkDnh/AKezuHhI5s/fsX+wz2Xf//3TP5/1t7kW7Lrys/7Tnu76F+bDTIBggCLRaokl5elZZe9lv5oeywPtLxslVR0SQVWkUTPBDJfF/Ei4ran9eDC9pQDzGIcEfvec/b+7e9785IoB7w7Ua8WFPqSwjaMg8ePA9owi7qEJuqMrC06rakHy+n4TN8/4c4dUgusluQYkDGThELqmrKsiXmi2S1RVv58BZu7Ca0ywZ0ZxwPx9J7Kt+gElJeYYgmyJE2CyU8IsWZhr3FRo10in4/gR0iJNPRMziNzIvUntJwXB9JqS05w9dvfEIotx+8PSLPg9tPP2e+PPHz3Z775l7/n8HSHTGC0Yeh7bFdRNzU6RYwS+GGY7xBSs6gNIUe0zlRFQVNamrpCSnDBMY2BcQqEIMhR0LeOwXu8WqKEpT084F2Hn/o5lKEtZbMjFRfEco2+2GGrJWZds6ekOA5cNI+sdhu0mmmBKau5MGQGPBCQSECiAHIk+zvy+QukOxESFNsN28UOlQJh71GVJQtBzjA5jyAyOsEUoXeJwSccchaS5cT+8Y6VjjS2IWnJlCTRJRaVxEVHTIlhGjGmgJQY+hElMsIBOjLlTGNKkAsIErePqGZAr0a60wNxt0buFgRm7Mv28p62GwnPz4Rg0XVNVWiMWBDR0Ds4taS+R4aJHCWH1uHujxS2QD2ecX6AssBe3lDmBZXZIG1D1VzQ9x/ophFvNghZ0/mBqtmxrAqWW4PvHiH+CfX8JSo4pEjUTUUE2mkku0jkBpnXkCPeTeiyom4qqDJjYVir/45Fs2R8/44hO4ZJMjydUbpDhifycEc1PVPuXlHpJW5V4bRGVBKjK/RCkz2kMWIGj9SWtj1RGUEpI6F9YjgdCEOLkpooBL0UtGPPfv/IZrP8+QrWDg5pEiI7okxUl5cs1Q2pH/BTQi1rsl5w8fJjrsoamgq1aghhIqmEIuCfD/Tnljz6+W2QJ3TqaaczKTm0dyifmLo92p9YWU8fjozjHXWjub6tqdVnvPvO8nT/iJv8LN8aHVoqohJMU6DUmqKS80KxLZCC+Z4YIskLhrP7aV6oyKHEHXuEnikX0QeyTHz+23/Dpir5l9/9H+jskCGjioqeEuodi8vX+GqJ2d7QrDdUm4r125eUixofPf3QUwlBErNqUAoBWSKZ1/SkyDOhgIDIHs2Bsf0TsW+pLj+BZoGbHKI7oClYbNccUpxHFlmAEPMIJmZGn/DM62aJBNETYyKLiSQKujFTmwKyoB8nhFLk9JMlXCmUtSQnECQmF1joEgo49j1aWAhwE/2VAAAgAElEQVQeOQRsK3j8l3ewvKayJWKRCdric02IFePpkdP378AesVVF1ImqEqAF4TjS/XBH//iIBLa3r1noEnNzjXCB8fmEDoEhBNJyRIuJUj6j0xPWDCxutwhZE8sXtGzAW7ohw9STD+8w3deY8EjX7onDkVJ7qAxmuSGzoKxuqW9/RSx3eFPRZ8V86gEEmMoi336CefkJy67HuY5oFS4FZH9PPDoYH2kfPxCEpbqsUNWautwgZQlRk4VBWIMsLa4OlMawlQnZH0lPP9Kfn5DHR6r2GZQhLxq8sSiR0CiaKf58BTs83pHFyHJlaFYFQhkGKVHLmjJB7zSqaqiWS1RZMSUFWZNypveZNDnk84HDn/4Zjh3N5TWyrvHuxNgdKITHTh3ifCTePaGfj6SuoxIZvQ8MOc98INPx4ram0Cuejx0pSeqmYXd1idQZQsR3AyLMBIDj84mUM1pKxE90AqMNxhiUkWQFZVX/xOWdSX3NZsV6oZnOJ5SEIXpevH6FsA2HXqCbC7LQFLYgKUFze8H6o0vUQhPiGRUywSmc0SRdzvdPIgIPWSPQ80MkT6h8QNGSx68J7ZcUdoE2mjxO+OOJ6TxSxYLV7gXtsiLuO8KkiAkEkH0kCklUgJAzGlUkBpFxQiB1gZHgQsQPjipmUoSQJKgSYRRTGMkKpNTYJAn9yBCHmfMbBDllpM9Ym5jigeLKcq7WNBcGJSA+twzf3LH/4UfaTaJYXFBqievuCdOeQmRy1zM9HsjjhDKGh3/8v0FbrNZoaYhTYNFUVC+uqGykLo4UwzvC/gvwP+CtxhVXjPpIefkbrH7BlEqi1lC/IUuN6xqCm3j65isWuediU+K20FeasHQI80wyCsoaVSwR9RJZNSALhFREqxhqhVhaZNoilUZGj+xLWEqE2+LDSNRrMCuQDTlIovAgEsHPRvrKLihMgVksiM93qKHlh6+/Qj8/YPsjw/2H+UGwaii2a4T3xJz4CwXsf1nBrlaw358YWokxS8yiZkIijcEri15t0LahdR3d/RND6zDFhlSuCEJRk4n3T/gf3/P83fd022uoFwgJ2Q2czgem+/eUwSFHj/CeEEbqupgDAxI8maaUXO9uefXihqf9mVPbE2PC2sxiVRKd5+wHnHfEIeGnAZA06zVWz/e1GPJsXAuZ0Y84n3BdpCorpnak9z8yjv8XV+sdfnIUzZJyfck4JbbrZg6pb1YMSqJKi2gqclUz+B4ZAkIrisKQY0BoSCnPMTUCSUpUAulPZPcdU/cV+EfGpz+gpidCbpjuHS4eyQIK85K2z7h6jXzxMUIfGR4d7XkiR0eOEVJGKDlLl+VMfCRJhilxPHasjEGSSUIwTZ6mWlIUNUKDsoKui2g10xp8NxGiRyhJjgmURUpFxPHcOlRVcbndMSwuUdUOmSLnu/c8fPk1bgjoMnFxc0EaOqxXTOdAFT2+7WmywefEdJ44n87ElDlFh64stlC4Y2Cjr7n5zYoiTvSPfyQ/f4sVLfbiBWa94ewkoWtRq0DZNAQa4voG4V8jp2fM5lcszS3i+CWDdtjNG9LiLXb7Cd7ecDqPTIc7EnfYakG52FA0K1SzBjugjYIskMIiTIUsBKJYkptXCLfGEBHSkkRFmBJSTCBmHvIMhVOEMBC6M7k98uMX/8CFhGIYqLPAtT1iOLJZlZR1QogT0XiiHzHq57zDFh5dy/mPkdLMK5IF2i5JtiKqmiAUPs9Wbh89UwhIWWDjiHj+wOnLf+b89Vecf7jj6es/Y5qG7e6SMHnOD0/ktsMLyXKp0dpQV4aisGhjScGjfiL8+yESY2bdLLnYXLB/PhCzJ4wTpDzzpKbMsT2RUqYoDYv1ApE9wSeiyGSpUaWe75DThNSSsR9JOWBCpk/P/PnQst6tefn2U8pFQ9jvWZQNwQd89GxevmBY7eiExAbJbn1LVWi8zogM/blHJ4UtLCFMON+iTKZMHf3hS3L7R4q8J04tthsxYQ3jJUMQnN2eIDybVY3QkurFll/W/577P35J1fbshsyH7/ZU+hEzvUNNE9uLLT8e9uSoUC7hB8eApiwF1syUisoW+ByQuUdmWNVLhtYxnkdETEipUU1D9AOKRJhmF4wyElFoxKKmtQXF5S2iWGLCiOs7SBGRMriJ4XwkjwO0E7fLa/z5xKQyOcwPg1KWbCrJqWvxMoFOqGJgtXK8vK6R3Rc8f2MRMaPY0OcllfgFq+bXbLYr+lzj5QqXSoRZzteOXCHFErW7oiluUdOfSbEnL26oN5/j5Q5tS5bTQHk+0j/dM52eCYczpywQmwua9ZKisOQMom5Iy4ZYFiAkQpeYoiaHSPYBXERGR5p6fNdTaksQBlEsmbJiHE60H77HTGeGY4vqB8buTG0MV7/5nGpTo+qCcl0zTWfG9oDmZ5RhiXpNKeYjUM6ZdnQz8jPN/KZAJqQEtqLaFgjbEXWNLCTLrqX78Que//APHP70JXSRECScFrgp8fiwR2aQLpAKy2g8i1WJrSwxReI4zl7amHHOMw4OHyPIGQeiRKLrep4PZ6Z+olAFMgv6LjBOiSQC565jtarQ2pCNxLlIZL7jap3ophZ8pCoMeQr4MOCNprq84Pbt5wQy2dRcLmsOj3e0wGK54upXnyOvbglCIqzGNNVMnXcd2fWk4PEioUVAEBDuhO8e6e//jOhO1MsdJn/Ew+MDp/cHshgJ6Qd0KZniiaN6z+7lNUYaFruC4jclfhwRccvNZ5/xz3/8DlcViC+/59SOKDKDSCSR6IeJImYYR66vdjSLiuAcw3hGC4lFcToOSALLQhOnwBgiLmdMSuAdUkpizhTWsKwWeF1iyiWm2SJsg5SgSktTGER74vT915weHpBSUgSPN4qLzQoPXL+4RsTAu+++QxjB7uaCRSExG4GtjyyLE5iOp7uv8WZNtXpNsfkFen2NW7/gXL5GlitiNghTY3SD94owOBgTKgikKEBdEGyFsCWu2TKVOygaXBaEVCGbEjkI9GQZ949MQ0dJx/7xAMGjlKC+vEBebxHbFbaqQRUgDaRMGjzx/Exqn1F9i9sfIStCFPiyRm0uQCaWISECaGkpl7ObZ11rrv/6M+zFBeVug64tYTzS7d/j2v3PV7ADK2RVE+PEOJ5xYRYOU1pMimQpkbbClEuUrSmLihQnVPsD4ze/4/G//gfU8ztuGsPZBZ5OLd15Yuh7lFJoq2k2lrqyJDEyxp7QDyg1pz/SOBP3ZbIIodDa4oNHKUXd1BRFzXSGJBTJQz86+jGThSEKSzdOoKEoK0KEBHgfIHj84FBCUa+WaJEJIeF8Rq4aLt9+AlWDkYKrZYNRCTnN+NLNxSX2YkdYLn4KkygmkdFIKl1g5IRPIwRAJvADsdsT+5bSLHAm8DQo6uoGc/MJOe7x4wPrRcFq+QJplgz5iMmPiPHEMH5AiHcc2m8Q8iNWL/6OT1/8W9Riye32mi9//weeP5zpRWAgM4ZAMBqpNS5MFFqz3a4wSqAsNE2Fn0aiyIynnuwDMmSkEFgxG81HKdDKEkOkvd8z6pb67V+RY0YpTVGvePnrX+G//AJxODH1R56eHnBKYJXkOQR+eCi52m2wTvPi6oJmWJFPZ4RSNBcb9KWBsqSPgm7qSMly+eINzfUvUVefkDavmewKV26gaCBrSIL0E6JlPBw4/fADYugpVEH2Pf3wRHmxo3xVYIodKWRyEsQgycGQ1Bqzqsg0yO5MUwjacU97OFIoiRPHnzCmFqkNOUlylugsIDqm/sT0+MB098hw94BxESE11fUt1gc2l7dou2E0ESkz6+2GOJ1Zbyp2n/41qagYpSJqQ7nbcbG9Jpwff8aCVRaZ5k5qMhXG1mgpcVEwDi3KMAfns2Dse6T0yP4B8f3vefj7/x0+fEc+tzwfI24CXUikkoQ0kqWZoeA5EZ1jd7FAkHHTyDQMlEWJQNG1PTmOrNdbjFAYIymrAgTEGFgtlmg0x1PLFAJohQsBERMqSpg8AYnVFVVZkfzA+djiu7kZNE0Tk8gIoYhCc/XmDS8/+5ygJEZLohA4MvLyCtOssdcXpNLMqZbCIGwmyIgNntw9UcSWUmR8iCAicTjBOGBNjc+CLjuc80zaUdYNu083+PMTOj8iyxWTeo0rX5HCB8bHb0jOUYYlMW2JWTPZSLne8fn/9O/or2+xi5L0heE//en3OBJjnHBR0Q2eRTMDwHIcyVlS1fVsYUiJFDNWWWRZEJxHq4w1ktBoFrsdPkoO3/7AOEzkpSGbTNlohBagDWmxofrkY/rDiWZMdP04HyuFRBlLlppjNzD6icPxQFNoFuslQmictNh6yyELKATVAnaX15SXr0ib1+SLt+TVS4SuwVQEWSCEBe+R0ZNCRFqDsgUEgXcK4QMqauIwMp1bYuMI1iJiwA8jU9ejfKQSkBAIqZFKsdxssVohgpudPTHNI8kwTxySn9NixkhEU6I2O1SwyGQxbnYly7phsd2hy4aiKFFNjdaai8sd8fzARkcYD0jpKGxNGEf85JFqIg3Hn69gk5XkKMnCkFLCmgJbNqQE2Yw4d4QUSK6DEJGiJ99/xfN//T9JP35LfHgijP8/prJcQcIhlWXyiZQibTdi9GwrS8kTosdNE1pOaKEJLpLSPHqomwVCzveglAIxBkQAHyaEDEy+w8U037dDRkwF0hTz3DiDEjD0PVPbIoIBMlkKokhUdUVhF3z6N39Dsd3wfPcji6pAWc3i6pqmqVGbNXGzwMmMiRPCJZQEVSR0PBH9A8qfqEpNUoK+6/D9GZUlkzeEsGS12ZFDJAyRcL4jdV8STn8iiR8J9R+xryxq/a9x+pfIzUfkx3fIwx079UTAk5v1XHy7LfwycZs9SQkeT3v+9P4dzjs6KWgqS4x+ViTmDFKxHwYQaU4kIalNRV03eNkR/YliWbJ6e4N984bn4whITo8HyhdX1DdrkvYM3YHEEru+4M3/+HdUpubH+DuGKRGGjhjnglDSEHImh8jUPrNPgZuLC5pmScxQmC2b1ZbWPxLkxCEqhKlYbG5hdQ31Bi0NWWoCBp8yUmemGAgyYy52bIs1DJGhbRkPD6SDQGRLcCtU0kiZwM+jPZUTInvGriX3R3zfMTlLXRuq7QIxdtzfvafKI8u6hsU1uipnF1QO+BjxQmJ3N9jmBcurVzD0dO0ZbMFgLNkaVreXXG0arJHYMKF0j7/7nvPpHasXrzCba2xVoy344zPD6Ym/JOv0lyWdYkLETAoJowq8MAihEUYiVUAP86wuqkiaeqrxjtN/+8+c/un3nO+PCK8QKHxIiJ+MbdWqZrW9ZBgD+/sT/tzTHVru3nl8mjNBUiqM0ogERiqyTKTckvMepRSS+cuvrGBRF5i6Qq8MmRVPT2dE+gkCncCYCqk1RVPOHVE/c4glAaMqvIskk+iVYvf2LfL6Bq81IQm6duD2kzeUty9xzYJUFiBB+zNIx6gKtFOUOVHIiaR6iA9M7dOctpkKLFuGLtJ1e7YXF1RVScwFvrT050DffoNzPWYcsNOAvBzoRSYXDUqUsHD044hwE4ZMrTYIpSDMuJJqveNv/u7vOLYtT48HHseBKCOyFBAS/fmnjrrSyJSwSlAVdr7XEzgPz2ATxW1N8fEl8tVL1JtPuZBLrn7jOe1nkJlcLfGpmzeJtGG1WqC3v0bmmlrXVPXfk3//L5xPPSFnpjyiNRgtaaqGoev55odHynpArLfINvLy7WeU8iVd7Egy0MYlIlSYqEhBEKQEKUBGrJRoqfGqIElIQWDLAjlJ8nKNXm8JVz1SCERZIusKWRWEKqOXS5JzpGnAtxVF3hHGYT6tWTCxRw6SquuIebYIqLpCFBWZRPQTqkoIEsoPxNAj7JwMVy4yjSdKGTEm0P55D88rhHQU6UTx/AH99IDIgjSc6YqvKV/eInc7VEwsy5u/pBT/soLtzwNWCVTOTGFAyYkcA0iJUbN7Zug7olIUvqd/90ee/uWfON090Z4iVtfzE13OGoxpEtBLfBy4f3giukwa0zzAz5qqqBjGkZwkCYWfHEFkTDnPIJ0LkDxGQV0oxnZEpYAwmqZpsNsCNwRS58hKIo2gGztW5ZKiNhRYzs8ZWxv644R3I84lfBJsFgs++vWvGdG41rHZXaHCSIiJ0/Mz0zjMjZZVgyj0zAFSYNKIcT3QI4Y/47s/0vfvyWpHMr8CvUYuMml4z/t3X7BalZjFljGvQdUsbv8dYfsGd7pDqDWh/iUpb3AOijzPlU1ZIl0F54H9d3eE8IFCl7gh0fcDdr3i5etbfvn2lv6Pf8AKjSlLvFZM3lFrhUbgx0SbJ/qpR5UabImtF3z0V3/F699+ht5Z4nqFKy84tZ7N1Zqr6x19P5BNgTM1sqkRRhOlQObA6mpF/dkbxGnP8/09XTvOgDI/IHWBNRqfHMpKfJL0fqSaBm7qJf5poLzY4cyWjkgfJd3J06gOmwowGW1LjFYooeZTQWExusS5QI6KoOdjNbXE7GpyiiQhyIUlGU0hQSYFSaFzgbnZIKKDlIjekcJAHiVT8KjVjnKxwq6uyLIGyjlGqgtknhUk8bgn/PgtsXf0hzP9c0tpK0RZ85QCWSiqcolgYl055PkedTzSNAtC7+YZ8hQRp0De7Civr3++giUIcs4IkRBhQoiEG4947ymLAh1aZB7JzpHOB8bvvqL7cE/fepwThBBAgLUF0zTRdo7eORICqTWVKVBZkQFkImVJUTYIxGzdVnO6x6eE1haVIzFEMoksNDFJzu2ILCvqRaZQBSqBEgKfM0iJ944YJvruTJRQNYZXtx/xxy++ZOyGmdm7WHD90WuUkRRasF3vWBvoDw/k6Dm/f49sGiYTSKeCYrXEbhqsBxkeID7QuXek4YlSjNQ5kU1BrpZEu8QnyQbFSWSiyGixZHQWqRtE/YLQvCFtJxwBUa1mm16KeDJaF2RZMgXFed9yejiShh5ra4p6RxdAdAN2WfP24xdM3RNCl/zit3/D5voaIwLyuKeeAu+/f0+XOuqbFWFdoS9vWL36hN0v/hX56gUTPUOOmGpJqTpiOtJNPbJaoJodgQKhNIpA9meG0wfCfk8ZPHa14OL1aw77E/5pj80SHT1pigg9+4m0lZDAtUf+4//6v8Fyx+YXv+Kz/+XfI9ZLzjLifOC8P1L7SNksoVoRbU1WGWJEJs9PHge8kDgEWmSUcAQyMWdSAuUjKk2gEuQIKSAU/9//OctMthIKPW/fSMWi2WEXG1JRIFUCAinm+UQXPa4/M+yf6O8eGJ+OMHhCN3DuB8qqotxdUK0uZ9udMogpIsSS5vYCHRzS1NT1kpXe0j54cqnRywv+EtDpX1SwtS3JcSL5EZk9OgckkUJ6RH8ix4GUPX7o0O2J6bklTUA2eB/nOZ6C51NLex4J8f/9qjNxHJDVXFwiZwRzdC4zE/vKusarGV+SUsRPgZQyWmpCcJzOPbVVFGXDNCX8FFmuLVYpiD2gyT5T2JLooG9HvIJp8Gw3ibdvL/j+6zu8LPjot59jlxX7/Q+QHaZtUIuSsT2jbElGk6XGuzPj0xNWDpgisbqoqBeCp+dv0flbLra3JJYkUUHqce1/Jpov0dtPoVxTvviYIQiirEAokinoFOQsMFYzTEdSjmgSMhbzJpJzpAheaLi6Yrm6QPgBN4FZvaAOEjeeUSKwefmKX5yPjKLkxed/TXVzw+n+PQ/vP8D9j0jRsb5ZsfurNxRvP0G9/gVp/QJ5+YZRFWTXMpyeIcKiBDEc6FxHs73B2QaTFWI8ofp7ZDgz7j8QO8/pDFZZPv70l6iQ+eJ3/0AcHPgEQsyNxpDJQlCUBd5lGD1+/8D7fmSxXvH2f/i3SCmYsiMyoYYTLBp8vSaaBUiFDh7rJvLUI9UcLURros9zVzvJubObmGOwMjOagFIJLRNCJkKOGKsQ2iDtAqEMyQqksRQrBabE5UBOJ3LQpDSLyP14JvsWCsvlp79Gf+SJp55u/8w49CQBoijxUiOUmDPaKXP96iM2lzvGd99zfj5Rr18gtzdUtkbf3pKGnzE4URqDsDCNI/hZDaQz5ODIwwE3dGglqElUAiapEbIguBHn4kw8H0b6fkCm2fim5fwDznGnSBYglUJJTQiJjMCFQEg9KSSCDxhrmAc9kZDm7KVAMoX8E4y6oOtGRDjgnCNEN++ajhGyBCVnDIiIXFxfQwWvt5eIDKm+Yfn6JaM1IDPD4R1qsIi+prAFstAslmu8Kui6J2rpKNwj/rzHxzX9sOJ48NTjkv1BEc2Ay3dkeUKLEVFuMSkgt79iNC9weoFS5ZziCoHoe0w4k4eOQoH0EFyeGdCjI7iMH3uwoKuS4BJSWEosyi4pKWCsoMzwYUNxcUHCcspQrbfUVuO6ZyY5ISfP4uWO+vqa8uYVeXtL3FwTFKTUY1WiLA0y9ITze/r3/4jRNePxAn2xQYaAu/uW8/e/o04nRFK4M0y94qkV3OxeUl9c8vnf/vd8+/s/Mg4jFAVm0VCtVlSLmpgj0R5IT0+IrqNKicd/+o8cP/wBu9yiTYksBeWuZlrUmPUldnOF1RaGjvP7H+ifPkAONJc7mqsdvlqR1ldkuyTrmeeUo0eGANEhdEKZjBSRlD0pKzQVUloSihjnt3ZyDgIo5mILSaFUSXaJ0Hp868ijZAwJ7SVxkgRKRGXJIlM1NUobjNZo36HGPCNOFw3m9noeFa0W+Os1abUhCoO/P2Dfvvh5ClaKgJCJuilJIZGnDiMEIXpktcCaEuEH4vEeOZyRyRGjZxwnpikzxgEXAz4IrLRzGH5uqiOFwFiDUoqU564uP+2LCqWwZUn0gck74uQwdh4DZX66/AsIKdOOnil1GAWdkBityTkR8SA1IUdEWXD99iUf//ozPvmrX7JJZ/b/9A88nyPrj35FvHxNSInNqkB6x0JrGqOIzuGiI+FQZYnqBD5ItF0hy4aRguls0b6kCJG7P3yD0HuKZY9ewGRKiuo1qDdkt6RCYXTAuTMCC1OL9vcI/0hZlIS8IYSJOD0SugcKFClZwuhAJCKghCYlh0AR+wOqWJBCBNmxer1DiI8okkHtKiblsLuSF//6M9SbFcc//57nziNHCYNAdgNZP6FKi0oBqRWVVUgRsdNIoR2+PZLUjlzeErzAHZ7w+3um8Ex2hu4MmQZywyQy1asXjIuGv33zMd9/+2eqxYblegda43Ni2VT44weGpw+E5weOD+8RsicefyQd7wg+IGuL2y6RdU2PRukKgsAKge8OWB2pVhXWTFR1xDYVY3aIQqEWS5LUZD+BG5FRoLMn+4GYRiASgyKHhHKCpBU5eeLYk8czMk/k4EhTIosSH0tELvDdxHg8kcaWduhQLmCzpKwbiuWKYARF01BtVqATRSyZ7gcGf6KdnikXhvXlJzS3L1EX10RpSEOk2PyM+7DG5FntJxOFKRBWoVNGa4OMDXKciPsPxGFk3D8Q+gMiObzzKF3OzKcICE3KEiUlCEHOgpwEKc6L8UJmhJ5dKVoqykWD1oYu9piqxI9uXt+DWaT7kzE9eA9JIlOmMIamqVkuarxK3LUnohTsXtzy8rOPuf7lW65/+TH2xQWy1xS7K5YvFbef/Yo7uUJMjtXLHct6/pzbPcPTI1Irghs4jy3++YQLjnBxiW7WGFnCc0s+P3Ls3mF8wD90cAa/3VK+/S1q9Vu6dIHYn5Duz6hi3rJJ5ZLGSmT4jsE9Eu0LfCgIY0c6fcPw4SvaAVKwOJcRQuCdQwiJFAGlFIv1BWKxxgtNCglZJrafvGBKmlQ0qCqiC4EnE6Jl8fot8ejwyTC2A6tVRzqfERPzhlOuEaqA2OH7PdP+nipGfL7jLH9ElZcUpsaJEh8svs8oCprlmsFLHg4PXH36ObYucV3PJ3/7NyyXl9hqjU+SJBXD6QkzPSMLxWQzatMQIwgMRgtOxwOb9RWqFLTnI3HKZJfoWkfnAlJFRKMJnYH+SFCR2jbU5RIlI1EEspRkLYgxE2MieYcbBwgDQiSqpkGQiNMZJJBGGE/YcMb3e6I7ocKEmxRZrjBmhXJQeoc2Cp8CWoHr2tkasZm3t8qrJfpii6wUNi+oLudufigMHsnixZa4tAjpEC7M8cfr+ucrWMIjWksy8afdTkFKELJDug419ozdCe8S7uyZzhFFgbY1WpTgBVkXpJyQIcxh8zR3jF1KpJiQCaRUCCnQRjG6kXEY0CaTma1SufDIbIiDRyZBFoooE8JoKmnYbtaUlcKaTFErrqmRNqKubti+fUl1u8ZuSygEUkLZbGk3t1ytXrJ4+wphlywic3MiN2SXaF1PHwNFNuhh5PTN72k/PDAAq08+pnmlWDSSuD8w/Pk7bP+MihLfNbhuIA4thX7Eqg+kY0f48B3d3Tt2r16jr6/IzUDQT+Tha7IuSapCRIE5xhlt+t0TTz/sGcaIVAahJEJnjFWUhSVZCNcj25cKIeo5nK4kWStUNWNKkBMiOpL0hEXFgKOo11hRIGSPHjrC8z1R9MjLS1R5ixIV7vie4fFLnu8fKc2GhETLkrpcMUSDz3MAQtgC13qev3um1JBFwoy3bJcbeqB7+IH4fMdu+4pyfQtFgw9+hpbt3yPdkaapqTa3WFsz9s+I2lMsFEp4vJsYzgGBwpBI2SNCInUCpRtkVZKHhDg+4MQI0w/Yn4I0MUPWCh3m/kb2gpDn4I4XPeQA45k0HFDhSCEHxumE9w7nemSMBF9TVAOYe8b+jNUVUSyQ1YKlXjAKT3u+Yzh94M0n/4rqpsYVGmEvSfYG8+INUiR0jNjpQJf2yHGPCoY8LrDVDbbY/HwFG7tndGlQel7ETn7O96mYZqPb+UwYPRFNLjeM9sygA3admdpA9A6hLFVdIXOGBCnPb8jT6UROCRkTSgikmN/mMUdEiigSSmuUtpTSYqTmOewJ44SPHl1ImrrAloZqbakrgzGSzeWGcJDI0nL561+xff2C+mZLs9tQNUtIkjYFxM0WGQbf8SkAACAASURBVAW+BGMExeBw/RkZW47373Guox08UzKIrqd77DndPzL4ESFBxsx92+Gf7snPD6jB0zQ1q6Zi6gQpJHreI44DhV6iznv88cBzG1lkCRcVx3xksbhAR427H1Au8/iHH3j/3/6Z87s7XOt/WomzCKNAQZaJummwK8OGTFkuESWoVUE2BV5X1Be3LJsKKydUaNHjgPeZZJek3pODY2x/YHr3FeX0LaU8k05rxOpzTm5BnDxlllwsPqWyWyZ7g4+aqW05n88IXVLailRohPa0pxOHhwdIjn1ZsXrzlroWOHfg/Zff8cP0XyjKDVIXNHWBDgNFTJz3Hec8cT4myqpEKU+zqqg2K47txCgTwSqsLahyxIySqR9IKcMUmQ5nlM7UiwVBT0SRCf0Z40fScMa5AaNqfFToZkdVr8FafOvxviX3PzC1T8g4IkXAFiXK1lSLC0K24ATT2OPDHqWeMCLRlLeEMCFkx+XLhleLT+jTHaP9AhXvKeWnCKtIzYpUrNDSUkTQhSC1D8j4RFVeIFZrkl4QVfqLivEvbDrN6sQcPSIlshshRohgmBEtsapISFzSLF8XdCOIKZBnYNK8WB00SSmkUaQ4J22SEKSUqAuLUnLu5BlLGYvZbK0MOSskihgdXdcBGWs1KUWqyrJc1VzcLNg0FTpnmuWC7asXVB+9Ij0f2bz9hNX1JWbZkIUi+Z+OSkWBvLokj55TjCjhiK4ndQe684nh9EzUNaJcEWNN7ANZL7BlTd+3tD++Jw2OLCULDcdhYGo9IU2E6NCUyEkSpwOyP9NhWJuC2jbkoBgPLavtErP9BFUYdNcSTnsevvqWdH/iVbHi0XY8i5YhJLyPuCGiq4IsFV1wnI4nno97Bpe4+uw3s45RSPRqTW4qRGXIJKaYSSpjlcAFgVI1MlVMYc/D1/eYuy/Z1Rl1ZYh9R27WxCkRXZhX5bqWUbynkTvkcoTYonVGSskwDCglWa4XpOdHwjBx//WX+DCxeblkwYSoBIfnPe7whJaKsTB4oen3zzDNILKhPZGWI6oIpLKiLEqMWSPSRJ01OTsKkXBHSVQRNyV0abBlgckS4WFT7QjKkHLEn0by04m4/5HBeaRdMC122Mtb1HJJKhRSBJAlq80LlMzklAhJUjZbsl6S9Yo8ORIf6A9H5DShiwlVfECbDwSVcOUVtn7L1foNo7+jf/qR6dyxfqVQ9QIwGNmgYkAJx5IzovsKmQ9QFVBGop/AXP48BRu0YkoBUprxjNoSwoDre/QUEe1IeD4Shok4ecZ+pFosUHGHex4gR4RUSCmIzA0jFx0hhHl5GkHMAcmcUTWlQSKQQuFcxE+JoijwPjLmhNYZI8UscKorqsrQ1JbCgIyRurGIwlBtdrzaXSFMAVMm4MFkkktMw0CxqNFFiSoWKFmQs2E89UQfGM4nfBBc3LxiUV4TnGAqNX7Y8vT+a2JWyDHgns8UdUOfHGWxoCAjioDLGa1K/Bh+2i1tCVLQ6pqu9Tj1xFZJyhevMFUFY+TwzQcOf/oKPUWKKFAkFs2Cvg3044CUBi0VwxiIwHJRoEUkjQHvBUEVlIv1LIVaGIwcya7Hp5m0mMeesWuZOkixpKy36OoVLz/9nxmwTH6gufw3rG4/J4qC/u57nr78R+ThRPcwIJeXvKw1q7e3iHCgH56RtsJ3PW4SMDhEyizrmiE5jo93jP0HapEJ7SxBLhfV3HmNniE6ol4iRUFZNnTdgVPboVKkbxPu1LJ+cc31am6oHZ7fMwwnci3wHsxyOc+wlUE3lsPxBwbdsbx5gyqWOAfDMeD3EZs9UfUYs+P8eEJ5yeJ6h7AFgzAEnSkKgZSJMI2cg6cuBFIZispAuiROPT5EsnG0k8eIQNQtIZ2Ip0fC6Fg3ibrUoAfU9A4dVwyDw2U7b551D8i7/4Le/yd0bclXf0Cvb3FT9/+w9h49sqVnut36/HYRkZHmuDpVZJEsdjfZUkMGwhXuTIAA/Qj9X0GAriSAzb5s2mKZ4zIzMsNs83kNdl1Nbw1qmKNM7NxvxGeeZy30P//Hn2ZgI3ll/ElLqZIcYBkhnBL6MjK9+0A8HIjThbwE8hKJy7Iej1dACaQRLHFGKo1SBtMaGtkwjxOUSi5xhVTXwjLPxBAwegVcJR8JOYHIOAdu06FlRdSKUwojxPo7a2azbVkI5OrRWlKE4PxwT6xH3O4WvRkwnabpLeGcqReP6TSqVYQYoShShigddhjwQRLThfF84vm7r4nP94QMrusR0SOEZBxncgo0SlB8wGpN17YMfc/IheOc6BfNRkgeng/gDPvXPTc7R82e+HTg8v4dn/7zfyYenhFJrh4iBYfzZdUzClYYGyvEq21bhFoVl5mW5uZzRj0QIwwZpD+tQm0hqMJQi2W+VNKxkC8t4ykx2gvCJDbtDfXNbxB4xO3nqO1LpocnLh+f8d8/oh+f1/tUIZgfvkP2le12YNe3zE9PkGbSXNYPuxAo2SOcwpkVbftwOdGYFlzP5uY1IXiW+USvDdJcQ2453z+wsMIFVBaYIEiHM3P8jhIVQqwKTm0ki640L64w7R6pt2jbYRqJzE9UJEYYuuEKSUOdQAWHnN4z7LY0L16x2+w514pUlt3NHU46AolcF5SruByZTiee5wt9mzBNg9lp9v0vyNMeER8xSqKkIYQTJEkRhlIXHi/fEHYL/c6ikkAtHc4IqDusklyePnD8+i9spg9YeUbcf0t79ZKm7eGf/+uz+KMGVoULompSgGUpxMtCHGeKz/hLYXoOyNNCPB0xgFwC8/MF0Cu8WUuyBi0lNSWiT2Qp2AwDbWvx80ItmRQDVhoAaimM5xNOaihQa8a2ms22wzq1RiNzWf+GaaGWRN4aai/ZbXd0r66pu4FS1iSViBrV3OA2e5STVFOwnSGmSKgCcmW6LDz9/Vv06RP+fMDKjuLfcz5d0BTUPCLOEyIGYpwxqjAtF6ow2B/8ovQS5zqWeabGD6QaMVdbihuIUmO7iSqP7F/C9XAkRsH4GDj8+9+Y3n2izoqcHQwNU5yIcbWcK2NoXEssIGMhxbBWNJVEdlfcfvlb5rs7sqr4FEmjp0RF125R3Q2q3aDVa6J4JPsLNZ/wjyOlqZj9ltB+TswnojWMMXGZAkVazOaGEhS7nWQskfuPj+T9K0QVKKUpyaBag6yFNBrO0wLLRL/pmMYnUgg4bShy5TDHOqFtROdlbbMMG07HSHSJzW1L0+7wJSGMYD6PHD99jYgCKTSiEahOsn+5R+82dNev8XRgGvpNh1A3SDJKCkL4CCZx81ZyjJEgQW0M2WS2dwObpmH0E72DRrckrQlKUo3F2JbhuhKXE9PlG5LTCN0hs0W1ewgDRQSs2fHK7Sg+Ei4HUjlQkUziSEln8nRCtvc07gVFdggk27sbGH9LuRfEpz9R3j3z7nf/zu76M97+rz/RwPoP31KLIkyVHBTxkhEx41xDxmFVy/myMJiWGgOgIFaMNdzsb1li4Rw9RikkEEum6zuutxtCCIwUpBAEH9Y6k5aIkumsJfmAVRqrwTaSrjd4P1NTgVRJwVNyJWZBEBaz33L9i89g18DgULVBthtut29w7UuWuayJILsQiZje4VxHlS3jZcYvM/PhGV08z6dn3v3pW243V7RDR7ksqFBplULZlnE+EVJinkf2mz1ZADLig8cphVKRIBLdyxe8+Kf/HrnfUevI4fv/hFLvSfk7lo/vmA+ZJifGUklVo3VPToYYJNZ1VJFoVY/Uhmle8TBhWggi4zYD2VrkcI3eviSmESECsShOISO6Dis3SLED1TLnifPjX+AyEg4XLjmg+5+x/flbioxE48hioAyGfJ2ISyI0T8TzheV8ZnvzOWr4jAmHSmtFz/tH4jzjvacKqCHx/P6BIhXSOpJYu8vGJsbjO7qmsB0csa1U43F9Rd0YTHC0TUsdPTlFegzaSlII5JgIKaOEYXx8xgnFcCNorGahModILQorFBTPkieajaSxiXYbyTGC86Ry4nL5QG9vKP7I93/+FtdtePnLr+iGPZcsMG6HbffU7Wc01y+Z/EjBIIsDP4JpCeGMjwJlW4TItLdbuvYKyi9I3KPUR4q84LNB5oC2IzHMuNZw/ev/lnD3kuXvr7h881e+/9PfeM5b3v6IWfxxS+K//ZlUYZohBEcOhhwjm02HrAqdI12/QShBWGbCcsZur0gxYo3hxd1nyOOFcT6R8owUwOwZwyNFVJQW1JxwotDIihKFqio5r8XgWDI1TasVnPADAVEiskArgbKF7BJ63/Hiqy/pP3tBbFtEO+DUDp0N7vYlwt5Sjx59HNHlSAgXUthhdYtyLd3+lv1nX3C+TOg4E4/39MqtTYzTgqgCoQ3D9RUlRw6XkVIqSq0555oiRgZsa2ncSigwXUv32Qv0FzeIoaeT1zT9RDyMzM/fEQ6R8D5QvCTEQpIKbRVFgjI90lS2todSCUvEVrMGTpDE4pGlsOSZcZ652r4k/1BAaJVCGU2xiqQ0JntqSkjZYO2eKS1Ya9FL5nzKWHGNuroiC4kyDar12O4Fyb1EXD2SPn0gdEfML/8Z98WvMEWxfHrP5fFAurSIKGmsBnfGS1jiCth2tiKNIZTCdDlj3NrC0q2lpgkf3rOMmXC60Mr1INFPM3E+0zQdRRn0pqcE/4P/diHVwswJu7lHN89I17MkTXg+0yjNIiTd7SvIHUv6iN1o9rqBUlBOch5PBOcgJOanE1YZkp/QQdBLgQxraMPLAa01jW6JQaxfJm6DcoYaT8g0kdOFtkt0g6bpNKlESA7KNaZ5i7Q7fGiQJaDjI3U+43WHuXnF9up/o/tlof8fz3TX2x8zij+S/P/hkSVFkA5Dj8ES48Ljd98hVE/LBudeU61ls6v45gPL4z35+YiQ0A6W19tXZPGKy/GB0+MnwmXG65ZqLK5p0DJgCMScyEKAksScSVSQgkjGhYKsGSEEQliEVkRZ2V4PdK/23Hzxlty2jMKiuxtKc4vtrmhURTUOpQKmfSRM75mP76AGqDNKDFQhULajv3pJuHpi/vtfuDw8r8qM7EEItHEcnw4MO43WgrZ1jDnRtQ6jJSVlfAalE1JmhFhoN1t2+0rnnjF9Ii9rb3ZBIWuHqpkaRvy0Ri1NoxEanLUI6ppRlBFjDdoYEIXgI8pUrOmpNpNlwdaACAs1JYqEaCTKrSbzWiVLzORSKLZF3b6iLIH56UBteuTuhtps0Zs7ijSotkPXyrP4iBQN2zdfkt4eMOOEefkGeb2hLCfiRWBuX9P0O+LhgRQ+kBJUsVrqfcmImrBi5UaWIihFMs8V789kzqRqiaGAD6jGUUzCKEW7Gaj1h/OBUlbbgYAqLNJd4zYvSHLP4kd0OWOdRquZafI02z2auA7vOTOdZ/BHSoJ+b6nuGl8V9K+5at9wddcSgkccHsnhTLPdom2kqC1yzogYwa/JqLh4Qp5pZMSIiFYRWwpkxbyAcgZre0S2SGFx9gpKppw/Eo5/pYnfcRknut3ndP3PMOKKq7sttVl+uoG9EQN//PsfKUKRi2bYXmFM5coUxCDp+y3D1c+ZfF2Zu53DJ0GLQclE1ZJus+f21VuWeeL47hsuh2emaHFXt4zLhH/6COmZOE1AQmpwUqOkWnmvBhAB4QS2NVjXYVzD1X7g7vUevWmorgVjwLSobg/uhtLukcqQkgF/hvF7dPxAUz2FyJwCKY/48UQuHSIWRC2c7+/RwUONJD+TZWSZnpGycj4npPqBfSw1Ja20DaMUuSpSTngEZmhg2xN15On5G7QXtO0Vpc6MPvCiu2LiRPSCw+NM1ZphULjO4kNAIGnMKu9qXMMyLSgtMI0mlUAsmThNBALf/+VPvHn5S4IyKJepThMRWNOhZUNWFXSk6JGCoDUGdXPH7D1if4XcXSP7K7JQRK2hFOTVNc12jxIC9dkbuqow0kF+pJQzu1cN3YsXLM8jkxIsx0c8lVgzRRaaoSGLTMiBOCaMVpS63hKUGjBagdaIqliWGSMyyiqkEggUVGi7hsPhCaklRVTMZsfm7a/Y/fw3yM2AkDOnw18xLtJ2PX6cGJfIMh6JymJkR+aKXFbSw+wfyDohVYfpNlh3QxItx8N7dioxGMP0/QP6kkE71BzWsksRlKIJMTJNzzydD+Rlphsamq1le3dN/+KOIsHngKgLMs0kkehUwdZP1OVvkP/KjfHU819IB8FSFGx2xNZx+/n//tMM7Mc/vUdcKtFPeJ+ZP53oNorN3cDmbsvuZabdX+hqR/COfPUlrr0ifPqGWmeKBLvbE5qOpBX7X3zJ7c8lu1dfcf2zf+S8zPz19/8P3/3uP7FbzpyfPrL4EWEcw/aal59/gektY3hmf91yc7el61oqGSkzl/GJtrMouyJMynRG+hnlChRBxSJSJT5/Itz/BeM/oLMhFsEYKlmdKeKZOh+JH99z+PPvMf5IowvFrKRFpeMKmE6FxVdiqtQsMEqjhFiXcjHgdEY7jew6zKsXbL/6Je71DVM8k9NI0xhQCffmJerxwKlO5BKJSybKhJqXH5I4BiUVKUFKkFNgmcPKm9INQvMD4lTj2o5c1iZSakFqyDmSkyfFGeUUyjUIa6jWkJ1FXV0xUJjGiWwMzfUtwlmslOTgoUS6wZArINVapyugYkHOC7E8okTG+8Tj8YyKIzKcMWWmcwp0g2w1SUgogugjpdT1blesVTvRNEjT0LqWzEwugaoz6EqOGVHXfLl2hkihaknZDjxpw5wljRjouy1d20EdefFqj8RzOp6IpUXIDWG6cImJmqEVM8YErBak+YEIOFkZTxu2TYeuC8EXmjJQ3o2E43dMx/f4MKG0xZietu3YOEERsCDxxwsqtVz8E5czDC9eYzoFAqTMlHwhq0hbZoTSTNmSwkiXRlQYGaylxAu5tj9mFH8kIiYVsk+IWBGhkJZEKIKxRoQtKHXGL19jmz3WfU4yb8hXLbZ9QZzPnKeJ6DSb2w19cYRjgCRYTCQNEnd7x2/f/i9c//I18fzA8fCOGEdsN+CGa/av3tBsWlqdieFAiUeMyMT5QvIntKzkMlPCgioapSbkaJAqk/0BqVtyjkj/juX5G6bnj9hsSXkgMzD6A7l4pvdPPPzhX8nHT3Ss6E5NQirIJdBZg0+eUAQ1lvUlVAWl6nq41CpUUyk6ofY37H/9K/b/8Btka9Dhgi4LQiRifKLGCUog4DEtdI1hSpXsK7kmSkn0/eqJiTFRq6JpNlQ8c15VEKWE9VBqd8vN518h291adigRXTMyjeATyAVpN1TVoVoDZoOs/Q9Nl6v/n71UhSCnBVFWpYYsILQhSwuiUEVG6oR1BZqO5XAg+RNNKxm2hmM9U5nWjK3RlBTot3tKFUgE3nuEEbS9Q7SazZvXNP0VZfFUMbM8PVB/KHagNMEHchYIu+bM3aalefWSfPcahobwQ2y1629Q5hWPVrPpobnybHTP4jVcRpyWLB+uycsRpSaMCGzankVawrjAfCJVjyDz9PHAcn+BpxNyPKHrWh1decUtQlmaocG0lqbrsQJMbTGuJ/mO87cjojE4KzCmrtdN7YCyb1c3cPsr4vPfOZ5/R6egcQKlBIYfRxL/UQP7PD8RygwVBIKaImGp1DJT4sj8+B39tcZai2q/pn/7W3JzhWw1SkmuN1cUpTHGE+dHwvI9Rhr6bkfK35HEHmEM1//wGbW85Dp9CQSUdqh2h2oHMJKmLIiLZT4l4nxEAzl5hkFjlKUsHvJImg+EpwuGZ4oYSKlw9iMiJfxzwL/XPL+7Z376hnZ3R7468nT2fPz3r9nmTCcLsm/JpVBjwft1+ZlDooaylhZixGqNNBVtKspAs5G46wZ33XH96y+4+uots6mIeGE/9ITU4acPiOTxlwuuFFy/oXQzrYuMS+R0uCAbUFrTNitpAvNDcidVcsnEFChUlBEkraHdITcvUJtbmjqiywFbMq2sxPFALA5jXq0WBL1BGkcVhYoG6pqMkpKUV6ayEoXz8ydESQzX1zi7IwuNUFDwBGHI+o72akvQJ3I8chmfOV4eCDUiuwFlWkTxPwT6wRlN02h0p6iNwF5vaF7fYkxPOI1wL1FI8rQQZSKjaGyLdZZaKuiK3XToboOwPVVlEGdiAa+u6XZ3hK7liREnwCgoToHs2TVvaY1FPFny6SM5Cqy5pd3eMPuAGb/Gv/s7z+8+kcbMvr9hulxQeUW9amkRRbLMhSoqWiparamnCW0Nm61BZQO0DM2WJSUIZ8JyIkjwuysuvaXbfEZnK107YK8Di19QbcBIYPH8GEPsjxvY0yOUilWGIhVuaKhkcg6E85oMkT5TTKW9yrDpaOznyPYFousR0iAJlPkd0n9ga45rbjhCnUeKvKE0V9h2D6pDltUubl1DkQ5hJVUKUsroTce2fUUZHcvDO0xoMDKjlAEiNWVIkXk5EU4GZKKW9RRw2Lzg9tf/QriVbHbv+Nv/9X8Qn0ecidg5Yir4JWKk4Cmse8qCwVqHqxUtPMJGbKtZUqAqQbNpUFay3XfoRlOHlpuf/5zm9Utko+lMoJZKQqIM5OUTOz3CvsHUHWnZMr3/mnYw2DEzXyrTNCGdgVrxYaGUSNe6H36OiCLXmmNJa+PHJxAa41oooPNCmJ5wrUM1ihgjcY5UN1OlAi1BynXVUTNGK6TQ6P/ST84S6yxhiZScaIwiVEWpAu8raS6EUTCYAVoNTWCpFS8kVVakiKRsiAFy9lijV+ugFchGoDaKqhLeT4gqSPOZ6XKieE8VCqEqyQh8SGz6FqMyysKcIkY52mFLtJIoA66zZJnxJLQQON1RlSZKEM6hSkUtitp+IJ8njtMDOSfY7HAuk3zm+U/vOP/lG+wYcdWxnM4oFF23RagCdRW2URLPTzOahr7pKDKidUGXjKPitMQOjpR7StTMIjAWz5IrMQqOl8pSZ4IodOoK1GuSf2IwFlXVD+aln2Bg+6YD8QPqRQqyrNSqKVWTkqeREr+MiBQxdsY/fKTpr1DdDVkplK2wPDE9/hti+YiplSw0cg74w5maXuDkF0gn8CJRlQUl8SVgjCDngEJS60wqaz8Rd4XcFapUyBoppbDkjG0MTt9xHAupXmPcC5p+h60LQg/E9gvkfuD2xWeIwfLdv/2eob/BXUmy2PDx679xmWf23Za7X37JV//hfyIen0nvvuPTN39EuES32TItM6ZRJJlAgekamr5n++YLmje/ojSGmj7S4xHdnihaXPhIef7D6p2RFt3tGV7/A+MhkS/fIw6BRgtIEHxkPBcWP9M5TSpgtSZPAR8qa204IZpMvZzxj++wL94QlcLYDus8lxBoNh2tdTTSEpLHi4JEIrRF1wT+Qhw9yrZU7RBSo51ie3dLCRtKihBHjDIUYSnSgmrABYTWxKyQ/Ra2t4jdK8LjAzeuYFrHp6fIEhKJjK8ZkTOyFEwWqMagFoHrF8LzMzWFVTVSBY2zKNMQ1cDDZaYXM9oKFrthYx3FWZKxCLdDtCvyVpCJ/oRMerVE9C2ibaixorJDt1d49RFpDCJXrE/ohwPf//GP+D/8lXReuFwCTmX6ZhVtO3fFPJ3oOkPRAttp2sUwnS/rXOwdphGkZcRMTxRX0G6i6+/IQiJjh6otNRZ0lcRzQKnCjCKqLc69xSZHKAFN/ekGdri6IuVEjImYCqUIYqrMYcaISi0aSoefRnKeyfqJSfyZvhSurl/SNQYZDpQa2L18xVI0vqxOntpsMMMtc8iE8xPVZWJZe7JN26PklqoES1rxH9oOa7k7K7QTpAjJj1TWVsfFZwwDarPFDbeY7grjGkJ4Wrk/BkSNqA30P3vBZjmz6W9ANuiXL3j7q19gp5myXNjc7QjTR2oaiXpm+7MX2F3HUje0MVP8mTIeIC00TU+33YJrSLUgSkTkQJovOGXolCQ9/JV6eIc/3ZOaHdnA/s0v2C0SP1aasZDiMy2ZVloikHPBCAl53dtSQSlBihFJQgmJKjPp+Xtc+hW6uUJZA/IaLSPSjzj1iU7eIxko7FdvDHJVnMSZtFzIYUI223W5KRVaaWyTqfMFuRwpUiPsQOt6oujwVMbTgRJmXNsyfPYlaln49nTg8XRPOz2tQk2rqbbBF0+MHpMT9TjhjEKKE5NeT9UrAmkMc8jEmEnLgrCrxeG8BFyUGGdJoawSZbfierTSIAQgsFLSqgpxokwBKTLQrP7cbou6vmMnE+J0xB8emJ6/Zvz3P9LkQioZKaBSmfzC0DecLhMxBqRcn3ff9RRZqSozTRNaS5yuLPUJiqfmZ/yl0L/YIJSjU3c4eYeRPRe/cD5fOMeRJBaGTUtYdlgDwU40FvqfamBjFRQkRcpV1ag1rbMYY0nzgg+JGjUiGkwKyONEjN+QlcfFI4fzhen8hBkcS7Ole/Ultr8D1ZCFRrcDVkl8jijTUGIlhERaMtFmaByqadFmgzYOWRJhuZDqkdJqMkcIJ1Q3ILLGuCuU3YBpicWQAhRaEgGJR8lC0R671Vy92lGLoFLQvpCXSNetRYE4vYekqT6SfaS4jiCvkM0dOibinKmnT1yOn9B+wsRI9QIXJf2+JfgDMT7SlYRtZw4f/sby9ITxAdPC7mZH7TY0b3/BxgeGmxcc/vAXnr75yHiayXEFXWshSSES4YeqoSDEZVVmIsg5EsZH/PE9dtOCbdB2wFKwcULMf2WZDxT7Bar7J6h7lFpp9lLJlW0kBIhMqSsADSWpcYblmTB+xFiLdFtkd7PuaW2lawo1n8mqwdxcIfMveTGfeff//p/ExwfkkhDCrNZ5ZSjVETOkMROzx1iNsYZUC0UZshI8ns4UJozpccXSO4vSq7Ylnc40xwNmPFOVJQtF0NBtN9h2Q9dpRJyoJSFLIo8jyoAPlbiAsQNq2JDmI+enj/i/fos9PCKbgd46RI54H2naBmnWbvZ/QRa1bYdtG7ZXAt9myIrz6cSSEsNgydkjSgs2UvwnkILQnxg+vVvgogAAIABJREFU23D15kta1yFPB9T9B/x8AptIYkMqZ1IZmZaRVz/VwAppUbJyvjzhfaBpFEYp+rZBtj3jOJGmBSPX+7PoE93WsLWCp4ePfHy8kKTl+sXntC/+GV7/CtHuyHklRkQtQVaUyAjVYk2FcqaWhF8SlQZnWoRqqFlRK+SqqbKhyEgWnpwviCxp7BYpmnXYxzNN06C0QLdyfUmXM9q1FFFQ/cDw5gtSqCyTx+ZMni4cPnyLC0+k+YhGUoNk2L1hu3tDYCAuhenxnvjxI6e/fU3yT1zOB/KnB6zteLKOdu8wnUd3GXHzyPbuFU4asrtDS48wjqfTA80woa929D/7kti0vBCrmDmJR7pqWXwmpbV8YZxBaYXSglQsGIMYBuRuR1GG83hilyPWKEwr0EWiSyJM92Q+YvQWLRJZGaowSGuwFIoX1JLQRqGNJFVJSpGa1/K4TAlRAipFRE7oPtNI8OlAnb9DdTtcf4t8uaFMb5kfPzFHQVpOqFSIZaFahXUdOWuSCkz+QtM6etsQU0JIRUWx7W+Y/II0mqE3NFohkiGHQpov8PQB87BnnmfE/hYhdsh+oMZMyQrESrSgrI6gmkZUkavdQLfYrmM0iqazzHFGxIVYNe2mZRgGrFufg7Vr7r11FiELgkpKCW0VXd+vXqau8HT4xGnMJBRCNRRZ6GZJ4yTz8sws/kTf91z/+l94c/MFy03D8+kDoXhKvUFQKfGEUdOPGcUfN7CH+yMlJ0rJ1FwZ5xG9cyxxBpHZbHfItiONZ1JMUCVZdHh1hXn9hi/+8TVu/5Lu7g1ye0tVLUUrvF9WVGktiLLukfu+p20qjoUSPUUshGIpIRPriptUMkOM1BhWR2kV1GzXe0lRiMsJvwSWaWFG0G9a5Eax3Q9QMnmMiHZDbq7AWFQodNvAsNthh5ZjnDj/5T31ciLPhRw142zRZSDLI0/PHwmXZ8aH94hlRMWED4F68mAv5OiZbaXYBdFCsxnY3N7S3e149eIrlFTM5kjuNlinyEbBZoMqBaUM8uEZxoh/HpFWk1PBx4CoBmom+YQiE5EkoXj71W84G8vkA/L4xNB1tM5jjEU3Brd/jUgK1d+Q246lKoLPCK1Wzq7S6/8hhRUaUCWSNYbZ7l4ghy2iBkqYiPOFGCPtsEHpmcIToswQZlKQuNZz+3bLGG55DonTh0d8zBAb5ktFGg2yw25alhoJMzS2RYuVctgYg1LrByoxUkpGsjp+ShgJ99+SY0C++hm6XFBli6wH2v0enQzVaYzrEFmBr5TokUrhlCYtkbjMGK3Y7HaEzYbxcCZnmGePMBWlNZSIEpVusHSuXQkadt0bVyClREbgesW1vsJPieN5QaiW3c3A7CMxZPpS0U8npt//K/7r9wz7G+pQ2F4V3F3HVA0hO6ZJkqv56Qb2+HhedRiiQqlIITnnE6UUTCNwrV8L5apCMVQpMZvPkS9/Q//lb6nXbxBNR3UtVVpEzuuyRUIqkUJBq4bGbJFCUvOZtLwnL/drFK15DdKQq6ZESGUmLSesiBQ/rvoFtyeGkdN4IvsJi+B60yFKJpcDYZbM1tO5BqojpIq0FSULVUWKPyL9PePHPzB9+D3++Z5wvEAQWLehhCP33/yOnAs55PUIPs1rzlkYWttSReXp8oSloEMGlQlPgeQK+d7jPz1QHhJ0W8JmZusqZcmEtDBNC8Y4out49dv/hqG/4vvf/4HpeUS7lkH0pBhYwgTJI4lU6XCtZbi5I0tFtpJGZlhOxItE98Pqgs2fk/2AT9u1+SLXMH5cAjUviLKQ40xJccX/5EqtCtv0qGZL1lsKCSmPNEKRSiKlGcrMMh1QY0S5Ae8LIiW0PbB/I9G1R8jI88OZMHuIAoMlFUFGYKVDiEr1haVkckkUmRByVcJIW1fDgmtQFZxqyONI5h3bfc8WA5dP6FDQU4tuLN5tqDc/QzevyF4Rlki/b1BGUHPFXzyfv3rJ4XBitB2ztCvGSGqatkPIQms1m1bTWUNrDSHFNX0lBcZano8nGmlBKxrds8hIjjPPzw+keuHm9Z5UCiEWOGeEvxAeDsTv/g1loe4izRdbtr/8J3Yvfs1cOp5+ShmWEooq1pC7sisELOVIjJ45ZTIVJwWdrkgnUNsd9tUvETe/plz/HHa3aGVwRkEJ1FqQRa4IzwJGKUStGFUpKbGEmVIUxW6YfKbxmQ0TnTAsfiKGEScyhUxIaztIKrleuJeIFvEH1IdEy8h0+YjNArH0pLpBuFtqcdT5iZoj/viJcvhI+v4bLn/+C/nhCZ0rqm1ZSiTWhK4SWSsxLMwhr0yrvILMQ/Y4JXFWUXULeUGqdf9Tg6RGicktPEvePXxgUfe4O0nyHfa5Qb/8AtH1hAy627Dpr3BVImphWcIqT9Y7Ulj4+x//b+LpI8nPSJ2p5UQ4vsdu70jZIsMZFxJmrtR6oapbpHtNlXtSKlipkTKT0gKprtuLokih0AB1uZBDIFdIy4RtGyQFXRdMvSDSkXE8o6xDl4gxW+J0QtRMvJzJ0xFVPVlG1JC5et0gZCQcE/4iELqjmg1zKljnVtF19TStIMeZebpQa6EKIEdCKtSa0Y1DKQmlIMSInL9DX0Z0UyjTgk4dzjlyuyeZFlH2OAxCL2jVoa1BdxXdr5FSYw1tazkDhYQxPTVnWluRdaJpN7StpbWSloGKpNZEDBNbJ5gvZ6RtGJcREFzdbLmq64Eoy0pTWWJBWQHZo1RmPj/TUTF+3V7aZNA1YfZX7K9+wvB/SZGcIwhJZgWAKVUJKVFLIftAFlBbQZKO3Rc/p/ns54jdLTQt0hhKWL2rTbPKjLIPkBMyF7TWSAmyhpUe0O6h2VC0pJMS7T3lcM/D+99xfD5gTMP+7nN0u6eIPVU6yB5RDFY2uKYiGfHhgaoTRs8gKpa6njLWVVKVqkf4GX//d8I3fyb87Vvm758ggFYarRWua8g/GMxiDDRNg+gkXTtwPowkHxEVHh8fsI2iMQKtQGiBUIJus6MmTaqGGjQ5ZqRI1EPmEL8mfv/M/jeR7ZdfoXSHnwOP80wnYbjeIXJi++Yfqe41j08HvrgbiOePLOczdbpnjjPz9JH9zY5FSfzlYT1lbcF0G9rWUd3AUiVFrEGTxImYFUK1CKkQwqJNxzydKH5VZtZaEXkhPj8i/RM5Hpj8E0JE5lxw3TWFBpGa1ajwfKHOkXwJjJcn8pJoZEfbGMTOMUZQSVCN47Nf/QMvv/iSIjLjdGSaDnRN5fj0gfPTJ1LMWNOScmD2I8ZpQkko6xiGDiE9sqskcaamwNVGc90vDL3ikQsLF3ScqD5QywlrM86+pFLot1tk1lRnkE1ms9H4rFlyojUtssw4m6npQkoB0RdylGsrTRa0S9ihYVN3RNHSsSckT06J7ANiroyPF4yzmM4xziekqGgBy+i5nGeUzSQjuRz+xP7pnvRqx8vf/Ef4r2OJf6SBvXq0WamJUqj1pa0gm1U7qQQ0VqJ7g337ls0v/gn94i3q+hrZrktFIQs1e3KIpGVEVVAVco3kVBGysiyJIgROdIhs0abF2EotE+N84PHhG5Z55vbFz2ibjsmvNjbb9MzZEKKnMwok65KNSqxg3A4pAW0p2ZAT612dbEhxIj08Mn3zLeHdJ/zBM10SSmuGYcAYR9duCCGtDGWjUXY9ITc2rkBvZWmazQ/xPUEVBR88UlmM6KhS4eO6V2+6DUIWXCMJORNPmfDpyOTuGXY3WCTz6YwIE+VyJgtBqRlz1XH98ppa36CK53J4xvl7nh6+4TxfqNqz3fZ4qZjiyDQuCB+wjcMOWzIahCYkQyonYjVU1VGlRUqJrJmiHVELXM1sGrsObDxSwpE4H6jxghKZXbejJvDTTJo84fiJeJ7JYyI8XzjdP0FIWL2gtKbGzDL79RkUwTdf/ysfD98gO8G2byDOtNKx3wmUtlwunsH0ODdQ9ZaxeNT+itr1SJ1RsrC5fbmuYvIz6fAn5vEDumhiMUjRo5aO0/0Tz0/f8vpnv2KrA5lH+q7FioHbN58R//5XlvYT8fGyAumnBd3L9erq8kijLd57ZBaUGNGNIQtJkHva/hYnttwfHmi7HmctcZoJbiLatSKpGktVklwyYfGkmFGmwxiNnyOXUMAeeXtzhz39hG0dJTVSrUkaqRQSQYqB1g1YDUplssyouzve/A//Ad5+hXr5Bc3VDcI15FqQUiLmBZEKphaWywVlW7Sy1KpIEYxZU0MKtVIt5iMEj6ozXe/Y/+p/JlcJ2hGl4pJHgp/odSLJAdX1SO2oFVKNgMR2FmksQqzo8ZoFxuxADtRkyD7jHx5Jj0/MhzPjsSCkQxTBMnmabYsshegXFu9pSkutlfHiiQFO47T2U5UlZU9GstttiX6mG9pVr5EyQlmqkPS7q7X7qyRlmXBU1OFMEu94+P4TNy9fszWK48OR6fEjw+0tSziR6hmvNdJ2OLXBdlfoZeDmZmAfzz9U8cxKllwEYV5ta8/f/A2Mohl2mG6DMA2xCIpoyHKhqpZcFZWK1AotQNRCXCZEWdblqVSgDbIYTAI9RWoauXw6cn54oCwXqgdmw/H7E+NhQtXKIhLZKIxWOGXYbg37u5f4Ar7OKKGIpwvL8xP+AUwnaK4aOidJ5xXOpjvN9u4adfcK++bzVX0qJcJdobXF+nusKMRPI/P5iGsbnJxQcuR5+kSeH9HxiuXDPdWcEOYXSPcLtnc3HHY3RFbWkhSKGgRRN1yWjCwJMweqFDRSksYzqjaIbku/bVejRMzcXN+hraWUTKdbJhSX4MkxEIunGwaUMLiuw8qekiRCwIu+IaeJmu8ZP3zN7tXdTzewta482hzWjmP0HlHzemnvFHbjOCXP23/57+i++mfS9WewuUZ1V1hjqTUj8ozIETVHiAJRNCVptO1xXU+pCakKUkMpnsg9cfya4I8o2WPdS7K9IlaNRxAr6F27Gsi0ADxCFarUlNLTdN0PhyurcKuWRMqZogRKD5Ti1mjl5YI/HlmOI5dLIglH01hIkZQiz0+PhK5d2xqN4f9j7U16NcuuM71n7fY0X3fbaDKZJFNMiZREoWyoPPDAnvhnG54YMAyjqlAQDFIqUkomMyMyutt8zel268EJ1dQcZADxB+696+y919s8WE0tlRgL2jZsDwfOpxMlVzKVkgLHy5m2ccwhkkJCK7OCqcVyupypce05LjmT6kJVP/Ln3/0XJjRffPPX/PXf/poqge3NZm32azRVTWsGuDqWIaGoeGMw/ZZ5GCAFTC2EywXOAzJeqPPI5fhIrBF/2KK3G6TtcN0W5Xdgt2A2oBtK1YjKWBvRaSKFkVwzxiiUaWj1NXFJDB+euBw/MD+NfPzzW2QZ2e6v6bs7hudIPkaYFeO01sBmD8ZUkqsoHbh8/y1VFGIMxrfYrBifBmpeaHeeeQj0XUN4vjCWRHd9oLaJ7sbh6JGmJ3tPUhtSUWhr0P2FYI4cP/yOfpuJ9hm3faa76dm9+pq2bRkf/4VcPvCUFq6+6LH9HS/++gXT+1fk4Ux4XGtTz48zSRzeazploRQu5wu9M4RpwpmGcBmY54p3V/TbK5QIhVUfp+lw13dchjPHy4XzcVw/1N0WpZtVTy4Royr9rqF2mvPwjoc3v/vpdNiaC9M4saRKLhUhYyQzh4rSHX675atv/oHNb/6efPcatbkiK80UA6quRuxaM6IqpEycVup5zgbDaodrrCKGM2leFzuSZ1w5UZYHjFNIqURJDClR/Zak3MqI1RklEV9GQokoaVG6odSCdRuoa2thqWubQcnCMK+Z1w5hvgyU08jwNDJNFbGaQsaYjEZBjsQkFAVYTwFKqczzgrKy+qSdpoSAt45cImHJpDhi1Rpqd85TIhhlyCQkQ0wGIwZMRpaZlwdNaHv21xa9gWoUh9tX2MNXlO0LcusxJRFPZ+o8YMgs84TVEc0IMVCmM5e3nzh/emaZAqdPj+RlIZPoXu6Q6wZ2HrddT2ixW3R7tQ6vshTJpHomTx/QZcTYBuyGUjXLeGL44S3y8Mzxu/cszwtbZTC1w+UN46dAHCKadZOKWGKUlV5eM0uq6ApK1ucPOa/ZWFFUvQEapiHw9PRE6wQnGdO25POC7CI8PrDUgNl1dNfXYDrENCijQLeU5gvqNpG7Cem3SCd0mw4lBV0ch81XWLtlSpVlnulvwH55xS/+1/+I1g3v/uvvmd8f0cVSFrfKLL1liEca3bKEgNYCw4iqn5DaQg4UE7H6mtPxwqbr8U6x2R5oNg2mcUzzzBITYtYGlaIqVVWKLmQt+M0G32tmfsKlk7UwTBOlrCwcYyvWVPxW0d7tuf3VL7n97T+gv/yauLvG+hanFalUVF2gFGqZSGnA5BkERFl2+wO67VC2kMtASmcoLTUp6mwYPszYmFB9RlsoKWNMQ3UOZRqUEnSJpPGyWt5CodSZXEF7TZCCIpMuw0rKq+B9j85CmGfG8cTw449MH5+YT4EYPDVnGh3BrxEvpWHV4ROII+ZEWhK5VKZhpNtucI0lxsvajPDvCZiUKcaQUmWZJlSd6b3GdYZaFWGOGGWxplKYaXfw5Tc/Q9/f4+83jAssW4fc3LHoAykN6GXGDmdkOfHw/s+Ejx+4u9the0MKhflhYPjuR+ycKNGxGSuXx/XmMSwfqKNGbiw2dDTzHmW3mPaI6Q6YpkdZR5UZlZ5R8QFTPCrsWEYhPz0xffcn8scj+gJqEooyXJYI4wDiV83Uqv+eMEpzJeaEKEUuhVgLzhh0EUQ0wxRQBrT1bPfXNKZiTw+Mx08kVdhsPGIdoSYkPPD8wx9RBm7v73C7PabfsWiHVMPdq1fYL39OVZ8o6ojSllo0zJAvgWku9BvP5rADtyOoLe3L1/R3nqJ39K3jzf/9Tzy9v7AcZ9AVs+vJzq9/AEoQgbQsxPiAEkOMR6xZ0DpAzkzjxGbT8/D0gLYO1yiqrEEH5QoSIwpFKWWFlhdLrVs2t3/F5su/++kGFs40jSFjsc5gekN7u6N9ec/r3/6P3H39t+gXX5N3r7DNBmNXQ75KM1ryCtdNCynMlHgBJRjT0ulASc/kuno2pXisrBWml+ECZ0izw4inuLzKC07ACbZxFIRpWoiLYKvGVc18ngjTjLIK0xms0yyXCcq60KgFhnkiLwWen3l+f2Q4VWJ0hFiwVhFLJS0V74CSMSbRtC1aO6RqoOCtAyppKSAZ0UKMC4pMrUIqMC8RySBV4TT/vYNJtEF6oZLBaXCO/sU9zc9+Tr66J/bXNP0d0mrOoimlouZIeX5HffyeJs9slonh8sQwn9jfv8RYy65tSH2Dby2NuuO78XuO8zNlHrFJWIwQ6ohaBoZ2wG0PqM1Cno+YvgfvqFJgPpOWEzHP5HNFPRvmdxee3rynzAGVgaLJKlJLJYdnqnL4dsuSCxlhSZGYKqFkUkzrW5iCMYlaKs77lfsqmlwLz8dnrGScgu5wIMpI3ljczRVhs0e8o+0tOZ4ppZLCmVLOKC2EEIlPhsPNl/TXQq4nRBUadY9YyzF94PTwlvEM26zp7EQ5jWS9o9/tuP7H/5l+d0V/uOPNf/1n3vzLtzAOHD89svuy/Uy0i2RVCXNBa7A2YHShlveM0/kzamNLjA0UQw4F0WtJvkIxnweMcczTGVU0cRqZbMa1Gzb7a+z91U83sP7qgN/d0l2/RHmHP7T42x2x7el/9VvqzReU3S1FuxXRlwK5JOZ5oaiEKuvgtk7jdi15GZD0yPDpLafTjwQZ2O1u2fh7lsu0bpEvz/g5E86VOU04FYjpRDYTdZlpcsb1GxQKbRpqsSwh8OH5wn6zRVmDEg0hkYeFcJlx7YZPH09gW/b7G2JVhJoZU8R9hmdp50nq3692HVavA+Ob7bqcyRUtK9+2cZYiEOLaGGiM4J0hxIIASjS+dZDSartUFXEGpRVKKUpJYBX9pqfdHwjKrldVfcCIIddVY9Q50YaZ87sfOf/wr4RSUUFRPg3MIVOOwv3rlyzTBTNX5mFm5BnvW6w2THPEeEMdhCiJfBlgE+mKQ5JBzEwYL7iuZU6RtkRszaRlJj8tpDeRyw8D43nCmXVBRYkUMimsHVLWb4mmoVRhmgJLKMxzJkmlypqJLaVAgZwzuVRCVSjryBWc1avzSioxJZRTuMbT31wjd6+RvkXbiE0j2lm6vaeqTM4zPiUkF2ZjsRS0c+tBkWaKuqK9/Yrm7hcsIVK1pug9KQj1PGLdgmwP2F9+Q5/gb776mu3/81/48Lv/F8Zn5ufLaoAJJ5reM00LRSqv7g9oVQhhpJDZ9FtEK2LINKZjnhYiCSUWowzKe5Yl4HVDjRFVAyFfqFmQsnB6esf/f+//Xziwh7/+B+7/6je0918QtKDdeuU0ux3u+jVqf6B6TVVpDU6kRIqRkgK1nJF8WpMTKTBNZ4SJ+XwhnhPOt+x312jlGc6BNKzuJRMCfdOtfUHHZzrXoBe70ra1XQFG/Y5cWDEerCbt65cv0KKRUgjzTBmPcB5wBRyV3WZDabYU07C5vYWvXmOevufx2+8wTq3v0ZwpUZiGSDZgrWUaAnNIa6geRUqJWFdCWimZ3XYPdUGpirGGWgWlLHEJOGdB1gWJUoLWKw5zGAZShaQ1p3HBTpl8jjR+hiJgKjqe4TIwPJ04/tu3nN7+yBAqKhri8RkpisUnHv/5R0QiBmEOcPX1r7HaQsyQMzVaVDAwFCZV6fqOnCylWEy1lGQIU0FXRSoGqzpMLsQxc/x0JI8ZVVY4dpEKtSI1UUvGGIdCGC8TVVvabkuRhUKmpoA2mlIKtSqg0jQNISWWlDhezjxeTlhn+PmLl1x5j0OjCsQpscwBVTLYBttdYaUypkSxLe22Q1uNkXULXZlYlnf4kjHliDYTpnuFbr5mae5wKMKyUD9/bHQS6hQI6pkaJkav6a53vP67r0kP33L50zt0KGiX2fQOXMX3inyZeHgItMlhNw2+69HOobSjiCNe1j1NYbXTitYsKWOsgxgZpyO2z7hDi7raUMXz/u3xpxvYzTe/Zfurv2PyHaHM1HikswVvIJZA44QgEbSsyYyS0HWhT4/I+S31/J5cE8vymcljG0LSNM0ttrsmmYZQoZoA7kwYL8yXCS7PXC7PFBTH708r00c02Vjy/hrd9ijtqKJp+wNYi+l6qJXz4zPz8URjhDIPlJKxcaZ5/eVKDuiuaYJG3d4x77YMTmHFUJUmFYMyCkHIWWicJ86JHDPOqDV8bxW1QiwFZYSubcixksuyuq5qZZxOaFH4xhNKJelMLpkGwTjLxuzAKIJyUDokNTQhky5viJcHlC6ISeRpQi6JNDwyHwes6YkhUYuhRll/ViXTdY5E+Wzsb7h8fGS+XCghkZeMTS3briOIBr0BsyFJC9i1wL0I+jMOdBqeSE+Jy5szyykhUdaPQ5wRVXBOU0penzfWUqqQUl3te8ay2XoqE+22p9bCsizknEgpklJCqNha6Zwh73oK65WZCohmnBamPDDqH9loT2d6YnIUAW0V86wp3tPYDRmNKIdTG0yp2GlifvyBS/6Rmy8buu4V9maLuAMxrnWxcRyQNDMOI+38jJDW323VPJ2fiNOJRiekKowG12hUW9nuevyNIc4T4sC2Bi0KQTEvlSqOosrK8V0WSJFSocbMcfiI1omkZ/Rmi//yFe3Xf0M8fMPt7i9pJf4LB7a9e0H0Lcm2hDlAisQ6kZaC2+7QNa6h65gxopGcsPMT9eN/Y3j3LeH5gctloOk2bDdbtIHO7FA5U1nIYd3MLqcH9DRihonLmwcu779nfP6EKpnzwyNkQYxGnMN1PUk0oh3WN5jW0mx3+H5lysZxwQPWe5ZSqDWBg7JssfYVYoV50VS3p9kc8I1nmmdUMXTaUlRe0xnKkELGaIP2Bi0VJYWq1Bp7S5kYF8bLjJDINeJcJSwz8zDStC2xhNVQgVBSZgph3Zo3ms12T3d3i1y9wm+u8FIZn79n/PBvbDae4B0xQ6sctmsw/Rbb7XEUjj9+YJ4WTNboClEUxXmi9VTfcDydSSFAyWsDf6zoqDCbnlg0VEvJmsZ4clQ4ZamhMueIT57lWLg8TOQpUqeM04J1BlFlhW8LGGPIQBKhKL0msEJG6/UKHIYFpWU9kQGj19PWfM7cNtpwsC3KaKwYOutonOU8FiQXhrcfKaXgUZTmAG2D2jhEK2YUtSi8byGAcmaVn8ID3eZLYnzH8eE7XOvwXcHbn2H9FUo3iPbkuWJypUwTJSmQjlAzpX8FN79kmjL58omdXvupPAapBa0qOEUiIesJtb5R22syisxENQt5uhDniRzX0IrXivbG4F7cUr94we7v/yP21W/h8FdEtf3pBtaUCVsjxjp06Yi5Z14mGm1RWjGPC1iHqQXJF1Q8E49vmd7+G+ePH0lLpu1f0W1v1gxnMSxTYQ7vSfKIcz37xtEuJ6Z373n3+z8wvntPmobPlkLgcWFOsvpP1UjUM77r8a2slDKb6KYZjGeJhVIrYg0nIGmh3zSIzqirDfH4EVUtvrum/fLXHJYnwse3qPqJecjrokkLOVWG4YzBsN/vV8lmnhAqpmnW96gpEAMxro0K8bNOHeOMMxprFNM8Uj7/gZpacVqR84K1Dc21Z3dnoC/YbmXmxhxQ1mG7K5rtNdo6nn78xESmf/EVISdSPiNXLbYqlk8LaVoISeOvd3QvXrG5vWNc/okUFzSJUgRiRAWHV3bNOCcgW0rUEIUxJnQ1+GZLTJXz00wYI6pUXGsgBzJ5bb7IAHotCZdKyJmAI+XKcpmhfk4eieCtw1rL+XJiCXF1VonQNRbfOAqZXAtt19I2G+Yw473DLBWbKlxOLD/+EZoN0u45fPEVZr+GUKQKghBTZCpgWkduXpBrz6sv/pYS/sw8fkd+9w5Xv8HsvqG1r5GqCSWgy2pqyZdMGCIqG+ztz3jxjy2nu1d8+v1/4uHjGw5RU+LqT08kCgrbbAkTqJJA+z3YAAAgAElEQVSI8xFfemwreJexNUFOaFMJqZKVYLuGzWuP+/KW/m/+B9zX/xN1+w1Jtlj5Sxqd/sKBffj+XwgJbn6xw2uP378g1I7shSkpmDMNBVUCNh1hesfw+IbzeWF3/0u6zQum6AlpxTy22x21Jrp8pqYFmTPT4yMPf/gdT9/+M+X5jEmKJVai0mgU0l5Rp8IYVuq114601M91NRWtNYwZCNSQiTlxqZmqK23nUSXw4cP3mOGZl7bjqr8GZcjtHrW5wd/cYc8TKY3oqoCMrQqjPCUWUlo7gXMO5FyxsvbcKQ2+sZQFcqlYu5rEW7/ycJeUmKYF6xtSiiiBUBO4ijMN4oVYn1lOj/S9R/srmsMr9O4e1+xW11ZaqHrH7vaG5VKoJfDwdEGcQvWWNmnUvofOw2HH9S++4v3HJ4ZxXHlFktYbgqxf+aotx1AoU0R0/iy7CSKGVDRpKnTZUIphvfVWUo0oVRAFIUdEZEWB6lXy2OwOxNiSyvq+r3m1coaQCSEA0LUd3jtqrdRayHXtBetbD5+5wEucUEbYuY6aExutSX4k5RO1Bk6nBXN4sTqudLMG1zdbtKzBALP1GHuLKpbFJnq2cHxGpz+RLgFnA0bObNw1GSFMgaUuOFuJeebDjye8tGhdCLs9u1/+hucAjz/+iZ0tGJvWOl3lKBPs9y1CotkIigsxZqw2iE5s71rEbwlaKK2jv72mfeGJbUPe7ynNAdEtphaIJzA3P83A6nxB1ZFpeSS5Dm0/b2YFStIYFcnzOyScyJdH4uMHFIabX/wDevuC7K5RUaOWkSWeUfurtWFxeURf3nF693s+/f6fCT8+YwZFKVtqWS2Qtla0XRvwd61lvFyoNaE1xDgx1wXftFi1JadCiMPqIIqBSmGuiSVZnFxx33jm0xvUp39C3/WIM2TTE3Z3yP031O8+kscP6yAYg9KVGNfIWYgDkgtKVURpQhwwtmHXb5iWzJQVYQGJAWUS7dZivGK+JNpGsCaxTBOBSrftsbses9+yvX9J1SNlfCTFJ5qr1wT25POFfHlievgTsWbs/hVZb1BLQi2Vg9ky1czz6R2t0dRtR/Pqnvtf/po4C/H4RE4zI4miYWcUnkpfMg5FrornaSIZwXSRgqZ116TSkq0nBUuSjqo8IZ6ATE2Jzq9XVgDRsp6MTYvSdd16K491a61srZmcFTmVdUgRUiwYZ7HaYAWsqasEZxUVhTEebS1GwbJcMHVN03hv0Vc9h+ufU9sNqvEo7THar8C1kjDa0u9uWDpPUp5LHJB0wcvf4pJnuvyB/Pi/40aF6b9Am1/Rtq9QrUH0Pe7FX+FeV9J5oVwGVN+RNx1bYznZyvHTHzAukxuP2ezRyrKEGTNFtm5mu+uxmwZpVyp8c3uFuzlQN54lJ0JeKFcGo1uq6Vb6oXmmLBNMz9D+RAOruh5pHMpq2q4BMjklxCisVMLlmZRGltMDdbxgS6Xve4zbgGrQvl+ZpXJLrgktCaYT4TQw/fADpz/9CTVM7F3HYxpZ5swyB3JRiKo4D9oURBR93+KcXk8rvb4VY1xQk6E6g7YK6wVTDTlF4pKJc2VgQCWhpBOXt3/ANY5uiZT+nvkysL++5tG69UoaI0YKiKybvpjW+J8RSqlYD8oItcyEpa6oCQTfCKUarAGtIE0LKrG+61GYdofrPJubLf6qo7/bcbjZ4axnHCI0AaePZNNzWh55/P6/0dUzMUescWysY3h85vHHH8nLEd87XOfor69o7u5o7l6ScuHjm/ec3r3nfB6oBUQ7lHFoa8g5Yaqw7zacwwAkqqwldiFPoAxXt3eYxbM0njlljDLUzNr+GIX02W9ci1BIVFVotWPTb0nVk4swLxElCr/bsswLhfXjp41Ga41vPJ23iEpoU1BayGm9pqcQmNJCgyKX1SXkvUV7R3+9xd7eQdeTtVqfI88zcTghxtJtPIfrr0h+SylbVPLUuEXlL+n6Vzy/+z+R6c800xnXPmK7L3HNrxB3DSjcywPpBlJItD/7kjJMHH71HT//D/fMb++ZpjP7L35DcleQYXr8xPDwhjmekf2On/3qN5T+Bnt1j7nak+JMloJXoJcRkQBzJYULNb1B72fe//AtJo3cv/gPP83AyvYK2n5duhBIy0CJE9Y7csi4nIjnE3aesdpTtTBkxTDM2HLBqQbTG0y3Q2gw+UxeBurlTH44Mr59JD08I4tCiWEYTyxLRimD8xoR/dkdEqi1EkJF/l3bQzHPa61pv2npNg1KKl3vSVmY8oLLivN5YJgippvRy5HTx2cOX31A9q/w3Q3jaWTOAZwlz5HMsqZbSiVkWWNxIeOdQduMUxalNXEJNMYiWq/hdlkJfRYIKWPEUFQlW6G/umF/f83uxYEogUjk/Y9vub5qKaWQpkeKMVRusC6xudphosMtM9OHjxQmtsUR4kAtGd8YDve/QO2usVe3xKx59+0b5o/PfPzwwOk00CuNKINtWnTjMFqRpomkKtYUNAanC267RbkWjMe4jBeh3XrG1lCGaS30Vut+YFlmrBaMSThnESCVQGsrJReWFIGEUhpnDPMykWIkl7XqxmmHqJUJrCiQ6xoJjCtJoWkaihTG8xmjFpQplLS2jExhpt00mM0GcXuctjAc16K8sHB6V+g2YK5eQnNA2juy37HEG5r2NTftVwyPvyfP75mXhTlCPr3BuBPK/YH26mfY/kvM9gt0uYO6YL6ckcdvUdeKjf2S9v7XBPuaFCt9WLgen8jhSK4FubrHXX1N9QeywHR84vTpA/dXO1zTwzyRT88M79/h94Hu1cK1XRdXf8m/v2hgT1HYNR0xDCzDQA3POJOIsTBdZlwFlTJSNMVvKLbFbK+RzQ26QpifybKwzA80yjMNjwzvvoePnwhPJ2zVhCwsSyItEeUMu26Ds46SAzkvlJIwxlJLZkmJkgtar8OMUpA1MWiGISO6EAvrsGtDNVCyMIW15cCkSjoP5OGf0Yd3tFdfIOIRC0HJ+rNLCtEW3fTr9XuciXGm5IwNFWNktUIC6IKQKDVRJGOcA+0xuy3aOuiE7uC4eXlDs98xlsw4RqYhczxFxB1QzYF5fKAxM+1O468OOH9Fuiyk4wk9vGc8nrFk5jyQ5oHzQ8KrBuPBnAsqCjIpNnbLh08P5FKpn1NWh5trrnfdKnGxYkcaLSsdPgKloe1vcNs9oh0uRpp9Q7vvUGpNJw1zpOS1JsiUysY6nHNUJVQqMQVyrcQ4Y5Re5bXLSEorgjPESNf362laIqGu23trNMY4al6N8WNMOFVJMaB9BlXJNeKtwdmWnDW7/S3N/p62Mfi8o5wM4/EtsXzk/H6kje+x+xeY/gVieoLp0PorGv8lu/4fWZcOE7UGcjkSl7eMwx+Z3/9f+PaWbvf3WPMaykS5/Gemx/8DzHf4618jVwW3uUYlTxwG0mjRbJEcmcVjZC22VwjatLTtjuPTic5ozJQ4v33m/PGR+RQpeVU5iOqnG9jddkdaJlK4UOZHnJwJLEzzjMNRUiEsCTH950WKQ7Sn5PVNN01HzCzokqiXidOP75mOJ9RlQg9nxmFiXBJaNyir8F5BZYUmkYlpHVhYUYWVCkpRRZFrpRSw4pjnQiMKtDBNE9atxnNRwpwrw5JpiqOmhDeFPZl5eE+dFZubO9resex7ZoRaFK7dc7h+TddfIcD33/2RT++/Z6ZC0hRWYrwiY0xBq4LxoDqPu7rn8OrnbO5vkTYzxyecKyy1ILrj6uoFt2aLUQ3StBSzsPcjoivoA4Ud7DRNdkzvPhKDQckT4zQSNw0hDnT9npsXX3IMQjkFNqYniuN3//ovfDg+szcGMQbXNDSt4+7FNccPC8Np1YfTGJC2JyWP1MpcQBmPUxYpmatXt4xvN+Q405RVS55KWSOOWgjqM28nZFReyAyUqkkpk8paTCBa0AJONL5dnyyFAChqSavckyvGWJrGEZeyhsF1oWk1xmXcxqP6Bt80eN+jVEPIgtEaaS3ESNYntHmihok4PbM8n1Hqgiag/B3iOopuVliY3iOVtfII0FUw9UR79QPh9Hue3/0Bmf6Nrn0knj+Qnv4TevodVo7Y8gJ0AGsQs0Erj/MNOR6ZhwslCnUckQBVNComdv2OoDTPjw/U00ItHpobarNnKXtKaKnTQvdTDezV1hHiBakJ5nHt/yFDhpImaq1gPbrpyLqhFk88zpR0YXo+koj4rUHPZ+oPb3j+9geePz5TU6EuE2kaKKFgCfjGoRwoEVKKTOMFrSr9tscoRYyrCR9Zeaq5VKzz5FDJpTDPa7/UMkVIFW0sWLP27hahJlA4kMo4LDhvCU8jozxgdw2H1/fInYGi0K4j4yne453lhfmSl1/fUpe1wiYXtbqi8kTrK8YkxBXa2zu2X3xNd/cFaAEuePHormdaClU62u09U/Eo16PbllIukD+uZWd0LNFQrFAoRK9wd3fQtqicyE3LxznSXd8yhYAKha5Wxo9PfPz4iT98/6/MkuhQGG9Xp1XNTNOZmBeqMnS7PWV6okpD013hD6/Y3P8ccduVqSMVu2l58YvXPAwXTJrRXYtBM4eMUhpKIYbVwaSqEENGNBgjrJTQlRFrjKLtWlJOhJgotaLEYK0lp0ytqyut9S2bTUuKgRwuGAu+1WyvOkKr+PObH3B1zxd339BpRSWRwowMP5JO35EvH2nbLVf7G0qz7k2azRb0nqwaRAkrIyAjUlGi0WhEGjQ3iNrjrr7gtvt78vzE5fgOiR8IE9jR0NiWNBlUVEgxKNUhpgIe0Q5TOpJU0jLz8f2faVwPxeJMy257x/WLe5bNgnlRuBzP+P0dutsTzxPD8oHrn2pgj5/+TMqCFouh0ujVnKBKwNSB8zxRsOzbG6q9Ykme8enE05s/01jP4cUtvirm55H3v/9XTn/8E/N5oooi1bzqmmJB27XgKxsUYNTqJ9Wq4L1nmRbmeUEbS5WyvvtSYZ7OxDmjlNB1Hu8MVus1VRPqaglMggVqDqSaSTlSnWDEEKaBYRkwscf2e1p3Tdc4YlxIJQMaJOEPDu8MMTWIOK6u7qkVpulE21RyHog6cvuLb1CHlyxFcXz8QGsWxCi0u8dtesYxMdKhtgfo9yQFLhW4VFJcqNqifUuOmdP5kXl6WFuFupbWNzjriU/D+jFKCzZGtk4xmUgsA6dwpvy7b9lqur5FixCmcU0Rac9cFardYw/3mM1LzPY1+Guc7/BSyecF129o7u/xl4nhh4+cHwaG44hNrGaIUiiZtVaUtbxN61WyUaoyjQNVNL5pqEAukVIiojTee7S2iARKyozDQAwz2349db23KBUwvmIaMPuOn794Qdi/wm83VMmQR1hGOlnAFGatMNpj3RY2t5jtS8TdUNUeUxVVEjGNzMsJpcBqi9ItShxVVbII1fRgXlOaazB7itPokphC4Dy+Y1++oJUbUjSgNKUoSlWI0djNBmUqiznSi0HKqnGfzpEhLmy2e1S7JaRMf/tLpNsRCxRzQpWfEIalcsIqt9ZHKo+4ZtXaysg8Tiy5Q3HNOHeobJlDZrkkFB1us2WZI2YOxO/eEd++J5wv69WnClUUGMNcEqMZUKnQS0vrPbkWnFa4xlIUpFgZhxllE6IVIgoEclrpbrUKMRSi+Vy1miLWKijL6rwRoVA/f9kF7xTEBVUrfX+HuXlJ3R4Q6XCSCB/fkpcTmIJ0O9zO4ZtKY9b6GqUrqSr8/oDrG5Y0oPVEObzEbV8RpyPtocGYhqJ3lPY1+B5n1kYCq4ScKyKa5fJMfXiDkQW1tdQKdVE4LNZ19CSGy5mU4rrNtYZ0OiEpUWIk3zlk45nIhJRptAJZdWhjwFLIU4IMoRSSFZr9DWb3im7/M8TtEb3S3Y2uVKOYxwxZWIyFzQazCNtLIlwWRIRqLNUJou1nlEtcMZispQeIh8pnRk+mUkm5oqpwvMzAChQrOaOdw1sDNaKVY3e4JZX32M1IbRP+bkvubjl89Rvs9et1kTcPBDOxGEOxV5QOsA2LGJzesEQHZJS9IMYhVVC6oXEKVCaXQCBi8oKS8DmkYIEdSIftGxZj0M0rNoe/Zzy946IMNb7A0xOSIi0KtEOc/HfKXVE7stFIUaA1jdckDIvxtEZDFSa/xhGlgniD7DY/3cC2u1tEN4juCFGISbgcR6bzBWMEt9mBccRpRA8LTRF8jpRWo+JCvAw8vvuB85/+yHQ6UnIGhBAjKI1WkFlPPbTCkLFa6JqGlAPVGqJUkkT2t3uMtywhrj1LRahVIW5dciiBlBNC+SzGR5RKWKspMWK1YA0kMloLrrM01z2Hr/+a9me/pbQHRALLw5/xaqGtgm7XXKQ69ARZcHpGeyGmC3NIGN9Rm5bGXIOFrFsWDNJs1ghW1Sh7heteIlqhypkSF+J8RJGIQa/VotJQqsIWS50zZgnY45FyPPL04ZElR9qbKxBNf7jBqpnnhwd0t2GxPThP1WbVixFqypQcGcYzrW0wJq2s2/2B0DhC267yiDN4WyCdSBGKUbSSOecC1pHbjnfn77nqG/av9jy//0SKBbQGoxFR6wfUKHzbr5U4aJTJxDRTSlqRpSUzh0gpgZgqSnlqWintrdXUxpGNZr9X5PSBZp9p77fo+ytkf8vm5pe01y+xhytSLcQ4Mte6Ou5aIcfKNM6oPOLKCbym2oh2HXZ3i3UdIhoxnwdZr0CxRRKU9W/S6ZXpp9S8VuCWV8Adyr2m2w3EtDAkYRgqTW/Q3q9lcdNImgfUlLE5o+LCEhLKtVTbQ7v+L7KaSkQSNcyYFFDjhenTB+CvfpqBTcWSUyWEkceHE4TCtmnYuw3FBKxtWUImjI/Uy4Xl6ZE4LRjb0mhDGi+cP7yjjiecVoylrptYARQUMs6vOEOxniKK03ChaRv6zZb8Gfu3vdlgjUaMQS8Ru2SkGqZhZhkWFCBUlFFrUqVqRDJFArkmus6iBIwSbOsQAdUJ/uaAvrmlbm7WFnsfQR1RbcJqjfY9anPAbzbkOEH4SEpndKPoxKFch/gNoru1jqbZUhtHShXrb6G2KLdDtFkrYkMgTiPCQm8Uua5kctfdYCikoMnDEU5n8scfKcNAbx2u6VC+JTvNxUWyN1x985raeFzXk5eF7e4N+6YlhrBW+FSYzmcustB0mu7qgL2/4dJ4zO4avd+DVziZ8bUgITF/Gggp8/jwkc47VLvh/pd/Q3g8os2CXWbyeSAuCYmsVZ41kpMwXio5C1o5nF3B08N0YYmr6T/G+Fnu8VRxzGlC15Vpk3VhSZnH5UyeCy8Ot0jjsftr6uYa7BbjW5QTvG5R2ZIXTVSZtm1wypGfHhnnQrUJZwqpRuY4oPA0G8H5DpE1QF/Lqu3zuQ2CWpAcKGVE6iOQcPYVxbRMsWNJiqId1ULKQMq0FioayQYipPNIfD4SLxdSzijfkJsONnv0dkdwstYr5USTI/n4yPDuB57ffM/P/5f/7acZ2PPDM6nodXOaEyYn9HFimQbECJv7l4gY4jQxPn2inp/Y+obx9MjpfEEtAbPMiFQWEZSsqftSWT2/pSK1YFGYqta3kAjD8byi/5Ri07XgP7s4ayFT0d5hquVyHkl5pn6uTG2MxTcNGkAKMWtCCjjb4sxqYSsxIpKpydH0L/HdgefzWywDvrvB7RqMa7FawK6N8kmzwrhkQZzGNqsHVvtrlL2lqA2iC4vI54JyobB2QJVlQJVnUsyommhUJUyRMq3IwhIWnPaUJbA8HAmPT8THT8zHR4wxtLtrJoHGeULRtF+8wkrH7uYVUfuVj/v0QP8vf+T19Q3fvn8LIjTWoVImDZFQBbvVuO0BYy3d9grbbXBS0fORMp9I5wk1V8JSqOOEuWnRusfvdgxxSxiO7O5bYvoBkwekrDW4tjU03jOHQFoSSxgJxlOUImSIeS3Bs7aDnNGiCQgigiqC5EqNGdd7HAJz5Pnjgr03mAXqtABHpqc3mBJx/Q6tDVoV4jRQy4KjUnWLNomaK2EJ0LQUbaklcDo/YsKEdS1KaUpK1BoRvaCVYJUmfrZHpvAE5cx2EyjmmiAbxPuVoJAr1ilCSERZEGURcejqqCHDeaJ8eGR6fkDrit9tUbsNbDYs2y2b3RYTJ+aHd1z+/K+Y8xPNePlLRvEvG9gwxBW+JAqTC/OnT1yeHtcazpxJX5344jf/wO7VK87eMD951LygFmFEiDGusTpd1+oOhFpWqxqfr1MxrPpeTXFd1ytYxhGrNcY1xDEgIqQQsQ6c89QsoBRt06zG9BRpXEMpa0G2dh5KRumV9WmcwRoNJSFNJc1ntHVY7dB1Il4esW5GqQ3iDShLiiP/H2tv0qtJlq5Zrd1b87Wn8yY8IrK9twpKJRADRoWQkPjxiAEUVAHFzbyZ0Xm4n+5rrNs9AztinIOY+Mjlg0++zba97/OsVaVE2bIKkoRBtDtqUgT8+rZ3R5I5Is2eVBZSTYCELIjLQk2RvAzkyxMoR7/Zs+1axqCI84JuHcVHni4D8XJl/PqImmeE99huS3OzR2/2mKrwQoO1uKanOdyR3J4iN+SiKeOCbpsVKSvWutriPb2xXGZoTAPs0M0eaTRaGIwQOFmp00g+vzI/npFJ0/VH3t9+IJXKPAxr0b0ajnffMlxOPPzxluvrE9NwZo5XoipARTQOoQ2uakoqzHNGmBbTben7DkpC1YqolSmsV2HpF2yJWAU5zlTrwBwIIfP665lOCdpUMLvAEgfC13+l3d3QbnY0rSPPF15PT2hpUMqyTAsZS3P8QHPfkNAIJjJwHa8UodahaYUcPUYLtJE4a7HGQNEIcSCVwnUuSC1XzaZ0kAo1FazMpOGZJBXt9gYhNK3bIPqJYk8YUcCP4AfE5YlgJHK7o/vDnzk0BlMig5+ZxisyLGzcb6jq+PrlhGtautaRUyJOA/HyjEkBbSpLOHNdLvR9j9vd0pgGMcws5USaA8s0gda4xjBdryDWvmh984GmyEqgj4VsEkpEjJZrqki/uVGFwZgWJcoqg4oZWQXzvCAQWKvJUqCtxU+BeV5WSbEUayZZG1LO9Nt+9QTlhJ8yqkxk+UgOmY0ytEYjRGTNFza4RiJdi+g2ZFqUNMhGIYsj+IGYWcf7tqeYDk2Pyh4lK5IFYkDlhTA8kr78wpQl9XhDaBpiLah+R9V7jNmSrWTyV0oolCgwZofYNOj9EbM74LLEJElOmWWaKWagc3uMbihL5evTK/3xQHvccPQ7lE9MPkACs93RfPw94ttvyfsHtCxIq9fEkhKgFCFkZJYsPpFlRMsFJRU1ZvzpK8PlyrW/Yffue/R2i/3Tn3HTGXH6Sq2BWhObxiJSwlRB9pHbRbE93OL6jtPpFask19cnWq1ohwt5HClDQYS8Jq7cuoZLvWF7aFiWV8rzgo8X7PiMsA1VWUa51ilvbneQZ8L1hSw7lHAsk2eOimUe2UiDOrwHoahvtr9Exs9rN1vkTBQKoQuzMxjTYYxDyT25WM7LQuMcWisgruC1mLB5pi4DWA1lS9ts19VdXIidIquFXbfSN2KqhFkgcaivJ6JyXIcTZZl5/+47tBJcH7/+dgd2Ghe6bovRFlMzsnHMTUPveuy+xd5/QHQG3Lo0b9s902lZBzK2Ybs7UMKCMgoxriV0WHd9tRYKClEESICV96O1BAqpgrUK3bVkoRBvAXKqwFhDKYEcK9IYlNark/RtxZBTJJW1ZRJLBKUYxgljoBaPaBXdnaPaGV8nNsc/ofoDWZaVUyscvoAze4Q6gDTrN3EEpMF1RySSpHvQ6xMyZokUDlEypJm8BFSJ6CqwsmP2nhIyU5nWfPbb9FpJg2m2HO+/ofZ78rxQkSzpQjWWqgyiCmJ4o3VETwjr/MBtHUZu6W/fE+PEzaffo9sG//TM5cszwbZsHz7y8N//B+TxgL1z1PmFsJzRWKTU1Kahf/jAZltZQiFiGJaEBYx12KZy0IoZj3SJ2jliv8N9+p5vG8N2Y5F1IS0X6jISLwPxOjN8PfM6B/b2SPfNJ1QtmG3HfHri2ByZjCJJqGMh+ZGm2WGPB0rnqG1BlYhQEWpAxomSAtv9DUuZKcPAmD+jRKAuE9Ju30DiLU17AFkYr89r26pobNshbINyzUokmRdyWCkdVRaKBGs9yva4fgtqg5Atc9TI5FEiUsJAjQt+mSjDM6p12KZD2Q0iB6bLI/PLj1yuX3DWIB8eMLpn3x1wN++wXcd1HhGmp5bK63AmDWdqiL/dgW2J6Oip10T1IywTrllxk83NHrntQUu0yqSaqEmw3WzQ88AwXwnLwni+kIWkoMl13WFJmdGseWAkSJVXeVWIUBTO2TXJJCpzmpBVo2BVItSMN4qiKqlkVKlsuw6nLDEURGb99y3rqsdHlJakObBpW0JKNFvJ4WGP3vW4d99jj9+TbEeQE04bjG3QArK5JdUdVla8/0KYRqwyaNNQXY9wPTEXKAtaWUROlLCQpzMlTlAKSu1Qtx37ksmignXItkd2GwoCnwJFCOR2g+o6xDIha8ZUQxGJnOOa03YamQ0lw5wy1+tXAoX94c/Yh0/EKrC3v4PrM9JpcmPZ/vHPfPs//M+oP/7XtLs9xUxINTKdHxG80t19WOt5/ZYYJbu2ZwpQhoDwATGc0Fuo4US5Xrk8/9+IeMLqf6K9u8ccj5RGIdSCSg0yRvp7eP3lkToFTOPQ+x2Na6l+RBDBW/K0cHz/nthvOP040bgN+nikefctcrMhxgEpe1J9guqJvpBExWaNaTQ+nclpRsmEqIkYR6JsUf0ttbmhNpvVqSPXCqG/epRpqLYh5kLOeX0BZFYW1TRCeWZzOJBLRbY7rDQkMqVGaprR2SPijAoDZb7SyEydTmRjSJPHNgL9cI+0BtUfSXZPc/sB3Ga9mitFIwuqeOaXL5h5IDx/Rczzb3dg7TRQChSluJy+YnLAyPXbY9PcEokswzOFxFF0zOcL4+Mz118/E6cFXViZTXPCbfe4DqZlIdZYjAUAACAASURBVJdVpCUkK8uWTK2VVKDmikwZaqbvmlUJojXOGM7TTFhmTGMQWqIbu074nCGVim4NTlnCshLxtZZQFTF5whI4nRdsJ9h2K4Vvvnh8d2S7TSQtUO0W6Sy1FKRW62SwSGJefbXBvxKqZLd9hxWSikCkhCgJJSqUQgozOSUa12BqIgwXjAGNZvSemCtGtxSzJVOIdUZJgahypcYrgRIKY/dIMiUEYhjXwbo1SNmxo2eshdeXgVhPbN9/j8s9+tBijWVG0r5/z7f/7X9D9+k77MN7VNOh5AZZz/S3W7Q6YewTRhww23u87CjS4rCIG4kqIEJAxjPL89/hy9+5/PhXTMjI4Kgj1OaBRIuwBqUN0jSUIjHvFL33DM9PvL78QkNB+xk5jai44F+f0X3EVDCykutCkWdEe0fZ7HByQ9+0hLkyXB+Zg0K1HVefaaRa2ccprgb2aohJoLsWZRwhr0oYIRtcZ+l0w5IT8/XMFJ5JuWC0RSpNFo4cCioE0jQQfUYUTe4jdbdHavVWD5TrKKYo/DSSzk+k0NB0HbrdUZRD3Rwwh09sikA2LUXadV9dBdSyonDNCuLbPXykhoCdJsLwG/phy+kFuStoZ0hhRJVAv91hRWZ4/pW5BGzXUJaJkAynv/7K8nImjFes6UhF4+yGm67jGgvtVuOz53R5JOeyDoHEGmFTWpNyppYKIaFEYRpGSsoomykmI6REm/XHDjGiraDreoSAUjNKC4yWCBw1L2tFq+Y1PWUs3W5De2yxB4PYSLCaIUhkzDRbA1ISciEnTxgjupEIszpSalmZxlYaaoKwrNnX9Lb7LKyFhFAN2nQs1xem4RXhR5ysLD4QlcYrEFuJM1sya9qrxkRNiZIjykikAIylMQJEorB2PgcvKLrB6j1WG7osiDkhGTB6WRNCSHTXIvYH6mFL3bZ4va5gjDHocssmf0McXgnzz0izYJp1PVWkAdWgqsboBiEcOi+ozqE0LGlASGg2kqoWsn+i5AbZ7nD9zWrtkyv9oX94wDjF6ee/Mn7+Cc4n2gLz6ysqzviXZ4xu0drgi2YZr5hwRnizip03BikLm8MNRViyaahGk6RESUERkqWkdaioNFUbim4w0r4NNd/0mTlQQkDlQE2BvARCrjT9Dtmtqas4jyxPryynE2YJuPcfKVJgmmalcCKp0lIVCLuBZsOSAq+nV7Lb0+06km2h3ZGEpQhBZsVU1bL+4eSayEuIVQJtDKrboPbptzuwfj5jnUBh2O8McVxTKi+Pn5GjQTeatBi8HplOkfA00VZN3+4QumFMarUEaMv72xuySmxvGtRnyXC5MI3LOkkWCgHklFECRBUgKjlVvI+oXCFXUozUWohLIMRIDInh9cqmX0vRIgmK8tQcgITS63pDCEFShew04nCg+/23sNughcRJh7QdOQZSWdshOQZEFSi1EEKGKlBF0Mg9okiSVxRY3UHGkKsgJoOUBmEclYXESFwy6XRlzitBcHtzy2F3QPVbirLr7jgHUlrwlxPz+YTWks12h7KW6GdEGNjavGagQ0GZFmxFKGiyoFwH4mskD8/U6yvWWTb3d9T7W+yuW2kWMqyM6JKoQmPMO7z/O2l+wu5e8eOvGHukKEctgUYWhNDo7kjb3CH7nrOSZG3QVpPNhtzskKpAKhAquUzkMjGNV2KKVNVg2pbjwx0tE15l8nUgiIwoC/c39yjZM2eFUgcinmkodPKVf/3P/xcUz8PHI3ffvkdvLUUpSpX4KWB0oVLRtqekDmV2pFLwS6XtBForfAgscUEJhZ8mZEkoKroGhFJIEr5kVBVIKaFWSoxcXx4pzfpwoGSUa9DOIpUBqcjtcc1pV4+UUFhZydNpQE0vFN2B6ci6oWpHFoqKJBTQYoWSS+qa2y6ZeZrYOvvbHFht4HDT46wiDa8IGVdUZEq01dIqS04FmTJ+jFhabg53XKaJrNbeaN8qLuPMNDwhWsvu9ogwga+fV4zo+TISUkDE+OajFeQi1itp1cTImu2Naf32EIL/Py1VwUiJU4CCvCSySGvXUmY0GklEKCiNJfcN8v6WZXOkdgeMdjTGkFPATyPezyuDRxnapiP5DGbVMtZqqPWGeRwZrmeaXUW2DW27xQgNxFW9KR2FBtve0dwIlgz5+oyzGlEq8/WMMh2gKa6hxEwNAX85cfryE8ZarJJIo/DLhTKfCTrRdi3aNvg8k8KZiKVOlfl0JZ0yJntKiBy//z3bVqNuj/R3t1gyri6IBDV6KIoSFSbdUeYTQcyUcOKmn9HCUuKEqAmfJNxJknagOjh8orU9jbP4BFU5yDN+uDBdz5yvL2gE5ILShqgFslGIfou8e8d+f6CMA+b2lusvP/DL6ZWPH480/QN9f7OiQMuVPH9BJsF4GnhOAWssbTaIVqzkzMUTayCLhNtqqsnEy4yxgsYlavAIu1DMOriMU4YUsaJATSv6VZp1kKl7hJQsORJrobEapCQPA1FrVM7UPhNTWr/HlSbbLYgWIyJSZHyKLF9/Ip5+ReSIaw9ku6V2t6jNPdVuENpRbYPVGmcksrDijJaF56dHPh0Pv82BdY1BiEqOC5KMEgKRE7pCHANOG7SxONsRxIqPGReFaG/pN1t0zVRRiTUS/UBKDbY70LOhOTsO+yPfCsW//PVfiJNHC0EuBVAIaQjp7doZJ4RYtfbWOow2GG2JMVGlxudKzGtLJyHQoiBkpZpKaw1owf7dPdtP3yCOR2prkVIgkMgiVllWTmhpUbZFCEvOikglVZBaY2RPNRafAzUMcH6m8y35daSGhJQTdAfYvCeUBo3DNXe4G0mgItXqV4l5Ybh8XeOR+o7MGpPrWo3v1mu5MhKhFN3uSLAQwoDWjlTWWqGoGXKCLOi7nkseGeZEe/ue2z/8E+rQUa1GqBYpNSJHZAXpwYdnyuUJrpk633Cdn9E7wXx5hV5ASRgCShji+JVJ92Tp0JsjyrXE5BF1RuVIRaF1Q9N4wjBQi0brHtdscBqKKtjDju7uDpkXdFzYjyP+07f8l//9f2HuBf392+osSwiZVPd8+N2/RY4X4vxKeAnMwyPSnZFCUFNiGs+IxtDcJERXaTaSpCKLvDCWgWIcxw//jLYKkQznxxPDcqG1irbvMI3EjxMpnbE7Tdu1xKYlh4nWtohUKdcroVZEKYhutTYU5FsXW6zzDS1o1FpGiGlkfvyVbF6Ya0NyB8TmjiQ7qnZvgHkJVayfVUWSU2UYBvj3f/5tDmzXbkhJ0G32CCQ1DcyjZx4jfSdJc1x7gELS2h3DJZG0ojs+sPv4DQuZ09NnYvgJlReMUAyvT8hGYPoWAZAzt7e3vITVWwISoTRoiRIFKcva6EEgKtRYiNGjtEJLQa2RaVqHPqKAFhmMxlhDsg2za2hvNqiHB4Jb449qnqjDAFlglFsB4KWuzlRrSQl8WMAIiqtrCKO1lEZQTYuIZf0eiZn49DP+7z+g6ivlcE/3x39P2rxHuS0Jveod3YEpTmwbSy0LVUpqTqTgSTmBP6HDV3bNjK+Ccf5CUJKmv0W4O6w7IDRYKVaYeVWY6AhVgihsbIvb92y//xPVtKAgzjNludAYicysnxHnmXl+AT9Sxow1Drv9hGogJqjjC06NGAaQHWUxyM09VVliNqQcWC6P6OkVOS4UvUVqS2M72o+/I8yBsgSqH9BFIPcOLEjbUEOlSI+QEsMt/+5//A9cXp8p1aIpXM/PXJ+fUVWSr5L4Ass1I2oAGahUjJYoCYjCOQ48/TKxvQ+4w0iuA32baHuJaCVx9KiaUEJjiYynZ5Y4I7oW33SIbkPZsk6UlcW2jmm5Mrw802y2xFnhTxfsccEejtSY0X2L2XRYZ1cwnygsOdFvjtx+888s9sB8HWGJ1Fzwl4GUR2rKEEYIgevrlVokRRikttQK8D/9NgdWZ0lZCkEVOt1y8SdCSrh2vR6UWNBCMp8948tInS3dVpF8YVwSsu9otzds9ndMrwvXlyfEMnD49JH7Dx+IywC5Iq1DmA1CtXz3p3+mCEWMC9lfma5PLJdXpuuVMC/UsqKns0irw7Oxq45R2HXIYDS1sdRNS//xPc2+ozv0qF3HUjN1mOk7i6KgpWYaJpZQsN0e2zeEYV7f0lqj5fptDZVMImlJe7yjyo5YPMIW3CaSnCNcBaDAGtS2XZ/Ayq0Ppk1HWmaGNJPyFakVSTTUJFdTwjxy/foFPz7jtlv22z1CJGIJSNOSi2IJkXbTkaUmloo0PW3XE+OIYqTfrRneeZrRCfJ0oV4fyWlkuFxIUyCcLsSYcW1Plhp5c4O0G2g6ilYoNZDnL5yu/y/GNOjDhPQbtG6Q4oBQGl8iabqihoAXnnazQTXtSu6IifjySHr9glaBTb7B2XtybkFIMoKkJENJayRRGk4/fCG+DMTrlewD+817Du7I1QjG5YwqGUXFGoepqwVQ6spGWpYC4fmCqrA9OsriwVmM3lJYM8tzCmuyaLjSpYXz6RGcRu8OGNFi+yNFZZTVuMat12M/QWmosaDMQo4nss/okEEokhRY1yIExJgJytFuPtGZG8TpmU4IUB1LkFxPV+bXZ5bLlenpFTVFFp84zxPKNatW5h85i//IX1peruxu7yEUXs8vGCW5ebgjRQjnAFLSb7eIaPBlIsbEcjojg2eYXth/eEeisL1/R/vuDvf0M5fXR67nkQ/fvYfWMI4TNJrtH/4N/eE99+++Q+iG03Bhe+i5Xp9ZXn9lPD0xX88s08hlOGPbFts0aL2S55VpV1G0dRjn0H2D2Jg122sF1Qh0iqtBXitAkoXG7joUhiQbqtsgpaa1LabpmMO4Vtqix4kr2J5iDWXjMElhqJSthj81yPh71PZI3n8kyn6Fa0tQCETTUZVFlhZRHEVAERakgRrBPSD3FaNvscYQr5o6vVKaGbm/o9oGbTQJA6KBtyaQkiufl+RpakDHM8r21AwxLly+fME/f0b6hc406GFZHb8SijH4qJHVok1P0BYrO2LUXJ/POPVKLzfo7TcMwWG7tFYiqwIacin46RHHFT9JrG6xvjCdfuDv//F/5eONpUsP+PEGffuJ0t8TdEumpbGOy+NfePnLX7n+/RfkFGn1Oo29zF84hWeMMGz6lnkMjOPqWi1yZZHUkjFds96igDp4pNVUJaA35KxYYqIuM9GDbPc0D99RxhNlfEELT6MExliSj3gSWlSUVYigCCFxe9iwU5YlCeISSHXEVk21jmIkcym0m4bN9oAB5mGgxhXoULwnp0CKqxyrhApjJr2MLNcZ7Rqqz28Std8QEbMIi5OOzrWkZSD4wBwHjO6oVZFj5eXxzLG/pcZCCokaF1SQLJfMfP6V7v4d3cdPHH7/T9x++o7nn/7K0+mVnAxaVGryaNvQHg+4w4aZyDIn3M2RxWluv/lAWf6ETAtpOpPDxJfHr6DfrjHT86q3lwpnHVW8XVWpqy1AQqqe+TyQ44LTBh8t0hhcu6Xpthi3Q8l29Y5KiVANWa7dVErEkJBxIodCsJpMZHl95fzLM3/4t/8Ovr1DlozSLVkaJJIcAgszKXlKDDTK4oygUpASnBbkvEYhS3tDLg2pHhiGCzotMF8RTaCVB/RBvgHPPEqvqyZEJOQLIo/YOpCHL0gZMf0fqdWBT5ikiDOYKPDXiUUI7HaH3nTYnWNREakGwKCUWIVf8garfwc1UfInonc4B6IGQhJY41BdRw4eMSWuf/8vXM7P7G9uuL25xdgT3T6gtGR8+YxJwxrqxyD6d+gqkeeB+cefSJ+/4saF4iFKibYKkqemTKhvk36rcKUh5NUOKMT6gE6zR6eCkBKlBfPLRKgz4xjRl4q7SNQmMiPQ1tEdbpHdlmxb5scfkENEjB5lIqFkipX0rUGVhs2+oTYWaVpqKDS2IxUBSlLL2uslFXIoVLMqNjGV+XohDRNxuBCXjLM7CIkSIktMXOaVb9X3PXa3Z0mJput/uwMr339D3R/ZvbunPx64fP6BsCwY1+N6x6bZEK+eL788E8dEWjLkgoyZQEQsAxTY3H+k0R1JG8T2njYbluFKHM7E6HF7y/T8yOvrM5iWgMGe99x/+gbnBbF4CANh+IofXtFWrRxYo2jlBqEgzMPq5pkGaowIZVFNRxSBJQ2UvNIfTL8hFY0ShqwavHCIamm6PUizluKLoIRAWiZEmKhpJueCkg35Dfu69ms1WQiCkKQMTQWRPI3R+OmCjyOZQEoz0rZIKxmuX7EK7u4eUMoSlURYTfIOj6NEiRgC4RxQG0vaZYz2SJ0xWiDkiDbubTilkcVT8oyIr8R8oXIkLxsEGtfdMbsRqRNJZ8R2Q3O/R7WAi9g6kRjxp5GueLRskFRstyPkQmoPGLnBCUcRglAytWakyWR1Zecu5PyF6/JImDIvViF0w7v/6r8jXq+UNBFrgjCj/YUSC2IKfP0//jfGz39DjhPLxRNSA07TqpWkkWtZp7Ulrg8OAUtMhJqpAqRSKApKr1uCeZoRQYESKARxvpKeIrJ5hoctselI3Z7W9AjVE3JPeJ0R24HN5ogxamUtSyhao7oGud9QtaOzHdv9Hf32gDGGlTiWSTkhhSIsEQpY2+BNR6iSEiPL9YTqKk61FCfx+x777ogKBb3ZIK3BX0fmfwya+A9GE49HhGuYagYBsm2wSoEytHf39G7DJC/wPKyEBFd4+fqIlgKlVxPZ/Hzm9LcfcP0eteuxRfNxd8d5GHk5XQlxYrvb0SjFtUZkA4dDh902GDEwPZ3J5ZV0fWT++hPXpy+gDZuHT7j+SC2GOFxIfmYaL6TFo6XCmAZTArUs5DytXOS2JeWCkwbjtmi3A7nmQWtVa5cZiaiFpkSaNDO+PjKeX5iHGddtcMcDtdnSdzfs/nzPUgtpXkihMOWFvAROMbAsI9oIbK9prF13fVQ6Z4j+QhheCCmuLRs6TIEqIpfpSjy9st/voO3I0cMlIupMVoUiJEZ26wrJGJq2QVqFnyKGhapPSGlRmwZRNfu2ZT6f0RW8EoRti2wquilYs0WUhegntKzkPEMZ8OUM1hD1QvYjuVq2D1usEixLJpeEzwPz+CObW3D7e5rj98jt75DNA2CYhmeWrz9T5xPoBj9eMPnKL//pPxM//0KdZnIQpKKpqqWgGJaASBFhJM6plVdc3pB8b+s+oRRLSMTo2df6hvRJaCRKaAwWiaaRBpEKwlcuy4DIitgUNII5VVQW+PFKfn5E3hxo2h6hDWbTUKSmUNFWozYt5rjD7fY0rsU5Q1hmpnFAyRW/M5wvdG1L1x3pHhTJWYxUjJPnOi9QobQGd38gLgnhGqqUOCkYXi+/3YFN40DyC/P1GV1mVBqBQimJOJwZZ0+8TsjG8Pr6RAkZtVkZTI1SNLqlcT3lMvDlP/2fNIcd0ziybRwyXCmn1/Xb1x+Rk0E4w/a4Qd90VF0ReaIuE4xfyM8/w9NnuvFCKIJ5iYzmC6nUlZFrDJvGord7qrAgBFUEos/rNRKLUA21OlJWiAgyrTa5GAtLmBEoQokUP+HGC/7rv/LD//MfuTkeOd68I9ZCGtdQRWgsoeoV8zmMKLPS/XTf471HLQ21ZJSV60FjvQIr2WD7FcpNnjn/9Hfa5kheFGLMdHkmEhk+/405RIzt1i5vnEAWhGuQ23t2Hz+SHMRF4Q4NbfPA+PqM6a64zS266bCHlpgKzr8nLp4+e7KueBEpRkCjMVJiuoFSBsI4I0KmZs1mc0cVNyw+U8uZcWhx/R2q21LGibbbE4+fmKYX+n2L2e4pjSXpCghEd2D3TsN0YJguGFE4/fgvhMfPiBSoCEIRLFkgSGhZKCJTlFnrkdawP7S8fPkVP3m0ceT8hhaSgiozk4+E4JEFcplod3uka9EKxmVCCFC/SpSzbDvB8/NXTGOQroCAsIwsV83+ZovUklQBYxFFIuaVUe06gX7b/UulSbVS9NoAiiGQQyRME7oWSnuk1I6QDdV2JF8ozjAOIzl6lFREsTbGchFoAfvuH2Em/oMH9stf/kK326A7A0Q0CXJkHj29mRmyZH4dkVFAgpvDHUZrHn/9SsqVWaS3fSOE84nnp8/E4Ila0zrNPHpKI8k5U1SiPdyimy1GOWS+srw+UueF8vpMerkyXyI+CErNuDgSlheyFuy/+wNmd4Nq1m/rmCXLslDSvBrDWfk5VQhqXpguAVdBKkeRLaKxGGMpS0KmQBquXE+PVD/zze9+h21aZLfH9TdUswW7A9NSciRcX4nThc3tA7bfYDdHDJoYF1KYScWvoffqEVikuKdmT0rPZD8h/Uw8DcxfB5angcvjiWWcWcaJFDPOupV+QUGKimkazPsLu01L8/4TlxgZFoXuj7jdn/HhQr6e2BwPqDQjjcS2khAMeUmEWlelBhUlV1NBkT3ObdEmEKsi54BQHbVYKJCiZx7OFKFRSlEQiPZAo/8I8Rv8fF2lzeELqo4ocwDtKL3F6B2bEhl+/hvqOrJtNgypAgVZJTYWlsmTvEQ4Q0iJvhUg9GqAMC3VFqYFapYI6tqvNivXK8aVHmGsXdNvr0/YpkGqtfvqykLxM6c4oltFCQZjDVk59LYjO4uyjlwtWrerha9UogCRIuRIXGaUaRDaQK3M88RlHDFSIkt5uz0J5mEkLYllUvjFErIjpwAoqAptNBZL1RqrBeF6QZjfECQezmeqnzGdA1kpOSJiQlXBeXkkLQmNplEtUmhizgzjSEqRje3QxpDE+jRDK/au5/Q84ufANFfs4UB3u+H4/hv6P39C3j6QhCXOr8TnH/G//szw5QkZPCVlpJJsuz3bbYuIgYGKuLvj/vs/kJrNmtN864EWUcmxYJotuRam5IlpWUMPCEIqyFjRqeLkul6RsUDwiBRpnMV271ZEprYIt0G3e4TpQbektK60mk3DVBaElBQpqdpimx4rN+Q0EfxISiOkRI4JURSiCqqfyecT5emV08+PvPz1F5aXCdLKqkpvKNdFeoJcWbzOri5XOWWuLwu698g3x+oSAlZqrLZgCqm8UKtkmTNVbRFuy4wi5UTXKURJCFFWnGpemclm02NkxKsLMQw4/UJrdoxxDZfonKhipTLadkfxBZkaDtubtdFTrlQWal7JjmHJpDhh88Tplx8Yf32G9BamrwKfIqlUpNZ4FD7WFdg2DHx5fqTvu7d8vyPkQqiVQqQmT2M1SityKessQAhIGZlWYJ+2lt3hBi0TfhlJQ0K3hmg07c0R2pW/FQuIOdJ1ihBXLYnWilBXIoaaI+F8JQlHEhajDUoYmmZLiQthCfjrwHM4r0PKCjkkiJIaFfE0koYzhcgiNJgGjKSq1WqXym+YJTYhUlNiHsfV4yk1lIr3iXmOa/BAZJIB5xrO1/ObmRtEScisiSEiWoloLE/Pa1lX9R3SaN79mz/i3h1pHg7E23eo+wc6UamnhcvPM5dfvjL9+JVSI8pput2O/bFF50oIgc1uj/r29xy++wNBWa7XC0rPxCWsOFSj0BlKSqSY337EQg4LRSwsU8EmQc6Frj8yXAZMzaiyIOJEkRnhLNLZ9U1l5coxUiBah6wGkTXtpqXYDbLpURaEWv9jozK6UahkITmSyIjgkeVKGl/g6RH/t5+4/PCFfFqQvq4JmFLXfXPOSGuxtsE5BwJ8EpTYsFVH2s07ihOkeGKcX0l2JrcFakDoN7aT3SK6ntp/QGWJTjNGBkocqRSqFJR5ItZKkaCcRbSKMD+j/YDb/QGadyTxtuR/2xtm4joIkwVbEsrCcI3EIpC2IKRC1MQyn7l8/YFlOhGWBT+uqSHd9hjbELxnSZkhJ8YYVwh5ziAEyzRhnSXnRFUO71jpD0IitSSGQM0JlohE0jqLqJVaJT5knp5eUJT1QUdlmmaigMt5oLu5wUSNu7lnuXqSuFK0JpfCdr9HaIdMlVpGxDWwjInDXVmL/SkyLzNxPJHHM2FeWKIgi7DKvYpZO++nE8vnn5mfPiN0ot1ssbsbKLt15RMTfvwN+7B7a6lCMPv1W1DIt9F/VTipVz5TqYSYyHUm5UTbOozRVJ9JweMrOGdo9nvG+cxlunB/9wGx3/PcOGKI9CHzfvcNWfXE5YnLrz/z8uNfyK9P6/eJsCjXE6piHCNGrnT1fn+ku/uE6o6IIjA6klnQStB3DX5ZKGEhLQHnPSIE/DhiamGJHlUcoluIw5WpCMgVLQp5uTKdv1LLzPbmgFWJkieSXEsJkkzTbJFSkaNEuxa0RqhAzoFSBdJohKwILclyDYCLXCnLFTk/I16/4n/8meXnL8SXK8WDwJGqWEsIKbPSkFiverlSaqXbHdjc3VLdGoiXWpPSW8RyyczLRNtLGr1WGHXbo7st9A+40kA4Y/JlJX1Q0E2PsR5RFlKFIlqKasgpMM6/Mnro7/e07QafA2maaVyGPFKnEzWdmJevqDqj5Yas7kFukDhqnletaA04I8nGcp4GUAItMj5VTsPMGDIzgqwlcwxvtTZAru7aEDy2Ncim5Tpd0UpQC+jyFi8VFedacqnkt8z5ZrtFCFimAb+sgRsESGMQITOGZ8SQsKeJ5mbC7gbsZoNrG2rK6HZLLRmhNU3bUK5Xnr/8iqgrS2qeLuTpQhpOeJ+oukc2GtM6dHfEmp7qE3GaOX3+jK4LcbOhNi+4hw+0dw8IFOPLb9iHVVVg9fpkFzmRQ1l7m6XgGkdUmSQKFYg5sviZmB2i75FxBawVJfHJU8OMsobtu3vM/S3u40fchw88hQlxPJJpSNeAodJ3HfbTRxZRMbGhyA162yMbw9ZZxpcnskj07z7Sbo+UrOianiJHYi6okinRU8YL4/MJPyxrBFBUXE5kBCIX5vMVmgu27VeHatuu1zWgMRrSgGw0wlikNquIq2aszJAGspAgV/yILImaI5S4No2CRrsOado1DB9BUCh5RAxPDD/+SH48oSKIIilIhDaUvLpqqhCkBCIV1uNekUqzLDMvr79w826PHne0Zo+IlTJBRay7AJHuzwAAIABJREFU6DEyxBmpBDYtZDcjxIUir5g6k9OJFK9UIamhoqWmvA10qurQzXva7Zk4SopeyfnBj9TqsUquRY0aYF4Ynv+GDH+htRm3+R6r3xFoWEIhZ0HbbLgkyKFSssC4lnGKeAKjj8w+kqog1IxwLabrKLWScgEpKEKwiIyQhvE8IPT6e4cq2Wx6KgNpmhFaU0Ja395SE2NCaoF1luA9KWVyLohcMbUSFg+XkdNPvyKbDd3hhmbT023at/RWh59mnJIICbppyEohRWEeLyitMBREnJAxM/pKNR3Vttj9GbfZo2rFaIVtO+LLwDifyM6TVYsyPYfdHUH+hkMnrSzz5CmlQq1vUT2FoJD8jDSayroby6WScmacFmoVNGItDjRuQ62ZuiyEcaY/7rl5eI/98A2+33A83rE5HFBSEoNHa4Xpd9S7W3pVyYuk3XwgaI0viZIiN+/fU23B3t+i2hbVtKD0Wn6va0Ehj2fi0xeWx1dE1VQh2d7fEmIiBk9XYfQBwkiZL2SjKU0hS0coGSsltt2QpUSaHarbom2zFtWTR8q0Il5UQxESaiIsFwTx/2PtTX7sTLI8u2PjN73BB5JBRmRmVWVWFzobrdLwj2ulhaCNIEALQRDQUAtQdXVNmRHBIOnT8/feN9h4tTDvBrSrRay4IXzh5P3M7N7fPQffeWjSRFpXPeGMplKhRNLlBA/PmDkxr0LJum0mhWZ5M1pTlEZh2/KBNHhdrgEtFj2fkdMj4WHEl0xHQs0rusxoX7imBT1o/NQxr0+49C+Y/YLxCq0zOa/UWnDdgMqZkmh7vcOEcz1KfyANmaQP9OORpCfm6xXvLTvXITmjjcUO9+Thjvn0D6TXGXN6geMjst8RzB0aS9xgPmfmuXA5z+TsqNLIg7lIu03UljIKJbOtgjIWbS1bTu15oDSEjDIesRrT+/Y7VoIdmzxrDSuqasZuJG4r6zrjnMFqcK6lyvK6oY2m1jbL1bS3eXg5kS8br1IxWnDO0A8Dg7VcUsT3HYd371BDjxl73h/2HN5/Yl4Wrs/fUHnBrivUEa0t9XXm4ctXpnFg9I6h37P74JqyRLWd7vPplbwUVPwVyf+mG6ihUErGuR5jHFUEckLXgrxxiWKVdgqbdvrO20ZxQtePvLs7opVweXygbIHoHF9++hmJhePvf48aDWlJbDkQU0B0ZCrN24J1JBWZRoeyFlJBa40uFbwmlA2dI8ehB+Xxw4iEkZxnUtgwpWLRKNsz3b5DTRPT2PH8+U9s52dIhXRR6M6RNcS4UfOChAtFVxhHxPYkYyi0TQunFXOYGYYO23Xoth3fsKdOo6rCaIXotr8ppWINWGuo1qIUPH/5yvZ4Ir+u5KhQbyjZFFvL32goylK1wTuH0oqcIrVWOq1Yvj6iTMdeHAc0nRe+/vPfY+WK6TV6N1Fk4JpW7ARZfaGuF3y/x40Tbtpj+w5terRYlG5w7WI9RXWY8YDxtyAXpNbWcNp7al5a82dJ0E9EP6Hv/pr69Mjf/d//Jx8/VIZ6xapvqJtbrO4o9JTiSbFZ2Zc5koohv0nNjG3mBjf01FrZQmp9D2upSpFKJdcKNeH7AddNLG8Cbz31lHVl13skZuISqctMSS1ppZ2m5mY9VNqifYexGigYZxFtmhkireSw4bUBVZGUmprTGA7DgKTUwAbOEw479rcfuP/urzDXldNLRGnTDiXxODPgTeUaAqfXE8F2jMPI8O4d2huu20bpGrHz9fXC+vwrYk4v18Tt/fe8vpxwby3tnCNQQTW3ackJUytVBNEKjKMUYc0JJZn5+kpNpQHGFVxfI+NgcZ3l6T9Hpo+fKOue2oN1mt3tHmt2xO4DdRY6s1Kr0FuHU1DiM5tsdLbhUIbdgcP9e4qasHXidCn4UZGnDaFHjd8zHX/Db//qv2lr5fGB6/MDuhasJPZOU8KKzIZ1u6BYsVphzdj8KbmwPfzMcLxA2KO6DqSpH7s6YHXFdF3D3VhNSZqUC0hCEVrbvxqKh67TqC2z/PgNUkJMbbSNUqlbfoPRKbIImQRaSAK1WkQZKsISEopK+vwLOQXS8xdqWNGXZ0YCxWbMzcj+dx+Jo2PLEZfB+EinFf3xjqoPYPdvNMHmalXGUrAkcWSrQVsoDiRTWDBApy1qvWKVpShDZof2I8NfdPy1+w12m5Gs8HkiV9eAdqZrqhcMTgxOKlHXt8Jpp1+RSiajEKbJs5ZMFoUWhXU9RRku87X9n8IwjQe8VmzbQi3tg69Le65VDbfv3pFKJIaNkprSRRtpGCIxOKNx2pNKJORM1gXdWarWKBShJGLOpJLJbzdLtg1tLZOFz3/6R7p+bG6e0ys1RdowRKBmLsuG39+hB6G8nlkeT2yXE1kn7GjZvb/Hjt/hP31CH/5V9fqvK1hUYwtbY9vJpqDWljipIi3HaZrIWBVBqlDUmztVhLos5PyF0XXoKo3SEFaCwIdxYj+OuPVMyQvWK6bjDjt2FK0w/ZH+HvLpiZASLgshVnJujBwpmVHBcr2SPn/G+hu2hwtxq3x3+5HryzPZLBSdeXj8zMvrxrTfs+VnjNthjh/py4bSHi2GIu2t2h3umPZ7vOm4nE5oKlYSEq4Y47BGYU0lxQ1rV0RdoHhsN6CKbcvsyoGqlBqpOVOso2iYjGHbEmUtjLajGw0siVQhtD1rWkdAIzRYuVca43ybVUtFpGC1ZltXzn/+F9Z/zGzXC391f8NvjwOKQskzcXhFvTsQk5CjYbyxzJcTK47u1tIbj9OOXFakFGy3x7tWZO0J1JBJ6m0UUUshpIgtjmVZmXoD2oDyqOFId/cd4dvPhC1glW3xUO0IKWH6geF4w/qywCqoUihZwCq0tXjTisjUQjaasBUMGiW6Gd19m2GGXIg5MmoF2nCar5gQUSE0fpgCEcW3l2ecs6CEWDJKN8WliGCKEApsJeOteaOc6OY0AlKpSBY0DXxflG3UUGua2GuOwIl//A//V9NvVkM/7lBubIKwmKgCw+09u+M989dvrF9/xsQL4XShXgqXbeOgOvT9nt27f13F/usQMWEhx4izjiq2sYZUwfcObZsISa0rad3esBeNZZOkvEXKBJ1UQ7GoRohPORPnhc//6T/hvnzmN3/9e6abAznPnJ87nh8f+O73f4X3nlCENW4Y5VBV4Q93DMc9eXtC6kIMG5KfKVth6C+Exys719O5HbvpnodvP3F6ekCUYxgj//zLP7E7jtx8/1v6dz9g4iuXxwcyDnPzHnVzg745UE2bE3rdYyXhU1tuVgLkSFxnRBasH9AibR7dWbT1jS5vJ6TuWrdVHKI7JLVI3c8/fuY6r9g1oXPCa4uj4BQY3pjNSmN4Yzij2imQU1vKl5bpbSrl9pGsRTEvG7M1DAg1ZeQQ8TvFVoWsK6UYSjXoDDZXai3k3D4NShkooE07IQxCrekNHiaAQ9mBYiqu6zj0B8Q2zQYUxGj8fo9THzHjAv2E8Q5RivF4h1kubF+/0O8HUsiEy5trxyoUQrEVrQ1GaZzruP3wHY+XK+eXCzlvlFIQq6lKeL2+cg0bTsCkwKSlBRhU+1kZaYRNkeZyenumvf223iRkisJ/sZ8rcspU0ZSU0YBRCsQQckHXjFaelAt91yMJ8vlKikubu4vncLijO7zn+emZnK+IdyhlcOMee0j4FPGvisu3r6TXFrcNa+H2bzTm3a841in1bZ5YQDuDKDDOoXWLaQmKTg0tSRRjG3KXwvaWPS61tPddKdA5RGucc9SQkZhYv37j718e+cO//Wumu56trgy3d03hsWXqdYOU6KYBbd+6qFKbRaBqXr59pawPDH7P4yIsc+J4857ztz3h8sr8ELC1ZzjsWXPm3/8P/x3d7ga12/Pt4TOHUZHmM0k8/eFIGneoYSIpCLFQ/ARGYzjANlPylSCp5aSlJxXN1A/UusLyI0orqnYsseL8Hu13uP5I7m4Q05FWadJi2rKAe7upGKUYvGvddKm4zmOUIuR2ympt2rxUtVuNNqb9nNrGW8p6YlasseCUQgTm5yvm5gZtO7K2JBxd9wE73CFuR5aurcpph9XtZCopYZUFRRvXxUgtgjbN2odTbHnFUltxhAVFRUtCK02/31GtRXRPd3xPxVO3leXpG/1uJPaK3FXCYtioVFHM1w1xGp0SrnMUItu8IrlijGEaR16Xa+uYq9ZEgkzKGa2EJLXJ0GhuWlUb/8qKxmnTgi+5YlT7IGijWcOGcxav2ru65ojSthn8rGkFW6BoTSgVV4Xe9fh+h7XCGk5YA31nSGvk5fMv3KaeSQlrnDF2QJG5zGfmuOH6nlp2+OMd289Xati4/vNPSBb6755/vYI11oIyhJyRnPCdo1LJIdF56IcB13tSLS3IrpvSwyndiIBKtWscQqmFLJVamkVdKYWSitWGp4dv5O6O/oeP2N6wnV/Yzq/Mj38m51fyh8ToLN6A5BWT5tb0WiL5dWGpF+KqKNpT+oHny4nLtyfUHPDDQJphTivP5zOH4cj2+Eg4P/J1eYZa8LsJOwwwjc3hg2HcHVBuJOfaGkFDwuQHSrhgkHZd7PpmJ8sX1su/IPHC5DvSPCP6EaMd0U24+9/jp/egdvj9DcGPvJSVXXk74bSlM4reN9u8mOYQGgZLqQq0RRdDSJGKUHULV2wxs4VKypUVYSvQW5CU0bGS5og5muY/EgO1h+qRpCBkpIIY1VxD6YoUwZmG/TEIEhMKhdKtuLJ2aCvEEiBHVGnKTuMtWrm2qOAUVTJZV3TXtY/68Y7Fd9je47ym7xznJbHfH0jzSiwJpyyd0hQ067IhxlIqDMNAlsw1BmqtaBG8c1jr23ipVKCSS8PMapGG/3njf1mEQTcThAFSiVinsK7dIkyv6fuRUiFugZpj60pjQEPMldOcGXzEdx7dd5i+R3eKaRqZ45X19YXXrMEL3U1PPx7AVLIquKkjXwKx8ww//JZxGPnl7/5fdAw8/8M/Y3/5+usVrBhLP4zolEHrlobJLR8sWrgsV/p+wHqLNQZywSmNE4US1XAg1lGrkErmZZ7pXA8VjLH4cY/bdxSryaYjVo0JG7IsbF8/s14eyGZDLZqiK+P6gooLy/MjJQoxg64apTqG8Yb+9h3dbuL88IW4vULJbOeIXKA7OnS4cv32GZGMLldyzdhhz/j+e9TdO0rfUVNEa4/yI8qNGKtQKUOJaFupeqRKK6xgDZW2W2tu/x3b+RuZxLTbsTx9Y1teKNqz9/cUGclm4sO/+Vu0HPiP//P/wvr1M7saaV1LzW7XYUUItWK0okhhXTOlVnJ5c8pa02bbUqlatS0WpVlzJaLaeEYEQiacrozv36FyRUpFSkTyisRKURte9W0GXJpfqKwBcQMR02yCVeh2B8Ta5lC1LVvsnGrjp9p8ReZtBzuXyLadSUXhqsHtPgIDyXhkvMXefsIFzZAXhlhaHwSFRaFiYg0bZrfH7Tq2KnjfMQxd677PTfGpjWli75ypNFePUTRkbql4Y/BK4WpFqzeAAE24plVBq8xwHKm6Ffl+v2/gx1iIAaRYUsxsoRBiRqyQiyJWeL2+4A/3mM6ClSYAk8SWl9YMO7zDHHbo/YS/uyUPB5x2xM5xORmCKKbbd/TvvmN5fkCtmXi6/HoFu+VEXK4oZRFp4G9tQNCsMaBUu14YpVGqma2ltvdDEEHp5m4tUiELSnuq0iirUN7T3ewxU4/ZearpMW6k6zr0NnNzM7LfvSN3lWF0pBCIr2cu335BhczQ39HZkQ1NwreRxe6WIAnb9+zvD1yeH8hLQaPpbc92ekF1AdsZMgHtO4bbd9ibO+ruQDVN0lWrQaQ1QVSuEFaMNBseZkSp2vSTKCpgbYed/sDQf8SsL8wPf+JPP/096fzEh08/MFUL1VG7gTzdcv/HW/6Wif/4P/2PxOfPWAVIRolw2O9w48h1m1m2jRgztRQU7d+gpEyRSgFCyuTaRmupCiEVEplOK8oa4bpQ5xXGHomBvJ7QOmLsHowlzGeKUnQSkesDKmRCSKxrQPk90u3xXcN1KhGc0YgGJRUpiZICUjIpbniVUTFSs2AMSHzl+lzA3KIqTHc/gHgkOtL8E9avXNYZQwPL1VypUqghks3GeQsUYF2u+M4iOb/5b99wuAidUhhnUSm/Na+EXoFvv632RKtvf1IRJbjeYHzlw4c7druO8+VKzMJOdSxXIYdIdBU/OCoDl+vKMkdEEqIS8/WVm/FIqbDlwHW9YveO/s7h73cU33Hz3Xvc/Q3XN13rdHNkGAa21zPLt6+Mnz6irCL9Einbrxj+TzaRc0AyKAydcVitqTpjBktn3xojVRiHCVylyxm1zhiaaT3nFgbICnQRUgq4wZK0RqRwd7zB7numT++Z3r/DDBZ6DV3CxYKTTA2RToTL84ntdUEy1Lwy3Ozobu+QLAS18e3P/0g/7ekd+Nt32FipLLhux/DhL5il4gaLmUDrQEVYS0C2EziFHiZs2chZUHVDbRUVZmTbEJpNW/e+vVVTximHdoaCweqp/Z2uYu++5+PfCJeHL9jxiPbvGMc9W2dJzpF0z80f/8hfPn3h5//jf0W2Z9SWIRXiEshKo7RgtHrrzFeoFWsMqRRqEXIGUZZQt+YRUjCnyNjWb1BRoXMlrFeQI1pptLZoOyBmIItBlYb+rGGmLFd0yNg8U5Yn+v636P1vCDIgURhNQqtA3M5QA5JXyAlVKylFtphQorF2jxFLEEtKCl2umCWhTmeWXx7JS0KPE+N4bSJwZZvILJem0YiZUC+kktlqZgmB3W5H7xxKMiUJ3joGa/AIuhSUMRgUriY69faOFQWiUNCeZgqsN+hO0e077r47YNVKVULFUHI7cOZLY19LjhyOR7rdxMuTsJ4jIV1gzQyxwxqoJZJJaOeoFkK9AJG4fmX75Yy4kS0U1LBH2wOBQhk9efT0d0fuUiCeXn+9gh1vd1wvC+fTlc4PVDJOGawxlFRwtkNjyKXgOk+RN3YwhsGPbDEi0oLc6CaxUhpiXtG6oOrQ0jdOKArsOHL38R3Xl0oKj6yXE7JtLGlDSSYvKyHWxtYNGRMLg3KEkni9XFHDLeP9R4xRLC+PuKMg5op3I35/izKG63qi5MLx/S1bWCgU1vMDers2GryzaOdIoWlB4ukRFQJaOcTsSb0ndx5jDEkaHFqqJTrbMLC2Q4+37H+35/aHP1DzwhoeKEugt2ObZStNcY4P//aPPPz5n5n/HBhVxSshh0KSK7u7EWt7QpK32GekKEsRxVILc8xUEaJp2WNKYZbMEY9DsG/A6sF71JtUy7kea3vAobRHKaHWDDZidreYvsAG2/WBoTeMx57SKzLClmdy3FAlQNmgpDZfTgrFgO13lJxYY0QlRSlAKhAD88Mz159+Yv35MwdnMbXQiTBazZwqWcrbDaNSSqKKsNsNDG4kPT1RakJEN2evtJU2UzSdtW8FWVBS21VYBG8tJde3TR7QWuE6ixvBjYIfCoULrreoJC1iSEL1lZpbY8/TU3XBdLC/m5r9bq2EuvFyeWToHdZpxtuBYizBFkRnOueJ6UKKV5aQqKJJruNw+1t0qXQG7DSRY2C8OyA1/HoF63dds3MvC5kK2pKl4ir0yraxgDeY3qG7joSQokLrdhIb7UhUgmTEamzX0fWOUrfWgFKJ18sDlh7Xee7MX1IMKKsI68zTjz9iQiBPHuccYz9xe3jHy+OFnA05Gx5+fiDGwnj3jttPv6X0eyIwfpww65nHn35ki5XTsrKVgpDpvUHEYYwjhguX56/UlNgPB/z9LeZwg9UddX1FXV9Ir69Y5ej3QqoD9S2JRAGJYLQiaSFrULSFifK2B4z6xnr+O4a6oLsJbz2rOiKmw7+74+Pf/vf8/emFsNGu3hqIM9dTwA4T3ho6D0uopNwytrrrScvGvK2YwVOtJddC1ZqsFBFwRrUmodFo69C2R+uenDUqNdq91gqlHcWAaIebQDqPCwE17Mik5r3BorRuOJxUcaJxpgM7ILTxSUwZqqNUR9oi5XpFwoYsM3I5E19f6bQirysSA2yBqesQqwihqVl613Ztq2qNvlwSvTe4ziHS1tC869EFKEIJGYc0zaVqTqbGzhasUlhnUY7mYPIauzdMt5ZhVzB7TTGNoDKfT8S6NkZ0r9gfDkSRZl8QxboWxGu2S2ZbA4HczBDVoLXFTiOym8jegzFY05qqvbEglevlkfDLFWd27IYb/GhR/oayVyzyKxInUonkEvHesV0DyiuKVBQNMVnqhs2Z3TQx+ObRKVUavLq+Dd6lor2m9h68Q1sgCbpWxGq2cMV3hXB94fnxK8oX4vmFh8+/kC5XJqUxVWGVY5qOhCWj7YQ3jpyghHYdrDFxOb8iYtHj0CJ1y8p525jPF/bKMB6OPD+fiF8u/HC9x7hMKpdmS6uZrQSiBPQW0X5AhQ21rajlSlgjKgjm/h1JJXIZcF2PqgavBZ01VSn8MKCtB6XJtSDJY3LPtjyRzg8c736E7nv09DsSe97/4TfM3/7Ia7FsP/2MDhudh5KE6gRvO7zLWJtJrSEKueCVJYpBsmBQbzlv1XrcfQ+9xgwdxRhQFsFCVsQcqUnwRTUwu7No1YMdCCrhesPxY482qo2Ncsa4RuugG4EBXQs5rCAGpVvHKccVjUKUbyMrBlJYOX97Yq8qvW6C7rAlaqzELNi+5/bunvDySnp9aW4h4+mtoyiNSMb4/i1aCKlkaql45dBVU4RG07caQsTpt/m1agEU13eUqUP2e3b3t1SbUQcobmY24PoDWlpDLlUAg3ET2nk6QmtKKsUwOaR32EtGnRMlQFGAM7jpiL25Q4aJ2vXQ9cSua6e6Vc0QrxXr6ZmwXKgEen9gdztSxwFvbn+9gvW7nnlZ0VahjWrrRupNk2ENpWQ6qykatpJY15lx6HHes55nlDYMxyP6Zs9sFXbs6Z3i9O1nJGwY496+0AnizOXhM05H4us3JCR20wFTBXSHwbEtmWVOhK229SqjcYBIJi8n9DLhBo+vQlyXRnLvDVI6KhHtFcd3tyxPmeXlFaMT3uU2LtIGbVvqqW65uXbWgL4G6hqZX164vFzwyyv9px/wgBKo3hJVZuwmXDdg5E2elAIlLXTKcDj8lrh+5vT0n3n95QHT/YLdXVG731Cy4fvff+L80y/k5z1mTgiVFCJbipheI1UhtSK8BQRSxNbCzjuShlwFpyxOmbYEYQ39bsKNIwVFzWDf8sqiNBqNKs0YWKQ2w5q1iFNo3d5nUhJh2VBGIapiBoPudoi2VNpprktCant3Sm5y7hqlLSgoj1EeoyySVoy2zNtKqRbRntxNJOsxfsfubsC4nnm+cloCJVRqbjjTKuWt2VWbKE0KxjucaZnyZb6iyeyta7B7YxGrKKZxlHa/+x3Th0/0N3d898NHrN04Pf8TJbyi+4neCq4foHsFN6L7WyoQ5wdKXtvJLgpnYOjA7gyXl0DeNqqzMByQ4QZ2e8T3BKWx0wHTDaAFKSvKTky+Sc3nlAgys8aKcQb78ftfr2CHD0eSVsi3MyEWam5WsCKtQDvviTWz5YiKCmU1YmmC3MNACAV3PND/8AkzOrAWWxM7SYTnF3LI7KaRa7rS1YDZLqxfEnU5s71eySUT1g03B/p+pJaNlMEYjzWWnCLxesHYAsVSnoVCoMx9i1RicDpxc9ORjaOajLEGf+jJ543ldKJXhWnqUZ3lHDd2NxPedqxBU4tFiXszxRtUmklPpc0rDyv+cIu+3SF4knLEDN3OvFnIX5HthCYwX07kIih7y+XlM519Zm+fEQUpVJCe3/zxryj3n/i7//1/w6SVki1B/kuUU1pcEADBGmHsDWus1JZrQSuD0fa/Blqs7xqWk/buK6U1YfqhxzhDLokcM0W1NUqtKvjCIglXKr1RbOkK+kpIHn8ojHcdYlr2tyqNhBViIsdEWiLeOGqqhCXQtuM0Xd+zzWfqFlFuoOuPrNuCpIAbJszxHUOq5FD53e13fKcaMujb0wPn+cISN0IIoMAKWGfRoaAo7flQE15rnG55a7/bsRlhvN+z/+4O9e4DdTgQpxvcu98h5QrzgqVnGg2qLGAi/e5I1BMyvaeKBTXQqUTcLnjrUDYS8oaZDF5WyrltqCWtMb5D9yOCaYeQHkiqox8GNHusn8D1eHuBmFDGkJUnq7dAyq9VsGrXM1Qhx0JMibBkamkIjJqbGlFEE1MAKsf9voUkqOSciFIRb5gl4/a3hBTIW6KIsG2BOK9crq+IF3JdWyMDQw0B2QIR2EJlSJmaAjEL2nYcbga6vmc5n0FlrNPYwaG9tEKRjTCvvGwbU+exzpN0x+A9dhjojxPFVmwNbE+P1BixY0eyhmGvSFk103rvm5+1trVCUxXL+YK2I9sqrK8zQ32P00eS9ignpFApFIwEtKqkmgkalNozdgc6c4/Ejbht6PgNSZHlmtD1A7vb7xhvP7F9WdpTQoRcWmgddNsTrZVU32aYrYUMQBUhVaHQyBHXdWGfPSiHVo6Kbk2nrm8bKTm2kECOpJyoZUOZgpLS3uedJ9YNIeP7DkOl5q2dcrWFFErKxPnS1tTSRlpmetfhtDAvC4NSTNMN9eWF03VG4/nw6QP+3TuerzPDzS37Ycfpp5/I28bD6xkzTIzHA/vpyPvjPUopHl6fuVxOpHVpTSHV9CkKYTQd9k0/aceB3FmGuyM3v/2E9I46Tph+xI09T+cXOlXJ2RCvhb1RPD88sztO6G5CuwN6/w6je9Zk0EbwZg8lkrlQTfM7dUYhSrieL2wpoHOg1w17q7VHtMP2e8w4YKxm1O9ZTi+YKdKV0OK5SchZ4/r9r1ewxRq63YD5AGjhclrIa6X3nppCw7DUQlGOLRRKiAx9j6qZukVwnqQjw2TJKSDbldfPP7N8fcBsgbhe2UpE94aSLXldkAJx3ZonR2s617GU3MLc1tO7AduP2MGj0ooVS7ZQrMZZw7jfo5R41Zj1AAAgAElEQVTHFM3tcUdvPFY7TucL6+mJnb5FO9PkuruJsl0J8yslJZzruF7PDGZCjKKIQqIiFw0Z4irMpcX/xqFny8JyemXYGbzrMRIJMTUigjZYM4A4nBG8MUhV5G5PKmfs9opcX9hevhIuD8zXEaX/Hd/95g/8tF7I58/okvDKkGIje5TapNe12rdZrDSTQS0oNElgyQGTCgOONQqmdHR+wu6OuN0O1TlqTagcoWbi9RVVMzlHJGwN+t33xAR6GEFbJCuIgXx5pWAbIC0VapIGdO8sztv2hChNbqKJLFulsyPeTnhp/KUlJfRuwn26o3Q956dfSM8/o5dn8pJ4efjC42FHN+0JW8VUxbQf2L//hKnC9Xqm1MK6LtSS8M4yjA7baZKH4cOe6eN3zErTdXu67pZUC2V9Idcrr+cTdYvoqjinCff+j6jjEekGKhY9HLDGMOCp64V8FVLcKJJxoxDKhihLP+2QIsxhI64zdgvoyeG6DlxPUpZaoHMdIdFO7tJm6jW93Qr+fzenX6Fgu35H3M7EUjCdp99XpIO6ZlT1CELYAqVs6CpkUczzjNMWrRR+6NFOUGVDr4Xw8MDTn39kPb2ic8ZphXG6va+2QiltvlljoqTClgurXhClcH5jGHfUCs4alrOgdAXXRm4qF0xRxGzQw47+/sjYacq2YUQYOs+8XtDJ0ZseUYVLnOl7w2G6aydhzaT5hK6WwoTREzpDiQaNo3ZvAQ4lHKaJnZmInUGKb7uYWiFG0w8dtSpyLNgaUKFpTJQ4qhgomrjC9cuZ9ZczhEQuKw/n/4d+98Snv/gNn/+hwbuoucX/Sm7LB1WT3zafBFqgRSkUbXRWRdDOoX1HqDC6nm53oD/c4IYJbdrvuNQNwiujWuGN+7vkTMit+FWsmCXjvCJKJqAZb96h+31LgBmPsg7rHEq3vLHSHWXL1BKwVESENRWkP6BvP1JzIijDsdsx7Q/U7crzl5+JTw+E5UoI7c2KRAwZaiZviS3NmM7jtEZSZBoHOlqIpx86Slkxveb99+/gOKH3A6nAmjbS+ekt7FMJWliuV6Z+YtgdebE73n3/WzZjwfQo3VF1Gz0OR8NWhXi9tM680eScW/xRG7RrpgKVKjFcscsZ4xx1aLCHGNsNq6CxxoPW1Lcni3OeWitG6zZj/7UK1vcjegfrdSVbjRo9mIS3Dl0hp8IwOrw1LJcLNSUogkimKo0eNbFcCY+BEivztxfcupApJEmEJOzMQCfNWFdShizoDJIFh20hAanEsjWdpA/U0kIPbnBUk+itxUVPjpoQe+zdnuH2hkBrJoXlQsoFqxXxesLLRNxWwvUZVRPT3S0aRYmQ55nrU6Ryx/FmwpoRMSMrM7lUht2ebhi5lor27YtcUE1qrB1JW4oZGK2GsMK8Eh+/sZzO3N58wLiJtAXW04XtYePALSVawvmVUQJxFkI4cvvhB14q5OXUtk6koJVt3HmB1KjnFGk7M1kqsWaO08h0c4v0PXra093eY4YDyvWIGJCKRnC0fd0aT6QlgOpxWthUJqSVzvToCqTEtp5YcsVIYbitDZRGQ8ooaxsDWirKOXQtlFBRKeOUZpgmGEaiNoTXF2zfs4VKeX5Gz8/U50fS5UwMgaIab9iaQk0LnfW4wbHFwOQMtQjbvBByJKVA33ekktjfjPTHCduPbNoSkhBEt/mztLyA6zwpJ6Z9h7UdiaYW9f3U5NqmR6m2bldKRuHQtnvjSVd0lbc+QXsR5JIxTtOPjlgyEq6k0FOXjt6OGN+jjaVtKhrQGuubuNkIpJTQWlPLr0hNNM5jd4b331tiiU14vK7E10tbuN4q3jk6o+mHI2HbWC4zWmmGYYJOsYYzthjKsmHKhteRpBO41ijRVHIIkPiv62KUglW65ZMFfGlfIaNAa2E6TBy/e8/z+cT15Qm9bu0rayM7tcd0GwyF4DyWjpBnStFoMazXmZoSloIxFXTl6eVb2wASTUkbJSYqI68vL/zwu7/EDt/z+JCoeWlzPmUbVtN7un5s6M+sqEWDOMrmWGtCxYqcC9c/nyEmtm1BGSi5kq+Clx0YTQgbZatYWSkh8e1f/oF+d8d333/k8mKpJ83lciZJC5hUoxo6RYRa20mmAN153v/wA8NuJGuNubnD7G9JxjeWtO6xUpEYoRScUWwlkeOMdhU/DEjnyEkQidSSkBKoaWNwHtkurC8gFbSfQHuUceAsShlqqpTY4oolB85PL6QY2R3uGW5ucL1H18rTz4+YeKY8fiZ8fSCvgSQZcQrjLVPfAZpwmRHR6FxYTyeUNngl3OxGrnPFGo2UQtgSJive3X1i6TseQqLvB9yw47q8Uoyn60ZqDbipa2MuZZAoXF+uDMf7FupR8vYWvzJYg60ZS0Gcbckw0+G9IRWh5ACqoKvGUsnrDL5HfE/cFqztmgxNFNSIVh3GW6rUVqzGoqwhhvjrFex5vuLekJK6G/C9wUw9qxKuTy9446BWMoIyCn+7QzpD3iJZMpIrN/d33Bz3PH35wloK2oFJLXRBbQByKW1oa9+yx1EK1ti2f1grJaVGTS+ZUppMqAjc3n2HTprXzz/hcsDqwON1I/z4E7/543/Lhz/8DSkGigj9MBK3TNeNLMsr0+gYjztivHJ9OiNZ4ZQnxQR0OFfQJvHLlz9RjTDsDnRGiOuFimbc75H99LbKpUixYqTSadBbIq0LEgMmZIY6EZczaVvoBwu5kK+BnFdWA1uKzd2TK1olcFfKBi+ysL+9x93fcwCuMfBweubb0wvxWpC30YzSGm0N9x/eY48TpfeYYQe7I8l1LWzgezCKohoXGOUoqqPakaBWpGY6EXw30PWm3ZRyRrJvZoKSqSVRljNRFN2YmgpTG6p1rXAFtvlKul4gr9RyYTstmDwjeiTMC4OxdKqy7zyLdsxJUZRv8UoN+8MeoxrzqR9HJCas0kgupBgwVrGtM1UyMWf6oW0BmW7gGgqXklrHVg9oPTDsHLUWQlIYN4LRKONb8fd7/HAHemBdM10HVjJSFnyIhNNXZD6hJdMNE6mAto4OxWZWXk8PrClRU8EqS1pnVD+S3YzqBlBv22nOUJUC2vOl5uYLSkFI2/brFey0H8hbIoaEdhbfj+T5SrXgB4sRqKkgKFzXMR0P2GUmnK+ky0pcV9brWzDBFXbvBmqp1FApoULVlAJat06m0ablOecrpbTTIxfBTn1bMIiasEX+9A//SHe45bvv/4Jpd49+n7l8/ZFaNrQU8vXEn//Dwrc//xPKKlxvOd7sGCdP7/v2LvSKajLVKPzQEc8raV0ISxM+7Q47nFmoWsgYdtMdHCfy8zfs4LDOUmJkeT2hYyYpg5XKOl+JlwsG0wRJy8b68IgsVyKK5M/kFFG5JX6ksyg2jLd4e6T3hq2v5HwirB256/j0b/49u2HiThU+xoXz5cLT4zM//cufOL28kHJmd9jjxp5NC/vdhBp3+Ns7htt73P6Goh1VFYzW4Bw1D+B26J0w2pEtLqCbeb7WivMe0/coUdRcMGkjLzOqZPL1TF0Dth8xw4jqerIyGAy2Rqoksq7UOpOuF06vDxQm0la5iqJ3E9+eHwhPz7jhCDnAFnFecXv7DlUNIRa2LVJVC+0rVXF9W+9Etx1i4wz90NEfBvp9h+ks3ndUbbBd10xzpr2zrRa0qsQScVYx7Xr6XQ86UeIFXzNuWcjnL5Tnr7ysC0/PX/GD43B/zyqWLJpaNU4r3LBjR6GSSNcVVSylZuJ6JavWdBpv7gBNjhuU3NQtWrfnw1vfobO/oh/WlAaadl3XSBKptCsrME0D+i1EkXOl2++w08hunLB+Yua5zTytAjLGCN2upx8G6hpIl41tjqA6Ko2GH1PEdI77u09sW+B8emU0PW4Y0SJs5wsaiKGgl4XL5x8JIiAKsSOxRjq14SQSz7mhRcauUfq6ihSHUpVrXLj9eKTUSCqBfujxSRHjyhI2ck7k7kKpQmBBupHxsGe8ndjd7JE4k16eSeGF+eGFuq3oYYeTSp0v1GWhVMVaFf0wcXuYWNKCzgnJM4aC1NAAbrVgqCjbUbJBrEPriNMRYsZLa/2X4x1iBPX6yI11HKaR97uBb7985svjA1lBVYVMZSmR/6+9N9mV5Eq2LJecVtXMbufuJKPiZSIz//+LalZNvhd8pLvfxsy0OZ3kQJTMGsaAgwrAD0AQIEiQvFdPIyJ7rz1Fz+nhEU0zDWdEB2e62kqlkojTCz6ecOdnQq9I7WzLgo5GDyavc3LAzAj4INT7jfvbb8gYXF6emT99JoQnnIvgAuIHeY64lgmfnth1o9xWc31VRYewEOnLRgf+9l//C2/Xb4z3hU9PCUahFqWWQUzZkgBvBj1PORBCprSKiJDnjMsByY7mldbuyBTIeTL5a1f6mExoIUBdmbUStpXJV3y7sdzu3N+vXKLn9vYbH7/+3+iohMdHHi8n4tOZKg5JM31Teh+M2oCBhkg6PRLiibp2Wi240aFujPXGtXd8PoNYXlCeMiIOHwIxZXxI9H9qu/6TG/b192+cnp4J0wmHw6PspdEIoJ3z+UQGgip1CKN2XDzhni48n15g+WBfXin7zZ4u5xPdHwiOVtEm7HtFgZQz4TTT48Q2z+TnF6ZpYuwVHYHeKmE6c78ttLrR9426vEFIXD79d0Z4YNNBb28G9hpCr7vJ3NIR6aDK4znjstUqXrrpnVelF2EMh3ceiWIKFwcdz8PLJ9w84YdtuPXjG+3W+P3f37i+vROj4/HxJ8O17KsZ2IfNUJcQ4KdPzFOAMlAZFoSUzpRa/+QMzfMD5DNr6/S+0bkifpB8wIeMnp/Il9lAX9//k9/+8R9sr1950Ep8uXDVQRmFbqZOfAp0b5ETUQXvBSQyFMSfcdkhYqL70Ta0bojbOaVMbSbu121DDtjRtnSWayWqZ0qJqBXfd9gXWvDUkHFpRp2FT0nJyOUZ6YNe/gHbHVEzoe9FoTk6nuv4wD0Ij+EBtLDWK60dP6Na+PTzz9xyZ701hg6GH8Rg4g0NztAxqmjdOXFBjsOwqpDUoS6Qg8ePQq93tusrW13YVXFpZrTK7e07IwaWj1fK/crDyyNpTsg0sbtIkQQuWepDrWg3KyA4JJ8YriJRkZvhaJMojkpvf2ijI6Pv1M3S92KaCGki5ola/8Km0+n5MxIn8vkFfDTHf74g6YF2/2AbjRADY3R0YCd5vODyA5dpgn1l//0fJC1cXh7NldNXqIVRE0LBTVhC2/yIOjMu3xr09ID/8oyUSr0vjLJyeX4htI6Kx7XKel8ZXfjl6ROXywvvvwtvvxU6ZjzeeoFt4enxZ/CeddsRaRaf4TLBB0JMLOvGPj7odNIcEBW2MWwOfLlw/umJ+JDZ3/6dcvtODhYjsb+9Ud9v+BS5r78TvaeXjbZv9NattoyZt69f6SmRDi6RBIdDuFweuVxOfLy/sg7h9PzE55dPiIePj9/YlwXSA/FimJvOgKG072+U//hK+fhOCo6UPM/nmd05tn2jXD+Ij1f8csfPBR2NoZGBZ3RD7BCg9R0nDvEWrN0H9N5wCmMv6O3OthlMzTvHZTI8Z/cD6krdK7JW4gQ+BcRF1HlEwZ+faQoROGljd0p5f4XacNLQYa+u149feXx5QJPaN+YjcQzitqN14/32O3tTiIZ6GaMRo6e1jnORvRbcYjPNbSi5VBqmPvLi2eo/uPdGyoFBJUUHYfBxXxh6gBSensF7zpdHUimkU2bVRh+BGE64fAafmGJCU+P6vqGIcZvyZD5vVRyG7jmIuDayjMaWtoG5AQR7K/TW2JY78pc+iU/PDPE0l0nThZgmWmvEp7+xvb3Sm9nnojOeTm/DaqWQ2WMkpTPneMbpgOjAdYJUaJXTvHJWWO6rMWP9ROt2G+xrYZNAmiaqFPLpEa8d1zYuOtCHB/r1A3VvvL3v/L//z//FLz9XpCqiGXFCzB43O4YTamuEkBEXeL/dmYmc04nRhCqefPqEEtmiI4lYiNdyhxh4/OlCyoPRPhjtjcvsYB144PPTE7EI+7rT2o7L6fgZDXpbLdxaC60VRvA8PFxI58zTp0+UdSf4yPfXN14/3nEPj5ASqwiXywn8F/JDpTXYy4p8vFNa4+M/v6L/+Y1xXfD7wB2RFm3b8TmREZa3N94kovGZdP4CeaJpw7mE82YYUO1or4gMoB/ipcGoAz8a/baw//aNdr2T0kScJvI0m3l/K9ze341sKIl46sRTQGIEnxhd6RLxOKoMgj4hrqGus9+uIJbC4IeiNK7bG/Npxp1m0pSR9YrqxtDKXhqVRJBkEkXF1F8ofV2JU2Jd7mbjbMYVE+8pN+uir7d3UyPlzOnlgXE5QwzEx2dasKQHcZ7ujFRVa6cnz5BBA2oPSOmIVE5zQsTZ+Kf3I1JECckyan02XXJXQZ1DRXFBiHjEe4KPhhxSpY+Gd8Kof6G9Llx+QnWAs5a2iycIpk89Ty+UfaNWyy1JMQHCsiz27EPM95mMsr63Rm2VlE64OKhjYdSdmjyjNXQvf8Yp7HuxW6Abh3atjRw9IQR6SOTzBa2F+XyhV7jdX/n9PyqnEEkx0YDwMBEvmaqVIaYQCjETpFP7zrYvZGDdd7ZtkFPAnSLMGTll3BUTsKcG7R36gvSV+72gu7exQHC4lMluIl1OxCmzbCtdPC7PuDEIKHVfKK1SeqVXx/71K33vSBls6x3myE8/feH8t5/5GJ23Vkh5JuUZVyrl4w1fHfta4WNhu++4MOPnYIl8Q2mlUlrFp4Rzg/LxTnt7ZTy+Ubtxl3xIiA+GoeVAq2ijjgIBvAv4NEOxV08bQr/v5OHZbysb30nJ40ZnfNxoR//AT2fmywO9FLprBoZLJ5wbSJvpNdOnifDpmRYdwwty4IS0DlQ9/uEM04kRAoyK1h1Qhnb2daNoQxlmuKjFtMXePuTmlNXed2hZyPOEeMe+F8KcmaaMpoy7vFCnmR4TTQRCRHywuBUxbGtXUGevDgeUslNLg7ZT993QqIdryIdwsMq6aad9YqB4n+jibV7bKsgA7baX1Fl2Rt/xIgT5C5VObrpQy46gOG8nkUikdYcEhw9nRisgggsJVcHJG319o/RhkXrTGecD+7IQTg/4PFPWK9veDeimlTEUp4M+KmVfaduKDmVtAy+RNM10H+mlEIfiOojPdO6EEHl+yiy3HUIkTGc0RuJTJk4e7UKtynK7c3lMXJ5e8L7hfKePSghCCIPadqZkG3ZME3NwaBXaaNT7B7Qb5f07WhNz/oLOjdGE5Ga0Z3qMtHlizpnUO/V+x5VKaDu3r/+TXsHPmfPLM8457t9vLB8fjCGcz2eef/pCjY4pJMq2ohJNvF92vv/6Pzm7d16ef0JSInz6GwsT9/dvlNKQw34WVOl7pWPYzv3bN/TxO6PsdDqkjI+ZOhScZ2hnXW64HJieHshppnVsDrs07vcGRVnKnb1uDOn0IEirBLUbTJcrfTGJ5/BK98Z3Fo04p6Q5sdXEqAnlTJCAzxd6W5GyMz7u9AY9RJhPuJiRlNjF0f0NCR3cQm/gUqK1wxmE4mUgXvFzZERPzIES5GiUJiRF9qYMH5DpTHt4psWJHiYaciighDE6Y4AcYdEp2eUTHETx6LhR2sLbxzfScSn00f4026sYZypPJ5pCqRZl4sXTVRARat3preHFhCZOuwHI/8m20z+3YdOJKSS0Fbzzpsrw9i+sXfAxIinSFZqLxDwTurky99Wi/XxMlusZMml+pDtHdTsaT/RaGSp4bz8EjYEUYM7ORibX25GT8g44dDiyz8SYqaWZv9JZ/sovf/839rUTHh7gPPBnoO8wGnstrJsyX9TwLy4hY5jbp24En1Hn0e6gJcbuUcl0VdZ1w2lFRkWGoGp0fOYJ7xPFV1pN5JcvnF5eiPOJVhv1+kH/uJLaSiuvvH/f2FpF14WcJhs1hIhPifPlwTJetjtLG6TgcCdLxNPdqIb3929kF9CYkHgiXTy368p8EkZfqG3B+PmOOgxOfv/2lfr8jTw6nc5tCPPlkS7m3W3NaPsxCa6r8XkR1CW6RMJ0oYWFdbuTzzNeBuv1Fan2PXhRtGxQF9p2w8+RPEckQKPgnKIycMHh84TEiE8nS9prC7p8oLuhXHuwdLqRMs6fCecL/frO/v7daKzDmoJuwGjDYiUd7NHhPQdDeRAVwLTcOM8ijXA6k8/P9OlCDxlJZ7MpHrNRT0d6J0ZveBg1pOpQm3VHL0iy7+9+/WC9metJgjPteMzogM1V8umMDAGx5pIeY0/zaRglRBFEKxZZ+Bc2nWR6IoVAaxX13lCSISLd0bqBqMV7VARxCR9PxKmi9YbP4L293bUPWoP1oCX6+QFxHu8EP81oWRh1A2/PjdYHBGW+XOj1De3FIF1d2caCS5PVzT4QpzPt7YrrdtJ9+vu/0S/Cff9GvW30MeilEFxEtLOXzl4r2jbGvlD3lYcnT+vQO+iYGLP5KX3w5OmEuDNtPJNl5ePblVIqLoCLE2OKTM/PnH75r7hpogzQUKE1a66VnfhyJq9XyvXK2Dba+cReGmhjDom3j2/I7577gOn5mTFNtDCZbC6ekWnh+uu/s7/fERIpP8PAfK0Eerd5dhuDjcZ+gNxV39H7G+RAAwgZHwSfItdtJ57M9eScfbhtW8E5aB1qZzTH+MPSpkAfRAmk7Bh/HrYecQ1YaM2hZeBGRtKEQ6FckbYgWoxnnSKjCU5OlNDo5056OGacKE07TsGnxPz5C/lyoq4LbdktYW8YCVHHQHpFeqOo1cSiyn6/kXsndkPxjJxJPlHVlHUaEoRokAVnHm8fnH3jChwQ9V4WvNGerC4OgZBm5jzYb3fcGJS10NVKuDyfcClRSrGn+QEyH91UTW6IOdGOlIE+lLpuaP8LhRMaToyUGNIY3lOpOPEWxyEgzqh1zntK6ex7QRE0zAQ/4b2BwwFkrpZXGkzp42Ki4qAsDBw5zyzLlR6MgevEtKNxmtFDwLkuG1o7pW6IC4QQcFOk9savv/5K/vQLvy0Lz59/Rtnp+51A4NQ8+2ZSu7ELIkpd7rjaqFvl2/bK3kGHkFokfZmZnx6IHqRslKGM9IjkR9zTBWolusC2VlqF08Ns9L4Y0FrMeC07bdyp9YNBIU6BVgwFOqrHzxPxPJtxIdkM8/r1N2pvnH/+wv7+O4zOKc+QAikB+0q535m8NbbohXVf2MtCG4VGQ6PFpyhGi/j2n79y23fS8ydOn5+oCM578sMjPk0MHLVsjOXO2DZrROmgvt8Zyx2nSi07dW3QKjkIYYqod3QUP2fCnBnS0b6jBVzbkPbGGIW+fiC1mOACay4OZou5iBfi5zNBhL5t7EYLxw2lO0cIHjedcXFmuji0C6UZN4xWkWITB2mVfbmi2ojAcr2h950wX8j5bF3uNKHB41M+cnUtK0pFDnmno9RGcJ51tQ0bnJI89LoBSmmWQZRiwAHbsrLVQkgRjZ663dm3nXjEk7Zim3H0wGimIuvO24U0PCnPaHN/3YbFB9pQGmJ2qoHN5eQgAIh164YOxAnLvhCCQ/PJ3u1j2I3shOESXtXwJtNM21ckGXNXROi90n3DZwNfO7/T1bJb2r4yeiW4QN9M67u3QtXC+XwhPWXKqlx++Ykv/+1/wMPMmQtrreSTEtICb29EL/ReDlSmcr8upGlG5hPr3gguER5+Jp6/oF3YPq6Ut1e6wPlvE2U+MZIj6U67rpTrzvnySFCHbBui3ZQufSPqjguFqgsxOvQUifkTZQxLURNvyq7TjL88cPn0E1OF6/WVtN4RvbKvVzYVXKmMfmeMwr3sXP9xkCzVIGptbBTdwQ9r2ogDhFIqy164TGeeP/+Mf3hBorfUOBdAhdGV5bqi9xvt/ZV+fycH6PtGv2+MfcdpR2uBvuOG46PdEaeEx7MJU0LGpwuSIiqd3j6IfWG0DT8s8Mv5wPCZppFGRCUSsj/cRo40d2NA9c7og9qwGXLK+BRxIdHbAD3yf8sGe2LsK7KtxN4Z62JSwQEEbw2laWbERBtAV3xrBJeRoeCFVgdjDMpu6YBpisynmXu7syxXqht4UYsUaZ1eCvePq72+8sS+77R1ZykNH1dCmiDYvDvmyZIyvHWg9zJQFy3YbAyij8ez/C/asKWNP1PWOWqerhBjRNWQpaYB9X+++3VYbrgTa2vX3gliXDoGiDpqU2MMxZkUwp+smzg7Rttp4mkrFK2m+D9n5hiI+8r6/kpfDJE5tsLJnTk9zKzblUEHcWxrJZ8yD5/+D3S705ri4p1RdrbbjeCjvQDSzMgz4fzI86cTczoRHl7Yh+P+/R399jv77/9Aopik8dFRPu702x1ZV7Q2dsRS6u93enC4U8LHjlCJCTTZUM4/XpDpTIiZVirt46AQ+kyYE8U7Lp9eECnU5Z1yv1GLEvOZViw8uW+NESIxOpKLXN+vOG8JDX3fLBWgN+tQek9pnaHGWm6q9LrStkqIzrrJPpuDZ9/Q+8L4/orcX2laKWWF3slxQpqaE0urYVZdZ7qc4JTxL0/ML7/QU2Z4xbkd2GB0C5iSRNeA+hP54TNaHT44ZJjpfhw15whKChOjrPRu0RvqIoSExkRR6N46rc6bc0blmP36aNypPOFKtQNpmonnJ+T8xC4mpKEpbiucnCUSWHqvjXL2YtJBUbicJ6b5Qt039u1G9Byb1pw7PmfqvqO6cZ5mdHTWZbFmYdooarxqcYGYJ6ZposfI8AF8stHXsJRC91du2NaacXp0IOJoY9j/aO8Eb6buVishDgSPCIyjkSHOIWoDhN4t8qEfNWxHjZBQK1GUjmX1yB8fnHp8vkCzG8Sn4wmmgjt34pS5fxvU0vh4fyO2Tgydtr+zfP8PNE+sq5CnwLKtXN9eoRSkVrQ3moLEQJgn/OVCiwlFWJYVv5hBmftOfXtjfFxpo/C1ddLjK21ZGfc7rlf8nPFSaVrR3dOD5+nvXzhdTtRaqQedX3dlvCcAABBYSURBVKMnPj7izs+QJ2JrbP4r9a1w3z4oH878k7XhpbOsd1CI2UgIKZ5pcsdPwrYPYkxs95XqKr1YLGL3ULtZ7f6AkIkLdnACjMb99VfKeiWI4r3H+4l8eWbcdvrbB3HfcK1S9g9G2ex3vjeCOpJXSyCQYfiZfKLmE/30SEkXmo+m8XUeiVBqQhMMDJlCmNjkwi6ddPLUUmhlt//W3vEhIs6Tg6cPZfyxIUMC8dYgG1YHowMfkxnpfabHBPOMaxekd0timM746WwNJh+sPj3sbvdtx/mGnxLeWxxNihMiA9HG7X4zmaGLNgrToyPcu+X7pBMigX1Z6bUQvTtmrBVKOV6NnjrsghiXCy0EwjTj80yjIN4MEzY8+qs2bC1w1DwcMR2IM4znMNqBdw56R8dB9cNqW8NousNRr8cPRhgMnAhtVBSl9WqnjDbW5Yo2i8HoplfE+xPzfDIFzoDoPLrf8eeCa0r5uFL3Oyk4ennl2z/+T1wMiNi8ePRKL5uFRLXO6FCXhZWNMF3w85k5mLrp9vqV9XbDpwlCtoNHHKMqr79+RX57NeG3DHQ0zvGF9e2N6TLIfiaFibpd2bbGdPJsW0engA8vhOkZ8iM9eOgF/3hmtIX99sH1+1eie7OIEwHJJ6aHiTQ94tMDrVZIEYaSO+gYuACTE26vV9pmeapbV0KIdHX0buKIGE2ad/3+lbreaPd3ei8GhCfwLolpemSSyOWcuW6V0jb6aDzMj9SlsteVKp1KhTkyPzzA8wvy9As1P1FdRuKEeGG4E7SZVRfrjoaJlM+0YSnzLjrEWRMn+4yOTq07IoaL7a2jzmJe7GFn4oPkjAPdasc5MbVbzObZLdGUU9osclIcPU0UibgGtIHEYJ3tY/Pa1QPa7WBTgW1dzDwfLFsnxozTRtuaOYjqDggpnyBOlN2aSrXD6IrlThfaGPSB0ScU1vuKhkDdK6dHS2mQOOGzmtjkr9qw9YjjkOYQ74/WdCc4+3gGejCFOq12ox7gj9xMxbkjdPM45SXocVpZMLSMTq8FaYW6fRy+QZujuZQI7sReGz6dSMdB1INnOEdW86V2hUGlt521vtFe33BOySEhPeC9Q5wjTGfwkU0LdW/WEu7CtQ14/2AOmbRX+vWDj/qKnh+RYckFfThag0FhGxXBXhjjekWIZI3UtCJuhlxgrxSgS8HlCNOF7ia6OuNFjYFED3kiqSNh/CavQhfPClylk2WQg6FLa/LUbTP9bGuoV9J5Ijdla4O9rFQVROw10nolx0ithbdvX/EpklvDbw3f7ORXl6gaKf5KmzNL36j1RtdOng1k7s+R94+dPCd8TOTPL5z//m/o+REevjDyI8MnuguHxve4VVM86BcZDdl8oX0Y+NtFalvxIqSY8AKtGGjNhYBiNNcgzjKpnGmww+SRYFbMPoSGJ+aZiz5YSbBvx7jHoTEbl8tbsru6w82pivfO0vrGoLdGOv6evex41/E+/XkxKQcvazOBkKqVXKq2KUXCn6B32S00O6aJvhXAMU0TrXW2dafpincOlyeGFLq3iJu/bMP2uoB40ICEaPMj79k2Q4D03uy0G51aCvrHjSv2Rz9u5wE0cXi1Dm1rdjtr67Bt9O1G266E42RT8QSf6CqEnNmbpZuH6WSib3HgJ0K6ID6x+0gvd3IUfK3IVnB94N1glIY4z9v6houJaZoZ1Z7ePge6FOq6citCVOMS9X03RY2L3GuxEGsFXKTpIIh9fOu6kkLndu2k2eNCJT441J/oEpH8GQ2Rms8MZ8/AXhdk7AhCjYnaFMfAqeDFWLtDrGO9bjulvMGAUZshShiW6h7sd7G/7ogztUxDaW2jdeHy+Mw0n1n3zqUUwqEmK9cP6v2dXjacC6R8RmJFdMM5OIfIujdj/M4wfCLOn5k+fSE+PzDOE+30QA8ndLogLiMu433G+UitO+oTMZ3+/I7asNvMKKWVvr/R9mKCBmdkhh6shnSM/8/3g73SnLMoSTXxjg6Lu8R1RExTLNNEj5k+zFXmvT8CmRVJARFI3g4D55ylvh/RoSE6gp/o44J2U8ZpB60dUQOuNzrrdsW7QN2MyzTNM1vvSMyc/ETjHUZh4AmHCEWbWvJf64zeWN7fjljObFjW/hfWsLUeERWiaOukaSJ4Z82mXi1oV+3Ji9hm7N2US3KcUNKtK+m8R4+Aot7FOpytIqPZZh9q/kd1hGjMJRVH9JE+Bute8F5p4hkuks4nepwI2JC6rR+EJFxSQD/uXL9+pdIMq+IC4BghQTqRSaz3G32YQkhrZezQSqU3g0qX65WqVhdiedzIOJ6s9v0Y+cFDeDwRLxPu4cL8+Wfi4yd6CLTe7fnjk9WR3uOGQzWgovjTGUJmlCOpfdghaKFjzvCkR9NvDEWddRdFlV4rH9ud2ndKNxUSMqhDKR3CXlE2LgcLqW4L5f1KWa70fcHJQMage8+cPaVWQoyMEfDzmT04CoMwz1z+/m/k5y9szrHQ8XEiTA8QM8MFggs4FxlqrwGc0FQMTAAgapny3W401+qRXOcotRNyxMVMb7bZnLP5rneHbHBgFsohgJhFTSyGs5QDdp9PSLToGOcafXTT6ro/oHD/+8asw5LsvdibcDSL3gzRXiej2w3asLJQW6NXm62rgyBQemdfFzRFcs7QhO4C27aYFXCaLUh6wLKutN16O7Wt4AJ+dogv1vn+qzZsr3baIN0gWzpo+0bZV9B6BGGZmDkdvJpub0dUOuKEVorZ51Ky006O4OuhuN4YraNiWFFVYQwDi5Wym8dSoasBxlrtOImI92ZKYMD0QHz2SJ5Ztw/2beecZuTxhRRBumlZ0jST5zPbbaf3O7IXWunQOtIdoxS0QOmwdpPutV6Njk0/uEV2OA2xppXMM/npmenzJzhnOD0ynn6hzY8MB/t+o0vBqw317Z/3CGoGg1LQUHESGLLT9w0XD24TSpoSqKPWjqRE9N68utuKxkobd8YUoRaohh1tQxgIt/sHve18fvgbpe7cPl7pywLNaJcxBSRlepzo80TZN2Dw9PxIuJxxKeBPM0wz/fzEkk40bzGLPWTURbwYGgbvjS3VsQ2rio6OjnGURGpQdDE2chvBrIvqiMGSAhSMdhmEPjq9KiFa+WAHltWL8eiN9GHig96hjyNC5Agad9HjDmyOHg3Q2iplt5p+HDd0qwWGUg75YIyBVqvlDfWK9kKvhSRi3K6upGDP6b0Pam+knOljsK87TgSfJkotDKD2buAFFyxHuRT2tdL1zqyC00OR9Vdt2Fo2RIJ1gH2zwF4BHSZe8M5OLRC2o43v7S6yPFIxnWbvNstSlD8uZCdHU2vYKGZgiqmBKZ1UO0JjtABpYjSrJZwIeihJ1EX8FFGXiPkE7YG2Xnn/+EDSiS4wx4QPAUnJ4GRcWa8bIySrJ2plWT6opXFKE95PbNcbtZozxOgA9h+szljALifi+Ux6eia9fEYfH+jnmfnpZ+T0GdKZmBxti7TtigrG8R3WkKObs6l2RwgTSqVJt7pLOqCknI55qgM/8M6jCEHOxPOF1grp4YF2vrHEb7BvbHdlrMN8o23ncppwAT7u75SyEv0gTRNdPWmemZ8/ER+eSClT9wIxkB4e6THiTjPNeYaPSJyRMNOds0NyeII4RO23PdQ6vc77PyNGxxHoLSLW6feeWitexFi8f4x0jlcD2BjQxwR1p9eC1oGo1b3GPRRK6wh2iPuQmOaZ0mzTiovUrjjn7SMDYFBbM2rlcaHUWmyCUSv+CBd3ztGrHcq1rGz3VxNn9EatG6MUPI5Wjnq0VJoAeyP5Rik2s07eA8Jed3wI1FosGMx5hhU/bOuO85YAL/Gfk0T8c13isuOk2XOnFBvViJ2evRUI9tyttSEukPJE6YPoTGL4x42kOmi7nXSq9hyu3dLKRqtGohPH0GE16jEacsDQQhvd2uDO2vJ//ArFWZ08GKSUcHk2/25+oN9vtHXjYy922o7K+vs3fB+EOdtNv61s68ZaCl0bhcoYzuxwOkyFFIPREWMwd040/Mj0/Ew4X+DxiXG+4C6PjPnCSBMaAuIdcb5QunW9GYp3yQb+4hm1okOpo9kRFzNdrIkhDuRIBY8xoK1at1rtcOxFIAX8NDEQZmAajbl/4eN95e31jbbvhMlxWz+gN/BKd92EH2kmns/oKVNSoHqHXC74PLFPE8wzw5uMTnzG+emYp9prKojDq0P7wDmht2oyPwbO2aelai8ljtGeOCuLQOgSLPqlN0rvgFj3FhvxdRo4gySM2ghekOCRYbWnk6OWxXKDYOCco7VOada76M1SHhD9cxRkYxlFDgi5NUt3I0k6mw075+n7AmWhbLZRR9mITkjeG3T9EA/laIdqWTecDEKM9FrY9tUQQs1oLKrGwR7Hi2N0e0HilUD+6zZsb5U+KlCwwHlFsZGGjo6GaJsY88O2sv/5xPBejk07bMOWDecTDodzHDrLxhhWs7RWiH/UuQc6pdfCXisyXXBxJgShj6M2huOf9XgXkRCOG9Aj8YSLM21akX2nl419v+HKTlYlesGdMufLiffR0dsH3ke2Xlj3jeoHkgLdOfzphJxPhNNMmibybHLCMM342YQXLc3EkFER2ihorXQNpgYKs40oekN7Jcj/9kB6Ufa14NVMEr13VAYpZZqfSHNmDDs8em84caSYCTFRtFnXXm0+KtqZfCCdG9PlxPv3b7SysTXlPGeCzHh1hOPAcfNEDc7iNfPJZs+nE5LSn5vVObPkERIq7k/gm3g5DtaB0vHeFFOm6DFvrTjbKCJiPGUU59wR+G21uWl5TZAwFLO2iQ1cdFi2DsOS1rva7wNxtK44Z+6avXQ4UhB67/a6O3oBdpAozgt0S6tAB4zO0EHZF3ov5OitxuwQfOL+/gr1akKKoUwp4Z19c61V8A7EZq3g2JcbfhiBYttW0E7Zd4IPjKqIJNRXei8IlvOrY1Bqobu/sIbdlsVOvmGFvtXveihCxtEIcQww29Zmz+LgvInRW7WTTMahEsGaEaPRWiV4f/ygB200+mhW0Nedti1mSEYJaTId8B8p5Kr48IezQoFAa4PqhOFslKNZ2FUt9jI5YlZc26DsLLcNr566D8KUOL88mMKq7Yw6CMNq5Oo8py9fiM8vTE+P5JDQrgwsW6Y7h08TPs82YmoNYUURaoGYDNeJi8ZG8h6tlttatSMD5pwP7jC4mOwmCRGfTyavG4IXpW/2pPPOmbqHcNDoTwTxRoccHYdn1jOtbSwfjZwTPgZCcBZ07AU/JeJpMrlozuaS8ZkqdjPKoVQzNZGN2VTc8f9tURneGYBPasdoKSZ2d26gePs2vBwIViV6q9VM1MExAgScM2RrPza6t78+9AhJa4U+Gg2Ppun4ZhzW/ROzsukBlfeRMeS4yZTeqh0ojj9FOXI4cMZorPtiIzoXqPtKxBMQdC/QqjVYW2MrJp9FoGk7Gl6OdduhVlrZqbUQQ7Jx52hmINDB6AYGsH+n/bm3diT9gfZ/zsAu9qH/WD/Wj/WvsP45PdSP9WP9WP+/WD827I/1Y/0LrR8b9sf6sf6F1o8N+2P9WP9C68eG/bF+rH+h9WPD/lg/1r/Q+l9rrhitU3/l3AAAAABJRU5ErkJggg==\n" - }, - "metadata": { - "needs_background": "light" - } - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOwAAAD3CAYAAAAewrhMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9ebBv2VXf91lr73N+vzu9qVvdLQkNSGIQMnMSKhWoYMchg+2ACQ5gCpBtYsouiko5qUARsBVSxsFll6nEIbiIbUgEAeJyjINDVYxTmIAhthmEQAGkVrfUw+vhDffd4Tecs/de+WPtfX6/e/sNt6W2FDlvd91+9/5+Z9hn772m7/qufcTMeNgetoftU6PpJ7sDD9vD9rBdvD0U2IftYfsUag8F9mF72D6F2kOBfdgetk+h9lBgH7aH7VOoPRTYh+1h+xRq/1IIrIj8rIh88yfoXm8Vkac/Efe6y73fLSK/+Bpd67tE5H94La51wfs9LSJv/QTc5z0i8t5/0ff5ZLX7CqyInGz9FBFZbv39DZ+oTj6omdm/Z2Y/+snuB4CI/IiIDHWMbonIPxSRz/5k9+t8M7PvM7Nv+WT3AyZFlOuYHYnIb4jIH/4k9eW/EpH3i0gSkfc84FgRke8XkZv15/tFRLa+/wIR+VURWdR/v+Ci596r3VdgzWy//QAfBf7I1mc/tnXz+KAb/f+s/eU6Zp8GvAT8yPkD6oT9S+HhvEbtl+uYXQH+JvBTInL1/EGfgLX2IeA/B/7BBY7908BXAZ8PfB7wR4BvBRCRHvhp4L3AVeBHgZ+un9/33Pu1j2nBiMiXi8izIvIdIvIC8Lfv5q6JiInIO+rvMxH5KyLyURF5UUR+SER2Lni/d4vIL4nIXxeROyLyOyLyb219//Mi8i319/ed8wys9vevn/t80qAi8p0i8qSIHIvIB0Tkj34s43K+mdkC+HHg92318y+KyC8BC+BtIvLZ1QrfEpHfFZH/aOu5HhGRv1+tzj8F3n7Re1fX3UTkT4vI8yJyXUT+s63vJ9fxXmMjIl977vO1iPx8PecPiciv17498yBrdNFmZgX4W8AO8Pbaj78jIu8VkSPg3SLyhjout0TkQyLyH5+7zFxEfrLO56+JyOe/ivv/qJn9LHB8gcO/GfirZvasmT0H/FXg3fW7Lwci8ANmtjaz/wYQ4A9c4Nx7to9Hwz8BXAPegmuLB7X/GvhM4AuAdwBvBP58+1JEDkXkS+9z/pcATwKPAn8B+Lsicu38QWb2+VtewZ8Dfhf4NTP7tq3PvxS4jWtA6nW/DLgM/JfAe0Xk9Rd4pvs2EdkHvgH49a2PvxEfrwPgZeAf4kL9GPB1wA+KyOfUY/87YAW8HviT9Wf7+j8jIt/5gG78fuAzgK8AvkNE/uD5A+41Nmb2k1ufvwH4MPA/19NOgW/CLeIfAv6MiHzVA/rywFYt6LcAJ8AH68dfCfydeq8fA34CeLb26WuA7xORP7B1ma8E/hd8ff448PdEpKvX/0ER+cGPt5+1vQt439bf76ufte9+085yf3/z3Pf3Ovfezcwu9AM8DfzB+vuXAwMw3/r+3cAvnjvHcOEUfILfvvXdvw48dcF7vxt4HpCtz/4p8I31958HvuXcOV+Ku6Ofee7z19Vn+br73O83gK+8x3dvBZ6+z7k/ggvZIfAC8Pfbc9d+fu/WsV8L/F/nzv8buEIKwAh89tZ333d+jO/Tj7fW8d8+/y8Df7P+/h7gvRcZG1yx/wzw39/nfj8A/LUHrJ+33md+Ux2zG8CvbK219wC/sHXsm4AMHGx99peAH9k6/lfO9f068GUXXev1vPcC73nAMfnc+H5GHXMBvgf4iXPH/1i75v3Ovd89P5544GUzW13w2NcBu8CvbsXVgi/Ki7bnrD5ZbR/BNewrmoi8Cfgp4JvN7Pe2Pu9wTf3jZvYTW59/E26N31o/2sct+cfa/oqZffc9vntm6/e3AF8iIodbn0Xgf8LHLJ47/iMfQ1/On/+5dzvoXmNT21/EPYJv3zr+S3Cv6fcBPTDDrdrH2n7FzO7lYW0/wxuAW2a27bJ+BPhX7na8mRURadb4tW4nwKWtvy8BJ2ZmInL+u/b98YPOvd8NPx6X+PyFT3GhBEBEntj67gawBN5lZlfqz2VzV+ui7Y3nULQ341b3TKtx8d/DY4efPff1fwscAd+9dfxbgB8Gvg14xMyuAL+FK5R/EW173J4B/vHWmFwxd0H/DO4uJ9yitPbmj+F+589/xZjV9oqxARCRrwO+HvgaMxu3vvpx3Ht4k5ldBn6IT8yYPQ9cE5GDrc/eDDy39ff0zBXY+zTu/dwfT/ttHDRq7fPrZ+27zzu3Zj/v3Pf3Ovee7bVEKd8HvEscyp7jrgkwAQk/DPw1EXkMQETeKCL/zqu4/mPAt4tIJyJ/DHgn8L/f5bi/BfyOmf3l7Q9F5FuBfxP4htqf1vbwBfFyPe5PUEGiT0D7GeAzReQb63N1IvKvisg7zSwDfxd4j4js1rj2Y8k1f089/13AnwB+8vwB9xobEflCXJC/ysxePnfaAW7pViLyrwF//GPo26tuZvYM8E+AvyQicxH5POBP4S5sa18sIl9d4+H/BFjjbvYDW52DOS4bsd7jXp7g/wj8ubqW3wD8p2wyAj+Pu73fLg64flv9/P+8wLn3bK+ZwFbX83uBn8PBgvMJ/u/AIfNfqWjfzwGf1b6sKOSX3ecW/zfu59/AXbSvMbObdznu64A/eg7d/DLcSrwNeH7r8+8ysw/gCN0vAy/iLuMvvdrn/1hadeu+ovb5eTzm/X7cvQS3+vv18x8B/vb2+eKEke96wG3+MT7u/wh31f+Puxxz17HBwZurwC9ufd68lj8LfK+IHOPg4U9d/Mk/7vb1ePjyPPC/An/BzH5u6/ufxvGB2zjI99XNOxDPTvzQfa79w7g3+PXAf1F//8Z67pdVV7e1vwH8b8D7ca/sH9TPMLMBT9t8Ex6b/0lc8Q0POvd+TR7gMv9/oonIu3FQ6X4o8ieqL28Fft7M3vrJ7cn9W+3nU0BnZumT2xtnOgFfbmZPf5K78indHibuH7aH7VOoPRTYV98O8RTGw/bq2g/gY/ewfRztU8IlftgetofN20ML+7A9bJ9C7ULEib2dNxoiSP0pZp4YE3A8o6aaTGkI+IbBUWipKM8YGAiIyHTM+d/b363532Cl3aqgqtN9NsfYmXM3KbCCIUDtf73e9vXbv6WUqQ9bR4DJmXvc7X6llDN9af2LMdL3M2Lcpdt5hN2DT8N0F3Km5BVp/RK3b3yQ1eIQkRG1jI+UgCh7u5e5duV1iMFqteBkecx6XDELc65efhQz718uCUgYGStCsQIUch5BSu0vCIEQAimlM8+DKCbKTr/D8fEhx4sjtJ/zxjd9Npf3rvL0kx9isThENLG/N2dxcoqZ8vo3fjqxi7z08nVSWoFkoFBKRrJRykixgjDj2pUnuHTpMi/fuM7pycuoFUpMyP5b+eJ/+7sJ+5/D4Z3bpONDyAtWpy9zdOsZ0uo2fSgYRtaAxh1Cv4PkxPrkOZbHT2PpCAFimBMkUkoi5RUlr1ESVjLFMiJ1bZqvCe1mlJIoeUQwBEFMkDAjzq7QzR4BnTOOJ5TxEMZTSl6DGi4XHRLmhLhP0B1EC2M+xdIKy8MkI1ava+EScf/TmO0+hhhoOiYtb3Pn5i8+MI99IYEVEWxLONpCFAQRrb9rPabU75sgKJ7mNBCbUuDnBXJ7oW8L7+YYfICaAJ1r28efFWabzmi/CXLXFP/2NbaF3j/aCOj29beFN8b4CiFuz7Jer1itRlhBN38dsetpwpTzyDCst67lHfYxFQSj5OyLSML0DCJQSiKEjpRGPO1XyDlh1sbdRd+KuQBXxug4jmfmQFXREIgh1KUFSoE8cnznBqd3brMeboOsgcwwFgy/dwyB/b0Dbt58idGMEISUMlaKLwR8TKJG+t6LVcZxDZopRTHZY//yW5jvXGNtRk4jpWQoTckoIkopI6Lqi94KJReiKKoRlUius2xmGIVpmkWqcLaFWZ9bmtCeVfrtWAFUIipCyiNYppQRKyNYqTNTj9NA0OA9sALFqixkxAomgkoA6Yj9Hn1/QJAebCDnJeNw55UL8i7tQgI7LaAty6MiGM2Kblss/1uqJWxafRJWad+flZizwimTtTp/zHlhEFEwQ3Rz/t3icpu+KxhaNQCv6Md5RbJ55lf2+byVv/93dVEEQciuoYFiI8O4PvNMWhVk7QUg5HHESu2zKVhVbmRElBCMYrhQ5o2ln7yKpkAFSnEhUq1jKb5oS8oYBRUhKIgYSGK9uE0uBZMRdEBVKMWVQOgiOWVOjk+wUsjjMClKq26RUbCiSFBCiOScSHnENGP0iD7Km972byDxClZc0RjVpTI3CgApJ3qdVSMBll0QsADau2BbRiiAIpRJL1spde7LZjE0NW4FX811zidvLKKhgwKWE6WsKGVAJCHNeJi4EpkqJYsrmpwgJygZxLD6HBr26PsrzLp9clFKHkjDMaUcvWIN3a1djEtcJ7VZi8kl9lVRtYpNC8IsV0GqQ1+1UbO0fp3p4vVh/DYbK7dZsqVsBKsd41ZGKdXSc05oNhbyLs8j9xbu80K5fdzdrG87vf3u1mB72Orn4BNXMjmPKD1mGRVDMZzYlKvOrlYaAYOgga6foRbIOVcLEMCMYVizWi1oi7wJUwwR1UDOhRBCnZemQK3NBFatqU1zMT2QC68ZQTKo+DxU25sSqM64fOl17O5eJuURVaVYpowJUV+gxdLkdXWxI8bIarUk5xFTwwhceeQdPP7GL2aZ5+SSCAKrNCA5Y8g0jqVkUh4Ra55HAVVUAqo9RnArTHZlVN1ycgvLpApwqfMi1ZCYexVtIARAEY0IwftvA5bXwDCFdkLYeJFWLasUchmxnKbj/JoRZE7or9DNLqPakVIiDSfk8Qhscdd1d75d0MK6Np3+ZkucrOmmuqjVahxYmpz7EJW8tZDPW6Rmpe8udE1AfSFv42RST5UtV9zuKXTTOe23cwK4ff62m+6KaNttb8duxdd2Vqmc7bd3UwHvvk39FaBY9jinWYeqkcFQUboYmXU9QXrGlNjb3YcllDyyXq8xMqoeQ6sGSnGXNwRfSJNngp3xXM7H3piRNZExj/O9pwiGeu+xEsgGYoHd3Uu84fVvBus5WRwTRKryKQQJhKAMuSoIg9h1qCrr9dJHJCsSIo++4bPIdoUxCVYSaq5ESvHnD6EjtfGtcTmWoYwUCzWOjCChLk4XHEpG2hqq/TJrs4FfB528AKohMdyDpHk6lrEyUPIKSvLjqoUxA9VtD8zd5mQjYqneo0N0jsZLdLNH0LCLWabkI9JwiOUlQV7pUd6tXbha55UxZbO40xE0bbIBnLYNX+EVcrrV7gbYtPtu9YI2yG3g28KuYeYZMKjd/6z8ngW62j232yvd5PPj4It32ws4386DVio18pSAVLCjKUErLd6SjZafrJ0RY4cg5JShKDuzPQxjGFaIZEoRX6BNgZkrgfP9MzNyzudcfW+qigmYFkyFoopVD8ZsG8Nw6xSDktLAnaPb7O08WkPlOj9SiHHGsB5pMXQIgVk/R0QY04igiMwgzrh89QlO1zDGTCdGQPFIx+1o0NBmzj0RSy6IJphUODGEhk5gll2uW/xMFXRx5bNRVIaqVqFuXkcdRhFQwciUnMl5jZUBK+7hCP694LGpSJjGN5c0xdBIADpUdwnxErG7jBHJ+ZScj7Bygtg42f4HtQsLbIvJ2sRvFrttLA2+aFz5bMeqZRKsu7Xt67W//doNRGD61905Q3VGCHPMtJ4/TgvfXXCm/vnZW35q6yfVcm7VAkjTnP7XtGg2ltmtuQMIzdpuxfYtdvUjtyz2lhuNYaUQ1GPRnFPV8jZZa6sa3heETjGjBqFkoetmzGczB0HMF0jOmZQyObtb1p63WVarC7SUXOPYbQ+oWpMKIqo2r6KGQFbq+LrrWCxRbOClG8/zumszgtY+GmjQKV50WTA0BmazGTll1utVDQcEjRFEWS5OsXkhxC3ljXtmACpKLhlTUEt1TgpYcuVkOCBnUu/rwE8dBL+m2DRfE9hUAaEWMws+Jx7auDtcLGFlmNZJCwGp8zGt4ZIoltzdL6mOVUR0RtdfYrZzDe12SWlNGheM4x1yOkFLotxdNF7RPjYLO7kD5jGA2LS4ttMiGyu7WdBWJ38j1O2SEzywAUPYDLhZhcQpFIX5zgGPPf4ZmO1gBmlYkMuIKixXJ6zXC3IaXEOWsbo8BWxErMUwmwXbYjlEavwVXGja5FR3vEYsbFJFVcA4ix5bjUOb5jTaNY3MSJC5P7dld4UbTlCtS4sVA8q8m7liEl88okZPpJRMkIjVMCEqBBkZSah01ermuogMU3VLanESilKR2GmuEmgRognBHG0tOXu/EBx9VlQDJjCmgdXqlIP9gzo+jjS7Uiw0sCUGB3DSaKQ8gIwUEbCR1WqA3QVlNHLYw1RwGXTUO4aOoB1ZBMpQrWIkW3LlLZmggWzBYSZLWIlQfJ2K5bretCIf1fhUxd7UtdQ1YgSCdKj01WkcyXjoIdVKC4JJmFaDNO/PBqQCgQKIzAnxMnF+DborjAYlrynDCayO0ey1AEUvVhp+sbSObgCjuqbbE9a/9YxVfBAC3KzUPe42LaCzgt9sXkFMSbnQxV3QA1R7wp6iasxmPSenh6S0Brc7YEbJI8NqQUkr1ssThvWSnD1FYdWsSc2ElGRIcHfrTP8nd3jjaolQBaacAW+aTd7Ac7rxEEr2ftXnKTltjYs1hMqvI4KGgBJJOblLKBBjJGch54FSNummECowJRHR7Pc0qwtWpuPMbBLWUsr0o6rV95AzSs0dpjYP1XKKYJYY00AuiZQGEHd/x5rjdSVmzGY7BA0s1qfV+viYlCKkDH1QlqsFQSMlZ+9PLm4LcGsnEsE8HWU5gYbasVxBI3FlX+pMTBOyvda2jURLmlVPzKYlvTFKZEr2HO4GbBKQCnaJIqpgmVSSp9eKhx1oR4i7dLPLdLMDLHQOXNmSnBaUMqA4ipxfWwubpzU0xa3SrMArCRDT0Gx9djeA5/zxbUDP5zDbsW2sBchjZrlc088vkS0Q5/vs7e6wWi8Z0xykp+8joA52UFAynWaWp3cY16ektCSlJWMayTkxrNekNJJLdqQPd7U8C7Tt3ufNpIr6ZItMQnG32HiyswaUXK2lI7Ael7nLpueUI8AwJIImSqnHYmQqqlkte7PuDZRzlHQzNy6kTK6wqk79a8Jq5nlHq94EAmJCCB53l2LV/dzkQUUiJTvAVarnEkJgPZRJual07Mz3iTEyjIuNRyaBOLvEpcuPMYaIsWa1OKEPFfQJgZwqCoQjwcUGihXMElrDHzPP2U7hQwUhBVek03jKBlhqIYqv4+01WEMR8eNLya5g6hyZNJFVzAINNygkSnGFKtUV1rBH7K4SZ5dBZlgxLJ2Qxzuk8Rhls8YuFsG+CpR4I6BV+UDVOGfZjQ8STNfiZ63w3QCtu/XhrIPp+bSUffHt7+9jVliuVlhLtJsSYw8WkABiieVySS6Chhm7fQ+2h4jQdW7BMGMYB5arY1arBePopIaURyyX6gjXuFcBMlbdaJNSQYbqJteYGpgWkBtSj3dc2aVJAXio0EIGxQqEPqAhYAa5eDwpAjl53CvicVQbX1Xo+x5DSNm1TZn0i3shzbJuz40LvNAyEarSAnGfj+JeiANlbRSqYCgM44qURmJlUJXiOVRECNrRd3uUUlitT/CNNNxF3dm5wt7eI9xcQ4wwnJ4Su67O78aqaQyQAhR1oQhg5qST6hbVldFC70Lz5IrlGh4weVPeah+rkpyIKs1SW3blWpw00RhSVsfN57PGzE3pAUJwVLi7jPZX0biPAXlcwniHcXkTy0tfOzXl+ZoKbGMxbfkYnAWV7nLOOYFszTX7KwX6PKp7NzJCE1asUPLAaliwMzcuXb7EbB556aUXyWWk6zyG0gAqmT4qMSgnJ6fkNFBKQsiUZATTGgcpmFuXLgbiXs/ezmVUxdlIJTEMa9brFeOwZL1ek3NybY95vFS1sk9mAyf83+aGqkAQIdfUh6cMqktn9Yc2zC1KFlQDqgaWyTk5N8I8xgtoBZPKlD4TDYCRi1tkVUcyS3FwqrnC7byu69hYF5kGvCHZIQREZuQc2KRHFEzpuq4CWZnYsRHW2vp+lxjnjONAymsaom0osdtnzMo4ZlTcC1ovB0RHRDxdlarGEXWSQkkJyyOihuDKQSyjk3KsAJ3UdE1FbK1YdYOhuckt3eOP2zzGuv5KgjJWNzxtrPK0bl1BGplS5UElEsIMjZfQ7hI6uwTaQRkgH0M6grSAMlAkbQTVLiayF3OJZeNuiUA2Y8rS3TMW3WjvbebSeVLE5rMmpJtU0TZVcRupdfQ1k8vA5asHXHvdVY5v3iKNI0GVGAMhRM9DlkxHYXlyQh7WqILG6Pq0OMBiVihFUI00JDBqR7aRkjNBhL6fM4tz5v2uC1weSSUxjgOrYcV6GBjTQCrrrWepymhCZjOhOGXPYSkHxEpOPp6TpLoVkwruaE0jqWplAgldrIioZUQ36LRTHT0fnvLgINXEIy7TYtymWE5jXYwQ4pk5aWPu+dBA1DgJrJkgBLrYMazXmBX6vmOxXE2nigjz2S4x9Jyc3qHY6GvGAqhycPlRlstMMUWkIFYYhzWmK3zTyOyCWTNpjexh5qQOMxdWSpqsZ2NY+Tp1gLOhzWfc4WkZmo/ltMYrJmMZKc2T8eNaSs/lM1PMCRhumZ0mGbpdpLsE/QFF5q700gIbDynrI7A1Krmu65orv+B+hBcU2GZVmyu8WZAeK21SLw2gsHYC1UWZHlimJTnFxfXYlk5oKGu7WbOsRRzYUYmowawTHn/dVY5OjlicLgjq2l4EoiqzvkNLYlydMq4XaE1JxK5DpCeKUIaRYub829IsYmMAhTpRSk4FkYBCBXqELszouznz2Z4PvsKQ14xp4PT0hHEc3Aonp/tZASty5h7uyuU6Ng2ygkZMj3Hmbj0Rs0golZZXxHOVhQnwKaWNj5CLWzEVJ1KUrdi7IZiljnkIARVxJ6H2TJowy0ZNNuurhNpHRSR6bDoMxBirK19jWY1oCOzsHKAhslyeYDbU5wxo2OHS5ScY0oh0c0qjJZaRlBbkvKTvAiqZonW5SgTx0KWUPFERnVGVak+r8FVXuAF/QdTDkTPYSBtwP7PhM9bChtw42s0VdpS8Ld6WDjNAtEfDDhr2if0+xB1XvWWAvKTkBXk8xcrgymkLlzlvxO7VLhbDVuTF6uJtQXpNQlR3YKsiBlwAq4ad4grK9BmT0G+BSU2YBRpXti1AMBIN8KjAimTSesXR7RU5jfRdz2w+90jEMp0KuWTWw4LQ+WQUS4xDJsbIaIaKuUWOzaX0ico5NUwJDLdaTTGJr+JihmSD4hZITJl3kZ1un91+v3Jmh0lw12MCCVTcBgmFYm1BUMEeB3r8xoEYekQiImGqVtqZeyWKqJHGEYYaL9eWc6ZUi+35b53GH7OJ+664YMfOGUIOiDkya0FAg1PsMELQSXmBOT0w+2zH2JPyMbPZjGF9Ut1oAVNimDOf7ZJTYr0+QTQjBKwEEGVMSqiL10pEgxJCYRhWUEbGvJhAH5UO4g7FkvOlS3V/LW/FqQ1ZdkuaLVOs1Y2c9wpts163BFcmICpTWvHEtIi3SCcSESKFgoSAhs6BpniJGHYdabGBnE9J4wl5PEFkrJa5ZRmqgpTXUGA9H7Xhn3oqAzBfVOKmY8s6brnJpQ1CwExrDUA5e8xWKy2esBbYb4ZV6DaDLpnDw1u8/NJNlKvM9vc8XVIMVaPrAkLm6M5t1quVu8dUJTGVVzlhPo3D5LI39FRCwLmovsiLmySP/azUVMlWkYLVh82u2Nw6G323Q9/NffFgLNZ5wxieUiuNc2obbnQd5+YxbBhWVSBLdrKgCF3XEUItpyvFFcTEly2kbJMQbVM7G9gUY6yPYJtYagtLSGMiaKloudZY2K3Lzs4lYgzM55GTxZJcPJ3mxAtjNpvT9x0nJ6eMadgK1Qq5HHH7xlM8cfmzQQpFA0kV7Tq6oWOxOgFbgw0TcUFDoQvKmKcwfyJsTBhHexrbEHkmA3GXUFHautiMDGfQ5XZNw5lVUi1tw+UkotohOkN1B427mETHN8qApVNsOMHG0+pRvTJrskn/3b9dTGCJSDA0ggQhpUQuwbV3UTRodWlrOZEYqNvcTad0AmG2Cu6mVurIaSW1T252HW1fbxEoFBJGIo1rpBi7u3tYdCJBH5RZdALB6fFtrJijpnXySnHwohQjVP9dxOPexhQCKJI9DysFJ8+CWaGLgSAzsJbDHCuLKNVJDFOaxSlrjWtdqqvoLCev9rBJaNuK2+R8/R/X5h7L5nSWB1yKx2pQY1irZXIqpJIriSXQxUAxL7trgJM7MT7G6/UwnR9DoKVjBPUYCyEEd3VLdk8q6Jz5fI8Q5iwWC45PbpHSimKDKzoTggR2d/eJXeB0eVSVTqjeQ0JYc/PF3+WRJz6X/vIeowUHozUQQ0cXe9bLU6wskUpI8LRU5Vzbxvo1T6/xvn1saJ48kwk1mxTZ9lh6+dvG4uWaQpu8SfERqZfwORUDCYj2iFT6YdhFdAailLSipBMsHUM+QcsK26oPb/N7N4D1Xu1CAhtD4NHHrvAf/rH/gHe+6508+dTTfPDJj/L8cy9y8+WbHN85YXG6II0jOa3dZSF5PaV3qyJ3VCpXwGOySpurn/iAu8uWGzIoMtVxemDu/E6fqIQwEjWRCsxjx6zviFJYnJ6QU2FntsuY12yEQyYhGWqS+zz4IltpGsOtfsmZlL0KpQ+KqMe3IUQse8K85DIpmJxbkb1Qsgt1bmANnkdsaYum+GXK5fqYiQhd31Vl4X1OuaLAddE564eJPFHq80hp97daZaOOYEZXetuLJWc/x6gxcS4QN4hpCNH5vOpK2iwSwg5PPP4mYrfDSy99iHFcYziSKuouWNDIfLZPzpnl8tgFhjDFyUphXL3MS8+9jzftPoKWA5iExIXW+p5hfUIaljiDqFIMc0KseC42CCbqcb2LMk1Ap0qxKT6HJuSyHV5S47QAACAASURBVLNXM+IVN024W5qtuaw1vMBDFpNA0Bka5kjoCGGOhpl7IHmEsoJ8go1HkBdIDX1auzdn/j6yeJGD3vymJ/jWP/un+No//tXsHewyJjhZGIeHK27eOOTmjUOef/YFXrz+Ik8//WGe+ehTvPzicxwd3WCxOHVBLskN5JblKKUgQR3sqGmPgNeDlqr16vD6AFsFUKwnW8aAcbiNcoVOOmZhzjzOWS4WnJ4comLMd2bsdHNyTqxWK2KcuwVKifVySR7TFLuG4Ehdyl50XCRPhdQiWrm/lZWSyyZ2Kp5SiF2cBM0LrnN11xrqppXjqzXealbSzqIftvE/BBypDqG68UwxZeMIbx9vxRhLqpbWz2mG2VNDQrGRlLwELQTffcKL7yGlOjfY9BwAJVv1fBy1jrFjtrPDuC6cnBzViqPWf0ecu86t8DAsWA8LjFwFo+EfEWHFya0Psjp8C3HvbXTsMBSbHFJEiDFSRiWNKyyvEc2VNAGmLnIiYNpCNM/BW95kFrbbhkXXQjCdjnLOdD2t5sQbR977XQs4JIL0IB1GdG57nCMaMUuUvMDGI8p45Fa2jO6+Y3fp0ZZn9YB2IYH9nj//nfy7//7vZ7YTSSSSKSkbYzK6+VUef+JRrl17B+/6HGF5esKdw5usl3c4Pb7BSy+/wEc/+hTPPfcML750nduHN1mcHjEMK9fuKZEbKixCbIG4mU9GTYs46giqEdHeEWNRbt1+luOj26gq89kuXbdLdjZiZdZE+tlejQXFqymyf7e3t4fVYu9h2MSxKSWGtCRbnnjHZE/HpFLIqcXrLrTu5jbCQwPZNsBaCIJIR5TAuDaGXJFKcaTTNfxW+DDJrkzMpLZDhFtCt4p9HzEtjMPAer2uIUXLr7pCjDFOOWDfEgYcDGpej7g3gNXqExANtYB9k87rYlf7JxRTui7S9x23bt1gHMe6y0WjUwiqHXt7BwiBk9MTr1OVCs5V91IsEIKh5ZDl4Ud447VPh3VhNCNb9aMETMR36LBEshUlryYRKrlV6Lir3JSfUwOFi2E528JSfT4DK16vvDlqQ+0UjRB6gs4Q3SHGGaKOe1jOkFdYXpDHE8jrum9DcOT6XNtmnT2oXUhg//BXfQWxc/K5EpHRiFHY35uDZUaEYVmwElitCkfHK6J0XDp4PZcOHuedn/WFxAApr7lzeJubN5/j+vMf5bnr13n++vPcuHmTw2NPzeTKl802eowFNeZRpt0qzOmAMSiDLoCbaBc4PlaC9hUAiEjoEOnowg5d7Agxep4suGsYNE5xZux7/yy4K7ZeHrFcnJDy6HRFGs+2tmK+swAueJhDaROLyzw1klJqyISXrZUMjRheiruuG/1+buStlpnlCeRw4VPMpDKKPBfcYi6qUOcipHETs+q0K0LlSZsQRCaLZxU9lgqqWCmVTOLWO6gQRMkmFBNmvbJeH3K6uIE18kJ13TFFQ8/+3jVMhNPFCUYmBC+Vc+YUUIRSEqFkZH2bL377I7xwY+T/eeoGt/OaVHz3ilJ52IrQxzkjmTSuKHlgElJAcfKFtNpoDwQcxaWlCrdxFXBfuWIUtHRei0s2ltXzIaHiKBGRHmEG0qHao1qBWVsjNlLykpKXWFljNvpYZvckp6qhqlzKlof0oHaxGLbflIw1r18odFHY2wmkEAgiLE4Kly7t0/WvJ63XrBdLgrpgd1EQMpf3rvCGxx/jXZ/1LhBhTImUMy+89CLPPvsszz73DB995sM8f/1pbt1+iWEcnMyOkeuWM5hPRcpuFYoYZVQCQhQHSgwBjXXPoZm7g6EjhA4kEmNHiDNUewSt+c7OhViVQPY87lhdsuIUt1SyEzACEIQyNlewlqFVl1L0bCrczBjHGuuqV9JYBauoC2q7OYvGF/RqfVrjImcsuXucKDnRqqWaoJViHn6IW4pcXJjUHIwSVcbRQaZZ31Oyx5whBIJuFmcqRpBWoVM2oJZDSqxWJ+RbI8PqzoYeSHPtAjHMmc32nFiyWgClsq2qDVbBAUQnucxD4Qve/hjy6ft0wwm/+fSz3F4vMFt7aFHHWEwI0iGaKLam5DU5DzSEvRUolLo1i59TGhR8Bo2dIpGtz9rfZ1DbKTSILpxhhurc1472hNCTi+D7NyWwNXk8ZRwXeNlnom5fUNNL1VWvSmKCmy8iixc5aDvBm5KXalHpcCKQslvXlrfc2dlB5jPC5ateI5gH3wpFAiEGcu692qJaDFS59ujrecc7PgdLI8vlHW7dus6TT/4WTz/1IV64/jy3bt7kaHnIcrUiJSPlwjoXMupsk4og5pYUKa41iygDuFULkZbT7LqeEHcIYUYIHSH0qMRKUhBCRRcbs6UYaAiOnEb1bV7UQTQrTi+kOLvGJ6ZZ10qel/pvTtPCkIo81+VzZsxbcn9Ma4JmRCIp5YlL7BZwQ3k0a+mGCqpVdo4DYw7cpWyQIZVErFU9JXt/44RWbs71PjmmEELwMTWQ4pvKjSlNng4WKIRK6OjY3dklaGC5PCWlYXKHtYJD23t7qQi7feSRg12u7r+O08/9DLQs+MCTt3j55JjTNIAUkkqt4EkgGQ116VfvolhxlJlqHWuK8bwyPLOuH7DuPcSpNbLqWQBHhGPNu3YTVoAVrIyUSvqg+I6JDk8Ud5l9v6MtdHjDYrtIu+CeTj4IXsXighdjoGQHFxqHdeKxinrNYTHPZ+ZafCxCCB2ddkjvwj6m0ZP/Jsy6Hg2JeYz0Crud8JlvfhPzXhmGJS/dfJabt25wdLzgpZu3eeHmIb/xgd9lnd3pQZQqp1WB5Yoo1w+yo8mGMKwFNBBCR8uj9d2crpt7/WUIjgS7KcVMnXxuIOpCFsy3TlGJaIgQjTGvydU9duS2sXc2e2E1QZ32HKKRxjcLpRTn5J6eHKEh0MXe0V5RNEApiWxa5bzlbzdWo9imtA2EMQ0uLBUJHVOZYiczqXtFObjVwEDRZmHNCRYSSBU5jdEXWNdFRObkLBTryLlQsrK/dwkQTk7vYObVPKpV4TVloGHiTu/PZ1yadxxEeMdjl9n93LdxWZe878klz94+4TiNrgwVSvHEjkig4IrYrHjxReN2V6HdYAIbmmsb47su9fNo7Zagaq3p9fyms+UK4oi1gNkAZUXJC0o6xRgqu84qMF+qAmnYQP2fKKrdhUTxwkyn5iKoCBIDJTkgkltlmAoxbniYVgeulARBUROPYSb3wnclcFCkr4R80JIgBrqo7HSB1XKPLmRg5NJ+x2NXr7BYLXjmuee4/sxTXJvDYigsk5GKuJbXyFScYE4wcKXjaM4GEUy+l29lA63Xxx7jakA1EvsZMfT0/RwNPaKdD7Y1PqkHB2P2ODTG4CWaJVGKE8NDiJPlska8mKo6cqXUNUrnhtrZalu17ss0DAOuicWrdsqI4qh0W2jbBRQlb/KMboULBU/flFq47a6xW/+x5GlcSnOf8cuXUty66yb+K2WzH3UMdcFJpGTDsudfLRur1SnUTdFUHGgqbOLjQt3+NPaEUtA0cLkX5o9fobO3sT8rvP/DH+bDL77IjdOFs4tFMFVSFoo4KgsBFd+SZgL/rAnmZlzv1u5WqLLxKj1FRUWgWwyLRt+WRqRW6oxQlpR8SsmnOF+4EWJw13PayaKlnFwBCz0qs1f0627tVZXXNeCiZGFdCuOYybnukyu+NYgfD2ZKphCDkgXErJLH/Rq5GFYyQdUJ+DU/KgXSmDDpiLNLzDWgjKgmZvMejZHVcx/hg7/1G4x3XuYt13YJXc+dxYKbdxbcWQ6sSyaJTuNd8iaudEFjK4xolSPmFrmMJAOyMoxtdwV3lWPsCd2MPu7QxZ5kVLK8kA3yWKqtVHdXg3qFSY1RPMYt0AAkxLXdmWT6xgqEEOi7WbW2G7eXipCnNBLqpmvNUrbruDx4jjdv0xaTp8NCBcQap7WP3YQsGzYpgGaVckOzRSZlsAG0qmtfx3pnvksfZ6xWA6vVCSqehgoasFwrj9ouEOpEin429+L1MXtfrOeJq1fIb3iCGYn9kHnq+nVePDlhUYpX0VBItikV3I49t2mvDd85n/fcZhvdlcBQLTPUfZu0cpk1ggaf65opsLLG8gLLp1hZQc2zu2w4SLjZsrUZPwXpiGFO1J2LiOLFt4hpTyDiGj6lus+rNWhlk9vyQ3Xib6qbHaaSC5XJdRYKGpRU60INA43ELpK0AkhlTZgJOQkaj3n/b76f6898hDdc22dn1rOzs0OynvFNj/HMjVM+9NwNjlYDWRr4FEAqAb65IXU+xDZ5wY0rVWsjDXe7ysgwrBgG8ZSHdITYuwvdz+ninBB6MN+6xC/oCz3lUmPIlnOt5WciU563UTCZFo33zwGmvtambhhTvo+TEdTHPEapuEJ1t2EqqztT8eRMgYnRc36frpyLu3ATWtZiuEYeaXW6ZXoOs0IupXKvPTzo+zmqgeXyaOI8OzqsIEoQaspECFWB7+zsEWKPDQ5aSeiZdz1Xd3cYr16C8XXshszOS5nnDw+5s1qhllFLdc+l5OBjtaxUpHdKDd+FCnsvssKk9JpWR2rs6rRM1ejzN22Dk6CsKWmF5SWWB5o73sgzVKhWkWmd+bU6J19of2+x22oXrNapCwiH9HMFLwAncwdx9C5qDRWdGTSxQyRW17MWBKRMVCW2PZCKWyWnNLqAG4LGOVFAUawsKePA+3/9V/nw732AN73+Gpd2ArPgzJ04n2EEruxd4vErcz70zC2u31xwOhpJKzNUHDyq6ta35NwmLNRnNasFB+ITva19rSQyIzmvGIcTZBEItWqn62bEftd3OZRANs+/ZtNquTw15nzUTCrDVEfpl2+8YrfsQTtCmFEzQTVPbA5eWCQXf7VEUHU0sgFYrQB+itk2sazW/YK1orUxRq+FLUbJCRXD1LlnIh0QnX5pY2USUT2kxpZqHpiDVS6wuyDGYn2HYqmW5KkTUmi18F4b7CCasre75znaUK1Z7hi1I8YZfeg5mO3w+suXsTwQJXP9cODOesVpGhglk6VupmZuFNu2OB4ubxExXrG0t+Z2S4A35BedgEo0uJemRiO+OI9+8Lg1r6AWS9SrVO8Hv7tAlppKRFxIpadUi32R9qoEFjzgN6v0NfPUQ4jujrWlVsyphi02bKFWSzWISK1VhFAtnhcme8Fy08SFQpTo2itnPvQ7v8Wv/bNf5pGrl7myK/ShMOs65vNdEuLJ+cUJV3fgM998jccevcLTz9/k5vGadXb4KVnbD14bxDi5S5ttVmQLtLmLJpYKaOBufc6JYVgg4hax7+detN3NvZhZo5fwVRTTRddTOiE4HtBiGp9mH+8QfHJDF+rYp1qADkE7JDTAr411c4k9Xmzx8kS3bJZjskIbppSZEaLSd5FUfK+l9loQw8hpYMPcb0Xe3sdtl1xDpJ/tkPLI6eIOZqXmxmM9pzTdUdMwrjhm/dzXtKjnUsXXQ6sJ7mPPLHbs9z2PzOfkvV2UkSiZpRWGAiucobzJufoz3otYvz0e7d+z8azHrhKCg05VcKUCqqXujWypkjny2ud1y6PZ1H+3WW0eXERkRoi7EHaQfn5v+dtqF3eJ6/OXbFMMI20rzIpMing8o2oNFKvfNUJBg3xqXCdMFENTIc5nxApspHGkkInRIBWefPpJ/tkv/QKPX7vK/k5EbaDvfDC0nxGJDOtTNAwc7An7lwIHp2t2Z49w83DN9Ru3uXm8ZCCyLh0m3fb6Q2S7wJ4ziOIrY5zNTvLNg5Uax5e8YrVcs16dotVCzOe79P0cz8yaV/1otfINEWMzsTUKBqPGmTbFip6TruOtSpBGZNctBHqz6O6mdErd/6g965gSeUzEKBNeEWJH14VKx4RhWBNDWy5t0z33too1gocwn+3QxcjxyQkprSciybarb9MCbkomMJvNa6VVcKaQOYGhbSbeQLseZU8Dl2NH6XuCJXoz1qrEoowlT3FtxtHtlHMdm7PI8HmL6p81wWXqm2pEpMMsIMWNiTkaVwFGryYySxTGV6yjbYXpVt9jV3QGcQ/iju9KcYH2qmJYz+/VWCcooYgvItytEQXLbn1UZLO3rkGM4nsm4ZU3ue3VoziLJnbuEpfi++hUYj95zcvXn+Gf/MI/4trlffbmPVKh8mZxiIFSEtrvEMtIVxIhRnZml9ibLXn86sCb33iF516+w0dfuMmN4zVjKZhE5wVXFFfOLe4HE7LrTgh1b6BSinsWImD+NrRVWrJenxBDTzc7QLvZ2Zi1Co/V/Y9cpVVF1IgGIhukdtqe1CtW2sLQRszHpufx4zYcaavA31StY/6GAKlzZBYZRrf63UzY39/n5OQ2eUwVeErV4m0BkKXVsrrXMp/vYsDJyTE5j5Mr397gtr2QtQJYZv6GPqtjGDWQUo3J8ReB5VT3d6rKP6oQBTqMTgoWHDYMCGNxJLm9ymVTwvZKod1e2x4yNNykVvCEgGjNu0oH0vLR2fOsZcDKmpyXqHjhQouhm1Lf/NQdB4Lv+STdPugu6IzNTtr3b69SYJlSE213Bg0BDZtO+r/+0CJUMKTuuFeaC7apzAkhViZRIqeMWsbySBoW2HjMydFL/Mov/hw7Ea7sXyZGT1aPKVU00+l5UpaEGNjrdykpgSk9kX62ZixHXMqJg4M9Hn3kMs++cItnX7jJ8WrNaFpdM3Wq3ATnb9p516mNhX8GLT7ZJOjbBLVzzFM/ZYYSUbq6+0TBd9qrRAVpk+rgVtf1xOi5TZFtpLimB9hYVAeRQvUMBLONpt9GRDdbmTIJPxUQG8fRkc+xsK5sKEWY7ey612Slzn99RsP3iq6pii7O2NnZo+TCyekxSK6F761uuNE2/bZF3OWMsWd//5Jvf6O+UZyzwBqn14j17XCoksSm0k0NTvlzIomhVlArWAW3XKnKNF/baZtXCK9Jk+pqgBwZ9hi2xnUV1ccSZkMlSSwQNpvBuwVtnkW1rFUmTAIic0T3kLAHYY5xttzvfu1VESe8HI6ac3VgyLJQAqTRX9aVRjBz8rgjyZBS5vjomKPjOwzDykkWOfPoo9d44onH6o4SNV5II+QRLWuWi0N+45//Emlxm2sHOwTtKHTE/oB+5myjPK7pg2F2UOt0EwSji84pLjbCapdYBrp4yt7OPk9ce4TPesub+NAzL/L0czc4XQ0kKzX+Cb7P8MT2uVvbEBa2o5Mqte4u1T2CJnocvinYNsQ1cY6nq3hs0crhXGAjIsWJCSVPNMlW9N4WYnsjnTOHFA2x8os3LlnOGwutUz6QWh212TEEcVfc8YnAvO8rgOgupk07PfieDE1Re+w+Y70a6mtECiH0dQ/lDS+3bamKeXigEpnPdmuKqlZw5TL112gKvm3H4sopanD8xzbOdgODHMCjemzGvSdzo2SlKcwtV13qZuGlQFCrijD7vtdlTclLYHBvx6GkrTdbtnlt+yor6AwJ+0h3gMY9Tw/ZUNNUD24XJk44l3ZjIT2xD6k0Le552ZIdsCh1MZ2eLLl165BhGNg/2OXatWsEhdVywYsvvsDJ0RFvf/uno0Aa1qTVie99sz7kA7/5zzk5fJkr+zv0MZDoiN0BEneJXY+mgRB71ArkjhDNd7m34mhj3WFvHg8gLTjYW0FektPA8tKKq5cf5dPfsuSpZ57l6Wdf4GgxMNqWlasmrCXi6yxM83+OLQxQX7mwqbtsAtDAhkYo8b615Ve9lzMLqAFK7hqXUohdVwWw7uBfi+enGNE2O3YwWVXZ3J5Ngbtb2HpO2zC99VicBJNToq/86pRGJLiVK5TJHTbyBD7NZ7uoBhZLfwuDKF4GOMWFG1CvdVM0uvIgkLMRKe6VmU3v1GlsKBWBAlLaBnq+RY8WQ6rCmooxBBq76cxa3sIjNuQKzo7VlsBSX8niY1tfWiYJKytP41jbn4l6vlfstLnXuqmbp9QC6JzQ7aE1bvX674JIuogoXlRgPYfU3D7BfXgV3yO2mJByZjUMDGvj9HTNwf4Bi5MFaczs7V9i1zKr5Smr1Yqrlw+Y9ZfY39/nhevXObx1m/2dGZbW5GGJpWOee/q3ObrxNLudEMMO0u0ym+3Xja6ccRS6nhzmCDhyitCpv/KwvUNUtb6VvOwhlhAGQhrp9zLS3+LKlYE3PHKZd775DXzwqY/y1PM3uLMcGLQj190vmqvk4I+/38VEUNuqdpmmurrHU52lbyfjxSkyAXUFL3crqRZYV1cW9V07QnAkWJk53c9Kza22tJNvRqZiiAWnEVYWUy6OrpZ6fK6pBUN9AwFLHnO2uA3xxVjBlBiCu9dF6HRG1B7pe1IlOxQbUPU4WoPVbQWUPnoK6vjkkMyaEHKNB6uAtq15qmfh+eCaLdCIv0PWrWOIXWWJOf2Vshlr8Jx6Fi8IyeI4ilUswOqeWMXaTiWvBJvOIsNVSEUxwoR2S4yYti1/Whw++u79ZYW09zlpnXkzimQXTGs7WPhLxUR7JPSI7qG6U8MXf6OAks/syfVxC2zbyzYXXziNcL5crLh9uGQ2O4AiBIm+F2wu3L51yP7BPv1MWC6WBFV29/xFQKv1ir3dHUou7m6VgpSBPJ4SbMHtW8/zwjMf9h3gNaBSK2u6GVNODA/+pVoMKrghonQ6q/S7gBbfTkZ1XpVMZhzXqBiXQkdKp8y7Xa4eXOF1jz7OOw5P+MDvPcnT119isXZXORs+cQhGR0zBc7haMEnOYa3ubItPPa+sNbxt/xWH/XHertmIkTBJ5FrJ5twSwXql290hlI4wjL61qrQ9muqugdRtbLQqFa24gIFYhxYvGAjB355nVZn44i5bmt/jNRUgFTrtMDG6TkllheYBlRkR33+41zkhwFic8qjB39i2Wt5GpbBeHnmXRmEow4RnNLdzQ+JowrK9jWi1k8XBzeZlUAkIEwhXAVAHNqsgthi/ufbVbb/bS8TP4xHTX1vW9ozHY5WOaSOlDFt7M3FGkfip23313VXQDrQndHtInEMIWHYDoF7C8toJrFVoPXYBOiUXB8lSErqY6ELgzvIEoYdiXuwsiYODHZbLAVHYv7RPUGG1UvousDhdMA4jq9MTDub7pNUJ4+qQk9vP8ZEnf5toK0LfAcEfNtS3xeHkDSfnt3eplImr2sCwEHtHbpMPWi6ZoBHB6PsZOY/EPoDM6HRAbGS+c5nLl0cu7R/wGYe3+NCTH+bZF1/ieDkyuNhjEv11iFVYTJzvItaBaRVIaIGMv8SqbU1aaWx1D17DKNXCeJZHkFrJEkvAhjxFyV2IxABmmai+YDN1LmhVVL75NmZEmfn7bHaV08WipkZ8UZW240WuTB0Bk0CnQtdYWaJIDKg6DbAh8g3pz8VZShpi3Z6lMKQl4/EKWNNpmIC1xjKaNrirsaIDZUKuNb2Yx5up3SuNbijwHPaYvRSzULzMcWuXS4O6BU+ztI1PVP+9C+J/RoDRKavhNEQ3SmKNyQS+93HCcqZtsD7F1eZxNVUBthpuw98OX+jp4h5htgcyq31NlLxGWNf3PL1GAhtUJ6Qt5UIajWEojNnY35+Ti7F/MGO5yOztd+zud7z44k2y+a4I7O/5JOdMiF71EDSzGhfszHvy+oS0vsnJ4fO8/PzvYeMRsy4Quo6UA6YzVmNiubiDmaLaE+Ocrp8xm88Q7aoiFH8dYXXtihUsdA7NJ38lowS8HC6rv/NlZx+xAcoabM3OPNHFyCOX9nnjo9e4eXjE7z75NM/dOORwlVlnYYzudpvTRNAiqEVPjciSaljxt51Bg3OLBoy6GIrVssBA+7+7CT7nPTNiCRSp74opTta3Wo6NaqVI+g16zZDXzDsjjSsOdg74oi/6Yn7vg7/DuDfnC7/gi9jd2WM+m/v+VOsFNtZ9kkJEup40Duzvznj9m9/BOimmHZTM6ckdbh0dUUS4cfMG11+4zosvvcDRyTE5ZVKqeVlNFDLdvEOz1nfR2oRIbyO0jbYp0eP69iLwbF6AXkphHEcXUPO1sx7HqX56I6huaTdb2myh/C19dRdB3QirVFCVNlGgsvm8GFA9mlyta31rnrR8bBN+cSC2ocSG529b3Bq6A0RnvjZzdmE1TwlJGV5bgQVoLwU7OjrhdDGwd3CJ0AXG5f/L2pv9WJZd6X2/vfeZ7jl3jjnnrCpWFYtkFclmN1tUQ7ZaghuWBEuyDXkQPAAGDP9LfvCj4QcD3ZBst9ym2d1kc2ySxZqnnCMjMua48xn34Id9bmQWJVmkui6QhUJURtyoiLvuXnut7/t9mqwbE0aeCdRoR3/UZTqbeX+pFQQq8LR6q2gaTb5aYZqGJJAoV2PMgvOj+yymx8RR5N0xIqZuNJP5JUHcIUp6SBVjjKCoai6mC4SUbG5ukqbZ1TRbqsivLwKFbFtTKUOs0S3+M8C1BnOlBM4GgMKDrBvSTkCW9uhlOaP+mL3NHZa1prCKZWXZv3Qcnl0wmV5Q5HOaegVtm+RE3NrorG+BFTjboFTkW3ThIyQR/oQUKr5qDaWICAPFeDQkiVJG/SFRkJF2EqTVLBdT5vMZy7K4ctf0un02NjZ45c4tRmnA3jhj/9E9/tE//mf89Kc/5d7bl4zSlH/+j/6IjdEWq0XpkS7FjPd+8VfgKvr9PuOtHfrjEUQBm3svoemSdcckUUS5mqPCEBXF5EVB3dRcTic8evyYR48f88ln93j05BHn0zNW5RLdwrWFkoQqYL0Xfr7fbldUiLbgNEqJ9prgP1rXtU9TaJq29YXGGhqr2zt9u2Z6oQifP8f61Pv89P3f9PCd+ppo4hV3cn1NWL/puxY24HQbXbneAKyHU7JVQcn2etF2M06BiJAqJQj7CNVpZwfWA8pbOoXXIX+BJ+xaiSoBFUg6WQfjJFpbqrohX3mau9YC3ViKSlNVHvRV16VnILUTu6LIkRgiJehGEcI2CFtxeXrA/OKAMIQoipFhwmxesyotvf4YGQR0eyOsUzRGkHYD0qrhcjLh8f4B25tbbGxseAkcAiE9HjuJdgAAIABJREFU7gWhWilgq8G1voV3Qvo9lHAeJaMUthFY421UMpCk3Q6duCQJFgyMoWwMLujwzTe/jEw3mOWG44sJTw4e8+zZfc5OD1kuVz7KUpfgaqQwIBuUUvSzDlsb2+xsbHL7+jV2t0b0ujHFaoJpKlaLko3xkOt72zR1w87mDTpxjNM1pio4PTrh/OKcT+7dZ7Jc8Pf/yX/KV9/8Jr1OSrWY8ckvf4JZnLB5e5u74x4PYsE//sM/4PbN64yVoTo9ZHI+Ja9qTH7J6aMPKWYnDAZ98p09br78Gt2t6+RnZ/TGEW41JVYJkVxSTybMLycslguqpiFNO7wcV7z+5i3+4e+/xrLWPD2+4OfvfcjP332Xp6dHrMoCq9t1jpBXu0avYVb+zVPJdhDr4e0ah7QNTV0/j520hrKuqJvmiv+19uh+ruUVsNZJr++4V5P6q6L+tz3WxSeu/j4IhHMtoMAXq1ufqcJb/ATrYldXRf58PaaQKkIGCSrogEqgaYdWpkLYGme90R33BU6J15sJX7SCLI0Ig5C81JRlQ11r5rMl2oTg1hNGD5fGSnRjfauHI009mZ+mpl5d4vSC0+PPON7/FFyNI6YxXt1S1rCzcwPjLLX2KdXG+J2kDARpltHpdjk9PeX49IS402E4GOFlfKptWb3MzujnGTRCSuJY4XTtf3hC4jBEcYa14ZWpXDcVWE0Sd7GmIVQabR31+SeIeIPx+GWuffktvvTK7zAvKlbFkovzfSZnT5mePyWfn9CJBf1+yte+8gav3LlDIgWiMdRlTagEq8Ul+uKUYLEgMtDVOdOjR+imYSV/RWMqinKO05rlYklda+r5gr3xBnf6kr3U8OjBuzTLOccP3qG8PGZrNMCWM/6TP/p7FMtLTp495fTh+wQyZv/eY2ZljTRLQlFCaFBmSSxKlpfHJOkQmRTo+TlWWvLSUS3PkctTloePeHb4lEY3dIcjFqsVddPgsjEyG7G5eZt/+Ld+h7/77b/FR4+e8KO3f87HD+8xm89ByDY8rDUANA0OUCIgkBFJFPkOyHhFlTbau4CsoW40jTbezteCADwKx16JSda6adZ3V/vce4V4YVP+gtJq7V5as5dZ2+D8d9ierI51sPTVV2xdO57ttC7O9dqqnb5L2WJPU1SQIYMYY0AYjTM1zpQYW4Dx02bxRQ6dXqhbjyGVoGJIwoAsDhl0I5bDHrNpw2rZ0NQWiUJbAUYTBwFRkBCGkjgVmEYj6opSnPHhL37E8ZP3iahREmqtSIRgvlqR9bexQhHFKcoaytr/8sI4YblakBc127u77F27xirPObu4YDzefP6uB621z0vZfIvicGsYtoq9wMA0bSq4JIpCD4IzGictNvQzPCUUsTPErqQqF1TVKZP9E+TpZ6QbX2LQvUMvvc7OsI+6ucMoeJ1xCqBZ1ZYf/+RHvHf/HdzkhKaqOZhUnE2XyGbFdmLZ7XXodjOqKOD87JhulnrDv/Hp4rX2QDVhIcxXYOf88k/+Fz74s9QP8BrN0dERQkrqazfIiwJhBI8/+hDZTFjNjoijiIvHH7AstZ86ax8hgrMU5ZKkSXH5BTaICMyK4TBidniEqyz59BixOCMpT6lXC2SiCeoahaOYFdTzIy4vn9DJrhN0rvON69f51pv/HY/Op/yr736PDz/9lMvpJbgaIT0aNiJEu4RONCIOUlxTY5FXK8JKN9TGUK6xRM57k7Wx1Ma05rb2dHWuJSS2BSn8tUNK4QeW7rlf53MDKMeVof7KKOVaGyZ+ivvCEhvnpPfDsjYDcMVhFsIfEr4Fj3Eig8DHTUonPJwNjaNCUCJdCdTeRPzvlMH+exasty75e7kRDhEYwg4kKJxUhHFIXRpwrWZVWELlhdN+Ua+RVGDmXB7dY3byiK1BQhj2aAzktWO+zJkuauLuJlZ6uaBxjqquGQzH1I2m1+sxmx1xcX7B3rXrJElGWZY0jaGTxIAHWV/9csRaimfbd2CDE97cLaQiILqaNSgV4KRGtHZBJyRYidU1OEUniJBqTtKUYBak1QGBrOkPNom44IP3/pJkr89Kl3zy4DG/+uQx2sJ2YtjuhcwvpxwfXjIzgiwB4wKqwoKuuawL7+LB0NQVCujEHcqmxlhLJ03IOiHONpw9vc/aPucQ2LKk1JpVr4czEdPznMVZztNP3mWY+ohOczFhlS+9wwZHHCmslixPGmRxjlid4sav0Ln2Mudzf69M45Th5h6nyzM2+mNWq4LLiylxf0AQKHpYZBizzEuaxSHzyzO2Y4kLQl7fvcXL//y/55N7n/C9H3yPdz99n7wpqJygthaHoj/aRqiQWjcEkaQqV5RlgTHPzfTrl7PRXsJ6VW9rrbB78XUq2vryFk7DC77YF7TF8LxhvkLJtKsvd9VOv1jk8moSrNqD4PkaaL2L99cxIWNEywvzKjONbTz61JoCaz1j2dkG+RsWK/zWBvbPP/z60yFd66UkIE0COkHo6f3GYITHu+AEunK+NTVLLk8+4dmDXzGMNHEAhDFh2iWRIUVtOZ/vc3x+hg0ihsPAa0hb14XWmjBKGI6GgFfkZFkXra2nIq5H7E60rn7/vfhdqEIoLw5wrsG4xu8j5QtJ5s5hnPY/HuH3uUoFSBWha0cSSG5vXmerFxCaBqctn3z6Hp/89B7XeprB7IRiBauiYHV0SVZUWBmRBorlaYEzls1ejKgMUST8i6ppaJzX0AohWK5ynLMoBFrnXq6HpahKP+swBldrz81C4IQfsEmgqQr2H7zLIM4o5ydMzw7ItjOUsKym51gDTeNFF6pRBFqgbUlVWBazY8KF5lq2RZQN6aR9hqMhy9OHXB6fMJufcXR6hByM2MgyoiQgigKCsEMYdHA0qGKFyY9Q4QauUxMIuD0a8l//g3/AGy/f5mfvvsO9p/usjENEfbLupr8K6YZGVtRN0ZoWZAtua00C7etOKUUQhsjmBQN+OyWW8jk29KqQWmb0uvA+f5d9riy72gG79uPC8UIzfTWcWjugfHJje0eXXsLoU/kShEqQYYIKQ38Pdg3OVmALhC2RtoXrtxy0f7fRxD/+RgUrkCgD1XxFMaswOmQ5q0jjLmkn8Qgcqbzp1QiktDg088kBjz78ERTndALDetcq4i6oGBnDYLykbBwn5yfIIGA0GoMQVHVNlmVUtSbrpISRn8qGYUAnSYij2A/WpacCytbSJts7lLfBtkICISEI/TTQ2tbc7tdXZSMQKiJUEAqB1Jo0UDx6+oStpGBncIP86TEP9x+wXKz48ON7LFc5p27F1jBD4dcQlIZxFCBCh9YrVOAJhSOhCBHUdU2sBGHg785OeGDdlcTRevubCHyGUVVWiHULaEE6L+SXSlJbS6k1eZHz9o//FW+++gadoOba3iajQYfH+0/Ia4NphM/paeM5wjggkQHbWUo5mYFcwHRJGo2JakN+/JTzg/u4csXk/Ih8Nfe0hVhiXY9OkpD1uqgoQWAJ6gblckZZQBV6CkQnClG24dtffos3X/0aP//gA374/vvMytgLXWqorUEYQ9M8tzo+33O6q/XLOsupLaN1vcF61fLC9Hi9L4Xnp+bV9Phzn7z+b+vnvTpbWU+CRVuUojWgt88ItFTNdc6OTJDKEzmddd7YrnOMXvicHVfikwC8dfIq/eE3ePzWBbu2B69/AFXeMLuc083G6EbRKMf8YsZCLOh0M2oakm6KtBW9SFAUpzx45/vo2SGJgiCIUXGGCVJcS/UXQpHEKVY0DLIeh4eHWAvjzU2mkzlN05AkmY+MrBtWeU5Ra0bDEVVdkkQJYP0p2uJLQKDUWg3VysiwiHbt4Lshr0Mty5IPP7vPxcUxf+f3v8lXv/wq3/sXf8zNccob2wFpnfPoZ/8Ps8kpzloOT85ZTKYUjUN0Yi6WNaH0VjbrvAOpqVaUpiFo1VqpFCRRQG0dumwoQ4FUnuRQ1fWVwUIKQWMasLaNxJSgTespkAjjiIRkNOySBYqgzrFlQ7MssYWjq/p86eZXOT8/Yn7pCFyXRDRUzk8kxr0hO5tdXLOgWWiCJkSUJfXsjEXjmM4uqPUl8/kRVTWnXCyxtaaWJcvpFFfnjDe3gDlRxxJHkkE2oNPrYPUZWTyiNoKaiigKSWVIVFV8+/XX+cbXv8lHj085fDpB6Bzd1GAgLxqC1sl05SjCb1GU9GyodaLBVWfUToW9M2atcnphR9t+/vO6eFH99NxuuNbFv3hCr59bIFrah3ihDlq3Em16nYoRMgYZ4oTEGo01JcKscHaFcwW4hjXN80ry+/87wf4bFOxa3iZa76WKQzZ2t7AmoJpresOMsqxIwpS6agiSiOWsoJcEaD3js/f/guXpp9jFFN3pEoRdgqjn4zesbqFliu2tXT789BM2t3fY29vj8OAA5wQ723uUZeWX6k2FEIpAKXSTU1Y+OWC1XJJlXdJO2rZKLV9Jaw8MQ4IzrTFZYtuUb6U8R/enP/8RH9+7xze+8Trf+c4b9E3JVrIgWB6ShSHTkydMjp6xmE8p64bVqiYOArR1CGOpjaWwTZu1Iym19iJ+J6i0JggVsXSEgJKKlTA02mC1B5U32kv1pPGfgwVt9BVuRVgPTY+lJEKQSoUsasIkRIUBszInX9VgQrqdHkcPPuXpo0+QsxkbShInMbkMyKua21s7vHR3j8uzfU6ePmaQJkhZcHl6j71tw+xwnyI/Z5ZPqWzDsqpo8Keho0RUDVnY8UVczkk2dlFEJNJSNYeoqWDQ3aZGo9I+UkrOzo5wxrDRjfmPvv0mR3dnBHXuB4uV84MdLE2jr4owDIOW7+ylqOtp/+doGu75xPiKM3G1+30u3Ph1U//zYnl+Z10f3Z+jdMCVsMUJ0Soepd+MqAipEpRKECr2xWq9nNF7Zkuc8+l+V86H9e7lc0KOL6RgP39pX/cSxoEJwIXep5j0AqyG3XiTMm+oJjVaazpBiDQLPv3ox5ztf0xHWCZlzfnFCaPtiHE8Ikwj33KIAOMESZRw+8YtHt17xNe+9iaBUNx/9AQhFLs7e1gnCFrw2fHREUkUksQxdVmTZT3KsqATJ0glaYzfpYFpf1YGnAQl0dYSh5Je1mFj1GU6OefrX7nL1hD+2//mn/KlG13u/eQXvPnSADMpOHt6n8nkgrOLc6wxFGVNVRucFIQCnK68rM5ZmtZSJmXoB1pOekqg9aMvow219q14Yx1107Rip1Y51Pj5gHSAFYRSILQjEJJIhWRK0REQC0jDgCAQBGmCMBWJs1wePWaSf0J1eUJQT9jLLJ0owMmQZSWpEknscuan+6ALOklIYytW8xlWN1SLJXXRUNcVTSNYrCyllhRWY7RG1zmqEzDVx3T7HdRggAu7RN1NQiGYry4Zd1KiWtBXgddCi4gbe33yZc5ydsTGuMsgXBKGEb2NEacXOYtlidWOxlm0dV6IL6U3OrRtL44W4qaQQrM2pYi2uLwxo60wfr0FfqFY8cW8Xsus3VDtX+JK/dSucpwT3ngBfuOAZz75uI7nSXZ+f1yDqzxJUeegK+CFcC3XPod43rV+MQXr1q4Pi9EOVEDTNNS1xYiQqtFeXSscKAmRN6YP0xGyALuccP/jn7B/75dkxrKYaRqTEIiIXjLgeP+YzrBh+/oNGuGJeQrY3b6GswGffXqPW7dvc+PGDT679xlaW/b2bnoioZCMNzY4OHhKucppjKHX6xMFAUZrr9uVtML4ljnVRnI3zRLnar79u7/LKA2pVxNcf0DzrOGluwMOf/gvOXUlx48/RdUl9XxFuVwxX84oG0utYVVB0XiCngzC1iQBIghbmqCnEEgReLeO8EKAxkmP27EObRza+pQ5gQTppWtYSyAkaRDSiQVpIBHa0xcCBZmQZFFAFDh6vQ5J2mFRFkS1I1nkuM4FaRxw55UbuLxPfnnGxqDHsioRy5Kt7oDtrZDZ7IyqcWxsbmK1Zr5cEXW8wooooKk7bKQD9OkF5ckxESVB4FAKwsYiVhXGGPJ5Q2V7DLNtFCnDrMfu1g7z1RLVLGiqJTLusTHY4OFnH1OVFVvjLj0Z0h8NQQXc6m8xn5dcnF9S6BLTKHSrHVcChLW4tvNQtAkNWAQ+0c5ai2hbVnm1c9VXLe3nW+x2f3p1z7XPW10n/JWjPU29KMLrwk1b/F6kESJVgpTt6Spj/x5hGh8x6XJoFr5g2wiVX1d+eeLIb1SJv+kJ246rfS9MVVbkRUHSyZhc5kynC9J0wGxeEscZpo0SiaSgZzVH++9z9Ph9AjRBnDLe7TKZzdlJ+/T6I1b6jGJZUC0LmsDSHSYIoaiMZffaNTr9Hk8PDnHAcDDi448+oaoMt27dIQhDgjDk5q3blGWJDHzY1dnJGaY5I00Stre3cK31DGXppoLtzR57Wz2GicQWR9SHM1ZnZ4TOIQ+fUFUTzmZHYErqfMpyOkUY/2IpmhqDpDYaIyTGObT1ThzjJI0DYRXIwJ+kjcebCCFQUvhC1QbTWuu0c1TWYqzzvxBjkcYRSsUwCBmEEQGGQBsi5UkU6xdbHEI3VkRov5TXEIZdBuMN9vZ26IiGl29sc/RoxbTKmUw1USdic9RHxgHDYZ8gdhgrqYqKJEsZb20igg5xp49Y1KgGGqHZiiGJG0zl3+hCJQidRMUB2mhW85JLd0aoxozMkNtvfI1YdsiihE/ufcT9gwPe+t3f5eTZPg8+fQ9X12yNh9x4+at0BwNU2EFJRTdVDDLJ5rjL48eHrJYTGuuojEDIkADZzh3kC38CX7iibTHbRlBKEG1u7L9pUvziSeuL+IUN0boNbvf6dj05lv6NVYqwxcdEhJFPr7POYEyDMyXOlhjd0hQ9JpAXyRJr19tv8/itClZK5T2nIQzjAVXV0O+FTGeGIAy8sME0LJcVuqoZJY7F7Cn7n/4EpaeUTY2Lh6i0x+ZghziMqMuGVdGwvbXN4ZNDtm7cRBnDfDEn6faxzpIlGa++/Bp5WXI5mWANPHr4kOlkxrVrN0nT1KNqAtVCtyriOMQpiZIwm08Ik4idnQ1efXmP66OEqJ5x/ugD8nKO0prF2QVKw3RV8trOBo8fnzFdzlksppyfH/kJbrsuEkGIQ2JkgAhChGmoiwq1lj/iMMahG695NW2KnJQBShgwAuEE0rh2e2BJY4WSAXGosFVNGATEUjKKQkZpShRIMA0CQ9hmGlnn6GUdQmkI4gg6PeQ4Y3ewwfbmmJiarqw5fHbIZHpJqbWP8NSCXtZFxRGV0QSdjCQIkEqQph1UlBGmGxQmosxnVFVOGFi6saC30aGalxSrGqxFWkssQwgSQi0pVwWLo3NCMeJMHVBvj0iHXRIt2esNCKucMl+w01N8+tEBzw6esnXnDQonyOKYrNehbxqK/BKhKl798h3iNOKDDz7GiBAngqs739UO2q7lgfaqUP3j+crmxfvrr5vXPX/s11YrVxW85mq1B6OkNTQopIwRyodjedaT8bY7U/h8WFtidJsC4NYooOf3518nWX6hBXslTRSSKPLrAP/OYrhzZ49aB+y6AdYolDMUekl5ccT++39BWJ8Qh4LzvGRVTdm9PiIIEmokshNx+0uvcXp0gjYQS8X5syMuJ3Nu3LpL2Wg6WZcojAm7A7pZn5s3blOWFQ8fPubw8Ck7u7uMRkMEgsPDAzpJzN7ODpEMPFMoluzubPLWl18iI6d4+gmrswMuPn2XfHrOcrGgLBpUkLAsGsrGMjl/xnI5oWwqSq1oDF4xYwVK+6GHtoLGOjQK7VrDvGnQjaExPsZECZ92ECofwSisp0qGCDqJR3caXSECgzOaQDrSfkQiFbGUdKKIWEmiKKBpHLrWpLHyX886et0ORIpkc5Noc5dgvEfc3yCoK1yxoMnn0G8YJV1G1+8iMeTT4+dOqigjHWTYpmCUJtRWkw2GyO4mdR2xkQ5Ynh4SVgWqrCmqHKMrlBOIIKGTdlCRpNYVQSSQ2nB+/JSycIQuxC5nlP2Ul8ZjeqHh5OEnPD18TBIEXN8as5pPmS+WjO92STc2iXsxQhdEZwmxgKzb5ZXel3BRwHvvvMfp4dK7l4RqDfet3NQK1sFKgnVB2187wV6AjK9f0Y52itxOfK8EFOtabyWLtIynNUWRNsUuiJEq9F/DapyuwRXgfNFaWyJc6xQT6/vx54vzNy3W36Jg/3UszhoeLaQ3Ojsco36EayzDIOHRxRk/+/G/oOOmdLMAGWagNE+eHdMd7ZJfztjdvUYYRITdmBsv9ajykovzM46Pjnnp5Vc4fHpAEEZMzy/p9gd0t3f9u2KgyLIeX/nKV5jOZpxfnHOw/xgn4OnTp2SdmCyUpFHM3bt3+MrXXmPcDZk9u091ecDk4Yck1YrF4VP2nzymahoWeYlRMVqG3HrpSxSnjrxxlJXFEFE7n2XjgMZ4/6qx0LR/nApwUlHrGitDb+YHlJDEgSLrdHyqn9HovCDEcW1rk3w2BROgpH8RKgWBgEgJsjgkjgKPOpVrcYCik8aeLNnU1MLS27vJ6KVXiTZ2EJ0e2jhMLonSHmJ8jY5uKOYXKFNBPaehxuRLoqyLSPuItIcsJYKCMJCEg5QiynCjPfpxF5d0kBdn2MkRRrZBVHGXzmiH0dYIa2vqasV8ckHgClxRYsoly7NjIldy8SzHxlC5isvlJXo1xeC4vneHJomJTYU0FTKQBN0uSmXcfjPBaIuxcH5yyTfHQ67d2OOnP/oR7737DrpYeiJE7W+dEi9D9KmP/o5o1+npoi3SF6bCn1vZvFDU/s66LqI1TG0t7veOKyE84F3J+Iq86axG6BJMiTE52hZYWyPwAhXWk+srsPi/3+M3zNZp2bXaQ8CE8qgTbxZXbRKAJXSAqTh59oiffvd/p57co9uNqOs+Qg4oG8nN27d5591fcf3GLQ6PnmGc4NredZIwJe73udbvMdzd5fLykiCNuX3rDvPZjI8+/pg3BmOSNMM6R1M3CCkYDgf0el3qcskqXzIeZuiqYjzostEf8NLeNuFsRjNfISYHHH/yC+bHT5mcHHN6dExRlCwWcwySvDJ0x1tcnJ8hpPSrlhZ/s4ZHa9NgZeDRLkL5yA4lyQYJcdLBey4iApngaoEpS9IwYGPQZZTF0NRcnjxDVAV7vYSFDpHO3wGN0zRWE4aSKFKk3Q5bg4zVYkbVOKTq0NSaJAqJoxQTQff6TYYvf4Xs2ktUTiGdoJ7PMTLEZiOidIxzgiY4oJid0IkCwtGYqq5YNRZpJEXe0FUhcVjjgpoGTbS1S7D3TUodESdjOLpPGRhUc0qUxMRqg7i/TR36QVp/tEU22mL//n16JmF5mXPy7AApKubFgiCNuFzOmCxmiFASRgqZz+mGCc3ZPmZ6i+D6DiraxEiJHIzAGALnuJZlNMuCXjdmY3PMy69/me9//7t8+tn75HWOtL7bEOupK/ipcntYXmmMf+3A+beqntrikpIr9A6iDXEWIUpGBCrCCdUiew1OV0hbI20LFbe1t1X6EX/79T+ftP6vP/8XVLANfvorHOjWIRFGIUXVIFBo7U270hoWZ894+/v/J1F9QZZ56n1jAiIRcfvWXWoLVWno90cMxxs8Oz7hs/v3GI22uHH9JsJJkl6f3ayHc17re3hyykuvvEqUJO1Q3MdTaNMu1p0lDAOGgx5hMODVl1/izrVrmKJgdnTI5fQZZnnKgw9/wvL8gNVshjWO88mMoqxYrlZEnRQCRVXXnB4d4ZxBSEnZNFRNTRRF6LLGOXAhIAVxHJL1hsTZiGy4S9AZ4IIMFSQEKiGRIYuTE1LpGHUCYrPg/OlnjBKFkSFNU9Hvpaxm57imRKqITpigIkXYEUS9AFRDEgniKCbu9PEIIYdUEO9t0v3Sl3FbdymTQUurCCEcoZAUTpLt3aaqNNKFVNqSBB2SsMaEKbryQ0AlbZvyZzGmQkUClXUw3Q2CaAc52EOMbhAMtxDdDuXkmCjdRsUjrDHIOgc0UXdEf9lQyHNCu2J2MeXiTFM6Q6+z6XeVhOSrijjuYgoDdsLgxhJx9oDpZ5ZQVCTb16kJCFskouhIVBBTVwJjS37v27/HV976Km//6mf81Q++y/tv/xgtGlZVTe4EVoQYBFJ6NZiHfpurg/Z5Ab3AEMZXtnOmbSXXJ6wvVtkmra8DnP3WpPGvB9vgdIFzBVrnWFshbBvr2K52n9v2nt+fPw8yfy6z/BsXrAGapiFUIU3dgBQUeYk2hlhJmkYTOMlqcsFf/9V3WRw/ohdLkH0sITLqgoqQStEJE1555XWeHZ9y77P7aGPpdLu8+967GOdIwoThcESSZm32rODOS68SBQFaeYyHxIsJ1ljMtX0qSSLe/Opr3Lm5RzOZ8P4Hv6CvDJ36nOXkCadP71MsZiznK/LS+FWKE5ggpnTSRyHWBmtq6qrACUdR1Tgl0AjKxiCdI40juv0uSbdHZ7zL8Npr9HZeJ+xuk3SGXu2iFK6qSAb7iNWUQGjM8oR0sEHZLIk6CQQBSmnSbgSyxOiGNE4IYoUKHIHR6HbUqZR3hnSzGFyDNiVxHFIRU8ku/d4ugYWotwlhj2a+IF9OKcMEIyAYCTJhUWaK6KYMN+6i6pzpwQPCaoWpZyzMnCSTNOmK/OKMaJhDGKDjAWozoZelIAXdcs6iBpWkZEJjJkeUqwVSKUY3LIMkZuL2ka5GaMM8zzk8fEaQZHR7m6imYbSxRbGcI5qS/PwY3RSkywmiWjC+/Ro2HaIDSbIxwqYdRAjdQUw3Mjz44K8JOwm7w5Q3X7lDUl3QiwVPn51wsqz56OkRtfVwOCWkj6REeg6Xs3jg+hrdveZtrUVBhjUtcc0jltLHQSrlCxZEi7Fp2kFTjTAF1uatXlhfKat44c7sT9QXi3fdnj/XJ38hBSu0IQkjrHUkcUTR1GjdECYpReGIhMCspvz0z/+UJ59+SKqE5wcHPiDZihjrAiLpM1YdkmvXrrGzs4s2lsvZDG0Mx0fHXL9+jfuP7pF1u2zv7BGjNjT/AAAgAElEQVQHEWEcPndHraWFba+zFmBvbY9482uvIqolb//l/81uL8Nc7PNn3/8uNzZCn3+iK+aLBYu8otISvTZBS4WpPc6kdoYkiqhq7Vt/PLsIa4giRRQoxoOYpNclHt5k/NLX2X71d0m27hKkI2LpOw9jQRjNVtonP31GNTsHAVms6GQpyqwwxYyO1HQ2B+RFznJxSSAsnVB60UShsLHESkegQoR0/k4UeFpgUxs2R7u4669SqiHGCEzcBxnTUKBbZVUYD7CNRMQ5UgS4tItsFpTP7jM/P8E0M4Jq7uVzWUQkeoyuBdRljomWiCACpbmoluQiYXdvj0DELBdTivwc7QTniyVZnDBOu4TDITJfETrJ5eEFuqiZzlaojqHTlcgkZrmqWU6mCKF5ck8z2t5kVwZUTnBxeU4w2KKzd5uw28PEjjgA60o++uX3+Osf/BCtNXEccePGNXYyb5/7zu99m6cXK84XP+NoOgHrWVC6VROtIeheSbXGMrQCQ7HmHvv7qmxzklCJP1lF6EdTTqOtjyX1Ac7Gt78tsEDQwtle6L8/D3Nfe24/X7gv7of/xgUbB37YYtasIusnc/kqR7oONBVv/+B7PPrwbSKnfa8fdVBxytHxOWHcZWtnA4dPO/f7LYEKAsIoZCuM+c63v0MUx+TVkrJa8vjJI5bLJcPBiEF/RBQmngAqJE55x45zFgncvnmdr3/zNYrZOfuffER9fszBkymr0xPC8pKDh+dEYQhCMM9LFqWmNr5ga6N9WJX2P+S4pdkFYdxiPVvzfSjZ2tgm7iTEaUTS36V/7Wvsfun32bj7NVRvTG0dtm68X9LKllpsCOoVRb1kY3STrtvA9DP0/ITVJKS2JekgpdNvEP0Bpq4IlcJWFfUqJ5QWJbyuVqiQqNcjSiN0vsJ1d9DREJVsIOMtnAYjoG5KtPUaFt1URKkkygYEQhNUDp2XFJMLmskpiS4Jqhy9XFGupjR5RBoM4OlTDA+IVBcTpBihWC1qDi/OWZkVWZqhrEYajROt9xlJvpwRL1fEUpIEIUk6ItIhppigVzW2viTohOTTE2IliEJJs8jpjEGcXxKhqA6eIDZ3CNIesZQ4KaBaMD24z/mTj4n0ObJqmJ0uSPSC4dYumzvX+NZ3/j4rF/PK177N//Ynf8z7n31Mpes2UrTCoa+usi/KFkV7HHpdb0v6l6olkcSAv6tiPaHEYnCuanetuoWz1azZT+vT+sWiffGxboS9k6ydaP9m9fobnrDr/0nhffFJEhE0khDN6nLO23/9Q5588j5ZAIGMUVFKEHc5ncwptGT7xh5OhCzmS1QQE6cdgjCCdlQeBpLxaIOyKlktV8znSzbGYw4PDpjPFhjzmLsvvczmcOv5BE84FI67t27x2isvkzpYXE7IrCWQjjgJCGNB4CouZ5c4FNop5nlN0Xi1lsZhRIA2Aq2dT4d3gFvzdB2ijdccbGxy/c7rdAZDmjgjGV1n+85bjK69SqfbQ4qKWBkqBVGcIIIEUzfkpQPZgKxRUUYQDkBXxHEEUcdzdUODrRZ0+jfI0j5JLNHlBZfnj4iLHJcXaGMwSiGyHjbLEPGIzVfforN9gypKkEGENpqmyalWl9T5ktBVJM6RSE3twJZLxOwYjj6lOd3HzY8JmwK0RRsIo5SkE6OrimJyQm/3HDN/gFVdkB0Co5mtSv74T/8PqsUZ//kf/QG3Bgl6WWGbBpRCNYZiMkMs5swuZ1wsgTijMRdIoQkDTT9wqAhGo02SrEujLcW8YHFyyeLghFhBfH5BMLpOdvslKAKopqz2H0K+ZDWZIAjJkj6mCahLwbvvfkplOrz0xjf46muv8z/9D/8jf/Kn/xd/9sO/oqoajKvXOkTWCYrrevKzKr++USJEqsinA653vevANucVVT74u3xesC2RQrJepazxqi+8ObTT5/ZfWfOf2tL1vOgvqmDhuQLSOf9JSkkC5/j0/V/w2ds/QemcJPZ6yoPjCVbmLPOKV7/0GjKI0QZWRUmjV8z2F9y+e5d+b+h9mdLblZIo4c6tl9na2KFY5Xw0+whT1SyKFSoUXM7OMM4xHA+Jw5DXXr7L3Rs32P/0I8woY37wmKBe8OjhJyzODlhMTlgVM0oNZVUjgg6V8dIyrKXWpt2felyodiACPLq0rFt9iyDOuly7+SqDnZfpbl1DjnaJBtuMr79EpzdE2oqz/U8JsGzf+QoyiakaqKShzGeslhcoZZmuloSjDTr9TYZ0scaSNw2T5YwsHjPc3GN7a5c0tiwnj0EUhMZRLwvKYuUFILWm24vob46IgpDVxRGB6pIOI44vFhTFAq1zYqehOEc3FtlJUXVEdXHAxWc/x+2/z8H+Iy9pTEOK5YxQOHrdGBXFmLqB5TnBcp/L6SFaDTgrHY/nNQ9PK97+7Ixm/ozdwU/5+p0emUuRJqaeXTI0FUG+giLn4vKCog5Q0pHEXvc7HMRsbKT0xxlhJyVMh4ioz3xesTw6Yf94wiBWhEWNvX+PdHvMqrlkY5QxvXcPVRp6yZBVJdi7/ipGhARhTBo7jh/fp59lZKuciIA//Na3KIqCP//rX7JsEqwIsRis0+3edZ3VK9r9asRz7rW36VkqH6XjvJBf0NL/1/EazheruAos91h1IdYmgisFRvvP1qp3Jf74TSvwtyjY9WB6bSeSgNWGj3/1S9774f+LKFcknYggjLEi5vrNu0zmBWUzYVWUGBRp2mXv+jWcg/jsnIcPHvPaa6+zWCzZ2tq+Gr07A2mU0Qk6fOOtr/No/zF3XrlLEEh+8tc/5cbtW6gYNm/d5I2vvEp5PiFT8OHPfkDoCorpEYdPPmZ6eYgzJauyoHaSykKda8ra32t8+LTPsdHaUlWGMJDU1nhoW8seiuKMa3u3efnVtwiGu5CNSUc3SMYbJL0eIrAo07C32ePk6T7SGeJA0miL0T6CsK5LkiigO9hBRinNbAI0SGMIjGVjuMtwNKbfj8lX58yPzynOD3GrFfHeHc7dJSKQ1DKnNhZdVQwGsHr2kIuVoX9rwfA2LI5WnMxXvPrGK6j8nNMnT+h2HNF4C6k7bAxCPjh6yPyzTzl+9gwRB2xuj5lPz9kZZ8QNyMK/+5vZOc8++AlTq7hcCd65aHgabbLx6rd46+/9Ifsfvs0P336Hi8MuN4YJiZAkBjacZicQjMKQ0faYaDpHdgxVExKnGd1ugksc0bBLlAUEWUq6cYO4iUi3b3L42T2W00s6RjEejSlP93n48U9wt28yoMedneuEQUoj+qjOFp1uH2crfudrX2X/0TvI1QmVM5ggJawNv/f6lyjLivceH7Mqa8qqoNEFPkStxqK9QqoVNPj7Le3O1OBE48UVpk3PcwZjveNGtjEbfC6qQ/L5tPd1292udNyvn6Sfj+L8QgpWtMnfVvpvB6259/bbvPOXf041P6fT6XjWgQh8ulwQsrfXZ2v3Go1xnJ6eM5kvuba3h5KSSlfEWYyVlmWxYvrwPoP+gNFofEUYEFLQ7fb52lffxDrH4fEzbt+8Q1GveHr0gP/sv/iP2X/4AWnh0JMTjh68ja5mNPmUpp6hm4KiKKhqi3UJldEsSz+Gt0iKRtFYsMbv73w77JDOY0g7UtLvdBgON9jb3CGLUvJSY1xFbzsgzbqEsdeOBjKhu3mTMNkkHGzSGInVJabMMVVNGGUkWZf+cI+kWVDmx5yePqS6PGV6OWe0vYeJHPMmpF6cwfwYW1W4cIPh7bewuzXVasK4uqSaHHpDuzbMHj7irKyYa4O2GVn3Bps7Y2pnyVcLtG5YnR0wTwKi+A7n52eUVclM55TOEIuYujHESYQMwDQNRe2I0w56UVDMluRRSp5ucO/0lLePHzO6OOef/Jf/FZOzlMN7jvf2z3g6DdgdZoy1pZN1QSYIF5BlGdLWWGvpxwFyNCDe20Eph+pHVLIEFZAMx6SDW/RvObLxmPnj++iiJrt1h4Ylk2nOV768QV6l5PkSYxU3b1wnjrYx1tEb9Oj3U06CCFlVbG4pFoFkUZZ0asMbW7u89pW/g+5sc3S54ujZUy7OHnM+OWK2mmGqJVY3rFMEfYaPZ3z5qbLxE2G3dgW12nq3Hly14HLh8CB32r9n16JerBX+TozxrbJQXv8saMUYX2DBOkT7ghY4rXnw/gf8/C/+Ar1YeCN5GGMIgLAlxUU419LqA8WtW7c5Pj1l/+kBgZKIIGDv+i55kdMb9FAq5N133uWtt75Or9fzS2vXEv1FgMOxt3udPRzT1QXf+Q+/xbiXcLk4J20EspigzIKyuGQ5v6CuCura0DSCuhFU2lBoqFGAxWjtd8vOy/9ipcjimEBIkjCg3+1Szy4ZdVM2+j2iuqS+OKIz2qUzHpKlIWkWY4MAYRWhkARxRBb3cFFIk9c0dU1da6RKyLINlJI0RY6YPyM/uke+/xF6NkWXmtnikmp6Tndjl5fv3mS+uiRXhnBriyIeML6xx8GDD5hPj1men1Ivznj6+AGrWUV0+ybRIOHh8UN0t0CPx/z4gx+w3VVs1ga10hxfHJF0FHJVUwcp9WAP6VLCOCZKQ1wpEEJjrGC5aohEhJCOqtFUmeC4WvLo5BlBGKCqM+79/C/Y/+Q94kxSNwLSjJWWJFIy147KSPJ5TTf2BvxFnVNHHUa7t9l69S3iXobWK1bTI7LugLwKiU2AtoYginFYTFPw3l99n2/80X9AIFIePDzBdnY5OJ2wsZ1y89qY1Rz2nzyln4158uCA46NDXrtznWEaUQlJEAYMuz2enZxyeviIr/7Bm9x+7Q6WkDKfsCpnnE0vOD8+4PTkkLPTZ0wvz8hXM+pWgulc5Vtgf8xedbh+ptMuWdsPCNqpbJutI9pWWUiJkgLvBvIxM7TSSh/Fqdsspi+oYGsBgXMIbTj48CN+/Kd/il4siAIFogtCEYV+0CJlDCLy37ixBFFEY73xfK0umcymrBY53W6fyeWUw8Nn3Ll9h263ixAC0yJNaVGWIvDYFKHgD/72d3jzq68jmyU9KXjy8duMYxBmha6W5Ms5q7ykri1VA6tCUxlDrgMKKxDaopwhCSSJcmz0UrIk9R7VWpPFKf04pclKBknEOBBIvaJ6dp9AFPS2YwJzjqq7oAZYImyg0AhPra8K7w5RIZ1siDSghWBxcYRdVVQXj7GXh3RNwXw1pyNiBlFAPb8kTQf0NNx7/IxpPkFNF2wlY7YDOH36KU8++jlmdcbx2TnzRpD0NtmTEU9PTjg5vk+2d8HvvP53+Zf/8//KbhLwz/7wn7J7/Q3qsGJe5oh8hUl6dG99mXi3IgsVowiq832K0yekaRcRO5ZFg5I+tLvJc+pqzk5XElCjVqesDh9wa6PHsg6ZLDWBEui6Zmkt09pShxndTo/i8oyVmVJlKcOXXufWW38b1buNTrsYadi8CakumR4dMD84JAkU5XSGaWpsNcVcNpx+8B6qbDh6dkqe+DiQ2zevk3U1B4cHRN2aIK7ResVX37iLqOakgeHaaIuyXOLSmNH0nIuTCx58+FPufGOICTcIOlsMsx0Gm45XvuQwpqYslizmEy4vTjk5fsbp8T6Ts8dMJycUxZSmXmF16XNwZIOjQbzQ8vo4NuXTAKVDEiFs0Nr0Wt3zOhRaCJAtQlW+4MH9IgrWCENgHScP7/OT/4+1N+u1K0nP9J6IWPPa49n7zOQhmWQmcy6pqlSzqtSlyZLa6obaMBq2AV80fOOb/hv2DzCMBgw0DBi+MBpuWW3ILdmtwaoqVZdyqMysYiaTU5JnHva81xgrInyxTpZv8yLvSfDgELFWrO973+f5iz/HreYE8nNUaIrnt1NKi9c+Wa4VlMg2tiiVD8KjuV7DJHGXul5wenKG1g2dToemaXjx/DmD4ZAkjnn25Anj0Yhut4vvBSAsm3vb3H/zFaSzVLMZJ08/4dnj9zmn4vL8iOV89qvxfN3AunSUGiprKaygNALPQhwE9JKQXuSztdEjjlLWixWlNvS7CcNOB+s3JMIR2vqaIrEmLD2CokN1XOK5OfHufYJoC4ugblTbd9WGPG+u394CRUO+nrJ6/AG6OsdbX5EUM7y6YTVfs72zSRSFhE4T2JKLZ0/IruZU5ZJqvmByfs7yzi2mZy9Ynx+RS49TRoze/iaVbXjnYsJifcjFyTnb2YK3/+C7FPWClU2Ya3jpxqskwy75quRnj/5PJk8+4WYv4faNfQZJSHV1ga5qfBlTV46iqNpAjA+dXkSla274gkU35Mm6Jhn1yKsFi8yxrmusadCqRNgKn4BEKaS1LNZLPF/RH+/S2d2i+9rbRJs3uJxJSivo3DzAJV30+gK5WJGfP6GsllSzOVVVIKTDFEsuXzymyRc8Pn/M8OW3WC0P2d55g8GGZmvX4PkJ3YHEi7YYbfd58dF7vHj2MUPP5/b+PlfTivuv3iXqbfD0vGJ5dki616ewQQsxBwQeuBDPSxiPtxiN7vHKK23qqyoXrFdTLs6POD/7jIvzQ2bTC+azC+pqhTEF0NBOplpcjPQMvu/TCQb0kk3SpE+apIRx689FSGrbam/yIqcocvJ8/eUdWGng7PkhP/0Pf0W9XhP6AUiHEfK6tOthr63h8ppl44RCW4n0fawT1zRCEFIQRQmbfkCv22e9ahMyZ6dn3Lhxg3We8eDjB2xvbnJ+fsZ0PkEowf7BPm+9/SpxKFmevGB19Jhsfoa1GS9OnrO4mmKtIwhDjJOUxlJqKI2isgZtDM60LOVuEpEmEUkaEnQShqMx2/u7UBsoNEIbjBQtxNqCpGnDEzpDT06wi3OaZkFVrwjHL5MOD1DRBquyZn01RykfH4FdL7GXh2RPP6R48h7N+hhlDItS00l63H39G4zGu+TFFb5Xkmcznnz6MdlyRV2WNLamnFyhF5dkxZq8WFN3hvTGtxjduMe///FPOZ6dEAea1TJjQ8Bnh4dYA2F3RDzaxaYjXLyFLxR3vrrkk4//X4LzFwTNJcHmNmaxxOQZThuqpgJj0VlOp58gmprEVgTSI+j12Ol1WaQ+J0awqDMSQjznAzm9cYdNldJ3MaBYlSVbWwOGm0PKQZ+g06eWChP4dAdD0v6Q2k/QTU7Q75JmCj+QrLXHeiUojMVVJdnpEV5jmedLDn/xM7qRYrk6Y7BRs7eriLoJspPS3engRSndkyGdukKpHKPnfPboGXuvvc292zt0eiW/PDrBT8e4zg7GhSihEEZcG+jrlqMlBUp5IAL8ZMCoc4vh1uvcfa2g0RllsWI5vWR2ccrl5XOmsxMW8wusadjd2ePuvde5c/tldsabbG4M6fdi4tgnjHwcIXkhWBUN1rUNLN1YyuJLVHWcPz3jr/7d/83y5JzQXXcKlUR4AZ4M2n6n9PCkjxQB1grm64yr2YJVnjPcGLG/v4+nWigVxqGEJApColEIgG0aLi7OaXB0Oin7e3v88qMPGW/t0x30eOON17ixNWJ5esji5Cmnn37A/OwF88tLZrMllabdmwbqWhHZxgm1BW3a4H4kIPUkvlIk6YCN7THjUZ/t7U0GnS4RMD085urouI3kNQ7rCRrdEEtFrB3FPCNMJKleoadPUaLB5VPobBI0Ent0ROB72KZidnzI0cMHnH/2lHJ6Rs+zCC9l7+BVvvePfg9Rloim4vKqYb445uLqhGU5p7SGVZkhLSy0hrq15DXCpygqVtMz7qqKnb091i7ns4fvEcnWMfrk00fU65JFUCCiPo3sUrmA0ho2793HbGxyfviccDVDZGt6jSOwAu2gca71GhmJrjQ6aEFxprHoPOdOvwsbm9zp9hlEUyZZyeXkkgZF2O/Q3brJ4mqNWeT0BKiqZn1+RuwkqmgY3h4T3LiBlwxRUYT2PZZrgW6aVg7eVEgh8OIOnjFMF6vWRm8VozuvMUxSBpHk7GpOmjRs9AcIWyD8FJl2UX6f4d4BspxiI0mD5ebeiDAIift7hEnJxWzO8fMHjF/pYG17K8K1zC0+L69f5w2MNjT2cy2n37agnCTqpEThmP3d+0SRIwgaAr+FzHbTPoEa0NTgyYLX7vdJElhnFXXdsM4keQa68UGGINsHVRR+iUOn/+G/+584evYUH0NTlRhnKI3BKfX/ezulIghi/CAiy0tWWYaQbappOvsHXn3lHj/43rfoxOGvrOKf76qcc2xtbTEcDrmYTkk7CccnJ7z6xmtY1/Cd736bV199mWpygZ5ccvHkIZfPn3D+4jnLyYy6NOR1WxrXokE3jtrYFtHi2tpaoKDrC7qBx3hjzP23vs7m9hbC1fT6CZ3Qo5xcYcoCaRpKYyiRCOXhpTHEMVpI1qsGZECVtcDvvMxpmid4fp+y0OQXZ1ytZuAazo6PuLq4YjHLMLph6+AuKtnk5V//ASoes148Z3X6lKZecnZ8znw+YVVm5BpsEoKBqi5xdU2uNSryaDzB1XTKJw9/Sa+/z/GLpwhdIpTj2eOHPHr8EN80VDanbBQqGOL5giRwrHOB7m5T9beZK0FSN/i6xNQGfT03qKsaagfCImPwAg9fOCJb4qoSb7mmG3QIRpscJTkbHY+8LPF6PU6amlWd0a1ybtYOtSgYpo6wqjGlRkYparyJ83qAwBMlnV6PbN7HrTpUzRW1USgV00slebwiF5a9W/d5/Xs/5MZrbyCqBdOTdxDZIfm8IpExqq/wNgYYExMNNhFlg3YF6JI0kuzsbrOSPYJQcv/2JpMPX5BPTonGPTQCIS1OAU4gfdViVBFgKqStsBbsdW5N61btIqVjONpgZ7uPp6DMapbzgtkcpM2QoiHwah5+WmLqBl1LoK3jOeW1Z0c5UAYpbVsLJPhyDuybX/1jXntLU5Y5ZVXQmJq8Ksmrmsq0V4mmqXHWEAQBYZaz7Sd853s/JIgj3n3vJ/z5n/0vhJHHD7/9G0jZfphL2upTe4AlKozY29oDDGW6Ymd/l29/55uMN7rklye8+xd/zuGzRzx78gm+qIm9kKppqLWm0LJlLNUa4xpq3WCcQAnZYlWEpB8EbA43eOW13+Clt34TfEVRT1g1K7oSvDxHVTXaj8iTIe88e8JplfGbv/f7zLVjyzi8+RW6Ajkv8bIa7SqWy5o7uw59/AJ9eUa2mmI9wfT8ksWyYl1YnJFMFivMop2Anx2dMOyEXE2vaKoZVZWzXOaUBlZFhRYNBkdlaqBVU3Qa6IuIcDjAl4qT1Tm2WLRvhsBH5yV4injYI+4OOb264r5wJHFI6MVYz+OP/tl/zfvvjmhmR5wcPcEtaobWYgqPujbYpsRXHrZp8HOPwFN0kpBOELDSmiSKcdJytx+znfpcXDWclQUvnh9yscgplYIgYCEFfSfp+zHpaEjaSwlsDcUCGzdYpZBBh7C/hR69RNM0eC7BpRV3ej2a9QziDfZ2d7h17y7d/ZtYP0Ht32b/1TexZ49YPHqIi3zWS0u353BmRS0V4eAm9ewMTMFLd0fU4pyOtNSuBb3c6CuevXif3sYGJr2BqB21uUbLYFAYUCHGa6EEwvo4q8BqpKiIIjjY32OYDsgWOdPpmqrQLe3yeiLsnKVRkrI013B7dX3N9pDXMnLpWiigH3i/qiJ8KQc2ilNkKunLTZCfJzXkNYg7gOs2vVJtQqQoKh588pD+5g2k8vnOb/4BZb7kp3/9b/naG68x6PV/df0Q7jrA72xb0ZMQRjG//bu/y63bNxj0E/T8nEf/8Hf81Z/9G+q6Yr5aIj3BoBuxtgGruiAvDWXZLraVcoRhiK88jDb41y2hYafP1vY+O/t3SLtjrB+TRjcwFHjZFU3PUNUR0zhnlQY8O3nBifF4a7SFX8POaEx58pyHn3zIfc+nH0gC38NvaurFjMvjZ6yuztu3YZKiG4kXpOj1CusM57M5/a0tTs8XvLy/g1tfksYB56uK2WLePnxMy9ItqoqqcWBbmFgUxQxSH1+4FuUSKH7y0cfYxqGiLv3tMbdeut0SN+KY/mCX+TKnrEqsi/CDGIHi7r3XCDvwo7/+c+bTJXra/mwuW9PkGiUFnSTAVwHOQFVoosCjtzkkimKi0RZqMMRIj6AsMUFBLiQ7fkhmMpZ1yZ3RkC0hiZY5Om9NbeOhRJgLsnlDqA4IemNKz6eqaoxKqFUHEwzZ6Cd0fJ+LdUbaH2FMw/z8mNlqQbB1i63eAG+4SdO9ibrh43kCd/mMejYh7A4hHKCVorfbw02PyGdXrLNjuqOX6co+Hb9mfxyzWi1ZnT2h+9KYRsVYqa7Dha1aEtHGEZXvY+qw3Z+qjIP9IXu7W1SZ4ej5CeW6wtXt/5OltRU01/RFZ1t2cst4ayHxQrbhIGSbosOJ1pus1Jd3YP/V//jfI1ULb/Y8n8a2LX7ltfYu5Xko3ycIU7wgQQifG7fvgZQYq/Blh29+47d4+N7f0zTtdMwT1zld2y6rrbUIHHES8mtf/zW293aIA0F2ecRf/K//mhcPPqAuMhrbaiayVc5qnbEx7NPImrycY5u2ehd4Pp04pd8dUpdto6I72GIw3GZjaw/VGeH8hCBKMaZic7BJEIbMipIwSbk5HPDL81PqzoCDgzs8P56yN9zhbz96xA+++gZ/+6d/Ck7w2nhIT6zJLo45nhgQFUEaEIVDzucllfFZVRojFCKAQkq+/tXv43e2aVZrFscft5PH9YKiNjTCoZ1GW4M1Dul8hJSkSUQnUXSUQTqLsiXdJkNfnTFQPtFgSJR0uHv3Pvm6ot/tMehvMux28TF4tsGzFk+166avvPwVPv7lY06PL3mRP6eqHAOrSaUjDlOkavPdfiCIk4AGS9RPSHb2UP09MtGhcR5eoNlJNuls7nFyeEjP73E1ndDVlnHY2gs9B6v5FWdHDxnEEcmog7IlgWvIy4xyvmA9uWR5MSGqayojUZ4mTgbs7W6Tz09YryZEQhBUGnc5o9QNKvBJNnbJppfU1sctc2QUkGzsIAMf2awpswVRtGJ1cUKlHV6yzVbiUywWDKKGxdVz/PEtXHrj2vZyFU8AACAASURBVIHjtyEJZ9qcqm0xpko4ZFCzf3PIzvYGpy8yLk4WmCrDmfaWiGml1C2l81rsLEFYDydMG6OwBttY/CBAIDCNQarWOfWlBifu3nmZs4tTmqbEuobF8pLlaoaxGms1jbFoA06GICJ29m7xze9/BytaNwrWkoYdbh+8RLfbx/e8ayJ/i6YE2r2VD6+9+Qq7N7cpypIkDPjkP/6Id//6/yEUgkomZHXFqm7B23VZEClB6EmMbVAqwJMKJUEKS5pERH6IDBL2777F9sF9+qNd4sEW3mALIUqa+RWe72HLgnm+QMSSV77yGn/2r35CICM24w3sUvPTd3/E/s4W7374kKfzOZvn53QlbFQZspyyeWNEZULibsrFtEA7D6tiMl1TXwdPGiTJYMx4vIs7+YCrw6dk+ZysKqkaQ6Vbqz1C4kuBcpIkChj1QjqhRemqtR2Eksnzj7nfCfjO268wF455Yzn5+AFfObjNrZsH+MkmBwd36fsGr16hPI+izHFuTjWpuX/7Hg2C99drPvv4XW4HIf1IkSiP0BOkkUfaDUl7IRqNSAJM4OH3xww2XiZzCUiJJyyd6SnWdknVIeOgS5WtCZqaNEkJAknSSUHEDAf7eP0xGRZbz2iWFdXpJXoyRVUZ3SSins/ob4wY7NxAqoZeJFhlS5argporws4ezTwnq2bEnZjR5jaqexOjx8ioT1U3BHGC9fv4Wwc0tma4UzB7fsRqcoHob7PVS7k4L9nrRFw+eY/0lQg/2aJ28toU8HnoQWFdgx9k3Lk9YLzR4fmTcy5PMopVhXD2mjfd3jClo11rSnUdQ2gN8583AVrGssJdX4VdY68PtfqiycQvdmD/8//sX7LOVxTVgsXqkg8++hkf/fI9FosJWpdI5Qg8n6Qz4Pbd1/nhD3+f/Rv3sFzvuZxhcnnC1mYf/1o/YcXntus20oVz7B/sc+/+PbKyJo591lfHvPujvyIOQvxkyOwq53Q6JfYDgtAS+A50RuT7pGlIVbXXa4OhqDWVbkjjAd3xHruvvM3W3a/QHe8iogSCCMsK2bEsgE60S08JPBzzAt59/wGjzRE//tGPOdi/w9nFOV/92q/xsw/+I1Ndc7heszUJsK7k/s6Qxlo2tm9weHxF0UhUkrI7HjCtn7Gcz3C1JYo8mmLB4afvE08eM51NyF1JlmfX6FSFtde8XQWeLxl0fLa7HpGqMb5CRl1kb5NumDDeA683ZK1CjpcZ06zgzd199rb3SDdv0h/2US4jcBE+Bi0ck+kly7NTxrt32dnY53JeMb9aczDuEfuSnmiQWJJOiIoCprUmGQ0w3S0WqksdDNm6cZ/E3yAra/KyQNKls29wxqGcT+VnVKsZq2JGqgypComSLXADqlJhfUuxvEAsCvquxDYZYRoTRDF1lmEAF6eI2KfKPJp0l3yZY13MbG0wpsaXmjpbU7iQzvZtSu1wdkmVTxC+hwp9VNDF627iu4ZmvWZ+eIzMZ/SHHbYGMWKpmc2PWR99wPju11tQgQg/TxvihENSs38jZm8v5fGDc84+m1MVRSsDtwoj7XX7p423IhXI6zenaSfvSlqk9KCtDoB2KM+n7aCYz4OOX96BRcYknZC8gij2+IM//K/43vf/MUfHL5guZhhr6fUGjLf22Nq5QRh226eUa0fmzq44OnzA1rjTKvZEcB3dalGdzhmSbsKbb7/eQrStIfJ8fv7Bz5idHTPa3ueDpxOOp3OmiwWJqun6lq7vSJMQJwS+F1KXmsa0mknppWztvUTkx6TDEclgTLCxhU67qChAhj6GLnEnJvYCPOno795C5DmHZ1N6Gzc5vzhlvirQz1/QSQZcLhY8Pz2ltHAyy/iT7/8u+tOPuJxXKF/hkoDzywqNYrJaMD+/bKfNTYOzikBZnn3492yHEUm9YF7kLKs1pako64bGBThCBoM+SSCQruUYDXoRgVTgD9m6+2vEOy/h4pTF/JLpYs3N3hZ3RMyiduzcvEl/vEm6vUeS9snKGY1pcDIg6sXEZkxTQlN5pK7DGwevE3UTXhc13fMXxPWSuiopiprReAfV6UC/BztvMrz1KmLjBsVgj8ZLMV6B9BOsUQTjJf7qHFNromjI3EjyRUVZlm0gI8uoyjXahRCnKBEglMFITdIbYJIRMu7SH+4SuIre7g4y7rK+uEKMBV5cEvVGiME2kQD0lEgaBCm2sti6IhoNkZ5HuZzidS1Qs54ukfMZYX/ArlBMrlaYImfYjVmXOam3ZjL5mAscnVu/gRdtgvTb26Gs2Bgp7t0b8+zTU84OJ5SZwdYVmBopFE62Kzch2zercO33bJtLNjhhcdKiVAtgcxKMVQSfZ5EFSK/lYn1pB/bo4ikOqOqassp48Oh9bt2+yd2X73E/jLHWUNcakOAs1mik3+opnC44efEJ0q7pJCkSi23MtQms7RiGccibb71BnKZ88PMP2RxvspF6vHj4Cb00Ai+gs7HN2DUUi2OEqQHRDgmUTwvkaMPZzkoCPyQMe3S6I1zT0OmkdPt9/DRFJDEiEMhAEBgP5Tw838fJ1hPUS/vsB0P+23/xL/mLf/9nSOORrQv+6R/9CR//8ueo2hD7CVXteP+DB3RnE3Qg2NjYQC0tl9OM6XrOuilZ6ZqihroReNJHWMfk+DFxN22vyo0jqzSNa66nhh5SRRzs3aYTW2ZnT1A4jHX0NscM927Rv/Ua4fg2z0/PmS9WlEXN5o0t9sZ3EGkf2ekgk5hkY0gYx4jKo6g1Wvjg+fj9LTq2iy0VN2SPf/y930OefkL42Ufo6Tme9qgaqIB1Jdi6e5twe5f41q8R3X4Lmw7QQbua86MIIQR1lKA6fcLRJtQ167MJjRP4QYJsBKbQUC2p5oeooYcfpTQuZFqs8FRMb+8mmepjvBhnKjAzlvkSawSys0F3N2KkPHzPBxSN1jh/hDGGqNNBYMkvniPYo8EShBGeBVusOX7wC1ics/XqXXpbu4TxgKtZQ6xSPL8kicGUFcenn1ARs/3Kd9EywDqDH2pefW2T9aLk6LM52TLD6YZ2z+OwQgOWhpYcIP0I3LWIw0qU9NojYdr8ens625lPU5coz0f5PioIUJ4HdL+cAzs5f86rr/86QoUIT/Pk6Xv8z//6f2Nzc0TaHTEe9NgaDZFI1lmFClP2b71EmibML49YXD7n5vaAUAq4XuE4XPvDS497r73CS6/dYzabU+eajbRPcTnh6uiQbhQyXU4ZhB1cCkXocA2kYUt695SgrlsbmKDBE4JYKpTWHD95wO7eLn5wkyCJkX6AVT5Ccv2tIrHCIaTF81tigtbtzm3nxj2+9q3f4d6bX6fMKr7zta8ySkL09AnNyidYLciPPiVEMjUJUluuXjxjnhXk2lI6SdlIGuuIg5A0Shn3+nRCj6qxJDLGkxLn1i3e01hCFRElHW7s7JDNTugTkJc58XafzZ0d+ltjVtmUyWTO5eERs+MHNH6PfPMe/lCwvXMT1+1Q+QobRWiloAFjVihbtwM5lSBDSyNy0kgxFjtMjx5RLy+JWGOwKKkQYYx2kmmWs5tE+MMeOuhiZdoiUWqNrQUIRdjtoNjFmYoi09hFhtfvkDcFsbIEgL24pEmOqXKLW63xoi6yAbpjgsEmTSlZzadoWaHzUy6mLyAdcuetb5KmfXzlU64W1MsplDVIv92L1wWBE4RG4U5PIe1hRkMcNdnskmy9YNjfRvV3URshUSdHlzO6yS53kjFW+bjTJZ35Cavjn6Fuv04Z9UHW7O8EDHsh73x4xHqS01TXzCZznQ92zfVEuS0B1NdwQIQHWoJosM5ea0Rb7Kq0qhWaCYkXBIjAh8DHiyNg+8s5sD/5h7/h5dffII76GBHwWz/8Y4xRfPjzdzg9+oQntuK3f/Bt3nz9PtZZZssV5y/ew1cBaSQ52O3hiQYlvTa/aR3WWoyD7qDPy6+9jBSCJIz49bffQjY1L558zGpxQTE5Yb7STItWuxj5LRlAOIPvtW/puq7RjUE7gZMBTgXUdU25nCEGEXZ2hsvmWF0Cacvtue43musSsa5barxpoMprigKGo1sMhzskSqGKhhv9EW/euIO3iqkvLWY2QSIonGOaNxitkb5HUzka1w4alecxHAwJhSRWlqbOmC4LCAc0RUMU9EmHHRoLsWhVFbOLU5QsIHDEStDvKIpsAYsEF4+pqhopNX4npdISa2oCVyOrDBMGWCK0ZxCuoSmnUMzwVIofDMH5OKWQoY+sNFWxYjk7R+YLPJ2h67INtNsC6XKacsZ6ccJQaISAWjfUtsBHoGTUumxF+3bpbGxjiqyVUDuf9bKi098k6HosV1dwdkqkQeQ5qj/GBgP8rk8sI9bLM8rjR4zHHVLPIbY2iHZuo5IYI0NsndPkl6yvDtFZQRIP8aMO0uthZURtHfriCC/p001iCp2j4gH3f/CHhJ0RwTDCZCdYLDs391HhNkwLNrKCxapBnmv06pL50ad0Xx5BpLn38g5Xl2suzidUZYVtDLimdfE4hXE1n6sppRAIZ7FSYpo2VKNtjW0qnLXXtFFQXgsi97wIT6eoOkGEMZ7+Yk32L3RgHz/+Oe++9yO+870/xDpFkvT5oz/8E77zje8wmzzi3Z/9HeONHtLVKGkYDwI2h+P26usaBE07GaO1BUhr27qRDzdfOiDuxJhKEwmFlHBx9pzHv/iQusjQTYXWGcJKqry8puO3C3AlfZxts5hZZSgaQRSF+J0Bvikw1Ro9PWMtLIvjz+hs3kPG3dYfKyQ0La/JWUFVVJSrAgxk0xX1dIG3WhDYgthUmMUV9rNfclMX6MaQO3Bp3H7vqATp+RRFSV0WFFpTOYtz4AdBK2LOCxbZvEV/GUUS+wy2tgmwdPsxnU6CXqyJlCROFRezCxblnLjjoxvI1rA2FdFYsXv7DfZu1pw8e8Dzo1NSUZHoKaefvIO3cwd/5wAh+zjVkC0ukOWE6TRn5/YbCG8IIkAKR5EvmU8umE7PGUuI4hjZWPJ83trB1wEDf4vAFuj1HH9k4HMukpR40sMTjnJZtWEYGSK6YwIrSWWXO1t36AWCRM/pLY+oFpeUZ4c4jmjSLnbzNkkwoBARq5Mn2OlznBviRR7OrylnS7yowHiWcnmGLK/oBTllvkDMZ0gVEzRjTBijmhxdzKjzNUXkE+908Db7yO0xrjMGKqyrqLI1US/GSY/h9ibzsmK4ytgrdrEnCxZHDxjdusnwxgaDYcSnH12QLyuMNu1D/hqrK5xukai0fWrZWtbQjabRBVpn2CbDmLI16TkfpWJ0GOEFMZ6MWsyRp1BSocSXuId11YK/+cs/42D/Dhtb21xeHqPLnPVqwmTyguFGH4vg+dEZtmlQntfqKDyD73tEUUAYhtfV39bM5ilJ3El46e4BWtcUsxW+hnJZ8fTjR3z8wUeUWUUQpgSBoeu1vcEir1s1AxIrBLVxlNqS1YbaeighkUFAdnlO4huoS8rljOXknKjM8JqGpnHXv+D2l1ytK+qiJJ8vabKCarUmLBa45RlBveLq6QMunjzAq3OcrslrEC4gTSVRmnB2OQchMOWSrMppsGjrrkHTgtVqjag12hgiLwAZEW3doj++QUd61LNTmnWOZ8AUK8IoIcYybTSagCAdkCQbrJqQIOwz3r3Fs08+ZPb8GKYTZP+IRbXitNBsqoZ01AP6SD+m09ugKq+YnxzSiQeE4xi8gKZoENph6hLdVGzvH9CcaEzhkOSYuiFRkq6S7I82MMIhhaNRCi+I8KTCFG09TPgSbSSN9GnCPq4Xsrv1EnVekF+d4dUJophy8tlzfFsTeZIkjQnKK7JGcxXv0DiLszmIHmVpWE4mbG68RBr3WZYZ1DkunxLbNb5bQrFGrzKuntcs1hl7ewcopyhLgT6sEaaDqn08v8LrdEH4CK+L87poIExDXA694YDbd++gs4zVomE1v2B5/BFf/e5/gs4brs5zqrLBWY1w7eE0Rrckws9Zx85hXINtSuoqQ1crTFNgXNWSLkVAEsVEURevs02Q9IjjBC8IiJKEMErwvS82//1Cf0oZzWp2yZ//u3+DDHyuJse8+frLVFXB2eUVdaV58PCwZeFca/q0zqnrBU60V9ft7RF3Dm5ysL9HGoRo0/DSzQN63R7FYs16Muf8szN0Yfjo3Z9z9uKQJHBUCKQXQZkT+B5N4F0vtNvvp7xuyKqGGg+UakP3l6dEVYlxkGUFwo9YL2aM8xkdUSNdSJ7X1FVFoDwEAp2VlLM5gdH45RKaNZ3Ep6lqjqannLx4jC983njz6+wNNujFcPjoPbTO8ESNsyBUjZWtNrJxYFzrmnFOEwiFUiGe3yEIevS3bvK17/8OxXzB4T/8HZ3KkJUZWb6gOZtB2NDt9bnxyi229wY0taFcLXDlKRePfsbp419y8ekDQuVz+eRj5mWOGIzY2N3CXm0g/Q66GaLrAF37BEbQzCaEwYDarPCsoIOFNMC/ucvkxcd4pWWVNYRhQiItsZTYIoOqIHCt+ycIJKVo5xAag9YVIlBESUJTxqgopalqlPSRKic1Fi6XXJxdoPMMnS9bAdegQxpUxMMh0ajH0nap6g4Lq0g2+kRhRGe0z2qZUesCV1YEzhFbTbG8ZP7iKdX8ilrXrFYFj48eEnW3GGzfRjVrgm6XRlcUZsmwO8J6XZTxCIIhyofKWYRSDAY9bKXpD8fs7AoqMeHy8CFbnT/m/DJjvSho6hrTlAij26GpaQ+wApy95jmZAl3OqMoFmOvmjVTgdfGiAWFvh15/h6i7T5h2STsxfqhIkoBuN0J9sTrsFydODIcbfPd732ddlPzvf/opH/3yIQe3XuIrX/0dtrZ36fWHhFF83aCHpqk5uzjl7PyIydUJR599yqd/9VP6acibb97n6197mzt37+Iqw+JswpMHj3nx5JB+t8tycYltclTqsSoqnG1wTmNp39jOiWuvjWBdVBTa0jgP5SzoAqEMsd8uwXPtSK+rcV55hb58StDbpMqbVl+YpEgETZ7j2wZVrxF6RbU4Z7WYcvHkU158/At0mdMZ3+Ktb/022zfHLM8/ZXH2Cc8eP6coSkpXYIVCY9uQzDVz1vN9lDHX6JuAXtxhNNiizDKWxZqbd28xefge0WpF1B+TuzkXV2f4jSTZ6nNz/yVCaTi9fEq2zAiFpdIZ9vKMyBfoRhNGIbv9Douqpjx+zqSRDGyMGd2jFiG+6aBKS3l2iGosjYvodYb0Qg9PlFSuYJ6vKFZrDI66Khh0QnppyHijgy7aYY8qMkS00Q7LAKkkkR8hgjYj6wUBQRhTrQuqrMQ6QSAktq6psjWmqunFCVWWU6wressKV6/Y3umz2XuLTx6eo1WNGm7Q2dgla2BRrAmUI/YihPBhtcZeHlOcf8ZGP2Ut4XJWslyWMFm0aFg/QCwijKoIb73KYON1TFqigpDQ71FRIgJJ7PtUuv02jdMBewd9CiuZHB/x/OEhJrpJU7UPXK7N6cYYhGup/s61FAqj28Pa6BlWL1ECnAuQfo+of5N0eIv+6Aad/qhFCwU+fuThBRKhoGha8wL4X86B3bm5T1EJBqNt7u/dYraq2Nvf5pX7r+P5w2sJJ7+Ce7foDImN+pQE9DZ2+ea3fos6m/H+Oz/inQ/f4e2vvkknSZgenzG7uCSOEsZb2yhKBCXW5JSlpDGGRtctV8o5hJQ408q5slKzLjWlEdTOkSpFpFrki1TtnrdBYpzFFjPqi8cIs6acDfHiISLoIGtLrRuq1YpQOpLYR4oQU1ieXx22fy9f8carr2BlzPZmSlNMefDBO5wcPmOdrdF4lM6hTX1dZRZYJ0milG4UIuocYQzDXsooTdgbdbGx4+iTd+jKNZ2woVoVjPZ2+MYbP+DH/+Ev6SQBd165zfHjpyRCsbhcMJ3MmbxY4vkxvuejjWqHkX5AYx2mbLj87DOCRUYd94hrj8pENJNnLF88wbMZ9wOJJGZ1/JSy0ZSLU9ZHjwldTdzvUEiHpsYp9yuCZKVzZFPh2Qrqss3XepYoDZAyoL4GdHuBojYSJzVNozFVQTWfsDx+AXVJr5OQ+pLQ96mznGztKM+uGKyWpCOfwcYuq2zCorZt2GCVE/khoedQeCTjA+r5OevpnGIxoQ4cl4uMVd4wmeS4ssCUNaEfU18J/MgjtSN27mSs/CXJ5ibx5gg/SGlcRbVe4QufTpxQ9CUozcbmDru142/+rx/z+m/8TjsZblq1prOmfZs6g7NtJU9YTVMuqfMJuDXOFVh8VDggHt2ks32f/tYd4u4GSbdDGFiUAuUrpNcKqSUS7Jf4Dbu7f5OTsxXvvf8ev715wLe/+zs8ePgLDD5KyDYEcc30ta41jknPsTHosjH8CuvlmhfPD4mCTf7JP/8XNPnv8c2vvMTscsJH776HJzz6/THJoEs1vUKYFUnoUecram3afatto13WGHTjKLUgrwxZ7aiuv2eV8JHCp6gMnV4EGPwwRPg+gStwV8+oiwtMGHHjlVc5OcmJ+zsEMkAhcNpS5gVK16xPjzG64If/7E+4XC2598brvP/eT3nw4K/pxxH57JiqXlPZhtK6drfW1G0rIwgZdcd86xvfIlWC1dkhsjEgY4Zpj53xFsuLc8zpOaWdcPbkEaOdLbbv3KASJeFmgrQFR599gFnMqLwOV5c166xd0q/LOd1unyiOWGczHq4eMNjcxks6ZPkaf9hhmV8yLA7x1znPPv4H5ueP6MQx/sEBsrxg+fwFy8kV9WJGmS2IuyGEIbVzWOlRGksjUxq/S+YUkWiQ2RkKDy/Ywu8mWGFoCotp2oZKOzexOAxWl5j1lPL8CfnkEE9o0o0eRjfI0Kc/6BA6x3I6Y/LxB3jRgEG6QxwFeNIwu3yOXjXsbG3BRogNA0T/BnK0wvQ+wnrP+ezFEZNKsCwlZTanKmu0CNgcBPhGUq8Kan+Gzgz40EQNri9ANjidYbMJfjSg10uprEdWLeh0Um5s7ZE9veDJzz9ABT2UMdTm2jznNNJohGvAQaMLmnqBT451Vcs283qkG7fp7b9OZ/suvcGIMPTxAkngy/bAqmtosWhRq6gvcUqM2uSf/5f/BevC8ujpY9548yvs793g8Pkhd1++39q9rq9J1houJ5cURUGvmzIY9Oh0urz++mtcnB1ydPQZf/T7X2FzGPDLn30AwqPfHSKcRYkGrct2f6skumloGtvGuVyrdawqQ6lbmsSqNhTG0Dha/7arMQ6kLwnjkCZbMdwY0u8khMKnmMwI8jUy9ph/uiKbz/E3dsgLQ7auMaUhmy1IlEd+fkGUdtHnF+RXE/72L/6SIHQ8/PB9lN+wnFxQNyW6rlEyohumqKSLN+gRDbcY79/l7V//OqFS6PVr7O0cUDNECo96tSZ89pBeueDZT/+GfDXnW//kDwgGCZ++9y6YNVk+Q1cZuqxZSsXagUq6lEUDftwSIK3G6ZIwTuh0e1T4iEDixV1eeemAJFhS6yOkfszlyWfU/QNePD6kq2fUk0uqxRIaA1qznmjCjsM1hk7cJe12UJ0NTGebcHuLQihMcYEkoL+1gfJ8tLbo2lJbEMLg1Q1NlmGzFbaYU2RTzPI5dXWJjHzkYAtjFUmc4LuGqJ6i5xeIas7yyU+wUTs5rfDRq5A07JNYgVl7ZAuJrxUSj3TnZY6ffcJiWWJ9n8VsRtVIDJJACpy6xtXWJeXpEcfPHjF++at4DNE54GpMNaVeHqH1HM+/ReRZFBmhqhj1fbY2Qh4dPycYHrRvv+sgUjsktkjnsKah0TlNUxD5krKSWDyS7jaj/ZfpbN8gGgwJ44AoVNfWxzbtZGkvpu5aFm2/IJ/4Cx3Y//Sf/jfEaYzF8s5773I1uWR/7waPHz1mOpmwubV5fR0WSOWxvbdDvsq4Ojvl5PiYg9u3GA37HNzYQqmQzXGMFIaDg1tshAM+eu/nXJwfsbk9ZD2/oizLdr9Hy8gx5podbCzrylBoS9lA3lj0tbPEd5ZQOHzRFgqWywWBs6yLijTtoKs2+UIkSHoS5+ZsuIZkrcnP55h5TrYokNf/TjbJYbDFX/8f/5Z6Maco1vSHEYtJTa7XOF2Abgg8RZyk7IyHWNsQbm5w85VX2L3zCknHw+gaFTmSjRivu0feCG7d/Crm7xz+2TM0JZvjDi6f8osf/T2Hzz9BFwu0qTGexIQxDQLR9fFlzLpc4/khdZlR65qt7REySfDjhP3br9AEPvEgYWdD8NnHP2Zy9IBiOoVaEwUppmpYn13idIGiDafHSUsJUZ6PcRB0ukQ7e7C9y+DNb+Mf3KagomksNV1EELTbAF3BeoqqKlSQUDvFar7ErBZQLXDVlLqYInyJi0eY4U36wx12tzahXMPyEv3iEbosqA8vMc0Kq6ckSYwvB3hJDy0vUf0NXO2xms7xgx61jPD6+0QamqKicSsaPAyGxlga01Dbdg1TLKY8/eBn7H/jH0HaoTaaWEiE0aBz1leXuEGAHw3p+AYjaqx1bI9T5nnF1XqCinpIPKxQLa+YFrrgTN3u9m0FOGptkUmP/vY90s2XiPqbRElM6As8zyG8NunUonZbwoVxru3PfrHz+gUhbDbBEYFsePX1N/jk448Z9Da4dXCbh58+otcdEKdRWxhHYHH0uz2GnZRVvuTRk8fMJxFvvLrPm6+2tTmdawLf5/TsnBeHR1xdHJF2FFEYYF1zLeMFJyQWgbbtW7WoHXkDNRJtLUoIPAGpFKRKEgqHcv8fa2/2a+uanXf93u7rZ7v6tduzT1unquxqXGXHGEJwULAAKQgJcccN/w+3SCChXKFIQSJSAsQQAo67chzKptrT7n7v1c5+ft3bcfGtKucuB+nM+6WpOdcc3/uOMZ7n+Tmij+RlQe9h0zgIDeNM0TU90VtG+ZR907DaNnSbFu0U0nui83jvWG6u2LYN68bT9T1N6HG7htzKIXvZK0Z3I/kkLcgTwXQ0ZXrvHuM84yQVxG6Fa3eo2LL4Vr8CpwAAIABJREFUxZ/h52/JZvfoU8vZYcUf/y9/zm59Q1ZqfvGn/5z1bklfb+j6nphleJNTVBlaBIwwLN4usX2HtRElPcJoghK4GDiaTDk5O2Nydszriy+4+vn/TeGuWDY77K4Hp9isFrzygezaMpsUBBx1s0TKSJYVYDRlNWH66B3SB0+YfPM7lN/6Lm52RB7Bdw5lQSQ5Mjportk+/0uaF58jqlOqd/8WnRV0+5rSbilFy00fMfkR6fwYMzljfHCKFLDe7inLKQ+/9UOa1ZroepZXz7FbRSohoyZulqy2ryCbINM5Jj+kM1Och8QkdDawXK4G62eaUY7G5GmBEJokSajrBhMCebsm7q/oooVcU81KXFTIbEJsQSpFlqaM8oLYenarW0b5jLOjGbeLF4PYRxbEmODvTlfnhxuOdQ0yOtrO4zCMx2eUh4/Qo2NUXqGMwiQRKQZ8aZR3Wdji7tAWAnfHqvraClbBkIQoNVUx4fjolOfPn/HBe+9z7/4ZXz79jI8++hCpFTEE9N2be6CoSr717Y95/vkvqFevmRZTYtPhG0v0gYcPHyB8oN6/i3Mt1y9/zpu3b9hvN4TgsV7hgqL3kc4GWhfpPfTBI0LESCiEYKQkpQRDINEak2iyJCVNEvb7HdNijvMd+76l7T329YoYPUmaDiIDCY3rub5d8tE3PqB+9Yo0DPnGnfN0eCIBEzxp0Dy6dx+jNYtNzXhyyLjKORwVGCJyt6G9fEsIFttuKQzQ98jlgpX7KTcho1/t6F4/I5dQb1Z0m2saH1EmpUgq2hhJVEGVZGzXF/g4gLaMNAglSDMFUhFQHMwOKbXhJz/6Mx5/8JgQ13SbT1EqkIkxxgh6t+bi6ac0R494NH1CcVzx4osfYZslaQGNW3Jw9IByWlLcu8fJD36X9L1v003ndNrgPfQxYvE4K4Y1z26P2C/Yv/mUJlkTZx/QU2KbDW2zYJRIjs7fw3Xd4MzyFrdbsOu3xN0NopyybAN7qTh+8jHTB+9w9exn7Ltbku4Gv7oYrtZXC6J8C4cnOJlhRUqmBNNpRWdbkrIgyQuStCJ0FmMtqYD9bkcaPaZdc/Wn/5yTb/6Arshp9Rw9mVAHS3lwSqrnCFWhVw1d21CkKR0RHXvGiWOxv0ZUp0MxRD9Ek4qIjxHrejTDYDSqOaPDR5Szc1Sao41C68HqCUNk0dC4DqIaESUhhn8DhvVvd+x8pYItckHX7UlkgVKGhw8e8Vc//tcs1zccHE25WbziZz/7S5SEvm8oi5zjew/JJ0eD7UjBt775AR8+SBC2xTUticgRqqesch4+fsB2M+Ht21dD3+oHobQUCsRwkvZuuO7EKPBxGAAYBBmRSklKKSmUHPTKElKjMUOyF7Hf0+0Daalomj1KpQgzwjuITiC1IghNOTmgiYGr7QZTJoOwIDiccwQV79Q9gVT2rG/fUo3nHB3fZ3pwn+//5vd4+fnP6DdvaDZLvG1QSUY1qlBZipc1u/WCeufIzYRQ71BJYKs8VTUhOo8MijSpkBFiu0baHtlpMpXRNVvSZBgMRQU6dRANroFcpDRXCxbPn1LaNdq07G6eofKKvUrZdg27fkXXSBaLhh/+7vvMSs/FSxjpFJ16mmDxrgYR6FVCevoI5oc4qXB9T7CC4CMheOpW4qMiExPy4ozs+AOqg8e4KAi7G1K3IdiGjROUoxEq1fT7NTTXtN01Wjlkt+Hmy1vk9ARx9IT64CH5ZMK9dz7EL16xf/ZT+vBTRP+G3Fiarqfe3TLQ4xJMdcTp+Qn5ZEztBen0EBcUN69fE/YbGusQVYWr12gdsIu3LD/7ObMPv4W9WoIsSEhJRI6Tnnpzg84kXT8gOQ8PJwSpaOo1L3/6lDwdE/SggY/RIxmC2gKRKKBznqysqGanpMWEJE3RCpSMd2n/g6SWO/EFDL2w+jW+42u017159QadJhwXBQBSKp48ecwnn/yE7//wt3j3yWP+8f/0D/njf/mHBLcj0ZKDk3P+zh/853zvt38PYxTnBykHpWR3e4P2Gpxlt1mxXCxxHoKUJHnG0ekJ+aii2VwTvR90vtbT9p7WeZwYTm7ksOOrpKAUglxGMg2ZFmijKIqUo4MZ47LA2QT6LQrFqMppneZmW5NrTVVkJMWMqBJit+fAaGzsKSfH2M2ONJfEbkckkirNNDeMMkUMguh6CmN498Pvkh68g/viOaFztN2eNMuwIVDNZzRCY2WKS0vGozF5MSHpLG5csH9qEDpQisAHZ094+tlz7GZHbhJ8u2O9vaFxPUmaovSY0WSEsx4pOnxtKXVBt2mpNxvEds3yyzVJ4rC9pWZHn3oW9ZpgAyJGfLfl6tVPScYJpdHQaqSTpCajrA6YnNzj+MOP0bM5LZJgA76x2H5ITYjWEW1E6JQYEsrDdznNDiEdc7OuSWKHij3CDJnUsd8Q+ppMO1TwGCJtvWe/2tAxpjw8Y3L6beT0AepgRJLepz98wHj+Dsn8EftPf4xYX5Nsr/Fhg9GRPMlBSbQKVJVA9A7pt6TpDH3vlHo/pt3uOTo4RGwX7PZLqmqMn1Z0zRZtG0QayKYZYdtic4vzntF0zNnDc168uKKzPZPpmNFVwbxI2exvEWNNEPouYSKCjwgGbXCIkJVjsnJOlObXMOcYwxCldBeMjxgGqCEO2d0DQVX82uT+tRTs7c2aD7/1IVGGAYvnw9ADuYZ/9r/+U/7jP/hP+P3f/30+/eVf8OblW5zruXl1yz/+H99S5Zp/93f/Hc5niv3VW67eXJCLjG6zpm83rLdb+qBQZUFQkdGkJMlShDb03ZDg31tB0w8hWnZI3UEJSKWkVIpcRDQ9xihGVUJV5JRFSVUpJtOCdhcQqWFUFrgARVIR1y2+b0jHM8qDh/QO4n6DcQXluGBSTHjz7DP27WvKUUqiNAfjhIM8opMUIXNk15NFj+97lusVk3HFmxc9nbX0bcvJyRFlYZBJQvCaKkmYHpyzcRKhDfeOTrEyJe6v6fc3vHj7krrbkaUSOkmiUrbbhq4JCJcQU01WJXi7R4sEER31bkOaKWJoyJRHx4Dre2JUKAyylZQ2pyeCcjw4L8j6a+xKoUIgiBRpUkySUB484N53f0B2fo9mt6Fzkd4pnBVElQz7V7eHtma9u8Lut7iuI8sLVIioKEmTjOByci1gt8H5PWDJsxQVNCpG9k3L/Pwx6vhjmvIBW18ysoJgPbWWuGxCejKjnJyS3/8G3avP2D39Ky4+/VNOygKhNV23xwpHMsrxvsPtdyjXEXWFSxQ2zxkVJUHBqqmR5RiRp/TbW2xn6XVHNX2MMAkikcwnBbGLnDw4J8kn3N7WWBuZTeecHkzYvrlCxhGCHBkl8m4ToxgYOQhNVlTopELpQT8+ECTlUJTEwSsr7og7vypa+dVO1v9fBZuPK0yeEIl3DnnH65df8sd/9M94c3nJyckBv/WDH/L3/4v/kn/w3/03dNsbCA67v+HHf/K/8/f/zu9QX10j25pcGK5ev0aEjpurV+z2e4TOYK2p5iWXL35JV2+RcXDPRA++D4TwKzRfJBGQEEmwqBgwUpIYNWQfVRkH04rJZIzWhlGRkkpNIJCVJW1nSZOKGDo2GwgyIc0KpIeu3hC9Z317Q2h3TDJFnI3IKsHo6JyzwymZ27CzcXiSblcY75H1LZ99/gvYXmAUWCewKqVH03SW2NQUaUKqE2S0GBS9DdRtx2h2wLZrKEuNVRZNQb1Z0LQ9VaHRXco4LalrC13D3juqPMW2NcZEdGrwsSaKjtEkIzEBGwTCGEajY9oWssWScZHRzRXHpyccTBLS6OlDymbd4EJgNBpz9PghyaTE7la0+55OZDQhJRmdQKEHXEqQxCBpW0fXenbbmtPpMTrJyItIuxUD3Hjbsbp4S+F3g/IHgdAGIjRNi8knFOWUTV1zefEp7eYA2Z8yPj8iSdIBCzmew2RGcviA0eyEhQvY3Wtiv6EzMDk+J5+c4FcrfHxF6He4ZkfXePracrtUiKbG25abz35OefsW1zQcHZ9SnEyIXqOzQ9AegKhaXNxxeFSQSMHT55eIJDCdjShvVrx9+5rJySMQmijCAHEXkhAHmazW6cDXEb8i4DGUavwV3W6wdRLFXQ6yIPiAjL/+k6+nYMezKULdRV8IcE3L//GH/4SXT39OiC3/8z/6Hwih5smT+0wnI2421xgZkMKS9OuB2LZbMcoSXN3huo48hd1uTW87MgUH00Murl7w+S/+GtfVSAFKabzvcY4hXycEFBGjBIWM5EQSKUiNZpQnnB4cUKSQKUGuQQiH7VborMCMRnhtUD4h1TnOWZJOs9jsqOMbsixju7odImcyTZlnxDrl+PiU8+kJ5+99m8PphFef/QQTBB/+xm9x/fRTXv/0L3nxxc/oO0saauJ4xOzwhOrwGDOaYXKN6HfcYevpmz3aZFy8eE0XJFlaMT085SDXbNdrVjc3JKliqyP1fkuHRAowiUIROD0cE13Ppu2YzWfIVOGiBSnIEkWRa3Q+xglIhaHbbUh8jzYGl+RUScJsPBkGXT4QVILUOUfHDwDDdnGDrh3tztMGw4ac9NQjZ56oDc470sRwcHhKU+x58M57uDTHh4h0jkQITCKRdkdPgN1mQGQmLWk5wjvP9e0try5uOReHVJMTJs6h1pbdG4vRkeLgiJimuEQREoVMT3AOTn47R948w69fIo0nPXqMVHOy/ILOObq3n5FEz9QIpNgjo6b3Ld713D77jJsvLEWZ0W2u+eDBOaIN4DRGq6HXzR29u0WahqQQ5KUltj3FeMTh0TFvFk+RzhKkHia8coiEiUEi0Ehp7qh0/A0EPUCU4teo1ni3/YDhFjwcgnc+2q+rYMtReXd0SwSRvu949foF0Tdodqyvn/MP/8F/y9HxjMXVKxQBKQaj7m9++D6Jbaj7jje3N7guUlUFWRoRUmC0ZDoucN2a189+TrNdgLeDcz8MrUKI3GXGDl9CRqQQYggMk4ayHHMyrziYTlGxBTegEoN35JMZ1fQYPTok6JwiHeFbR7cRUOnh+lKOWayX4B1VZshSQ5bn5HlBBKb33uXsg++wXa8ojx+ROMeLiwV16zHTGW3T4YxEyQLGp0zOHlBOZkijEDoyHk1QwtE7T7fd021vqZc36HKCyiqidKz2a3ywoIbEhLycDpm2mSNVGiMkWIuUln27YTopKEYpTg46Ta2HW4YwCpVlRDF8jUmRkrSGbDRGFhOyakSSjdhu92zanjTNOb//iL53NIs1XkoCw2fzJiOUc/oiJ00kOq1w1hJigS4rZJriTUo0CUYI6CxpNSHPNHLzFq/B46mdJS0qnHW0nUXrhLre0d28YKY9h9mIvQNciW3rYeiYjRGyJxGBKBV9MqKZvU85f5+UHSrW9CKh3gb8XhLLt1jximZ3Teg7fNNgvaTrAhZJWWUsXl7i9xDw3H75GdXJQxolibMUnXlst8EoSxJ22G3No3GKNjOWpabzKdt+8D2jFEHKgWonNAIDwhHDkIQYggcGzXu4SwWNd2rAcNfXCiHvCnZ4Bf81Kp2MHqJfuHvjNMuZTCa84i6eMVhsvebixbDTS3RK0CkPHz3m3/+9v03se/qu5+e//Izo4YN3H3OzXLFcL5nPxmy2Cy4vn7O+fQOuJ9xNhD0CLyQ29AMdXQQMgVwpEiHuEhqmTA9PqaYGZTSjckS7W9Ltd9g+0EmHPpmQ5Y8Yz+4hkhFpkpHMF3T1EqEFSVpQLK4Q+1smScR3Da63JGoA9pq8Ip3O2TQ1XimUiGzqDlWOGeePSa1n30Fd1xw8/JBkdjiM67UgSEftI5Npia/3bJs1m8tL0uDRBKTvybKEerPE+4622+E7i9KCo5MDbJujgXa7pfUtUTiCGKJT665GZQpjNHmmidbSh0DbtOSjKUImZIclkzIjCoVQGY3tWXctu9ATEsnocMTh6ZSLF2+w/Z6pFrS+JpqCvusgRuRKoROBKiYID7t2Q2XOSaoJpirorCd0LTiP1AnWCtZXV9jbt6jdkrYPrPYdMSlADYTz2ahC1dew18hUkc9PyB8/pjg5QlYVPhVoKVDC45zEZDldyNh40GqOCj2hbWntFbYNZOYENXrI6mYDbY1B4Lxj0/Q4kVFLh84LXFvT7ndc/PIn5GXG/G/9Nureh0QtkDGnqiT1l8/ZfPGCIitZXbcUp9/k7HDKcr3m+vYligIpU6JI0DonYpGyx9p+eOj+GzKIGPl1OycECDUcOyEMp6uQ8m9o7V9XwQbXQ9RDHyIkxqT83f/wP+Li6gtub98g72I8pfQINURhfvzN7/Kf/b2/x3R6jKDFJCk3qzX1ruaDD95FasOjd57gXcvt9Vs26yW2r/HO4pzHh4ANARs8TgyqJ0kkVYLMqKHtiJqDg/ucPXpCtFeoUYrXnt0atp2nbSyalrjdYNdbytRTFiPKw2Py0ZQsWKpqTF6WtOtb2uvnqGaNjp5SRl5//jOia6n3Gz7/6Y9p2ppuc8t+s8KNzhgfHNC1IKcFo+KQ3Auy6phAHKJMgsMUBXtrETYFI9HZaIhiDQ5fbxFR0YWMNB8jU4uraxbbW7QEYsC6nt4HYugoCoMQgdnhDBBIbYhqOF1jdChtSIsc0oy8muFQNNYiEk3wDq1SCpFSzEpkfsjR2QjXbFlcPSWVHhd6XN9ipUbIwc0SbEO4fEGSGZCe2WhOmySkZYocFwStkH3H5vYSLRTl7AipDePJiDZP2K06hNB477G9JUk1o2qM8h0mtnT1Cnl4j9mT9+mO79NPC5LkbncpNZ0XdE7QuwCxH+R8aGIv0D6S6YBTYBkRzAlkV7S7mq5rhu8oK8mrGTf7JaO8RNmB0CcvXvLJny65p7fcz8fErCQf5USlUPkhZDds1gvqp1/y5RdvGL37XWalpFSW/W6Jrk5wUqNNTggNSii6rsXZjuAd3geUEr+O8RViUDPFEO+I6+rOHf6rwvbAv90A8JUKdrtbklcpRDU02tLwjW//kP/qv874kz/9F1y8eEOwjrxKOX/4kI+/+R0+/uAj7s8zrm+eclRIVKq5d/8eZV4NlG4RQGy5uLqg3e3xPoAXeOuHD4Wi7y3eg2RAbSjhSCXo4EmVoSwy5kdzyukYEQL7eknTO1oKfGqo2y3TckqMgYvXz3kyu0ddr6kvOiKOajIjT0ucFJjMoMYjkgxCs0f7LUkauF4vML7H7bZ0fQehI0hFNSo4e/wI9Hu0XtOHwWPb9Xf3HGUIqSJmE3It8W6Da9eE2CNygYmaJCtIy9Hg2Y3gQs/0eE4xNvT1nu1qTXQOES3zo4pCSWzvMCbHRUk0OY1X+GgRYYMJEa1G2CipO09SjZkeznExcnv9GnxHnkXSkaY4f0Sm4eaXf41oFngHPSWh7kiPj1BlgQL8fpgK625Enp+hJ/dIigmxSFFG0VpIRWR/85TFxVMevPMNzs6fUDz+gKZfEEPD7s0lFoNIhziUQCD0NWWuIYd0XqDKEVHlhCCJOBARIQ3OBqz3WD/sw7UyQ4+kIDEFsa8w+YR+3xLGJ+T3BLsu4mVC7xwbD0dnh6yfbehNRqIcWWNJXEvXbtj/n/8XqTzn/Lf/gM72MJJoXTA6OGWF4MnDHZc//gXrz2ry829weDzm4vMrJkWF0GMwKfgcoxtsu6PpN5TeDon+URBlRER3x3jSSIYTNQyGtl9zkJX8Gt06z58/4/jsdMitEYCUSJ3z0cc/4N33v0m367C9R+WaclRgZEIhPZORIy/PGZlI11q+91vfZ7Pcsd/v2G4bPvnsKcvbC6rUs1lvqfctrneEALZ3WOsH7g53uAqlyZRAC0melaRZwpvXT2m7LScHJfv9mixLiWZMFBqjDyhODompRnqFzitMOaYVgkSnTA8P0KnAhA4Za65vXnIyKvChYXHziqbfsO92jNOUft+DlCgjmR6ecvjwAflkjqwOUFbhNy3K7gj9HqFTTDpFpYGgKnQikV3N+u01iejwwqMyhU4UMTj6do/KwMeOvMxRJufgYEKSJqy8pZKaSaro9lv6vqXpLdX8lPk77xOTQ3rb0S6+xC5uaIMgqoiSGmUysnzEZrelKkekKJTySOk5PD/DNnsm4zHNeoX1ERsiuZRMq5xeRDbLBW63oMgii8vXPHjwPUIoaFqN0A7FHm0qeg9aK7rdmps3zzmcnWFJscUcbxJq72icRSrHzfKCbnPJ6SRDiAnze+ecvv8RuyIjyAjeE/zAqBFxMItLAUky5PyKoAftrZZ0IWJ1hRwdkODQ4xxXTmhdx+ZasV9t+PTla77kS/bbLcf5nNPjEWqdEOsVvu6IV3suP3vO6W8kGDyCHqkTiukBMTM0dsn778y4WK3ZrF8zL8/IZM/69gWzs/cJJiO6FGOKIVus3eL7hujH+HgXeyruelYxmAekGBRO8e6ePGxDvkbhhPdDjGma61+Pn4e4F4UxY/KZGmIyFPi7UOUil0xGmmmWYNdL6uBBpuyaBfvNjnq3w9lAkmSsN5eDNap3OD9gKqyzQ57unUtCCtBCoHVKRCPSirIakxtNpRyr6zcILXFZTkdKLOccHJ1y8ug+Plia1mIO75MdnDMqR2jlkSZQFRq52tCvbjDtnjY0xOhpu5be9owmY+aHx+wbz2qzBi0ZH51Szk9IRgdQzGj3ltnhiHFVsb56TXSGLEkg7KmbhlQllImh2TfU3RLFna8SR4w9aQpIi21qXA9Ei8VR71f03Y5sNqYoM0LoMUITVY45PEQcH9PLCdNxRWxKmssr1pcLercjzSqkluzX1/iuITcRLSVNu2cqR+QyYJsd3b6m3jds64iVgipRNDdXdF6wX65Q2mFNwur6lvTpC0bcY69SjNdEE0kLS2c149kD3vuGgWBotxajGkK3ZbPbDVGuIsPvNzSbFbvlFecHD5ndu8/k/CNaNafTKS4JKC0GT7Ed1G5CSNLMELwnRDsAqZQCKbDBEY1EFhlaVYg6DmHm4zn1sqRNBNP7OV9cfYJKp/TTE673LaEKtPs9yhmSVvHm5Q3fNxnsW/pVjzlJUVWJkQ5zeMhoec3er2m7HYcl5K7n8uKS6WyOKg6JxhBDQWwd3WZFbHb4forSwzVYaEkMER89MkBUdwOou4HUEHn01V5fzcB+esbLFy9478MPEGK4g0sxcHEQCi+GkbWPILVExJayVCRqENO3vef12xusl4ymU2T03F5fDf8QBj/teDylb9Z3i+Vw91CId4qRgIhD2mIM4KTi4TvvkavI7uo16+sb0jzDJGOCzsgm98gOnzB/8A6T85PBe+g9xXhONBUiyxEqkOWCTHV0zQ65X3N/PsV7x7qu8Xd7srQoKSZzVu2STdMxyiqS8YxkfEgnUlwfESohTwxNsyJXDUlWsN0usLtrKpWQhJLV8gIZHIFIogaLhBSBEHvyIkGg6JoaXEQJRV937NYbRqOSJFF0fUPrOoqDQ+bH99GTE/o8Y9v16GwYIJniMdPj99ktrvHrG1rfg3eDg4mAtT3WOjKtcJsF7e0Vu9sF202DTMYcHR2jhGK9WtP1nkQZsmKCM6Bsw9WXP6F2BlvOGfVTVG6IZYsLGYRAno2wTY/bLWj6K8L2AiHiMLRLJzT7hqNZzsnknNOzY4rJDKnH1I0AIdAmoJRCIPFh0NumelAWCUDJYehpQyB6T/AW3+8Q7S153BITAdUIfXwf1e2ZnyR0iwXa7RiN56x6uPSRN/WGqSiYlgkjZYj7DfvbLwecyNEcSs1ye0Wlcq5v9hydPyKqSzKXsoqKx+8+4mq75+btM07fmxJUSkwqlG9pV7fY/Qo/nqMSM8wZvIcIMt6drn7AW8Y7Jm2Ivxo6fU1Kp3v37vPnf/EjDo4PmR/MhwY6MlDsVLwDENwln0tPnjrGY0XwPfu65bPPn1E3kaPTc7pmS9u2vHj5gq6picFiEsNmUWNtP3Bjh0825BdHP5ijCQyHe2A8Krm5uSIVllL6u+R1Qzk5YHT+mPz0G8wefZvs4BhdFUTvoGvoe4uINcoIhBT4NmLDntXFa5pXz/D5EHLdu4iPgiQrkXlFJzS6mlAeOsbzETofIZKcKBKs9ajguL16yc3LTzFuyfmDhEI1fPn8r5kcn+BCwfLiOe12SZEEfOjRMoDyaBMxJsW2PVU2RUfo2xqtEqajAzLZE2NH13cUoxHj0yPidEJtJCpTPH5wxrq/ZWMjo9kZY/mA8mzH+osfsV9cYUjxXYcUnrbvSNOCLC9YXV5w9eI5u/UW0FTVmBAE+6ZHJQm+b9E6IeqM9W6PwkF/zfbyl5jxKbYfIfMMPZkiVYpXd7+FpqZZXtHvXpN0F5RGcXx0jM7n3Lx9RRocUmQkac5uXROSFeODBtl36GiG35AQuDg0edGB94CPJErgoqTzA9olUQJHR7O7pl694uy9b2MmR7hszEFRsNt7suyKA9kQOksjLC+aG7pdz8gJjvMx5+UI2iVPf/4vOf/G96mdJO8KiphhOsuoPEHrnkePcy42NZoRv/3Od+jTkr/6yx9Tb5ekkzM8CSYV9G3DfnVDOT0mZMWwVVAC74bsbJQehk/IO0ni36x5vsrrqymdsoLvfPe77OotMc4AkEIP+yUR72TQf8PRKTOYjA2yDXzyyWf84pef8867H6Okoq133FxfcHNzTZYo+m5HtFvqekeIjug9vbUDZ1MrtP/VylmgtSQ1kkR6gt1i8pSsyPBWklZzJkdnlAcnpPMj8umEfDImKklXW3y7x9e7AXzlC/Q4R0TPdn2D71ZYt+R60TA/uo9OxiRpxqrbUpgMXY6ZjjL0aIxJQSTpQCwPgf1mi98uqC+ecvXsZwjf8vjdb3F8dsyzv7zi5ulbunJGjJ6qMES3h+BQRqGkIM8yQpTsuh4x+KxIpEFET57m2LpG4kiNIYrIvtkT8hqfZbTulrhXkJVM5+cUoyckLmezv8SZiJpMhh974tmuVyiZIZRkudpze/GGZrMhkRryHKvjAAAgAElEQVRVVmR5QdM7Ei05Oj+hffmam9WCtO+wQmG9ZXIwOH9MaGgvF/Shw5YGyil6PCZoEH2L2lwTl2+pt1dID0IqgnUkAny9JZ+USGWIHtr1G8xVSTktUFmGF4ZoJApJjIK2tuAGwbyKYYhluZvA5llBCDNSd87VbsnWCrJyjJ6Pcb3jze1bltGwctBvF+yaHnLDdd/ycr3kVdNSPfkA/8WKo5/+mIcffoPlxZdoO6XpJTFLyaopzi6wbksqOx4cjeDsCUGM6WrHp88vyEdHBGWQZlADLm+uGB89QJVTlB7SQvGB7XZHXlakeT4onRBDHxvBcceg/DoKNkSYTqdM5uPBuBt/dV0ViDD0GdxZhKQQTKocrQef5u1yxe1yxdGuZj7rSY3Gu548TzFa4CwIrUjTBNdLem+H+74Pd0MugTED9sBIKMuUKleMy5yyyEmzIVeoGJ9RTI+RaYVH0vU989xgvWff7GlW18T9Cq0kyla0fYowCtmtGZUCmzui8iy310wOc3rv8EhEkqGykjQfUB+9rXFRYN0AQVLR0WwXtMs3FMJy//0PKVKDtFsIazaLNaVOUUbjugaFJc8MWkucj3RdTxCOEB2Jkhip8L6nabaE0JGkCSZGom/xHqK3RBnJRgVd7lBFihcHaPMA1xfcvPyEm8//mDx4yvIQREEiU1zUxA1Y37CtW/rekmmDSBTRG7z1JFKiQocSPSaNGDOs9LRMEekhpryHLkYkSrHf3NBu3+I2LdJMSOaHw9VZRMJqgd5vsZsdvQ9Q5qg0Mq0KXMypxmPGkzmmmLOtl7Tbl3B9TDY5w2aeGD1aJHgf6eqWYD3BWoIbcDAqSRHR4IKkjykxOaS8901CktJ4SYukVTlmejA8JK4No+OMp3/1Oc9fXqKRRC1ZdB23KJZyzMGzC1797FPmhxPWiwvSd95nIwKqb5hNKxYvn7K9esNYjSmmWz568oSb39ywbf6C/X5LOilwRiOVxPmezeoWMzpAmxyPxChNkeeD28yFXwc+CDEo2YL/Gtk622ZFNRrdHdsSKcTdxuhXBqNBT6mEo9A9s7xE+IiUmuPjU773vYSTk/NhlSNhOpvz+PFj+q5hlyq2q+FEDQGsD4QY79LVGcQaPhK9RWeSIpFUZYLJDCLLCGlOMT1Cj04Q41NEPkdlBqV7+m5Fveuwm1tivyRRezKV0C/3FGLot2S3Rvk1Uhh6bYiqGuxa4zlkFUlxgExy0ionupToJ5DM8ekIB0zMlLl5AIclSkQmkwOuPvkx/fWPWb/6HGOOCTohkT3WN2RaUErFdrNm52B0VKCMpGsbgkgwWrC+fMNm/ZaT80PSqiTRkmZzi3WRzb6gNMeo2Qco5Yl6RmIO6Pcbuu0vefHXf0TeruiTgraJbF1KPjvEiUimBJV1pNYxzTLqpsFLyWg0InhP265xLrJZSHDDztR6Q+ciwkWMLknKE0SaU+qcZnuD7NbQLbDRErOExnYkeETsh6FQNKSxJWVBHVrUaEw2O8SrQN2vUNUcPXmAVSmZGK7FnZV0IeBai1FDP9/vt3T1lqQqyEtDkiQID24fiEHjkgkugq0tzmg6GXAJnD++z8XtlJef/oTF8i3dfokXKcaUJGWFHE/ojw755NkFR//Pj/hP/+5/wKJzPH78HuV8zJuf/IiRjvTOM5GB7uo1n778p4we/RbaWe4fzHl2sUYLSZCKKEF62NxekpdTUpPi5QiExqQGF+/ax/gr2xlEJfmqOadfqWD/t3/03/PD3/k9Hjz5YNjBiUFLKaJAMoRlIyMRS1EKsgKc7dlt9tw7O+fh6UOarmO5WtxBlHKSvERqRb3f4ANw5331PtB1HVpopBBICd5ZRBRkOiM1isQolJb03iOEwgmNUilJPsXkM7QpsLstV7sNWhoSb8nLlM3NgslsQlFogujZNWvC7oaDLNAFz6Zx5KMpSmqq6RFFlGT5GJ3nIBRCJ6T5ZCC3JTllmZO5Bu9qmp1k1+6YHThu3nzJm5/9mHbjOHrvMUen79JuXiLtDtfuWe4GKHFISrI8Y7vdsN9vmJQzRqOcyy/XSHqkdLRhT+sCppwjo0cnCaNZju08Niia5pZcr1gsv2C7fYnJPOODxzif4cl5/ewNv/j8L7hdXHDPSL55MOWjg4LT6ZTgOurNniAtXVPjfc++3pBIifOSIp9gSfH7jsXyknRcMS1zqjIhnRasUw17gVQDSLvrerabDakWpMFSjcf0bUQIS7O7waPIikP6CK+ePyefHHD0zhPK03fh8AyRF0ShUCFiVKAXQ4vQWotwgTzJyE2BERLbbsB7EuWISg9FGyJN27Ovd+zslrQ0SCNp+46+dWxWG4J1dDEyPTxhcnjO4cmcJtS8+rLhxeaGX3z2Oefvf8zt5SXnD04x0nPx5ReU2qBUwcuLNZ/d7Nl+ueDo0cc8enRMTHJeXLeYYkqIBiXBup7t6pasmqJMRhQSJYZDSdwRaAEQcsB9qK/mif1KBfuNs5Sf/Mk/4ZP/95B3PvpNju69w2hygFEpQmikFEQ8UvVUZT7g4JVAK4WOEDpP3ezuxtfDQrm2HoGk9R6UuuNlSrTSOKEhDrxNLYdQNeUiJjFoJUjT4WnV3iUpegRpkuG9QDlJ7DxadMjYk2g5hF+h2O4DB0cj8nHOYvMWqRV9sCy2O4QCnaWQKPoYkMUILRLSNEMahVeaLJ8SzAyRpKR5iskS+mXLzXLN+uKSdx8ec/HqE9brFattpJo84ujkfaYH97lsbujblpu3b0n1IBoXQbLfbthv14PZWXmUsiQZ+Bio+xo9mpCMD9HphNvVDWKUERLB8vYC1/VcvnzOveMp29Ur8smI2b1v4uQJ9arlz/7iX/Ev/vWPeF0vsbGjbFveHs45+t1vczDSKANSOXzoQYLJ0gEpZu0w/bc1QnpU7NGyZrt8hjKWXG1pXIuhxeGJfUTQ4pSibTq8BJkonBL0fY1vW3SikVmFlJK3F5dcXF9yTkoUCjOdYydTQlFgtCANkVRFbpYNOEUiBXVTkyqJoCE6S90vcbElS1L2e0cXDGIyYdPVfPLsc263lzy6/wEvLm64vbqh0BXSSUQY5i7O97hQ8+O/+jNOco0bp1waQ/XOR5y+8xGvry6J6ytyu0cTyJOCXzy/5cWu5F/97AKfakaLW77z/d/jm9/8gPW/+oTWW5xIiUCSpux2W9LVEmUyCikGxKYYVE9ECGG4Gkup7q7EX1MP++jenNOTA27We66e/4Tnn/01SZIzqiqq0ZgkK5CJZjot+Nbj7yBtxLUW31tc09M1HUoKGtfTdh29dRyenNDWW3abirevalzTDdeGJCWmAdf2gyLzLkPHaEViUoYUVzGAp7QeIEMwCDVjoN6uaK42PDwbY0JLvdxRHhxjyjlnj76FGI247bd4UzApDKrZsH57RaYlQqX01iFjz7quyTNFooa+uppPaWWCKgqiSZCZAhkJxpDNDkm8RenAyy+egawo5+9weHSIDYIXb17Q7pYEa7HWEb2gcy1211IzxF6eHE6pspTV8gqhPEmeEoymOrhHMjthbYF0QE6Sj9jcvmB38YyyyrA659FHv4NUGX2cc30b+eO//gl/+Ed/zmK/pNUdxkQODo6Yzya0+yV90ZHhhyunDfhgEFLgfE+kpUcwLnN615Jqx4OzEXXX0y2esRc1Ingy4fEmZd81hNAgshyjzBAQh2Gxr9mtroCevMzJPEgzGAgODw6YjjLqZoVYX5IfjKnKEgIDT9ZJHIa+bmjXG8JuQ2drHIJsPIYEnLf0QXB5+YpPnz0llmNEPuXm8hWXN69wqx3bxZ6T8YwXr75ABj1I4nXEh5bF8oKua3kbOj589wkf/+Dfw9x7l+zgnPtUdLfXdLsNBoGQJSub83otWLsMFVqWn32CwPAbUZHFNYvFG/TkFJFM8HeWuu16QZLlaKNBBKROhqTEXxvaA4QBbv5VXl9NOAEIGZiOU2aTHGf7IfHcr3DtLV0tUEnO5Ogj8hjZXW+wtidYh3CDUsUGy6+M93mekouU6BqSJBmsX1LjkUhtSLI4+GCdGxwPPhKVwgVNxNB1lixT5EmCGk1IixKTFUgRWVw+x3Yb5PETvG0HIns0eDPGasP1eod1LVWRD4hCcpJ8RvAtu6ZHFzlgaVYLpv8fa+/xpMuW3detY9J/tvx1z9s26IZhEw0zECEFIEVQCoZGCk31F2nGiSaciFIEgwENqFCIAARDEOhGv+7X3c9ff8vXZ9PncRrkFcSZNHijqqjZV5W78py992+tpWZyeIjQGdFiybYc0DLgpQTvUFoT5xPs9JC78+e8/OKXdLuO+ydvU9eGTV1j/BWTieRgGrO69QzW0xhD1TbINEO0DdNJSpZoJJZ9vcF7j04y0BPSyaORDTyUyOKQePIOQcBkWiJry+HZO5h4ik1jpO/YrvdYpfjzv/8b9n03RhKdZ5ZH3JtPubeYIYWhd54kKdBhQrkd0EmC95ag5Jix9Q6dKNKpxlnL8ckZ613J3WpH35YIL1hOplgHIbEYH5BKEM2m7PEMXU0aSZx34A1DG+hbx24/EJKM6cEcKQbo17Q33zA5nZD5nM4pQtCUXaD1GqkzoqQnxBrXD2w3dySuITu9h06n3Kxv+OmnP+Hx88+IigVBTilmKbvLx2yen/Pg7D20C1yfXxDpmKIoaIaGstwS9MhT7kzPbr0jnx4ye/AGcrnErHf4psMj2G02bEvPrnFcrTuUVMwizSQkHOQpV09+RSQl64unyHbH6du/g/UCJcfjb7nbEMUxQgr067yskhIp5ZhG8yPX6VsrWBkcxprRvObduAES84+xoSA0k/mc77z/JkNbI1DkWYFIPaZuIPa4tsFay+XV1Zg7DQ4hAtb2TGcz8A19X45LEk4T5OtdTBQhSIRMyCaH2GCpqoHgQKfTscUvNTKa4J3gYJJD5rm7vmJ+cIjMZ9hohgk5jdTYLGB7qPsxHa9DiiWjrvbc7Hbo1rLZ7RFB853vZLz58QnJbEErBNGkwAX5erTgcBZ0koCO2VUNz14842hasLz/kJfXrxj2mzEraTRD09P2hk3ZAIEgI5KsoOl6lAq0TU1rHc4YkiRlQGB9QkcO0RjV0zqhW5/TlhtyYcgW9wligXMJTdWDbdCzjHfe/5Dyf6xounok/HmHMQLje/a240WrKE6OiJeH6BBj/Q0xgkgYBtcQ5zHHBzNsGFAqjI9JIiiODmC6xLqI/XqP0QrTdfRdTZKMAHAnBdMiwWhPpAXSH9LXO/AG5zzBDFRdB8IgpScnIvJw3u5haIkO30RkRwTnx73hOEIWILxlkIJht4Ng6Ictz84v+fmnP+Xnn/wtUQyLYEiSgV9/+oLt/pZEHfGDj39AubshSVM+/s7H/PrzT8EA3iEdyBCYxpIjKXlrNqOYxDCPKV+sWWSBKInwkeQXv/oFq9sa+pgH8wVT4cgOZpydTNjuS7QSLBNPJ1/7YpV8PUnxeNuz32yQShEjSZJR/Pz/zl8F4dvsEouhIxJjN8v5gA1u3GoSAhEUUinef/89Do8P6Y0n0vEY3B0s3lqs6Vnd3XF+dcPPf/4Jz7/5ksUs59GjB4T/xPOqdIRzPcZZBmPxgdcNLYWUMVE8JdiWsqqwQ4eMUhaTQ/JigYhm9FVDGiSCEarmdI6PJ1iZ0Q6BShqGYLDGkrgIqRNWq4r65o7d+ppdV/H4xSds1ht+84Mf8Cf//CPixYhx6YZ2vPe4AS88WTb+LryL8UJxcnaP+vQUMZSsdzcMrhsB0jrCtj2r7Zr1Zk/bDSRpSpKl9MYwKeZoBX0/aiZ814O1iHSKVAWDkMRxQWIFmB23z39CbFqieMIwF1ihiXQGXUPTN5yvJZJz2tdXj+AFLtLsestFWeKcwb71Id9/70dUQuOqGn+gEK4jEhZFTpxKdBaB9XhGr+92aIjmpyzuPcCGhOy4xG7XBO/oLipikY5uXDFubGk96lLm8wUmVgzVHjsEOu/ADnQ19D4w7yWTPrC7umO6fMhB9pCAITIe7xXGC4xQhHxGUAK3uWNrtvzyH/6Cv/nFX/Pq/DmxivBNYDKbE4YdL8+/JkoE2XyGFzXr/TXvffg2q5trBjsgpUCIMTqZSsVhCt87O+JRqjHVCrdMmM0KlCkpJil+DW+cHfH863OOi2OWpwmi3dKahvL6MYPxlJ3hYDKjTovR7Pd6i88MhiSLcW6g3O0ppB6F2Vqj1Fh+3/ob1iFHZ85r2vm44CvGgbYXTOcLzh4+hFgjvMVZw+r6FtcPYAbubm558eoVVdfzzdOn7DYVaRKz267Q0pOlMdaY1+f8FK0csXYY04wfRIxIDdM5gtL4KEJrS1PuiAfB6fw+QidU1QXW1LRdw/TBPZyHq6uXyImlCTt8ZCnLW5azI0wSsR9aPn9xzssvHyPoWe0uuX31jO8/fIvf/Se/z8P336HxA/22RnYbBlvSUJBODxDxlL4PWNdgypKuroiQtHeXPL+5pu8saZ7RDS399pp6d01XVwQvAU3wgrreoYTj4P4BkVbUTcewa0i1ZjbPcFoS+zEzGyWO/eYFM7/GVRV1GCDT5IsJYPHK8uTpF/zrP/8rjj/+DQ5mB/S1IUkLqq7C2oa7ElabPXJikCffpe566uEVLu3RyRkox3RqEEPJfr9CBEGcLyhtoBM9h4tjsrMfUDY92/IX5HFAosg8DHfXY1xwuiRJJgglSWMNxuBFjBIpSEMsA5kU9NJRtZ5oIvEuZnr2AVn+Bn3pCXbMHXvTY61l8AO7Zs1mf8e1u+Fnv/gbvnnyJU+fPaYu90RKE0cJd3d39KYl6AGdRahkw/nFf6Da7Vl3nlfPLpDBol4XiZZwNpnyziTiu28cE7s1hT2iv63Jjt5FqgZVfYPdrslXPQ9Pj9hWLUt3wXyp2LYOip7zuwqhEpwK2FAjbYmPU3yIsELQ2oZcQzARzXaP8JAXBcQCL/z4fIcAJN9OwQ7eU5YlAc9kkiOlHnUFUhGE5MGjR+TFFKQijiVPP/+aP/s//k/MMPDw7BSs5fHjbwhKsVvfMPQ9uy2cnUyIIkXbtIggUFJjrUeOeqDR1eMsQkT44CnLPUcn95jM57j6khAMUmiKZEHTt+x3d8TS4eKYfL7k2XbDX/7t/8VHH36Xe29+zMWLZ7x88TUHs2MWR0uePPmaT/7jT2BoyKJAt7vjzZNTfvs3fpMf/d6P6a7PuX11Sd0MDO0tnWspHn5MMlnQ9WNut6sb+vU15e05/X7Nfr0GNC5oGg+97ahuV/TVjqYpR68tLdYZZIBERUyKBYP13K22NJsd8+mU+GAgmBbf3aFaENaQDx00jnrriGdTYqkolKT3Aqs151cXBNvy+c//nvtvfIiUEU3X05kO6xV1M+Cc4ctXV1xWlrfffp8Kz6osOT17i2QyReSBKPS43QolAsXiAN9ZNJZkeQ/mb1H3V/RqThYPqHxPusyp7sY98CwtiLMZxttxUucFUsbgFW1TYaUnTmOSYkIaHRBnMywJrY15+uoG3QzEBwlVKOmNpWoaXp2/4snjr5lNC27X1/zDJz/h5uaatq4I3iGD4OhsSTHJKERElgYCA4tiSt9UXF9dcnfdYPowvs0ShQieeRqxjDX3i5yFcmxefsVycogqjtDTKc562j5gQkTbGw4PZgTfMY0MkbTcO1viopS79S02OCJyijjQuY5ES3rLOMoJgaEfyCLAO9q6AgJpCAilUVGEUt9ivO7y7obHTx5zcLjkg/c/QMoxJ+SQyDhifniI0hqEwAwDv/7Fpzz+5jHee86Ojjiazzg9PmS333H/aM7LFy8ZOk/XVkzyI+zg0SqmrvZ45zH9gLWWQMAFj3MGLyAfOiQZWbLg5vYSHQWyKKO527DdntNV1wxZjM0O2O03rIzhxWaF//JTXl6v+OyLn+FNzftvfczzJ5/zyT/8FDMYjg6nDOWOd+ZLfvjuR3zwwUccPjzi0z/9t/Qvz3HzKTUdi+NTpvM5QWc4FMEO2LZid3uBbzYo3zKdzlAqpevsyBf2gb63NK2lbg1xHBNLjbOB+XxGrBP2u444ihl6sFawr3uKsmca54h2S9oKYhto9jX7u4bQRYhJAn2DrTboYsamHbgrq5FCESVcXF5ivWS32xMpiYwi2rYlCFjVFXddx1lacD541l5zL56SH76Jmk+IYkXmDdZaSi9ARcRBUllHr1JMfkBx/BFhreiTa6KzY44Pl1gjsRQjuXBo6eo92oMMEQE19vetRwWJRoNQlJuK+f1HWKto2p65hl9+9necr7+iHnoaY7m9XfHV51+Q6pjr2xXdYMGPY5JsknJwsPhHXvXQNPjOgvVsyy1V07HelJh+3BfwUhBrQaEU96cph95wgMWvLtiuLnkxBN778QG+miGjQLAaFU1IihknSmGbDcI35PmU2dEMJxUPTwteXO6woSaInqRI8FkEnad3I19boqjrisk8QQRP19QgIE5zhJLfLvn/2fOnvPPeOxyfnCAQPH/xAlzgzTffJM0LitkM7wJ937C+XrFcLPjx7/5TrHM8ODsbxwN9izU9j+6dkmjY7jZEUcxsdsA0D1ybgXLryPOC0FuGrnt9Xwbnx6Ldty3bfUesHFUDi2VCFid0qytun33CrtvSJDFX1wk/fOufc5Aesq0b9ncbilnH1c2Gs4Mpb7zxPv/rv/lfKMuKItO4oeQoEXzvjYd8+PAh9+/dI5lGDLsL9k8/o/jwI+b3HvDgze/jZ29gZI6zA2GwBGOIhKf3PUI4JpMcJRO0MAxtN97H+wFrPUmaIwT0/UASa5RMSOOCPJqDDUz1hMk8ZbI4GP80baC73cG+Y6gazH6P7TqEyumaPYlpUEOHTmfUdY+PElrnmR7OuN0ObLclxhjSNMJ5i3MBFUms7fnsq89ZvvE2v3j8GDk0fKg0PisI6RSbJiglMH1H8KB1hPcKsHSyRzBHO4UzPeFwS4viMM2RtWEoHUFmRNIBOf3uDlPV0DuUjNE6xpiArQfwA7HQ2Lrl6CzHR4Lm9hX//t/8z9yun+AijZpOeX51w7qsCSjMEPAWIhWjVcY0nzOfHvDy+VPurs5R3lLICHqLCIGm74m1IkoExllEoslTwVEccYjl0EFqBii3WNszpDP8+iWDclglyETABs3t9YpcDEyyGCkky4NDVKwQEibakomBQThkFnN475Tr2rGcZ2wrx2Dl2NPxjrbaM1scoLSi78YudCz+HyJo9u0U7G9872PSvCDg2e8rfvLTn3IwP+CNN99itjhgMpkzDANDZ9is1ty7d493336H7W5LsI4ojsinU4rJhNOTE6SE6XTKbHGITgoOTpbc3lyO2gwtIU6JModrewY/BtojqRlkwuzoiOlsyXozxwvL7dUFkmvuLh9zvr9hFWvkw/f5w3/2+zx5fsODs/s8++olhSw4Pn0LrRx/9R9/RjtIdJwyTwQz3/POYsZCOo6KGNlU2NsrQnmD6ddIb9G6oHcJ0mjQFmEHpO1HqZNpUcKTTxJ0J9BSgRmo13tuLl7hTI8zwyjy1Zq+b9FqfPiSeM4kO6Dd7LG1wXqI8oQoySmiKc31HT0t9XZNogU6y9BKs9+vaR7/mkdvga0N9xYzPvzwA/76Vz9nva8xJiKKIvzrnoKOFFZFr1NPjs8++yUf/PY/pRp6lBlIigwpPImyaK3RSYRUEVhLqjwmCKyW9E6CyDFDhBbvki4LwvE1tDXDzTVpIrBGUpctvYdm2CK8Jk8KJpMCvGO13WGswZkaIwbq5gl5PiFul1zdPGN6d4uuHY0f2F7vieoaaS1DFBPHGd57Uh2R6BjRGlbPz1FtjzYDCRAHQyY10yQinmYUk5SQa9ZlSWMMUay5P5tzODjePzrhweGMiepwuzVpnBC7ger5l7y4eMmDh28wmS9JdUIuNY5AUhSkWU5Z3pAlitA0pFJSq5SDB2/z7gcfcPG3nzA7LlA6Z1sGjHnN7A2GptwxmS2IkwQz9K+5xd9i0ynTEukNvXM8ffKYNE1RkcID89mc4ANaRahMs1wuSaN4HAEFR98N9H0/bntM5wQC+WSKC4F2MBSzg7Fbu93SDT1SRGzbFtcP9DZgvSAgiVRCMj/GxvDFs8+YFROSVLJdXSFCy91uzWbouB7gP//R71D3hkgo2l2J6Rp+57d+yJ/9xb9j15XYLrBYztjfrJh4wbtpziOpKGzHu/eOWF9c8Om/+jW3n32KEpbID6i+od1fs5gf4ehRdsBWK/z+GtnvmOdiVGfYHpyhSCSl9AzNDswwKsKcRWg5ipAcOC+pGouWHf2+ZrevaE3AzzQ/+O4PaW4vGRoxWvmICEJSto40SVkUijiTNC++xPKSbZ6y268QwRLpCC8SrHNjFlMAkULrCCHB+0BZNnTG0XmgNwgdoSMxZpnzAhFJRKoQvaXb3GEM5Ien6GhC4wU2s3itCH4KesGwOUdZR79ZE4RCFzOSdEaMQTQxc+VQQ0XfVGA8SkYIGSjrNVZVPP/5FhEluDDwnpJj8yrLuN7teNwHnruGUkV0wuGigHAtsmux/YAOlixY5rGgiDSp1jw6OWGZaXJpmKSS2b1TBjSrxowGhvkhc51yNl2wnGYcxI6oa9BOU29K4tAzaTaYy4C1DmUCMomIs0OK5T2kNszilqErCYNDBkkxO+Lo4XscHp3ghor13SuOH3xMIKaquhHIEEDgqKodaZgSF1M80LTtt1ewEo+zAy9fviIEy7vvvcPd7R0IGNoO2w7ERYSxlsOjI8r9nr7tUEqho4jtdo8LkulsgXUW7Sx114KXpMWMrtrTNHvaaku9C2y3JdgxHG9HLwcWzRBiNtsdzf6O3/re73Fz9QqhAkNdYxAMUYyeFnz4vR8ytJb/6V/+S14+/ZpYR3z5y79D+Wa0tRFhe8MkkiyV4ljFJG2HK0ue/vJXVLuO4fIlXb1icW9GYiqifoVqNf4GRHZAcAbKDWyvSTGaBx0AACAASURBVE2DtDsUFhlLvAlUVU2sYDmfUW7uiGRM33d0dYeUitnBMUk+5eTh29xeXOCqks5K3vrhD2l9TLWvEEETgkJHksurS3SaEBUTzuYnXFxdskSM9/ddy40IvKr2yGGgpuXdjz/gy88ejyJsBryTKJ0QS0U1tOzKktl8wZtvvc/+9ooom5JkKbvymsnRjDSJwUPXdGx3d0TxFOklSkbgPZZAUBFBRcTF2KgSVGB22NoSxwucUeRmiYhAM9BuLI1tRs9v11D1Jbu2xApB1VkmxZRYCaYSiqwg1Ro/GKwQxDpi7QN77+lwyACTNEFKSYImUZKDWFOkGSrWvHVvwVEREdsKhpp5GjE5fEiYnGJmJ0TLE7I0R40RKJStmQRP2FZcfvMNJznMpaLdbLjedqQouqqjmC+I0iWm36BkhDMB1wa8UczSgkk2IQTL6eGEn332JYuTd0izHK1y9o3DDGNHOARP3TQYBJPZ/NvlEiM15+fnXFxe8Ru/9VtsNjucd0gC0yQhDYH9zQ31MLA8PmYYLDAClFGjYU3H+ShTcorVbk1nLcVkyeAcl1cvqXe32GaLJabreoxzRFGKQeI8JElBli+Z6pSubfnq85/iIwj9gOglcRzjReCP/pv/FmMi/vLf/RmXT7/k9KRgu9py8fTnDG5UW0ggtIp7OiJzgbrqyRPNQkRcfP2CWCbEMiaKl+TxHDmUhPUTXL9Cdlt0McObHrO/I20rXN9jBkPQESrOcVikkkRJxNHJMfPJhGa7IfQVgjGNJL0ny6c8/PC7PP/6K9rLK4rlu/z4v/8f+Mt//a+4+eRvCVGCF4qbbsDFxxzOp1SrFVcvVoj0gLpquLiuadsaG8EySGRnaXzL9e0rkmzOw/sHNMMdjdYol6GahiA63FByPIs5+q0f8fmvv0ImE1QeMUty4lyiIsHQO5ySFMfHJPkBvVD44OiHFtN3yKDwQmKCJIpzsiQh0YGQeIwI1FKRHxzg85j13ZqffPMZEZYiSGxb0nSOsm7Z9z29ACMhQ7Iscrqup60HmqpFGcOREBxEBXVwGNETR5apDugAsfdME8E8FqjUI+YRqag4SGboOCJkU6QWyCRievIAv3yLeH5KpCxhKLF2wG4NQgukqNjdXFA2e/I4QWdz4liSa7jd7UdO9XGD2VdEsxSjEqb5fep+Qz6sWfo1RWJ543TGp780PH3+isMjmOcx2XRCaD3WWHwYFyu6blykyfLi2yvY9abkyZPnfPy97zEpJuy3O6w1CCUo5hPqrmWz3RK0xoeAs5blbEbd1AxDz2w+p64b3NAhpUQLifSe7eqOm8srLl5+Q9X1Iw7EBZQI2GBhpPuglKaYZCxnEU+++RW+LWkvBe9/57usyqe4pqJ0LbO33uK//K//O15e9qxWv2RWZKzvbhj6Ghckxjq0CERSjDJib5EiGVfGhEQREemUeyf3WeaCp48btEhwrcf7jsgren+BHDqU8LBbI/qGmPHBEU5g+wHlYJJkJIXE6QxmgVsbaOsK4xxCCfq6prq74y/+7Z8yiSJsMqXIZ1z96gu6uzXu9oa98/hkRj5Zcnx4n9vVDbubLetdz8GDh9h+ze16Oy5zxILFyREpAdV3lNfnTOZvcu/kHnebhNPjR5TbPevnnxEJie16rs/Pefu7Z9w7O2U6m1DMcmaTDBUn42pdrMknM2Q+oR0kfoCutwzDuA/tnMUah+gbJn5Lf/01YX9FMTkhjxKWk4JYTbm5OGd5EtEheXV9y0HimCiFmipmqaK+63HdwGazweqMWCY0ZsfZ6QP25obBOmQUM80mxE1DLAURjqnSBDGggmMiBZPYopKAjgQqWFQvKeZHkGQwm5JMMuJEICKP9DVDucHVa3AdsutwwaOqHbl2vLx6RdvBb/3hvxih5PWOTGp8vcXePadICrpek2ZnTB7dR6YvqO2O1dO/5/Cj77BYHjCdznh68Yq6Hrh/ckQ0PSKLU4KK6AaL9eAR9G2Hs98iSPyrrx7zxsO3uH92Hy/GrmEIniADMk1wEpbHR3ipiKKYPM0JIVCWJd4JoigeGbvG4L0jjTRX5yvutiV123B58Yyyqcnj0e2aJwqCfE2b8wThaZs9L5/8kq66Gy10s/u88c6PMIPlqrymF4o/+uN/wWqvaPuIi/Mrzp89ZejvEIxjFCEkSaSIvCfBUwhBoQSF0mgvCMZjekdZdbRVBVEGqoCQk+qU0BuiyBLKPW3X4qod0g1IBUoqolRjwijrMoMB75hNC+bLI1YvXxCJiCE46qajtS1lZYnjHe/8zo8oQ0SWTPjln/051dUFsmtovUWmCXXo6NdXiKFlU604Sg744ouf0TZ7vDWkWUysY7T3nGYJzkl2bUuXXPPydkfdJ/zhH/5X2MHxF+dfE/lxpfBv/+qvee+7v8HJ0YLZPCMrEmRkCIJxQV0q0ALbOwYT6PtAU/UMvWNoBmzbE4whqW+4fPE3JLc/Y76Y0qannJ2cEpoB11dkMYjgWcxidhvJzfaOIQ0sCs1yPiOIOXJfM4SIJFuy6gz7zpIGSYUkIMik5GR5SOsE0VAjCeRO4fw4v58qyJQjSwRC9kQqoOiINPRSg4pGaqGt8NUl1CtMuRm/VndEzrHaV7S3K/ZXtwz1jt6k7Pc9+7s7XH3LcuaYTAXl9VMOzt4mnp0wWRwRm4R4lnPx6heU1Utiu2cym45kibs9t7eXtG3J4rDhaHlMmuakWmC9GIH5UvOPtMFvo2A//s73mS9miNeeF6U0fT9wc3dHlCTk0ykK9Y+8GuccLy4uuL655v79R0SRxFhL37eE4OmaFpzjYFbQtju6tsSYntIMHC+mzIsMrQRNb8Hb8dhlOvzQIaWnmB8xXR5TNYYkX9KIhOT4Pr/9B3/EX37+gq+/eso3X33O0I84Fu9H5pPWGm8tUXAsYs1xlnJc5MycYBZnREKjlaZrO5wwY/Y1niHSOcmkYBhKrA242tCUNbGQeDe6VEKArhyzpWkUo7HoSBBcw/ruAp1FmOkEV3uEhsQH0ihnmk1Z312z25SczsMY6cJiIoEOin29p2t6Cn9E5AxxnNC3NV21wXqP1mq0+RGYKcF3zo54oAs+u77huVmR31/Q9z1vfXzMfiMoloc06xJJ4Onjr5HCc3A4J8sVIgJee2NGJGfAWmhby2DUaBIcPH1rGJoOPwxkSpHrhH7wKBs4yOfE+YTq/AXVq5csFimbi2dU9Ra3fUZktwy+xQ8eFcfYyqOt4Y037nHw7nd5crXn8skrWhv4hydPx4aShExKZllGMSlIDPRdjQwCESRaSbQeM7nSCrR15KkfO9b0RElBOpnSNjVl+RXF/IiDxSHD5gK/v6O9e0nbDfiqYShbul2LCJ5YwdXzX+HannpziW0l/ZCSz6fI/ZZ777+LPDxE9ClpPJCvc7qmwVZblof3OTw+RL+8o3dwsx7YVRX1fsvB8oDJdE6SFkQqwVg38om/rYI9Oj4cvwkjI3joDHd3G16+uCBNc+xgqZqKyWKOsSP2ZLvdAeL123gMtAcCfd+xXq8JBCSBCEcRC4glbvBEQKIlLoroBzf6qp3DWIsgIo6nHJ08oG02rG6f8PLVc1pmPHrzh3z69Yrb2w1f/uof2G8uwI0jIS/CGO/reyI5fuiDPOfBYsZCCGZBoe0o110u5kRRyiAyLA6nIxoEqYoJyQzrLVkiiUVCpsftnSiL8MIRRZooSckiTd9UtHVN2xnSLOHeB+8ydD2z3Zqm3COcZ2gGrs4vSPOExTxGyT3TeGAIsLMK31oSmXB08ojf/2f/BZuLS8pXz7h6+YSjQlC7hiFYCIZZkTJP5Bgq6A3rNKJUOUf3lsy94PziU+p9zmSW0dcRZrD88Ic/YDmfkeQZSapHgh+vWZYBrIO+s7SdYxg81o6AAREYLQxxxCSOSZly9Ob38b4i7Fs2r37G/vqC/u4S//AR2+tXCGV5UBhirzCzJbvVHbEAaQekH5hMM37wh3/A7U++4OVnTxnalqFrWaQaJUHHGtu1aBxSBaQU2MEj9MhRsiGQiWicdzoLLgInEdahQ0C7QOI8YaiIOoXddKhmgytvaW4uoDdENpDLDCPl6PTtO7bX3xAFDbZjuzZUfc1ZPGGRTBB5QZhNCb5ATQyz6gy/2rK7u+T4jd/k+PgIza+RKqZ3gma/pal37PYrjo+PWCwOKbI5kcqR6v97LfH/d8E6HMIFIh0hhGRSTDk4OOHBgzfo6pa71XbEOCpNkAqlNbPZnOL1GqMZLEqrcWlg6DB2bEolseJgnlNtUtKQYbQnESPOVHj/2gI2phnazpBNFkznJ2TxlKvbr7nxG9rW8+7Hv0tfPOB/+9//GhNaXj39FNPeIbGgYqQcDe7+NXtK4keZcxQT24EwDIggidSoiFguJ4hYc7tbIXXAyYHGNhAkaZJj05i4WKKlIis6VCwJypNOc4rlEuEMfnOLq0owjoPjU6wLdGXJUXPCsN5S3t5yVV+gvCGPBGkqsM2OovDISBMv7zHtPEorDu+f4oc1+JJIdswyj5IO08vRK5PGHB/MSfXoLE21Rk0WeH/Ivo7RyvHk158QyQN++L23+PvuhurqFp1o2q5nfjjDe0Ng7EEoIUc2dG+wZoSDeT+eIqQYPUtxpEmFQOPxN49ZPfsVJ0FB1eIunmFvXlBv77CmIVKWNBPoWUSWxVzc7uhijY8k1g5IEQjOkSYZv/mjP+BP//3f0fUNbQfCDiyLjKOTw9cS8A0RHQRB8AotNHFSECmLZxi7Hl7hW9i1NWSSzOb03S1ZHpEpT6i3rO+u0MOAK3f43hC6nizK0EKRJAV2XzI4R3AtjoQoaLwN7NcdUVKyOPNMesV0fojMF/jaULQHlH2Ntw22a1ACsljSeokgRbieui2pb0vKZs3BfsnR4pT5ZCzcb61g5SibxvhRSnt6dMqf/PEfEyUxr54/J41SZrM5gzFkeUySZhwcHaO0ptyXKCWRIVDu9kQqYjpfME5XLcG3TPIU5VKc8kg5Pix4P0aOhBjvMEnCcnlM8BEXr16ihz2b8pIwecRbH/2AL/aWx9/8kizr2N2do0KPihIcHuccy6P77PYNKgQKLZkWE2KlkK1DWUc8nRJnKQTPZJLQ0zObaoRWyDRnfngKOiZNRkJ9LBRYj1EJYhKTTWOsNwwqwgYJi/v4pOdgPifPEky3J53mDJs9hUwwm5KTxZJIKooiw/kOFwb6tiGfHjE/vk+QEU2zIoQ126uaerNF2C0i2sHQoYSiyGKWyylJpEnjiCgGbRxGwvcX7/PYCj755jPW1Uvm85ry8pK+7bB+QEUZz17cMl0smCw0mjFk4ULAGYc1HucEBIUUAeMtzgccEAmJlgJXl6jVc2b1Jc3qFjN09PuKpmzZN4FJ0hFrQ1Bjh3mSzcgiRaUjEIo+WIJwrO9WfPF3P+X4/R/w2+/d47Mv1xhZ0Ox3WKFYnD2keXJNU3XIUDEvJq/xtwJjHcJ4ZCTIshydaEKAoXN024HBlajcU2rP0dEEGUG33eL6DmksWEnwEUm2INHJaGZYtwTT4xC0YUDGGcpLhtaz3XRYVZAcPUIfvwHTDFmVhGZO0mxJT4+4urnhYL5gkadst4ZIF/goQrqIoR9Y71ZU1Zpqv+VgdsJstvz2ClabUZ0QkCOLWECejmOUs3tnnJ7ex1lH0zbEI8YeLwRd1yMEtFVJtd0QjKFIR6pA1zdY41EqGlf2fI+RHhfsOIjmP7V7gbcWKTzWN5S7SyZuj5KS1jiuqx1Xd3tct6Wq7/CmRUrweOzrt3kUpUjpePvRG5yowLBb0fpAYhxKBmwYsN4QS4HH4jHMpikyTomX94mWZxClIxhbG3wz0HcdcrJALXOs9ri+oUdjVQrZlPhoRrGcEqpr+mbLZDbFW4FvA8uTE1zfsdCa5ckZ3vVshaFDEEcxwVgGLFaC1jFxiJmdHLHfDgRpCSpHDIIoiZhNMkzf45yjamv2TU0bBFN1wvfe/JDb9Z6qXLO567jsV2gBUji2u5qh10ihKLIECeM6qA1YK3B+HKk55Lgx5UbzcKQjlOsQfYsrV4SgsF2H8i27pqJrG7ZlRWvAlw1K9XQWZASR0kwTwdo7wqAIQuCFAivZP3/F6vwl3597lveXVLuGZ66ndYFkeQLLwObyijzOcUKRJAl4Sdv2bOs9c5+S5ApjHM5blI4RQdCXLa4acTexGaVirqpw1mKcx7QeQUJrNSKOkBFkkaJ+7TsdsAwiIJ3HB9h1A12Rkjx6RJjOIB3ABsIkJ713SnZyn/WXDdiEfrdHW0WWBEKSEeyAsqPlrus6bswVdVMza7bfXsFe/uLX3H/3HShyrI7wUgEKCcRxTBRphBRIo3HeoxONMIbgRgF0XVcoKUnihKqq6LsWO/QMZsAYx2Q6x8Rg0oj9fo0wAanU+M8Bh1aC4Azb1QXOOURo6EKHEDmtGjejXp3/CufXlLsLfBjwAqwfCz8SMfvbOxazJZGWnN/e0q/XyOMFWZogfIcOLamyTGYZRitcK4mFJJ4lxPOYMIlJ8uVoINeeeCaY3IsQaUJtG4a2RGQ5dnJANp+TzRdESTJS8FcdT5+94OHDR+TpjIYtUZaSL2doZzk8Oeb8xVPq10jPWaEZuobVbge5ZnKQkU6nTOZTLvZrQiyYzCQZlmKa0TcV27LCOctgDMEOFBrczddsymvYWv6zP/gTfvXN5/z6s+c4FSGV4ObZU3LfMo8USoIj4Nzof7E2EIIaI5U2jF6bICjiCG8HvCmR9Qo1rAHHzXbPaRSRzw/G+/nFFY1zVE3NdDIGxRMpcb7He8jyhIPjN7i5vWC93pHEGlsZbjfnHBxmHPkBYWoOItgqx09/9jfczxZEBzn4iGoYML0lVgmNDezrAZQnz2NEsGglcaEHGSNURPAWcPg0oe1ahqaB1+A4YwxCClLj8Q622x3B2XF5ZPBI74kZY55SC0Timd2b4eMe175AuYZQXSDjFJ+dgZwzdDfc3ZwTbInpIJ7ew6kErwdE4hmCQ3qP95bdfkNVVd9ewX751/+B5uaWj373R4j5lB5BCOP2ibOWYehHtQXggkURoZRAicBgxxC70pokSVhv1mgl8VJgX9vppvMDXr28wxpLQIx3YcxrLR+EEEaonB/GWa4w9FLiZEp2cI/WWVZ332CGkr6vR1mXVCilCcERR+Ostdre8eX2juAEwsOP3/uIYqhINpdMY8vR4ZxsNqeJC4rlCQk9ceLG9UKdIXTBZHaKLFKSYkI+X1BWFW6zwtpx9U8fPSQ9PiAkCqMlRJJhc8vyze+QHJ7ijSGUPSZ4XFuhnKPqeh4/fop0LcfzOcFBVW5o9hvqu4F+cPRnGj+dEA5OiUxgKjW222BNMx7Rswg7eNI0I7iENBEQBhZxy02a8O477/L89hobHFJoXO959dXnbJ59gfjNt3GLA7xivBuGsblkjR/5QM6PZA/nib2j36/oLp7g1s+ZK0scIE8TTLNGBE1VNdRtz6btsbrHJ5I0SoiLhM70eKuZT+e8+8FHXN+ssV1LKhK6TYXZllzvrpB4BhOIfCAVmnJzy8vtnonQLJKMzrYMUlEohS7mxM4Q6DDGQ/DYwY3NKDcQhCBLI6JIj+7hwVPvO/q2Gxuiwr+Od5cY5yn3JQyOJNIkiSZNNZO8YPCBPpG0qeDwEFTzdDz9yXpUR6bHJEcnrFeScldx8fIp+Arpx+mKJcLpHEkgWIMPI3EFwHvz7RVsArz68iviLOXd3/snDJpxhjQEmqpiOpkQkGPS3jms9SNFwht22zVaS7JoghYCT2C7ukHgQM4QlSAvFElW0Pc1QUh8cGPcKAS8d6/9O56+H17/TCKzKZ0o+OiDj7mtdzTlHdb047pjOn89vQvoFPLphGq/w9gehUCJiPl8zo9+/GOGX/+c1OzIEk9cFAwq4vCtdzl6+02qi8fcffUL+nLP/L4Hq3FpDkXMgMN1DWXXMTiB0SnRZPbavB7TC09QCpHO4PhtivwElU1Q3jKJcra2p92uSBEjadD0FFnKJJ/SbGuafU2z22GdoxS39Epj8oLlG2+jPZj9Br+q6U2NylJi4ciLDG8Mbd3QmUASPEdRxP0s4Ww2Y7dvcCoZNSTxhKbc8uKLTygvf8BkkSGyCB0UwgsIAjs4tIhQMtCHATF0mGpPd3mOvb3Arl6RHmRM9ZQ0T6lWDa9e3VCXW9q2ZjABowNDABFFyCiirxu8G4MF11cr9tueRE/xxlJuVvihp3UtHQ7rBL2XBDwyCHpvkTrBWwfeYYJF+EAsBCrNkFLQ9g4Z/m/W3qPHtiw903uW2+7s4+KEu97krazMLMMq0KENiEZDEBvogQaa6C/ob2mggQRNJAiQKEgkWt3NJqkqVrEysyr99Tfssdsvp8G+pDRTCchpDMIAsc5e+/ve93kiMgakHIVTUQq6flSQOCQuQpAJLlqctfR2HFbt2sDtZk8qI6VMmBQT0iLhwf1jdJrw6nbL6cO7hDxg7C39i1/jEoh5hjl6RHb2gO4w5+3lK9qm47Bb47oD+AQlwnjLNCkxDBidE0ZPB8Tfc6fz+x7YD376CZ/98te8/N3vuP/RM9SdY4LUSKDabJlkOdPZHG0SZIijuEOA92NSaTadMrQdQgpMkpDkCYNvaasepKKqO5RMCUGAUEQxGsq01kjrR908YL1FIUiTgkdPP+HNvufq5hW/+t1nBNsQA5yfP0DrhKbeYcy4r6vbGucdRkCpNGfllD/85GM+KFLeRIsUfmwJpQqdGlYnp4Qk4+JmQ181zI1ipjx9c8WwBu9qUrvCCUXwitA5zKSkOBllxkNbM+4scoI0hOIIaeZYlWJtQyimyNmUYj6nu75l2Ky5f+cMHT0xwG5b0bU90XnSRCOk4+b6NW/qij89PiOEQDNU5EWJipGySBCxh74ldC1pltFFCa3FmJysb3j7m19y73jFr1SGcz3LoxWpsFS7d2zevGF5fodMTFCJxFpLtOOwUcVAdA6aClFVuNs1pqrJo6Q8OqFMHDmal9e33Lx6y+3lLW1X0w6WQWhClAQUvQ20rSNNpkxnZ9xuPV9+9g1GpGP+2lua/oALPZ2P1EAMgkQkpFERiWAkgUjwdowTRo+zkClNogISQew9KkaMlEgiidEYo+mdpe5GzvNgHcE6ogsoFElSMPSBpvVEESkThckM54tjJhPJ8vwEmyiU1CwfPuL6+gXPP/8dMdFkJ3e4ZcLsyQNOgqD3njTNQYC1A64fXwGIDqUiUUiSmIz5gBiI2o82je/zwB4/fYT89HNc27K7uuT4fIUXASJoMZaSN7e3HJ+ckSQJvXPUhwpiZDad4QdL3/cQRyar1Iqmb7HBo5Vm6APHx6dcXbwc3aBCjUZxpYHu/VM2olJNIg2JztntG5I846uv/i+a6gKJIytmPH36mO3+gFQDSg20TYPvI9LDabng6XLFk1nJT2cTvv6L/4m02WD6LWoyI80UmRE0b1+R1gNLkdPOFhyvctDg6mvkbYUQAVUY+t7TVR5TzJku7yGnE+ra0jcHzs6WRCEYYkBkBi8NziucD4gY8MGxWky5ubpkGBryZHTq7NYVMQqyLEcbGLRHLwseLOdsB8323QWr+YxVmSPIycoFWQpdvSZKMHoc+GXFAuUTDpsrRL3n8N2n/OwP/4y/+E8aLxwPn37Iq69+yfX1G67evOHxD3+Kmhbj+78ViCDRMaII2L6j29wQ9wdyF8iSFJ1O8NWBuqoRRnL15hrbWJrG0gyeFoFLMpT0/zSxHXRksTiibjW313uCF2QmI0kEm/2WIdZEKSEo0qgQ70MZhRpph4PwrA8VvR2IYbTRJDri8QQinfW4GNEj1JpEj3vxMbgTaSuLw+IjEDwTo0mMZnCOwXo6O+5znYtkiUbnc9J8bB75IsU1ksnZE64vL9mtN9y0Pc3bHW99hO9e4HjNH//8x3zw+CH90FDVFYMdQGcjOcWMq0ptDIQUHwMxemIII0z8+zqwg4okIRKcpw8WhxtVAxG6uqXOKgbvOT45JfpAV9V0dYOWinqwGCHxbgzEl5MJXbsnzzL0e4Cy6xVSRXx0SCFACkyiMcO4oEeCiyC8IwhDiHBz9ZaQG9rqBhnH6e7Z6Ql1vef25g1pImjqjmk+R4We00nKnzz7kCMBU9/g3/wW1deU0znq6AwzLTAiot2Ww8W3uG1FYSSNdSglaLsK3/UMXoyB/80NTRvoY0a6PCNNMobeIoUiLRYMToN3uODxURCCJLiRQZuYhEPXkCiQriMVo2Kyt57eDeiJgqiwPmEyL1jdO2V+doouF3RdZJLnuL7GhxyVTXG+w9c1MmwRSmCVoasGXNdRrw9I60j7Dbrd8IP7D/nu9WuyVHL3zjnNfiBUHfbmmqZdk2cKlc0JMUGhiDZQ3dziq5ajNCUOO+gPqK7mcPmO4XDBzgaq3ZrDzZZ+sHRIrMwwSmNUwMiIDBGc4urtlrpvUMqQK2jbLd73SNlhEsFozwHjBFJJMiNYzUru3LnLpq3pvcNWPV5GvB1QQqOTHExCkmaY6BnqAyGOoZ3EGIR0xBAY+kAXAsIotCzQeYnzFd4pnPd4BD562j7SeY3VC6IxrDc1Rblg8A1dY8mnUy5v3tB0A6/XG9r5EaKN/If/+L/x7vmv+fN//a/YvH1N12yRWUHfjMZ3k8n3IR4zqmhCwOAZu0/++zuwu8sLYt+hUkN+NGPwHqU0Uil6N1DVDUU5wTtL8JHrqyuyLOVQ1dyub5kWE5CCvJhQ1RXOebSQzJZTXr54MV5Jo0cbRRgcQgqEjEgC6h/ds4ARhhgVSgvU0KAGSeoDXhTMZ8cwJPSbiikB0Q8sswU/ePQB7evnPClzniQRv71F+xajHPP5jGx5B5anHK2mZKLG9RVt32PbjrwosLbjsAkkGnxv6b1DNAe27UBx/pSYLjCLBS442vUV+WSKmkzp3r8aRBRRaCwRpQRDmnE7TAAAIABJREFU0ASfoIs59e2Wrm3w1tL1PbfrLVJG8mlOPl1SFEsmixnFNCeZTSlXxyxUStf0qGFFiClWGGyzx0ZFAgxS48spu4uKen8AF0nSEpMZPv/0F3zy8D7Xmw1X168oCSgvWL/+lu71MeVqghfQxoRoCpRICBbs9Z7YDchpSr+/wt1eErsau7um3bzlcLum32+x71ta0ihyIygLgxWBMFRYqWiDBXLSZMJkNuH29g1GN0TRI8N7PKgUyH/UTQqPj5YklZyeLVmZEw59Qx96VJFSVR1+8OPTKUJZTlkWGbubSOh6tNYURU6SjwaoXVvROodQipOjeyxO7rC++op6fUVvA06Ma0uiB5Xy6NmPsYcNL1/+kh9/9DPm85T1xRVHyyl5aVgSqbTm6vYVQ7XH97d89vlL7i9zEp0i6WnswGZXM/M9SsTxIRUCQiqUSRDCjzDx+D0e2It/+ByLY3HvHtPVET5KhND0MXAYGlaTY/IsQ0RwwYGWuBjpreXoeIWRir7vaYcOlRiU1GOaxnZcvnvOarlEJxrhIiKKf3oHV0phlEK68P7rGoRE4EhUIAbBIlkwn9zhhz//M44mCcPtd7j9S7pqjVYpT5UhLGbMhUO1axIxYNKENJtz9PhDktV9lg8fY4cd9dW3+MEjlMSLni5Ikkk5/s46MF1ktEHQR0dIS1YPHsHsFCc0Vbvj+uI1q1nJ/Pwh0UwISUGQiuAC0XbjO70AlU3J5+eE9TucdfgY2bcNXd+RpYbZ0THTJx9il3chEehEEJICVndI0pIsKlzTs9kfsH3P7vYNg+vGfqrJmCwfIiaebLPm9tW3tLdX9JtbdD7j/lHJdFZwdXvDoCUnWcabL3/B5bxn8eETtElQYQwS2C4iQsLUCvbbDQftEX2NO+xxdcNufUW739Jv90TrUGlCmU2YTxXOVqRyYNe5f5I0Z/kE6xKi0QyuJcQt+STQW0/0AevBo/F+jHkOrUMbjRaRur5lcfeMxx88ROYJukypWsvV2zU04/oQ22E7j1ESrzXORayD2DvqocXJQOMcqIyFLJmsnvLu+prGXdA7j1WjGmaSZ2SJZn11wXE5Y7fpaCs4OnnAzctPOZ5qTlZHZFNLKY4o94q//+oVhRh3+fvNFcvFCZM8oRkGjNF0bU1edqCy8WNcihGgz2jrI/3/xsP83ge2vbxFznLOf/QDrJTgI1F5goDdboN5+pQ8T1FynM0uj1Z0Q89pluH6gRgCKjGEGJmUE/LJBFzJm7dfkhqJlow2PB/HP8LGsZicJCRKo8Uwvv/6sTrl/ECMoNM5d48/Rs6f8qd/9G9ZxR2f/+9fI4bRFRNcz2R9w6Kc4totqQSpImlaUK4eMbv3MUePP8AZTbW2MFlSpAYR3OjtUaPSUAwaPTh0Nn5IRZGwPH+I0xPyyTHDMNANO/K8IAiomgNqUYxOHh8RtkbXl1Rvv2F2fIfczBkiVO0W7y1RKrJZgdIwLwqSIsEsl+iHTyDL0FphpkcgU7xO0VISdluctQQ/ajJCtNgIUufkixXz8xXT7RYfAkRHv10zN4H9+h3/5s//nP/mv//vuN6sebCYsGtvuP4CyuaGxXTK+XJOU3XUB0vvDEKmhLriMBzQwpOphO7QMHQ1bdcRvUUVIxi9OJ6xOC7YXnxLs70h8QKpI5N5xvHZkn0jOLSOtj2QTTxSWwQB30WcH+HxzouRlmEVMuiRNNgeOM4ecP/DD6mzAl1IplGRnva8+fol1eaW1A4QxmES0WD7yNt3t2jtOERLE0arnfWRbecgm7BuOgagfe+5yZKERClc1/Db3/yCeZpRNQc26z3zR8eE0FLtO5Tw9H3L6f0p83srdm2NDzWBwGJW4n1PXuT8/IOPOLne89sXW7LQAfp9iWbM+imlMTH5fts6Ik25++OPyc9Ox38KQDqPcI43L5/z7Pwuq9l8HFNLhUnzMTTQtYgQ6doWbQxCStquQ2pF7xxSGeaL49EzgkBpxf/jmBzbF6nRmG68JisCWgTcYFEqRaVHPHr2Jzz44T9nqhM2X3xJur9BtVtE7PAukKQpu96yOlqgvCbTCWV5RDo9BpVRHyqy5Zyzu/eQJzOam9e8+uZ3RDWhOJpjHVR1zSTP0N6gignLk1Oms3OkmeK9ZBignB6Tn5zSOYtQEp2k4zrDOmR3wL77iurzv0Lfe8Di7s8Yqhua/QV5mbA6P+V2c0GFRScOnUO2KGA1R0yO0UmJLOYcuoHeW/rQYZUn6AB0ZGkkmRZ0B89gA9v1hnJRMsRx3RGVwrmeiQ5c3F7w9OSMR/ef8c2v/o7Dds9eWdbXNSUbOnHB9HRGVx2wIaEjo7UerMV1FVpDzCZIkY5hixDQU0OxnHDy4SNOH56iheMf/vo1uljCweJ9x+mjE7JJxoGGvqvxqiEvEkIU+N4TUChlsFZClDgbyGSOFhqEo5hPIC249ppdOuFollFMlpj7c7Zqzpe//GsOdUU+BFJpyEVCkSb4do8YBqqoaLyhDwErAtVQsWvWWDHQBE//j+sVIVBS4PqGJnjadY80gfXFC5b3Voi4Z7u5ZbqaEUVAZSM19Ec/+wPOn/yA/X5PdJbb3YE8m/KzP/pT7m9bvnj+PxKGFpIMIcz7UBBEoZDSkCTfI3Hi4Z/8nMXHT/FZjlQGLyIyWIZ3V3z3N7/kyfE5P/zkEywekxQYP/YfoxiwMbJZb+jbFpMmYxJHRNJyQuFO8CFhaDui6FBGY71jNFND9GM/NjUG4cadrFJy1F94kDZQJgmLVHP77Wfcfvq3mM0FwR2wWAiBkxPFprLcm53i9gI5OIbDAZUf2F+9Jq1vyPRDTH5CEyRNTDHliqAmhGQ6LqGlgEnO7PQO6fSIVAu6boDthtAHnDIk0xKRFqgUdOwJwziNtIMjHlp83VIkglS0xG7D7uo1m/VrVrpAZ9lY+zMB1EA+CWSZhTTg9Dgdd0pihSZKsENLCHFsrYiA1ho1PabrJX0z0F5c0VRg0gStx/VYYhT1bg3JlG++/pI/+vnPePnrv8O6gUFpti7jhyc/JGyes7nZYPe3HJyhlgV125Eqg3c9JhF07UBRLPAIZkfHFFOPPpLc/8kZ09WU57/5nKv9lmrfoFRKWaa00rPbXtJZwba9ZRh6hE6JMWKDJkQNMcEgRyeNshRpwnyRkJUWM5XsnePrXc3XVzU/KqfM9Zx09ZT7f3hKlydcv/yaq9tbJjJhKUtC67HWoQn01jFEgSPg8Wz2V/zDb/6OYdjTec8QIdUJUmm0kmAtne0RoWNmEnbvnvPuG0Mqepq6IpuXHJ2cYVVCMjvm4enHzLc1L7/+msPuljQYZL7g0dOPaL/4doxI1ge0KFCJRsT4Xj0pkUIRvk8I2+lPPqLLNLb3o3fWgN3XfPerX+Mub7n49jl929FYx+nsCINhaGqUFFy+e8fvPvtsZBTfucOkLN8T8RuyyZK+k8TYjGziLCMMLRKDFuCHASUEiR6neOhx1E83kBLIbMPm238g7CvEsGfYXCLaGqkEVqYYI7i4ueHZH/wzqrbH7ju0b7G+xeRTbLenMbC5fsXR0w9Jj46JMqFYnFC1gcoOYASD9tx/cMb85D69T9lv3tG1LW694/jhB+hiRjd0hHQMJfi+QeKQyWzEg+qS6dkH9GIPxuHQ3KzXBBkollOub27RerwWm1ShzEDf3pIPe6KSNLFHSUmSTokhJfhAMB6R1DQuEGSCTA2kIGwNXY9vGnAWxViXc85RtS1dIbhzVNJZkHFAYPE6Qy/v8uN/81/y2f/63/LqixdM3UDVOXZ2oKlrTJKhs4RMSIa6wnrD0ck5SabRxYG7H6/Ydxfk3tO2o/922zqkFPTC4W7HoZSzgsaOGfOmHbO5yIIkyRj5dRahAkmqSDNIcstkKRhUy+1+w6Y/xZQn+JAjmJBkK45md7mDpV/NkPWB9nrDu8sK3VRMyxmqtTjX4oQnREvwjq6ruOhfk+p+lJtphUlT0iyFMELzpJJjrrrroGu4fvUtRd5jo2UaJGleYIslq0cfoab32H/2BY3V6HyBchpdLMjyBV1nMUYjCdhhGOOSKCIjj1gI9f6W+T0d2O1mR35yhBeegR7TRt59/gXrl69JtSLNU4IAaTRKK5y1WD/QdjVVteOw3yIRuOEIJaZ4H98naDwmGWODTdUzXz7A23ZMJckKNXTI0KNswDhwIRLsMEIAEwOh5er5LzF2y7SYobME5xb0zZYsN+RFik4EfX1L7qbY2tMkBiUG9Pp6NA2oyKCuqHZbnnzyBwwiUDVbbF1TC0Vy7zGLu4/Jzp5h0xm7qiMAdogIoSnMhIOzCKORtiMmoOYZSI1wmiR6fDaB5IT2tqS6veTkg5Tl3fuYk5JSC1y4IdYJWmZkSYVKQLCna55T9zm9WLDKjzEmwQoFacR6R2ynYOZ4tyZ0A56CUJScPL6DxPD8y18h2zV9U9M2lh6JR3JydsR/+ve/IIsC6ca9Z9v1XN7sYHLKzdsDVil6rdkfNhwODSHpOF6sKIsS63ak2YIH//I/J2pPpl6RTK6Z2QwsCAkeC8LQOUF38By6ZiQ4ukh0gUmW4AaBNTPy8oRceLLQsnaWznlSIcjLQLLIYLagNisua/CJoUzmxNwwxJ6kuSRPzrl7/Jiq84h4Q6UCX27eYPc7FtFxlhakQw9YIinKa2IMDK5DKIXUKaVW5Iy+nT5GBiAVo/KycpaiqYhXFc0E0vmEYDKYLCju3Geyegi6RBqFma0IPpDpjuM7j9Amxx0OKN/iyABLcD1CaqR6T275/5F2+r0O7Fd/+dc8+unHFPdPUVlk//aK17/5HX4YOHr2hPn9e3ijKCYlSkpsGBicZXCB2WLJdD5HIsjyfDR4KUP0ka6zo+DIBrLJjOlwhrcDQkyQjLYzHwK6cRgiLgZCAK1zkDkEAaGn2V3guo4nzz5kuz1DDw13Fhml7DncvoauwUXN2aMHFFPYvvua3bs3ZFlKTBXbw46iqXjtIl2INLaG2JPfecCDB08o732IE1O0KjFGcxAz0rJkqhP6yzfU3YHlw8ekeQpJQjKf0AyRoemQUSK0RsSEcnZEUx0YtGZy7xGyv4u0HRNX0t5cYCuLch2pSEmKY2y6RMgC/ISAYfCW8P7yJIMGMyEvlzTiLdc3N+TlkrO7d3jywQ/xTrG5ekXfXZMpQ24Krnc7ROa4+u1niM0tZQyY6HFdS7W94btvvyZF40kQJqcZejaHA13nKPNidNhoTRcsje1JHj2hWE1xlw394RXRdlxdb1lvrtEpY8PLjlfoJo5RURnBMAZK8I4sm1CmSw7rC2Lf4/B0KmKmKdOHZ0zvHxPSki5Z0VqBRTPLNTLVJBNDkjhSHUiLFT9MU169fUN3gPOHgRf+S3b1ltB1LIInU2CEQkk5MrmiQKYpqYKpMkjrcMOAI6CEJvqIj+BQbOsaMUTwirPVESZfsDp7hJguiV3HodrSbC/JUkOaLUlc4O69h/hhwPYV0XW0zQEjl8Q4gPLI4FAqAeT3LMO62vDlv/9bZg/OefjBE159/lvsdkcxnXHvZz+hSw1OKE6m8zHyFSNSaYRMSIsZTz/8hLapWSznGKPfhyg0SZaT9JYkzdnvNkSRMASByY/B9aTZFhECw74jCksvBVKlTCenpDInwdNXa2xXU05OkOUR//xf/xcMfcsi7Hn7i78kvPoaGxzyzimLjz+guXlHMzic8Igk4OMAvkXblv3rl/QuEKRDFYrlJCUNjth2DG1E1h3a9yROjIe9P1BdvEZ2LaQKMyvpu4jVBhkl/X5HolJUmrI/NCymZ0zOBJdWML/3FNUO9G/f0MuGmE4YNg4lPEaUyMkjzPwTTLEicRqfzOldgGCRbY/fVxgV0ZMpsphRhXecnZwyKwuu371gPj9nc3PJ4c07dO/oGjs6cg4dL//P/8Dh0LMUngKP8D22a7m9vuHO0RSXThhEZL3f0btR1TEt5xydnWPSSHu5p+tvqN2O5fkT6tcDm+s1uO0o8O4bsnxClr+H0gWJc2OARAiBCzAgEUGwMhlhX9Os9/SuZy884ahk9vFTFs8e4tIEGzMOfkolAvlsSlkq8sKgs4xsOiMpJwSdc7pYUCxOcaGkjyWBlO3bbzi8+5bQN8yMpFRjtzcGPxYdcCRSkZtxP1o1NVLrcTthRqeTEIHGRRAR3wXOszlpeU7XapK6o758y28+/Ry042x1h6y8w82+w0jJxcVL1tsLetugkinE92scF7HBEhOB1sn3i4g5+dEz3r58we03z2lfXdDVFVorPvjRR6SrI5oYqJqO6CJSvKfpeQ/CkJcLkqykrSuyVAGey3cXpGnOTCUgx0GUCxKpMmZC4V1gv76mffsdWiXkeUoYLI0d38VMknO8vEOzucYCmREwHNjvN8xOTzk5PeGLv/qfuXz9glhXZMt7ZOdHnH7yjJe/6SlP7mLNaMiTfcdyLpEehr5BAxFH6Ae6m285vFihqwofM9roSbFIF3HzOaosMFph64bu4hXZcsqhWnCcpIggiHWDmmiMlAxBwfIBZXmMw5KUJc3bd3QORJIyMDAMW/KkRyYGLwpQU0QyRycZVkwQYcD3e2J7IPRbvBEoISjmS04fPGJ2fAq+5+byDW8vLkfN53rDUTnB6YQoDbEeCM01y3RCpg0qOmSIbPd7pFBYK0kXp+zffEPoLURNkaegEtxkxnV1wex4wv0fnWNvf4ffzcgKTZrMWK8vGKodBkOZlXSFxx8qBtcRvBwlah5CENhBk5mE6naHa9b03UBFpCszitUZZx/9Mb7MGZC4kNC2kvJkwt27ZySxocgT0ixDF8eQzFCmRBU500Tw+FmK0wvS6YLd8ojftS11vUF7T6EVSkVSIYg+kopIJgUiOIIbGzPWOZzzDMNAiCM0MDhPZy1CJHiVY2XJb3/9LSH9jn/5n53x6PEDLAOBCUOAIjXcvn1NV7/hm+dfcKj3FNnJCHUXYST9x4B8b2r/Xsn/p//iD5g8Puf60684vLpAIAhKMgRP3nZoqene91yN0kQ30iJ89CyPjthstkwXS2xfg/ckSYpJMoIMJDk4eiZTzfHpXZq+Z78/4GJgenzK7nILWlBOM2zt2NcDh/01ZZoz9A3TacksEejYIfs1ur6kfbfj7e9+id1dolxHN/TMU5jPE0QqOXr0EL9MsPtrimEYM9LrCtKEKCXbdsPRvEC4nttvP2XWDMxWD6h2G6CFoYfwkN48IikXFCoF4bh6/QK38BwtVxAF2lpsVdF5j8kmuGRKmpQoP4yM5M4jdUo0hsZ1DLYmU5ZpolFmdNkMrsUrSbQaNTjoe7xrCfT4QaK0ZJJnnJyeYENgtTwlSXPW6yuuVMQkCdf7A9akqGxCf9gzSVLmxZQqjOXXzlqyNB0LB+WKkEzprcX1PZ4RgLer1hxNEs4fPGPSRvK8Ilx/yvrzlhA9aX7KzdXn0Fo0OYv0hE5v2PUbGMIIi1ICIQzWBfK0JE0SgvNY29MLAbMlvQmYdArJKTKfj7RDL1jMUo7nc46OFmRy3GMmWQYqJYgUlU5RaUqUcHI+rsFO7t9le/WEYD3vhKCwFVnomcSe1PVg3QgVfA9IIIZxPyoF3nqGEFFaYIOjbQd6HNkkYYiR2/2BXXXgm99+xUd/+C949KOfMYSety+v8ENFYQyvr16z3b7i3dU7ds0BsxiQwgEaERmf4up9seH7vBKHRDN/eI/V8QmXXz/n5Zdfc1hv+O0//IbT7Z47P/oEe9gz9C0qnRC8J3pHYgRt12Kd4+RoxX7rGJwlzyc4LyhnM2QyQSXdCPcSUNkdQTpkOme2ukdf3+DjQKgrZqEjuoamveHdu5ZCpcyXCwC8a0j7Lb/5X/4HhPP421cIW5FPU9IkkNbXfPUf/wI/wPn5XQ6yxtbXpNlIPsyPjunihG1vefjTP6LMDNo3BNcSe0+1a/HeIAtDfpQh56ck82NCkqHUyKDynUVJze7yCmMS5DDgbCCdTaEY3w5DO6CVGEVY5Qo/eFSa8SiHV4eX9P0NsjxCJBlhqMGkaGmQ9j1Ht2/RJiNkS6gPCGfJZSCminJxyvmzj2m3W6rtFfawJ7QDVd1h5gtC1aClpkgNT87PqNcC3wl64CA8ZZFTD5Cf3eHq854h9jidkaaRNGu5/4MVeSbJtwVN94b0APat5+hHf8SLLyxNM6Pwgm7vqPo99X5N7AdSIZFKYaNCCM3gHd4rrBW4tqWzA75Ykpydsb5+jRaC1oHRBTqfoWVCVpYk85IkS1hM5//E+rI+EtDoNEUojSQySTNEljJZzpjN5oRBcrY8ZeIq9Po1zYvP8et3aMANPUEInAtjbS9GBKCUAAFFUSDw+G4Y100y0NuG/fYdod+QmA4vevSsQAbNtEzY3L6m7xzd/pquqbm4vmF92NNdvOFefkw5TREuICUIIjG8Dzd8Xwc26SJeC+w0Y/7TH/DR3VMuPvuK229fcvPVt1ytN9x58oTHz35ILwYIkfiP2dDoyLOUNE3I85y22pNmGZlMiEKjvSBJGStP3jOZLomqICsWlGXOYppw/fw3XHzzW3ADqYbBDnjvaa3m+rLlaDol0xG6A9df/IqMiKYnzwwqEYjYEK6e49obVg8eI2ONsy1KOfbVmn3jODr/hChPeHb3A57+7A8Yektz9RK3v0TpDGdmTGYLpsscdXREXpR4b6ljh8sTtC7Jy4R6fUu1Xo8+0GLK9OgEk2bcbNcUhRkpi0lB5SRDLyBdMMsXRDzerEjSBJEd0dmAPeyQTJDDnpQ9z5//Lbt64PEP/wyT3cE1A329Jdb79w2flPXlNa9fvuLLX/+a9Zs3HNYbnFCspjOkj1TBUWSa4zJl1qVEmSLLgi9ual589xX/9r/6r9k/V/zu30W8iczPFty/O4XmLWZ4i8mmeFrabg9DIDMptunwcsr9Bz9n/eWvWL99Q111CNUwLyY00jFEya7pcdahdUKRT5iYlMr1hBigLOiNZhCCfJLT2ZqJDCR5htYTJosVepIhjCQpp8TISIrQkVSbkfYoJZkxBASpGqVqUpxw/7HAmIxi2CFujrnsD9xsr/GuIgSHRGLiGNlRcjyoxmgEAsUInsuTBCEiUoyWRhEqhLvl5z95yt0Hx0TfUm2uUfYA/TXbqzWby3fcHPZUTUfnHPXtNcVyTVkukGqsL4r/18/83g5sUBCExEeNMhnZecnj+Qnz+4949elndFJjO4dwEZUJOmfx1qKUQEuPswNtPdoCsmKCiBFrHXVTU7eWgESpcco8kQky7/BCk5qHPHn2jO3dc/7eNbz56kDdDXg/pkS0sCN13yoiKfvdGjl06ESiVKSYpJhUM8kNiTKkQkK149A1yMGSl0e83fTY5Sn3fvRnPH32hyzu/wBfTkj7GnPvMcNhQ/QeHyWzoxU6zxGTBUI7fPWW0PSoqPC9w3UNtrpEC4mvO4QGHac0t1dsL67Ij0r2hz2HxqLTJfOjE4RO6UMg03OWRw9I7VuMbYjDloEaKc1oIve3HN58RcjOEFHTD54oSwQHvOswUrH/9mteffM5t/ua668+57C9QWQGo1PyLGF5Z0WbRmzVItoDhR4QesTIZgy01S227dhuNoSsINcNq7klTXtMkiLX32JrhVae2I2RQ3+74+oXv6R8+q8wTx7z+t/9HcO+oRo6FplBKo0xkr77R/iAJ80U0Q9AQIgckpLZnUd8u7tmWmgWiSFFkU1S0B0KRxoTEm3IpnOMyRmiQ6kAw8i6FqogREUUiognRI9RgqAlk8WUE3sKm0BTZxRnK8qXE9r6QG8ggfeT9/fwdO8xSIxUoxFCwYDBx5HLXO8burZlPl9w9+w+matpv/obuu2G+vYWsVkjN3v6zSuurnd0Q4sXERt6+qFhxHgIhAyIaFFRYn7PRuzviTkdRUpCqFFBGEFkmpMnjzF5SusCvYB92yDylO1+Q54kFHmOc4Gh75BKkucTQvBU+wNKjtgMKeJ7sW2GTgxdZ9EEijIjzzMyJ+jzhH/2L/6Yq3sTvvvuNf/w6Zc0dct0tkTHFCdz7DCQaMUky0GMBL3VyV2yaYqZJCRKkiSGzlma2pOmc07ufEBcSaZPP2Tx9GPy1V2cyeglBF2gkrtk8xXBvd/9liUySyET+Kgw5h5ZuqLa3+K7azavfofeXzMr7zJJ57Tbd0wm0NuE/nbP3nfcbm7ZHjpmC49EsjpZkhjobUuPRMp0nJTHgAg9DG/oqjX7uub0/DHl3Z+hi1OCKxgGj9AlQfZ0bcd3n33K+vUXyKzEDoKoSyazCUElBKcIOBazGWI+BxVIZIbte5qqIbQ91e1bPv/lX+LWL1DCk+ea46OcYqbRUWGbW+wBsmTKhGNSl3H7ZgPFBceLHRdv3+F2FdJ6lAffRAbbodIUOwyIONYL7dBzcB6nJEFPEFnO4uSU/ZuvmcwNaSJJ84Q8HVteZliT9jWTYU8SAWGQaKQpEEiccyhjCC7iCIQYcGEgxnEbkWUBbzzW3qD6dyhqJtOcpMnJQoNyYuz+JgYbI1prUpUgfUBJkEKgpUR7QdTjh9DgPc+efYCWgqtvPicxCaG3XL56ztXtmqrtOWwvqXbV2DV7/33ns/m4cpUCGKfVgQEpzfd3YMfN2UjXczYghECESJCS5GSFEpIqOqquQR4EzX7D7PycGAJ1XVFVB/KiIE0T+r7n+uqS2XSKNCmz2YyoNOI9AR1vSWVkYiKu3fL27bfs1+/Iwp6iNPzgg7vI2PPN1y/IJ1OEOkHEAjNsybOUxaQgjRFcD6Yk6pRktqCuKqSZ4UJEZYZscUbNMWZ1wvzpT0aKRpljfSASIKYElyKzFBXG6pNPDSQKkXVIldKFjO1WUjc3nJaaPbfUm69QTnF0OqM73HD1/Ibp0VOmMqGvKtaXF+TlEt/VDNUOFhlSOELYMzk+ohA5Ng7QW/JU49oLhsNbhC65c/9DmJ5Qe43RCXlZUK1bmkPUUGBLAAAgAElEQVTF5vKW7fpAdIrETDl98Am6vCWflExmc/AD7e1risQzXcwY6h2xPRBdxIUaRwfDge7mtzxYlMjjBUmQ5CZhMc3xfcPQttjWkOUF0+KU3eWG7hZM2vH2b/6WehAkMpCaFNH78WlnIiEGjBRji8uNa40QoPWBEBTF6pTNbo0bekxU5DoyST2JcyRaM7TvkLJFhgnIHmESpDlhiONrFaJDSgF4vIvY4HHWo7VASUeRRfQ85+bllqsXv0Z4R3Z2Th4jYn8Jw/h0ddbSeY8LgeAHZJTIIJAxjq4eAvPjI378s59w96MPuf/hD6h3O1599x2PHj5BGsn8LPLicsv1zZr6cMDbHh0jRijO7j5gPlsSQxxlcu+HZzFGYnTf34GV0hCjJHo5tuMBItgQCFISEIgQqA5bCi1wTY16DwLP0uT9NNBBCLRNw+Gwo5wUzIoczyhWrtqe4DwyOg7bLV2z4bDb4OpbwtBxtb5E+4a+qim04oNH93nxrmIynfPxR3/MN3//V3ghmR7dIfY97WFHTGfYIJBMiVKxayR5dsRkfkoo5lReoScTirvHxNWEIEH0AmFHYgEKJCNBPsRIUGOKZ2gjJLDeV7y9fAfNgSMNoVdYFORTnEqAwObqHUVxTmZKdu2etmlZrk6ZlCUmUbi+oe22KNGSzudkFHSHW4aqwsQMYT2i9ZhpT9O8QWdHyJiCDXSbF1w9/zX1uqLvBMIYSAqcTLFKMbv7iJOzO5ye3aHe33KtI7FZY70iypyYCMzpjGzeo1EsRCQdtvTbhlRIEpmRyhwTEoxc4uV83ABUOX0X6XYO2wSa/Y6mqkmXR2TLGbWQhM7R+4AUEW87EiPIpKbrezxq7EcnKSItmEwnfPP6FdpayiAw9Ya0eUNeHzNLj2BqMHENTU13nZGkJ/hygtPZeA0OEjEMCGtJZAJREoRBS4MiEnUkzubM7j0gf3EPgeF48QD59jXXf/N/YPyeIk/ZHQ5E2xN5PwOKI0JGBDcaKlLDk4cP+OQnP6Z4+gNY3iEvLbO4wJzcoW8saTxherHh3eUNPgSGtkYTKLOSk+UpSmri+wppiJEoPEJIQvg+2zpCjaucGBEIfHD44OF9RVtKgRCSm6trlllGqjRGSKIUpElCkWdjH7Zt0Ery8MFDjDHE4BmGFiWh2l5zfXVNqnMOhz0uWmblhEEK9r3l4nLN8XzCdLqi3h0Az53TJSSaplrTdB0yyal7jyaBfM7dZ5/w3TdfEXYdTmlWJ+fkeoqZHOHmSxbzCfO7K2Z3cioVGFo/ThqDJkqHUiBReDs2h2KI2GGg7RS2cnR1hbMVAqj7nMnxTwjpnGT5BB81YqOxtcX1Fj035GrO6uQOy9UJRXlEGItlJEaT/N+svcePZll+pvccd+1nw2WkL9fVrprdTbGHTUAYDjgcIxGQoI0A6d/UYgBKGmEAgQRFqi2rulxWZqUN+/nrjtXiRo+2XNQiELsIhDn3nnN+7/s8eoIIERE9Ke0IQ0MsJJPZU4SZMKQVbbshmrdIU7C/vmLz9jOuXn4KMUOoJUIlXApAIK9KJvM589NjiqMl+6GBssb3Oxg8VVYzIKCQlIsJy9BRJzgusjHxkxIahWs8g5RM6lMylZNEy+Zize2wwrsO6zuaocf6QFUriulTBqdZ5IbQbNF5xPYHSqNw1pHrRI8HJTm9dwb5FOqCeOOYVyU1CbXf0r/5GjNbkteBYprjbY0IPcN6TapvMMUjrLwjdVpHpj1xe4EUGlMek0SFTJqYPKBImSa//z2e/tnf0B088/kp+fEbts9eIN/9YVTByBGUMDhLpTNESuRagXcIAdqM5+O8rvAyY3LyBKLm3vRD2l3Herdm1fdsQs7BS5Sp0GqPEZHaZOTK3F1jKYQQY/FejHVR+Z36Ye9e2388F8cUSWJMfiTv754YnuvbG06WS2Z5jg0eFQLeB0xmCNESvAcSZV3hBjsmPoLjxVd/4KuvvkRrzfLowfgW9wO5nOCToCgmSFXTW8mDe2dcXrxmsAegR1rN6u2B6C2z0/tEoXFIZqdLXq02bJWifHifDz56n6PZkndfvMIRycqckw8eUz2Yk3JB3xz4Y8VPqPGNajLF0Ad8AiU1gxvwLhBCRvIeKTRlOSMVgjipKOZnTIanJBUR3QYZEzM9wfcD+gSq+ogPjo7IipIkMoQUIMd4XnQT/ODxrsWnG6J0pOwIXx0xPz2j278jjx5RHNFZB6knpkA1XWBEyeEQ2W1XpHaDlKCEo/MtQ1XSZCW7/QHnx+1enkmEjKRgORw66lnOvUpSBljUJbgBOSh0ApyjWXdknBKcYmhh6Ae6w5bOdrjgGETEq4Gh2fHBh4/505884eb1p9y8+YLMJKIdM9W77YZprQhDRJSGe08fEkzFTmQMLxzeDSgMvrNsLq7YHn/N8rhEhBOkqxk2e/pDg8yuyBctUluiMMjoMSFA+45nX33O/Q9/QXn6Ed6P0DYhR4qnzefoox+g4x4nIK/mTE4f0Vx9zb450NqeZhgYnCMTmkwoZArkRqG1xFcZRZ6R7uD4ddeCXuBSwZCgd+sR3StyRHVMkGvqyYTz2hCKe5AkKYxzXpEY3+Dy7gyuvsMFOwaUx280DnlBKkmK4Q6ApYgpse9bXl9d8MMPP2TwnomUmHzMky7Kkr7refniOWVZc3p6SgiO25tLLt+9otmsuHd2j2AtKEWZ5UQ/sniUzPjgox+wXV3xzcvXHPoeVML1e/IksO0OkTLKqqDtGxaLI1pvuXy34ad/+Rf85K//W06Olvzu//gvWN8ymZbMTmqKowlqVtH48UlnMkVMdw2SJEDIsXCAwjsYnCAGjY0RESNSFZQTTRSSVGY4lRCmRsYtdvOGZn1L3nU0t1cwP0HPC/KswjuP1BKhDTLL0HWJDzOCtvhuj5qco7ISshFqPvQDyZfkeU2kHtm6sSPqgnx2TuwCTXNB9D3LOqOa5VgTmS6mTPMSFROzvCCajDSZUBfQr6/Yb94QpaWSFUsEuTJUpUFVGtvcEprD+NYXhv22QUvu4nstIURsSPQh0RPQUlDPRtj58ekxmyvJbF4DDsuAiJ4s1yyzOaG1ZNM5xXSCnJ9xdv6Q//Lbf0LpsRK4P1jmR8dsbi65vZwwc5FMFMRDoLu6pXHfsJy/j8qPEWbsTndNi92vWV29olw8pDx6CEKjjCGlhAgOgULnC8ra4PobhqFjCJ7Oezbtgd4O9MGPnDEfUHlGYTKmhUCaSF/nPP3hj8lP77NvPe3tDV5aWlfiXOL63VvksEciCSIj6YyiqCjLKbeDwsVEvAv6CynvKCpj/uA73RInMcKjkoiEO/+pDHf/1CMr4k7lELm8eMPD02O0kpiyBCVJCqIIHJoN2/UVi9lH5FnGty9fcnX1mrrMOT06Y1occbAWUxgW8yXtfs3Qb5HJkhUVuj5mlpe89/QBq3fPuXj1ksO+JxAIqef6+jV95+n6Ha2S/Pv/9X/hX/2P/4FUa7ZffsPVb3/NRAr0ScHyvQXquMSrRLAeowqklITgERJETLgh4XpB9AnnHP6OZJAE2OApsxIjLEJKdJGTosd4i+gs3WaD3V7idjdktmHQGnHWEadLbICsKohliTk+JZoFQQRCrjFlTZZn9NfPSWGLu77BDgNFWeFioLErHCWZ0IjokKYgU5Ll0YZeTTFCkFVLqntn1PUxMhgWtSYXitQXuGKJCQPrdkfyt0TXEOUcVc+Zzkd+VFnPaPc7+nY/zh1Toj+sSH6LEjktGlPmuBhH8baCJDVVYViUa3a3v0WIjqwuR1yqqZAyJ+U5Zcwxs8DJg4csj0/Z1yeErEKLSIUjOo/JatLgkI3DXn5Dbw/I4h5yMNQiZ7t6g339JZP5OW7+mKQygs7JTn/Aox/PyetjrBvZTMFGhFY4qZHeYYTDlZFoITqHDT27rqd1lhA8KkVKI5kUhirPmBQFxSzhS1i+9xHHn/yC7MnPWMoK21i67YFmt8bfuWqbPtA0Lc1+z2AdwTpse8umyyjunRAZOdtJJJIYj1nqjkDx3S3YGP6rL1RIgRQQ/Qi/EkiIcTykCxi6lm+fP2M+qUnBI4UhyzNCjORZznsffMhkMuP165e8e3uBkhl5lrNYCA67NYPtST5DTDW23ZDJiBQKk2f86Oef8MHTc65ffsZlPVIPXjx7zs36ikNIDDcB5St6p/noz3/Bn/7bvyJbzhDB8/rlW4a+5fzhPU7un1NMFzR3YwAhDAhJjAmShjQu1q7p8W7MNofokVIjEajo0BpiCtgQKZSCYJHBgu/wzRq67ViparfEKLBSMykMrtvhksRnGWqxhDzD1gucyO9GXxl9u2MYHK5toF+T/ICwPZ5A6z3l9JTYKZqb14ikEKammpZU9SOMNJyfPaauSna37xgOb7m9XdF0PUV1j3qx4N2bdwxhQMucTHqyFMm0AzXa/lReMTm5R98caPYbUCVCKZpNhx8OyLwYH9wqR2mJUgMh7NG2ob96TusEi8UZV30iryaga4yGSR1IXjBNgno+o6jgoB3fvP4aDJS5JjeOWa5QtqVMBtUpRN5g7S2+AzvYkft7uCJs3qCKKcFUBCEo6lNOHs0ZbKTpBpR0aCUQTmBUTh4SkYAPPUOz4/bNa5rtlrZrIUGhJZUx1MYwrwtyo9FzRXl/zun3P+b4T/6c+oMfwvQEFTU6WgqnCKHn0DqmiyNuLt7QNAe69kA39EQ74KMEUaBNxnDXWgrhbhabAJG+47aOt3fUltEWpoRAiDSKk0JEiIQIYYx5ecvFxVvund3j/PwxKQSitcB4eaVNztfPn/Hb3/4GjeLJg0cEF+m6lq7fQrAgDL7LyVUgCkHbtDx97wNmD5+iy5IgS7JyiVA5Tx4/pWl7mvWKQ3NAi4JsccaTn/05bzctUy05K3O6Q8/jDz5itqhQkxlXNzv8TCGrHCkTUoPSkhTA+URwclyod2/XLNcYYyAJVEhErWkGQGf4lFDWImNHdC2h25P6AzqFkak8dITNDZ1RRF1CVqEmU0yRY7wjuoAsc2T0RG/RMlCXGbYX7HdrhOugy7BhoLMD2nq6QyTsL9E6I/gGbXKquqKsZuSFxt6+YvP8V4jhJX33DkfG7MkvqYopX29eIWLDybJipktiGJCZolieYuYP6ZVBH2m6yw3bXc+95THSM9bkmpZJMUVKiSOnHQLBMepGbYfbXSN1zctXzylmx6SsQGcZQieU9hghRrufUThhKSeahZhQ1iWVgnmhmDAwzxKlkORJoD10/QHbB2KMFJnGDGvS+ltSUZGqU5LSeFkTybG+xQ49OjmMARHdSLSQhug8qh+gveJw85rV9TtCcBSZYVFVnE1LprkhkwJTZ8zeu8ejP/kR+sF7yIcfEMoFIShCuqNhRok0JUkkdvuGzXaLGzq6dj/ikGIkK2uKfEoS6i7QlCCmkZwoBDGE7/YNK9Kd80bcKRycH1Mrfgx1JwIxDMQ4XiRtDw1fPf+Gj3/wE4iBIssweUbX7Gm7gf/0t/+J3//+d9w7OmOSVyymNc4O5GWG8JLgLdvdFiTUVY00GZ99/iXdV284PZ5TMjDNa6azI8qlZDqdc7vd8sWzNzy77PjkX/2Usx/9kK9fvOTPj37EH379GULm6PkJ1fkpVtd0XoKXyLvCdSYhWvAOvB8/p6juHjSgtSTLFMFDbgr2rcfFhLsbRQkGhsNmLLH3DXa/J0VJkgXD4JG+YZ8uEPmEnQucPn6P8ugM4dP4R5CBMOwJQ0Nz8wJt1xAPhKFBDi1DB9H3qBQISMpUMteJYdigU49JOdE3yDiw275lf/EFfvuOMu2ZxkiPR9st6XCBvfoWwUC+nJMZ0KYmmz9FHX2IOf6Q3jqq44zH+RHzdy9Q/ZZ2dYHJEpnxRL+hKGpKExl6h08CrUZOUQgRVWimyxnTew+JCXRWEGJExQERB5Q0ZPWMITqm0wlHOqCERIuMUmvmGdQ6UGUZdTYdwyEmx6UOFRySCMMev3qDLCZge0w5RcaA6wNYS+oOpDQQOgtxQCiDDYLBBuzQEbevEcMNmbaownBc1rx//5gHyym23dIctpycHTO9P8fMSzbeUaGhi7TNisniGJkUIUDbWbreYYeB7rBjv70lBosPDi0lQ0gENbI/Qgxj3FFKxHjzBGIEin9nCza4AaRAKIULY+Y3xdHVnaIkJkvwAz5Yeuu4Wm94fbXm5//NL9ExkCvB08eP0Snw4vlX/OpX/0TTNdi24eb2e9T5Q7QxZPlkDE2Hhi5KfvonP+HJk8d8++0rfvWb33N1+Q4ZPU8fnJLXBlOfkKLDVJons3PuPfoI8c9f8skvP+Ho8RELW5CZBEpSHt3Dbit8dUKTFB4zgrJRd1uUMTYXfCI4CD6R0vjUU1rfAeIEzkV6f+dNdRbR7jHCYVJPbDdgPRz2DJsNqXf0FjSa6Dxhf6A2BbY50OxWVF2DbFvSfoc97KFf0zWX7C+fcVwpfLsjlwI3OJr9juRaEhG7bUBPsPsdMQ7EzOBEQZIV2mgSFqMF+eSIsFMEb0hYmvUNzdsr+t2W6fkJxdk9rN2iiylmeYZZLEllQhclXczIHn3MbHLEcPGMcNiSTUtK22J3O4LziBAwwuERGGMIETrrmCwN9XTC/GjkMyNL6qzE9htiaJjOjxD5DG0dEmivL9DOkmtNLgyVUdR5ojQG1w8EMZAtjpCZYWh2qMhYrNivmBxuSK5HthkpX6BTRgyRYAeS7eiHBpM8k2lFCpICxeH2JcPVM1T3jkUl4GTBvWnFw/v3WNaanfHM7k2pj6YII+m6A/Xy4aifcY5+31FmNUMIbG5vGYbIdrWj2axoNjcM3Z4QHFqPHdu27YlVunNEJWLwSPRdQ2c8Yqp/0XL9l55hgxtV9FHggx9nsSFAAh8iIQw4P+BTZD9Yvn71mraxfPH1Mx4eLZiXGpEs7WHNy+dfMriOZmjB9Vxfv+TB6QJjJmhdc9nt2XeKf/PLX/L0hx8wmVacJsWTZuD0oWU5XzKbTugOO07e+4Tby3e8fPcVod/z6GTGX/zkE/KhZTnNOD4/QRNBfMjbr67I9IIDiiAl1kXKu11IjJHkIcXRi2rtmOaSctQtCjFaDrwLOHe3kGPADAfE/hLlDkTfkAXL7cUatXlFe/mW1DdIFFppFJbBtrhuz9G0HKkJrsXtV6Rsgg2BPB0Ihxt0f0BIg/QBIxSHtsMeWpJtAM8Q9kSxJ4UeoyMiZKg8x2Q15eSUwfckqYjKoid72v0rhuEWf2gYnKc8f8iDn/2S4uyEeLigMglTZry5+D3LoyXl4iFq+h5icp9ieQ8znZOSY/PcUjPeuMZ+QBlFHgwSjzFjw0XnGZFA9A19t8JnFUW1JGBwSqLLEl9mTJfHqN6yub1m8+45cxNZlDlVkSGjJ08S1xzYdTeIaWBRHiNShtTV6P+JgtLkpG6H390g4oCZn2KyKVLn+N7Rti0MFkgIOaCSHqn7u0v2Lz4lbW7JhoAuC05OjijKjNXulnoxYXY2H2XTUjKpCmzswbdUuSSJCaFvWd2u6JsWoqbdrekPG3At7W5NCBYhRtl02znKqSYmwR/hTYnRGSXlSMDQ3+VYxwc7wkeFGN9GcUS3hDAGJ2IYgxSD87y9uOZme0CrnF9/+s98+N/9e1Kw9F1Ls98yrSuqasLt/oDFs9quxm2zyfARdFnxZz/9Ex4+fZ+oMoIymOmM8yfvUeYTjDbstlt0kuSTBbf7geuDZ3d5w+H6gp/99EdUdsvtN58yW3yCKgusjcyW99itLbv2QHVUovMK6wTgKCuNkuPP1B4aRMrQeYE0CsQoMk5h3CoHJxApUcSOw8Uzdt98ymZ7jXAtSgq211vS9h3D+jWayHJxTOg9znb03Q4ZPfPTY/LYodwe366hmKJFhogtqe2I7YD1A5mU2L7HDz3tfocRiSzTyBggOTLJyIKWgrww1PMpLkTaLpLkKWQCy4rJcSLe7tEaipP7zB/+kHs/+teY6Rlxd4HpXtFs3+A5EIXBa0d1b0manRN9hshqJralb3YEKciTo9vsGHqPjoJMaSItITiETEBAaei6lryaY/IJg9ccPZjS+9V47ismKJnQ+x2VhsfHE85nUyohiPvdGJnsD4SuR5ie5EHnNagMoQKSQJ4XIAWx3yHsiiQtFHOGOGa9hQtE57HB00WJyaYYlXMkAhvbM9iByWzJvfc+4tH9c+zmmm5/TSEiQQui0AQB1gcu3r5hoY+Q+TE3a4+pjvAuEIMghkiz37BdXXDYrxn6FjEGXOl9wKGZZiUxRqK8a+ekcbIipBylY99lgV1IMcqZGVsykURIAZ9GYnsInoRkdxh4/faGREYUms++/IrwN/+ByWTK/tBAhPPTcz58/3tc7w/YbjvKlHygzDRyWvLJL37A+cMH3NxeMZlnICTKFDx48h4pKg77HUlCXuX0TYdQhuXiDNN7pkUkaUm/esvv/vZL7Ood508/pnc1+NmoY8gN/R28OXmNkIFKjoY47zr6pmE2GW9sERFtRoSHjBLvEv2+wfRbVhdf8u4f/092X31KGT2JRFZm+KZjaHf4bk9hBIPSFKZCK0OVGaZ41PaaTjiCs/SrLWazZ3F6H6kD/XZNs9mgCkXSina3ZegPbHdbtC7IY4FShkwFXAxIVZCEoO92ZPkN++2atgcn58yXD8mrE4rYMtiCcl6hTz+g+P5fII7ex+anyOo+7nBGYMqD46foqiA7eoo+/QBfnhB7gYiG3HumzZ4udAztiumiJusDYX0gOIlzgt4lejuiV6SqiHLGZPaQenqPSpcMYiBYQZGV6PyIaDKqI8HpgxuM65lqSa0MSUri4YroHVoqkDk6n0IxpT00ONuzXM7Iyhk+z5GuIaYtzjaE4Om94+A8xhTgR2+RGwKSyGJyAiGyNCX++D4f/fQXzB+/T72Y0rx+hnd7bL+iPeyRiykuK9gFQ71YcHt9wbZNXB8kRw9/gNZHaJ2z3a1Y31yw3b5j397ioifGcWyz6e2oPcmKu5Uzok1hhK+JFMl0hgrf4RwWuGvXyFEaFMb2QQrhTsIMvfO8fPOOpuvBlCAl3dDz69/+hv/hr/41/W5D2+6RKfDhowf87p9/TRcdvm/ouh1Zofjox9/n0fe+j3UDUgnyzIzUg76nKCq22xWEwNC1xJjQJme2POXDH3/C5mRJaDYcmo5ut6HbXPP7y/+NLxbHnH/8Z0wW3yOUp8jZFItBSEWwntxohj4iZWRwieniCCVzMsEoBE6KkKBvW/rVLc271+jrV9x89Wte/ebvKNoD/eCIwOMP32NwFtd25EkghkizPRAmksVihnCC6C2BRGwlFsE2rtHrLYVr6OLAMOzBdzQRDiEQ2gbnImayIOiaTZA8OD2h1p5+v0IZjY2JgKYLkj4qHBKRAidLAfGAG7acff8R+1RQPvwB1dETunKJVxNEPsVkBSpfYKQl+gY1uUc+OSGqnJQCocoRi2OKxz+gX1/SvH5DpTRCdyThCaLHhhZhc5w3aGdQTlFNK4yp8KElMwmTFcAx0mRj5tpU6MkJiyc/RAhB3m6g2ZHnCrezSCmQMkcUBSiJlIKsqJB6ip5MSPkcURSYGHEiYdtbbL8fMwN+wMcBkTS9jUgiJklal3DtnirPOLp3n+XRGTqb0a22xKGnzDW7vaXvDjTA/Ec/Zvb0Y7wu2d+skbriOM8xyqBNzq5fc3PxitXlSzZXr0jDnhQ9EYgJvI/kZTba28UoQucuNPjHD6Hkd9uHFXeEKB891ln83VxWpDHgP1jP26tbrlY7MDlSG7IsQwrB119/zc3Pf8ztm9d8/umnnJ3d5/G9Y947WbCTA5VKbPe3PP3oKQ+ePCCJQCJytFwQvSNYz+F2jcs7rt69IStyvB2QJiMrK+ZZja5nnD28z9WL57z5wz8z3G4osRQxcHi14lUfuP8RZOeGWFZ4Bc71aCnIgiJFUEYzmU7xPiGSRMs4OnYsuIMjbjcMr77k5rd/Dxffsn/3nO7dS6xLECSegHz1mtOjU3ofSc5jbU+qSybHOe9///s8//2vWd1ecHw8pSpLFsdzlqJku2to336GEHHMquYZYUgMXY9vtyRvmUznhPKIYd8RtGHb7phMpuRlgUkSYWomi3vMjx7y+uVbRLdG2ucM/i1mElFHD8iK98ke/AybnxLzOUEWSCFG16+c4H1D4JakJ+isRCGIeIIUhLwav8b59+D1O2K3JolrvLzGi4TMCtAVvctwTWBS9kzVWMLvV1uqypCXp8g0Y5ANkkA04z+1mRxx9Ogj8v0l/ZuvsNsNWjhMWeK8Aq0IySHwmDxHFxO8LLBdHG0QpkZOTgGPO6zw/QHpHcEPiKjpDgNCeFIz4LxmLhJ1ZljOFjiXKLOS1F5zffGc7ZsvSKnleHGKkDXZ5CHVyQ9oUs5xlTAyo2ssq01LLhI319d8++IZ++0NQ78n+IEYx/Sf9eM5NStKhJQgBTrJ/3o/ouS4ce5tT6a/w3qdEIIQx55hJKJkGmtSwWOtZ3voeX15yxAFwuhRxCwE2mgOXYsuclo78Icvv6QbAo8fP+STj55yWJUMXcP5gzMevf+YfujwbpQnaaMgeHbrNfv1mrfbHc+efcn5g/vcf/yUqDJMXiBFRjIl0XVUyxY5uyL0HSqr2LcXFKUhtituXn/OophDVpGiIMLo9dFjlnds/kuEHrcqXka0Esg+onY3pItv6T7/Df7rf6a9ect2dUvfeUTKyPOarttzcb1CxFHPEdo78oaJRCTX6x2vbva0qwODkizygso01JMMXEPT3SIFFGWBkTX9viW5iHD9WAB3PU1YE6Nks77BhJZqcT4a4ZHk5RSdG5JwVBUYNrTbV5RzSTZ5SH7yQ4rlz2nEKV5MiEkz1v4TGeN803mPjw6lJJKIiAKVGPE90SKNIDs6Y/L0R3TvviUKQapWuCFQT2uq6RJdV1jh6V1P26yplMGkBhoddCgAACAASURBVNsNyKwnxBobLLKZopePCTIbo68h4p0lyyRRR3Sm8H4M5gjlsHZDXkwgKpwb6F3EA4XtyArIK4OenqJVhrOv2W/X9E1/F4BxtKFlMVlQkhGHnkmW0WwbdBFZr9fYmzdcvvyMdLigmmRoMbDMPbm9hvYdqBlVfYz3iSEFnBActlvW2w0+OJq+JQiJRRKEIklNe+hAaozJSTERiWihEHdbYYkcDRlx/L1/Zwv2j8JZH8fEDynhh46YEu1geXdzw7btEaZEqRERabTEaE3X97SD5cn3vsftvkW+vSLLDadHMzisUdFQ1AVBBJy3CCURUtC1HTJFmt2OYHueffUlFxdvmM1no9xZ6/EhIhPOR6IXRJUzOT3HlBoV9siuxMQGEyy3198SsxklBSaOzpmAom0CWaYJQVIWBilG8iO5Jg4Os19x8/k/sfviU1Zf/JbdqxckEv0QcbJCyorTswfYq1f03c2IzwT6GBAxjccIF7i+vKGeHWOUwmLZ9472ds163RJ8R+921JMKrKV3npQkQitsUhy8ZT/saYJEVvNxcZYlLsvpQ8JI6Pdrbm4vmU8mnB3PCHGHtXt0eY6onpAtP6HRJ7SdB2kxOidLUCZPu76GMOJdY7QIKbA+EpCI4BH9AXf1jH53iUqa6uETvCnxqwlxf4DOklU1s+MT8smETbcnkRj6gM07qrKi6wVDspgUCJsbdreJ/MFANjvGJwF+oD00VEIhqxrXbxFCMK00Xvf4tEPI8SjmowNT0O12CBeodEnoFSovKQvBtNiyC69pbq5wTmD7seY30DEvNW67xRclB73h9Nwwu3efzz77v+i2V2h7wMmSYbdHBUt5+Xes7QvM6XvI48ds9wHHlLaVDG2BVg7vGqxtCXE08EUUPib2TYfKJhRlfZchjkg1MqNE8uO2GoFKCf2dImLiqHQPIYy9UG+JIRCBXbPn8vYWdInUGVobtBAYAUYrkhD8429+zV//5V9CVnK9bZAvX3JvKlldXmCDY73dMHhHltWjuycGgrNjwigzXDct3377gqos0EqR5Tm7riN5ASZgPRAFIssRRcVy8ogSj9ufsLt6gQuXaOm4+PYz5qliGjXl8SmZWiJMQfSGwXtiZykyhZSghSL3kbS+5NXf/+90b56zurwY+bpeEGWOl5HT04cUkxnp4jlVJtFKMBCRZYG3jsl8QWFycIHlfMoujA865+yYcW0d1joaG8nrmmIyHx8W2rDvOm42gc1ug+332DAiUdauZTmbUa13kARnyxnD9oZpJikVxL5l12/I5nPKsw8xD3+OLR7Q2EASO0opyESBCuCaljcvXjGZTjg6WxLTBJ8KYjL0JGLyGDmg/TVff/53yNkDjp/+lLo+IswWEGEbdojQYGOPosRkNaaox3x2tSBWS2SucH7PbvUtzfqWwuQUfYMuK/K8RpmSZpgSOs+ga5IyTJRE4EhxR1acoksJlISYUc6OEULimyuG7oAkJ5kcYkQQOJqV9BPDftehjESHUU4dhKVSGt92RNMRXMLUR/SdQzjod47STEidoigU3ZtnhPU1y9AShzWbt1uKsw8R3YzQ1dj9BYf1a2RsOTQb+n5A5wUxQoiJSVmTZcUoRgNS9HeAxIS8u2GvsozC/Muuk/5lCxaNICBTQvhA8pEA7NqelxcrBi8QmUZJiZHjVrPIxkujzEx4/eqK1c2aP/v5n/PZH77k3fVLfJOIw8D7H3/Mv/l3/5GqmiGCHkP2zoHzxGFgt17z+9//jn3bMDteYPIcfMB3A0blGK1JIuFFQueSB4/OER7E0HJ5e4nzLUYE6jpns1vx5ot/4GlR4lJkntUYVeJWW4bdLSL1zOdTpM7I6pI6j7z76jMuvvwdab8mJkMTFLb3+CSZLE4ol8dc3V4CgUWhyfyBxjrK6RmT5YQHTx4xtBsO+w0hVrjoiMmOHOTe0Q6BlE+Znb+PXE4RZ0eshoY3q1u+eXPF5fqWpt2jGc/E2vRk2wMPQuQBktoUhDWYIKmqkqANVnimp48oz04wZx8xiAIZPEYGRC6opUOEPc7lHBrHyfl75IXCM/KhY1KkIJBakJRGZQZdZQjhxlRbVhCrY5QuOJEeuXvG/s3ntJtLfLdHFnO0ylFVhhcGk8+QVY1OU5pmRyx7dDkhSU3fbikZuV7D4BGyhvoUMewI7QFht6gARoxuYRsNGg0STD3B2gNd6Cligr5Dy8CkzJF1wfn5KYt54rBzuJ3DuEByHVmeIas5iycfYgdP89WnzCJYp5DkiFgRWVJUD+j7NV27wRWXKC0J6zcMRKriEavrlv3lBc3qFX23ZbVZoXQOAlzwiCTI83L03gqJTGMLKDNq7N6mUeS8yA1Pjibf3YINCYiR6DwijXPY1nre3mxY7R2oYpQ1KUGmBEZLci3IdY4xSxAF613PX/7lX7LdrvnVxe9YFhPq+YK/+Z/+Z5anD3FO4JoWpKRtGvzQ4/uBb75+xuXVJdJoikmNzjMOux320DOZzNBKEIXASEEcIjElep9om57DcKAdNtCtkSgyHVlfv2T18rdMEKjcIPotoWtZvfwChg1tXRPJsCky1Y7n//CfuXn7mklWMJDR+wyvckAwOzojxDjWxk6PmIQ10jVkWUZWzZhMzmj7xP6wp2225MERpCUKhwwCFyWtMExOH5C9930aPH94845n717x+2df8e72FsdInywLgyJSlQHaPW1WUM7m3O63DO0tHz15nzo/o58smR1NmS5qqDO65OgPX2D6VxT1KUmWyEPEYsimT6jnRwhZEUJLN6wYrIMQxi2aAKEMSZXs5RRz/yMmyyfIeonUc2TyJA2qnlFOF4jmGt+tSQREYeg3Lc5u0ErjZUYKgdlkiU6GvJrgZGDoVyADBEHwidnRMaE0ROlQu1virifKBuc7jIrkOexvr0BLVLGkODpHYinzhG22WHugzjU6q6lnitmiZrYUdLueYXVF3K+QdUk9OUNXM3KjefF//y1h+w49GGIqCVZhB001fUJoA+3Nt5SFRhcwNQcE1+y3FvY9w/qSMGxp2z29HZhUU3yC3W4/RlpVRsSQhCamhLwD0UmlR16VkdQGnh5/h0LnEAKCCFIikiKg2B46Lq5XJKnRWpFpgxKSTGlynd0p4wtUXpLNn9CkKQ8+vM9Pf/qErz8d57l/9df/jtN795EyI/gxPF3kOba3bFZbvHNU9Yz7Dx7Q9h2nJyfsNhtc0+E9yLzgbDKl0gV9a8lIbNsd2+2ARDKZ3+PVN59jkiG7u0hR0XH77R/oBs/Q77HzY8q+Z//ic1S35tD39K2nHXr6doXfrTlsDqTa0CWHrGYcnZySgqfMc0QMyKqg8iVpv6UPkmq24PzBA0Q0bK7fMQx/3Ab3DNohak3nA10KhHLCXiiK5T3+7v/5e/7h1//IfmjYNg3tMM6Bx7DKyHnWmUTrjM7D//v5K/pmwLnA1zcN//1//Bu+9+FfkB8d0XMgHS7Yvfkd+92vKCaC5fInmHifZrWhOH5KWU1Q+YwhQUgG7yTJC5SQCOJde1Jgygr54Ps8nN+HZOhiSR4UKQ4M/Q5EoJ7P8KLHh0CmNanbEQ5rYpOzj914TpVwcu8+RTUhmy0xxZS0K/Gpo8gUUY5OJqk0cnoPqQtEDkpucAoYLslUQOsO6zMqNaVaLDE6Q+GxXUsIgbYP5NUJZa0IwVAtCniS43e3DG9fkrUt3lq69SW2f0d/c0no9ngHmZlihIGm4frz3xH9lqFt2W8qZLVnvlS0w4Z+faBdD9hmS3TNGJHNDNJoeutp+o4sq1FZThIChPj/LzbvRqJIiVSCJMa7mO9uwXqHlOPt6RASh8Hy9mbDfvAj+1WOedzcaHJtxjerqlG6ppgcoadPWLkKlxs+/v5j3n94H6MyfvrzPyUrKozKRk2E95hRfUaIkigzTs4fsdrvYLdlvVqxWa1ZTucjCGy5JHnLYX8gOigyxdYP5LlgsThlpyWPvvcLsszT7daUscf2nqvLCy5/9/fMb1d8+PHPkDFx++pbZLdhUZeIIWKGHm8tUSqSKWmjwKZEJRJ9e8D3HbNM4+x46VDOSsjqkStkNEfzglcvXnNz/ZKkPTqXpBTpZaKPntuhZ9NHhNdMjhJvv/qa//zb33J5c0sk4oNHmRy0IsWAS5FMGaLMcSnw8uIW3yayLAcJ11eX/Ekf8fMn+MUZXfN72L/k8OrvMOJr7i3eR283bF7vwG6JnUNV56hpjY8DUeRjyTw6km2JThGFQmqDFBrkGTpf0nWWMCRSsEQEKasISqDViFfRRUk5ndHu9wzNjsIa+tAjlEAayUY44uwhZX1OpqYE1WB7R0LgoiD1PVkhybMaISVZCdEqhsMtzeVnqMl9ivwEnzqIDVAgjSFFMBqkVpSTGUqNHDLl5bg9z3KkMhzanq57AzgO60tsb9HCg9Jk9Rwhxkst4wbWV6/IZ5qTJx8ye/gYUwWSuSUNPa5ztKsdoXPIYDEK8jLHes96e2BwgdlyhtA5AUVibLjFGMm0QstxLOqso88Fb29W392C/WMdyPrAEALX6x1X6904WtHZeDN8d9mklUJKhTQleX3CZPYAshMOQfLqsuGHDx7z3sOHaFOREGw3e9zNgfMHjzASvnn2FY8ePaWsZ4isoLc9uphQhMBqdct2d8D2jvfee4/JdEJ72HE4dBRZifWRXOeIXDF4y8224fjhx9jkKZYDw81LOr4CqRm6DS+++IwiVTw5O2e9HWFZ05MZr28uUFKBrkEXGDK2uz1KC+4/OuPti2/xveUyCiaLU/JJzfz+nOYqguuw3Z4XX/+e/f7AYVijs4JWGfYpsHWeW2txOkPOl7hk+OLLr3i7+g3bzS0uOGJ0ZMaMZ9IQcSGNbSldsW8Hhr4hxcAkr0lS0ruO3kW+fvGc1aGhno19Xt+s6XY3zDXobU632hCuAqk/kJocVzzHLRxWL5Gz++RxIPW3hK0mm+b4VBJiBBRSyZFWGBQyRIbk6FNOrB+QqlNss0GYEt9ZDk1H0w6kIFB3PlZtEnmZ0W5uiKJGTPe4tKFrWoT3SCMpygkyAyE9eWbAaYTzZKqn36043LxB7y3VaUExm9Du3pFcB0OGVpJoNwgCZV4RoqY79IS+A9FjpCH2DXbdQJQMztHZBq0VZjohKEUYFF3XjBempNHQsDyievoxRz/6Ce32JZvrK9phQCBIrsf2PeKuyWZ0RjsEmq4jICjrKWhDkmqkK4mRNBFSJBMKkQQRRefhctd+dws2Bke4G+vsm5Y3l9f0AVSej9R0qdBSYpQavTl5gSpKisUZOjshxIzOa759feDj2ZSzk3M22wbnIy62XL2+IvUdretpmy0uPqCaH9FHTYqC5dlD5MqQFTVta0kpUk6mlFVF1/9/rL1Hk2RZeqb3HHWli3APnapSVJZGd6OBBgbgGDAccECj2WzG+CNpRi5IgmM0cgCC7AEJ1Qpd1VVdWqQK7eHqyqO4uF5NLmtRuUjLXKSFZUZ+fj7xvs/bM5mUbDYb+ronIhFlgo2eyf6M0XjO9e2GLBtx/eoFqtgjG20p6oablzd8+uEv8JsnLFYr9qYjPn91xWLd8ej1t3j58hn708ng3Ekd0/1TohnRtD1SGI5ee4vx/h2Wi0sOj09YPPuQpqrZ1Gv0donJc8IoYWkUV23Lhbc0hcaNS+48eIxrJR/94jesN5Yg1E4w7jFaURTlDvjWoZWmKHJ0krPeVoiYkmYGRKTpWpq+JSL44P1f8PHHv2JaFoz1jOmDf4VdXCAXX/Hq0/VgKeslsY+k9prKfEBVfI2dPeCgLOj6ivr2c9b9mnQyReoMLyU++h1ob1DlSDlk0IhkjMs8yZ0fkmQlXH3OdvkB6+urQRkXI72LRDx5VBjZ4+2KJF9h6ms2yw29rUkTRRRjokxQeYYyoHQk9AEhS0S0lKNT7LbDVQ29f4avakJSIvIxbRw8sr11QEa9qVEip7td0ywuyWVEmIRgHV21pq22Q6yMVqAUbQ+dUDipaK3FCU8SNGkxxoz3SA6PYW+OcNc0z2o2N0vaOme5WlFtHVGMCFEgtaZtK3rrMSZFpRleKMLOlUOMxJ1Z3YcBzGA9bLpIsN8nNZGI846mbXhxds5qW4MeQou11GihSJQiSQxKa4QxqCJD5WOELNEmRaqEqo58+NvnHB3fY7H4LVVdEzFge159/QXpKGM8HlM1FdPJIX0P0WRM9o/QRiOj5/PPvyTLMqbzfRCSshyR5imta8jSEkhpCWR5gpA1QoCREtdbhNDszQ9YdSvKZktiLghuwfNnPSpKrpo1Ec18fhchc2YHd8iMw3UNLjQc3n3CzW1Lr8cU5R533/pDLm/WmKzixVefU91eUrU9Vihq2xOVoEtzVjrl67pllRhCUTC7e4/Jw9f55FefgCno3e3gjYyDE0hoQ9s5utaRJIbgB3hd0zRolVHkJbZrafoKFzwuDLDr1WrBP/793/LanWPShw/Zu/tjjhhRv/9/0Z7/PWF7TV/XuNgjpae7aunThMRIdDW4TbrFFxgE3WqJHh8hjCQIjxcRJ+TArBcCJUEJgU5HtOMniKhxixucj9hqBXIIq4pBkaQJMbjh/CIF/flX6BBpXE7nevq8xJykWBcJTg78auHQJqNvalI5RhqPSGtEfUZ7/Q2yXqFG+4huMtwwIgNqpkzx/cBvSoKD0BOrW1Yiko+mHN45YHEl6a8tgkjXObaVR0aILmCExPUtiZkxHe9jtKEsR/iuQbmWLHraqxsurgVNY/FR0btAlBrnI6v1lhghL0uEMnjE0B0xzLE+BoIafMMojQuKxrIr6u+pYINvaJ3ncrPlxWJFj0IJhYq7T1wl0UqhlUHrFJWUKLNPlFOc0RglSdUgWr9sVjwoZ9w9mfHyy8949PhNhOjJRgnJqMQj2W6WqPwWnU1JigJISdMM12wZT/YYFQlGS5arJdPpPnXrSEf7lKMZXReoVyuKbETXeiQwnqTUjWB+7wndZEK5d8Te6SU3257rs0uMzgje07cVISpU33CUF+jgWS7PqTcVSkDfbLi+PCedjHj7x3/GTe0oqDDhnJfPPkQkJdEMpPdlkFw7RU9k4xyvXE55dMLdJ3c5uH/K2WJFPj/g6TsF1ebnCAxN53HOEULA+54kSTDS4xEQHJtNxw/+1V8ymh7y0T/8DbbdoLQmxGGra2Tko0/f5/3P32XvtfuMoiKQE9IZenKC3VrWl2tCtybVEqk9wpUkqzXi4hlJdKjOYcIg+QvDJIRQeqAiRDkQREKDYI2RNVJrGI2wbUETBXXToIPbIUZzVJKTZBrpK3y7xUePby0EqHuNNxkiHhFcR6LA9h1BR7zuEdT0fQ2dRLaG2Ep87+namgSNEgZnIzYaIoYwGkGS4LXCtj3GQZqkLBcN3q1RKI4OH9CPe1arS1ApppgT3Yr1+hYVHDrRKJFQjEeMJ2N63xPrFSH3BNcixJi+1bRNSxQKR6Txll4kLJYb6rYhTXPyYoIXKTEOI4RgAO8jBleYkpIQHDFa+qBovlcDe/Q01vL12TnrzqJMPqBi5LfUtzBQ1pUcksTMlDTdR5oRIjGoNBmcE9oTk2PkpOdA33Dz8pIvvvwE5wV3i2N8F6j6CmFShO/INAjFcBdVmg7P0zeegu/YbDY459E6IxtNmR0eYwM02xWj8WgAl3uLSROEELS9YO/whL6cMHrwiNXlc15eXnO9/DnJeA+sZdO3uJgwLfYZHz5g23yJ7T3z8Yh1X/Hsk1/TtJ5+/4Qnb7/Jr//p5/Trr6hfvQ+JZnR0n5tqgVDQmYLn64ZNXbFynjtv/5jX334bUyZkRYmqen70Jz/kH//mr5kfzlgta3wTdjjZSGIMRkuc7XAhIL0nL3Le+/0/IJ8c8NE//CdE9CihCHJYaEgdubh5zv/2t3/FD//gJ/TXl/QvvuLIdowme8TVEp1mrLdrmj4SK0tie/qLSzbhA9oo6LsOWTYEF1AhojxI7wiuwzlBbD3a1yjR4PobUlkSVUprDCIfE0yBlAatEmJU2AC9CxjviUHSdR3CCEwIxJ2t0iiNbWq67ZKgJLLT6CTSu1t8U7PZOHTbY7uGtm0harwNuLrFtxJLhilSXBsRiUX4jrbqoV2T+i227+mWK3wt+aYVBCzdZoMpJKO9lPnhjM3mBmd7Ah6jBynopl5jJpJmvSAtBsLKtoq0TtG5SNd/m9AesTFys1oBgqIoKco9AgkhKIz8VuY/mNYDA16JGOi6jiAkqO9ROFE5z4vLKxarDVImO7zF0CobEUn1ED4lhCBJR2TZASafo/MCk5aYpETolKADVgc2+SHv3XkXE7d8/M0amR6TpGOMTFjcnkNiMSLg2g2x7zF5iRCScZnz4MF9mu2axeKG6CJpmlLkOb7v6LueItXEGGn6jjyVXJw/4/LsgqSccXj6GsVozOLmkhfnt1hdkM/mdJ2lWa+wQbN/53XuvfkTLpcdicmxVUU0Ndq3wEAQuPv4DbxbUb36F5rtBT54ZvM7lLN94s0BXWx48M4P+Me//yfOq2uS+YSjxyecXz7nx3/6p1xv10xne2Rlxvn1JaSGbbtBmcF2pcSgmHK2HZw9JuHuaw+5f3qHm8sXvHlwAKEF7C4NTtGHnja2zKYFxlR8+cE/cP3NBQ8nE8bTlNwLqm2L1ilJXmKdJFQeeouOy0FKGBXSTNhe3zJpelTXYwQIu8J2G3wbkE5RGiikp3MbPB1CHoHOEMUhcu8u3XpBJgOJClg8XdMglCf4SG8jwXtIPciE8XhM1BJfreiEJckMLkbWXY2QLVmi8bWnq2sIAR8GqFqqNXgIziKUZrO4ZmOvKWY149ldpEwxUiGtJ7QNqgPb3XK9XSKERsRBebWyDp2PMTKybXdBVSLQ1hWd1WT5BJMatND0TtC3nqrr6b2gagJdkAQkddth7ZDlU5R7KF1g4+DC8cEjxQDhjzESQsTvUKchBnyIxO82wn63gr3aNLy8XBBRGJMi5aAVVkKQKImWcVA5JTlJNsNkh2TlPqacYLKBAIBWBKNxRnHrenpVc+feCXJyikse0N1uWa2W7B/Mhj6/b+j7nmy0B06SZgVSCYoiBwIHyrBerdlstlwvFswPjhlPp6AGW58Wns12yW9/8y8srm44vPOY+6+9jtIGLwzkU4q9Y6bzc55//CGxa5lOjrlz5zHbqqdQjnZ1hW3X1H1FVNAGyb233+bP/6u/5I7xjLorvNuwtJG83OPls5ccHp7y8uoFv/3sK1ZVhckM40lC2y/pbM/Td9/hq5/+HW8+fcjHv/0IGx2daynGJb53tM7jnSM6SyQSTcrTd37E64+e0Nxc0282/Obn/0ToOiJhyGnxEZEISAP7h2NOD0r++af/OzMz4+noXWIfWC+3bDcNrqqxXUWMjlSlw9KlatFaUkznBK3x3hLbLbLdEK2nXTzHrs/ARowco7OMXlpcXRHLDJCgMmKxT3b0CHd7TlfdoIg412GUIAqF9RIbFH0f6MOWIBuMVJisIMSAvYqURYKInmA7skKT7M2xVUD4CKTIWNI3LZqAUBaTp/TOUt0uWawqgg0YYdCmRGvB4uIVbLeoLtD0a1pfkyQl89kdOjyr1QXN7Q22bncpgT3SgBAlUTnSSUo2SkAEXNNSVe3wd4iCzln6IAhas6m2ICXapJSjGT5qrI9INaiZEOygaxpiGBxv7HjfQg3Ezu+rYJ+f3wwRGCYHFEZKEqmGuUkJtEpQusSkM7LREcnoCJGOBtFEOmgpo/QoI0ClODfh7GbB69kRaXXFwzcf8b/+j3+N6CrePnhC8JEYHKMiG7yR0ZImEusdRZkTIuT5GG0ymmoLnSORASMCy+UKk6aDj9ZZRIiURQkhsFmvCbKjaXu0yXnw6E1mo2zw6t7cMJ8fsrq5Jp9IgnBsFi/QOlL3FhvBpxnv/eGfcPX8K55/+SHdeklTr6mC5uLlGefnFxye7tGuNyz6NYeTOU2Eg3FJaLZEYeijYrp/wsH8kF9fXTIdjxifnHD+zUtePns1CMN/Z55XFHsz/uwv/pKu7vjpz37G6ck9tk07JPRpibUWrSXZJOPo3j6/996bNOdX0Gtef/yEQhi62yX1zS1VXWOrGuX64d8oRjo/gPRE1aNyR3Q1OmuI6zPUakSIFn/5FSxfEOoWqae40QSfZkxmd2jLU2xjEDKg8glqfER++AChFc51xK4Zoi/SnKbztI1DKUO7bVA6svVuyG4KHiU8PlMoGRAqQlGy3jZDFpBIGU1mjKenXNc9TdORpgqlB3wRrkPYFl8tCZsrenFLYKBWpFrRhw5PBBkR0uFpcVHQ2JZ1PejItbcQHInRmDySjhTprECnkaq6oV7fsF6t6IOhi4HeO4LSOASNtUidkhUTpM4GlG0AKQJKwaAkFkO6DQKkJIjBNQYD+/t7K9iLm6GNkMLsaAc7cb8SGK1QKkXrKSY9xOQHqGKMSFKSNCVNUrSSaOOJ0g/tiC+4bvZpbj5HX3xNnh1y7/SUsy9/y9XFOTot2JvNiMHSVGtkWgwtYghIpRlNpruYjJJqleD7luX1BV1bs2069mYHuM5iRMI77/6Qpu3pnSTPchyaNM1JjCZNMvam+3S94/LZ17S3DetFheQMuRNIhN6jZQ4hoKLgk1/8jM3tJbqt0E6x7QWbbsPmq08hwu21w+J47f4bPLh7j7/+6f/M5Ysr7PWW40fvcHG95o23fsThRNGs1+xPxlxdXXF58Qpve2QcvplCS04enFKMJ7T9higUdbMkS054efYSlMXtKJZJpvi9H79HOS0RIcW4MW//3h/z+r3HcPkSt93SbVZY7yn3j0jVHJ0aXN8OCxAEbdciVluUHuSn229+g3QVUkpMvaRdLjBIfLB0zZr86A5JUmJDiRJglKVXhqAM2eyYpMhoVrfY6+f0TY27XdO1FhklSiic6wfwmAyDBzoEQvS0ziNFQJrBxNDrbvB2LDGlrQAAIABJREFUS43sO0KR46MhSRQQaZsWFwNKRIoshb6huXkOIZBlGVJouiiGrfNoRGFG7O2llNOSz55dcrWpsV2AtiMDkgSykWY8SymmKTrVOFdRby9YXL/E+Y6qC2ybgEPghaCzltZ6VJayt3eID4LwO62wHBZ3gIgDXmiXn4FQEBGDueY79sTfkfyvUWpIAzNSk6pB5J8kQxCzVBkm3SPJ9zH5FJ2X6DxDG7O7zwr0kAE0vB5O0CYn2O6IAwRf/ezvOXrjz/n84oJRkjCZHbBer9lUWw5P74JQO5A3SClQ0mD7QJpltNVwo4zesry9JSvGtE1DtalI05T9+RG1dTtt6ZymtaRZRpEnRHIWy4w7T3+fk3tP+fRXH9A1X2DrG4IXIBKycs6kMKxuLnHVhstP3kcYj0pG/NGf/lv+n//7/8C5BiUsJs1Z1Q0hMbz95C0+bztsMDSbhugdP7z7gNHkgB/98A/4u//lv+Pll1/R9zXL1RrbtBAkUhiQEpVKDu8csV7fsli+xKgMkzo265eEsCFKiw8RqRSn9465f/+Us8tLujblB2/8EY8e/4SJUiy++AJZ18hgGU8nTPcOyfKCJIPq9hy7XBDqlkQqzA4Qr9st7uwr6q4iBIEKAZXmxCRhu7zB+pYgQIzv480YRIaRAhkDSipMMUYaTV97UNmwPPIOZx1JFAQRUEIBEqMLotBDqoIYEiIgkpkcnKXdbjG6J0kV/dbS1AU2DkqhiMUHi4t+Nz8aorfY7ZZUC0yyh0hKWhchlxR7+zx6+oQ071hVl5x/tODZxZaRTkljJDWKfFQw2x8z2suYHE7ASNbra9bLC5a35yRJSdv3rKqO1nosgrrtiVGQ52PyYo/eQZQDynS4X+9IE0H8LvkxEInDaXbIi/1uHfF3vcMKlNRopTHaYJQiNYIsVUiVIJMSUcwQ5ZxsPCPLC6QyGG1ABYIIWCQKgRIgkyEpO997gzy7wT/7Dctv3ue10znPnn/JbDzBl2OazZZ+ryZaUBjW6w1lIZAy0K4rzHgKUZBP9olSIsuWPE25vbmhbys2yxuU1tx57QleZngh0FnCaJxSbV6yXp4zKg6g3CdmM56+rRgLWH5jiS5gradtt6ybDbWrkdIitaSRJQ+e/ID8/lPmd78kk45CgUVyse1RZoxB8OzT9xEi4J2i0BP+8t//t0xmd/n8Z+/zf/7Vf2RxcUmIEddHpDPIoDA6wYvhP2/vOpabWxaXX2KUJEksfbvBttUAC0BSTFMevvmY/axks3Q8ffyAd9/5A/b3H1F99BHt8zPorul8w2R+iNMZ5BlIN2iJbc+y6cmSYoCORYV2Dr+6pqlW2KgRKmd68ohms6a/Pod+S101KJuT7leQTOh9S7K5Qtv14IYxCTKtaZ0geJDeD0n2QRBVgtI5WquhfRQSGz1KRBAa6zzKGTI1gMpsbwkiDvNf6HA20iHIigSUIvSRrgoI7YnRDWEYaY4xKS50pEqSKtg7HFM+uofLBWl3wuSrW7KLT4jOoRIYTRP2T1L2DjUq65C5o96eszw/Y3mxYLt2bL1ksXZUbSAaA8pQtzVCasrJDC8MVmqiNGi5UzMFkEIid9LEgYvGLupGDKFo3/HHdypYrc3wkkrQSgyaYSPRSiPNiLSYkY/3SYoJymQQwWgzfLLgQOohil4Mz39QDiMNVu8T5u/w6Cij/fpzCnFKX9d8/Ktf8qM/+tfYzvHpZ5/z1ns/HHiwVUNmEoSKSAJd11A3DcKkTCYzTNqQakVTbbi6POPli+c8fvw6y9sFXuVMDjKcs9xcrvjik99y8fKcx6+/S+MNk70DTJlx8vABfX2NXd4gQkNVLyA6RAz0MqHFcHD8mIdv/IgXVxvuvPYm59sFWahouo7HDx5wePceX3/5Mcuzrwm2ReiEPB9xcnDM829e8B//h/+e82++wncWMCRqPKhurMMo6FxFIhT9ek3sO2y3AW0ICq5XC0JwSBVIjOD+0YR0fc3iXy55kB7w2t37vPfHf8L6IrLykqq3dJ2jD5EsauqbFV2zZZxJTOzIs4Ima2hbiwwNSmcoJIk2w6e/dQNIvt4g2gaqFb5Z0/eWTfgAd/aCJgp8dHgcwlvMdMZoss9l3+2UPz2271BheFWEirvuTOOiwwaISg6e6xjpnN3l8brd4sozKDUiQsUBpucFnkCWafpuSBVUIhCFwyQGkxlUpgaAQLBD5Eviye4eEYqU1Fbcu7eP3BxwdXHLyeGUwz3DfCaYnUhU6qhXL1hWluX5Bdtli+9Trm9v2Ww2A7rGJNSdpe0tJpuSFSNa68GkxB2yUO5E/0Kwi7bZ/YY4nPAYABF8x6L9TgWrdDJgW5QY2lsthpdWZ8h0n9H4hLyYo5OSKDRCDNSIGIeZ9f+ffRlCgBiwSiBMylV/yFgumI4T1s9ecjob88HPf81n5YzjJ0/58vPPePz0La4vXuF3ti8lhqj5xWLBumoZz/ZJiwK/i8ZwIdC2DcH2dG1F1zWMZxOi7bBNS7VekAiFwvPNlx8zO3mICyMq11PMD5g8fJ3nv76hrW/RtMM21ELMpzx658eEkFNVgenkBGUS2v27dFdfQN9AV7M8e8by5oyRjORaD3NO2/Cbf/4Zf/u3P+Wj93+B7FYDQgbFj3/yZ1xdr1jfvkLHCrfaoANsL28wOtK3HdZE2hDw0ZHnkozIfFQyixXFoubeZM58b8TTN98mmDFdvyEmGXJvRr1a4R10pHTbFar3pKUmxh5pJN76YY7yPUoJhB6h8sGUkQewdUt19RK/C012nSXYJaHv6EOkaRuCGF6cmOZsb8esTcn2akHXDqFQykuESJBGIA1EYeldxEWJlwqkIgg5JAlYD8ETu55UBDKdIHZiHecHVjukeKtpgyP0HiOAOHyNcTlhb2+KydSQIaQNZQHZ2CHiDX5rWV4+53juyB+WCLnh/oMR47FAigZnLE3vWFxu2W4s9XpLXQ+o1G0TcTESpcQhWFUNSMN47wAXh3Bz4kAaHcBrctfzsktajwghf/drKRVCyt8V7/dSsFJ8CzsevK5GapRKMOkEMzomH5+Q5vtEXQxJ7TsEnBBD/z4UaSSE4ZNFM7ySveshTnm1nLO5CojLV7SLhlECX378AVFLRkZw9eo53azDOc+0KEizjBg82+2WopyQZRk+OKqmwbYdOsm4c+8+3nYoJRiPclItCL4n05JeCubzOUaAi4rjBw/R5R6T2RGp0YwOjkmLnA//7q+JEdIIobMoY7h75y5dnyOD5OybF7xx/witc2rnCX3D6vIClRtsX3E8O+DNN9/mb/7xH2jWK/76r/4nXp6/QoSa4DuEkIDi9N4jls0L7k5HvPzmA5RO0FKQyYyhC/TDxtU6JnnKvEjAt8wJHCN4bZKxP8t58PQJb7z5I66X0G0bNvWGkBu03CcJE1wQ1M0VY6GwjaO3Nb2MrJYbApo0y0izBJ0oTJKihULZIVqz227p7QDh814inMW4FbiO2HbYEBFJgsxaQt1wu2kIzkPXo6JCS0OqNVLYYfEiwNqIj4GoBEixc7Ro2LWOLghEHF6pVEls7+hDj4iGOHiFBlyQBJVItEpIUsNsXDAda0RimWSSbJygxxPySQrXH6BEh95cI5NA/tocNSsRCrwBGwt8zOksXNeGTbVkW2naTlFZwUXlaFVGHxQuCureY8o98tGc3gsCesC87vKUdwz6oVsJQ6wpIexe3N3o+i2s/vsqWC0kWggSpUi1QekUZUqSfJ98MhSrTseQlCAl1vVoJ3cs1uGbM6ReBOIuFkP5gIqWSIGN99jGRxTlObF6zqMnp3z08decf/E+D99+l2mmyRNDG4cIemc7PIrpZETrI8po1psV0mhSZTBKctjVVNWWPE1Ijaau1mTFHqvlCq0FeT5Bas14Mmd6eJfWS3IS0qxgPDtkvn/AaDrng//8n7j+7COKkUIFyfmzrzm5/0Ni31GGjub6gtD1OyhdpPc9yEgUKXdOXuff/sV/4P1ffcjN5pJvfvNrRKqhb4jOD0sIYfnlL/6e1x69i5EpL74IJDollZArg1EC0Xk6v+FEeg4STRE6lPDcSTL2U8HMKGazKacP7iOsRDWCfrWgWp4haChGOa5PqBZLVtstJSkqavq6RUbLetPiPMzmZlC9eg99Tdf2xLrHVi2u9zRtT+f8wKGOPRpL6Gu6qPEojFTExoGscatbRIhkSIIYxCzROxAR70AJNSyigocgUcYg9bA1VWogdZokwQiJkD0kEZ0HonPgAj4GVJZx5/4R19ceaz15kTAaJWTjgBo3pOPI7KhEFwkbmxNNgm02hNBQ5BldXtIx4uBkgpcaT8p666h6gxzlbNdfUuXnnC+es1jdEkTCKmraXde0rltaLziaHeGFwcWhU/g22CrGIQ9WftsC736OMaKk2t3Rh+2w+D4T2BMhSaUkN4bUJEidodMpaXlIPjokLfaQWYmXhrAjJAzLgn7nTPDoRCN3xHO0RxoNziN1pFMl+fEPSfcCaSERL57x9NGc25sl2/PPyR4/YZTnrJdLnG0xIiMrcjKTE5qevu/xEvaPTkFo+r5nvH/M/SeRrlqTGM1qXdH21yxub7l7/x7WW4rZlP3TUzrrGZclzguEhOADIsl5+N5POLp7j09+9Y+cffEZYbMlOLi+Ouf+bMb15Ve87Gq8rek7S+egcx6R5STjAx69/hM+/pevuZvvMQk136yWtLWHENBRoZTC0XP59a+x6wtc3+Hr7RBZqSNdv0UpwXSU8Jd/9C6Z3dBdnpHGyGQypTCGHItRjnlRME1SQlsjOo3qb6G6INY3BJMSY8LV9RV1vWGsJcYo2tYSXUfXeayDvI8IYdAhotot1C193dNXLb0dMn6cc/TO4nwPeKJzO42swNp+YDl7S/Ce1Bhyo5FaEmVEKEHfd+AjtveAI00kRTEgX4Kw+CCQ1oIPCAlZodFGcnw6ZjrPqJuG1bpFFyXJuODo/pxsOyLLDxCJJ8slaarwribNFS6TdDGwdQnX5y1CzDi68w7l3t4QeEbKqnMU0xNaX7DyLRQpWmrW55Hr246bUHHR1GitaQkEKfFhQCTprCQrp6x7CFIRokCFiBCDM+fbwh1e228POuCc25EUI0pIviuY+LsVrNIUiSYzZsiJSQryck45PSItZiTFGJkWWIZUH6N3X3/XEovd4C2lGjoC6fFEDDlSRpyE274g3XuTB3PHKPPc2S+5/Fry5csFn3/0Pm8UR5y9ekGaavYPj4c4QWUYj0dUnWdvbw8hQCWaxXJFVk4o93qUFFTVmr6taPqBvJ7kOfPpAXcf3KV3gavLBUWu2G5bJJEiFSiR4IMmGz3kv3zyiM3FOTfPvuH21RkfffApy+qatl+TS2htS+8jIskJwnN0cpc2mTOenLB5ecZ+NiXtbhGjyMb2ND4MS54IMtWgHbq9AAfIIaJ2b1Ly9PE9Hh3u887jO/zrn7xJd/ElF598iK879vaPkOMc4yz9ck0XwV6e4ecXuLpCdjcYt6HdLmjQ9D7h5vIM0XdsO0uiBbb3qMiQXyoVIUgIAt9WEC2i7wltR+g9eEW0Fm87vHc7iJxGyAThHCFYXISoBrN2ajJOjg7ZywTSRFSu8NJTNy3bdUvfWZI0JStTJnsTikmO0Ir1dkvbWFw/5PVMpynaeA5ORnjRsLragk7Yv3/I+HgfWZQ8mJ6Sl8d0QaKzHKUMXd0SAljvEQhCXLNZbRGjexRHT4mjnLZaUS1vqbzHxTssO8m1reltx+XZ11xd3LA4W9JVjsYrhPfYGJHGIEIgIhhP50M4GnrIzI0eJYe5NYZA+N3iaXfSYRgRhwXUTosvJd9Vm/jdZlg5IEuN1khl0MmIdHREUp5gRvvIpERqg44RZQaygDEaZTQxBKSQKKmGZZQeVt0xBNAQvSB4S0Rz2c/Jxve5/27F5jf/xMHBPmdnLS8+/QydHzA+OCSi2GwqVttzDu7cIS0j5WjG3t6M1WZL23To4GnrLdE68iThdtnQboYIkdHkmMneAcf3ZkxnOc+fvyTTgma1REWNF57OOaSA1WJBkucU5T6Hrz/m6PUHSOF47+qaerFk9eqM1YtXPP/4I8LZmO36GlevOHnyJp9/taCrNty7d4jhXejusLh6QbA91luuNzc0rqUsUwKOSVmQ+WF2KI9m/MV/8+949No9cr8liTWjUuIOJojtjExJtClIp1O2ywqtEqqbBfXz92nrlnz0GLW6JbUVi9WKvh9S9Px2SWpSotRUVU1sO5QUdAG0DPS2o2sbCr1GyozeKhrnCD5AkPgQqXtHGyDL95jvzVivlnT1FT54rNLoxDApC473JpzOp/RujSkL8vkEPZLoQnFzu0SgqKsNo9mMvdNT9KggaMHUdhDVYD+TazTdYNTXhjq2zB5kFH1CMSnRkz1iNiGUcxqh0XpG6w0qHyH2cmIQNOsthIBLFXtzCWpEKzTbTYP0CXXUbJ2lWgla67i6vsJ3W15+9Smb23NuFhcE2+FjRJuEiCIow7q6oihyTD6h8ZoegRQOFTwiBBAakLsi1f/fHBvjIKAAQhxaYovDfJ/UxMwojNZolSJNgckmlJMjTDFBpxlCK6QaSOYm1ehUkxfpwBeu2h0TahetJyUy6kEv+rtFlEDIhC4KbpoDUuYEZ9guX1GaCVTXnH36a96a/wlJdLx49oLr9QavU07vlRyOCwJwu9qQ6IQsTXjx9ZfsTcb0XTsAn29uCDrlwZ0HlHsF+aTAeU+3bTh7ds7mtmJvuo8TgtF0wnC8l8znU5SWZHmKSXOSRFKOp2RvaKINbBdLXL2lXi14+exrVje3ZOmY0ZMFr//gXR6+/gDX/TEpjn67pq1rQrRU3ZazsxfM84L9UUG/WbM5vyZGmN095ul7bzEel+C29P2W3lsYZ6QnhtBXVC7gRUGnDZ3aUrWX2HDDl1/9lKz8jDwZYTfnhG7NZllT9QKEHlxT0VG1NX3TDBgYKchipBQRYyQgsWga72njcGoxUZHpnGXfQYzk4xIVNK72tF7hhEamYx699wPefOMxm5uXCNFxfHzKy/MzsnGJSzyyMJT5MTItiVZRHJ5Snr6GGs3xQpILSZJk3FyfY+052DU+DPm8mXIUowfo5A5NUyGSHDM+xMUEgKg1Z8+fEaUlK/zglok5be8pxzPKUYr3hmpbsdksUHSsVxU+KvAdl9dX1JsV1fqaerPm7OULqtUtaaIHZK9UCKnprKNzgfHeIVZoAmrIA9p1ktZaQggoZXZnHIbHSgxKp2FkHNw6IXh8GNr/77VgU5Ng0hKZziimpxTT40EvbDTamEFqtbPbeeeIMR3I+XKwVA3mIg1+MD8P/fzwIwwXK2IUrPp9+tWMUbuPi98wmuQ8vnvK88tP+ewX/5kf/cl/zfJqzdliTTIac3rnLn29pW49282W46Nj1qsVxmhSYwgtNE1FXddY1TOa58xOJuhM4TYddI7rl6/44tMvePL4dQ5OT8hUgfORYlIwHmeYPAM1bPf6xg9kQaUGRdJ8j+xoThnvsf/2OxQWrq+v+P1Rxuh0D5lJonUk37ZF0eN2Psjfqxu43RCqDR/++pdcO3C9o76t4Nk5b7z1lKQ4QE7uYlQGfUPIHlCtLrG2JoZI2y7Zhlc4M8JuV5weTFhcn3P+ckUmoEwcW2UJAdIkQwRHt10MssS4w5gKgdBDUZg8QYoJabLPslmQpJ6qqVB5wWKxxEqB9ZHL2wW3mzXO9rggEWnBwb3XefMP/wumh2OK144o5ylNWNOFQJ2P2Gxvubk+4/D+fY6PXuPw9C1iOiXO79LpEQGDlGYAmYc50Z0g+xUXr15A0xFNwDnIR4G+FRS6IGfMuupJleL67AW/+uXPqbcbTu/c5+5rT9HlPjYmRGXp+hYfB69sVVdU60uuXj1nNJkOQv6+J9iWan1LW2+5vrpC4tFaD+YDFXEEFus1yWiKyMYEsoGKuHPiCAQihuGREgo/2NqQcgcn2L2y30qbpJS/m2u/t4JNEzMkuOmStDygmJyg0ikiLVFaDTrI3e2V3ardO4fz0HYd3nuUGlisUkq8dwj1bSDfsLCIQg1sWinJR29At0afLOmvXjLLU7atou0WXH71IXl2gq02rG+uWVycoaXCZXsDGrVrid5xfHgI3nLbNqR5wd7+IaLIuP/wDuUowfnAZrnBtZbN8pbQt0TXomLPOE/wKByCcpQgE4W1Du8cfdPSE3DrFiOHlr+xnrwoUULQNitubl4yElPykBFjhnORqBTCqKHdUwopEnQwOCzn5885X2z45uoWJRXbKNCjKfr5BfcePyYvj+hiShcbfKrg4JBCRdrbBV33ij53ZIeSPrwkYmm6c6KvyEYliU5IyxHh1QrbBfbKnHk24uL8jC5EghRopck0aKOxSpGXh0R1QBQ9ifA0vqFqO7Z9Q1RDK9d1PUEmw00+atKi4Md/9IekB3PU3X3SvTt0NCTJQ54ev0USJJ/85ldcLBrarWaSnTKaPcabEbUa40VCCMP1oO16+j6QJXP6VuB0zzevvubri3Nu6095+OAe90/vMhMJy+YMawPrm2ueffYZq8srqvUtvq6ZT+eIDkgmbFZL2t7iHCglUaHn6uKMi4tXrLdLpFJY29JUazbLK5a3l3hvkckgFRVquLuu65a6dxzsz+hiihcJCAMM+gIhBo3zcGcNeB9BSGIcZIq/O7eK3cknRKTQuz/3PRWs1hplcpSZkJfHlJPjAVFpMqQZvHxip5uEiNaaEDxN1xOc36Vze6QflhcAPoBUgBjiLCIRGRlOIvke/eRtDvcDYvNLFp98yOvvPebm4iU3F58zvZPz+GRC72uWV2e4vmf/3uuUSkLfkhnFqCiot2uKUUlvD5kf3uO1Nx8zOzigXq+p1x1ff/YVSYDJeIw/3Gf/YMZ4PML7ATa3f3JCmhm88GjvhxjJqsESMcYghKTaidrjeMp0Oubm4jmpdIS2IXZ+ICx0AWPANjUQUXpoj2Lv6bqealXjt5bpaEaZFwjriesOu2rZLFus7uijwNmIiBla6eFD0ihqsUXtv4bTI+plZHH+NQ0FQXtSUyJVoJzt8Xg8RxE5mU3RvaUsHav1hutlg3eK6DXWZ/i0wOUHbO2U4gBW5xuWXU/T1jTWAoPQghgp8oKiSNlWFXt3D8iOxxQP5qQP7xFGKa6tMMWc4kAies+oFkwqhsQDMaN3KcttQzbJkBra6hbla3y9Yb1YsJUZhMDiesuHn5/x6atLPvr4Q6bZz/l3f/5v+L33Ek7uTHn1/Dkf/PKfuXn1jJPjQ4o8ZXF9ycWr56h8gw2a3rshpC0rSbOUrq2pVjco4WmbNd4PCJuu3bJZXhF8Q1EmBCQqGYznLsJiVVFMZkSV45wZcmjlkO6qhNiZN9SQUBfD72InhR908AOkcBg7vi1qdlSP761ghTZInWHSKUW5T5pOkHLQcQ5xgxHFYElIk5R851EEBskd7A7DuxdYKhBxOH7HsMuzUbS2x7Y9Kk3YUiCzp9w5lDycpXRffcUot/jPL7l99SkP3/lDrmpLdXs1RCFsbtnULbbZMpnvE7zh+uZmyAIyBfODU+b7p6wWN9wsb9A2xUQD0jPbn7E3GXH33l2kSWjaHpWVSGPobI9JBSL2LM5f4uoWPZ6RlZrN6obtak3XWdIkZbWO6LTApCOiybGdHl4NINiOZnmD73oSY0jLDNu19N4StGB+csQ8G2IMjQvsTcfoMqVrW1JrEUYjdSD6QZonhSZGQxsMeTFDyBFzc4TNDsjbBU29Yble4Js1x+WMZBS5Ox9T316Q5Yp5yJnMoJwaLq9quspiQyDN9qgpODx+yKvNh6xTTbM/wgaN73q8C4zHE5q2QU9GTI72ub8/4/Txa2QPj+inCTrPUdMTkizg0Og8YXu7pLj3hLeLgma5Yjw9ou47kmygZzr7/7L2Zk2WXWd63rOmPZ0xh8qqAkCAZDcpiZLDUlh2hO0I+5/7wvaNrZC61UHSbnY3CaBQQ05n3OMafbH2yQJlX9DRqIgMVGVVIs/Os771Te/gEN7huzP9/oEUAqqqSVHx8dM994+PvP/wwG7XcfQdf/jDt3z95a+4u42EacJ2Z6ax49xW6LomFg1jTMTjjm//9C3H057r21eZTCKzz3B73BODwwZL35+JbiSGkeA6Cp0oC4kXCmQiJji3GbpZL6/wURPRmZlDQIg4W7zIzP2OaZ4GJxLphageo8JoQ167ilx5IjO46KcKWNBI3VAur6k3r1Blk/VyRV4MCyGQOu8V1WyAZZ1Dzp6YYh5zX/awUgikFIToP7u6B5cdvKNmso6ibHh0oMMXfHPbsZhapOr5srvm/Psn/vTbv0Xe3FHdfoUWicPTe9pupC4kwla0fuKPf/wjo7Vsr6/5+Te/5t337/n08B2lUehYI6XGJ0dV16xub1hfXTE6z6JZIYoq9+UznjZMAyI6FlVBTNAeTkyjZfCJZr1FNzWjc6zqdZ4QmgoXFYSELgRDdyJOI4ePH0kxsrq+olgsSVqy+vIN+maNKAuaqmahC6KbaMcWZx0r7wg+ZNJzCNjRoVSFHUfWN6/wcaAwYMotV0JxOD5RFzXj6ZnrhUaFkW73gbBUnI7PqKpk/dWXdM/3fHl9A8WOp8cTpirwMbI/jfzsV6/52c0Sil+zfrVBFmsmGxiGic36ivZ0oKgM9aLClJqiqRlEIC3W+HJJCiUxCZJWjDGRyoZidcVGS5So8CJL0a42W0br0Kpg0WzY73c8Px9YrBZoH3JVIRVde2Y87TDCst42LFY1ptaMrmW1rnn1+oailBT1EooljS7R9Zb28MTz0yc+ffieaTjj3cQUcnsT3EgKLlcPQ7bABIezAz44pCa3mlIyDhMuRprVNUnW+JTV/IWSKOTFOCe7OwqJEPJz30qGI4bgcd6RUqIwRa5KhQTSn8F3/9kBq9WKanmHWd0hVzdYrdEyzplLw8eSAAAgAElEQVQ/oZQEApNzuOCyqp7KsphS5eD0IRKCQxFJMmY19JRL6YAgyZQB3jKzenRSeLFiNyaWWN5sz4y7DyhVsIiadw+PRCX4F7/6l3TtCYyiO57ZCU+YDpSrKw6HHX/4hz/xP/9P/yO/+7/+M0Yr9g/vudluGabAer1FiMjmasN6u0FqTaU0RWGwRKJz6EJiu4Gp77Nau5b05wPnfkLXS6xUVMpw2B8R0TMen0AbTL2gdIvs9eo0p/0R5W3eb0aPHQaKZo0Linp1TUiGpmlomorpfKY7thyeH/BRoEVDUdeEBC7EuSeaUKUmRBAUGEYent8xWU8QFc36DRRrdKk43L9D1Hd8mnr07a+JVcFzd6DVgpWRvPrllsVdS9t2vH/+jqubf0OxUrz5zb+jNZbt69dEKqSucSFSSM1tCIQw4UQgEBGmokbgfDYCS4DQAecDbnIwOaKD4AsoV/R2pCwkU3vER41aGFobiNrgo+C0P9Maz3p7w2qGePrgeHu74PWbt/zqX/yGJAvOvSM4TbP+kmp1iyob2klQ1mtUoXBhh1SKZrHGuoRSCtyEtx3TcGbsT9hxyHOWrO6d/Z2iJyKzJI3StEMWBaRYMKYSL2sSihTTjOVPnwkul42rEOTFegZSKKXxIWPdk7M5wb0go37CDFst7qgXNyxX10g5N+HzpLcqyhfgctZ6yoMlRH4QpdRLrR5jvkmkUDPweW62xYwumnGkQkCWRlfYuOY4vKZ/eo97WKC6I6qOLGzk3He0Dw+oakMIBW3XEvwsuTINBN8yDEf+09/+J8qmYdmUjIcnngpD3WzxbuTm1S1X2xWTnSiKkhAS0XnGcUIZxbFvs5qiGxhOLZOEEA3ESKEkXqms4D5ZRLA8vPsDyhiq1YbN9S3NYsFkFMfDkdurK5q6pj8fsNNACoHCGAiWUniE63n64Z7+dOT+/fd8+O5PqGrJL2Nitd6gi5KibpCzWPu5bdFaU5mCx3ff8eH7P+E86MU1Ue4Z+x6xrDkcW2ot2WzuiNEzlhV6eUe9eQtxYFHAJkw8fPdH7HEkhDPj9IQUX5GtNR0+FYgykZTEpYhMEKKCogTgPHiEVCQ0tstrCu8dMkT60xHfD5z3O9w05P1lIYlTz/7xjCgWRAwICbpkdf2a/fOOplwzeo1ptvziV/+axfqKoe9YLNast9fEaPAOnA00yzXjNJCEIqQJZODTwwNj17Pc3FLWCxKJoq7YHXdMY0/fnrBTT9v3xBhfuKvGZBBJTIKiKLCTQ6jZSFpVBKFJqBkUBJcMeQEJyZmIkKfG8GNgv5RyVsXMKonBh794B/v/I2Df0qzfUNYbtDagNciE1hIpFTHmKTDzi8npPc3BJ+aVjyR6j4+RQmSOpBDZtycxr3nyP8yTSJnlMxIlXbwFfoWqHhGVJa0f2ShFrQzHD//Em5//Nab+klYpTsc9p27HejwhY6DQgW/ffYsPnjCe0a7ndrPm57/4NUWluXm1xbmJ3//utxRFzTff/BXFdYHvOzo7YscBkRxGgm1bjFaMfmBwEWstRdXQ25EUBX7oOD09sVwtWS2WxLGHssTHwDiMtLqjEVlRfvIW5yYUIGNgGkb2bcc09gznE/vHR+4/fmDwkef9nru3b9le3XD39ktu7t4wjBMpCWLIa6LzYUd33CNUSb2+yfKuTZMRNLN64eAKkijorGaxWsByBWng4fgJu9uzfz4hRodWgmP/wOvQYuoN0YMPnhQtqcirOxlgGjzCZG9TO46EkDBFmS9zCUIkxNQzPD3xw/ff83j/kRA9N7fXLJqCZZFQQtAPE6pY0CyvmXzCJ0PR3CDLhlM3YExDbSq+btY8Pz7kkrKoKYxhsgNd31JXJXEUpJgVJNt2T9dnRpQuFjTrJTFannZPHI87kh+wdmScRs7jhPMeUqQpK5TJbY8QAq0kz+eOotmS9JIgKpIsPgfkjypZcUk2nz8zr3RkntcIgZYy+xqH8NK3hhD5SaGJsn6FKrboIlu/K62IyaOVwgeHMZkvG1PCVAYpFd5noHdM6eW1SCnRWpNSptkJIXIPLC/snoypTEiCyIrxCBiSpFh/wab+H9A3JeZo6N7/I8JpnFeE/hOiWrIuFB8/7EhGkGRgtdnyVz//glCsKQvN//2f/wPKws26oVCecThTFJrz6cDf/s1/pChqRBK4cUQQOR52nPZ73DSwWtZIEUlK8fB0JJJNolCacfIslhuaskSXC5I0hADT5Lgta0RRoI4902Qpi8Du+QkbJbJcsFhesahr0CWqFqgkMQGCLPBJcTodOLVnTodnfvb1zzOARZeYeolA4aYRmOhOJ7xzXG/viElQmpKhPTFMHef2lNU5fMtme4NGcdq3mCIRheP4dOT5u/ecd0fuH54wUqJvb/nmv/l3bDdfM4we4xIxRLyXGTjQjjNjC7r+SHc6oZRivdmijGQYO4xRDOcTh/uP/MPv/o6npwf6oUNqxWazZFtrvnj7msXVLdVwZkSxf9pxfD5k0+oks3CZ1hAD1lqEkDg3QnIc9jseHj5RVQUprRgnT0z5ewcCy2XNcO6JJI7nEzGOnI7P2PGMSBlOGWLAAz5mQL40JagCJRLGaAY75QAtVkS1IFASmSe90RNTTlBiriC1Vi/qEVJmPyUpxYvI2sXWAylfsnJKmbX0kwVss72j2dxQ1gvibJOnUMSQMFpltzIycELML1JpmYN1Tv1CZrFxIQTW2bn2n9c5Qr7sry4kdxEEQgQgEoTAmopWv2W1+K/ZflFz9/UX9O/+yPR8wlu4f3qHixUFkfcfHygKRVVULMslX//LX/PmzR1XZeB0/z2FlFTLDbJeURU1UkJVVRwPBz788C2SyHn/xIcfvuf56YG6Lvny7WuUFJyOB1AlzXJFDD3t6AhRIkkU+hrTrIlEzv3AShmkUnz48JHgE8vNFXF8Yvf8xOAj65vX6LVgnCxRFQgtqFbZWf769VumaaJ3E313omuPnI47uvMd5eLEtlxSGI2fYlY8bBZstzdZxS8oTBRIpemnbDT8tLOUzZrlZkvsR+zUgvFM9szu/hGjlwRleWw/YcLIw/09w/MzRfEtk504d45yeUeq1jgn6Y4tr25v6E+PjKc9z58+ZSjqeM1iUdP2R2LwjF1P37ac9o+c9k+4EEDC6bjjY/SMQ8/bn3lcUgi157Q7QBBUZcPYn9nvnjFaEb3jtN+RLhd5HDjun3h8uOf16zuO0ZKC5nTuQAp8ihAsDw8fSMFzPj2iVWTs9qQwZmWKkDcZpTEoJGVZUjdZUlcZRUiB0QV0tcKLGkdJIK/zBAmhJCLl/lOKz6VuPudZsvaCkXgpi2e507z6jHP2/fOy+Z8dsOubV5SLJUkKpMrTXaky+0bCXLcLQmY0EmIAOfNgLz3tXC4LJREhkohzr5BtDb23eUglBYgMLBBxhjBKidOSY5J04TVWj3yxsJQ3J86f7jk/dgRfc2oFV+tXvPvoaU9nCJLFNmNbF6Xhi7tXLMWETHDoQza8QrBcLvk3//o3/P63v6UqFWN/4ofv/4nz6UDwA9Mw8sd/2qO1Yhx6VutrvB/wMXI8d7goCTGX9qZcZL2h6Elh5OHDdwQfs+JkSnnqu1qirUchGNoOGyKnsacqKmLwKC3ZbFaIL99y//COGCe0VBlxIwRitoXwvs8ucSlza03V0I8CYxpU2aBVYjhLVquafjwRYsHu8IQMifVSMfYH7t9/y+One9bNln0XiElyvdmwlBI9tDz+/j9S1IH7547q9a8pr75GqC1VUWI0nNt7+sOBrj2QEgzdiX5okRqKQtNUDTE5rq7WxOCY7IQNjuPpTBCaH95/QirFaD3Pzy1Xqw2FKji4LPPatUdizIT28+HAcnNFUpKp60k+ZGJKteBpt6c9HwCB0hURwfkwMA1HrO0QjAxtR5haUvQvwSWVopYSUdUorfN+XUqCD7TDiCpr0EumZIgUmeud5pWkkLN42iyqNpfHQoh5JpODMKb4o/42axETZw7siyLFT1gSV80KIRUhJkqlECkhlZzRGrmx1kZDCPlmu2CGZZ6YuRBIMVGUuXT23qGrCoTATpeeV2QwNOGF1SOkzC1YAiL4BN4vOfivmPod5kkhJ4EdesauZ11f88P7P/JqUaKkou8H6g1EF+iPB2R01GXJ6Xjm3A7cLG9xdqJrDV999XOOh2cqozjvn3HeU1QV69UCSSB4l5FZKeKmjsfuxOg8h8MRbWrslDWS6sWKQmVwQQgBO41sr67pR08KiRAVqlxxta5QhQEBx9MB5z0yJsZpInlLkRKFURRKcrVeUVUNP/v6a6rlkgD01mIAkqA7t6SYmCaHtQkdJpQWxJiDu6qXhPCRD++/4/H5icrUvLleUJWRx8OR9497PnHGO4fRim9ur3m9rInO4U6P2P0RFzSnj3/ixixolgVGGs67jv2nDzx8fGD/fMjKEwS67sx2u+H6+pq3b96SgNV6xdPTA8PQobShqRvO55bgAo9PT/TjREoSVwjaKZBUhdISOw04O1EojZYJ8JA03TDgbUCpgmmc+PTxPV13wBhDVS3RpqDrTkjhSL6H5LBTP/fiWbQtRCjKEiVKkpAIrZHG4JzjdD6hyppJrwmiAlkTU/Y1zttJQZwJ6EoqUsgHVQpBjOEFbihlntdcAjld9GLmRHYhtYufUuZUSpVJ5zNvTmuJnHtWIePnMnam0QshIKZ57TOvd4ykKPVMWZCZpKwk3ucH9zFkO/kiv6SYAqRsE5JSylNvEYheMnFF5FcgnymLA1GfEWbETTsK3xIwMCRUsebt3R2V0pyenvFDNnpu25amrBBhYGiPCAqsn3DesXv4gBsCg0tIU7BdLqgUtKcDkx1Yb7d4O9LvTiyWK/pu4Hh4zg7bMWSfoTIrRpIiPsDk3AxDc/TWk8yC5XZLP04Mk2ecRozOqBohC0xVEoYzCc3N1TVloagXSxarDaqqUSZXN2J+ljRNuG6gbVuedgdelwXdecHU9wQP4xgRKXvZns8fKIQgdTVv396x3lwRPDx9+AHhOt7cbLhbahoN0iiCPbN/+kDYfsm6qWh0Yjh9IArD4/0jf/s3f8fD7kQ/9SThObUnlnXN0+Mjv/rrX7HdXLNoanRRYK2FlNhut7Rtx/m0z8PICH3XIgTs0oR1kWZ9g0ExDWck4FIgRphOe3yM+TIuK5QUPD1/4vnpA+fuhDYFN9eeQmuCG3F2ZJoyZc65zF9MZBlSIcl6Y6rMSUJLurHP2tZKo8sFk1oTo8kSvygQEZgRTIg8GZ/PvEChZD6zQqZZAkggVQ7MGGcq3QwiurSFQqifNsN679FGo3TOfEZrQgwIeSlhM2k5kZUllJrL31nlXCuFLgyk/CJf1kAzi4EYXz7vnSNFCfpHFwD5JvPBIGQiaJDmNbX+76iXS+J2S3X8B4b9J/7q7Q3Hfcf97hFnR8x0RtuJOHl2hxaSz84FInJ4eE9pKlJM9HZinEaejyeCTZjlluvbG5pSYc8HTuczxkgiifNoEWXN1as3JKHYHY6UVYUPEWkqhC7yvtl7pmlEdYKiMDw9HEnkYca5PWNdoOsGUsokWF0qFssFdugpqgY/jtzcfQnJU9U1Wmn6vqfWFdNoqaqaECylVrRuIqSIKTRD36PPJ4yUTN5y2O0ojKEuS4b+9KL6n1zH129esS2hGJ8okuS6UWzXGs9EErmsjX6AFFktl0ynZ7TQnM8d3/7jd3z/7h1iteX94ZAHOrbnarWiFIovv/wyH2DviN7R1CWvbq6J5Baoropc7pLo2o4QHGNhEFJhraU0hv3z08shL5sFpigzz3Uc8GN2wzsdd9ixo29PaJNbH2dHxrHHTj0xOpyd5rJUEoTI/TYiq2GIhMTRHU6M1hKTQi+uGFNFShohDaRsXpWn33ltFWOce9jcg8pZ9kVc5qxzuXtJYpcSOIYAZNBEDvYw43R/ooAVYsYTyzymTikgJTnjipz85cWsNovAIFUer2slM7E3xqx+h3j5waVZ/jEQMVrPPWV+Ay9BfSEOZJ0ciVKOSGBIBRRfo64Vy23Fwq8x5w/07/5ApRylEnz74cBv/4//FWclZrmin2C0nuQFZfC40XJ4vkcbTTtNpBgomwa9LLh5+xW3t7eMhx3d4YnRjhRFwzj26LLi9vYNr+7ekFJivb1iudmwWK1RpqAoa4IdCMGjpKBvz7QxC3RLrej6SFFkAoIdLcvlNq+3QmBoW9rzmUoLRuupFhu8HbLCwdMOn2AYRmRRUqhbUrQMU/eicyuVRKSAEZH2eGBoz1g7URjFol4QvGVVK5SKmYRBROC5vmrQg+duaTAGgsjTei0U0U6kEDjtn/E2oBM8PDxw2p2wbmD/7Pj+00f2+ycqLaiKAhez6sjzwz3t+QQhm1n5IgeKtQOLpiLFiLcj3k04O+Gncb7MJUoKjsc9CNBlRdUUaGXo+54wDZAS4zTgnKWuDF2v0Fpm4b1hZLITYVbGkETy9mTG+s66yEkqpug4H3ZEN7FcblFqiRUNjoYYM/0wzWvKTHQJ88B0ngSHQIphptclLqCllGagBhlnkD93aQHJZAHk/Nuf0L2uLIustK5mRo5I6NkLNkQ/Z1VDEokwD48KXeSb0ntizFKVmXqUAdDRweTs3KAnlNakFFBKo5T8swVzFnEDnQQiWBCRmAxjMiCu8foLUtmxLRasU6Kzf08znFibxPvne/7P/+1/4df/9t9T39wx+ITQChtGdKUZJ8vz7p7RB4i5H7l7fYvS0J922P5EDBOrRc3NzTZfUrqhWGy4urri8eMHfv7Nz3n91S/ZXl9TFJm50Xctq7rEWkfbnSEGlssGIUVWU0gGby2lErixZRh8hiO2HTEExDLbi0SRGK1DkpimER8DkUgpE9NwZBxbnj69RxEYhoEQIjF69k8PpBgJ3uZe0NksrF7cUteKUgSMEkxeMIVEtViyWRTcLGokDosg+YRrJ4bTgFyNjA/3uMmiRaI9HNFSInF8/PAD3WlP8hMow/l05NVmQ9+deP/OZsMqIof9M0rBZN0skeIYhh47WWKYVRiMQgmZJUtjQMmcEILPzvN9e+Z0PHHRCnPOonRuEZZNTYyRrj0jhWSyEz44EHGuBGevVqkIMfN8vXfcPz+QvOf2+gZ0Q9JLrKjxlAjy7EaIyxBpHjAxK5POSuAy9zw5OCN5qKr1nHk/t4pxDtKXfjZdktNPKRFTGuq6Islc8oa5jAkxGw0rKXNGVZlfaYyGmBEouSTIAWdMQXB+nq7l0iH/dXY0E5BJ8FojBPiUcnDHLN4mVcQInXe80REV9F4Q9WtiEnjfUKeRWJw4DSdESixNpGs/8oe/+d/5V//+v+fV7RcMLtJ2gmbRcDg8YY8nhFZMU5ZMEXEC5wgh4Lojwg9sVxWrRUWYb3VdNXSHAzIlfv7NL2g2r3DW44aWJATD+UAcFNaNOO/yrhCRD2tIWOtIzhNDwFlL1/ecdxksrqWCIuEny/F0BAFGC7wf8SEgteRw6BHCc//xe6J3LNYrTGFo+z67I6iUlQhLzThJSl1hjMIYhZ3OFMZQGI11gcVyi0kG4y2TENgwUVaCpjYcTkeSc4ztCTcmhilPelOI+CC5WpfcPAtiJRH1KgNrUuTVzYboJzo7IVPC2YHkJ9rTgXYYWa1XODe94MgvpWOhSoTKK8FpyNPvGAKIxOlwxFrLMMxG3UVegbnoKYqKsizx3hNSfvZhmpjshCk0RVUCEqk0PuZs60Niv98RnWWx2qKbK6ZQ4sQie7uK3HvmAWjOshdpF+YQSyHHwosAjBAvq5v8b8SLnhOA5HOZnL/kss75KbHERmIKRUhpnnLFrBaRZhyxgBAcWmnKQuc/x5iZOilPiY3WpJggZSJ3DGkmraeXtVBK2c0r9zV5inaBNkqZ5WVSNBA8QjgCU3btDiu8qCBqPj1+iz6WNIs7zNlxLRxajwzxxKe//w8UD19Qbb9A1VuEqomyYpxaYtchyYf4vHugMBK8Z+pagh0RZcHTw0izWmO7iUIVtKcWlSA4x8P9ParZUEgIKXLaPdK1LWVVogtNs3hF248ZRRMhhQQ+kOzE/vETp+5E8BmMUlUV0bZIMQ+VxKzxTEIVhsNzOwPiDwTvMErRti3TNNENA9fXGiPLnJlsoGoq3GRJAtrzCZMGhtEjmwWT8wjhGeyJICVeSdYVxDRiD59I9oQxiW5sGUk8HlvafmDRNBTNmi/ubgjOsZ51plPKXjPbxYIUPQSYpjFneiWYpoHgHd5ZQnBYm2VplMxnxUpBFJKkVO51Y+aTiiTpzh0hXWB9EevHuW9vskvczLAOMSs8DpPNfy8VcdbLDjMwR0nB0LeIGFhWJavVNYMzeL3Ei4Ik9Ly+mcvgOAecvOxYMz6YlEMtj5c+50kh5efAnMULmDconwdM6TM/9qfEEqMELuXuVAg5m1JJRMroFyXy1FcrUFrifcgZL6Y5MGd+YEgQIj5lqUykQGmJMXLOugKhstpcngzPD/ujwHUxIZRGxIgIEZkyUsRjGMU1+vV/S5Q14fT36ORI7T3L5YK3dcNx33K4/3t2zw/Ur35BWZW4aAkeosu9SAg+S2HWOk9Zh5FgJwYtMYuKKDynk8NFhQtZ4sZah24W6KDpz47gLPcfv2f3vGex2vD2y6/QqiJESwq5LYghH7zTcc/z/hnvRrSUdP3E+QBFVZGExMVIURqkABcS+JL3n+4py4LkE0aJjHUOlq7taRZLVsstSef+ar2+wsjE+3ff8+H+kaE7cd0oFk1FTB390GNkQuPw0SFrifWWyXrc6Z6he2YK2Y29H1p2uyeG0eK947paU5YL3rz9GVIagg/YyWKdRYZ8UcQ0URSKKQmsm2Y4Z4kSkSl47NDhbE/SCi010xQzNzToeT2Sg2SaJoZxmHvJiA8O5xxKK7RyxDDhQ5yRUA7nLUJlOdUkJTFmRpmPOdH4sSf6ibo0yMU1TmVghCNzVUVKSBJJiplxk3vSGD1K6s9BdymL51I5y64BIptgSSGyeuKsFZMHU2meEIuXBPsX4ib+Ugf2CMHPsMIZbniZ9sa8fNYmO4rFBN4nJuuJSSFFFl0LPpACeOtIZMUJKQVaZyWKfL9IkggIlTGXzvoXL5IUIymKF9yyViZX2sIjRCRGGEVFufmGullS9TeouyWNeMD3O4ZPT5RKUomR7x6e+XhsORyPiKqhqgq6dkSZCoskSsM0ekQg690WFefziYUuUQUsVhtO7TkbFFvHmy9+Rl1q2uMD48y+2D/fcz62kMDf3jG0PaO3GVyhNafzmeQsQ9/jYyCkiJ8s3ts8PZ4mIpKyqREKhn6gd+B04DhJGCbsNDKNHTEMBJeBBF8WJS6BkiXNqmFZGs67R8ahZ//8yGH/zNnA69d3LJeLl1LO+cj5fEL2HusnZFR0hx2HwzNjUojGEHAUZcXkAuPkSNKAKilXDc1gSW5iFCdSsIjoCc7lHlNKXAi0fU9ZGmL0WDsw9D3DmDG9CYNLFq1L8J7SlHjnUVphpxFrbQ5S70BBjIGYIlqarIDhxhn+l0EsMQW0zllazLRPhMTanufdM1WhuVotCREmvcBGjRP6hXwu5sC7APgFghkugBAz1kAoIn4uebNFaF5FRlRKCKHy5iR+NnNO83n+jNfNsfGT9rBqVk0UUuK9R80Y4KyeAHVdIJTEThEfEjGITLCOaRadzg/uQ6CfJozRFMZQVQapc0mdZqxlSDkLX5A9McQ8Af0RIyilvBq5gKdTynu1KCJdgGRewUqiTEFKf2J99Q4lSvbHPxG8o5KRw3nP87lHmhKzKNHLK6rbr3HlCqqCGAfqxmPTA6KQYBNFdY0UNSlkxJJEEIOHlIc8p/OZ5WqVZXDchNGCGEac7bFTRzcMxJTQ2nB4fqYpC8rC0ArJ7nBgtVygi5LR95R1hS5KpDbcPzxwOPbo1R1lfUN5/YbD/pHn8QfOp5YUeowMJGdZ2YnOWyoFm+2W4XyYZXo8UkSG/owsCoIHO0XqKgdQ8ND1I8Gdua00jal5fHzifO5o0VjV49SCxdUdwbR56FJUTD4QlcwyNKNg9/SQp73BoYv8Hg7jiFCSqq4yWmzsCTHig8eHAELinEcIRUwOJRV2fr/dZAkkQrAzlDCTya3zGJO1lKzzyCBnOGymr0UhZ65qdjtMUnHY72hPe4xWbNZrkizwQtMHRUiziJpIyDnwZv7nfMbSS9mby0VJFHMZK8SfBaHkImVKfo0pZVSVyGc9krcm6rLKUZ+xxj9JwAqhcvk9T8SEEIgYkVpQ1wXaCKYpI0e8n3uOl7Y7p38fAta5OUPmYDXFrDyRwKdASrlvFUDwce6P8y122WFdfoUwsx9mTKYSWRwsJMGUaqK6o940RL/m8H6A8yEv3sOZukjcbUpOvSOJial3dN0zJMX2y9+gzQapbzA6UlRbhvaBaqOxZLdyRcAogw+B5XqNc5bnpycieUAngO1mRVkUPO9PTFPL89NHVFlni0gShVaURtGdjhwOB6TWmLKkKktG71msVkhT8P7TJz4+PtNNgr/+xdcMckWQmqf+kYfjOatWjB3LUpHsyOncMk0jWiv6sWccJ3xKFGWJMZrNekWpS5AGoXQm8VsHUeJcwnYTNSm72QFFWdPtW3o9oa5uKRYrrhZbvMsgEK1d1jcWGfzivGO0I1VVvmQkLvt2IRjGEec9jTHElN/HlBLee6RKaOSsAjGgjcl4W61IKRCjQ2hDmOGsCcHsUokPAZEyBSxEECpLkmqV4aeH04ndfk+lE9fbDcqU9N4wJIMTFSFlyiIzOF9elA25wAvDy/BIqYwMyNDbrCiSGWeXeBEvSSqEMKP+5Bz/M6JvDtw8JeYvTbB/qZC4yiuYWRURCUoJ6ioHq7WBEJglS+cXGucGO10eIGGdyxhj4ryrmm08uFCM5OwbCiHkyVsMKQMrUiIlOYu+8TKICiHrC8kUkNFhLiWGLknP4W0AABB3SURBVNDyGtOsCCXs7EhRPpFWe2w6sKgXFEuJ1oHDcUCcLMP7f2TcdVx/+QuWr7+BZkFZrZnMyDRYJIFx6hAu5DUUkdM4YrqecRxQWmWpE5H7LG0UzaJkGFrKukKE3CI4O+DcyGHs2D/eY+3IerPOvZq1JCHRZcF3P3zgYbfj+XSmWt5hUfQuMvqO4/nA6bBDkktj3ztKIt3pSLKWp8cHmpn0LrVhtb1iedrl9YZPNE1DUcxWidHjxoFTO+C7kVoEFs2S1dUVx3uJCwlpanSzRtVL/DQyDhPDMFLKkig15ewGL1VG9pRVyWRzeX9ZZ0x2YppGhATnHc5luuULAgiBdW6+6iPBWRACk2acuszAFZ8CQmW7jHzgZqgf4GMEVSBk9rhp+46x77ExURaG1XqJataMQdMFRZAVSZq55JVzjxlfRkAZB/y5sosxVwJ5XXORpBCznhnzc2S9YTmTXV4Gq/PZz7rEcZ5AX0ZVP2GGlUogXEQrnZXMZcYFm0LgfCD4PHwJIc6MnTlQmdn3Kb9B1lqQkgoza9wIJDIry6WZsZNkhjkyb4NmI61LVx7jRZEuvQyi8q2aDwUpkaIiBsFkE1o1LN78W6rliuHTHWn/Bav2HUXsCf2J0PeUpULFjt1+pD18x6fhE4v9O5Y3X9Bc30BREKioFxXWC7rhQHc8EFJgmHrqqkQB11dbjudzPhirJUIpIgmpBLrQODugTUl7bokuIOf+aFE1VGVFmsu9GAIfP37i/uGBdho59x2La8PhuKOLhnO7x/WfEKHL65tg8dGhgWHoeX56QMiC7nRFvjcNy80Nq82Bu9s7Dk9PFMZwbs9EP2WLS2uJUjKGRO8TDoFD4EVWCxSqoKiWuKQ4dWP23UmR6B0eR3ICUqZDamMIQuBc3sErlZFLYQ7MlLIDQEric+U2Y3Pzf9PLjlII8C7bT6J1hsMqCSnzStO8aZBC5mm60PggsNNE155JfqIpNE1ZIE1DsbyiiwZLQVCaJHJFJKVAiwQp60XEmZye5sSTg+5CVGeGIoqZufMyDH4BBSEUxM8T4YsuNynlgdacqVJMqB+rKf4kASuzZq2SGX5ligwRTOkz8Tbln/DMzMkKiIqs4G6dzUOnOfDCPD1WWszg/gycyMEaCSHO8Mb0YhYkpZz74/BSBocQ5t5CEIRC6DIPO0LGe0I2Cg6Fwlz/krpuiNdvkO3fUbh/Qp9K+h+emdoDhamoSsfge1xqGfZHhtP3NO0vaV79nKJcImSNqUFPEVxgHDo+Pe+pyswIEir7kb66vUYoRTf0RCGo6orJjnkgMQa68wkt9bxhn5U4yBdOcA4pJd3pjEAwOUu9aJjsiNs/0jrPfv+J4fwJyZjRY8IjZOYV++h43j1xffWKaehJaFarNS5MrLa3LCvN4fkJpEAbhYsCISKF0VR1zTRUYCRRSWzM6pEuQnKB2PW0NmQIpjYYKXFuYnAOLQS1UVlBgzTDNA0xOkgR611GYmnFNGWNKkXmTs/Lk7mNUrm3nXvAFyRQEhkxR96fkjI3LENaBbosQJC9d9ojk/NIEdgsK7brJSEmMA1OmFnipQShMyCHlL9LygimmHK1GF8ClVmi9M9r10xgn/vWefp7+bx86QfmGJptJ+WPAlPME+ic037CoVNyFi1mdIfU+SIVihRFpgkBpBxkKSWSB1D4lIjzC5JyNgmGLC8SIkXKWVmbTCQI3pN8BmKk9LlPvTxjmnWN8/g8XxiXN1vNN1ZIeW8sZ2BndCEPB2SJ0F9Rbmuc0JyPBcn/nhiPGTsqPJWWXK0qdClQwdEPZ9qPv6fffaS4/oLm5g2yaFhsrvBKc5gcfZAZe6wDSo5sVgtcSLgoGb1EFxnUf25bSiXwzhP8yLntaeo6//ykQKiI7boMZxQKoxTr1ZIpBvZtx/39d1zdZZe8vntksEN2LI8RLSUGQSOhUREdenz/THdcsr7+isnlygdl2J8HZLEkJJ/3uiIQ7ADJY5hYVJJY1ASl6IeWMQH1gmAkSiRiBF02pKCI0dGejljvKIxBCIMl4WKYCSCR4ANRhFlYeyZr+/kjuXlvmkvFkBxC+JeLOLzsOGcj8ARJiOwPqzRSKfwMcW27nnHIImciOioFTV3z6uaGlBIDhqAabChIskaQpX0uJS3ic3AKIfJKh0QUaabDza8kRRAKQUZPyTnDCi5Zd44NUi5/X1BO+VvlTKxyzy3SC1rqLxT+/8sC1o4j2mQxcR/CXNbkwVDuP2aTq7l8cCFDDGP6rF0jyKSAEDLo4lICiPnNSCli7YgQJi+pRabwJRFfKEhKyrzX4nPVn8nvwHyYfqyt470nhFxehZS9gZy8Qq7/Fd4a7ocOESd0EenlO1JjqXXJql4gI5hhYtp12GHP6ePA8fkjy80Nzc0dtTYsCkOpso1DRjYqfIJ6sSBcbpmYcl8ZI7qq6c4dMUbsNFAWmhRC9sbpO7y3jONAWS9YrRc0QnJoT1kP2fZ0x3u8lCTXZZ5wyJmtMoZGSxoZWZWGSoObziSXd8g+JhariqGLCGVYrLb0513eV47ZfY/oCX7KbCltiFKQtMQsl+BHAvGzG1vI70nXtVibvYJSikx2wNsJhZjXcJkBleDlQo4hEGLKvWvI5aePWREyxIBQc6jMuN8YeQnqcKnO0EiRLTPa7kRwgUIbtNYU5Mq8qStubm9AFwyTJ+gGFw0x6ZxoSNnDVUQS+scTo5dcd8mgcgb4X1q1H3+kmJ9B/VjTaS5xI593rj4GtJhhkSFTSOMF2wB/lnn/2QErlcqULpWVFYSUzHJ9881xIa3OZUPKwPIkZGZrCNDqojAnXjCWw5CB3spoYvR5UiglRqu5msi9yeVplLqMy3OO5bM+3Wy29edlRba6nF+nDNgocUIjuIb1f8Xmr64Z178jHv+G5asVtWgxbiJ1I36IyKRJMhH9RPSW0B0Z+h32+ESxXHO7WFP87AsGF0gzMXmxvmG5eUXfdZiyYWhPSJGYhgE82MnnUtR7xmnI7JppyE8iYPKeWitQAh88znYYGdjUBqUTUSZ64QCPVlAaTV0ULEtDgWdZaAoliDZbTiTZUK43WCsISeZV4TyhdN7hvCcGj7MDldEZjCBBGQVlRShKVJX1pd1kGTuLNoZxOtO1J+Q8IJrsgHcu9+VFkVc73hHmPs15lwHwgpdAjTPjxYWYUXTo+ZTnizckMgCHRBQCF8MMSEiMXZ8RVMGhpaKpS0ScSDhMVbK5vgFTM0ZJUAUhFYBBoF/K7CwGoEh8Drb/UjAtyZmMfvnzi4LKRYDt82bjx8fv0uNmsFGuRC8NZJb9DXOwiwum4i/69ZcFrJZIJbHWzsLgc9k6I1Gyae2lz4xzMz4rTsREoXLmyRVcNgBKSZBmISuCJ8bcmzIDrfMaLEMYsyKFxznHRZXxEpzZdEi9kAVevu/8Q0thHqeLiJCelCQ2KQIL4uIbCtMgr7fI4Uv0+B2NeyAdPnB8/8DUn6k1iEoxDB7nPLXQ+PYR2x+I5YJydU3drOespFBmgYuaKEoO5xYtDUkm6nXJ+elASnHex4IpS8qqYL8/InSBVJJmvcXUNeM00HUnBJ5lnc2eyqbh3PeUeKpS0pQVRhvqoqAuFIaIIZdazo4c9k8kWaErw/GQYZxlURFDNtUOMTFZC9FloTifD5NUgigE98eOQZR4ndk73ekAscBbz/m4w9oJY0p8zGCLFBNaSoTzWB/wPiuLXMA2PoaceeaL26cMPYxSkVJGIeV1XkY9ibl6ygHvGcNMPHeeOKtGKCExSiJToKkMoDH1CnTFlAxjkHgUiAIhLsEqXtqpy/rxhdMqPg+KQkbm5HM0n6nLWctrRl6qO9Il6nJGvSScy0c2gWPGHGSiw0ULKnObf8IeFgHWTfkLLtpLpFlcKr6IhUf40TQ3zNktZ79LMMlZNe4SWHnSy2fKkSTfSzHOkLL8/yAmYsySkEpkvKhICSXmPiel+TKIL98rZ/usP6WA5B1RgBISLwJBQNJrqvVvKFZfMB3/wGH/W9ruCREKZFEh/IBOkUoIVnpJYUps32GDpx2OdONI0DtUvWCxvcYJxXCuGEZLCFDWC0J0dOPAw/Oesizw3lFUhnK5Zr1Z000BhEKXFc2iQSiY2jPBe26vr9jtdpRFgSlLknekTVYAqUwBMZd/WglKLcBbqkLhbCAmz9Cf0OcSVJY4qYqalCRSF1gfs2Kh8CQifl59QOLcDex6T0gFsShxjlnI3GGngWkciESSz0ygDMyQJCkJSSB1gSKTH9KcKUPMJa4gZ8+kFCnlNsnGDLBRRUFKAp8kPgTGGR9tg58TQ0JLgVG5RFZSUGrNZrXKwaMUSdd0XuFReDLCKQk5T+XT54pQMK+E8tG7BO3L7+eIzOORz1n5vxwuxTjbuV3OsMhDxMv0N7duIMIMAJoDPKUwB/fnC+EnCdh0QWaoXH8bY+bbISG0nPsK0CIjjhAS5wNqFqa6wLHkXIrp2b5DqWxTKead7IUErOTLth1kfkPTy3ArvYzGL18TY8g+s/8fASuV+rykjrkaSFx6bxCiIBZLRq5J+grHmvYpEdvfIZaPOL1DM1GlSIFBRkVhak6nATFMiGBxscX2J8bjE6pqsM9X6HJBudqQnMLPPkNBSGwEaUpUVYOuSbLK3q1+okqKemlw1uJDwhQFTInSlLk1iLCsFyyqhpkUgneOoihe2gRtNEIpdKFJGKapR5336LKmWd5mJwJTQXDU9ZKxqBAIxiFjb10MDNPAoqlpncgeSiLRdcecNacJO/b0Y5vXVi6gpcprvbknvKB2vM/OhPnFZj2vGOZVjzFEIUBJYvJ4l+Gqk50y2MPFz5sA8txDkFlLlclnwyeoypK7m1uM1IxRE03FFCQ2yaxeeQmyebOqmCvAWTssp4f/dyD+P+2du3IbMQxFDx+r1cqxIxcpUqTI/39OPiFNGsd2tJKWXJJIAVJyOheZSTTD026nIUQAF7y4DOpYzfJaMLbLAVQ9seq/oJdM1WyliH5oko65bq0TUzvGaGPNWQ3WIn/xPaygExvea43zh6xi2n1r1OC6+hm5N9YZbZqlDXM7qxNK7XFvm2RpQxAp64C1lsNXWcc5d+1Ey/Vx8FqbGW/TmvZDiRWCLNhsGBgQqoFZ1n9qI4XsBwIj2QzcfZr4svtMefrK8ekb6fydyT4zxJlyWHj58co5rtpYszAUtQSxRh8x58PMPD8jfsLdPWCnO+w0Yf2G+48P5CIMwwa/GUjimJfEWgzncySJ5eGxcDyecM6TZeVwmBGB02lhu91ireH+/gMhBExRmaBt8ra1jg9rBDzOGWIMcDywBcYx8vP0xDiOlBgRDH4zEk5nYkwMW90innMhpEQSz2635/gy8/prJuVEPCUkq6ZaJFdTPUsIEWs8Oa04J2p1W4OtOeBb43QxWi61JII1ZZaQWOJ6senJWWjLoowRJGsn3DvHbuvYeE3np2Fiv3+sdjAF8RNL3hAKFFNrU0pN0LLqtAXVR3X653KDtvNyOTc1Y4OmOOhZNO5qIC7NmrTuzWnn1Io+Aqgt58tMgrWWmFY1esipypmuRs/7UmLzXnvFTqfz73mv/NPpdP4DesB2OjdED9hO54boAdvp3BA9YDudG6IHbKdzQ/wGchebHVDTx5sAAAAASUVORK5CYII=\n" - }, - "metadata": { - "needs_background": "light" - } - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPAAAAD3CAYAAAAjUNkqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9ebRl113f+fntfYZ77xvqvVeqKqkkWaMlYRvZYEAGPMjgxiQYOjRDIHQHszoMzUrTmZMVsrrdndAJdAIsFqHpJgnQcQIkdBZT4pB0sww2NsbzPEiWZFdJqpJqePO9Z9j713/svc859773SvVsjJdW115+Vt1z9jlnn9/+jd/fb+8jqsqNdqPdaM/PZr7YA7jRbrQb7XNvNwT4RrvRnsfthgDfaDfa87jdEOAb7UZ7HrcbAnyj3WjP43ZDgG+0G+153G4I8I12oz2P2w0BHjQReaOIvP06+94pIk98gYd01LOve5x/Wi3SQ0Uku87+T4jInV/YUYGIvElE3vyFfs4Xq11TgEVkd/DnRWQ6+P09f1qDvFaLTHPvF3sci01EfklE6kirKyLyn0XkgS/2uIZNRN4qIn/piz2OxRYVlIu02xaRD4jIG75IY/n7IvJhEWlF5E3P0VdE5MdF5HL8+3ERkcH5l4nIe0VkP/73Zdd77VHtmgKsqsvpD/gs8M2DY/9q8PDr0rr/P2w/EWl3G/AM8EuLHeLE3fCEDrZ3RtqtAf8c+Dcisr7Y6U+B9x4F/hbw76+j7w8Afw54KfAg8M3ADwKISAH8JvBmYB34ZeA34/FrXnut9jkxjog8LCLnReRvi8gF4BcPc+uG1lFEShH5xyLyWRG5KCI/LyLj63zevSLy+yKyJSKXROTX4vE/iF0+GLX1n4/H3xC19qaIvENEHhzc6++IyKdFZEdEPiYi33qN5/5vIvJ2ETlxPArNN1XdB/418JJ437eKyI+JyB8C+8DdIvJAtNJXROSTIvKdg3GcFJHfitboj4F7rvfZIjISkTdHrb4pIu8WkTMi8mPAq4CfjbT72dj/WuP4JhF5fxzHuWtZJBH5Nglu8kuOR635pqoe+BfAGLhHgkv86/GdtoE3isjZSJ8rIvKoiHz/wm1GIvJrcc7fJyIvPcbzf1lV3wLsXEf37wX+iaqeV9UngX8CvDGeexjIgJ9W1UpVfwYQ4Ouu49prDvC6/oAngNfFfz8MtMCPAyWBuG8E3r5wjQL3xn//FPBbwAawAvw28A8HfTeBVx7x7F8BfpSgcEbDfsNnxN9fRrB2DwE2EuYJoIznvwM4G+/154E94JZ47o3A2+O5XwB+F5gcMaY7gSeuQa9fAv5B/PcyQYDfFn+/leDRvDhO6gngHPB98feXAZeAF8X+vwr8G2CJoASeHNIa+B3g7xwxjh+MtJ5EerwcWB2M4y8N+i49xzgeBr400udB4CLw5wb00Hjd9xEs173XoM8TwJ1HnOt4Kd7vfyAI0AngTUBDsFaGwHt/APxc5I2XAc8CXxevT/2/HciBvwE8DuTx/M8BP3cd/P9m4E3P0WcLeGjw+yuAnfjvvwq8ZaH/7wB//bmuvdbf5+O6eeB/itpkeq2O0Zf/AeCvquoVVd0B/lfgu1IfVV1T1aOAmQa4AzirqrNr9CM+5/9Q1XepqlPVXwYq4BXxOf9WVZ9SVa+qvwY8AnzV4PqcoDA2CCHD/rXe7Tna3xCRTQIzLzOvUX9JVT+qqi3wjQRl8Iuq2qrq+4H/G/gOEbHAtwH/o6ruqepHCO5X11T1Dar6j44YQwOcJAiTU9X3qur2EX3fcNQ44nPeqqofjrT7EIFOr1m4x18B/ibwsKo++twkOrK9ItLuAvDdwLeq6lY8905V/Q0N1vkm4GuBvx154wPAPwP+4uBe71XVX1fVBvhJgqAnfvhhVf3hz2Ocw7ZMEMTUtoDlyP+L59L5leu49sj2+cQPz6rq7Dr7niJYgPcOY3qCRbie9reAvw/8sYhcJbga/+KIvncA3ysi//3gWEGwuojIXwT+GsFiQCDcTYO+9xLikK9S1fo6x3dU+8eq+veOOHduYcwPRYZNLQP+JYF22UL/zxxjDP8SuB34VRFZI1iSH43MvNiuNQ5E5CHgHxG8gILgff3bhXv8TeB/UdXzxxjjYe2PVPWVR5wb0uIskIxCap8hWLAD/VXVi8j5eN2fdNsFVge/V4FdVVURWTyXzu8817XXeuDnY4EXb7xHEFIAROTmwblLwBR4cbS0a6p6QgNI8dwPUr2gqt+vqmcJLuHPydHI8zngxwbPWVPViar+iojcQXCN/zJwUlXXgI8QlElqHye4gG8RkfuvZ3yfYxvS7xzw+wtjXlbV/47gDrYEIUztBdf9ENVGVf9nVX0R8DUEK5us0+IcXmscEMKA3wJuV9UTwM8zTzuAbwD+noh82/WO8XNow3E/BWyIyMrg2AsIYUZqHe0iYHhbvO5Pun2UoPxTe2k8ls49uGBRH1w4f9S1R7Y/SfTzg8CLJUDlI0LsAXRAxC8APyUipwFE5FYRef313FhEvkNEbos/rxIm0MffF4G7B91/AfghEXkoIrxLEXxZIcR4ShAKROT7iMDSsKnqrwB/F/h/ROS6AaPPo/0OcJ+I/Dcikse/rxSRL1FVB/w74E0iMhGRFxHi+utqIvJaEfnS6IpvE1zqo2h35Dji+RWCtZuJyFcBf+GQR36UEBL8UxH5lmPQ4HNqqnoOeAfwDyNg9yDw3xI8jdReLiL/lQTE+q8QQqo/up77RxqMCLKSxWcc5Tn+X8Bfi7x9Fvjr9JmHtwIO+BEJgO5fjsd/7zquPbo9V5A8CKqfYB7EOn9Inx8lWNtzwH/NPIg1IsS9jxEY6ePAjwyu3QVedcSzf4KgUXeBTwM/MDj3Q8DTBBDsO+OxbwTeHY89TXDzVuK5HwOuxHH+JPD7RCCHBSAO+H6CO3YAbOEYINYh597KADyKx+4npCqeBS7HiX1ZPHeKIFzbwB8TwonhON8C/N0jnvXdwCcJHtJF4GeALJ77auBTBKX4M9cxjm+P9NiJ4/lZ4M0Deujg3l8Rn/dnrsFPzwliHXLuTemZg2O3xfFcifzxQwv9fx34tTju9wNfPjj/88DPP8c86sLfG+O5VxHc3NRXCLx6Jf79BCCD818GvJfgjb4P+LLrvfaoP9Fru9g32hFNQhXRW1X1zi/uSJ6fTUIV28Oq+sQXeSjP63ajgOBGu9Gex+2GAH/ubRP46S/2IJ7H7acJNLzRPo92w4W+0W6053E7Vh74zd/3w2ozG5CK3NJ6h1fFGktbO/KiwKOo9yBC07ao+hBsO481BmMt66dOkk1GGJPhnMfhUSuIMXj1GBGc9xRZwSgrQTLaPMOcWGF85iRrL7id5bVQ3aiqtG1L0zS0bYtzbi7ID0MRvPdgemWlqojIImABhP6pOUI/AURjzmRB56X7eO8REYwxoDb+BgRUXbiPCGBCfzwYEGMQY8A5Tq1vsL66ymg0QhUuX9lCbM727j4tQj6agG8ZFZa6cZjRMm1T0exvsZwr5bhkdzbDiOKbiqb1OK/MplNAMBjUe5zzqJhu3M45AIwxc/RIdOrpIngfARTp+6R5Bpmj31EGItFqeB+gGweAEdPh5SqACAh4VVAwIvSAepoYRdXEv/Q7jN2IkGcwKnKMNeS5jfOpnD59mvF4jEM5f/5Jzp49y6QY46Y1Vy9cZLq/ydm772R14yTnHn+C97/jj5g4eMd//I9cefI8HrB5xsrqEssrKzjnWb79LGdf8mLuuv8BTp08wXve/vt8+N3vIzclbeNYXl7CVzNOSMaTjz1BlVu+5pu+gW/5wR95zkUMqR2vkMNA3dSoV9pGcM6FCTcW9cJ+tUte5LStAxOEUAS8erJAeeq2RgERQ+1bWvUYhIIMUfAqKNCKgdGIKsuZrK+zcfYW1m69hWxpghpD07a0bUtd17Rti6rOTX5iDlBELMYImF7Qhox6GMOlYyb8CMLnA+MgB5OfIoK1tr8n6b7zykFj9WcaGxoYSySML89zlpeX4/hgPJmwvbuHzQxLyyt4Y6j3GzbWV6hqx+WdGbPZjNJabAaz2QwQTm5sMNvbYb8K8+Wdw5qMPMtpm4bRaEzjfKf0vPfMZjPatu2Ea7F57wkCauK7+AXhhkXKpONDOqtqUHKAMTIQfjoFqFFIk9JzyRAMFESiYdd/bu59d9/0Pg7wztO2NUaELDNkWUZuLRcuXCDLs2CcbMby0hJGDR/71IeZ7u1y9713MDlxAqeez37mcTJRPvWxj/DsMxfw3mGyjHJliY2zt9ISlPJoY51v+OY3oDbjXe94G07BFgWXL22ysrzCxqmbeOapJ3n8yaeYuZb1W85Qrq4doPu12rEEuK4qmjq8fNO0FFmJGk/dzhCxeFV83aCRgCCIEdQITpXGeRyK16A31QiZsVgVRBVjLM4YNLfk4wmrZ85w8vZbWT59Ch2X1F6ZOQdVhYsCnCxuat73gtMzkAbzybygdkyDRKUiLPJtb3G1O9Cz6uGCr6poFOD+0mC9jDH9GMUgAqOiRFHaWhmPRr0wCIg1YISyLBgvFxiT0WYwyi3WWHamLWYyZiQtq5Oc1rVMm4bxaEImStVuIVYoy5KyGFFkOXVdc+rUKRDD5cuXo9CDEdjf36dlnlbzwjx/vBcmz3BR1VBgkwD1FrcX+qAUBgrTmPl+ytz5xX+rytz8p/kZjm04nuBttAjQNGCtxZogyFmek2UZxjgef+wxcltQNTXl8oSljQ1MnoP3GK+ce+QRHvvoR3DTfYzJUIS77r6Xh1//ej777EU+/dnPIJMxFy9f4pbb7uDe++7nN977x5g84/a77yQ3GU9dvMBsNsOeWOau+17IV3/91/OCB+7jOO1YAry/vY13inMt1mSYPGlMS1UH7W2MISsCIapqGhwcgcxYxBjGK8vkeRGts4AHsRa1hn0j2BMTVm85w82338Hyxga+yKlFqKsGV7X4psH5FkUPWApVMMYOhKl375B+oq21C4wjWDHBAfM+uLM6ENjDjUt86IIy6BiVToiTtQnWoONIjISxnFhdxXvPztYWWZal2wYxMgab5xTjnDK3OIXxqMDE9yvKnIKMSVayPMpw6jHTCkHIs5zJZIK1WRyXYWV5Fde2oDAaFayvnWA6DSva9vMM9Y7prML5eYXU0/jwUEPEdLRMnlASmqG3s+jhhJYEf+gNBeUmZl7oEYl0DRMiYqKxWGyeYJ3DVIbH+iTdwStRxTcNDSB1hbVZsMhZRj2rMMYwmowwmWE2m7GyvIL1SoHh0Y99nGp7lxwDavCt8sQjj/PpOz7FfS99kFnTwFLJxz/2cd73gQ+x+ewFtreuslyOOHXmJpYmE5rHZhRlhmQF9sQqTVng8/KQdzm6HUuA/WwGGLR1zFxNkzdkNscYgzWGtmnIsgxXQ1PXUYMqxlpEwSAhVnUtai3W5EiWUxnI11Y5ddstnLrnDooTKxhbMGsdddvQNA5tHNJ4pHWo8fhB/BXmVTBG8D5N7EB4O7/XMNT+3b8RvNM51y6xaQxhgcA4PgRUqCoZcoAhe4b3kakHBNTIzGh0m2EyHnPTxkbADZwjs1mnMVrnaJwjLwvKIsOKAe/Jo+13XoMXI0Jmw2WZGPIsD/e3GZnN8KoURUHbesqiQIqSqq4QEcajMd57RqMRozIwj/ebnXs9fLdAz0QVAH9AoL3XOYW12A6ziv3v/ry14UB31oR31sE4TOdpDYgs/XNNFP7heBSN1POg2ittgbZtaOqWSgRro1UucnLJOH/uPHtbO1C3PPnU02BztChofYO0gHp2r2zy1rf8Lh943/toM+GWF97FV7zm1bzlP/1ndjYvIfUe1c42m9vblEWONi6ETBsnOH3XHRTLywyiwOtqx4uBq+Aee+dwDqzNmbUzsqxA0M56tD5qYBSDwTlHqy02z8jz4G6IyWmyjOLECidvvZlTd9/B5ORJvLW0ztNUNXVdB6K3ARjz3oME7bvojvWzR5ysMAKJ6FNnUBcsioigPsA7ESMhhafhfGQPobOq6d1UBCPmgBAnpkkWKagICUpHwVgT4mXfsra2Rm4zJINTp05R5EV3/6quu+fmWRZXfgjWhPE5VZwINoTPHQ2MsSTrZK3FNQ15ntM0M1rnGBVlUKR1RVEU5NaC9yxNxqh66rpme2c/XOvcIe5riu0PB6vmPY55F3kIHPa/WegzmN8YbqgMleo8qNbdJyoUI4KXeaByfvwhfMPHO5nh2MB5h3MtdVtjWkuW5RR5TnX5WQyG9dtu5Stf9zoe/ehHePrRx6mvbGG8kgOznR3O72yST0qMBfvQK1jLCvaqGnENHocTZafaDZjq1HDfl7+M13/Tn2U0WiWj4DjtWAJcXd3Ei5CNRhR5gWtrvJjwwk1LmYfbOfWItXgB7xu0cSyNJgHoyXKctZQrS5y64w5ufuE9FGuruMJSe6WtG1wV3GTvHURXRzE4CypCHidRtBemBHgYm7SuDMBi6QUwTuocuMJC37lffVxsYkyrETjp4uPokkHPfL2CifGhsWQRwVcU9UpZjlhdWsZE6zKOFlCBqmmpnUMJaGkmBkMQWkVQAy4pK+8hxp8CZJntvAaJCjcvSjJrA+BVlIzHY+q6Js9zRqNRBCQtK8srgKFqnupi49RCyJKEMz2tFyRVsLaPg4d0HgryUKiC1e4IOUC/I/Jv5jGF4AGbOG/Jag/CFbF431vfDrCMPIImSx6OiTEQjUzw0BR8RNq94ts2eEJNjbEWazLKccntL76fm++6g4uPP8FjH/won33kEaq9PawPd/bTKRc+/Tj/4dd+PXhQezNyHM4qjfEYGxSNiuEzn32CT3z8o9x/34OsjHOwh8Vqh7dj5YF/8u4X6/buLrYcsXL6NGZ5mUoMjkA4nMO3LVmZI7mlVo+1BuMFRciWlzhx+6088MqHOH3/PYw3TqLW0jrXpYISIpomPExmnGzTx5aLyOOwHYyzElMsxl6xrxfQg5YBAiMkD82r6xilj1IN6s1AMXQ3xpjgShsroCaAHRpBLGBjfY2zt5weWM/AxA7Yrmqa1mGNsFSWZFHIW9cGsE+E3aqhUbCt48SkJDcdHNepoKqesruzSzka07QtznnW1tcRYG9ri5WVFaydr833qjx75SoXL16cE+IkeEOr7P08gpyAokU6D/sdNldHzeWiwPdzlLwrT0olqRrQoBBSGNO/kwtzEk35fE1xSquFe3rvwYfro5MdUogSUp3WWvIsxMsZgtYtT3/2s3zygx/k/COfotnaIXcOnOJRyjzj5tESN09WmGWerbHCJKPG05gMHU8oVjZ4zde9npe//BWsbpy8bgk+lgWWzOBdi9/dZbNpWbv9dorVVVyeh/RDZqkzT2uVkTGMvGDIqDOBk6ucftmLefHXPsRNt92GmIzWK/VsRtM0HWMsTuRcykCTO3tQ2BYRz/lr0704YBEW0c7F+825X/Emi+CN1x7EWRTgYUw9BNSMMSytLPVgTLDLsW9wFzJjKDJLEb2JIZoLKR8a0zEyQNs0xfzBxU/vWxQFs6qiqirKskCMYW9/P6SthtcD62shnXHhwoU5UOowRPkwN3VRgJM7vujWLoZCiyj18JkH79+/Zx/2JCzEdwrbex8o3IVSA48rzn0wDm3/TkY6Tyl5ZUGwfQgh25Ysy7BZRlZknL3vHm6+83Yunz/Ppz70ER7/+CeZXrhEvTdlzzscW1SjCTK2NGsla/UKo3JEnQmaC3fdejtn19d47zvfzmu/6b/ketuxBLgRwXtH4UD3p1x9+mnWJ2M0M6g6WueDm2gMjSjeCj6zvODBl3D/qx5i/UvuwY9L9jyY2uPqGufaOWs7nKThJCaLK6bX8vOTmYCsg5Z5kcGGLRRdzDPvHPMNhH5ReIf3OCyOC3Fwr+07V88aylHJeDyKd0iiKwE7VcXGGHZkQ34cAqhlrelsP0SwRbK54N1rdKk15DTLssT53gWtqoosyyhHJTs7O9iZZTKedJpOgNxaTq6vY4ArV66EHLFzwe0z824yHESnD0OvD5ubRZDpMPoO2/z5QVQshFg2VHzEdF3PI0MXOqHSIhGiFoMxIDosSFFEU1FOL8Qpk6Dq8b4B12KcxVrLqBhx5t57OX37nbzwwZfx8Xe+hw//0bvYvnIZ7zyz7V3KUc7YrbJdG1ZWLVlZ4Jt9Nj/yCG9/5DyXLl/9Agpw0mrqEfVMd7bYvvQs5alTKErhBd+0aFnQTHKK227m5a95Jfe9/MvJl5aoUaqqxTeh8sc7h/dubhI7gh+iifs5W3SRe6YRGRSYHEA59YAV6+I3I4j28e8iG6U0jJ9zoQ0p9pvvB+pTBZAlINJBgK0RxAobG2tkmR28EyASqrMURKHIbQ9YeY+PVlmJCHSMcYeBghDdVTSkj4wwHo/Y35/1VrhughW2OUYss2mFNRlFWcy9tzXCTSc3GJUlzz57id3dXdroPg8t6WL11lAhH9Y39Um/0/VHKfJFN7uf0wDWIZEvMZ13lhRopzyRmB4M89zdM+EnSE/PgUfWvZef9xyShdfWBV62Ft96mqxgnBecvecebr71Nu592Ut49x+8jfMf+ihbz1yi2Nmnaj3VDGb7DZkVZtN9LvJ4VCjXH//CsbfUETyKF43Ip7J99Qqr5ZhyaRkVQ4VnsrHBi179Cu79mq9k+dYztMbSVA1atWjMQbqBy3jY5FzLLdMYlh4WHy32XdToR1toIta1YGVV8b63fKY7lxjSgvTFGamgwaTAVkGwiNFOiNdWV1hdWur2ExrOWXD1AhhkreCj69f4KJDRSjet69zB1jmcs4idH1u6X2YzjLVMZzPG4wki0LYuvGuWUVUVfn+fJRGKIscgMS4PjLy8vESe51y8+AxXt7YQeus2LB8dlmMO6byYDxaZr1o7as6OqghL85XCjzSbwXVOKcSF/qmXYf5kqDcCNITTQ3UYGS3NSVIMMPQaQijjnce7OhiltqXIcqSwnH3JA3zL3XfwmQ9/jPe99Q948qOfZDqryHYr8hZaURpXMVWHA5pjYFJwXAtc10HssmARAKq9PS5fuIib7CDrKzzwqq/hq9/wZzh9z934ogzASTvDO0fbNsHK6CCtw+HA0mFWGeKkLuQZj7p+2GcIWgzdvoAmH6zA6p/bW2mZUzkHn5veSNUThhgQTiMWxGOtMC5zNk6skSUBl5gO8g4bxwJR0UiAUWZtG+p4bbAwzitN0yI2H1j6/t3btkHs/NQWRcHu3h6z2ZS8KKmbBuc8xljKckTT1Ozs7LCyskKZ5/MhBcKoLLjl5jOUoxGb21vMZsGiJ0E8jB5JYNM8Dum+6GGl/sM5XFS2h7nawVpagnvbjzj5I/2QEr1jvzRmE8peVSHg/DqImfvc8/yrhfsGBWMR8WGuUnzsPc43GJ9RFAXFuOSer/wybrv/hTzxkY/zgbe9k61PP87WbMqkzDHWUmBwgPFfQAGu92fUTU1RZmTGYNRgMWzNpizddQdf/13fzkte9yqKk+vUGtA5rRt8XeMNOAkppog7dIjgYpsDNExffIEqxga3dS42HTT1Pk6V9j7lAvi1yDid27sAsEDEMSOgISlfCISyFNOBJ4G5lMyGBRnEGNaIIc8zyiJneXnM0mREnkWGI9R+t15pnJIJZBIA0CC8IWxxXhkVGSaOx3mPU8iMoXUeGy1qqx7UM92fMllamptdY4SizKnrBqsZmbW41nWWUcRQ1zVbW9usLC8xGZVz7jkE63z61ElOrK1w9eomly9foW3b6PqBxHTNPEB4ME4OGMZzKOmFuT0IcqXfBz22sDiim3RC+j2FOlERR0uaEOtgSAZjMRLuHUO27vnxyT7xiBHAEvBmOpyjcQ7jPL5xtHkIT7L1Ezzwylfwgi95gHMf/RiffN/72b/wDO3mJqZpyL1iv5AWWNqaUgzGBe3k8xxOrPKVr30tr/iev8At99yFywxV62ibFt+20Hq8etQD3mNNkN4Ubh5mPUVkLrneD2DeKgz7p8kzQ+FMrpRoJO48+tlr+F5TL6K8YoWEIikhtjXJIvtoMc2Cqygmxr6B6W/aWGcyGpFZE+8VTKYSUh7OC84btAXJgkvoVHFOadoAHGXQCbAXQWOFlW8ajAX1jrqucc7RtI7CeYZFecbAeDzCeYf6FmMyQGmaOtb/BkDMe8f2zg51U7E0WSLPMiJKEOkbVvOcPnWSUVFw6dJVqqoOAimB8V3ENkgpmIHA9VM5iDeZXxW2iIEc4A0GIFQQpx49lgggRKQqAZ99nBKFVENRkDHa5aEDtNGXvoaYOvBtx1PpOSHZ3CXtLDFs8gOPT4Iya+oG1zryvKUoCkY3rXHfq1/JzS98IY+86908+u73sPfMRcQ3OHfYZqFHt2MJcO4cajLUGKoiZ+m+e3n193wnDzz8GkYrGzQos6am8QGgMs6HZDgDVzkJWPwtHHRzj4phD0OSh3FwuN/iddHFJMJOh4BbB5ksPMeaUDAxBFnMYGyk58WfxtiugEAMlGXJxvoJlsaTmJvv8eMUXzqvuAg6qQqNiytnVHHOU9cNo7LorlRV1MexeY+RsJxzaCWGtIqlD1gMhRXKrKFuGoxAlmVd/j2Lec2wGsmFRQ1ty+rKCmVeDHG2SJuMtbU1ynLM1atb7Ozs0vo20jhUg3m/MAeDuUoFH4uA16IHNEf7BWvtfa+M53nCEB3jSNfgjammdFuw3L0yj0UdGqznkEd8XBrLAliXYn5jkseVBtzzdLRV3fjTyjmbZcioYHLrKV7+Tf8Ft957Bx962zs494lPUe9czwcg+nYsAXbO45fGzJZH3P+qr+XV3/PdTB64j2o0wlctrXdBeGO+rPM3SHFE0uUJ+esno7Ognfabd5MXLe1hcVcfsczfNzGGZ+EZnTIxvfuj/aAT+NFdPwBsOvc+dIzPCffPMktZlqyvrzEZjYP1CrPajVQ1usIugGQhn+zQjumFum5oW4eW0pUkOAXXNhiNaDtED2d+6VzbtmGt9pA+EgCt2XRGq2BsWHTiXEBSrbWh5LIF7zSWVO5wYnU1WuLkhvb0m0xGlGXJ8vIym9tb7O7tESwiC0DVvIIZotIpc7AYI6d+SVDmLXM/14F+SfgHqaNuucQ1f1UAACAASURBVGO0rr5DrKI1lc4VTjjIonIPHlXwCHXg2nfxP6m2Os1af510anceg3HeByiyKNAy45YvfTEnb7+dT733g7zn7e/gOO1YAryV50xuP8srv+tbedk3vI58/SSNLXHTliaWPvrouogPywbDfAcNpqTEy8HYFZgDRA5rw0Xgi23O7ZmzqENreVCoD1MEKZ5NGj6JdMoJJpAjxUJGJBYqtFhrKIqSkxtrlGVJgjkT46dnO/VxxU8UshhzefVRaRiKPLm5DTPxGFWmdUvrfNgMoa1DUXwU4EQf7z3T6RRVZWlUdkJa1TVt2+ARXOswPtDcxOoi7z1N02AzC2Jp25ZZNUO3lLIsQxgQXeoh41ornDixRDkuGO+M2N7eDsj2nMAMXeNA5wD2yZywD1tvrcPY8lgwlKxvbymHoc9wHoNn4lyfskoGXwalp+FtYvZg8Pwheu6ci+KosfQ1BRXz3Gzm+FMPDRPxip02+NpTlzmuLBhtrPPi17yKMy98IcdpxxLgk6/8Gl7/vd/N2a94kDrPaL3BVC2mdTjjImNrbwTNIEcpoXZZOCiABwEKusX36Xjqdxi4MYyLeqGVOLGDiRpY9M49glDz0FkJiPmEmPo5OM7OjXah6idpbmsto9GI9bU1RmXRWaxkaeumoWlqMEJVVQF4co6wdC6Mx6vHpzSFmHhMsQY0WWjtrYAxwX9IbtvQJd3d3WXTxFw1qaYcNC6qkCg4QyFumoY8zzBxsbtqUCBVVTGbzRgVJWVRkuc5dlCz61XJi4yNjXXG4zG7u7vs70+p66arwBrWUgfhTHRNoN/hChXCOBdDq+SWp0U0fY7fROUbFKG1PWjWzTEgkoFve8WirvOmgAPFICEkjjwwWJI6HPO8BT9oqLoxeAH1tDQ4BS2C53byztsOXHOtdqxa6A+/6z26fvZmGpSqqskweFUajYBFXG6pkceUHjtI2EIKBUUT6HH4zhgxRDzgNh+GPM+5PDqsS55P2Ct+zn2e39ZlXokk9zmkBgdaVhWTJlGzILxJFwvkecbS0hKGANyFrX4cTes7DT63DE8Er3H7mJD17WJdE4EqRHAalvbhA/LfbddDdOsWlJ1qInTEczrgTBOwivF6CNOlvsMUW79riJWwkUCeh7XGRZGT56ESrI7LD1UDKl7XYceU6XTGbDY9kDvux+oWxn4w3Tecs3DORJyqD13CuV5JDAUs3WNekKUD21Q1zNmC+56eN5SToTu8eAzfx8ch3J6/V+rr6QLkQFsj5EVBlmU8/OqvO9xFPaQdywKv3HaWRpWmbrAIXh0OF4rAfXKsei2lHbNLVw4Y3gYQM4gR5qujNDLtMJ5I/w3MOrTaHQkDESPzaacp+kcmLb/oRi8+ox9mKGjoXGiJRE+utfHxn5HZRKhdS715NU6edBuBhNU1gRY+rhP2aXwSUP2k9bq8dBTscItYlhktj6YYUIJl8hqEPwEynSsnPjK4xGvMgCDDpX5pLiTeg96KQUhRAWgT6GKErZ1tbNztYzweA2EftODeBqueBDzPLXVd0zR1t+Z1EYTqfwd6JbRfI8iHEFebxdmJqYwgPGkFkkEkucy9xSMt5TQxu8DQIEj37qFfXCscFrEHwzPAqVQCRhBWvMUiD+9DWjTxWwwb51NTtpsblxjXR4U9ALmO0463oL8rfXRxnYZ2jEOC3KEDqVK8m1ydg23eNR5OaGLEAy5VZ9aTSNKfFyJ0nyZtIIzSI9SLFmeIbqa+vYVM/xnE0BIAOu0ui3o2DdFI3DFjECcl+cB3wzKd4YwubYwrg47QgdJTTMzxBm4xIR0Xn6na9gojMkjQX4ob7gqnkZET7eYWuie6RpoPNz/oCRPrhQNtvff41lE3DXv7+/Shi3SgU3LRRYTRqCTPM5qmiWu96eY9XNMr5V4BhjLXVCMuENJ2mryHVFTRC3EQRB9dD+04xYekL3GvALrtYjoB1s5ialQCAwilo1XYLMFEACyiAcYEo9aViNpuueuwJQ+or8Izc7x4DIcYOKYAt4NdJnvBgp4I/Ut28WK3SwYLA9WOeXuLOF+JM4xZuyZ0mnmubx9tHxDIxWcPfx/mpi268t1x7ced+nXu60DBpLxjjOx6C5dc3vRhQO2VSve4iHaStgHyya9JpZi9EHYW3btuTXF3Jhl0L3N0Dtd6iJFz/16JlrH4WrUTosS0ibfmaXdQKQ6Xgw539UgCnWVZtzrJOUfbHnRbO56I75hy4LFTnJpI0+hpDDc1CCKShDcKtwieWIIapyzwZ+KffrVSWF0WtutR/JwJVoLyk0FM3839wEtMjO8HUpnoeBgYexjG81ztWAI89P0XLdTiIOZjsYNtETFM9+9eQIb9DgykE/j58/NCuBinDM8dde9FIgZiz1t6k1ZEDbQ7c48JbnKX+uqO+0iPnE7U5kILQcXgxEXh1qTfu2f0W7l6NIJfRsKWRV5SBB0CF41eRx/5Dv+Yo40MPKjgraR4rd9oLiySmKfvUAHOKYrhrAzmYbhz6BA8Gx4/LJUDfZFOCj0kKhokrYGPQuiHb92XmoYwxiKiqOmf01Vusci7SbDn9zVL/zXGhMrCxBdxrju3Pe28qYOdSRgkOwf0Pg4WNWzHc6F92l9qQVAF0i4Jw3aYZZ0/Pj/RxqTKGrpVP4tWOzBXek6qa4U4iAHjHbw+PXv436P6dhYh7eYwd22YCLNw78FTUjIrWIW4xWnnvkrWu4ND1019sKbJ2hKDL5+Q0xCu5IXt5qGpm+hGBqvRph0nIhKbEax6Z2V8sMIhVRVSI0biKh4IcWUXFiVjl+y676zfMB3Uz+kR5FigfRLotHnDMBZPggGEApVYJaWdgIRtmvpsRs8LgR/6dJJ04VRaGxx23NAYyqRnzu3YwbyQhj8BdaS13MmhUgUrtlvoYBA0VfcpwZOKRLQLQroItF5rg4prtc/hA9/STVwCblT7AS26ootuVneXRIVuIuYt8lG54tB0zjVfvBYO2Z6Ug5p9fiwc6CciYCRhVt2YEk8n723x2uAmp7WkYemlVxePg6GJAuJQbRBcWKJpNFjW1sV42JPZsNbaNw02g6ad4WrH0mSCMTnTtsarRcTinCEvJth8TONAbWB1VY2WIrjNaedOL66fT00lhUdQPtEubmBA9+7zaZPD6DsUyiHNe56Z56mOhxCM7ZJk4V4+1MN7pwhpEUMqb0315Z2zTwLwRIZVX4HOkoRxIJBhDKa7Jghw8pxM7NfZ9mQ3BqHIICQ0SSkOeERTVZl0yvCoVVfX045XC909JBDN+7BdTNJqQwGZnyDmjg3uyGEuVzo1tIqL2qlnihDsBfQR1Cwm9jn0+msJ8txvGaDhQwHu75we0J0TJBbDO8KCQAe4ENf6Gqv7oC3qKtTNMDYsRRM86oJw59Ywm+7RekeRZ/i2pnEVrZuhWlOJYEwOmmGyEWJLyvEKTW1ZPXkWO54gkuNNhkhG64SmDt5QNQtfbNCu0CKsQw2pLBtf0PTvFt+qd5PTvAW3NM1hb1Hm989a9MAgeDZzNcaHzIMgITUpETzrFET06tKcH5jb+W1tk/s/3E44KLG4SWJ6mhm+K4N3JXpESUVo91yl90rDfU3nlcZO3TuJSPfVki6tNzj/ubRjCvB8XNu5KpFhFxdk98Smuy7FG+na4c6GyZ0BDli94X3S73ANdPFQuOCQcR+Mp+Y7BEXgu3tElRyF18a0VF+BlSp2PD7400Gjp1ROnHh1M9AZ3geBRRR1M3y9Ca7CN1OE8HWKpnWgDbgKEaWJFripZjgTK6dsgHJUQ5lkWPsqtFmOioFqQtM4ntn6dNhStixpWstotMp4vMZotEJejhnlDT7z1FXYQqZpPJ4MsgmODO9tyKebyJ6S46XAa05CuZMVC2voI718G+gjdiBgYb9br3WYtaBvg5VMC1ZcimnjfHdZBkGNjxY669z2UAOeLDNduijVoSfPQLX/tE7/JQgTLWDWbSaR+EnFxS10kkeYXNvAvCl489HdTgUxylCBxOtFSQU6KQ7XyGvRLpDKPg8DXa+3fQ4u9EHrlpq1w61l4oB1eF3QxvP5t/mWzvW7SvYgRH+fw3bviNcPjh821kNdPAZ5Y5IF7eOiLlrt4Nr057sCeFWHkVDNEyqmGny7SzO7iugUQw14vKsQv4u4ClxNkRmapkLjJz/QNtzb+7Bvom+ZTZuwstiauDoqPT6ms9qwT+d0thsuFUJe2YSxmaUTmPoE9U7O3nSPWT0lyyy5FCHFgyUrJmSjFcbjE+TFMrN9H75tJULjLUhJka3gNAcsmBD7BeAszKWRLII4YYwhZxvGaJLyF42IckpdaUilBMIH8g792m7OTPi0TSdcYb6GVj/xT4pxkhFcbOmaFEp0YQ8WNUOQNh2f9yzxKe8+N0z6A0PeHHqeJr5jKj6Z91aP4s9rtc/RhV48TnBFOkJqMmAxZjhagBaFaz49RSe8w34prlu8TxdJz7lzByt6Dm+9C9wFuVF4uy1O0RCv+haNMW3oLuDbkDv0Neoq8FPaahM3vULGFGhQ34SPjvkG7xq0rfEzhyZL4NvAGBIUuNPwrpnNER+ud9rVagWr7xV8TZkV5DZjOpvGj6WFfahVW6bNPtXOJRChcQ1Oa9RaGmcQhSzLUSyYnJXVdYpyws7OPoiQFSOqRsnyFZbXzlAxpqJAyRBbYO0oWGhvMGaEYKLV9qiE98HEFZcalWN8P9VYCBOttCD9ar+4iySEyKOfZxPd3jAvoZJq6Fqnf6c0mZ/jgaGAJWuc4vAQF/eIeR8C+i6+Tf1T7XZI4c1b0F4BDPluUXauET4eox3TAs+b044knRs5cI0H7mgf09DHBcnNHLjjB4S7+7+Bizy89/D5JKGXhWOHW+I5sK27tu8ftn7VzvoGmfZIFFDxNd63gUmMRb0D41A/wzX7aLMHzS5Sb1FXmxTWgXNdjbco4DyiDonWW5s6MHvcG0mIFT+AaABQrLE0vkVpEfWgLb5tePbSNgZYWV4OX8Kwya0lfEVAMhBLYSxODdr6bv68q0EMqjNmrmIqjqrZC7QwOZCj2ZiZXmb99O1s7VbsTRtW1k6ztweYEdYW2GINTIEhI+DfGZ7wpcAODJyzrinXrJ3brGio7iMslTSYtOV1LPgY8KImvCPF3CFEO+zja2nO+3PzFq8X4rRVUZ8371x7end3PpZetJ7h3eaXSrLw7H6hx+fTjifAg6TlvFVcICxJTnuXJ/Xt0OM4h4vpp17QknVbtJzRFWGR+IqJm84dlv+95mvJcLwLa1SjC4V34GaIn0K7A1phw7ID0Cy4s65F3T40U9xsF233MG5GW+2jGeA9SotqjUqINcNukcHlFtFQUudctx2siRvni2ZkNqeTAfUgDd5XqCrlqMQk10xbmsaBgBiH9wbIsLZEXR5LEAEJO5OFKifwrqGuWxRHloX4VUyDYnDNPlemV9nfPI/znnK0TOOewdWAFEhW4otVTL6CzZaw+TIqYzIzwZPhSWuEQUyG9nV6CE0sM8zwGkswUnzcucbJUMR6cRWGSjktrOi3k13w9jqrP6/YIcXPaQEEGJPSfnGF16B/4pFFQT6YYel5efHrFIsCP/x93FTSsV3oYb5qUeP0bu98jmtR0/RIXbQ0CzHAYTnGhZFcw53viXc9X8VL+Vj1nWM6/+yIIKs2qJsifhdXX8E3O0CLmILMjhEV2maGd1PwNUanwAzVGXkGbVN1Lth4aYXJykk2t2rqRnnmmacRlFFZMt3bZ29/SpZbbj5zhpWVZfb3dqhmyiOPPEHT1jz4pQ+wNDGge4iZYo3B+QbX1MyakK8VG74CIeo7xrS2wRpPlhXBbXcOsVmwBUZCjC/RXXQmxNDegzpEAuBVtXsYlP3Z1fApWLGIseTlGG9G2HwJMz6Bs8tUbcZk+STlaJm8XGbWOOpGwRSIHYPkYWcXr4jmIBqtd4yrO+RXOiFKzluoSAve3JDlk6UL7NR/nzkiFZ0lPShExI4DAZdQVz20wEOlkZD2HjybNxwJ6e6vGfLhQf49LN32XO14Atyt5BkcQ2LFj3ZudZfXCr4NqWKqe7mkPYOJWBD49O3eAM/PA2GL7tDhBSFd70EsPNR2iznr5CiEOtooxnFlC1qBOgwO0Rm+3UX8Hup2UTdD1SL5MsYU0AbXGq1o6h18O0V8BTQ0vsE5YXcPnrwEH/v4+3nq4g6Xru7y5PlzlKVhbXWN6fYMjDJZGnPq1GUefPAlfPJTj3LhwmXOnX+apeUJH/lUw4MvuZv77zvLqZNLjHJHPd1jurvDqMxjqiKWPMgq+3u7PPLox7j//rsw1iPWg2/IVbBmRItQjEqcr6mnu7TNFJvHCqm2AXWoaxF1OPW0GrdJCsujyTNL3W5hTI7aknrH0moG+QRfrVBOVsh3V6gaxXlLVq5QjFeZLK8zrT1Vk4EdY8wElSIUoXSxVeCX6IpFBSvzwjyY1yCkqUIv5NB79lgsmkiIde9e9wBpUGZJqCV+tzrJAMNwUcMzGRS6JIwChrH20MomXjvoSR6nHWs54WNPfUa9q7EyWMBAFgAQ6WuU+6VuhLhRE9Bgo8tpAkoa63q9911iRuJLD4v/Oisd9wEOVvEgOq0Dl7xzXzTFSrHaKC4KSIl0BcLX3AVjHFAhfoa0U2hn+HYfiFun+Abv9vFuD9fsYapZLO4HMRaxWdivWT31bJNmNmN/fy+4xZXy6Kcv8uhjlzh3YY/NzRnb2xVLk1UuXnya9Y3luD0pLC1NaOoZXj02z/EKqysrXL1ylVnT4NQzKjNO37TO7bed4ctfehdrqyNGZcY999zF8uoKS6trzGqHtTeBKk89+TijwrGyZNB2h3a2j5UMbIlkJaKeen+L7UvnsTKl1VlIW3lHW0+x2iA+7LrS+gZsKAyxkgfaahvSQibE2kiGsSVZMUJsjjcFYjLE5BibY2xJUYxpFVRG2GIZsSuoXYVsBW9GqM3xYlHNQTLQBrTFquDVdEtW5wTY9zGrj3Goov2ab5+q2HrlnT6KRkSwUzjV/xF4dsHKqmqQ8RjTDo+DXwjneqvbK4/5CrR07uFXv/a6g+NjWeCR38W1+0z3r2Kti26MJctHZGY8p5Ggl64umlUbJjFu+OZNhotxUABLLEoeiKotgu/LFXXuTmi0mIdpraGbP/fJkBQ/iYYVRUj8X5x0rVG/C24PV20hzRR1U8DTqMZdLyryHIoiY1a1UagDKm2txTtQLFWd8cinNvn3v/X/Mpks0zrHuScvUJZLgCE3BaMSGreHLTOcLVg7sUZhLLs7W0ynM0ajEePRhJ29fZxzjMZjtvenTKuaqs4YjRve+ccf5gMfepSyyDACr33tw7zq4Yf5ihe8lNXJBLEhvl6/9SyPffJjLJ85QyZK6xpGK8sh9YXD729RXTrHiYmwu/Us09keWIN3HqHA1ftAg9BijcVTBYvoFXCdtVJfI6aIyrHBNwbjPWp9yFWLBZvjZUpbbSOElKHbz7DFMl4mqJmQlSuYYgWTrYFZQqUMIZcYhDxiWP3GeYFFUnVUv4mDmMAsKdoOwtlbvxD6pcKMweEBeBm8yf5LjcNQUfHgosFIm1DEcGxY0zYEa7snDPCfxZj6etvxViNtfpJnnnkS0Rnqp3iaGHRk5HYppCO0J4YxAsbisCEewGBtTpYVFEWJZBMkG2OzEcgYlTEqI0JVVXSBEiFEkbQyBDu32dkQhR4ifQdicZ80rEQcTEN8F1cI+XaPttpE3Dam3UNchbr9sFOgpuWRAdmVzOCqLVKc5ZzDN+FDZ9OZ8rt/8Al+57fexvblhrLYphxZJMuoG88o85y6eYPRUsvSiQ0+/sgTTOuGNQw721vsbm9iUbRtyFQZWaGaThGbM5tWYctSY5lOK7watnZCmSWi/PZ/+kP+8L2f4Hu+d8qrH341t5xdpalm7Fy5zHve/QEeeuXD3HnPAxS2oBbHSBrqq+eYbW6zv71DtT+lKE4wsithyx8R1m8aMypzPvPYI8x2LiN+hyzL8K5GtY7MG5Y6qhigQYzQ1qHay+bh87MiBokFFGLCPpsBkKtAoKlCXJ3lJc2exeQrmPIWTL6BKdaQYhlvxsFbkpy0ckqEbn9sxcdvIIVI2kjI5EJaCZTKMeZAlvBf7fO0dD0H1nYgfB0KLSYsK5WB9JtQ7DMP4vYAWnxphHmQ63NpxxLgC0+9l8mkxDc1u3tbiChFOaIYjWjrKZCFzd+114hibLS4wc1sxTD18SWkxJgRthhjyxOU45Pko3WKfBk1o+hu2w5x1LTGEz2guQJdhh7A8FiYLiNZLHyL6RvfgDYYnSF+H1dtorOr0OyiOsNrg3P7eFdhiYCJ97Qq1Cpk9T5OlcoLTsbcce+XsrVZ8av//Ff43d/7AFubFVme47MWUxY4J3hZ4tmdXco1YbI84emnnmR5VLC3W3PpwnnKXLjp5ArjImNvZ5vdzQuMxhNmjXL1yia33HyGZy5dYTqbcdNNp3j2mYvs7oYcb5YXFKWwP93if/+nP8Vv//av82e/8fU89PKX8q4/fCuf+NhHeehrXxM/m6TkTminu+w/c4kLTzzO9tYlZm2N856NtXVuOnMLWV5Qtw15scxdL72N/UuP8+xnPsRs/xk0bnmLeLw2XXXTrN7Hx+qp0WSJPNLbmAwjbRDeWJvtB4AVhHi7aXZw3lOUm1Bt47I1zPgkdryB2hWMWYNsGUxBiHMtYZs4E3GY4L0lG6gdB0T+iNzZtYF17MCt6J0l93celB1st5PiWnQg5INa6AgUpPuEkC0sfEiu+hCf+YIWcrSyzd7MoK0yGpeMRhNmVcusakFc+LyEOMQYsszStg7fzroqHDSW1cVNxtQL1mT4KqfeK2nyVYrROuVojWLlLLZYQWSEShFcGA0TnYCJRRi+13jzAFY417sxqh6hQttdpJ3i3Ba+3cbVu5h2D3SGj/vzqg/ljd43+KZBxNJ6g0iBNp7GAeUKJ295IUsn7+M//N7v8htveT9tE74gMV6CyURYXxtx9UrN9t4+plympmAlX2J7+zwrkwllrOE2xqPtjHvv/xLOfeZxdkzL9vZlzpy9i1tvvY1ivMT21hbVTDn3xBMsLU0wrQeJm4vXgtWcravbPL73GP/nI/+Mf3dylf2dK5w5vcbWs0/xeL2NiOHSk09y7tFP8NTjn+TK5YuYPEPKknIyYVSWrK3fxKlbbubWW29l5eQyUmScOHMr9fZ59rafIkPxbROqNKzHtQoSPkTetg1FacA31DNHXo6RTPHiwyZ+nhgrW9rIhoG9W7yC9+ED5L59BsmntH4X6mcRu0SWbWBHJzHlGmLGeEYYKVAMPlZ69cIrQfkGP4skjEO+mbPA0aIPdwdJXt3ix867UM1AymP7/qIE4BwBth6e6vyCCrDNxoyLkslowv72Lju7u8FBsBmZZBgxlKMRICwvL7Ozs8NeXYewx1qszamqGrEG1zSA0PgZ6vYxYjHMcMyY1VvMqi3y8Qaj8SnK8QYqY3ysWZ7fOzCSY0CMoevcUyYuWxOPaIX4PWiv4GdXULeLcxEx9hXet5TlmNF4md2dS8yqXXwzIwuwCK41OAWRJW6+515O3HInptzg0qWaf/Wvf5PpVBmXYYO7pXGBlQbfeE5uLDMatVzZ2+H8Zy/z9PmMtm5QL7RNzdLShO3NTczyhKfPPc2zTz8TdoJUQzudsbszZW9a0c6m5AK+bdi+eoWNtQ129yqy0Zhbb7ubra0tynyJ2XQfSrj47CY7u9tc3trmF3/hF3nRvbfS7G9S7W+yv7uDEcgLoRjlOBw5DaN8zN7OFTavPsNH3v8uTp86ydkzp1lfgmrnHMa3KA2ZKHXb0rYNxhYBIBRhXBah9BNPZrOgeAk1yNCDT6CIDYKGgoYfWJMDrvO6fLMLbhdrSsTs4KtL+GKFfHSSLN/AmWUwJUaycGdJIGuPMBuFtOr4QCxKvxorHAvnwjedD4Zjfe44LjEkrs3o0loROU/bBEcQNb28URON0bwQf2EF2BVkMmLz8haurRETAIw8s5T5mDwvqOsKEGbTGiFu7i2CYkJtrUoYvAlFCc6H2l8RRWlxbi+44+0+dbXFbG+L8cotLK3djMmW0PSNglQVD4gonvmN0RDp1mkSgRalQn0FbhffbkNzBd9cwTdTnKsw4tG2oW2a8LGMPOfkTRuc23waV9exHtDjXM7pF9zBaPV2ljdO4+0IyHny3ONcfOoCmQCuISsn+KbAqyVbnnDzqTV2966wvJLz6Kef5c57XgQ258mnnkbzjJ29fZZGy9RVw87OlHrmcdWU06fOsDub0Xpltj+lns7AGGwMzK2F1s84c+osp2/e4DPnHuOrX/EQ73//e6maGb62OFPSIDzy2JNMLNh2kyzbw0hGUY4wRinLgBFkmUfaGSdWVphVntJk7F65wCOXz3Hq5CorY8/YtiBNCDO8w4kiPsPYVMFkMWRhs4Gwuhvi52jovCNQoyBNqLiSUJetYlAXMhdqYgiFD+WqbY1KjZttInmJVFfJx2dodIwpVjH55P+j7U16NEuz+77fM9zxnWKOjIwcKmvobrJJdnPoFgcZkikvtPCCtmEDBqyF9UnKn8BLe2HAMOyFDRigDJOSTVgCZYkUKaLFZndXs+asyiHmiHe84zN58dw3spqyADfgikUiMobMN27cc895/uc/QDKK6yg0oAaSyABYbs/Kww5Kim0hDaDsPYZ9f3p94x39lc4dd7/+K44eb5ruoHF4A4CFN4yx+A8Mnww/W7A/LwEJfl5jd1uzWlYYE4ELGUS0IBWKJNXkWUbXdRjTkyQpWZYDchBuR/vOrbdyohTBCxKZxExhIuvF+sG7uFsjKNBZR9/VGNeye/jegEbaeDOEJAINwaFVPNviNU4QecAEhPAg4g5Tiw7TXqLdEtescLbG2E0EYoKP9i+2R5ia9eIVd+2GyWSCN11cpyAxTjHd3WNv74iuD2idn99YsgAAIABJREFU0Hc9L1+85i//9M8IztJbx0hmuL6iY41AE+5aHhyVpLRs6hVvPzzk2eM9ZCpZ3H2ObRUqTZhNcroGbu5ucQMJI80THu7POLu8RkvBOM3Y2dlhOiu4ublEWMOsKOk2G24uL3lwfMT19RV939GaBi1zjnaOWW02vLqY07UbTvdT3nmUIb1COYFSlrZdopIJm03Lwf4IRMr+8QFts+H2+py+aTm7XrI7LdhJA7u5IBEWiH7YUStsCK5FMwKfxuOK8AQX3SuEkCgR145BbLOyJEoqhEjiwx1HkB53v5sdQCov8N7ShQoZJNI2mG6F665xJAhZkmRT1OgEke6CnBDkGKcSnBRvUi19GDYiwyIbFz1MJPerne0yKgTxM3tc2PIF3NCstzru4QgUGL5vUD0Nq0oltqh5rPC4q5b3Y/m2w3+tKHSaJmw2m+GHFPdeRs55rPXUuoqvT0LTVPcZOc7H8+TWZ1hrTZIkbFYr2qahKHLk4Ohihw5oJRS5JxUp1jjmlz3F6JB0PCGEeKoJInoqb0kLPgQkAbV1NAwWEToIDd5s0Gww1RnBV4S2Bt+DbyLW6CFYgwiG4Dq8a5EYNus5UuqYaC8kRVaQCc+LD/6S1aZi9+ghR4/eJgM+/ulfYvqG3hoaYJJKRik405GJwPz2CuE7Ep9wcnLEfiaxoeWbjw+oaolSYwQBN8mRwpEIWC4WOF9zsHuE62q065ibDUdTBaGjEJ7GdngPZbFL16woioLPPv1rnr39jC++fMU7b71L1xp602Cs4uauYpRo2j5jXAiKaTrQUHOa3jGdTcjLkk1dk5Qj0rxE64wuKPCB29sldWIJeym74xmmX5GpBCsSXEjRckTvWqRYQBCokCJshdQpznWgxwiVI2QCclBYhSiTdEICkiBykJHr7e6dGv19NwvB4b0hEDBtNXTbFN8v0aFCZlNcKFDZHiKZodUIqTJ8yPBb3y/8ILpwA9os3wBcW+9sYSHIf8tSJyKBnq8aMf7Nc66U8t698o0+eviaOGB8ZYMi7r/n53n7+dIJ+w6tFc69afdbyxLvW/q+u4/n2FQNQLz4giFAK764JEliyFOe0TUbLs5fEawjkTJmKXlHFzzBXzDOSsrRDFnus7re42S8i2U0XH4H9/5RcvhxhsW990gswa7xbolrb2jqC4Jd0fWbqK8PDiEdwYFC4W2LMw22jywrESwExXQyYjwacXtzS9N3rO6WCDSmmfP67jm+XfDg8Xd568E+vm9J0oRynDGbaEYphL5jMh4R8NStYXeyS7tasPAVSE+9qNh0isPDPbq2pSgSJuMSLeK5ebOqOHv1graqmZaCSTamKDxN61HOc3hwgC5Ldg+OOLu8oV6vSJRiOp4yLSf4rmd1d02eahqt6FrF6/MNqQ589zsPaH3NzmQHbyWBhiSJ92c5GmGsQcqU87MrRplGEsPZF10kKhiRMMn2yKWgKE84fPAUb3ueP/+Ipq9ioaoReeqQJqK2SeJQeoNOBmyECSiBj5pJAimQIYO8T5z4GWuiwKDgimYJscsrBJbQ95hVjUgzhCoQ9gapdxF6hlATVLKDlClBJhG1Rt0j4fcURx+4t+MNcYrzbM++fui8b9Dor56R4SujcNja9XyVXRhH761U9d9V/F9TAbdsXe+jGVksRCkEzhlCiNazVRf9bSO/OKCTBCHEvb2oUor5fI7tekRQNOuOar2hrWtsZzDGUDV9DErGUY4yJvsHnG42TEYFo4PvYEkQcihXISIsH8CJqO4JzkRGkZlj+7s3511b4W07rKcGlNk6gvN422JNg3ctuB5neqRIqZYrljd3dE3D7u4+zabi5MEDzm+fo4Rg+eoz7Mrxm7/yTW7/47/P3pN3efDgkD/5p/8Hl198ihfgzAYXFLOdXXxwNN2Gwo1p68By6Vh3Aq1r9qYFZy+e8/TpMUoGqnWFd4L53ZK22XB4MKVr1iitWa87IOHx6VPm6zWp0DzYO+DVxRX1uuXLz18iA5i2ibogGXh0csLrl5eEzjFfw6aTNG3NeLRHkea4vkLRo1VgNCm4ma+xveHw8JhRprm9OsN7QRAF61ah15o0LSil5vjBe+wf7fPi5Wes+5JVe8D0+B2S0YTO9wTb0jU3iGpJpmoSVZMlBq0FSaqQaXzQI+xwbo7glxSxYMHf31NbFxbcduSM3Tq+KyK5QjuC7bFyDbJEqIKQzkAXcdROJgQ5gpDfg2eCyBJ093TUNwb6sNU4fwWC+38r3G1h3289h9mdLQlEDg3831ZL/bxv6v333////MUvP/nD9xHxxUmpSJIUIQSmN3gfL553nnbI5Ylkjjc2otsC7rqOruvou56u7VksVrRNT1O3VHXHZtPQ1pbgJN56rO9ouw1ts6JrNjx88m1Ukg/JBbH7iuARoUeECuyKTG1IxBIVFijRIFyN71ZxNBaDx7WN4zKmIZgKZ2ucbfC2w/YdrusxbY83jkkxolpVLJcbkjSn2lSEvgbvaeuWzXzFZFTy9/6D3+W3/u5v8iu/8cv8yre+yfXVJavlHUpLnA0U5YSsUIwmBXXXU7eSX/7ub7FzcMRifoXGYvqOtu5YLSvaume52jDd2+X0ySmnD0+oNjWm97Q9yCTl8vYG5yyvXr5EIqiqBmMcv/d7/xFaS6ZlydX5OW+/8zbnFxcIBLPplLvlEu8ce7u74DzdZkHoa4QzNHXLZlOxv7fP5eU1B/v7UQPrLF3f47xEqgznBHfzJVXdorXk6voTXp19yKurOTtHv0AojtGzfVw6JZ0cQjIjL4+Qapfejqn7nM4Fmh56I+Ku3BE7HwERvpLyt+3EwxGUIIdOzHCmVAgRZYwCfV8cPliCb8HXeLfB9YuoGvM9uB4ZPIkMcX88dPh7PfG9qeEbxhYMa0rU/b74/mM/00UFXzEPZ8vfBhgWwvff81XhzeNHT/6rr6mA/+B9KQVJkqJ1ch9/KcTgpxTeRIl4H9A6JUkTpJL3+TX9QPQwxlBXNXW1wVhDIMrovIA0zygnIyY7M4qdXZJxSVpm0TrUw/7D95juHuK8AjGwfEKPCBtUd4utXuObl7jmFd3mHN+tCabFthXBtuDMEDzeIGyNt5v4eVNj+hpvDWVeYHuLNxYtBGmSU61rXBC8/Yvf5vr6Cts3OGvjA6FvSLXHug3Ob5B40rTg137jtxCJ5vzynK4xZCpjMi4j0JeXoHN++3d+h8lUcnf7OXuzAu8cy0WFVhlNE6mc452CJ08eUq03JELjbTQP72zP0YMDhLBMJjlNU/H0rSccHh/x9rtv8/DRCZvlipuLax4/fkrT1mSpZDTO8VJyd1PhWs/OKKGvriO413b0XUfXGZROSbOMq+trVoslaRanqfVyjekMRVHiPNwuVpyfvWJUZpHsYj1t15OkOU3dEUjZ33/AZLpPWuySlvuI4oB1nyCLPWR2SG9L6lbSdj7mRllD8HYYmwNsgUaidDSyryKNM24YVeygyg9uJIogdFwTDWCbcBZFBNriNFYRfI2W/YB7DIaCMnKt49PjjUvntjAH2vT9OP03x98tk/Ae1d7C2kP1/sxG+G+sPb+2An798T9+XxILWCo1IIeSNMnwQDsEYIUQyIZU+rB1w5cCa6PfU9f11HVNW1dsNmussxhrEEqSlTnjyZjRzohiOqaYTsjGI9K8QOuMJMnRxYSD46d4UcZzht+Au0WaOTQXmPoC117imhswG2xbY+oKbI+3Hd50uK4mmBrfr3GmwZmOvm8wfccgqaXMR/jeYPqezXqDVJI0S5ES5rc3BN+iFWzHt77bsFpecnv9EoLn+OET0nTEk6fvcHT4gB/98MdoIcjTBKngvW98k/Fsl9X6jpvrL9jfiQ8jnRbUjaduepJE8uj0kPEkIs+27UlVRPjTPEUoz97BhCwRHB/ssTOdYPqOpqmZL+64vDrn5uKS44Mj9nZ3efjwBGM7OtNRVT3eKTarmtXqljzTpDrDtA5rDHlWcnZxxe7eIQ8ensZYHdPivUEpzdOnT1EqrgeV1ggl0WpMnu4xKkbcXp9zdfaa1c2K00ffHEz1FJOdXcrZBCdBF2OqTqKyPZJsD6kn1J3get7QW4lzATtgLiJ4FP6evxULYXuQVNEsQQpQAaG24pfh40SrAOHVm0gW38cubGtMt8C0K2ToCLaLtA8ZopuoiHSQrRAngmhRFBNreNgfBQaOwiCTHYgc29cZvlK42zjYbUTtVx8AP08B/1xn4Lg2SqJ7RLAolZDnI3wQmMbRGUMIgVFR0Lc1L85esJ6v8c4zGheUk5JyPCYISdf0VKsN9aYmy3OyNCOX0bkhTVNQ8UJoqQlBo2RJWZTUdQN2ge/XyGIXwhphXkJ7DqamrxdI12FNH4n2g/1N8JbgYmUG1xF8g7MNto8jM2EIJfeghKCtGzQp1vl7hDR4R1dvePXp1WAw5/BuANAEWNciXE3oljz/ixvaqytmJ7/Mg2ff4WDvCASUsxF38zskjtV8zqZz2BBo1kumZRRI3C0NVe/oAwNo1DEd7zK/WZCojJubGzrT8f3f/A3mi1s+/finBOcppKJtHUU55Xp1gzU9LgjqusGOWm7m13zjW79AWUy4m69IRIBM0ATJyztPSFJ2Cs3+eEwmLOurFhs8Z6+vefTsm3g1wrUrrs9fIlVH17fU7RqlLVIZkJL5pqJpA2WhKPMS51penX3Exev3+O73/n02Tc/t3Q37hzs8fHDKelUxGe/Qdy1tXZNPdsj3TimqivX8iuv1JaqqyXXNzgjKxJEIi9SSICRa6KhACnHkjbbXatAXD3JCD0IKBDo64A2mewIRz9a+JfgaKVY4uwBVItIZIttDJlPQJegJkOGDAOGQMgxg2vD8kHH0F4AIUX446KEGnAa2klsf0+zijtnHY8I9Co34d1Tf/x8FrGIIdd9GMCtJYTyesFptMG1DsJY8zVBC8urFGS+/eMF6vkA4SJKMYjRmd2+H2d4UnShM09B3PaPBBiYAUit0MlzoAGmSEkJMoT86OuTq6oa+bdisLpjmI0w7J1Sv8c012BatAnW3xtmO4HokDoLDmS4Wszc4M6DNpsWYFtu0JEOWbPDQ9Q2EhNVigRrMnKQUWGuAQJIM9qQ+msmFgQgADh8i+NU3a7744M/g+XMSHdC+REtJqgtw0dnx0w8/peocAcGD/RkXd7c4mTCePaSqU46Pxyxvz+g6x3JZkRUlWMd6swEBL1++YrWaU1c1s8mEpm2pasv13Zq66XFVz9vvfROh13Tec3T6gJeX5+zv7vGdX/pFPvvsp2yanv6mpTMJnSu4WlrGew95dXtOcI5RnvJk5yHLZcfu3j7JzhHKF1xefknX1jhbge/IUk3VdBAMNrSs5j35KCPLRhSl44f/+v/mk48/5ff+s3/A7tERL16/ZLNuOTw64fj0lOVywXIxx3SRCZfnI/b2DnD9u9SbO5Y3L7ht7qhMRZ5p8mDIpEcoO5hbBnASRRI7rndDdxtM9n1cDd2ricJQWiF2Rh88OIOzNUFUCLNBmBUynSCSCSHZR+kpgizueIUkhCQyQoWLZScHdZbYmkXAm5b7ht0RR+8BDPuZ0frnB7J+rhH685/8o/edc/ceRQiG3NgO0/d46xgVBTdXt7z64hWr5QZnA2U+YrMxvH51y93dJjKnfEvXd7gA4/EYqTVySLbfxiyWZUFRFATnhh2yJ88ypJBMZmO07nHNBcrcYKtbcA1S9PTtBrxFBQfO4l1LsA3BbHCmxnQVzjQIb2P39R7hAsF5RIgaVyU0zhq+mgX11YurlEIqidKRuhf1wJGv7YNAOYczDSHULO4uqaqWjz97TSClqtY0bYvzgk1tWS7XTMsRUihqC6u1ZVl1GONJtebhg2PSPEfqlL7tub27IwwpDl3fc7C/w+HBITrJub6+4/ZuSQgK01mWm5rHbz/jV//W9yHVfPzJJ0jv8aZnubgmz0vOL29ApaTFmKv5iuMnb+FVgkpH3N2tuLy6xQWBTDIuL8/Z1HeMJ4oksWSJJPQBU3u0SpB4+rZGqximbZxAqQQpA33b8Od/9qcUZcavfPe73M7XLFcVRZnx8OEp+weHZEURs4elpBiN2bSW0eQApcfUraB3itoIvAXhBgsl4QkMxoBhi1LHE6jc1sjwOcEQDCfCcA0NgcF0P/ZwvOvipsK14CpwTTQk9LEhSBGiqoo0OpLcW03F6pQQ98gD4rx9+5tbovuu+1WhRIDHj7+mM/CLj//x+4g3jhuReOGwvaHvukEbCmevztlsagiS1vSgNMYrLq4WXF6vkMoidSBISLOM8XRKmkawJEmT+7jKLMuQDHvjJHoSKwWZ0qSZACpsfQ3tHG82mK6ib9c40yJDNEkPtsX0Fa6v8KbCdg2u7wg2dkprbOTiI5FCIlBYY7F97LY+xAfWNkc2Cg6GJD0RvZ6TbEQ22iUfHaDzQ1qboKQmSQR5BgLPpjJ8/uIaS8qiXmO9527dcLtp46nO9CRZxnzV8vL8Bo+m6y2ZlhR5QmssRTlGwGASEKWUeVFQZDnGOibTXVarmk1VQ4jbASkVj5485t/86K/49nd+hZMHJ6zmS2zvWNytWa4bvFCcPn7M7XLOql7R9zXPHp0QnKWpGwKKy+s7Xp5dsa7XBGEQypHnGhkCeMFquaHIS5yNN7mzBoFC6QTvHQf7E44P99jfmfHBT37IT37yI777ne+yM5txfv6Spm2ZTHfYPzhkNttlMp4ipGc0Tkh0wmS8y3i8iw8aYxTrZUvfCywaF8ASSJJkIHjE2TZYi+labN8ih9QLAfem+9sivnfyCGrwmNjyCLZOLFH3LVwf7YBDP+yI4z0jiSM8XoIbRnN+5oQ+lLe454h89WNbzXsYdMuPHj3+egr4i7/+J+8nOont33u8CwQXaLuevu+jxZuQrFZLOtOjEoULjtY5ysmU0XiCMTVCBUbjgrzIOTw8ZDqbIrUiSRN0kpDlOXmWgw/DCiqmrGut0FLg25qmXlKkgsQb6Nu4ww0twfbR/dFZgusJtsGZDbavCKYlWIvtOpyxDK4995k71oGzcf3lQ+RXB1wsYgFKx7Ou9zaaCUiFUBnF5JDxziOOnnybJ7/wfUh3COmI3lryVJEmmoOjU37y0UsWdY8N0FnH3aalMoEkzVBSoJOE28WG1kBn47i3M5uwv7fD9c0dq9WGpqpRArIsZTKZoqRms9rQdoZ1VROEJEnig8+7eJNeXZ7jnOXdd94hSzLquuXq+pbegPMBpTSPnz4GBeNJSddsmBQpB3t7zO+iuUBAkmQFZ+dzXr2as1q3dL3DGIsPjrv5NakuB0DGoiT0fRxv+76i3izBO3YmIw4PpuBb/vRf/jGz6Yhv//K3WS4WnF1cUI4mjEcTsjxHaxB0aCkYjUYcHhyys7tPno/pDaxqw6KyLCpDbwVpViJUSnCWYA3OdKwXN1xdvGY8zpFqe2h1cbXE0CWFfANQDQUlB6Q5AuABH2y0S3JNNHywcQ2lZDREGJZOMPTxyKgcwDJ+9mw7cK/iRP1mC3X/2a+tgC+/+OP3i7KkbTsI0fK0rVratqO3/cC4SlhvVnSmJ80SVKLp2h4lBAf7O4yKFLyjzAryPOfw5JiiKCNfVCmSLCPNsjj2+IiGKilxLjpfmLZmfnGONQ27O1OkEwRr8cLGAjYG4fyw4+3puzXBtwTb4uMdi7NxVJZCRZNu7yP/2gHDLxIiUMdQ3GL4ZWx32SCQasxkdsLOwVN0uU8yPUIWM/affoPTX/gOy8Uc39WkStL0nptlzZevLvFOs1pXGCdxpFjrKFONt45N01N3NrKEQsCajvNXL7i+uaOqG04ePCB4S9+1QHztmc7orWexXDOZzZBK0tQNSgqyVLO/M6VIMz784EOyLOe73/seVdsOSCsUZc7B/j7eeTbrCh/gar7gyxfnrFc1JycPaduG1XLO/uExR8dP+fSzlywXHatVT9uB8wnCa0zfUG1uyVONDNGGSCtPVhZopWjrNZKOcSlJdeDF55/y8uUrvvNrv45Hcnl9i04yRmVJolNEkNzc3tHZjtnemLZv6IzhdnmHzDJUPsG4FOMynEtYrVrwHTK0YHs0niyTpJkkYAeLpXtb+bgO+ooNLYIhyyrmdAQ5+FwHH4UUdoMzy3gksx3B93hvIjK+BaMF0SBwKEixLdSt+Gb7x3AffRWFFoGvr4B/+oP/9f0QAs46EILlckU3pK5vo1D6vme9WuFcJPpLmYCLnN48S5nMRkgdiyEf5+zu76C0iMqmwbCbILCux3uPdw7TdJi6YTO/4+LVC1y1psgzimIcObzBITDgDcEYvO2xfX0vDwymxQ5ndNP3BB/31XGPOIj0jRsMOwY3x60boY/yxYg6h/gUH35ZMpmy++Apk5Nn5Pun6GKCaRpwBqUFq4vnaCqcXeFdR5oEfLtmnAhWiw7rU4rJGGPb+EAMkiAUdjDUC8FFNJ0QFToBgrOsVgum0zFlWdD1HYEEqVKsD6R5zrvfeA9jB49pPFopnLFMxmOubq5471vvcXN9yasvn5OlmrLIOTt7ze3tDZlO6I2ldZ7Nuqa3nqrt6XtDnmpW8zvSNKNpDYiUrpPc3TXs7z3COViv5igVkX5c7FBKSaQKzKYzDo+OWK8WeN+SqUCuYb245fmnH/HW07fY3dnn7PyS3ntG4wl5muNc5BwXoxF5XnBzfcurs5c0fYvSKUdHj5BizLoKrJuA6T0iaCQBLRxJEiC4mHYR3vCug9gG1hNtcIbr7r3D2cE+h/j1wjuwHaGvYJtj5R3WRuBOiLiSEliU2OJYb6Sv4b5yh3cE940hWusIGDzjHp2efj0F/MEP/pf3Iy1SsllvqOsGYw297aJNcQh0dU3btHgfs3tCECQ6pela6rYiK1LKScF4NmE6m6JThVIhggT3HHMRQ9MImMawvl1wc37J+u6GarlAOcPOdEZRjlCpRghLsA3CtVjbYUyDM/UAQhh8bwnDOii+rijAuL+cYTjXy+jVde8mKKJHsRRRiB5kLCQhUwQ52fgB+e4j8v2n7Jy+iyKhWS+4e/Wcs49/TL28YLU4Q6tohjfKPU8eTnnn7Yc4n9C7hP3jA4LwtK2nah1CR7ldPIN7gojjtk5S8iwjeEueJySJIs9TvPeU5YTJdErAM9uZ8PY7z8hHOSpV7Exm9KajKEqss0ynUy7Pz1je3rC6m5Moxfe/930Ojw755JOPybKU977xHmmWYbqWzjjQCcZamvWcerXg7uaO3jrSokRnOReXVyyXK5I8JyAYlTnjIkEMaRRJopFqu1IBnWqUCDjToIQjT6Gv1zz/+K8hBN557z3Ory+p6w2pEmR5zu7eIVk2Ik0LZrNdrDEE73n3nbd5751v8ODkCbO9Y9LxlE0fWGwcvY3hb9t1IsEOCRfRlD+GzcXCZvi7CJ5tZM39DO09wltwfezCHlyQCKXQaRI3Fb4j+BZvWvCWhDfglBAMVkNiKNStd9eW0jEIOIiUs0cPH349Bfzxj37/fe8DTd2w2WwwxuCcjRQ3qdBS4qylqduYvu4Dzgd8COhEY4wZVinRtSGqNRz4wWEjhEhxdJZgHL53NOuGH//lj1nOFzR1Tao1whkODg/RWYZOJIKeYGu8abAmkjWcacEbvLVYY/A2Am/bwpVSDWTzLR1uq4KJF1HEdocTliAsQg4ewGqESvaY7j/l9Bvf5+DpLzLee8x61dIZy+7JMeVkhKnqQUUTUWkXopsXqcZITdXCpjZIleC94PJ6Q9fH87Z1niTLSJKMNCsIg0omTRP6rsX7KKCv64Y0zxmPC8bjnM7UGNsymuTkRUI5zpnuzABYr9colWB6y2g0xnSG46Mjbm9uWCzXnJ2d8+ztd8mygnI85ermht3ZDtZaFqsVwnfs7+SkKt6EQiuarqeqK6p6QzkqefjsbaregFCMRxOSVKE0ON/hfUe03rGAG3CNaFtrXWRJde2Gy8tXnJ+95tGDE/CeVVWRJBmj8Yzrm1tCgL7reevZ2xwdHbNaV0zGM46OT9jdm3F4MEONMvR4D52fsOkKqlZiXDQgcL4apgOLsJZgbVRBeTNwBuLrE0Q/7EjSidLGEPyw2ZXRyVOn8aE/FLpzBuc6nIuBdoEOsMOmSEZm2PZeE8M9yHBKHvKghYRHJ19TB/7kR//ofWsjMmmtxdqeEHwEn5TGO0fT1GzWG5zz94d5jyfLUrRScYccAqbrMJ2l6zqctUMh+zjmdh191dGsWz77+HMWt0vUEAuCd6Q6cHB0gE4kSnkkPd7VOFPjTYe3Pa5v8YM00TuHQA5WLYEYoTGgiFINVrAQ10FbQz1/T9MLg/bLITFeM9k74Vvf+21GDx4is4wg4mqiHBfcLe5ASvb2jphO9pjMDlF6hPWaHknQJV7s8OFH59ze1cwXFct1y92qxbpAlsbdsk4ysqJAqCSOVgMnOE0TppMJSknqtqU3FkLPannLpl4hpKeq10gFSaoxrkMqWK9XONuTJnrgFTtWyyVpkmBMJOX0xmFsQGiN956d2ZTLy0vWmyXBd/zSt97i5HifndkuD09PqZqG1WaDcYaHj04J+Yi/9Tt/hx9/8DHOQVkW0YNamggUBgNY0iQiy23bkSQ67t6bapBx9jSrDR9/8CHjcsTu4T63d3ckSc7+/iF5UZCkKQKFVilaJRSjKSBYrxbs7haMRyW7e8eMpsegZ7RW0rSe3mmESAguEEyDcBsI3b39rAjRI41gCd4CHhECLjgGrk4UzugUoROEjNOoNxENjbJUO/w7HSE00UAiBKIRYxILVoR4HvYD5BWI3X9YZZ0+fPT1MLFubm5wLu77BLGDZnlKkii0SKjWK5qqivxglUSGjIIiS9BSkcoRwfSslkuCCzHNLgSm0zFifwfhFCFYPvv0M2xr0TKj2jTkRUmqBEp4TNMgyxRnG0RICMZhnEXSYfsWu/VqdpGY7oxjm0rvBsZLVIoInA+VssWNAAAgAElEQVRY69/IIuUA84toSMZwdLJeY4SiReI01Jsl6x/+GTopKbMxB/unTIpdQDMqp8yv52xC9AwOPqecPUXku0xcdJH8o//zz/nw0wV385bWgZMJ4NFaopQkyzLqthtYPxE0y7KcskhIRCTPpFoxm1lM35NnmsmkYF1VjMYl09mUuu7ojMW6ljIvyQvJ+e0VO7N9DvYO+fiTz2IQeGNQOqOta473DiDJ2D85Yf/wgC+/eB6vjXN46WjbmmfvPOPo+CE/+elnBNczKjK6rub86pIvLm64vp5z8eKcM2W5PSk5OdQc7E3IhKFMA0oZZrMJBwePeP78c/q+wduE1WLJaDyK8kthwKz5F3/0v/Hk9ef86vf+Nh/++C959PQ9nj57G51obO/RacnDRxMQkr5tqTZzNqsV9fyWyWTG6LCkbQukfkYz3aG6u6Fur+nDBan/ktRfoX2L9iFKD/WwsxUaqZL48JQxFkbJPG4dgrx/yEsRCM4hSeLHt/lO2/C70Ee+geiQadSaKz2Kgguh7xHu7XoyNvKvUdBvTBQu5HmOGg6saarxwaKHUWKz3sQsWw1SJSitEENeDcGTJEm8EAhUUJy9vuDy9TVHx0c8efKI29tbXj6/YlQUpFlgNIpgjXQdvqsQvqMcjVDKge9wfU+QLiKMxiJcpEQGuwUn5ECzi+dcpfRAfZTDbjCCgW7rGKI0UoY4hnuHc4HKSM4bR19O6X2Gu62YtI4yKJIgyJJPSXXOtNxhNj0kz8ek0xH7+/skckxRjHEOfvKTD/njf/Yn/MW//pS7NTy/qCjGY4KIBPosERAcWsWcI+csWZ4OU0M0fR/PxkihqNYVDEowFSyJTjk6PGW9WfP5Z6+xzlOOS8azjEmZsLu7T7CS+d2cL19+QV6mjCcTmk3LxcUtQheYvuO7v/qr5NMp6/WGf/KHf4hzASU1bz15xFtPn9H2Ddc3Z9TVglxLvvHeN/nw44/xIXC0e8C7z55x9vlnLNue61WGVwlN0EyV5yRNEApubpbUm6hc27KYpuMyXn8COommg0WZ89mP/xVffvIRv/v3/xMWNxOkFDx88pgimxB9xKOjR5oVnJw+plqecfnFx+SpYHdvh4fHe9ijQz796AuWG4uQOV2bsO4NBZLMLCm0R4sGdCxOmQwotDdIpWMhB0nw0aw+7oxDHMPFlhYZ+c8hBPxwvhUhrpiEWMLgcKrSXXQ6xYmSgLpfI4XwFdHD11XAOzs7KKnQOubKShEZj9YKFncLlosFfd8jiJ5GfrCDRSh8cJgB2ZvOZjFEqwvs7x1wdzvn6uyO9SLKEMfFLioRSJ1QjMfkWYKpO5p6ycEsZzLJUNoTfIe3goDDuH4AGvwwkod47g0RFHLW0dueNImE9xgjGZ+A1jqMNWQqGVLce5yLnb01nrmVfLY0XNxuCGNFwGKaa/Z2d1hvViSJp0g107zkYLLPKMkpJZRpRp4W7E4f4FzBD37wEf/XP/1XjPOCHk9DYL3uKNOMWZmhhcWZHqc1k8mI3jj6vmObtxu0om97JllGoqMOW3hB23RcdktWq57b21uyvEBoTV1vuLtbsbypOdo/INElkzFMZjPu5rdxXG3WJFqS5AnXlxf8wR/87/wX/+U/5NNPPmGzXqN0OvxfmrrqUKJhZ3fCW289Zr3+BOk8v/6d7/LxJ58wy1N+8Kf/nEQEOiEQekIxe8jHzz/n6UHG8cMZMk3QQtI2hnKcRQN5aRmNE/rOozV4X2NDRyIKvvH4gA8+fs3//D/8d/zef/4PSdKML73l8eN3GJXTYYcbV0HeCW6vr2no+esvPuNtUbB/8IQXL89wrsWENR0GXcyQ8lu03QG+e4Ww5xRqAxaEkijnQCmEVgStEd7ivI9d2YPQMRMqOB8dReQ2KcTj/dbQlhhWEADREEJcb/lBWRUSCSK6vLzJCNuql76mAi7yAgJopVBbh4EAzaaiqzdY2+OHbCMhovBBKYVzEcjyIR7SE61J8wRBwnhvh2JnxOL2jr4zjEdj8rLAKUuWJoyKDGUM1XpFImG2O0Wn6ZBQH9k23vbIQbDAfa7sFuVjcGLRw8Ytaoi3rDFnLcb08XusxQboBax72BjB3GXc9Jq5FHQqyvg+//IVfVsj5C3WGSSOPFGUecbhXsUozdkrxmgPy+sFyiYIn3N+tqDuFKZtcN6zv7vDzbqjdT0jMkJnSaRkNi5ACk4fHjKb7HJ3u+Ti8pZnb7/NzdUZtbFsqpYsScizhLzMIVjwhnGZoBOJR2KFRCrF7c0KEQRvPXmMTqO00TpHPsrIxynZaIT3Gb/9vd/ir376Af/yn/0hP/zBv2F/UuBlSu8Dry/OefL4mOP9A3xQIA11tWIur3l4fAJdz0d/9aP4O1ESieDi/IK67eh7w8dtx4Onb3F0+g70C1y4Zrm4IdUuHreCRCUahEBrSHEgDS40vPvWA374w8/5n/6b/5r/8D/9B/z63/73eP78Q54+e49ROUGgEQzehXrMo3d/jb63HOwdYU0gyTWr9ZwnTx5yN19wdXVHIseELAM1pm9mVOaGtPqUPDckIxFpsq5AmRSpPaSOEBKUCNHNBYEgj/eUf4MqRz3SliwCAYUM0T9OYAlujTexgUhVgioI5Ail7vfNP8/bzwViffpXv/++GixEjOmp1msW8zl1tcGaKBF0zqOTlCRNSZIUAOtcRH8F6EST55EymeQZOk1IU0WqFUoLxtMRo2lJWmiKNEEaS7OYY5oVB4dT9o92yMo0xkn66Lxh+za+7919Fs69XEsoogOCQicRNYydNz5o2J6JpaR3sO48y05w1QYuajhbB17dNMw3Bp1NePnqkrYLGCOgl2ivkU4hrMI0nrvrFZdnd3z01xecvViwuOkY54dUG8/LV9e0raOuW3rnQSdUfZRSauBkf488SbDOMhqNwAdm0wnfeu9t6nYN0tDbmpu7W6wR5MUUqTS7OxOKXGP7ilGeMhqV0RmlajBuyJ6SgbLMSbIUlabMZjtoKTg42Ofm9nZwD1XU9YY8kZRZpLZ2vY23o/cY73j85BFZmpAkCV1jePXlGR9/+BHVehW3C0pFqiKB2c4OIcDB8RHrdYVHoXTBt7/9Sygsq8UVBIdKMgiazaZB64QoHok+oqiERCXsTHe4urzhz//8LzBdz7Nnz1iuVozGE9I0i5sDKZjt7lGWM2Y7hwipOTt7xcHBHg9OTnj96pz1YoWzAZ2mOCHJyxnoCU2fglNRVGMblOuQzkXBg4ikJQbOwL03F26gOst4pt2qnLaCCQHI6M4Zo1rjcc0PVkDgo2un0JFDP3zP6YOvC4X+q99/3xhDVVUsV0s269WARlvatmGzqcjSmNSglMR7F1cnEoQSJGkSxQhq+CGlip0weKQSJIkiKRKUljE5z3iqxYJ6fcdsp+DweMZklpPmOqKaLqKFzhqctfdFGX1+47lEDWFb0RFEMyz4huKNgJUTgtYF5hvDxbLnYg0fvVrz/KLm9mpDszTcXK65ulyxXvVsNoZqbfCdxxvwJoCXJCol0ynKa2SToW3COJmwWdQslxVCZdwuV/Qh0FnHqulp+ngzSGd5/GCfvmtZLDes1g1t02OdQScw2804ebjDbJbjnefs9Q3eSgiaej1ndzZiNi7xpmc+n1NVNWlW0LtAXsTJKQTBpq6ZzWJhmbbGmh4tE+q65+LiiuV6RZZnBBSdcVzfzmm7KBXsTc/ObIe8yJmMpwQvePH8BTJAnuvBeTHeoDpNkVqTj0YIKTl6cEQ5GvOjv/qAyWhK8IbptCTNNL1xLFcbrq5v2dvbo7c90c1lWOchUGkW11sX13z8k4+4fHXG49NTEJAUBTpLAcFqvuTFi5eRV5+ktE1HWYyYzXZ58PAU7zxSaVSScfLwEccPTjDO40SKTY6oWo/yAWH6SAySUV3lrcd2NrL3ggfhQAxWw1stshiSOrfFS1wVKaGHadBHxRIMWmR732SEUAQZ/bkefV0F/Bf//L9/f71eU1VVNDsbwpmcdbRtg/eBvCgRQsYdsPMoLdE6IR2e2lINrCYB3g5g0+B3FBk7sTBF21PNlzTrJaMy4fjBLtPdkqxUJEpEtaF3WBPXUMG7gZ8cx7AICmxjXeL54j6hbihcHxzOR/K7C4p8vMeLswXntx2Vyam7lNwqks4hrST0EPo4Y0sr8SZg+0AICW1tWS8bXA+jdMxMTnGNod3UKATleMxitaK1lspYjPP0PgwjlmdvlHK0O2G9WtC2MUfXIUgyTW9qTh4ccLA3w/QNk/GYL754yc5sl7LMWc1vsV1NogTT8QhrLEmWo3RG07t4fpPRjLDre9abitlsh1Qpri7OCAGqursnhFR1Q5KWbKqGu/mSJMuo6xpjLWVZUhQls+mUUTGi3jRU6xVKDR1KwO7eHkmWcrdY0JkeYy13izlXV7esVy3PP/+S8XjEw9MTbm6v8c4iZcKDBw8px2OkVNRNS5pET2kvwMl4H/nOU10vuD475/PPP+Xdb3wTmSYkWUqWZGipGY3GFHmJVIqiLKMIRCrSNOf09JS3332Pt956h6OjB4zG0whS6RxV7JEW02HtFP2gZejB1TRNzeL2jvIrAO69bPArdhsiPinjGB2GXAgRpao+WKy3+GCRIZJcIrnII5SOwedCcPrga6JS/os/+m/f99t4iQE9E0R0t2t7AiK6TyqF0posz0jTuP+VSqLVG2tO5+ISncF10DkbiRy9wXWGbr2hXi3JUsHh8YzZ3oh8nETzMwJKCLw1MdojRGqjkhqtU6JhnUTJJD4sRdxFb43K5FDIzptIiRQSazxFMaHpPNc3S5TM+Ht/53c5HqV0i2sKGciEJyeQ40mcGYKwPcEEgpMIr3GtZ5KPSaxHWIPrO8pRTtO3LNYrjPd0zg9J8vEKJgTeeXyE9PG8aG0gCIXUCqVjKt44HzMbTcA7njx5zNXVJU27Ybm6oUgLEqXIUk3XNSRZjk4y5ss166ZFCnVvfeRDHIeXyyW3V9cEPLu7u2RZSdt77hZLdvb2OT19wnKx5O5ujpKxqwgpqJuGNElYr1Yoqag3NevVMqrE0iQSebqW3hp8gHI85vHjp1zdXCGkxtmIPl9fX1KOSw4O9unqFW3T4Txxohuok03dxklLRKFHojTBeqr5CtN0zO/u+OCDH6OUYndnh3SrYssL1OCCqnXc1UZnD0eSpNEmKM1QSlOMxhweHnN6esre7giVj6gpWZscaxTCWmSwBOEp8gwtRWRmBaIu2HnkwOgSgwIOb+NDaQhz8V7gQ4wdCsLF2g/Rq3xgWseJcNCkPzx59vUU8L/5k//x/gzsBsaUNZZuMKdTUpJkKTqJ66OtlawkulxsVR7e2ZgOT4iSPmfx1mOaDldbulXDZnlHUSYcPthj72BKOc5QOnZenI1uEy7S6cTAhJFSD1EYEq3SISE9sHXQ3wJ+QgicN29Cl6XABce62kRwJ9P88i99k6enB1TLV2hZMR7BKAuMs8A0h2kuGWnI8WgfwAYSDzvFiFGao7yN/KngUFrR9obe2hjC5YflvQ8oKSlTwVsnMxLhI9lkwAqi1F+TZWPWdwu+/a1vUDVLJpMROzu795OQd2og/jv6riMvC3SaU3eWdVOjtSZNMjabip2dHY4eHPPq9Wt878jLjNnODlJllONdvJA8/+IFi/kCgmdvd8ZqtSTPEpxz9J0hyzKmkzGjsqTvDDe3N+hEgHODjXBknk13d6nqhtV6w6/96q9hrSMER9tscK6j7zt2ZjOUjzZMbdexWm2iuKMcDV8fH3beWkSIDi3Oe1arDSEENssVn3/yCVLAW289RSUxaUIMtMRtw5BKR9ufLSYiojuqVvr/oe3NeizNsvO8Zw/fdIYYc66ssauqi92iONmiOZmSaI4iIVn0QNsQ5BvBhi8MA/4D9S8swISgC1n2hWHYFzYgmJBFgi1SlFucWd2VVZXzHBnDGb5hj75Y+0QWDQlmA64oRA1AVmbEibO/tfZa7/u82FJsusaCMSTV4JNl8prJK0I0qCTrNK2CtL85EWMm+4hFcD/BF7KLH1HRla9dNO6YHb+8iDhyvgxP1yrvopXQVnHz5te/mgP87d/6hx/HGImxgLBzIvhwqX2Wts3+OQZ0TgmzE1AgGUAxBGIQz2jwnuAC0QfSFBnOt/RnG5YHHW+9+wZ7BzNmixZby9PJaEUOjn67vjy41tpL3WnKgrttmxlaGwlcS1GQKiWVT3JwItaKSEJZg2kMGEXd1XSzCs3E6auHZL1luW/Z269Yzg0Hew17y5r9RcXRrGKv1sysRSeo0NRZgXMivJh1gGazHQkllNpWTdHfRqw2zLqGZae5cTSTONGqJeWIri0pZ1arnhQ10fVM/SsmtymCj5pHD58x65aMg6QsW6to2ppxEixv1oZhGvAuQIbDwsS6dv0ak3O4KXL12lUm51Cm4f6jp7z3tQ+wxrA+P+ev/9Wf5sXTp1ycnzGOA7ay5TWNfO29t6mqisViyY1bN3j6/Alu6MVTrS22blke7LNabxiGkZcnr5jGAaUTR0d7tE3NxcWK4Bx7C4PWiqZt0OZ1FEpd1wx9D0W5Nw0TKKFh+BAJo1hH/TDx+Wef8fzlS65cv8pi74C6bYtJAL5MoNglLlw6hHaUjqwwppXQAZWJzjH5TJ8bplSjplha4xHFgGQlg8lK3G8pEKMjRYfVCjf2kkRhapSp0aaSvOWUUHmXUlhMFTmWyQxA5tabf/krOsC/+Q8/DikRoly+c0wkHwmTx1a2RKRIi6YQP+puGpxzxocghz+KTTC6gB8ccfDErWNcb5j6LVeuHnDjrRvM9jrmy466AqNkTZKjQ8UonqEcMUpRGRlWCdNXbIm2rogpis5Wa3xI6GLESCi0LdEaSqNtLYnxVUtla5qmlvVMbZh3NW1t6LqWdlbTzRpmi5q208zmFYsOuipRt3POVo6pD9gssroYAuM0EbzA5+ddB0k0s7XWtJWlszBvLJXVxCzCER8DWhs5DDnjp4GjRU1jAwrP8fEeMQbu3X0oXO1Nj9GKvcMrTEHx4uRUfkYpMm86wjRhdOJgMSN7x8vnLzg6OOLw6g2u37zFF/efcHzzHQKah/fvMa1OqbPj2eP7uGnLdrvG+YDSsurwfiKFyPHhIV1rQXmUTuwdLJkCoFuW+3t0i4bv++ZfwkfFW++9y+gmTl6+IHjPsOkJPrLZ9OSsOTzY4+hgxnw5YwqBi9Uaig/XucIcTzA56fhqHahyKQZRMY2Bx/cf8PTBPa7duMLe4T5N0xWxhOxXBVG7i90uTqMdObIUgMrK6jME0fK7kOm9ZR1bHCX/Onl0itgkDDWR4gZiCmSgbTsRdiCBfhJqL+oro2SdaVRxRakkQhAtMAFN4tbb//ZXc4B/75/+g49T3q1p5FkWnZcnkzEC7tJa2lXkfig2LWm3o/flMxCcI7iInzxumBi2W5yfuH7rGjfevMFyf85s3lCZLHEnyYtPs+x9c5Y7hzEaoyX6QisNZT8dkwyodh/KaKq6oW07wfMgpn1tTJErCj1iF/uitKaqZN9dVRVN3aB3/97WMpyrdYGSd0Q142IbMbqmqSwuBmKStnA2XzCbL/CTY9tvUAj4b39vIeBxN5BjoKoMqEBWmbarqSor1VbDclZzdLCkm7esVuesVhsmF1itenwEZSqmkDg7X1HVDbU1NFZTmcQbb1ynbUWmqq3CB8/p2RmHV6/y13/mr/Htb3+bKUTatuOj99/jweefsV1Lqz6Ojk0/EtGYumW22CPmxGa1pmsa9pYz6lpzdLzHYjGjaxcsFwc8fPSQk9OXPH76jHfe+4Af/bEf4/T0lMePHpJCoDJW0MO6Yux7ZrWmqSQFYdv35bolYPWdgi5Gkb4qNJ2F1iR8SIQIzkk3+PzZc/7szz7h6PCIK1eOS1XfJRa+9t4q9frQXtoGKTVaadwkOCWlNCFmXNBMXpNiS84tKUHMgawkbE0h0lmjKrwvxhVlxPRgKpKqUMqitMw1tDbCUivmBglwk53yG+/9+FdzgL/1G7/+cYhRDq9SpN2dh1xan514w8p6LBWBd4xE50khirWv/HMaJ4Gi91tsZbn11m1u3L7B3vE+bauxOgFB7h3RS2ZvjOgsBARrxYwgP4syxi+UDQWX8k6tKXtCCWFjdw8tQgelXifmUarzzi1ijGEH547lqWyNKNFQSRIDQ83L88irsxEK7DtmGJ3D1gKgDzFwtjqnqWvB9+RM8p7aamZNQ1vLbltXUDUNxhpQmRQDdW2IXjyqKQVSTqw3W/rBkbOij5r15Jl8xFYNXVtTG82ia7h+fZ8337pJt2h5dX7Kh9/3EdffuEUElntzGgt7e3OsFQ7V3c/vUKnMcrmk70eevThhComkLaNPYMSEUJuKw/09jE7s781ZzFuSd1w5PGY+m3H/3j3qtsWFTAjwne9+l2dPn+KdY9512EoqUdd1BB9QcUTFgdXqnHEYqIxGpVSuZBUhZjnAPhNDwmTHYibrmZQghkSImRQy5+cXfPKnf0pTad56+zb1rCsMq5Lg8a8RO+0M/uzeS4B3UuG11kyTJ6aOwB4uzxm8ImhLUomYJ3SGqvz0ExllzWX7rHQN2kKZNCuli3/+dTsvySJSt2+9/1NfjZkhK02IgkuRN5QXwoES725lK4y1xFCYUlGmc95Jy2WUJC2QMm6c2Gx7fMwcXbnGzTducHhln8WyRZmEdgM6iBsoxZK4XsQa5Pz60OZUMm52H7uENzn8l6QDrQk5MUxOvpdcsl/Ljw8KNV9Jx7Az9RtVkXQihogxBucks1YrjVYVo888O5l48GiFmzTWNCQivZuoarlToeWNs5h3tHUDvni0kgx1Dg+Oef9r7/H53U85W51StYq9/QVu2uImT20twzAyjT2Dr5gv2mIvbEgp0TtHyJZuMaOuxWKZw4T3EbA4l7l9+12evlzx3gff5M13vsZv/rPf4uzsGXfufIdHDx7xzvvf4J/93m8zbbd0VsLj9g8OCRESBh8yWMV22xNCoDUW5zwvnr9kPrNMkyG5kf5ixf0HTxiGNSYuMFoskFjD1Pd0bcf+/h4nL1+Sc6SOkJLFhUyOBmXE/bM6lQ6gqlvGyZHQ+JgZhlEAC9ph5xVHBzUKJa6zlNmOCVzm7PFj/qd/8Oucn5/wN/6DX+P2176B0q2QMvLrE/yvyyOKKWGMoW5buvmMcRo5Oj4Aazk/h/V6hla32I4Ljuc3aeIzyGeovCazQumOGAzoBhUmspbKq4vfPKaC8FESiJDj7v3q2d2E/6If39MBDoUykFKW1ngHA9P6cnAVnOQihclBFHugeIYzSSlSSPTbgWlyLJb7vH3rJtevX2WxP6OqQOtACgNkcW+k7KT6Bi9rp0v3hio5OQKYSyi0kgml+Hp37XRxK5QWKZXWX6IldzSE18dY7+gIWfzDKSUqYzHKoHUCJK/Wh0RONT7V/MmdJ6xXFUbVTCHRDwMRODreZ7NaoXWm6xpUbqhthQsTbScpCmAIMfD02XPOz3u2QyT3WzYbL99XSGQvd0CsJiSk0hpLXdUYE1HKEaaJnBOT9+wv9rGV4Z133+TOdz9h9IZ/5yd/lt/4rf+bh49fkc0e+4fXuXf3c5qDBeuzCz775BOy95Aie4s9+r7n0cNHVMaytzzg+dm5bB2K0rfve+7ff8DRfsfhXseNW8e8evmS46N96gZm84bRK0KEg3nLq1enZYo90VcVoawjRx/JWbMdZZDW1g2T65miZ3WxYXKQlMZF0RWMW0drLdoEcjK0TcX+UhOcRasM2bMdg0D7nr/gf/nH/yOnZ2v+7n/xX3H9zXexdStiiy+lJpSTLO+ALDOUtm2ZzWf0/Za267DbNU0LzTwxOkXMe0xuxnA2sFc3xNmckB8xY01jEto5yD2Sm1myh5XccVFyL95V38svgUzK7qs7wLm0oRQTf86vx98ZLlVZ0QdSiBCTrHmwaKvZ9gPDMNK2c7723ofceuMW88UcWxm0DgIMCxPKjRCFN5STI/qJHLxYEMuB3YlIlNKQhdcv9wlTbk5KDiilNdaKXQTMLqNmR0CQQUYuv1ZM1tI+a4yuWa83pa2SgOoYBfWTkuH0fOBslYihosqRYdzgc2a5WOJHz9ALu6vS8jWQIlVtqWtL34v08+LigpcvT1FGk0qindaGpqnRTcYNA3VruXLlkLZrODs/ZXJFuIKlVgqvEtN2Q7t/yNXr13n14ikPnj4nqpqTsy137z9h8pn//f/4J3zz+3+AFBPTkPmju3/G1K9JyeInh0riO66sDAejS/SbLWbHBssJWzdk5wjec3468dDAwf6SW7duslqfMFtU1E3N6coxJsdsHBj6oQgb4NWrV6QkQWYhO0xjCQr60UOQYZAuwdxjH5hC4vmrc65cuULbLEluwoeI1hVWQ1slDpaaEAI+QFCQpkzwgf5swz/5X/83Xr58zt/9e3+Pb/zwj1O3c+m0ds/23fu7HCattcAVm0Y+21aqZ0g0WI739nkV1oQWnOt4sh3YxiPeOFiS03Ncf8Ky82g24pTT6TKTXrwCDdgKdhkTuTxAdiFQX9UBNqYSgXaKJTaxYDhRxFD2dVmqotJGKqLPDD7ivaNpZ3zwzvvcuHmT5d4exhZGL8JnTmFCeYfyjpQcOcm99xJ/kjOX+JGcoRAYY1TEBFUl94wdOWH3lwJ24eupPGV3NI7dakEp9aXhllykvY9kE6jrmhgT3gdCiDgXcN4z9JpXr9b0YyLnScQL0ZMVEtS23qJVxo0jpijNYoiEEFitxjIos0yj1DVSQgACGmsN80WHH3uSyUxu5OQ0sVjMAY33DqMDKSpmjaB1nHeieGsaolJ0e/vUdceDh/f5p7/5myyXS548e86D+3eZzRbcvn6Tu9/5hForTl68wk+epjIcHBwwn93k7t1HPD85wwXhPIUk1j2lBO6XokhX1xdrHt5/xA/9yEeEPI6ewCcAACAASURBVAdtePudGbre8ODpCZv1Gq2yRNMqynQZYooYbQkx4hMMXoaUOQaMyhL8aRRTCDRNS0wQYyb6hNGKylgqmzCIpDSmwhRDHrBECFER+pFv//a3mIY1f+e/TPzlH/4rLPYOUcry52I+d38r50iVh64xlqaZsegOUL4mKM+8nRjDKcE46BpONhnvam7t3eag0Uz+JagJq6Q06F2li4lsAirVX5pOl9gWZLD6PZ3J72WI9bu/+Y8/1iWtLcRQBjkanSp0tMLFxaJMg88V6wn60FEvb/Hme+/x/tc/5PqNGyyWHQpXMDWJFLYQNuDXEHtiGMlxJGcvoduFjJCL/9JU8uJqY2i6GSFKxKixNaaST20qoScohSoca611iVeRSptRIibXhqQ0ddsRy0NIqmwx+SODE8mqlcDykCLTqPnszpZHLwZ0DSEFYlBovUtNhLat5IGnQBkZjpHBh4ixNZMPjC4Qc0Zbi/eR4OVBNe86rAZrwGiNd2Lgt1aCsYdhYJwmNqMXvIuxDM5hrOHKlavMZjNu3r5JP2w5PTuT/e56w7YfGMeRhw8fEUIQyWU/knPCBc+m72WdlTKD87gQd+GaYGRVp1LGKugqS61A+cDe4T6L5RHWtOQY2PYXvHp5wjjIDMPoTGOKUcJq2tpilMJoQ0rQzpfErCEZwhhRuSaicWlCV1IuvQu4yXG4Z7h+VKFNMRTkjNVaYlQT6LTbgJS1e0icvjjhsz/7Iw4Wc27efhPbzi4PjvryKS6dAjkLnD4EJjfhgwcLocSYKkS8Intgy3obWI8e6hmq3UfFiE6xrIdkwCVuI7kKqlyqb1Zy3QOMgtsf/uxXM8R69ugFh4eyhK/a4odUGYzGR5GMhWQYpoxPlv3jq7zzzrtcvbKkriY0QmwkTtImlfG9xpOSQ+HJ2aMIpMInUkr2zTEKeV/l161PzhB8kKGV0iithN1cdqgESCGTk7xJ5PcQkTzwug3X5S6MRGzsKAmoTAyuTNITqiiodhRBbaAfJmKE4BMq6QI8qPCTp60rrh4d0FSyH/fes9lsmcZRrJWmImGYki8ieE3Wlik4lPc47zjaa6mMIGhWmy3nFxdM04CxNUmBCwHnIrUWrfmVa1e5f+8e7739Ft47np+84tqtN5kvD3n58oTrt97ip376p3n65Cl+6Pm9f/4t+nFktpyzt7fgYnXOrZu3WF2sefL8JSkjWwWl0BmWywXn6zVagVUl3pNEcCN3P/uMD7/vI5aLBRuVuXa8z+npmot1pG4qZl1X1Gm5ROg0nJ5fYJsOrRLbMeB1RjmHDhGTA7aymLZCRUWMBhUj3o3s7x9TVaLtbtuWruk4P+9ZzBvZxyZIyeNjJGQ5PtPg+OLOF/z6f/f3OV/3/MLf+tssj6+BqdnFjqndE1YJL7upK9q2Ybm3ZBpHtv0WpZCA+qYV6WQUKXHVNqRkePD0nPW64Z0rXyNUT6j1c2ZmAjQ6GFSjLvFOpurk/GYZihqt/w2n7/+HA9yPFRf3T7EGurahrirqqpaVSYSsambLKxxfu8n1m29z7dot9maa5B4yTVtykpUQarcaEu6UShI2JmQ/aZ9VjsQSlhZDKDT73dBJvnmtMpNzZMQh4r2T8X25x+hdOx1DwekU5ZXSpcru0KEy7R56X6bbmh2eW9p3sZGlLFC8EMpKIzn6yZGShmiojaGu4MbVffw00lhD12rcKD+8s1enaG2orcWnTD+MjClj2zmbYcRPRUOrFC5GhnHCHs3JUXKKa51YzuvCZGo4X48ELJ2Kl5nLTdNgNPz+73+b22+8wfG1a9y9e4/KVKzXW27evMm9u/e4c+dTXjx+DFEkn8vlIU3b8M6Vd4ghc+utd3n68pRZ2/Deu+/x/Plz+mGgnyZMLnUrR2JI6M6yf7jEkBguzonjQKVARc/VgyVdlbh5+y3295c8f/qY+w/uYau6BHcH+s2atmupq4asLYMbJEUwBZhG9GRp25nA1v1IawPWBMDQtRUxebTVzOYNmzQx6zQ5GWIMxAy5T2w9kA3TEHhy/yH/6L//+/Trc3717/znLI5vgGmAL81FUhI+9TxJlrUTjvlyuWSrFGOG2WwmXSGamHuGfiJFTfBLHjxb8+ps5MZxx43DY6CHtMUYT6aD1BDyANNANzsQGkgSE9D38vE9tdDf+eRPP1bVglwtSHpGYEYyS+rFdQ6vv8/t936Atz/4Id56/y9x/Y23mC0XKAb88Jzo1xjlMEQIA6SRrjEQHMFtUUmyaFQWtVVO8VLnnMvOVva2Jc5CW3mKZXlSopSorpTcWaytL8OZU4rlnmNK9d4Z+uWpG1OJ2SgKMsluiqWb0kXPKpUjhMgwOFHqoHn2MvL4+Sh/bk4s25p5q9lbNDRWyRsZ8JPHe3E+iVKspXceHzO9CyhjsU1DVTegNGO5N3dtRS1uNazRzGcz3nzzNnU74+RszaZ3MiU3pf0OgYP9ferKcri/x9NH9zh7+YKDvT1ePH9GpRUHyxn3v7gjd3MFP/ajf4Wua9EK9g/2SWiePHtJRjGVll0pRYieaZyorIWUaetKRPwk9vf3ODpc4qeRtpEqmFIoMHcJC6+04tqVA1YXp3g3MTmH1oYQI+v1mmEYmc33sFXDph+YXCzXI0uMmmEzEMYN77655PbNOZXyKL0zp4C1Uklj9ECkrsXoHwrMPyVkaBQDcez54rNPCd7x9rvv0c5m0pmV85MvBR4QS6h5KErCWPji1lqMrvEu4aMjJIePrtiDK9Zj4ORsYrvVGNVQ1QpTOTDuMg3EGI2xVdHty+D19vf9/FfTQn/jR/4qF6tztps1MXqU0rTNjNl8wWJxSN0tqJpOaJHaoekJ05baCCPLkFDB4cIIYeD46gHPthfoLCSNTCJFLyyhnC+X4rs1j1RPU74aLZkyBalCue8m74kFGauUkV1rgXSonOXOZ4zcmU2xF5bfX1xi4oQRZKAi666M/EemaU3Omboy8sBwhr3lkrbeknRk2VRcPVywv9ew2axFKVY3KJUl/1jJ5NUagbfPuw6TwSa5b3azGYdHR1ycnhF8YDs5Ts83TDUsZw3ztmYxm7Ocz1EmyiR5cthG5HvGSFtKzqQQIHoWtWWr4fzkBdNmzYWCl5ViXhvavTkKxR//4R+glaLtWl68PCFjOD1fEWLEec+TZ0+p24b3P3ife3fv4sYRneVaEBIQMk+fv8Jmz2zWEUNmDCPD2BNCxupEV9e4YcODs6fMO8vh4TW2Q2C1GcnKMI2eGOHsYsOsqbBNx+C8bBe8BMXpMPDNr9/krVsWq+SQ7nTOGQEotvPuUmdsjSKERAhyMNUY5VqVMmEKnL14yf/8j/4HTs/O+dVf+8945+sfYdq5HIvy+xprWSyXbIeexWJBCKHomTN939O0hqqZaGNHLHroMXl0A3NzxGZleHpxwmrjeGvV8bW3Ovb2T2mzE142svrK0ctQi++thf6eKvDZev3xfLnPwdExR1euc+X6LQ6Or3F4fI1uPqNqZ9i6lqELE4Q1eTojuwv8dAFxJE0D2Um13a7XxWVSUhWSE3tgEWzksj8GqarGiJbZ7qRxRYa2Gxvu7mkppfLULZU3yxBqu+0lexhVFFglFa54N+UgpyL9lFN/9fZHvPvRD3FxcY6bBnkgFBj45CqevUhE3bF/0HH9aMle27C+OGWz3ZJjZjbrcJPnYrUhZkRKpyuariNrwcgoJbGqH3zwIb/4N36ZZ89e8PLFyzLokDt/U9cStZoSfb9luX/Iw8fP6EfpVppKwGur9Rqj9SXXWjYTlu3giUlep7ffehNrFClM+GmkUpq2aXFT4OJ8TT+M4jCbJrrZjNF7xhIDK1PzLQDT6ASXlESzgx8E2GAt3bwjUZ6cCbSSPa33W7q2Eqtp1bLe9owu4nwgxIw1lnHoRUSjNbWphSWdBq4ednz/RzeZ1yO1cpeCHvnxG5SuqKqWuu0AJGitDKSk64qSf1VCBxIaN008uvcFj+99zv7+kmvXr2Pq5lJoIQ92VdBLHu89IHdlrTW+uI7atsWYQppMWbBRtgECUw6MyXJ6EVC5ZtntY/HFprnbR5tLqeXtb/ziV1OBu7ajriw+1EWpJBNXkTGKkFumBx4VJsKwIk0bohtQqWT0esnwFbVU3g15ZeGToTKWUCbBSimsMSRKAJixuOKsUQV2zqVBn9eLvLwjOSTx5slMopgt8iVQW1AzZT1b+F67f0+FUtlvVtQ2c7i3x+bkueisdcKlik8+f8XdB1sWBzepG0NnNdNGrHHdbEHbtmRt2QwXEn6uK0mKqBTzdo8UInvzGT4nQobv/8ZHXDs8pDLS6juf2JLRpmYIMKdi3U+YKfD05FPGKcoKykhngZL10zhJdtXJ2YpZ0whRg5rl/jGri1M+/exz3n7zBkO/oasbchR/9TSOkog4m4lk1VZMLmCrGmMtB0eHDOsLzoBxHIt+3Mr+P4GPiBF/HLCtyGrFiJBwU89s3snaBM2w3RKSKUaUgCJSaV3C1jND76mMhdqStaWyDQfH+0xuoiUQFRLHExFwoVYoKy4og8bZLc5kUp1ZzEr4d8qEnMgpM2ZNTDJ77i9WfPt3vsX5+QWvXr7iJ/+9n2f/xhtkhNGtlGF/fx9Swk8T0XtSXcs2IQUiiWEzAAataqxucX7E6om6UsyXh3jvmbYXfPF0RHGVr7/TgdlSM1HnjFKWpJr/l6rw//vje6rAry5OP96ZanWRhknYF4Xto8WkHHtwZ+DOUP4C0oBg0ROKgFIyNEIlcvZoAjlMELxU0LiLu3h9TzXGvAYBpC+L0WWllMpeOGRzaR3cmQdBDrjRckJlnSMRk0qVfFkFkjGbCNFfDrH6zRnPn3zK+vQU5RQ5jTgMn9xL/J//4hlB1ewtGvATwXl0VRO1xcdM3Xb00yhgt4AwhhOMwbF/fMwH3/cRk3OMzvPs+XMeP3zAvTuf8vjRQ2KKOO9wMZC1JabMxWrLtvcMLnG+mdj0gZg1mR1c3zD0PcPkUFVL0lXRile0dcP6/IL9ZYfRmcePHlIZy6ybATKJv9hsCUaTq4opJpStmXxinByzrmExa1guFvTrnvVqXZ68UuGs1XS1RetEVesScTOhjeHiYoVCsx48tlsQUqayhr7vMdbyxs0buH6FJWBI+BiJ2YCRzKftFNiMntV2YLudyNhi0TMojOiIUShTidx3nIjTCEgsaE4JjabSVqx7OROT2DtjSc0IIbE6OePT7/wZPoy8+97bYkk0FRmF0Zq2aVBkxnGUIqCkuKii+AvJg84YI2HwMYoZorEWlaGuGpKpebkaWQ+Wpt2jNpFaT2glxpus4e3v/1t/4Qr8PR3g0/PTj3Vx/hhjysFQRRElLZvCkfyaMJ0Q3Sk5bJHRQcIoyRmSX5sRkqJDJU+cSjRocS6V8no5dIo7NnKSybE2GjKEKGHLWlt0aUFeCyN3Ez1VBmFZbFuX5oXMDmmyw32qctgVcldKMct9H2SIlWFkwf/1rfucrBJt2xDchHOO0SfWg+d83bMzjaeiqzXWUlU1TdvgfMBYw9NnzxiGgViEMeMg+9nROd56+x0SmX4YZAdZ4lBdkOn0ME5C9UjltTVizNgRLXa78CtH13jzrbd4++3bPHv2AKPh+OiQ/eWSk5MT6qoixch6vaHuOjKKg+MjTF0zX+wRSkSp0eDDxNHRAcPQMw0jVimsApMztTHYHNBKMEpVrS+hgcoYehdJtubqG7c4O39FTJ7tMGCqirfeuFWEHpb5vMM5kRNKftKIriperXvWLvNi5XixjpxdwDRoFss5VRPReqKtNbUxmLpmcNPuLSQy45ywpkholZItQi7rnKLlCCmy3W65f/cu64sL9pZLDo+PhW2uJLWjahpikuuYzDXk/R9CEGRUOexay/tT1H9G1F3Goov+YLVec/pqwNg9YZDpEaM9Kkfe/sH/+Ks5wOer848v7Vd/7lMiOTOBHAeyOyeHcxFnpKkIGXKpwBIgpRSoNKHzRHIjJgf0JWXSCxtLNGbEuGuT1eULmbPcZdAGlKWqWpqmK/jaiNa8/toQ55RSWVp+Y4r9UBUztRx2XRRZIYjf2WhdHE2QkIo4eMPnjwJ//NkKbVoxboTIZjtyutpythrIWuB9GcXp2Tl10xCj7EJ3348pBMd33nkH7wPWaLqu5crVq4QYefL8GRiD956UIt5nig8EpbRY0gBIEtWhpGXdTXUnJ0ORmAzb7RofeqzNXD0+YtgOnJ9dMIWJo6NjbFUTYqRuGsZpwlQVm3FgO/RMbpeFnLlyfEhbV0xDz9T3zLqWpviaZ3VNihNaQ91YqkrTzTraRiycY4Cvf+P7+aVf+RWeP3vK1G/wzgviRovAoa5r+m1PTomurqg0xOiZYmJIihFLtnPWk+Z8nXh+smZMiaMrh5iqZFyhcWEgpknEtSmXiW9CmTIToNSPkmMWiqY+5gwxMm62PPj8Cx4+eEBVG65dv0rdzWXOYizdbIbSUmXJJbniUjgikpeUEprdMFXLdaPMcaqqIivL6C0vzzxTUnRdRW0zNgXe+ZH/9Ks5wGf/hgMsOhNJnCP0ZL9Gxy06T6js2QUgawIqBzSe2iqS28hgy40YJUqrFCSTJu2MEkoLhlPrMh1+rRXekRuMqaiaFqW1xGqW+M9dpi9QXth8OfRSZYyvi85Sa/V6jZC5lArmJN9fVpnRB7ZTx2/89kMevnTivtKamKAfHCGCMjXLvX2sMazWazabLcu9vbL+gnGauHHjTX7u536Wp0+foLVUkZ/8iR/n/PyMK1ev8vjpM56/PCmBaJm9g0O240QImZBFddbUlbzqGmLZi9symMspE6KYDpp2j6qpCGEiRo8Pgdu332K5d8jB0RHvffAh56sNp+crLtYrvHes+i2jD/T9SEyRujJ0TcX+cs6jB/cJzjMOPZXSovFOEV1OhDGKurG0Xc180aE0bDdbvIO+n3j65CnJT5y/fEn0Ge9iIZpuCEE6Dq2gKcO9AEwx47IE5VlrqY1lTJ7JaE43nqT2OL2IbCdFt3eESj3K9eiYRIWnBeYvm2O57+9cSCl96TCTISYM4CfHyxfPuPv558QYOTg8ZL5YFj9vxXwxo64tTx4/gpwvkbq1rS7fbxKvu2Nz7ZIvRX+QlSEZRVCZ1SayXUNrWypr+PBH/6Ov6ABfnH0MXILb8w6Vo+UJY1VAxS06rTGM6OTQOWFUpNKZHEc0E6SRHAei6yEUvGaSELKUJYIyFc/xzrCwA+nJ4S1j/tIK70iXzk/l13OZ5yvxHQajFcYIH5ov/QBVUV8B8mTcOZOStPn9MFE3C0xdo2zNZlzwe3/4nJcbx6xtURm8D2gr0+2mbkT2GGXP6YOESle2DM5iZv/gmGtXr/IHf/AH7O0tWa9WCJXT8Du/87u8Oj0lxFx2g5QqnwiJy+5DWE4iYEll8i4vkbpMwGialoTm9ttvstls0abmfLXhnfc/5K1336OdL/mjP/mE9WZg9IFhGIXT3bYMzgGKq8dXeePWTfr1itrAsO0hKQn0ygIjTLEgi7IIM4xVzBYtMYo2O8XE0E+EKK3mdr1GZTg/3xCyLogmwzA6chJQXGMtlRVIQUaELcEHTE50lSWbxJgj7eyQ+fIm3/3iOa/WgWdnPcRMW8/kYV+m+FkZEfykJA9tRFWnlVhjc8qkKDU85WJGDZHN+QX3PvuMVycvuXblCsv9A2wtXUPbiLusrmqskRhTU66X1kru1+7wxhhIKWJMcbjVFm0TSWW0njH2hpcnawYPP/ULv/bVHmB43c5egut0RKsRwjkqrqnUiMGhoscNW6zJqDySYw9xSwpbgX8liUKhrG527QyXpox82QZrtUsPLHfdUmXF5SFhzV+urjvKvbRMhaeFVG+hIigognlZJX3pj4VCMkxU7R5TiJiq5cFDx7/4/ceEyqJTwo1eoPHG0jbtpbBBWyWYoarGass0TmWQZnnx4oQ7d+5wfHyEtYaTk5eszs85Pz1js+1x3tN2MwEBODGUh8IhuwTTp1yuCXCZApmiRN8YGZZN3nHRrzm/uOCN2+/yjW/+IHU359Gzp/zL3/82dTvjF37pl/ngo+/j2//q9+mHnhC8mDISWG3ZWyzYXFzIDr/AB1PI5Q278zTLvtRqJU6mWjGfiy+5rhuMNgyDo10uaeZzusWMk9MzxqTANPL7oBlHT123+MnRNTV1+TNE6ScYXmUqYjZobWmrVhYwtWXwAZctXs25c/cVm1FRd3NmXY0moTPopHFOhkUahS3KvJwzOUgoeMoKrzJhN8b0Cb/d8uzpAx7ef8De/gGHR8fiUDKGvb0li/ni9ZnYnQ8oktmINtLd5Zyw1lDX4qKKIWKVsLtMZRgCvFzBv/8ffkUVeLVZffzlw/v6TqpAJ7TyELaoeEEOa1Seipd3gjRBcuQ0oqI4j4qIGJIkN8RiUTTGoLDEINUz511nK8ppaXWl4uwsWHl3sSmq1i93B2WKcVmtjVFF/yz35bx7Spc845ylUsekMLYt6QSJully/4njX/3pY1QzlzeF0uVQZeraME0joGhnM5Z7+xJEtu2prEFrybbdjv6Sl5yi5+q1q2zWKyprGbYD2lh8zqSsREzhBNkraBh5/dMOTUsJQ1dic4zF2JGTiEdcdMSUGabA7bfe4f0Pvsa1q8fcv/cZOnnqqqJrOu589w6bzRZPRNVVSW2UiNAQPTevX+fmGzfISaSFVWXkLV46GWsNlVa0jaFuFFWdmS9nVJUlJMU2Nbzx7oestwPOT6y3G+pmwTgJXmk2W5ASbPux3E1V0TFD1popJMYI2rYYW4mbTClCdGidmc87vEscHFyhavd5crLm2asNU9TM5nNaAyZNZCWVVjYZGVTAKg1RFfyrDCpT1rK/Lv21n0ZevnjBZ3fuEIPn6PiQ+XKBNpaqaZkvF7R1I2EGMaKVorYVIUiErrFWZK6lxQaIodhBa0vCoauGKRj+9q9+RVPo8/XF5QHefeyqHRpMSuC3EM7JYUVTAdlhdAQkHT2VcGVxcUwQncDvskJlg1EVVgl25HVMTNnWZ/nB6sKwUvp1IDdl+iy5TeK13KlaFFkQNZryJBQ0TSYXGaWQLG3VXEZ6GluLcISaaRhomwr0jHuPL/jTz57jowj8yYrgBb7m/XRpp4wxo3b6Z5VpmwqtRJq46SeRXmpF2zXcvHkTozVjPzCNE2+++y7LgwP2Dw4xlWXsB5TWLPeWKDIxCcYo5UyQ/nk358fJlKsQN+WA+ZhY9z1Pnj6h62r82PPg8085WlTcu3+fR4+eMPWOcRwJKvONH/wB1usB5yV8+2B/ya/9J7/Go8ePCcER3MhiKaqknc25thWNUbSNpe00VauZzWcoa8mqprv+NX7o3/oJ7nx6h36z5ub166SomIZE29QFPJ/EKeUCEU3vI0Pw2MowTY6IQZkKrRI5O0KOGK1xo8MNk1j1YmDWtTJMbA55uY6crQbmbc2sAa0k8C5nhdIRo2XYZIq1MCObh1x2xGhhOucIwXvW56d8/tl36DdrtFEcXbmKqRu0tjRdS2XFYZViInhHTpLIuRsSNk2LCxHnoiSU6IxzI0ZbjFZolfiVv/k3v7oDvLv/7j53MDmVNTp78Bck/4ocLohuECN+cuToIEoVJst/5zAJIzplVNYYZdHZEj0EN2J0EjWRFsWVNiVXVS+I1KRsyQV9pti1dYauW2JNLdPrcvgzO9fRbn9cZrhJvKnaWMHR2FrunbEMvHJEo7G6IaREVIHHT89Yr11JPKjwxQsdYiDFRAzi3x16iS5RyJtUKTFDOBexWuOdgyRDjbGXYHSfMr1zfPTN7+dr73/Iz/3szxUM78R/+9/81/zwD/0g+/t73LnzGYksX1OW4Va4HF7JWqmy9hJar5RmGkeePn4kclPv5K7czPixn/5rPD95xenpK7SGvf19Tk/Pys8mcv36Nb7zySdsN2vGfuD05BVucqJ0K1OgnBKkQNNYqlaooEobvAeta97/xo9wdrbiyeNHfPOb3+Bitebk1TnT6BnGgc12YJgcPmVcTLgo3disNnR1xXYYoapFwHHpNyjJCLvBUM702y0vT0+pZkt++md+jvc/+gaPnjzlwaMnzPeOWLQV5BFjnADaqVHZklUWdxqlC0NddneXq6YsxNChH7j7xRd88d07qJy5evUqs8WMrBXtbE43m6OVLdbTcLn1EDBfKtuPHdNNl/tyKsIizS/98i9/NQf44kst9J87yLL9QuPI4ZwcTlFpgxYjJuSpHNZRDnAcSWGSCNJCt9jdHZUWbOk09XJwjZi05c5bkVWFaa6CmbHpnUQ+KoReQWa7mVguluScGKcBpSQ4WykkDsbY1wMsU5Uqrstapy69uqh2cs7k5NC5gtyQssfWgcVyzvPHF6x7R920OMFCylUCVdgDiUrL9LYuyYVVtesMVNkLapqmZbNe0/c9WWlG55lC4tYbb3J6ds4//9a32FxcoAnc/eIOf/LHf8w0jbw6O8V5Lw4pJCorZqnKEhcTqSor4oX4pShV57DaMA0jORs++sEf4od//Cf4/T/8oyJf9YzjSNfNWC4kCaK2hqdPnnB28ortekMKCWuMUFmi3LuVkkzlprXUjUVXlpS1tMhJce/xMz777C4vXpxw89Yt7t2/jw+ZV6cXrNcbxskxhkAEsjaELN7Yo8WMrq5Ba9rlPrquSVlMGylK666NfFKsob7AB9fDxHL/gPsPHnO26nl1MXDYNXRdQqtJTPaxLpXWlY5KlooKRYzCx8ooUjHGkHeQRsf67BWffvIdnj97xuHxEftXj9FW5JzLxZKqrmQtV0RIcm4UTVNjraauK/b391FQJL4Aip//xb+4lPJ7OsDr7frjLx/eHbx9t1PVJFLcQlqj0ojOEaIjx4lU/kmSwyyVGUjg3UROnpgdygKVQtdzTDMn64aAIaoGVXVk3RKYc7FxrDY9KULTNFhrSwKiCC+ca62GCwAAIABJREFUH9A6YiwYK0Mx5wJVXYsgpLTXxhhMJWnsWitJA9ixv2Iuwy0DyRLzRIw9i9mCtp7x9MW5tEcBfExloJYvh3tNZagMHO5JMHVdS2qFdzK53d/f5+DggJQzm37LNHmS0kQUx9eu84u/+Eso4NNPPuFgb8bq/JSubXny9CnjOBGCJD4mFFlpWSchB3VHdmhNJWIPCYYS0UqK+CAggXtPn3FysWJ/f4+2qnj16hXayMZeKYUfR7727ruolBj7LTlE6qq65BrH4Glqaf/qGpSK6EqXcPeKyUU2/ciLkzPu3XvExcWWTz//ghcnJ5ycnuNCkpyoEFFGsoF8knlIXVkOZi0pBUYfWI2eKUZC9FI9lVQwAfdLJYs5i5bAO1arc+7fu8vq4pxpdAyjZ7u+YDavWcwqIXkkVQLHhDpSdL2XqyUlFYuQdj7xsmpMkRw80zBw/949vnvnO8wXoqVuakHwzBdzlvtL6qrCe09dC3PcGENdCdMsF/95ZSpUERz9zM/97FdzgLfD9uPdoZXva7eTVUWtY8QI4IdiD3RE1xP9QI5ehBzRC9c5ytooeI93EwpFUgavKpKdkZsj7OyYan6AbpaYZsnkNWcXIy5mKOukGESYXrczUixqKyXEexlW5cshVVXLrhi9416JlUvZCm3sl6iBxbifNTnrgpLJjGOPUobokpgHlHCJN5tJwPFGAHVKKazW5Bg4XM5oKl30wolxdBhjZZpuDP044FOUPKAsAvusDDdu3uL999/nz/7kTzg7OeHrH7zP3t6SGBKT8zKsKtUgp3Q55JNja0hZ1iCNMdRVhfOOmCMo8DHiQmTynu00cu/uXc5PXnF6ckIg0U+OzXrDZr3iYLnkow8/ZH1+ztj3JSZHy15ficNMa5GpLpcVTatBi/c6ZQgRxtETYmZ//woXm5FNPxKyHNyUywCyRJKGGMu9OkuIncpooxlcYAjiflJKQQJbiTAmZy6vMKEo9aw2ksWVRZ65O5RbJ8FxVw4O6GolEMWcSErIqnqnM9hB71K+pLQAMiCkPOCTeM1TDFycnvInf/hHTP3AGzdvslgu0FbTtC17e/vM5rPi+GpoCgLJltwr2eFLAeq6jh//qZ/8iipwv/l4d3C/XInl3S5Zp0LCcGS/FQ10dOQg+b3Jj6Tgyu43ligKL3QL3RLzjGQOqea3WF59m/nRdbJuWPeB1cYxXx4Rs8E2OzmNRivLNEWG0bHtB/w4Utf165YkIxUUXaDzBaVTDpD+UpqhSCdTya4pbwwkoyimkWmcSKFi2DqCH2hnLVo3PH9xTlKWpBQxJ3IW7GxnDdYIIM5ay+Q9kw9gDJNz9OPAdhwY3VS6AiViWGP5wR/+YT755Dv83u/+Lm7ocdPElStXSBmmSRRMR0dH9Nut6MOLwEMpwRylhAzKcqTrWqqSVJFB2tuULwc0JoMfRtarFZtpYvICl6uMZd61rFcXuHFg7PtS+coKiyhge6uoK8NiKcjbqqlJWbqSEIWd7UPkYjUyTImQ5XXabQ9SEdOkcp82WrE3nzFrW9ablbSx2qKbGZOXhxYgcSXksgPXKFP2aspiqwZtFKnkGBktU/ygW/ohUaO4sl9TGYlAgfq1HxyJ6dZK7H0p57LHUDst4WWnIzifSJocoR/47Luf8uDhfZaHS46vXhNwgdYsFnPm83nRjVtmbVvenIpxHMRrHBIheH7yp//dv/AB/h6plL7cdXf8K11azEgZyKJsRzW7RvZrQtiQ1QVGSbBTQkQWUVdErQlaE0xHnnfo7pDl7BhbH6B0g/MjTx49lvbHW5rZLZrDNxjOP6EKa6zSGJPwIVA3bRkaFQuijRw1jbzMORXcaCaHLOypYkvMCcF46oqE6OqU/C9IFctEElkrdK6wOnPycoXzGZ8TKSQqrUQ2aBvON71QI2LCVpC0AlMRqNBJlEhTCCTn0MpgbY0xGedcya2VN7Tzns8//4J33nmHG7du8uj+PR4/fUJSmYPDI7TRHB4f8vLkVFZr2kpsCDsgH6AzEVhFj5kGri2XLKsFg5vYek9Uido02NIyBu9lSq92FRaic2xX57jVqchfAaMMTWUx8odhVMJqhehU5LXW1uD8hDUynQ0xsh0d5+sRnyrhmSlN3TR4nwh5l5MLtmCR2rZi0VWESbEatlSLQ9CGkAR0UH605Fzuj6rY/nJE6Upg8cimkljys0rtnJLl85Pw/9D2Jr+25dmd1+fX7eacc+99bTQZDmeks3GW7SpbVQaM5SqwS1QVAxBMQUwoVCAGTAyMQELAlCFiwgT+BJBgYMrgghJ2uZx2ustMVzbRvHjxutuec/bev57B+u3zXpaElCE5nhR6kZER79579l6/31rf9W3AwTffu8fOTnTZU61B6SqkI1XBVung2tJFF0GwQ4WqZAOysgOVgjjN1Fz4/d/+hzz/5EP+tX/r3+bv/Bv/Jg/fehswbHZnuK7j1csX7CuUlJlujwymQ3eyQ94f4ucpyc8/A+uTfhGalkt4plWSEVauLsWTwi01H8k1korMnak4sGcoew/0BePuHczubdTmIVM07GfPfr/n7vKK7GdiyLz7/l/lZ3/hb/GVb/4S292WNE+UXIlRHDi8D81jypKzIpaMsYquN0DGaE4kEMksdhjnWguUTy3ZalBG41lXICGMKFUMfo68fHF18mYuaA5L5ZNne2KjM3amsX2MbmAK7I8zs4+Nc1ywzvHzv/Bz/Mav/zrzNJFzwlnX1mS1tdMi8H/y5BMOhz3GKPbHg+yElaYoxSefPj0x10B22xV5+WpLwiuIUb0DNr2jbxlWWkFNr/np62TUGYeqit51aDJOVTotgJJqNERjFKoWNJmu06Lv7STgO6dIPwyMm63EhcbMtHj2AQ5zBN1heyvtPBBjPt3GtLnatDC/7WA52w6EoqhuS6ygKNQkbhjDsAaXC4JrjW7gVhJFWZXPpZZCLW1kopBKYsmVu+NCToX75xs63cLhkTFMtDr19DOrqk8+5Kt/llygLYu6abdLEi+3w8013/3On7Hf3/HW229zdnEhCYmNSz3PS9tYZCiV2YuoparKr/zqF9RCH46L/MuqgC4o3UztWusnKp+CIaGrJ4cbYpmZU0aZAWU2VLWj1DNC3oAaWQJc3xyFKujFqcMfrgnzwm53zmb3iHtvfZXLm8i3fu/3uX31jG3fCcmhwOE4n7ytaq2UJP7UMXiGRqpf97+6zbvG9eJa2R4+VaGKEnQxFyjiz5yLojbO9XycmKcFhTkJCzKG/bFweT1j+xEUbDcDtRSWKPNxWVlSVdwNAQZn8PPM7c0Vz5895dHDB0LyiJHFR/p+4Ktf/zrvvfce3/72t7HGcrbbMgw9X/7ylzlMEx999Ak5l9N8Xxp6egowZ43Xkk5DkvLExtcocEpuzaHXaCWqqs6INK+WSkkRZ0QRZI0gptZaShHFkdaFvjcMg2PcdIyDO9E6ldZstjuWxTP7QMqZKWkJPjPrSBKlZaty6BQZZKFmnNGMzkmxKkXMiuPi6ZzjYrehM5wseVIKgBg2oFZ7Y1lrmYb0a9NGvVrROrfRVubtu7sjMRXu3X/AoDKajFVCiVwL1CjTNgc0u+LG0mrMPVUb+lBp5CD5HuKy8IPvfY8/+5M/5d69+7zz7pewvTiKbrZbYkpc394QY6CUQoyelCL/0q/+5NEqnw/EOk7/laSpSQuhsKhqZQesMkpFVPWY6snLNcvhFctyQBvL8TBxc33H5atr9vs9lcrl9StiDtztb5imPX7aQ1hQMZJTJFcw3YYvf+MXePe997m9fk48XDPPCxXN2cUFPgTmZSbHyN3tLRK6LA9nnmfGsacfRDuaKmhrwbg2w3BC/sSGRqxkhQFV0bajNAf9+TgRfSRlOE4RH2Uuq2pgP8ltHEIgp4g2hslLx5HbfJZrlXgWrVA5kVPCzzPGGKbj8eQiElISM7aUubm+JgQJyjbtgrq+vuXm9k5M+rQWNhcrU62tQE48byXWN0qTEJCns5bRWjqtMDox9o6hc8IUUxqrNdRCLUmC1ZTceutaCtWQfQPD2LEZHdrUFt6uWg5vx+w9ruuJOZFK5eoYmJZEysi+vOa2ftTtEhDVkNGK3lo2Q0ff9eynhZBhWTyKythZRmtk5dNm+JPIRYms1BiD0UKVXR1dSpWuSGvZkVclgv6Y4bAkqul4uJXRoLaw+XWlKHridis3kU2t6kQ0EqVds35STYFeKyonHHD96hV/8sd/jNKKL3/wAd0wYGxHPwy8ePGcq+vrE086xcC/8Cs/+Q38uWZgpYWXW6oQN1QW3ypNROsD03TJcX/Fsr/hePMc4jXbQTEfD3z/O99B5SBulDVyuKn4FMi10ncDx/2BNEccjt72THGhqmtsf8Pl3ZHt/cd02jD0mn68h+07Fn+kG3qUkhd56AdSLBz2M85p/JIwZs/u7EtgCp0T7+hc5MOXPGEB36qqoOVh12YQju5wXSc2Kg1VzbkQYqJWK/tj5xjHnrvpSE6BnCrWDjhnCGtyozbyIqlmYkbBKMUwDKAUMSWmZSY3w7vkPXe318zzEa0sf/fv/j2+/93v8v1/9l1yuxXWSJiu61iC2O9SZVRo78+pmKWV1kwpc3U4YLc7Nk5jVcWqwrAZWUKmpkDOibETZpJ1luQ9qYrGt5REPziUquw2A51VGNv4Dkba71oVruuZD0eWMNEPA5OXDK3QDpu11S91NRuszZ1Y4bRmcB05ZaZZijdXsba12jAfj+i+I6WI1oah70i5EpOMCjkXXO+4f/8+8zwzz0dWPTlKbnlJtBBOfdGau5D4zic3lAm+9lMPuNd3VH8AknhZdy2gPoocFdLp5o1Z0gtzXY9Q3YwYxQ3GHw7YYeD66Sf8z//Df8+f//G3+ff+/n/A13/+r9H3jp/+4MvEGHj5/DkpRu6d3/88Jfl5QSzZiaoqS3PxvbqjxDuev/hnXF19iq4Lo3P0ZSGnPVdPrnj+9Dn++oaSF7SpaJOpKhNrFtBmOtLbjlgyt4eF7UZz9uAh15dX5HhLrZEYr4GO3mzwr14Qa2Z3tuH8/IyXzz5FlUrwC4fjQq0a7wuVQipHHr+bePxoh9bpxCcuVU78UGI7nSXQy6CpWWGwKOtAWVL0pJSlTa0NNCqWmAt91/Grv/Iv87//1u9wtweFkd20UdjOEEKgM9CPA8fDnuSX5lFdsJ2nKkg5s/hAyBmlLbvtFu89WSm++fM/h3OSDJGizMZFKVLJGGfpx5H0Rnuu4XX+k0D1tGUxKIOPmZt5puvO2PUjsbHhRFAPw2CIqTD04gKimqpLG8MwDlgrVNS3336LedoLw47M7myLKjDPAeccpYiSa1q87JRXIoT097KtKKuKquX2KoWzlvd/6qeY9rfc3t2yhIztB6wTtdejx+9CTby6fSLTe2ka7zX3WYsH+Ha7Y5omYT5phXHy3J3b4mdx49QNTUYb9kviuy8KCxPfePeMC9PTabBr3CXCBlSqUjZWVl21cPQCqLGOSqxt9eu/j35B5wQ58Xv/x2/x2Q9/xL/zH/5H/Npv/G3effstNn3PJ+cXXD5/2SyIv6gCXtccKIxK+Pk5zz7+A+b9U4qfGfuM1ZHp6sjxZs/h5orbyyv8MeBnL0bwGtzQgTHNykQiHFOXsbZns+14efmKO594dHEfnQLH/TWlLqjuHLvtsU5umJgWPv7ohezvtGLsB0pVLD6jqmE6igLo1cs7Hj28IIWFokQgQW7C/Sz9adUavwSMEd/ligVr0crJKiQXiVVJSUTgqZCoTP7A+b3E2PcMruM4JZRW5OIxRnPvbCPsJ5XZdBaqwulOJJPoNvd6KcBm27IZemrJdEPPv/Kv/i3+z9/5f/jww48w1qJLJbbc45wz0zRxcmaU3RGnBloplFEoialCt/9nv0Q6N3PWieIphAAKus4yDo4QM4tPGGDcDKSWTZVSAhR97/js2XO0ymxHySI21qFyRhkIMVCaMERr0/bOqbX5kjIhn1E+dQzWmNb6ap4+fYqhEEJk9ok0LRjr6LqeJ08/o2ssL6EmSqJf5yyLDyitCTHw9OlnwttOue3chQGljKXWSC4FZzS2gXdJaW7Lhk/vgHzDV+5p3toabG0GFLq13w1ckzVqObEHfRP11/WHRFGaAskUMDlSpoJOmU+/9x3+u//2v+Y7f/5n/Lv//t/nwYNHnJ3d4+nuE779h3/0xRUwdfWaKu32vUGll2z0HtVV/PyKq9vnxMPM8XLm7tUd8yEQgjgYCj0tYTvLsB3ICJkghEAaNdqIh5K1HTevLonHmXfefsxme4/jfITlloNPuOGMBw8esD/uMVUohIGK6yy2AovY+DjryCHw6vmeq8cT9y4EIUZJQEQp8tJo5whZo7oBZSxKCxIre78qVM5+Q5oroQhqnHwgJ7lJfvjdP6YrkY11LErsbILPLEFa777vRRva5GZzjBStmaYZCZAu9K7DaI0/Hql+xmjFu196zNtfepvf+Nf/DvNy4NMf/IAcE9o30M4YHr37Dsf9gbvbPdmIlnYldSglmTwrsnoieyjL9RQxeuHebmAwGqeFmKGq+DqpXg4ppQu2c8y5MEUwKUvyYwmMvWYzjpQUub06yFqvCsmmroCQHrmbFYdppiCB6FDb91klStbIPzOqUlImasUcE0sshCJAFkCMgZoV2Rd5Tko6Ha0Kg664weFzIhaZc+dFzNkV4v2t2zxba4ZaSDljrVxI1sie/OgNT7LGh4x9b+SRTvQUFmVQxkKtWDRaV6zKkCVFUocKCWIR6LDWpkdHaK6lgKVQ4xGtAuYm8r/9T/8jT77/F/yD3/zP+eCr32DyR/7ih9/54gpYImjklM8UXl1eEzxUnyjLFbXe4vRCNZmSAjlmyReqUJOItmtRzIdFaI1DQ4Kzwi8JlAjDrbV01nJ3d0utmXEzNk1l5hgDzDPBH4Xy16iBXdeRoqwPUJUcU6O+aeY5cfVqz4Pzx1QiWplmkyR2NAYYW7BZiJmwHE+mAhVNTYnO9mx3luQV8yFRciAV0Cajq8YZ6DvN0BvsIJY0ucDkPZVKZzRW6RbklSWIq7RgdJp9UKkyhqeM0vDykyc8+cH3+aVf/hW+/fge5XrH7c0tfVEkLG63Zdc7sre4B/e4vr4m15VkIE2dqq8BrRXkEvsYuJkk9+jexjFacC2ADHlSGKuFV42SkLkKsWSsgc3gcM6wLAtWK7pGRTVKERoiDCKwOM6JUsQauFYxWVfrZqAZ9ZMLOcYmysigFbHKaqeu333zDuu0pGmolDnfDFiglMDZvXtUo3lxfcecDgxWpn9rOgqirV6yWMM6Iw6lKiNGD0rjlPhge1/IIfNwF9k92AiaveLPpjbhg4xLFdBLRbV3d0mGmJWwt3JtmBFtihHSSQoBnQp2gG/9o/+L//KTT/iPf/M/ZXt2zv7m5osrYEVu7CQD1XB27138dM3d3Q1pf4fhQPRH9pdH7u4WMI5u7FA+UXPHMkdSlGiSmASd1Aa0ttQk4WDGyi1ptLgaLMtCbhk5XefEXsckXuyv2G53jUjfuMApEcJCSgGNJUZxBhz0yPNnt7z/pUe43sih0vaDmUKZItQjtbYPPpWWnlcISeNDbdnIjmEccW4m1yM5ZszQCyijRDJpbcFaeUFrU8xMi0cPY2MeNdFDlZcrxIRBoaocisIAEusXnTP/8H/9X/j9//sf8+LFx5xvB/RuxFuZZRc/8+mPbujPznjw6DG3N9doa1pGMq8FGSfktJ6eZEExJwhJYkIvNh1nQ0cMGUNlcAZtjfCttYZtL7vxUpuziYj1aa3wUjyD6UAZpukgYe5V9rw+i/xRgqyltmWfLCqd2g55GakSVgsXqiromrMFtdJpw+gMg9WcjT1xOmLikd3YA5mt8YznZ5z1O/aLJ8TCflqoujLHStWFoRsx1oiJxIkWKekLZo0cNRaGkSe3AWs0X354zk4fIHrk9Yxo507AppgaNDdUxQlBVIi+WPK0FBrdDAoqsUCZPdpFrn70Pf6b3/xP+MV/8Vf52jd/7osrYKG/iEC+VsX27DH9T/88u37k4z+94eXza/KykJZILYqQg8iwtML2DptUaz8lUwetMU6JqB5JPNSmYEylHzvGccO8SBh4VQrjnIgNgkSZpDATq6Jk2X/m5i6pjaamlWFUmUpkOk5cvZp5+HgDShBMrVepmLxYuTbOq6KppApkuc2PR08umlIsSWLrxVomy03inEUbj7WFnGZZOUTZ0ypj8ClSdVtvWCXpefVkNSDRmfLUSbmw6TuM0rx8+ZLPnj3HWLkdj94To7CNfJAoUr94Dne3/MLP/RV++OFHHI9HVjtdWtu+/lXaCCE2M5ZSK1OulDkRYmY7ODotHDunACUvnTMKa8QHXMwXKrOPxFjJaWHoOwYzEmNBGRGta9sRfJGEhSL00pUxJRnPwjVWVeJhU6lgLEW3UcsKOURrDaXQW8VusJgaGVzh/sOR7Gd2g/Dx+w1Y6+mt4UsPH5Iq7OfA3Zy5PkiKYyxgdccCTQxSIUvOVqkZtCUrhS+Gi/e/xqdXz5jikZ99bNjaEVsEz0globShc8IFVe1W1kahKCyxkooixHZoFd0YXQ2vUIpSEsZndPGoHPknv/1b/O7v/CP+wX/2X3wxBSwtpViZ5pwIy8zh5sBhX3H9B9zdPSHPd5hsRSKohIaciyy3lbUUCsb2p4bOx8Sae1SgETEyIc/0Q8dmc8ZxOkoeURbCAchaJgTJl33t/dwUN1VuikJtL5onp8j3f/CUs/tfxziZTrQzWONOLZtuXOgYCzl7EuJqkYKoW+Y5E5ZKmBIqCzWz2AzWCsBkNM46aqr0VpOMBiceVkprlhAwxuC6DmMNNaXGHirEAspo4VKXzDLNWCM4qaoKXSxff/+rfPanf85hmtEGsX/B0CnD4TixmyYePXrM4TC9JnY0In4RloGwjbS00EohzpUUEoqbacHHxKZ3BKvpq8I5IzvOkmUFZhQxijn6MXuchc3YMW63ks0cE36R1AG0IdaCz/KcVqTZGLWeLZRS8bHIz62knc31DU5yrRgFXWcwJDpdGKzm4f0NF+cDaZnF2laDdo5MpWYwRDpr6TZiNDB2lsOSycpxcyeijH1ampy5yO2rZRGEgqIUF4/f5f0vf4Vv/ePfxqjEV9+5YKcVHR5dE7pmqlb0TtZ6RoPxwqM2KjGHAkaRKqDWAHm5jVPJOCWdmsqF6j2brifm+fOU5Ocs4NrcLLKkLBzurrl69ZJpvwcGAj3HfcJEYc3YYUMmUXRiyUFmYa0puraEdS2taS0NlaxNUwumKJZF4jbGzY5SMksQY29nZW0QQsaY2ixbxVhMaUcqgVzTSUEC0vZ/+uyKr8+R+2OHdbLkN1aQ4VRLY2wZTAVthdOci8jXVnJFDoXiE9IDleZZ1YlDiLJQxJx+sIrshDAQs+xRc5C2nJyaiYgwkdZoEml5i3B+a5V5Ngu7p4bC7/y//5SKZAvXMJ8wgDBHjNb86KNPODu/YHt2xu3tbWud5fPUSqOtaaIH8XIGIZmUqolFobRjToVYE0cNQ4LdiOyLkZszBAk8l/02DINls3Eoq0i5jQvGUmJq/lUBZR22trgXaGKY1x1CUa+N5GoL9O2NleLVMHZOKJ9FWH73z8+4f2+LtYXe9I1VZsko9tPMs+cvOdvuuH9xhi4VmyNbY8EWsIoyaPb7IISONrKUHElr11IKMQT+5E/+lLEfyN05z3ygPJv55ts9TmUhLjXRStWKzqpGS22rLJqdrK6QChlRVq1FbNR6UAiI5oyl5sj4+YIZPl8BryHXOYkaZz7cMR3uiGGm1EUKM2fmgyf6A2f3HzCc97LEj4Wa2gtlFDkKmJGqDPo5CCe2tpfNFY2kzhVSmhjGXpLgUiT4CO20tm3OqkSyFdheoQgxEaMwf0LMuG7geDjw8cefce/hB9jOiml7yQJMBE+KCWtcW94LWSUHoWJWxFRe9MK1cQIKwXs6N6CbON/7jE4FVRJWy8rHWdOsVazwtxuNT9YfolbBSKsbYxKWj5KVXQXQckvXXGSC0bqJ2gUBLamSlQjP/eUltJ1oBZE11iodhtavPa+NFsdG1YA0JYCV0oolZ0oqTGkhlcJucHRUqFmE8yo1cwL5b7WVLmiePfMSoGpyzKRQOM6eUqEzGsqqRy6tiGUHXpWhtHQNrcBq8bxWtWCUoaSEc4rN2LHbdGJPVF+nd8hRJO/W0G145933oIorCjmiivDArTbsp2Nz+TCEWhqjTtxeLi4uSCk1583EzfUV11Xa3a7vWdzCRge++dZIpzKGIAdQW0c1P4e2DhNtOEr4CDEXhGZfoSq0kfFHDJcVKhWczhhV/n+q7y+hgGkMplIry7wwHw9kP1ODp6ZAnDO3dxHmQg6V5dkd43Fk3G2gbAlxFvS2ZekIBQ6U1XifGxW24pxGJfEYjkFe2hAL3WipCM2xlkI2zYmyQPSixolRgIeUFdOiiL7tI01B64GPP7zkp7/ykK4/Q+FIeYLk5XBJgZQ8tUIKmeij7GM7hbZQnaL0kuFa0LAIuh5CpCiL1ZXOVkqMrzOfSmvtkXVHZ21b5WhSFesYZ+yJiqedbjxeRSWDNuTSCCJVOL+FVsiroZ5phIhWBKLAkjFB4leNEP5zOSlyBGsWNpGWRK4TyKUwUoRFkiYqio2VdVfnNDVFRhSd0/gYsUESCZZFczhGbNeTteO4RKYozzSUJJZHDZUVz+0m01Ol0VmBwskxWKPE8L7TbJ1idNApGOzq9HkUqooxKLtiGZV7ZyPGavyiKEWsglOSC2IzOErUDL1jSrHlcEnR7MYdF+cXfPd73wVESy5634pfKi8T2KvCroMPzjc4Jy1+Lo2HX0VqblVlU+WztSXTV5ioBK0JRRRuChlvlG4jkhEfNW0Mn+fX57uBkfZLMnJnlnlmPk6kMItG0/QUOuYlExeJTPz0+SWuH9n5dxdmAAAgAElEQVRtL3BOMlBjFEZXKdJG+jkQQm4uCDJ3WlPoOyc2MRpsc1vUVqFMR0FuH0GgG6m/VDrb4b2YoAdfOOy9WLzoTM2KZanstvcwWhF9kvb9RKSvzcCsNLVTIISEX8QB02iNcwaKeDUbbaBk4hIouqKKQheFUTIral2pSfJkrXWNsKMa6V0ke+KSkYUQrzRWC9+YpkHVWqEKxKafqw2EUkVuhpQLuqqTbUup7e5tXmUreUMKE/SaMZUSq7UPzRFUhvU2pzbP7aIKk49QLU7LoaNVFSDQDpQI9Ria+6bn7uB58OhMwrxSFXAuyzooVqHiis9UPSmpxAKo3RGlNtKEYugcVlWcVfSdwRnRCpdSmKdFuM60uBwtsSqydmqrKgXjZiTFRC2Jkj05JazqOdt23C0BnYVdl3Pm1ctXPHzwkKEfmKZJ5I3W0fc9Qz9QjeZuuuWjy5mLfsuD0UFzxSzN5rdBVCgngJ88ikpVBZUVtckb1creKlJTEuxd0eX12PeXXsClKS3WNYVWmhgzyxyIObO7eMg77/8MzwvcpksJeKodfqrc7W8pObE9s+y2vSDHCOgUQ23OGpw4q6bIHpAqp3EIYmzueovtNEo5fAq40lTJpZJjoWZpo3PW7O9m9vvA2fmWXCMlayYfePr0kp8Z7jXfKk0pSlp5pWTOR1Bto0SRUoq0lKq2NjCD9wsxyu3mlyx+Ts3wXKFx1tAXxRJlLZVUI9a9hoMb0b7dHE3IbloMhzoh0vL1JXOncaB1A8FLOb3wIrZp+0nVolbVGh/zevZcc3wkwUG+roTSyaFSimABSk4sChBLZb8knDGMpmJ0i3lRsUkxA871LEukqI4lVI5LJibxlRKnkxVcLI1WKc86r3LIRlNcVYXOGaxRGCVMqJwL2jpQlePxyGbTM44OYySxYzW1W9Vxqo0QYYnCxgLOdztmH5hj5VxblrKj3C3cHhZx/by44LNnz9r3JGPSVz74gL/5a7/GPM/QDbz47Bkf/tHv8vGN52zssCrI5mPtGookQEiSa2XokQMLhYoAMrrkhn0IBlHb4aplE/FFFbCst+SUttZirFixViZ8DOSQiVVTXU+1HbEm+s0WUy3Xl3tiSpy7M5RzpOLxPnOcvAjC20onJnnQ2mpMpqEbBdcbqjEkBLUbR0dKCtMZjFJYLWqfktqLkavQInUhVyU+VGj8lHny2Q0/8/XHWJ1QVTS78nLLD6kQQoKiBVUhoERNibgkSjK4zlIr5KwoZSGHjI+yP64NvKgNTa1UfBArHSNWFoIIv1Fc6620tr+69eCrNvaknEIefFVQTNtjKtOsecVmVSFzZG1KndcxInLwGmOk5V5vYFbOdONftP1lzauYXZGr3B45JTrTsiZ9kS1Myigl87GPhbsXV9SWOC9rOtk4rAfI2l1kGfBFhM9qGKBA1Qb4FKwWwEcYVFb0w6owjj05ya3lnGEYRkL05JxxzXeMdqix7mG13ORVSej3brDsJ80dBTCkXDgeDpjm7GGs5a//8t/g8uqSP/yDP0T1I3/1F/8Gs9rw/DDzQVZcGIuu8ZQEktt4p9rhSdd2w0rYW5qKqYolVbKC2nCH8sbu+AsrYN0GcKM11nV0w4Zxu8P7BZ8TOWpCziJ2b0UoJm7iYKFMx920kHVGoXh1e8T7AjmyHToRvFfNEjM5FnQBU6FrhXs3H6la5sS+M5xtHKooiganNDVDFYNL/BKgKLbbM2IN+FQ4hEic4MnTW2JurppVylNQQQm40iAZRFVYXqrdmCoLXCwvjkF3muTF9dKYik61keNVQzalRV9vhJRl9y2MttcE/tPKB/n6JSd0iwslyzxMY1ZJhyC3vNGm5SfJDSAMwXLyKcttP76CRuvvp1/NAaSuX7+WBrKU0yFR2x5WoxuJR5PQGGXwSaxYC6YJ3uEYZC1YYn5tudQWfadCLjT/rxbNmdeOR8lnqaHmTDd0OF1xWmERkYKfA0pVAQuVvF85Vw6HI655j1nnUEaTovCTrRPuckgRaiGEQIyRFCqGglMQc+LmWkwKfYjUKtY33/rWH9I5x+3dnsm/EH/qorieEs+uj2wfGZFgtl+rNlhV4UVroHerCylYJV9P3GSkk5HPuTXfn+8C/pxMrCK0Q4yh9D39ZsPm/JyYAyl7olcYayQpTis2Y4+yHVfHI0soaGPJU2JaPM5ZCj3KgDEOFIQkC/BQIGolvN9U2HU9JlWqgW7TY/uBlCN3h4CuvRh81yL0uCxtfgiRXCS/NaVCVorbOVGCouiR2RfuPT4nLUemMDfXhoptYWpvzo/WqJMQ3qxaW6UESHJgnEb5RHMOomp5YYWgD7pA1s3sO4mP1Epz1EqYTKXdPEoJnBlbyBtK+OeqVFmjKEF9c60tf1Zu69S+/5VvXZuZ8ZveyW/+DoJp5DcK/ET+qEgb37YAdY10BYwVXGIOqXULr1v+rMQcrub2cygB4lKJVMSCRr78GyZ8lRPZRGs5lIwRILPmTE6V2hlJeEzNU9uK13UyCWrPuBmZ5yPGdlxsxuYMU6kqUmMmFZnbU3NgKc1Bo6ZEjVFWTUpWdz6IkTyttb29vSPljDGGn/7SW7x8+RKFw2jDYYlkRLUk5KZ1tFSc6DOrPlgXlNOo0opOV4KGmCspQ6xV0iL4fHukz1XAnbM45zhOB4zWol7ZjqS0JaUjKc5MfU83DJxdnGFy5jBFFh+EB5ozMSacE9he256aggSC1UgMwoSxzlGNJuQjISY04rs0nnX0mw19PxKXhePdRIdhdCJXK1oTwiIrnyqvyRIDaM3kI8clYXB87wef8NEnD3j70Vc5HA8NaBBjeVErFUqMoA3W9hJepsVt0ViNzWLM5jorD8ILArwGfInYXEKtXEHSEpK87KUUUlG4xkpaw9uMVqfb1LQbtNDoh0pJ8qDWpxdeYqAaYaW8mev+z9MnaVnKb7SwrZBrXXeymjcv5tP/UIIEq/a7biN8qZWUoszetUjaAZqi1sKUbk3VdrtQ28wuf+iJk11//OvJ1JCbK0hzilTIn13kd60dtQhWgbZMk6dUMUjcbkeGccPtfo8PHgnwBtv1+BgoCBPOOeHAPzjv6HvYjBGfNFfHILGsRlMTdMNAKmLW/+jhA+b9JTUuuN5iUIRYSQmKbdv2KoWrhLnDGgG0mt8pVdG9OJZqZ/CpMPssTiVZmGivyZ0/2a/PVcDWQkqTpAzWQGchDx21bMnlvMnsMiUHjjqzf3mF94EQJi4uHOMw0PcDx9kTkrCZVE301kCSWEfV96RO9ILqCNpqfMoUbTjreu7dP6cUIwZ1SREDDMaeFC0FuUEzyP5WQ6yKOZgG0gRy1ljXc3N7hUbM3HJRSDvgZB6xPXM6EHJPrBVfAxFFUhF0Fv5uu0FWf2tVpaXMtaCK3NjWGil4aIl+Sqx2NDhjcMags/gi1VrBSpHF3GZUNKrKAdU52xIPS2NWVZQG84Zfk0L63pMDpbFvtOvrgdEK5o02/tRCr4WvZMyhgWLyeTZT+kJrmZurZKmoKkBRqzghnJQ2lmApiGukQjXu8FrGQNUYVeiNptdQQ6J2VszqqUTdzPKAkCvOGLKy+KwZNPg5YKzCh4q/OhCj8OFdv6EozcubIz4VnOvoaqazis5BzQvGaboxMwcNxTB1mqQNIUcKlRgjVsEy3TH5QLUdGFA5k+YowKmVXa85GQVoSmq3fGnAXJXP22oBAdFGdvG6YGPFxEpIquECX1ABGxNJaSHniZy9LPQt1LGjcCY0QV0h3TFdP6WqwhIOvPX2Od/4+gecbQbu7vb8xfc+pMRErJlxC4/e2tEZy+GYuV4S0Wr6agimoPoMKeOsYrfpcdpihg01iu/VsXhU1qRe44y08CVGNkPH4oV4kUJFhcigBdL/qbfvc7HZUkLF2BGlComANT2lGA63E9dXMzfXkdvbW+bZk3MlhCTUzYYgztOM95noxZtaG9cQerllrLOYWmX2qTSjeJkBc5YXXlVONw5KADqjtczKbfYspYjtaFPnGMRFJOV1xpMQrRIzyqyAVX3tMmmaX/e6q4G2KlI/BiytdsErH3z9906/tzm6qkY0Wdd4bQVyAjlRP1agsuJ9LVDRWRFC+DHkXCvonWN0GrJY+2gFRRVCruSammOoaLeV7cmqMnm5SAwwVk30idRWfDEkYpMQphBYFo8FHj24RyqRlKXN7fsBbWVFlvYTlMyDcUPOhbvbO853I5FM8gvO9egqRJ2+0823WjVlmXQy0r5nIWzodbZtn0UpOCvgnlBTLdaIXY/2lfT5TCk/XwEf9pfkIpY4kNA6o3TBWEU/jnJbpIWnHy90vSETqGQuLs65OO94eH/Lcf+SmiZ67VAq8c5PPeRi26OqxpeCSQUzdLjisOcjDx+c01vDskDRlq4bGXY7wnzggw/e4WJjGSygRByuDZSU0Cjm48LOyzrj0QNN1jB0jl/8a19Bpcz11YwqlaorPs3Uari7nZmngp+hZENVI93QMR1nMWKfxTFBa4ui5+72knlOONtjXPd614ugnp2FkESet/oZrkWTs9zkpjGhjJJTmgyFLBY/pgWzqdpM7BRdE3WgJPLDGLEkz0WdCkidgGWhvoIUMm0Wh1ON/hiwtdq7vnkR6HaY5Cw5Uap5Tb0BoMt/+/pPafNv+2etUHNOJyFD1zkxEqCi0fTGCL0zF6xuMSnGkHJljom+E/KGc4aiNbeHBWNEUL8ZHMZU3hrOeLAbefLkR9SqCG0MevvhQ2IpeB95/uqKl1c35LDgjJFIWCqdNTw6cxgChyVhB0PBEfeFXhU2XYepPSGKWqvX8OBiw9AZrBUnFwE7qzhu1hYpiuRhKS3dmm5WSM6CKbI6tFqevamQvkgqpTYye6im0cxoqrZIuHcHWXN3t+f6+oqUEz5GjHOgFM+ev0TXxNNPn6GVoe9GOhf5xs++y3YzcLgLvLx9Qjc4us2IWhLd1vDw3DQzsUy1PeN4RlWyxnnr3iMeX/SUtOD9zO78DGXgeHuLQTEOhukwY12PGwaqUTjjqHHi+tKTU0BhiUVxXBZ5cUvF2o7tmeyqjTX4ZcF1sm98/nxmmT1KWaa5krMoaYL32AzW2UY3lDfXqELvDCFmNOW0KlCtyEtbwxjrWhrEGyuX0vaR7RYVJFle8tXuVLflUmelbZPbbv2z5dBYNbVrtRXajdtm/zXSdaVZVpDVRimnljvnLAVspDtQxgjp5Q3hwfqrtAF3XTnq9oKmJGCjVuIUua7FdZNRqloa06/9QVm0xTFlidwxGu8TfT8QfcRo4TT5ohl6y5Nnl9w/31CLbo4bTr7PFLh3fs5luOZ8tyHFLMYDdXWzzGgdGZ3mwVZz/2wEbYkYRvdQEPMCYZoZux4/TRhb2Y2d7KlLlc5nJdq0w9oYc7JuEq6QtNqlCrIu9r9GOkfAUgn6C5yB0Z1Q97KmKE1VFtXaF2UKYU786MNPePnyEls8xvUMW8fF/ftsh46Xl0dS6dmcnVGqYXueOTtv1q9mR1Gw2Wzpxy0p33G2O+N8B6UkDhY29+/R7XagFfPeMvSKvteUNsP64MkUMjIbjmcDppNZLRW5OVOOHI4Qoha2DQPDeIHtdtSawCTGzYAxmhgjxhQqiWEzEHxCqQe8eHGJ90Lqz8U0QYZi9oniI+dnO7reklceNBlvwCtOKyHZra6zYkGnRDGajiY80ApW9lUuJ9S573uxvs1FGF/OygyfE6OzAoQoI4WAtJ4py21dlXCUlZLWbaVVppTe4CfL/PxmSb7ZeqecXzPWWH2fXmtepXZll3+K3mnFapuHeKWJRqympNx+Xv2Gl/UaW1JOWMBxXpgXsfSJRWN0ZhwcuWq8r4RScDbhtKcTl/mTVlyVzPHuBpUDnUo4BwMdSgnHfPIercCr2pImmpuGqpw9vscSC5dXB2n/jSVU0SlrlckxEalkDdZI06SRmaA00opSYt+09kerqZ6s1mR06jvppKz5ArnQpUg6INqhtAjRQU4SlSPPn/+Q588upY+vFWN6tmcD9x+cM/YbXgbFsBPiREiBYaeRnFfFcYkM4xbnLjDGUe0dm13HdmsIIWFdJALGKHo7MG42bDYVRcBazcOHD1BuoChIfkGrSo4LD996eAoB00aTYuVwOGCNrK0UA6lEdCks/kgpiRCPPHr0iMtXL+gHienEiIihlsI7b7/N1eUNNymCyuIskjU6R3LIHI4L99zuRG7XVJwVKuAavr2ysGr7/ELOglRqjW0UQbPelG2+PBnRI8QXpbQAOi1j2SgtCLaROR3dCANZdDalZOHrKk0qGUtrq9eia0WstREkdkWzW6+8ukuUUkh1RZzraZY/lfwJMJOf3zpHKYlh2Ih9UmOCWSvc6F7LLClulbSVWEE1CaIQcwqZJDwEk+n7DtcPLEvi4uI+16+eU4PHli27QdP3Bq0NKQWhxpaE1tDVQC2yDpNUScXY94ScSDg245ZBa4IPlAJ+WrjZT8xTxGrL7IMYElp76kyUEl44bacLSp6TXu2MlLhnpiRjU7PokLXj2mEVHBprv8gbuHbCltGF9MYahFqIPvDRD39ESRlnO/Lisdbx8OE9dhcjOVpuj4FQDViNHQzjmSJXaf0uL28ZNmdYu6Pvd0zHS3Rn8DGg9EDRjqJ6DBqdZT9xvtvw0+++zTztGTZbbDdihzNqUexvn/Hq8iluPDu55VMU773/Doe7G26vXqAvdnTdlq997et8649+H+Mqg3Vorbm5uabvO8bRkEvGL55lytxeHRg3Zy17aWm3k3sDwJEUxMM0s910gkxrTWegMyKEzyAGBe3fN0ba2pzFA6poI64UDVlXpZ7salKIwugy4mwZQwD143vckgIomatXtlVuzAzVADPrrBBWmpul1J3M5grEkqj8OJglCHebfWVTgmRItVt1babbHnnlqBsrrCaQfWtIob34BqoUrHPiT5tzOlEMrZNbrqwGCsgBGqLnXrelqkpOnlcvnpL9TBoM3pvmZ9YxDB0X52fs724kWKzriKUwLzOhilRVmY7eOWmrveFYA0utdK5HaUvwC2SFNR3HWDjMnl4r7EruMaoh6/XkmQXNe7qug4vw3Wlbiqpl/76OHkaJ+WBFgK0vsIDtCRrXat37VSiZy+fPuL29klnObShhoe9hd76h63quDgnslmIiZ+cj3t8ybgdZ35QBHyaWoLjY7ojV8MHXvsbb9zKXn33Ey1cLx3SGLh15CiRTMDVyPEx8/PEztrstMXqs7aAPvP/ez3B3/YSLix1f/8ZfZ4qFH3z4Hd5/5z3GruP6xWeEZU8/dIwbxQ8//C7aScq8NRrbqIYxRoqqWNehsuLV7StKUuQQhW1lFFoZ/BQJpVKrOEnOR48Pke1ulJstJSgSu5JSlttr3aColRyjqFlBrqQqZINchX1UK5gss5RueulahcSRc2pCdH7stlQNBS1K4DOjrexw1wEzCXlknX9//LZVQuaFFpkDqKbCKqwYlezPzUrYoM1/QNE456i1kLInF/ksQoyEowfbFGJtPo81QqqUagUMEhsOMYNTYJw9AUTykyaubi6xTjM6y2Zw4Bz3L3b0VrPbbVBkjocjJXqWeSbXTPACbtpuw3ESM32jIrpqRmtZCpSU8SkzJyglEGJimQO+GO5CYkH0xSpndO4oprSgd0MqGd06JlQ5EYHWAueNLkWksqshfjv89WvU+if99fnUSGuaVJuVVtK8j5nr/USm4zBXbHXEqnjn0QXj2GHsFp8P7L1CGQERyrKw3GZGc8HBF25nzXGu+HqLpXI2QMWyvXefT69umHKFaYHpyGawnGkPquD9RFWFt9/5Ejc3t7z76AHWBeb5lnme+Ke/93v80i//Km8/fIfvfe87dKYS5xvksEwcDrf4JIJ70+xjAPquo7MOHwMGR4iJ4DMKS0oQknC5QxR2VVUScrbZjEQfBa0vGWv0KVXeaHBGk6pQBWsDktYHK2w6KZhUhYVktaHqtUgaSFVy01bXJmZYz/K2yjnBwyBW6rIP1krhs2+HR33tSfUGO2ulXLK6pNTXt3umnOiV674XVdFOTOBLiRKS1rjrOQnRIS2RHHqGrieYSNKCsBekpbdKSyZwFimoMYZxM2Cd3IA5FZQ1WKXptCUsnhhn+r5jt92w6Sy93jA4w6Z3OCeh5qXIjjjHig+J7GS2VSDm/QVCSqRU6bqe0Wlmv+Bsz+Q9BYsbBwgZf/S4zlFUpcsZZ2REWamm6+e27tvXg9JodUL2dXtOclC2z7WutkvyjNBvwoF/yQW8ntBKvUYva64s08Tlqxf86Ecfsb++wpSJbRfYbQVw0XXk+eVL9l5RkmcqR4Y88cJHnNlxKANTGlhK5XhzoNeJr335gs1uy/biHdKTTOlE+5p94JgD1i0Ys+Fscw/teqal0g33ePLJUw63Bw77PSlGUi5858++zVvvvMP5+QPurp8SYyB5CftWtpEeSkZbR2o6ZD9PGCPz99XhiC4Oox05K6Y5SAQnYo6maqXvLNVADIswg5LEpxjkxcsqoRU4q4XUISiTyNDa6geE110REYJu3OxahApqmkSwtsO0lkbdaAwetRZWg0vWy3QtamvN6eaXYOzX3OjXz1YKsxEwG1BVG4K6Vrn8pbWiKBFcdH2H7gwxGXIWSahSCpUNISXubg5stqN4kVkZS7SRUO4SGofcaLLRmMFRRwudIZSEMhWVEF+srsMizitGS7i3X6QLGd1OQuKoeB8gS2h3KQqjOrTqqLqQY8KYHmsVMQQR/lfox8rYSwRPKZk5RnyFJSVCSZQio9DGWpwpoAqr+unHRgjaau6fkwa+yXZbtwMC4rWtRCmnMegn/fX5Cli34/eN1UEphU8/+pg//L3fReVEZyzzHHj34UVLIDA8e3rLkiy6sxQVKCEQsiHcLdTP9pS+Q5kdblQMfaQ3gWJ6fO558eLAFA1nDx7ibE88HiWx7uZDUoTb24VE4uFbD3FuYBiFF7vZPiAnebAP377Pw8fvcnbxiD94/kT8jumppSfHitXCpzXacHV5RQqiB05kjsfAcb9Qs6cUJTrXkMTxot2ezrZdrJXiLqWIpZBuflJaYjOzys1xUlQ2tSKtc2Ny1bZ+0FRokrs31UcitZSd7pq+AG1drMRW5nSj1noqcgHARNTunGsZTbbtllvWrn4NWgnCLM/6Db5U24ytLbpqBAwNKZGWGWcNw7ajIukO83GhNp/kFDIznn7T0/c9IXkBkLYj2SV8ELqttgqcYsme4AvYyNAPmKIpSyEmD1pa69kngr/Fadg4y/nZOXbY8Orlc2pObIaOsHgB5azGuoGiCqUmrO1w1rLbae7ubrAWFILQS2KlmAu6Souk1Sx+oVMwbjT9yUJnxQRqE4ZwYq8JoPV6DSfGDvU1M45V/rl+yiIB/cIKWL6dN9b1tZJi4tt/9G38FDDasj3bcX4xcO/RFp8qUyh8+uqI6TacDx2aSsc99i8d+9tXdHWDro57F/cJKaNV4f75yDEe+P7HM94rPvjgr3C7LBJsfbbj/v0LhovKO+eJz578kKQMf/PX/x6P33qPF5/9iD/4J7/N44ePKVXj68JcDJ+9mvjh9/4cZy3OjKhkMXqk6IiPM9FnDsvMPEVCiEQvDhIxFWp5/WRUa2dTkuBq5zQ6i8dTKiKcqFVjtWkeUCKN00rM2aquWCPIamk3pkU1c8TSXoS2zqki1udNFtRJHiin/iqDzBVqLlLMRsQkNSVqfZ0YkMVgizUArFJOBXwq3lUj3Ja0tdXsysRSq1lPEWqjWoPJYqYcI/NSGXZbNsOIU4ab5RajhD8QF8lI6gYRAxitySGiLIx9f5I4dJ2htw5rFKUazrbnHK4P+Bjwx9hSbUU7rYsiInjAp8+v2B8Xhs6xGXZUJQQda4TgE0vmOM/CWzCGl69uGXoLFGHwVbG4jTGT245PtNKCRXQqo5JHJ8NoewyBU9MjxXECdrVWqFNE6f9H25s1SZJl932/cxd3j4jcqqqrepue6cbMgMBgkTAiBiBFiZKJJhpNxlc96QvpWU960QegSTSazACJFDZJAIllsE1DwDSnp7urt+raKzMiI9z9bno4xyNr3lhm7DQr6+rKzMgMd7/3nvM//+Vl7MIAQROKKNhlLDzh6An39SxguVErLqT958+e8ejRU77z3V+husqXD7/g137tV/n8/k/59NEjcIHTO29xmCZ88OSU+KVf+j4//cmHnO7fQoDbd+6y2x0QmSmlcXJ2mxc7T80JSuXFsx3JJVwIrFYbxFfuvnaH188Lz598RnKaq5RpfPHwCw7pmvXpd3jt3nv8+OOfEMMJv/pLv0FNe7787Ies+kCdDFAqGuiVcmV3dU0IPbcvLqhZS5zd9pp926sQYyk5xRabqFtimnVmmFOmZMvqsYfRoW1NMQaSFyFUKAZe1NKMMqgnqYCi1G0xZbdr3mARqdOWZ0WOxTdGgSw5WyKi3ABWx75LnTsWPXBtP0uvXP6uAgadMrgjiKWvo+Hfy4xXIzcXpVK08O50ndhvD4AjzBlp9qgLtFyZ97Par3aKiDcUXIpdpxtLSXRmqztNnuv5QDpAnhw5BRzaChSnZJZSwGVhmkfG3Hjjzi1kqrQyQWvM88TmZGPqKzhc7xE6Yrdinke6ThMtu75nmpV+W4q2h9vLK1LV2TS1EFpjFbxmX6FWuwslVIxauni5LeYKIuCxa14VfRdZqi0T4sDXD2I5e1Bo1rMgPHn8mFoKV9dbLreXpJJ49OgpDx9fsVndYpoTZUq0Ukg5UUrh0aPHTLkwrE857Hc8+PJLm0cKuWS++uoB4lQLW+ZM7DXnVZqwGQYuVvCTv/0j8t2evvccds/5rX/1v3D74g32+xfgCn/9ox/x/b9/h5//7i/jup7f+53/jcuv3qcLmfX5HR6/0FzW0hJzypQmvPbmm+z3I9f7iZqKnmi6BKlVRfnqzClqfeMD45SoruoJYz5rGLMUhm4AACAASURBVPKcZ8H3anAWFkCp6XWMRkd0qPNHc8uOr9P1/FI/uiiHYIGq9EP73AUt5ljCZTtVlwV3BJwa5Kpmc83q9qMzB0tJrl8rrh1Pd3l54wZNpBQl8HjMasgH+uAQKZRWaD5qJlJU15Y9wtQaBUGqVhy5JKWMDkLoAtHI27XAvkwEF5j3Gtw9z1CLRr3eunOXzcmGL7/8nGk8EHCq9gLKmCiPn7LuAl0QhhiQJqzwlFwYU8XHgXGa8U7n5gV1PsmThrLnqi2MRA0on1KxNM7CSRDWQZMhjhWKqNxUy2P1EBMzHVvwBxU5mOuKtx3RQKzFQE2Mq/8qH6+mB7bXXlg2rTUePXyISONq95RaM9TKZ/c/0fFAVoCglHLTY9XCgy+/0BNibpSUCEF3J+89oQlpPOBfclOsLRBbJPqAp/H0q0cEErvtjlW/4eK053p/ydWTPX3XM+dCIXP1+FOGUPnJxx/w6LM/Z+X2hHDK46+e8ezJJdM8cXJyotS22DNPiTt3XuPB4Uua9S2HcWQa07E0VoM55a+WpifVlGfm3EhFY03SPBFjoxVr1pr2wr0XsixEBetbnc5CqzRzolSOjmvoeEiwIxxuBrC6lNqyjNtSRi//ws3nWErkmwcK+9xSrYmgIdYiNzd5QTksORCjWKqCyZIVRD2c9H1UXMk4Cp2DzkXwkRIjc67scuPJYeJgG82ihaZBGRt5qhzGSX3TaExkHI51t2GeKs5F89PSTKNpnjg9O2PvPfN+z1wylEp22sNP80zfBS7OIkPojw4h19dXAPQhQitsNmtCXHF5daXeVsV02KaxruLIIrhcWDnHae/oAzipZofbfoawo7ZHS9ej72+JlmX5WkOe1aPbgdd++jiSeIWPV++BX1q8pRSePHlC7CLTtD+WCPOsIMBog2uqCc+tSVdljGbgLEDYgop6r4qVl9k6zszQzy/Oee/dd5men/LZTz6mltGuSyWGwGE74Yvas4zjJX/2h/+a2EU2px0bPwIwTQeoHV3naQRanUn7xJj3TOkxD8OXtCbkWX2g1Z2xWbwolgIhNwvBPLJqFf2jbrH0MdAFT/CO6J25QwrNkFGNURGCuU26BahiQYONtcUyFlr408vyOy4x+/+GHCsj+4qXTohlBS/jPxHBL6erLIJ6/bZjyWwltUoF5djvLRwTNeNpSM0mpyxEp8qraN+js2zBdZ4QPc+uRw5VjeRz1dGYRRuTa6bMqr323tH1Hev1hmdPnyNSOTu7sEV4jfee09ML3n7rbXZXl3z5+WeaHSxQUA/qMmVku8edn5DxdMOAxC3j/mCqoEBpyrdu4jjkQpompWjmYsmGHTH0BN+IZcLL4raxlEQvXT8xI/7lZBXUyYSXrv3xft44iTpZqh61Un6Vj1c7gV96gEQUlXv69Kmimt6ZykT1pyll1VIGZ4sXsIVWSjHH+kqM8cgXXUTrJWdTv6hULsTIyekJ5+fn/KN//I/58V/8MZ/9RJHTnDIlZXKeqEXYp5kuAq0gNROlQZ7wUmmywrmOq+3I9upA30cO+5maKmnW1L1q4FIV1O8462stKhKHIropZ2iOecoqMK9Ob3rKDNGx7j1DtJ01qym5IHRmSCdm0Yu044JZ0iSUCKBlqt5rdwSLKsd/BG5O2mVhLSX28hXBetXaXjYVXx66pfxux9fXZ8msdtT7x15weSCthG7m1yWN4IToG+s+su4DVGVPiUAMXkkbJXO2WnPaBR5sr7ksjSkbBgBHkLCJKrGqg5pG0vyUN994k67ref780p6TSAiRlBJPnz3ndLNhfXLKOE4UVIfcnBr1XU8Jrq4Zp8Tr916jX6/ZXV+rjhdhP074rImG+5RxYMIWNQ9wqEC/VtX7eldt82r2NaZCauae0kwe+hKydTyNbQ0sf/Veg+XFqX1Pk/rSnfsP+3hFLrSBHEbUfvbsGSllhmHA+cF2cc1nDT4xDEbez5p95J3HeWcyMuj6/ohqxxiPAIvm9mLGeZ5+GHjttdeIfc/p6RmH/dbcDmC/H0l5BBotR3IVpqRlUCvQ5sKYlVihAdRbvvjsCeNUefvt19hsVjSX6VY91QnrzQl4TwyR50+ecbjaKxuq3vgH16KJDE28KlWap1Zhmg4EKZyuI5vBMXROf49aKFRoTj2va1FNqe3PoACWTSN0oTXTlbZFSWQlrNws4iOABT/zdx1BKjLuBYtoWcY+2rNioyV1cuRYGQnckAmEm8a63Zw0arQndF7oY0CodNEz9A7nGzVlcp1N4N5YrQZWtRKlcNqpEP/6eqL2PWlsymoyc71qPOFW9ffIKWtUTL0m58pq2JBzYcloevz4EU+8nmIStA2YU8aZ8iyXmd040lpju9+zWnWE6MnTjEgk5cLpxQUvtldM00RwIE3nzc47UjInFdQ21jvoolMp4wJSmRb4ZpR0M5Nv7aWZOzfjOu15Deh06gVW+dlZ8X/IxyufwIpuKoH78vKSe/fu0ZtLf606lljULa29BJbY41VKUXPvWg1EEPq+P7KCuq4zsbvT+Z19HieM08j77/+Izz7/hBiFOhbmSckarVSogVQb4oqBAZ5x1AXifVBjNIncvnUL5zy3Li7oes80TTq6CQHvA9vtju2cud5e46r+rmnOFn8CKSVEHLk1UmlMqTHOBWmF07Xj1iZwMggaCq+gVy2qikLAl6UlWsY1WpYVY7nl0shgrZjawiylsZbE7YhALwvw5QWt/6TgWBBNmQ9er7U01dA2A5RY0GQ7wpvdx2YvtIgbfsaIj0b0jiGGo1+z0KAlWqkMXeB0iLQK4zhT5gMXZ2e4eQKBe2cdW1cZLl7n/kcPNKfJm5uFU6WSqq6K0TyFe3fvcfv2a6SUub7ecxj3pJzZbE44HK4B6IYVXYycrdc8eviAGAKtqIxxlJkXLy4Jt8/ou6AkD+cYVp0GsDvHW2+8Tp4n0rQnhMhk9hghWn5UGvG9qFOmIc4cr/8ybrPWRpZruyiOmk0PbMN0WmY7GyPlrM4wIXyNxu7LjhNCsB+a+cFv/ACHsL26YhwndUPwWhLPc2K325KSpgmmpFS72Pd45xn6qCqdGI9Ros55ai14ryfyarWyBwvGceTff/ABXz34glOv5cY0zebqL5QxUdH40RaWh1LDlmtOzGVLq15nsk64fPGERrG0A48z5pVDkAKDC8y1Mo4jmjivfa4YgX9Kle31zH7WO7dZRW6dRU5XwtAJOilqKu1bTjNZiOvuONNViq8CYFRVJy3+UTcXfzkMXxLKw88sZFm+rt0AJl4aQYTotBcXK4eLvdZSFi9AjBdH9QrgVRMzSFtyeq1Mb0oJDcHRajYso9KHxmY1cDJ01JwQga7rmHNR4kMRSp44P11zRuWQ9jiKHmuoHxhA6AZOz04ZDyPf+tZ7PH36lJwL5+fnTFPSZyMEYh8YD2dcXr7gnXfe5sWL5zx58pgXly/o+55V3zO1TIieavlWC3nC0chpZkJbl77rePeddxj3Ox599QDxjjplrsfRtMXh6JipVcyii7cZu1WZHYvO2enPM2DBmV8adp/UNbTcoPzCK4+QXnkBVylE260P+5F3332X733vezx7+pT7P/2YaZ45uzhntVpRS+XFs2c8ffqUw+GAc7Db7SilEIKWypuTNbVk5nlmnmeG9QkhROZ5UpO3ql7D3ntSLiCeeTqw2245veOg8+raMCXG65HDdaXvIz6g4WRtosmED0KIHu87oOJcoeRJGU4AoimFakzgtCc2/+H9fDA7UkdrnlKEuTquDomn+5mcG9ELp71w+8Rzew3roRKimGOjU+DLNplKU8eNKkxSca1qbtBCMrYyfQG0KiqDO1azClcpvbE1e0CgiM44EU2HaA2kaqpB5wTXMqEpTtGqGLqvkaw4sXGZnuHRCZ3zFKeKp6UH1hJckXMRmMZrjZ6JjpP1ivUQqPPEVAq9V0HDMt7q+oFaHT6uoO8YDjOPnr2A4JEW6GJHShqAN3Q9F2cXfLH9guvdlhg8q6Hj9OwUf5jYz5m33n2HlEZ+/P6Peevem3Sy4t13bvPaa6/zwz/5Q9adZh09TyPNFE5jKjy/3HKyWtEKTIeRMh6UjjlP3P/sPhcnJwiNOiedECCkrClGviZ65+iCRtO61o4zcXEOQb2ecQsoGOxktnlvA+oNziDB22lslYcXfPga58CCyr1KVfDhvXffZVgNIKJgU9dx+84dhmFgGie2V1es1+sjan19vUekMQwDIQS6rqNWz5ySke1VAgdKKu97C0YbJ+akAno1GBuR1xx9vwKU7A4aLlabEv2lOWUhtYpk0WziOpsyqNh81Ou82ZDUUhLzrMdlyY15njVzWAKlLgt3ZntITLlSm6OPnk3XuH0auHvRcbpScTZ+ORW1dFYbG1P/FJ3P5lk/n4so46ppFEnzojazdpIiclNC26FcDEjSk8vAtSWg2gwBvDi1xPUgJR9PjtwWKZsCUM7flNELnTM6NcxPZpC3jJO9OYT2wRG67mg8H4Mjl4RrFiXTDXgHJQg1J/rVwLe+8/f48rPPeZEOrH3EM2peUlPgczWsSHPicL3n/iefUGvjwVdf0cXA9W5PE8/3f/03IQw8fvGU733vF3j3ne9wuNry13/xF7wmdzk7P+Odt9/mwWefkOeJ2xcXbC+f4wi0VtgfRqLTMrWY+MCHwOnZGbv9nsN2S2cV0Izej1wqnWBzZa9XXzzOaTvixRagKO7glMFxAzYugLW1TW0ZLTlrhxxHY/ivtQfWYsua99ZYrdbUXHn+7LmK5LvIfr9nt9txdXXF44cPSSbg3u+v2e/3xwS4cRw5jHs0sjIxjbMl3mlCn5binloq45QUbnee1FTUXYrajpakA1OvMUXaD7emKC8OkaBBZXmCltmse6LvdARieRglFw7jQWe91dOqUh019bBjbo7n48jldGAsjVqEIIETL6y7xvmZ484tz/mpYwg6qHfeHcXblXrcqdUYv2kfdT5wfSgcxoKz+WsTdeisuVGzjY/g2B8vw6PgRF1RWqNQKOKg6U9S+t9LBmvczCQVzNKnpJnyRz8qS3Yw5gXtxGuJu7CGBIYYWHVREw7ajJlt4JeHOeisOHR6Sg0SiUPkG+++w61bd3j6/Anl0QtOuo6Trkf8wHY/cXpywltvvsUHH/x7RFSn7LxKIX/wG/+A/X7P++//f+A7fvCb/5CT23f51nu/zPk6cPXkAZ9+9iGPHj/g+YuO+bDn/GTFtN9yeusCNiv2+0Lf9dSaGUe1xvFe7/04jlbpOeZ5oiL42DGVoo4gzeFr1cokOoJvOK+kC+8UjFpYV0qZ1NJYR6iwOJQs98GLmWAsdEvR66/9/9e4gBfSttRKKYk8T4z7Ay+evuDq8pIqsN3tjLChKHU1UGu73TJNIzknDoc9MUa6vuPs7JTLyysFLFxQwMT8j0tuIJ6UDyCOer1n3Xe0AvurA6ntaVWTFVqr2otZOZpT4XCYaThK0XFG10ddoMe5lrKEUsqkSXfVUlEJXBXmBLs5sZ0r2zyTRPCiNLqN95zb4j2/EE5OGqtVJpruVlxRLm9FCf3N3B9rI+eGd9WcF/WGdkGUUD/fGN8JaBIjQnh5a15KaUM5q3iyzVZvsnbVICC1SvCBoes0hRBFocUeKE39NFDMFFLeQBYRoXqQoskPIQidbwSncroQgqp9ika6xODx6Jhlte5w4hgnLYs//ugjPuJjIo3XLk6Jc+WTh1u80xCz7dUlH17vtUIxR5FhGMi18nc//jvWqzW5JL788nPuf/IR/+C/+Kds1ud88MFf8ud/8vs8f/KA3eUOLwHySPQa2D4dVBMcHepcUqua89dKFzsOeaSY4f75MFDmidaEgjCmmVK1GhmkctJ3mqwQNDrHqUeg/llopSxAVrOFKuY1LsutO2IYi1uHc8rV1k3ha1zAijTqzdzvrvjowx3jYebzT++zu96RSjnyOUWElgtpntntduz31/R9z6NHjylFpWZd37Pd7cxqRN/MarXSn1QLMWkwlfeB2AXeeusb/MJ3v8MP/89/xX434sueOjtqrsbzVf1qbZoqJ1I47Ce6boVzgRiCAWzKW57mg+YxlaI2QCLk5ihFOEyF/Vh4MWempiVt5x0rgVPXuBjg7EQ4vwisNo1+aHSdlqtqmWK0SSf0scc5xzROpDnjDLjKkomlsR4UYOo6CF5DrN3ccE2ZW40bllVlkQnqSSzilIddoBQtrVNTx5RkU+VSKsWLjZNshIGCW16czR9trFTV9NxFD9VUU1g6YFRL2+BvNqChj7TiNQGwZPBCCJ5x1NGemsZ53nnzTd7+5jf5/JOf8vSrrwjZkfcTo+hm2Uom18Z6dUIpjfV6xdX2ilITD77cH0df1znzf//+7/D+33zA2fkddttHvPPGOdFBnq45PbtFdZHxek8QYXt5wIk6fszTqFY9MZIbOFGCUG2NwzjhasHHjgIccjbTgYpvma4VVj4QXaPWbIfZMltpy65q1YqN8hYR/1Lx1ErzyjRT8kb9mQW/MM2+tgXsRP1uT083fPXFyB/83h9w5/brzHPhxXZLKoVUsoFYavg1TxOHw4E7d25zdXXFOI60pvS+0ir7w14N1py6Quz3e1arNWmeiV1HjBHnI3fvvcFv/MZvshkGaqkcppFQZ2SKFrVZ8T5Qp6RB5E0T0Yc+EoKjlMQ4JeYJguiwPWfLp8HRpGPOlcNcuB4zY9LPJRGiF3rvWQdhEzLna+H2mWNzAsMKYme5N17wwfbYKuSiBJBaJmrR6xej4CQqt1rUq8otoEeuSKcL14k6F+bqNFKkaiawc16BJ7FAbNdAHJlGbkqcPMarNItOaY6UM0E8wekoDxFC6G4222bRKGZdo66Kqj0KXWDVR7w0u1cQorYKXYxsztc8ffKMaT/SrQecC7SqljzzNLNZn3A2rOmcsL18Tj5cs+rPOFsNPNpOlIKNDR3X13vefOtt/tk/++/43d/7HT755EMVEfigk4z5gLjAswcf8fyrT/CusX+MBgREz2bw7HYFrL3ItbAZOk3UaB01zQrCYeBR05at1MphTIQqSN8zl6YZS5LpaZxEYd3L0ZjdO3WnEbc4w5lDqKDPd1MCiPfhOA7D3Eo1VrVqOgcahCbazeFebYr0iiU0mRAch8OOZ88e8en9j9le7vBhIDdhPx6orTIeRu0lkvaxIQZ2u2ubnwoxdsYF9aScjm+yVs11TXNCEPWdcp7Ts3Pu3XudO3fu8OSrB6zXK+5s3uaLjz+gjbM6VIj2kU4HNJpnIxD6aEhq0bAvGs4HnedmSEUYS+OQZvbjxH6ulOZo6AMzuMw6ODad56SDk03H6RlszoT1oChvsA3Iu0ZDJXyKfIcbdLeaRLA0ctHcHx8E4/og6EbhjLuMBProLKKzMRVlrvmogM9i9OZsxBYaVHGkZtTEUqkeSjEiiJjIwbjzJRcIRk6wAHDXwjFyVMtBUY1vVGGA90o4aEucpjTmNCN7PWX6rj+OQsSpeCCGSJpmfvz+38AHjv3uEjdPnF2suHvrnA+efUlpKipoJnt0Irz//vtsVitT+wglKfnHNTWMi0FtaKV6+n5Nq9A5oQ/wn/7n/5A/+7Mf8vzJI27fvsXdO7eYppFxOpDHA2maj70popTN8TCRLRwvjzNTzgy90wWbZwbvia4amWMhtHgWjoMTc+TACC/LaPAlmnBDva4XxlY7nrrtWBkuDPevZQHXuienym53TcAxT4nnl1d0faY1ZVi1VshutHAuLZN9U7PrYb1Sn6lSLBMXvOt00Vr+kLr9QfQwDB2+P+H01l3e/sY3kZL5o3/9W0TZ0nKF7MlpYp4zqepJFkRPqdp0KY+H2cBcwedIozKadvcwN8apsJ8Ls7Ge1Aiu0PlMF4S1q2x6ODvznKyF0zPPqofYoyqpqDuwl4pIs7LJ2Ublj6SmWm5IG6Umou9xRIIrZJdJUlRiKAHxBe8rOTWSg1aFJI65QnUNFwLTnMmTosi5QXEWmJ61jy210KRpSFypJFEnDKlFxQdo2eqiQLXNr4HzXpHxppZAyGIIYLosCbhWlGFXFexKVRFuF+1BrZZLXI3E44Qp7XFzRmqD0EMbOe16AkJulgZRNHT8qy/u8/DBp0b71M1A7bA1wK42u84meUy1EASEyvOnT/jkwx9D2rOOjrNVz+75M1Ke6bpAv+oZLi7IBZ4+e2Gv2xQQRBlsU6lMeMo4cyqJW13lzkro3KLb1QppEXp4WbjQy8J1VgFVoOCcnrylLWCmO75OCFo2q792s6nI17SAqY45jdQ6KYQuld1uR1+ELg50XcSHgWmajqWA80YWtI3F+8A8zTau0NNpseas1bjR4ghDxHeRe/fu8P1f+2XquOV/+h//Z/72z/+YvHvI59OewXmaDOzTgbkokV9KATPPFheYk846lfKYaTTmlKy0FGrTgG9wJvVSqd+qg3UvbLrAyTpydtbRD5XNyhGDlpdW1el4xhsP1nnDjRWtD8FRjUtN1VP0ZHPK9mrSOSH63r0LOk4KAqPa3yRf6YKxv4DYPHPJlFpYBY31pGnebGtCNjfHWipr3yG5UJPQqMyl0FplCN4Ekg4plZoyztvvb2R67x0Ux5xnXFhOCB0n7Q7XdF5YxQ4nmL2t/ExSQynqESbOk+eKi56ui9RxJrpgdWLFOX2fzItJwfKgaHQMaB8ZLBkiWJvl2nJyYcb4CURbocNh5MMPP1YRiXiuLq+0N6cSg+f0/EL57g5KE8ZUGOek4Kko+aKIVodSK5sucL6C3mtlF7zHuRtGmrE2qLUSjm4aeiFuUGmOvfHyeb3OHBfyQvb4ek3tSqBVSPOeUrYEn3jy9Jppyqw3J5ydn+lDYA9J6ILtxA2MKldLArTsXK/XXF1dsTgjal6OntqxX7M5OeUbb97jT/+ff8P/+29+mzCPPP/yPrvLK0rOqkGNPVOG+WhQVu3E1R2ytqaZRKL+TWqBouitGn97LQ+peA9dbKw6uNgEzjYdwyD0vbBaC8FDDBpvGYJD/E04mNIU9WaqE78griKuEXFHYoYA+/2ek5NzDofJEAzN15HSbCar/tUxOHLW3KWuqkY4V08qxpGOQs1Ve9/amFNFxNOcWqvm1gi1mptkI1VRM7wYCNLoRbfRkhNOApDJFXrTrJ6fnyFScVRqyTrKi4HcErlV1iHq9cxKfW2Aj55WG/vDSBcjXT+Q5kT0OnNtzuG7CFLYjwdyyYjcPIYxLGFsRvBvGtx+BHsaiPdWWut7a60iFU1w8It6rNK8BsxR1TxwmhKPn74g9gNTyvQnp3zr7W/xl3/9PodpIpDooyeaGm5FY+OFtRdiVDKQuGUBLmKTikEKlFaPAevLAgaO3OcF2ddxkahriuhiXmbxL63y//gLuNUCNVPriHDge7/4TZ49/Wu2zx8SfeV5GfH9itgPWkolHd948ccFqmkHnlIKu93OWFru+CfGyGaz4ezsNvdu3+X3/4/f4sP3/5w768jDLz4hb68gCy0HptQ4HCZFkWVJOnBKEWTxSZYjhXGRwS2+Uw4ISujS//ZwstHg8JNBWPcQ+8ZqE4idg2aqK5Hj7rlYverNunElxC9jAzNLt++rUVMTzs9OcSJc7a5xTnvZ4HWsJWggWk6VrtP0gIYjV0gJ+irQHCk3iokbVOAlCsJUKHOm9yqTa7UyN6cpBqVRyERZmD8qy59zJpoYoLWqG2Rw9DFqT28zUmd+1IpYYy4gVemKrdLHDkEDt2utdCcnuODJObGOylXX6+eZ5z1gFMKmoof33nuP+598TC1awnuvNrOtqWC/2ekXREUazRuNUSl1IJ5qQWgZnbFrGd6oqVHyjEuNVOD0fMOYisab9Ct8nVTs4BypNdbS2LjGKoidukrBvVm8NyO/hWL6s46T7XgCL4td7JR1Bli55TlycqP9/roWsKsjKV3j6sj5JvCNN875p//ND/i3/+4vuf/FT4nDKavT2/huzXq1MYWNQAys1yc8fPhQaZJeTb4PhwOtVbquI6VE3/eWnJ6INH77X/4L6vYxb58GHn/6ETEdWAeHa8LcKrlCqYB3BBFSLSoD9N5ICwbdt2Y5tjqb8yj90UuxXtvTDcJ67Tk769isdd7pasZ3QvCFoVeCx5FLoTQRIz0om0lE56q6u2IG5QsJwtQyg9Bq4vHjz0EcMWA3WYXowRZWyc0QTZ03KoOr0XlHzTofdgKzIc1HUXmplFRYed1DQm00j4bHWXZSKoXmhH3zVFfpgoI1C4BEg5or+92e2nes1ys9fcSTW9YoHd2ltLwvmUzRMtwrIHXr9gXB6ziwNL0WpalkM+WE1EK0Tc2BZQ5nnjx+BK0ey8qSki0A7anFStdmAJYyzZRXXisKDqLkCnEGGAVNcjw5u8U/+q/+a/7wj/4teXfNXCpvvPkmn3xyn8N+zxAjvXe4VumjY0VlHRt9UKZZjJ5gC3l5DJwZ1dXW8CxiH20JlCSzKJMWWaHNjENDVJCtqiTRkeDLkt3/6Au4lSvSeEnab7nePoO843Td+MF/9h6nZx3v//gTDvPE6cUbrPs1aUyEIeB6z/Pnzw1O1x85z4lh6FUJ1G6c+1prPH/xnB/98A+5e+K4t8lsH3zMWkbaytH5jrBP7KuZn1fzShbte6uDn//5n+Pxo8fsrrbMU2I5GRcpXfBC9JUuwtA7VoMwrB3r08jJacR5XUglVULwrNcrfGjqk4QZz7E87GZahxzRSWe7x9LOCHoC0DTJcX0SKNlRMtSmQFEt6su0CPkV5QxKaClVF6wTpDkLvjan5miixLowg5RO3QVPKpW5CFIcLStQU0X76VwbB9FTfqCxdh7XGlH80Rgi58IsGe/ViTN2SoQZ+kFT6ZvmF41ZnVY6HH6c6LvAMAT6PlBLJkQYx2KGD003KYGz9ZohzJSiFyt4x/56d1yktVRatUlG8OQ54cSZ7tm8qrNKM72V5zhtj0LwRB+J/YrryOfFyAAAIABJREFUw0ii8ujFJf/uh3/FW++8x3q94s/++E/4yx/+GXk64Fuh9wHJmZa1ShyiAlfBVWu32nEhgkkD66LfvullfTA0/0jb0I0cK5XFLTRK8MHRKDi/lOhf4wIedw8Zry+Zdi+YdlvqtGea9kRp/MJ33ma9OeFP//JDnj99zKpbs4orrq+vqQ7Gw3g8UTabEzYnG3JK1v+qFlRESGni009+wtvnwq04Mj79ksHt8SshlWpEcY+XTK2afwOKCpZaSTSeP/gISmETKyuphKDluQ+ac9R1gS42vMv40Oj6xmolxKHi/azCB9Eb5MVBLeSsIwSOJApNYvBixBVu/LJVKlaMvuhIaSaEqDu32OuEG2YW2I30jpSyhSJUG385nAs4b/GiGcRDaEKTQBP19tC0DIySGagIqQohKT00JxU7VFHzgWQnY0GtYcRVXHCGOCsYRqvkVGm9ZintD9eIgzwlzk82DMPKQuX2FFGddBcCoVZ86GhUQif4rmNKBxpedbYNgvOcry84WY3sriad99sppFWHtlmLWGPxT1YAbmlZ5IgCa1XgwMzRT05P+P73/z4PHz/lg5/8FOl65lJ5cblFfCB/OTHNI2kqBFGKpFTdjINzdFRW0dN3C0NKzKFEjEplPhutoib4VlJby+KshF4WNdZqheARL9SWMNtKba+8auVd/BpR6Hz9gHx9RdpfkfaX5P01dVTnvz5kfuW73+S73/4e//K3fpcvv/iYWxev0/dr/GDNf1PUsesCuWZyUfJFtwr6oNbKRx/8Da+fZ+6GPenZQ9ZScL2Wb6EJEjKxc3S91/kranZHVbAnky2H1qmMsEYEvXAxCn0fCVGArE4I0RMHLWl0oStX2Xs76VCTNr/Ma48l9II6m0mZjQGcVLNbVQplTnD1YmQYCpvNgHjBS9CS191wl3XhaEIE2U4qW1A08M2TRXtejOTRUtFTsKoaSbw+xA191tRs7uZUrhRaUm2xYgWFXKEWB0m0/KyNwTtKNk+v5lV04QOCkOeZlhLSJg5ToZTMXJT3PE2Fg1OhiHKZhVQzOL3uh+sRqYXeOSYUbPOtmEZZuLh1l9oa+/1OiTkCzXjxwanpQfA6mlOB/DJztgPAe5wP/L1f+lXWJyd88NNP8TEioaNlFVmkaeLRw6/YXV3RBWfz90AUoaYJ74XBwXnvuBhg6L1mO5logdKMrrtQUBVzcc0kgWIifntMijlwaHBbJdWMALHzanCBtgDOCxIdvvtaUeg9Oe8Yp0sO4yXjtFcJGAJ5JoUX/OIv/yL/w3//z/kX/+v/zqOH99mc3UGcCh+aLYBk6hTXIFE1UjR2fPrv/47zrnBvVckvXuAohKDgjnOOCITF5aIFvHgcjpIy1Xo/CZFadMdrNi904nG+4WOh65S91I7k8UboNKaz73v6viOn2bjZgiyOjQZ+ifW/i2Oks3/XHVaH/Gp4sMz5PKcnJzivm4UuHzW1c96aIpuzOa8iBWVHteNpWE33qGJvpd9Vd4N456w/a/mZrXkyzaxyVDl0slqMATI1adBWsk2oFDRc3TcmZ8M9Q1ShmeGBmvHVmtT9sVS4Rss/53Q+bJVHKQq2hRhwQSxYTQPTahOmOlMlENeVk1WEK9WR73Y77t69h0hjd70lxI4xFTWWqxCcY7YAcIf6jCHKBUc8pQm1ND778iFxeMHnX3yBiOcwjZrU0Die6N4p+NUFi1ktBWf3re+F9eDYrD3BZT3UF67zS6ct1osjjiVS9Kg5sWdEg8u4eYZsMS/CkeVzzuykXpWK9WoncJ4pNVNrprZErTO5TDomqhOlPuHF40856QK//p+8y5/+yV/x5PlXON8bUtnjN4FpnDiMewTh5OSEzWrNuL3k6vGnfPf1SH3xOT4r4uljw3l9uIITOhFi0Lkp1bqMYuOWrCOEtihAqrpLhOBBKhIq3qejyHpJkPM2Irh1fkYumTTutVRzi8WL9bl20Y+WKW3pc80u1N2AFNIUlHLesV73qPC7Hr9ezEPHGXgk6MxTmqp9u060R5ZGoVm+rDMwznZsbgT6y4c+XAam2AgNEXoH64iywFoxbarOfrOhp6kI+6S/XxQxZ1AVKyA6H46+Y+nrFpF/zpkYla8+rAKW6a7vD2WSObPiLama0B3qNBNMheVE2F1t2e8PNAqlJHwIOBe489prpHlm3O+Z5xmbSiIoH7ukQhP41s99h9qE+5/eZ56NTNQgxs7aAjFOddEyOTg1PKBCzUSpDAE2Q6TvKjEIfQSH5vy2Vi12dVmk9prevbR51p/5O87olUZo8d7hgm22ThVJhULwEXxAfPz6FrC0iNSIawGpgVaEmjUhT1qjli11fK7MmPSEX/nOa/zox484zAda15PFkXNiHGd8uNEFf+db3+SPfve3efPMMz/7go0bj7Qz75Vr7EPDeyVGBGl6IwRqbrQqdNWZW4ZX94zFnLsJ3utKKyyQv+B8Z8wo61ulcfXiGSkpNXMYBgWdPC99HTcl9FInoQCFsyhPFmWPERJAZ5PLtwBo1CRQLcXdNhwlJCw9tTKbSlGqo5Oqgg/UFUTtZ1F3kKILYE7ae1W3OH2o62NNGVcrHcImYBuuij5cA0QXsZ6ODSmmaqqVIAvRU6+DD56XDG3Ny03IuTCcryzfVsEtnVHLkZQRfGROE9EHfS8L6o72z048NReqxcekZAu9CbEbNOXyyRMkLGmFKtzoQs/+MHK527PanHJ9GA3J9krwKPl4+lG1NI96BOu9iJ5IY+0bm+jY9DBE8E6pw7R20xa1qpyC2o4ncjPhCs4dSTyNRRfcjn9X7sDNaa7fX3XKIOC7SOiGr28BK1LqONncYrre66lXdA4otSAy8ulHH+BCw9drTjrhF779Jj/6aEerI951jNOoPVlupFIYVj2ff/QT5mcP6NMTXLmmiD70TiouCC6gp6RX2V30GmzVgLAKpDmTs5aFUpUJVLw/LmBtWVVE8HIJtFjYimvUllQB5VXg7RbrekOWG/U4AzyqgRZ8Ajk+IGLfU6vRA2lGScTKYh1B1KbOnRGNOqlWsjZM3N10USyccXX3tB44W2MMRNs45lSITYE+76AVLbVxgvOV6BUFdqbscq5SDpUxVcQegyqNWfccCM5GTs1oimZ925T/vbDnms25z87OTHLoyPOB2ZwpvXd0sYOs7iqh6ymzWixVGydxZFZp5SKVG7ua2njw4IH1ltpf16rXpRV1CRmnTEP45P4niIvHxSaGVmuJamVurahrZsO3SnCNzgknXWSoI2eDYxWFPuioUV9B5YOLh5uzqkdFKC9JAt2NSf7CsxanHAAfbsT+y5hRnFZ/fojQBVyIxH79NS7gaqDFtGO/39NqPsZztFzxrjIddnhfkJKQBpvVwK2Lnsv9gT6cMqWEiGfoOsQ75jTx7NET/PiCUK9okkl+RScF56uWiqHhgqbRR6+nsXNCDB39MLDd7XDRkaZ0LFsUF/Z4H41MrqSOpdwZhl7LZet3m1Si0T4dy0JdhNqgiOfS76KgnPXZtk4Qez6W2TM26mksD9JylqmX1DTNhNADaJlpVjXLSe0tggPEvJgMLHNNAUDxVNvFdeZqubsiSvYXr0HSpoLqaqNUz1wdIpHqKttDRpIi2XPV33YqjVIdvfN0oiYJjkYMuvHq76NmAKVW+r6n6zoO45aawdWE2LzeNWcpE3rdmojavlb1kO66CByM9H8jBGjmJd6q5Qe9NAN2Tvvf2lTZ46wdEnPipC1pijfGidQbkb0Y/NUFxxA8337vm0xXl8j1xCo6eteIzph6Czjlq72ubvyLRUq1329BxaFRajlqvdsRL7EDYWl/jJ7qgjmimKFi/FpP4DxS88R4uEasp2u2g4LY/1cqGZpGk5Sy4+xkxfPtnnE/UpojTwfWwy1Nmm/w7OGXhDrT6kzzQmmOio0NbO7nnMOFoCezy2iY2EyZMpV0vGFiN6zWigvBLprltNaKhn019vtJSxwjeAgLCcaOVYwfbA+EuIXX2szHWr9UaZtLOdmOC/CoQGmL9lPLXv3QccmiAgIz9H5pQyhFJWlq2L4kFVpZ5oWWMqlo7+StxwfHnBPBaGLinNnuOFoQOhwpV5grJytdWK45JY3NC5dZKZgJaLnQfCCKsqxahWAVhItirh26Kc5pplhETSmF6BRIq7XgSkWk4INjf5jI88zQR6Aw9Aoi1VYoVUk4IQZKmpfHSgPQZWE22cjMCaHrqCkpN7qpwUAxTbOzkY4DqDeVj9Si3+s8ffS89403qPsdHHacDIEhqJuoYhqGMKvHr7YQIjfVzdIHN21LmtN2IsZwrNqWe33DvFr45rahS8B3Aekcod8Q+tuvsiRftYSeaVWN1FtuNEuJ0xKy0TQnDhBlSDnwdaQXRXPzvNhraizK3dMLhhBxVU/A7FSvGkQRYrESN3hl2jbRi+RdAFdoTk8478FV1ahW829u5mQB2Kn0kkLE4H+x/g2x4boJEJYSZ7GLqaUe4ziVyyq2eKvdKNu8lsXSXk76Ox7hR7poNsfGYehtwRdMr46z4DFlHolm/y7OcM2Zcbiymkpt9MNKFT76dNJlrxe+CU0qUoUi7RhE3ZrQBc1DPu3AN52hOgSZ4VDNBrc1CyJvVK/32Dc9mVuDVhPRK1/bO5VHds4RFJdWk3wrJXMp5JLoq8cjNKdVlQ+N89OBQNPcKFH9sVQhWN9cDDxQNt3yB3yDoM0/0vS6ltaM764n3bLA4Iby2Dut5M5ON3zrrXvkyyfk6xecR8eqc8qLd+24WavdczluzstMV8zDKjiPVJ1qNNSUTnOl9EaF5SHCU0UNErwHHxoiER86NWCMDunPCet3v74FnHMlp2JC+GzeVYVj5GjD5l3LBdS+ofOKnr6ckUTDNKCFaT7Q1fwSmVtLZhesV5BqPlJivFZHiBHV3toooWl5V6i4duOx2BrmSaWvXau7AZqahpc5J8aMsZvmLQ5D9MH2ISCi45AlReLmhi4fN6enNIUxskkqvdPLfORo20m3/FkCyhoKLum9V9ZU8P6IhOsDpQ9qjJ7gwWHKH+uvVqtee/96Y60TFhtblMPdS9RezFe6LhIj4Cq5Zl0x4hhbM3piYzSSiL4OmP0lIo1g78KBjcxW0Cx3uOkJrAIW3aFWq56cCr5rrNaRkjVyhUmBoNZ0XOUbtnjaDYi2gHsCtSR1XnG6gYirmutbqzUtJo+0r1cWHkQag4e7mxX7R18R64FV7+h7TxdV/6xKO130wXzZNEVQbP1q9aG4lcbAxhBQOam5dxq3PUSve7jTMWGz1dK8WhTFaOysfoMMF7C5+ypL8lXlhHpTS64mwC9UNUpVQoWDo8ODqMuvx6kdixPtf80EPqfCPM+89tpbfOEL5xenpEM6GoRVKVSnrJUQhBCqqYFUpRKD1zakVWpRAk5FS8JaDQU1TmrBwAURY0Mt+8TiR6RKJUWdnfGY2/FmLRKvYGLs4xgJJaBrBWKL0PYyZz2iopWOl0vj5fdaFvMCqi3Gc/p5s79ZkhHsQVyodn2np6myuYRm80ScyhfV2A41mPO6xOqysfkl9SKTbGw0z4UUG8divalpXkErmNLQDCjRE1QFBeb4URpIZZxHdRLxAe88fTdw2B9opRH7xf/L4TtPHODkJDJutdz19nPEVrEdvIg5Viy7pdCgaAVTm2MuDS/FTAz1ni3VlqMSgAh4Gp6m3tWhkp8/5qx3nAxC1wtd54hO1C4oCEueczUE23tV2MlilyT6bBynGouawfr2IhAlHo3qJAjNaXCWuAAeXAe+Axd76C+QzRvI2ZuvtCRf0ZUy01qmlIlcsg727SHHykPMYUAvvg73++a1n8z6IF5c3NLeKkQ++fhDzs4Hfv6bb/LF/cp2d4lIVVtWp+MMF6MCV6ES+0gInV7A2qipssRyiDQoFec9yY4gEdWs6mJ3NG89EgYoLCiz2Z44uyHNe91lS8E5HWw26+maraab2M2b03cpn3Xu6XV7swcSA15YDNOXfrs10jzjQ1QhBuaYYb+jvbDmyNZim5FtRA2QRmgqUoDFJ70Z71h9mOZUmMYJ5wNd34E4dS1xlU0f4DRq7s826UPWhLkIyVoGpWGqEYJWH6pckgKHOeOspJ7nQpJKTYUuTKQ5sdisuuApvuCkEI3O2neNXsxoXrsEwxVuQKglX13BJz31S1uqigUi1DZJw8c0v8kDnUCUSh+8RcHApnOcBVGhQgchgriMd8ESLJYT2DgFot2sswnGTfPL8T60xVXDKbnDez3ElqmC8w2xRDhxqOQ2BlqISH+b2r1O2HwDv3n9lVbkKy3gedoyT1tKnSglHaFyg+mQEG6AnlqhKW3MBfWKyoeMk45UK6v1wN2797h69CFdB0jRkY/z4Ar90NMPUe1Ju4jYKInO47pOj4OsEjqHlmwlZ7uuntjrqQ0YmKb96HEEZCffwh1XNHThZbdjHIbz/ni6LllCtarVqLPMoSUJwcsNer2EW/3MDTeDnfoSILMAXa2ZKJ56QxMUMd6jne6maxUs3rRo+6I6WzWT1/1AT0U9ie30toc8eId1p1pRNNXwimgWbu50bkoVOu8ZG8xVmEUN83BCq2iEa2lI5xiK0LlAKpnYPAENnatpxotQWyXNDlcbqWW6rimBIgq0xCYqhtFoDJuB0HW44Nhe79jPmdyEJlERaQSpiYXuoCivbsi+gWuVgKjCShqDF3ov9L4RPfSdykRXobHpHd7rNffeH/2uWs2GFCv6rxhHMWN9mwagz4aTago0HXmqcEapkkt1J76BMyJHcEdpqQsd9Oe01ev0p99mffpNQrx4lSX5ij1wuSbXPd5X3VGWndF5G4EsBmmmgXX+CBq54GjSmEvmejwQNyeM8wytcHX1lL96+CGD7/FdIIRM7AIhRhP393SdV6rhEImdR1pGSoeUWcPDS6bIhNRl8B60V2uNKlU3iILOeWxcI8czcCGfw8JqUpDQwCBbbM7eU1nK6GU09FIzLGhPtJz+C5vJqrubnm6pEe10jiHSWlXfMMwfSdrRrXMh+S/98/L3WquyMQykKsVOD2enkBNKEYpTzq+TRq2JXAuNQN91APRNjQzqyiG+Y8iNQ9LS1lWBohBltWiXiprVbw+ZVd/jxJPGA9IcgzbVykn3inLnVCnTATrt+0JQTvNqiJwNkYiqy1o+0Hfwc+9+m2//4i9wuU/89P4XfPbgEfvra9o8QhJ8Sbgys6Q5RqeJEgEzXjD7285rzztEoYuePnhChC4Kziki7cXjUdKQ2uxiaQp6rZ2AeLXQFTP9w1qr4AWqiTHC0m4pc7C2RrNZsPeCj2p24UMkxoALA7K6hdu8zXD+Hqv164h8jWMkqQlphvouu0lTDqf34aiJFYImEUhDTCoVgyBoeatJOo3VKtKuA8l5nVuGiusDoV/jYqQfNnSbFX61psU1d958l3uvv02tO7ZP75O2X+HSlpInqI4WoCUth/VoqWB2KiLKhm9VKXELDRO0NMJKLz2wdJEZZoFVqVZSKZjWLB9pOd+WHq22YpXJssia7QkvASDmB1YtX2phODUUeW82mWv5ZuMoS+luH+04N/Ugy5xbSzWazoVzqRbrAiLKKxcBnFeTgJLxQ09KM06CRoM2R9fDKjWux0x04JKBBlUs7kXfTxU1Xk9NSFMmTapumopFxojolMFcGpcL6X0g+I40TrgCZ4Nn0AZfhRl15KuPfgzTnl//L/9b/sk/+eeMDIwpsX3+iJ/+7V/wF3/wfzFfPmXxkuq85j8FJ3QB89mORKeUyGiuoc6mC6FzNnNutFIUIbbf0dm/A0b2uYkQbU2fXmWkqYzRWSg5hkU7AW9gmBI3vD57Hgie0PeELkI8ge4ufvMGYX0HF1YIXyOVsus6Ul+YpeK6RkenifUuggTEadm8lBuYVA2EPqqBW2nQDQObzZq7917j0eERdXVK1zdcaBCNlTKcIOsT/NkZ3dltwuoOZ9/8Fd547xfJ01PG8ifgemR6ipuuqGmrzBkRas6KUNdM8+7okNhKUyDOLFDE0HBn6KqYFWizHXg57fQtaGlUbYwBS/mmZ7hauNqCNtCrtRtCpaA8bVl6JvveYC6TC+MriKPQuN5NlFRZrwf9nQ1+dS+f6LbZ6DRFN5FS9YGuZjgneJs7tptxjASGLiqbqlXLv1Xd7apz+Kyv4SXoPWwLoq3m8ce0RNE+9HI/IlRKqsxU+lLopLH2wqoJMfa0rKOy2Jm/le//f97e5LmSJEnz+6kt7v42IICIyKUyi1W99wxn5kQeKMITL/xjKbyRFIrwSJ5GmpRuNntERqbZ1VPTVVlZmRmREQDe4u5mxoOqmTsQkTWJkUm6SCYQwMN7vpiaqn766aekeSLPiX2XydFm7dq9Sylx+vbX/O//0//AX//V/8ntl3/OP/tX/4r//r/7b/nf7v+JzX/9L/h3f/s3nI8PCtQ5bE6xapZFr8w9J0rBVfxRrNus4hfFgqzKqLJyYwMXtHYbo+pjzcZy8z5QcrLOKGN5OQ2fG0zuZKmieO1oEp9w0SExIl2P628I+y/ZXP2csLkiO4/jJ2xmCJsrOtmQTonBF87njC+BgifPIDJTyokyH8nF+MwSkLLDdxfEH4khEH1gu93xiz/6E96/+S3p+lNi2ilBwXli3xP2L+hvPuHTL3/J9cvPSXQcc+DXX7+nd47+xZ/h+z3T+9/B6fdsxm+ZL28ociLN6iGT8aSTeJAZXCKnhBMlnNCQ5uUaFRJZvHMx+mNlFaxFuutiq56x5sONneWcysjOUyOJlLLuGioN4QYrP1WNJ1fo+0AhWx+0IqvZZvjqwHHN7QUQ8dZGqTn7MvkOSIVOHLMrJq2b7e8hZ2urtPZLsrYnujr312W2vVOQaYSLiAkCKCKeEcMENFy8TJob56hqFJxG9jngmRl6TxxUDysXrN4r7HqNRmLn8VFLdnMS0jQj+R2Xb/6Wb978Pad//D/43V/9j9x9/x0lzVxtC7sYICm/OVjphlLz0hXjyWkE5a3RBGOHecvrhaqAWWFJfUbe8sTT6QFxwtB1Gq15DLRS7oAPzsoEJvXbDNvZBqK90RLBBZDhgN+9Ytj/jH77CeK1W0+R6mfY5LNevPmCIWRKzPjZEyZHsiaCeTyT85k0PZDlATipTKjzSBkI3ZGhL+QQiDFwtb/m5z//Y/7t3/0N+eZz3HyiiAMXGYae/vCCT3/5l/zzf/FfMc4OfOD++GCN0I7Yb5DNAeIN07s9cu4Q50juLTKdIY94r4LmWbKGMfOo5AYRSnZIzgtlz/C4xrKxw4lR08tSNmgAFBjwVJFQDb8qmaUORI+WE+aULQB1zcBbmG3WJpbLDl2kjh7N4tCcMjfjzWjZZZ6SoajOJIyWzqQ6a8o5ndxQzOMkY89VroNWoDT803BRmKZM7zLXW0+fPeJUo8oltPcVIaGNBhRVBCkI2cFUdMi36m4D3rMJhYiKLswp83B/YruLBO/Zdqo26aOw2/cMuy0PxwfOpxNlnriWGccdbj7y/T9+RXEO5wP7vpB8tny1WBvkrHiA2Dxkh9bLHWCklVI7zDCGXiWIiAkGNJaUGn2aR+UgeGvntJo7ztJEB9ioFbGONWVeORN5FHxQJpoLER8H2LzC77+k2/8M372khI1Wb1bP70fZ5HNe3B/+DJ9BLolpFsIkjJOGXyndMV1OTOMBFybVMkqKvgUpDNu3DJsZiT2x69jvrnj9+lPisGPsrigygI/42OG7QByu+LM//5d8+fM/5eF44f3dPX3fczzfMc1KzfDblzg/4H0k33tG53BhQ7m8h+keeMDLBC7p+ZjsDpJw2fJgQ6a1AL9wobEe1iqhY4Stpf5bQBr7SpoBallKmHP15RWEql5XWgeP2o21Ctrm0ATS4hIqYyBWENfKSlmbgPG+sw1IxQCKeXEvzrxsAZJqQFt0Vsk2zmYnq0idMr/Imct4VtpkcMQuEJPNMM4Of1GChJTEVLwNCVf+Rz1dRGdCzRROU8ZdJtWvzsJ5srbKhzMhCmHo8apEoCFpgc553GZLHyMPx3te7Lak85k0z7gEyekkDHJq9Xur6Og1W3mhFJs+aMwqASRpK2cFWFXf2fAJM2rSmt+sV+WDM+ld68uWpadcgpjxYl/19cWp7pWPgo+2i8QtfnNL3vyMePVfEHafgN+gokwrUtRPYcDx6he4lCjdDJcZN2dCSszzxDx7inTgt0xuJLuEFAcya40tXkwhcaakzKvbVwxdjxQhxA3FqVp6DIE+Bq72t9zevEJcYX/Y4KPw9vs3XF1fcRkn7h/uEDokBvzeMYfI5Hrc8RuKf0M5f8t8SYQQ1GBdIE/qb8o8aYnDGGJKADBFirAM/qIsxpetgF+KWwAZAzyKLGwq6iMvlfCx5MN1k6gAV/15DaObxpJgcKcQJZKzWIdSDc8LedZFVstWaoQqIl6VEEupwgEen/V7Sm6nn10xKVtHScI8KRUxeIfrtHafRfAZcMGMQEXjXCmcUyaJ0mbFylkenewozhvoA+OUOXnlHk/J0VlLYxd6nASKM0kihHmaefvtd+rlQiC4wOl8UVderFPMCVIyXjLF6732UrkASq5BoGS9P87u85LbaheVs6i3FKXf1rGjgOa29uzBGiKqt62UXmt3dd5kgc2AceWRYfvo8NGTY4/0N4T9F8j1H9Ptv8B1B3LtaqK2Wfz441kG7DdXuFzI7gz+Qp4TYZ6YJ2GcDmQcuLMyeNxFkejicURc6EgpMV9mvB/Y7/Zam8xFm5mDgO+0MTw6un7D27ffc31zg4+FbhO4cjccjye2mx4PXE4nchZS7Ciup3Mbkt8i3mYWUyjTe6bppDk6Wl+dkvbWhuCNmqgUPBeDMm1qqSaVhjSLEwu9qoGyGDmVg62LpFDLacu9cyYisOTc8uh3GtabdGpl9CSdaFFUOxUFlEoLf6s4QEWkc15kTHMuNnUvtxlTpYCbs8nvghSvZIODoCmPAAAgAElEQVSkC1hElRed9w2EFO9wqWjlQHTWsZclKpmKMJnnysWCLgPaimgzSsmF8yVzdIkghc5BCnpuIRSVQZpnkzpSHWpywicVrBNxrUkBVPZHa7GalqhhasSRcwFv3GcMcDRyjohYwwEGzdOera+lPer564bovbdGk9wkbsX4mTpGdtHydl7zWy3poXly9Op9vSMOB8LuNf3Vl/jDz4n9rbKyxJhdOKT8hCCWdtAIMgwK0MwT06gweW2RqkqN5MxcJs3bnLOZMJrj7vZXbHdbKGq8brM3YMARQyR2kbkUfv1P/wHfR372xReE2LPpN4h4LqcT2+0OL56Hh5PtXgOhf0lwntRdM8Vrcrwin36LH7+D6YEyOZyckMkT42DMsVn7K2bVZRJvK1ETIPu55U3FguJS8MayKkV/5zAGF1jhn1YuUlKGhrWpGPhVioXzZqzUr+Y+6kZSaIZbBcGzMbl0vlMy5o+1IlqOnXLRziOLLZ3xikF0LI14XHFMs/btplnlcYML5sUM0SfjXCb6gnQCG6Uk6jiSgktOva7AmHTHkmJNCLTbqDOzpgvDHJiSZ5rg7t2JecxcTlm9dSy4gNI5i+bmtTgTjEdcxeKKLPXoOu845QQsJSBnQgoVbZaVXnM9ryqjq2tUWhRRspgMbkaCa9GOzvMtiLM5VRQI+rfe/ssV5MIUQ8UzF08cXjG8+BO6279E9p9R4obUvLw99zUA85/bgKs2r3OOruvI3uNdIKUZP9Zyio7rIGWkCE602dp5x2a3Y54KIXQM24FcUpMMLSQjb3SE2BO6jpQzv/v6a8R5fvbFl3jvGLqeroqMO+UU3d/fQwbvO3A3OLcldFdM3YG525JOO7h8D5f3ZHlHV0DiDHmZ4uB9JCAwZwrKCsui/axkjBKpxppT1gfrK++7NkdoKF5rPHVhrQXYNFisdaClBxagCqXTZjS1elUjgOhGqflVzo55vKiB2u8opSl+xKBkGHFGAbXNpBTaPCrlgzucM+Oz8ypoO52Ilo26YFfQ2TVIwF+E06UwTTBOajwUlaylSGWMojgABmAV5qTYyemccGipa9N3qpZhf+FD0NJa5ZHngotRGXKpLvZinT8Va9D7mmYFsmKMzXiVOltaFKWAlYGGYk0LouNRBGlEGLx9hvkfX0fl1BzZdoKKcSDapCBBSR6+75H+QLe5YXfzSw6f/DnT5jMkbpVQ5KQZb1lVOX4SA651zQqxi/OEuBJhw0K3eW4UQRFRJDhrA0TKcDqfLKQrOB909GNUYTnvAzF0hK7Dx0jKmTdvv2ez3XFz81IN3nuk7y28Uaj+/v5eh6vRU3zAuY7ed4RuxyW+oBy/QcI3zL7HxQjjCZlHSGqkIasskPbqqdCbK7URouBSsbaN3HST17t5LSYJyzT2Co4srtS8Rm1OF3l0n5acuVg5iVUt2ogmlQmUC2WedPC308VZe5a9r+WqoNFALRtJoeCIQbvAgq5q0pzp7HlQ1EMXK7OI0wmKuhllHMFKNIXgC50vXKbM5SLI5GCqPlPapocZhEYAnkJgnEaG6JmTdgB10eMa/1kjBgzJ1bqW4J1XmqdIq0Nr6U0F4+tYE/E2Q8k2joo2q/xNMVDQhPlZMAdvFQpVOi0KQjlaJ5HW000FFShlrWKqtXYfHRLARSF0Hj9syN1Lhts/5eqT/xKGT3DDNUhsqZNY62SpAoY/lQGrLK4hsChailcKZS3qq5CcdiqlPFtuJVaamIhxQ9d1hBiNaqcT40Lwyl7xAe8jMXaID4BjHCe+/vr3pJR4+fIlMUSV5IzSkFYR4f7+nvOkrWtFAoSICwMxHqC7YX7Y4+KGfBko7h1MR3y+QD6S5jMknbJn0hvWkaRhZEbDvDxnNRi9I7o466ZZo96sE99DDGjDhLNcGctfVyytsngENftEnW6YyTZC1ORgqpe3UoNz0PWBOSf1Dt61c1E2V4KspQ9tgqieWBd+9K5RMSsQp97HmxAALaRrvczFhNQ7reFGB5cgXLxDTio341HVn5QtlbDQ1+G5nCeOpbAJcHGJLz77lIe7ryh5ous9UiYTKKjheDU4U/u0+4dtgi4IZG2g994bXzo0pQ5tTqnRUDE/ZymRAcPOuqscWgt2VjlQQkbtpV40rgQ4Hi+M48Tty4M2QHiVfnKhqDxs3+GHDre9IV79MftP/yVu/wtSvEX8DhGbK9zCZ02nnumAn2nAYqhpzRks33VOd/oAZGvejvOks2NTamF9TokSCtM40VuIHHuVxfHBqfi5C4gEXAgmtan/zfPMmzdvSPPM69ef0Hedgi5BKF2vHSjOwf17zpfRWlY9xQ+4IdCFgdBtGM975tM1KbyB81vm8Xskdzh3hPmCpDOIzjFWoW8NqZXTPJF8vWan3GoytVEeV8y2ihEuQsuZddEYRzJXQKu0aKYqPqhxY2j04qVBhfeK1FCxGpaGeosiiFi0Y7l3MUOuQgZFgR8vnlKUGFmBs9oYWhdpa4MUU9gsEL3eF+90sUcnnIPTVMnaFYPAeS5aD24RiLZyuALzOKHl4cjNiwPp8nuczHjR0NR7rBlE6be6eMwILU/NNfIostAXnQ64E3GE6o3RddFyXbHykkUqNQx3rnL79V6LoAYeFA9o4u5S8MGz3UWGTSAEpRR7a7aR6JCuQ7oB+iu6q58zvP4L3P4XzOEl+B0FmxtdjKNnXWYiFez8iQzY1oAJni91S2mwmxBiIqaOaYyEGFUI3DxNSpnD4QCiShs5F2LX0Q89PqjnFadeF6PViWm15qIdR+/v7ii58Pr1a1WOBPoWTiun+O7hyN390WR2tMbowg7ZBoZ+z9y/Yu6+J52+Jp1/C5fvkOkOwpEyOrKcEJ+QWQPBqraPk6aYUSzUqY6qsa+8EHD00q1C69J6fJ0Is/1tBb1qjuu9EjRq5O2cqLicKTYu5SXTtM6oakctPyQtb6QpkbM0j9SkaETz6wahS5V20ddk8+5Lm2Rd6DYQPSeKd4Si8JI3cEy8aEioqB/LPCptP6we1IvQOfXanS84mfj1v/937IZs3GXtLHPOylfOaTdTqtTcivkpo6qYZ1XRC+0Y0m5Mad5Ng6lieIxiMbksY1+1tU8fwhLm2zW5gg5OFCpRXj12ph98mwUlASQI0jl830PY4PodcfsZbvgChk8owy2Eg/YM2HMXqRpoCx3z9vYnlNRpOVkxbm47EV1A3kOJkTB32u/ovN1BvaHjOPL+/Xtub9X4pmkmhEjXb7SNT4tnWFJntbXazqd11CoADvDy5Uu2W1Xx896z3e7p5kQMG4LruL8/Mo0XrNWf5BzO9UR/xTB8QhlfcH7ome8i7jKQp/dIcJQ5kOYzySfEzeRJqYmuaIlCh4/Zfaj13lpntI0tBNfy2NkwgKiUKWtOMI/olhQg19KGrda2Qda6rmPJkdF6rnhB8ko4IGeNYFz1YIZd5LpIgsXXoGi10jSNrQnoZhmM6FCjA0yVowi4YDVe89qdUwmdkgrzrPOqtHQDs7PNy9WGfhUCqPmzd7P14IqpeoiRMAq17l2BnXU9tw5TbyBQMcVHlJxSbGdUI66AoJFkzHAamwr73qOCAxbeYrVcL3q9zYD96mv0ClhFp3Xf2EO3IW6u6bef01/9HLd9jfRbfS6WBmWW51rJO7e3N1xdXz/HJJ+rC73kbNX1VIK4/tNTcofzE9532nXiApMooB4lEMSx3+8YhoFxHPEuEnzUyX3WYE/KiLP8kYWiWBd0ynB3f2JO3/HJJ47NZkOVi42dt5JVIcbAw8MDDw/3kD1StINE0b9A7L/EDS8Y4yfkh9+Qz19Rzo5ic31x2gxRHDAtuzpoyFV8oTL7g03IK0lzZKw2m1IharWfOvakopa5GPPHykvK0GoFBRNn01C1UFpJTn2KhccW/HiLDGoroh4Z6iwmRMkebqYIBp5h7Yeax4d6flmppyVb5xRW2rH3LU69GOKJTiWMkETpdQ0Iqvd8pjCJGrRQS1PoBMOgKpebTpsPQjTtZSOseLTtMRXrCDKj1kmNWvIL1qudcyZlLaVhOa80T6qIfk5JuduSm1hhbWSorY014pCivb0K+WlUlagKl9Z0UQGrqGKLPqjSiOsibneD335JvP1LNjd/RhlekFnGC3krHWZLv0IIXF9f63ztKuDwI49no9BUhNX+/UgNAw0xffCEEPEuWH1SY8K+68zY9EFWD+wsz200wuq1pRbgl2S/orKlwPF44quvvubly1vTJdYdLXjPdrNV2RivNbz7+6OGdtk2U+cofiD6Du96UtxyuevAO8olkM7fE92FnC9oUS8hYSZNE/M8UtXlspjgGc5GluSGGCPGG26NA0snUy0xVcJH5eFWlL8eFZ0uWTWfgtcWPleKRcPGxVaaFeBaaSqlGhrnVj7yriLUij7Xz1BDsDzTGEmWEbMeAZJtrGnOGi2o9GohF6GPotTUnHFOJWkul8I0a3W6oJGb9yrzE4O26nnfeh7V0Axb8SZ4INToQs9BVoDe0jhiXtoLvoiVwmherjYbOFG+d6VCFqkAkpaV2igUwfJjQ6ytE6w2RoQuQFAQLURH7AZct4HNFbL5hG7/JXHzGa67At9TBwEXTGnFqWLLfr9ns9nQ9/2zjReeLalDe+BrFHWt79SEyH01XhsanfXnTpwO+XaeeU5aqwxBpXOca1KltPxRzLvWbUMMIVbPcT6f+frr33M8nnj16qUpa7DUqmvdeui5e7jnfD5DUgAnF4f4gOt7xG+RODDd95TjgMjvKdN78nyv8JybKHLWDcWBJKM2Os3laQqUGclZDbtYPptQjS4qYb4ajHoTw6fbwq07ZGV4KeKvD5x1yYn20nZUb4uh4zVEd24pf9S/D9G3hoeUkqqWWDgqzmtze0qGcej5pFJLK95CZQWSohft584FN3hcmZXdBvjWBaU3pIvCttfSkanMtBJQQ4tr3myqIaVy1Yu+JhsFdh1i13yyUFsD7c3JFkmI8Zk1BcFkcBAV9Ouc18kJ9jOcbYZOlVCdAYg+CEUyIXa4qGwr1+2QzS1u/xn+6pfsbv+CuPkc3IZCRMRTiuB8gJLZbDZcv7hpazSYBHKukcSPPJ7JxFoMtxoQVJRVF41zAe91DrD3oZUfVF7EsQxjzkzTuCzGD9C32rVT66uVmC/todWvKSW+//57csm8enXL0Cu45cSx3Wzpuo5yf8fV1YHNZuDu/XvmuTYgeLLzFBcQ9ynBZWYxJY1TgMlTxFPkvBhMTiqqXkyZJGXSNKumizhI4MVCXmpMrDK2FPXKtc6aq5b003ttnxWchsq5GEK5qu5UiR9KfR8BXydPmDHYfXKiapagBIdxHM1AXHuGjQJZrOCS9XrqJgLV02nbnoiNENFgxAbIWVteUeMcPZxlZpwrMFcYes+208mJarT1P1mhxXqd68YPsWeqLDUFB51RXCsBRVM69XV6300v3Nr7cFBERSZ88NQU31f5Yg9VhN7Z8PBaX3fWcYSH2e6j7wJh2OH617jdl7jDl2xu/pRw+AXi9uAq7qH01BA8++2G/fWNzhEuRQknq4jsOcd/sgG3fNSkYp0LC8sFpVdWA5YKdtkiePXqFX3f2/xXab8H9RiYgqR6EMzjVqNddtp61MV3d3fHNI28evWS3XbXIPngA/vdnvuHO7b7npcvbnj79i13798bSKTeQfwO7z9Vj+G160UuAVwkuwdwSuyoi0iyMs5gbiWKnFWruMyLJItYfoVoeehyumgd2y+C7OTUcv5cJXjRtrlsgvl14nwlf9S9gWLdVN7AFitRVNmd+tygWN6b7L5lpik/eq7VC+e81F4ptC6fglIWHdX49HwV1IExZbJkuqgr3bmEE0eY9LOdgz4U+pCJ3itbyWn5qfbpqgc2FS979k6kGXsuS13Xe2Wl1fWp9yZbacg6gszQNQ2wsT0WClP1tDwWHhu4ZAbs2s+Wf0tUPWff75CuRzYvkc0vCNd/wnD7C8LuM4q/IrvIevb1brtlu9uyGQZCmwC3HOuU4Mcez2tmqCUU88A1PNXNbxXKmNf1zluOazRCIw4cj8cWBscY7UavOnSgoYbU78VRh3nXCXDrzSRbe+Dx+MBXX41cX19zc3NjdDohhsjV7oq7+zui7/j01WsOux1v3n7HPB61/OEG8Fe4DbisVNAs6oErfbGIEOZAnpPqcclEplju5HRrriiplSyyeWKxa56nCd9rtCJVgUF8u4dN4gdDlVk8UD1quK0E/YLHrwyxeiKx+VBWI3YepBrwEr2sd39xmhsLjjznxftKDe0LrXYqGvZGp+siaWFYw/apEA1sEyc69KwUnBT66Bg6nXMlmH6YCQSKfY7UBZ1RcXttG6IiMDUSyFklier0QO9VVkeZgeWRAYoDJ1purFrNYuJ1zq3+8xoS1O6iOlHQedGGl9BBt8N3B6S7RnZf0F39GcPNnxJ2nyBhizgV5itOWW773YHNsFVsKPgPjLc902cezzZgnb+zqAbUULpN5wN7EGpw3vieIhBjYBgGdrsd0zhxPl90YvnaA5vH+NilPFWwWIfSUIkHKgz35s0bTifNi7fbnTZ4+8Cm33J6OHLx0A+R3XbLu/M7Sp6ADnE9Ll4TdmpAVSQ8CRRr4C7icaKeNosBH7kgSSVZvS/kpKGdIr8O57QDyokQrvfaOVPgdL5oN4xXMgxVscM7tFE+G0nBEOJV7luvV5wjsxj60l5oE/qoYE6hzYiqZSIqZbM0xlgFjCpVVbICYQtrjBZZuVausZa6XLQtT0BmrS2P04UuRhvIbiQQX8eXNOIbmqtW41y8ag1h1WQtlzaEuIBx6Uvr525tf9h4nFrNtHJVjYikMrFCzXOXqK/YVxWhC7ioapI+dki/hW6P728I2y+I+z9i//JPccNnpLDB+U6R884z7AaGrld6cAj4ENpV1DVeWJzRT0rk8MrXMxKDGas9/CzGJDHebAiBfhh4OJr8qgdnag/v373nfD5zvpzZxz3gFjZRAzCqIS8hSNMdsmO9YzXP48zgUuZ4vOe3vz1zc3PDixcviCHQDR2pZI6ne87vT8xpZNIpPmyiLZwSoL8hF49kwaMK3CU4a3A4ksVmxuKhKPjhrfSlMjUafjpT9k9MOMMgswEzkjI+6Ll7h24IFUfKUPOFWj6h/qhGmpgYuqd16TQ/XQ09L2wfEKtXGysu0wAyDPF1WEMFtdZa5VSVG0wWJKnihvZaV/DS5HlMO0yitduVbGNStHxTqY3Bhpl7p2oVtb1PH6yBbyvUHlcNtzqvxciLs1TMleYsal+Yj0slw1neXqcuiMtQ5WC9pcyi2A0ebQHsd4iLSjLxHb7fIts9ub8l7L6g2/85/fUv8cMV4nvEqQjCsN2x3e4IUU2sM+agrKHHBa9sKdhzj+d74FJ0iFRKj3ZkLCfTfztiCND1bIYN976WMJyiwD7yze9/zzhe8OHFI9St5XcNSf1xF9W4xKscImedLv/NN99wPp8s996y2QyE6DmfH5gmR7h5TQyOELaM58TlooPMu+EAMpGC4C6BdDZjLW+RcCZNCbzovNo0UZItogR51j12TrbQEbzP+Gzid1m9tLheQ0ixvDMVZiupNI3pVB49+CVUNm9Vyz8GyOhnhRY663JWlNzuqubZFj15A6qcIeApJ5yP5s0qY8yeQ7aGeaxXutSUpvbHegv9tTbupWNOOsfJWylGVTO1W6cVHNR6NH2gAlYayamHz7TRsCZa5JzOQJaar9pm6KTywiuSvaDJ2Zd2zXVAuXiHC6Zd5QxQillpkdEjvsPFHT5eI/EFfveKfv85cfcF/eFLfH8FLhD6gWGzZdjtDcSN1BG2y0K1x7hKdevUkI/HnX/4eB6I5aTVdWseDDRZmpKt9iaQSmFKM/3Qs9sdlHHVDcyz9sh+/fXXqm1k/z0Og5eFWr+uQ2VZYqmaMOuNKEtYvTb8nDP39w/Mc+L29iVXh2sN6cKBUnZAslA1sNsE5nnmfD5xPN4zuaLS/WEDMlBK0Daz6XsIjjKeEXchJ8FlXURpEiWi5AwyUQdyFdFQWlAZG9VMWmbdWsaIXzWqS1kHjUAtPRWMcSqQ6iaK5YnYvVRWVSU+AFYTptXbFTNae95i/bjKYQ9ueR+K5oyl5Z8KqyebhiHil24aw0YcYqIJNdXCUquKlmdjfRmeQe3IslDWeMtaHlJPW0PdUory1YNN/3OGv1j0FoJr90Epn874BpbKBP23C4Fi3GgfeosYM9IHJG5w3TVu8wld/zm++4yw/4Ru/wnS3+K7HbHriTGy3e1UHlh0I+u6yA/Vdpeu0ydrfbWef8zxPCKHPpG2+wGtHim4lgdL3aEpXMYJ5wJ9Pxh9UvPnu7s7ht2ubQhrgbe2MTz5ec0PCqmFHI81hJTauL4D9QZqSH20gWOFw+EKJzZxkGD1QiU59L2n63p2uz3Hy4H7h/eMfg9u0PzXO/IY4fKAlzPEE3m+p8xn8mTSoC4hs4qnF6ul1rk6JevQs5wSPhgwKGiPsU2nyMbpLUlzu9mQY7Em9QWwNYpjKc3DstLjqmSIWh9V7rPeDye+VerqcwRlOGVWdVhqXl2xj9JSnBoJaH1VyOOsYJILlkfr73KutFttvaupjr5WySmlsPzMylsqgFAlc5ZOLme/9xUki9bBVA1ZDIyCRTHDGVZTCsKsnOZN1AaR4JEYcK7HuR7f9Ui3wXVXhO0n5P0XDLsv6bef4YYrpB+Iw4HN5gpX6w2WQg0b5eb/kEdtOa/l7TxxNm4l7fMfO57XjYQtFjBQYalLqnzK4hpri2FKmYeHE5fzxDBsyPnM2TjRw27XjBQW71lD9Y9C6qsUwoDY5VePwu0Vqt3ALjifNaSe55nr6xuCr6DC8p7U63OBfbhm2Ow5HY/cf98zes8cAvNpQ+EN+HtID5r7SgAuZJnwMpFlJriZlGbAMU1aPtJrLswumSazqmq4lElzVqWLogOyk+WhoQJ9Na5lyT0xxLyWitRScqvjuip2l3JD+F1Q7nKLXozYgEgjVeRVaKeKluVRrqZG7Iz3nTX0Dm5RJ8mm3eUc2Vv5p3UBtYQA5zRFKHZtGsLXYF+BNbEi+sIp0NeKU+ldzWXVu1abqLJDNcpTFDoq6OgSBHD9Bgm9dg91G5zb48OB0B+QeCAOr4iHT3FXnxOHW7rNNXHTszvs6Lqey7kwTypWr/TdTiWinqzJ9VpULnRdxMt6LilxOh7ZXV99uO5/4Hh2CF2JB866j3Q2qnUoSaXpLWFvNWLtE1Zk13un0wBsMT8tYj8Np5/mwc3DtzJS/Vtphvr0BtbDe880XXjz5g3jOHPYv2C7GYx+uH6ldbBQ6JzH7w8MQ8/pYcvp3ZbjuwPZ/RNpfEsag92TQOIEjMCptUJaoZk6SZ4UVArVJUpRreqUJnIuhC6QU7KymBAcpCTgQyNu1IXeLNhpySeZALxE40sbN7qpU1oVIVdtr1UUI8XBqp7qi3q1kpfQNjibQCAL9bJuGCEqUcV5r2FgBtV6ci20F7HXuWrA9dkVA/J0vUhy9Q30vhkSXZ97rdUKNE+czbM748E/8ro19XOC+KjCESGA73HDFa67RroDZbghxmtidyAOB9xwIHQvCZsXSLdh2F7z4uaWYdshFMZToswjXdR13EVFmqn74g/gNx+gzQJpmjne33M5n39CAy4VSrEcBHRYM4sPqwihAg5q5DkpMSHGyOU8AnB/d4dzYmUkFoCiWA9pYQlBGtDxJPtf3RAMNYXlfWqpQ1+jZIT6mpoXn88622fY9Gw3A7GLhujWJEU/3wEhRA7XrzjsrjgeXnN8s+Hh3W+Yzh3zxYPrKCUinI1LMZu8i46fCV2HkMnjbCLsTnuDRbuT5lnLanWgmpIQvM3/FSQn43IXa+2sWITyohUgak8CqU0EZvQCytSyRgavXRJtQ8hl8bA1WSlSB5Wvc9MabD/eXKsEj6ZYUJIompuL8liMQKHkHFmto7LMkBIs57Vrrr25VJooFp7q+flahzIEWiVfdXyqM0/vDEgSr9MAfdzg+wPEF0j3irD9lH73irB7jY87QrfBxR6JAxJ2xH7H1WHPdnewCEMjpZIg+h4fNdKpAg71jpRHMLMeFTisrwBhGieO9/ecj0cVgnzG8czZSGAZcNs9ayjUHmNZGDy+dhM5Ue7n1bXyPsekOXHfEbvQ2DMNlTIlwiWHSO0DtLSxeFvneOSlnwJf7dxFkcn17icCKV04nicu04njKbLZbNgMqhri3LJ4BNNIIkAIHG627A4vGN59wXff/D35fk8+/h7vOsrlnjJl0jxrf2qYlPRRRkoatT0tBUiJYnIwkQqwgCppaPN/ypngDfU39MmjpSntEFCkuwDivInv1TzR62egi6l6XuvZJ5S6Eeh/XpaGAY1w1IF6v4jSa1RVF9lq4HnLoWubpA7zKskAN2xsSlHN5HYi9rydsw8DFYuv1rpa7BWx1pqtb3lucVmnHThtWnCiLEDxDnzAhR7XbXF+i+sPSNjh+5cKTB1+xnD4GWE4aJkodhRUgH2zP7DbXzEMm0ceM+fCOOk8Je2FVsKSOL/YwZOjGLgoQqOLUmAaLzw8PHB8eGCapjZW9scez6ZSfuzEzL1R+cprJFgMRNnv98QYmafZABRtahjHUXfH1XsvnSftg6kh89Ocub7+Y1zSp0b89GdPfzeOIykljscjw6CgW/TBupr8o/copeDCluvbX7A7XPH2m2vefFWYJVFcwQUhjydKHpX7PIEvHTmNOHfG5UROsxqq05Y0lyM5z+R5VPS5FHJKkErzaipe7luOqaGnyZ1aqKwOU5Hvhd9cwKuXzaDh9YJ16Wap08obdXFpKkHR57KEz6VozV9W97GYB885qyhdKdonbCNgQqylneWxip0LVO8pNlSy1FS/3vVG5qjpWwFcr7mnC0aFDIILHS50Wpft9oT+BRKvCN0VrntN3F7T717ihxvccI2EvXplgRg7NtgVVA8AAB48SURBVNsdm/2erh+WFMCOlBLTNDUgrbYDtvWxXlNPMJxstON6TfM883B/z/F45HK5fPRv/mPHf7IBP03KlVDOUscz461/M00TL29fMmwG5vsTaxL30zxXd6vF/z4tDf1QmemHjLX+vFI/n35mo2Ky1KEfHh44n894cfR9z3a7bV65fr4GJB4fb3n52UDXD3zzm79jPH5DOb8DvsfxQO87LkeBJGSJSgbJmeInSJMhtqo1ldKkZY00adOE09zUUdUmNV8tdb5TUcAr59IIGDo+RFsnfZYmLOCcN08uJrmzeN8GiCULjV0lzkCNsUpZyDaPiiMVgyg04YAGeAHgiGHR7KpUWGXrgaPWnPXVqsKxiKVXS25MK1fVNTyhC/Z5ggsaxpZuC90B313jhleEzad020/pNje4+JLQ7wjdAF4JOrjAZrvjsN8yDIN2DEmTvKOySeZ5Vi9p9FNtL/QfsAM/Zis5qf62ppSJ8TLy/vvvOZ1OJMM8FjLOjz+e3w/MGtVdGTEa3tYTr2Mxaw5WucnTNHE+nTmdTnivVMslPF6I+jmvTditcmTtaHl6k6qhPhoW1ryFvn7tRT/WsvW0hFVKYQbGaeI8Xuj7nq7r6DsDK0zlEXE4v+f65V8S4gu++93fc3n7K0Q6pvEbUjlpeQJ1cqMT0jzhQ0/JM1ISaZ4oadLmhVkFAMgJ7zOSdfyK99Z1k4vSOrMKslP0QdbpDKDYBKVAKhWb0jv5ZPOqRcCclJSBr7Xh0hauGAhRQS+dgAgVCKkgojxZgNWLqtSOZ5GANa630LqQdMNXrnumaKtnjaTr39R14KsyphD7HpwODnCxJ8SBvHmNbF7SbV7R739G3H5GGF6B3+CchrohBnzw9MPA7rCj74cPyjeNtFqU3DLPc0vBnHONx/+Dkal9naZJxfNNimkaR969f6+znyxS0kikKmX++OM/uR94/bXWtKoBLBe1eMAYA1999Vvu7+8b2KDQ+8Lwqjub/mfJGct7gbNi/QJmPfWyTw24fl0vrI9561LKo5rnOkwvFMZx1OHbIsQYlc3lC32v3NciDujZXf2czfYVD29f8d3v/l9O9wfK+AZX3iHpojVhiTif8FLIeYQ0gZsgz+p5JYAbbfZS1nzXadhGVk1q57JRDVW1I+eMuEwu7jGmEIppVAlkvT9KmVxAK9CwnFrKKVo4AlbeZmn7lPJxsk1Tc0Sjk1wqt9mwkJrDClr6obKkaHTOdg6i2ImRa3G+UzBQAs5HDV99IPR7JO6R7qChcH+g239O3L1m2NwS+luIe4rbgAvETtgMPbv9nr7rrB+YFWBar7xYiU9lnNZNH0/D5o9FptgKrWliSdrEMo8T59OJcZ70b8sSxWofx0/ogZ8Srdc5aRUOV7CkTnBzDbEchg3f3n2LiGPoe25ubnQX9EspaaFRmtE1FG8p8qsnllasX6PNHy85fbjZfOx46s1rk8Yjb2U3+nK5qBxQEWI40217ttsNIXSan4Yt+0/+krj/jPff/pq7737FdPod6fwtvky4lDXXTSOSO4obwU+aF+eJ7AKSImQtMYnPiO/INleKUlThMifNVwuKUBcdrK2yvipunkkqfGe8YifKAtPaX1q0tJRJYl81nk4pMxcd3elctPtvkwvafTEqo1PVzMpp1rnQFcuWWmJeeWuNvJzoTN8KhqrCKe3Fild6nOvAR5zr8KGDoPmt765x/SsYXtHtPiFubuk2LwjdFucGxHeIi8S+43A4sNkZyaKBpPpfXRVSlmYRiuIUqhKypIY1dP5DR8mFyzRyOh2ZRjXc+TJayVCBRW1QMTJHgxr/f8qB1z+TCnjoqlheay9PKZOLJl3D0DFOics4EoO2+q0N5ilyTJVRLXX3kxaqf+y/+tlPPcQfqi3XWrKeA+iGUeVFfzg8ytkxjolLuufheM92s2Wz2dJ1PUhP3Lzm9c+vefH6S95/9yvefPMrxuMbQjoi+UwZ75DikOwoc29gz0iRCOlMSRNFRpwRFaT0UDI5KT0zzwmShmWZyQgRGZLDFQUGUxmpI17q/GlE2wkpXqmIxTjBRT2gRukZFwo+KjI+z9qs4k0ltBri0lySbUH6BrjVklSxTiYv2kWs2IgzELqAN4OwvFg7qFQUsVjtFt9T/ICELS5ukOEWt3lFHG6Jm9eEjdZri+ut+aAjxp7Y6TD5YdOp4D0LiMSKiFR/2EirFhEqCQfqC2NzOvVnda0seEFJmdPxyN39PeNlbKFzSWs10kLVG6vNIirf+xN74PUkgXbpGsAvPxdsOoHO9ElFW8wEzSenlJjmsRX0a2/xGsFeQ38iWOF+6dd8arAfM9qnx8dCZ72uSshfPntZeB+2L4LusDMTtR86TYW7dOR4uljL5JYu9ojr6TavefXFgcPLX/D7r/6e09tfk+b3hjyfcPMMQUES8SPFRfLsSXLGOU8m4YtYiSHhsg61dr7AbHlvUp41JRmZQi3IW09xzWsVZLKSUinK8EqllZ9ENB+WYve6GMrb6cIWandPpbeaEZtXFfHVfTUQTEP1Wv/U/mrnAqUo8j+Xws60wUWcsquKI4Qe5zskDJS4I4crXHeD72+Ih08J21d03TU+7HBxgwuBbtPT9zs2m/2jHPWjS2JlK+u2ypwSuSjJBipImw2zqalADbTL8mZFsYrj3T0PDw9M4/zxuq5oitKiPIpRaZ8NQj/fgNfJuZ6Lli+8D0yT9sNKcRQWRYg0J25fXpOnid12y7dvv28n2lDsFYBU37fm0CCWJ7lHxv0UnX4aBj89z/XffCyU/tjfrF/2yGvz+D7AshGllDifTwz9hqEf2Aw93nf0wwu++Pk/5/76hndvfsfp7hvy+A4X1CN7ZjqvXcin4zvef/8GKTbfp4C4WSGerNrLZMghU8pMLB11DnBJM5VQkNJFF0pFhCvWkHUKYDESSDZGXSkFCZHY7kWTo9P7XqTV9pXIUXRWkBOcdFbCoqk32u6uz7doT3TXDYbyevrB6UjTLuBjwIVIFq9hc9jguoM2yMdrXP+abvMp3fCKsL3Cdxtit6fr9my2O7qhb4h09YjLM5PV/x8/Q2xFFct3awpYITytcTvVLRevqYawWJuogT88PHB/f890vli3Hss9lYX8RKntjJZTGM7S6vTPOJ5lwOtE/rEBqBErimehqnj1COhNvFwufPfddzw8PJg2lm8bQl349X3X9Mia8y65Mu1n6+Opga6PtdH+oRy4PY+WBrbM6IP3+kOhuV5PIqfC+Tjy0AX6LtIPga7bs7/9E/YvfsHp/Xe8/eYfOd1/RUnvKOM77o/vSeORaTziQ69TCRHlOruMjl6ZVIPLZvIUZorlveItxDZgxuVoDC7L7Uo2AkfWEJ3KfCsVboACzphoVX2yFuZFXHW41EkFFbyS4ttGUVVG6wC4KvznCoRuwLuoiLAPEDVMFj9A2CAy4OPGwKlruuGK3dWnxOEl/eYVcbgm9htiF/Fe5ydT6jPI9v3Ho7CnR11/1fMu85mhDrJT4LJ7xJvPRrhwTpgm5fY/PDxos0ypfcyPI8nFWLFRtMvKqujzT1pGOp1OWiezJH7du7uAWUsoXGw2zpxmS9wLL1+94u2794uYWs58HDCilS8+lufq/ZAPDPMPedb13zwV5Xu8Nz/660ce+3Hksfx9Rd/X55JyJpeZdEqcTyPuHvqhJ/Qdu35gc/iSYXvDw7vXvPn2H5nokAnEe5tSMGsnUlZ0WXM2lbXNckZECD5QSFqOanXhhHZsZbzpaemoF226LzlT5hlxsaHCThSr0AqPqBwuNddX/KK2MQpan5UVgKXKipWJJDQNmwb+6Lwl5SoHfNwi0uNiB51D3EBxB1x3w373CcP2hmH/kmH3kmF7oN9egYsUqsa2Eoc0fyktrLck/4Pn/vRoz8hApWzKJ+KsiaMIJQvexwVxFqHOvaolpXE8c7y/Y5wn0pM0UM+uhT5tWqPUnHd1nqUU2qSOZxzPMuA3b97w4sULhmFoTcree/PMldNcH/QCwc+TAgHn84Wckkm/LoLcHxoTKAfWNzK6vnf1zAsC+NSwfsjQPgSt1gb49ErrzvnhrvhDacQH/86NTdz+NmfhdLrAeeTizwx9ZLsJ7F58Sb+94ZuvfsXJXSOXt+TLW0gPWgsuRemXAiVPiL8Q4tDYVLlkQ6Nb0EdhZk7GAisJ0oyYtyxpJoekeVhZwBQXMpVC49oEvmydlva6eu010qo93ZjHdw7xKpwvzpEN2Rarv7rYgR/AbRC/pxsOuH6g397w4uYLNvtP6fevcH4AiZRsFNNQn7l2TUm7Tmv2bx5XLMf8ccZbDbGu2zZMTpzNBdbr0Nfq68dxZBxHLpcL03hW+d1SRfftM9DuvXoaj0NpgeIWbGCVRv+4uGE5nm3ApRQOhwPb7Y4YQwtzS3m8kCv7ZxoX6dhs8PnNzS3BJDXXofMjYyu1XOSpqVQNqz+GItfjh9Doj/17vXE8PT4Whn/s508PPTdTVCx1yzX2kjM5opSZ0kjJjnHyBBfI2TO7z5D9Dte/gcs35MtbynSy0kaGPKkqZlSpmmJhumrOahipn5SgzFovLWjHWMgGJGkJq26gPluFwDpIaq9y41PLwjfX68no0tQET/EPQ5UJqmjhA+I0ny2GPHu3QXykhA7X7XHdC7b7T9hdfcb2+jM2uys1Whdr7wPOqVIvbT5H3bwTFfURkZbzLgHrx5/RU5JJxSvaX4h+H2xOF0XR95rTjuPI6XRqVMoaueWsFEmNuD5M4Z6uqUep3JKv/cFN54eO5xnw198pHTABeLa7DX2MBOe14dzGHjgLEXKa9eJQ0nbKM69evebtu3ccug5dMAvxo0rH1gS/srkqPVPBkAUUeXpT9PvavoYxe3IzpoaK5tpZk7GBQ+ZwS43dWQNl68+px9OH8Xhz0C6e9j16a5KpYYjT8JqsHI5zmvUZSsSFA+Iizh+Yw1vydEeaHpB8xMmELxvKPKonTjOljIi3WjC1jzrp74sCLuJKq8hSskrYAvM4kkl0vYbS5GLgS1aCiLUPVumZnLIytaRWgExFRDBD75Rd5gJFVL1RfIcLPcW/IPYHtodXHG4+ZXt4Sbe9wrkeGKAJ1VqkZbMcmmrIo6OWnED98DMWfg2sDAfQTagCdLoO05yZp4t528k48vr9mquwvKGNmil1BpOlF6YxltrMHKd0cxFD3LWNMK+u4Cf1wP/0D78mTRpmpJQZxz1Xhz2bftBeTsvTlM6nIdd4PutsorLh9vaG4/GBcZpslIRY2CANZNEcQRqKWVU+FL2zy5PHO+nj0KQaHI07zArQqIYsiOWV6MOsYJFIQ9DXx9Pde308zbH1fIqdrzRPBdVDQhHRrcVCYD0yDkeWDcVHwtBTugNhvienI3k+qXqmu+AYKemE82cEk/g1TrR+dmAcz3ouVYYGzYFJKhiHz8TYWXdQwbsAY+J8PqvcTIittQ9R9U3nPbGLpHlWYf5SCL62GTokDriwUeQ47An9nmF3w+b6ZxyuP6UbXuDcwDK+RQ2gtqpSwTcqy2lxUh/c75UTa7/jP37kVEhzIs1pQeYt7605cQ2V67//0LOvEafeg/q8axhfmqh7EYcPqswaouPh4d7eb3EWP+mA73/7b/6OebowTWem6aJgSk6Uaxi6qNRIltBUFRr15m+GDa9ub4ldz//113/D+Xyhdp3WG1EfzDLN4eNEiqdHfc3yuasHLovRVg2nUix3qmFnEer4SESoNOJaBgP5QYP+WOlquZbHXrnl1uscerUBYWT9QgGnOIFSDDtcvmF2IyWfIT9Q8j3ZdeB6yjxTm+d1yn2ipBHXW9thKWQbclacbYau0PuN5ZHJXqeqFsN+h7hA3/eEGDUVsrbALnrOpyOpeEJ3haqlO2VHxWB85APdcMvu6nMON5/Tb1/gQgcS0QZh1+5Fu3s/+JjrLz4C7/xId/UobUqFlLQfuxSt247TxaoGS7dRC60/krKtj+qspDJX2hatO082fVrVyOrY7vaI85yO75jHqV1VK4/+iPW+Pp5lwH/3N3/NdDkxjmemebQboaJsh/2ezTCY9wykNDcQK8bI4XDFPE28f3/HZRyBpbiuBva0JXDlNXmcvy4lH83DqhhbvQkfphe1xc7CwqLAR2mcXnnyact5gWNtu9Jit/W5PM6z1+dYjTklPceK2NaLf7QsS+19dyYWb0OxckdxguszlImS9sALXDqR5ovqUaeE6irPGj7HGZ8TPmlIDQmYIY/Kuy46wV57j2edLI/gxBNsHMZUCtOEMstQsseYwfcv8ATEdyCqpe1Djx/2bK9uORxesjm8pOtfgOuhOLKs7o0iOu0Riz2s55RQPraBPnoOH3l9Tplpmlv0ME0T0zSRy6xgVl4qGk/X2x/CXGqN/AOMBRBrR91u9/VVzNPMdBkXfQqRJqH7YxzW+niWAX/37e/4t/9m4jKeGC9n5svIPCnKPI8T8+HAbrcFxOQ5L8xzwolnu93ys88/5x9+9Sui74ixe7TA67GI3K1KR/Bop6oRZ/37RdTNvJfdxMyyGehD8YtHzfVdNW9W9LVogrp8WosS1g+1cWjlcefS45tvG4NdQ4zeZIUWqRgLD3gkxFeDARHrpbWpEGL6zKVDJCqw5YwnnWdKHillRlAWkbYfKtBFA6cmSpnJebKy06TfMxt+AbWNzpFtnCwUCfho3b8u4HyPCx0+bIn9jq7bst1fs736nG44UJVYbGDoIhJSr7JhDBaJrHpwfixYuD4+avhl+ZKziitcLhemabb/Lq1JgVUO/LTCsAZZP3pITan1udbnraVW5W13XUfXaU1/Gicu5zPzNNHC09X1/qQ58JQnvv3uG6ZZT+Jy0V1sHlVJYJom5nm2EaKFkmGelAj+7//9r/l//vZvOZ8vbLc6YqISMj5Wp62Xosjnh3XY9UXX79W4FHhZXr8KT+pRjYflq1jjOVkWwTHckxDnw4X1sdC6AnKU5d81JYCqKGK/W11zKdqcP6e5RSftzEV3b6UauioAbTKvxs5ChdU9WoNXA1R+t/p0BRpdMcAxz82AZUXUcEUJI85E8aItQBcCodvQbw4Mmy2x3xDCgI64126sWrs3x2ILtEY563tVN88ft2T/EIi4/tmSlujvlBV3bg0ol4t1dbHUbGtaVSWC1ijxU8/7IWBZe5uVJx1CIMZoVRYV6tfZ0ep1T6czl/GiZb0WxT3GR55zPI+JlRNFCm/fvtFOlTkzThOXy8SYcjPgw+HAZtM3AKAOpd7vDyCOb757y/76RTO0pyWkmseu7ly7gUv4/OShtlxVv2pos/xcbNdvoffjlnT7+RJS1/eqSCdtU1jO7WOL6PH3j/NzLa1ZzbXS/UotO9l55Yx3ouMvyap0kqGIUiobQOa0wV9HtDhwEW3oU09g5miLoth3JncD+toiOgZUMqVotaDdN+OF+xDY76/Y7XYUYLvdE0LXstdc75NzeDvn+gyaJTfU38ILoBI8mh3zkWcKbUm3slx9HdJ+tza4lBJ5ThQr+1wuFy4GRpWiZIpS78zq/aqi6sccxA8BS04E8Vrm3Gw27Ha7xhPQNsKJUuB0vJCmmXGctV5cP8MEICllWavPdMHP1IVWqL+I8HB/x6//8R+YLmem05Hz+cTli8+Z08hlGtnv96Rp4v7+gRg93TBwPN5zOo8Mmy0udE2PCZTZpWr2lRKA8nRXxlLDIbBJBGVFxqjhaNvVakRYOz/WmW5tXli3Ka684spjLwavf7cssELJbgm/0JxaGkCTVjn+oySAupHU/KktRcFmDoDqaqghV7CNYmydYu/pvBmPOlRNEazjp02yX6cDy+MuVLKGp25O1dSBJqyXS+HhmDmeHkzR07PbqWE/orey3rxqGmNGQaHmPXWAm7gnhvoDIWqBD/tkizmT2qubrUUva9/2+XxunIOU0qMcW2vgtjPL8oalbkQt3VpWixdp5w+V562gVNerSouPwfCVzDQlTueR8aJKo/Os4XIreNUKxZJPtDr8c2vBz1bkyPagfXCcTye++s0/MZ7PHE8npsuZeRp58fLE6XDQeP8ysj/cMM8ztze3gOOffvM70yxWokawId+Pkdu6+nkUEuuNrZ5MszX9u/rvxRilLIahXx6H3Pq17uD5I0ZcH9rKaEsNecybl2ICA4u3rtIz7b5lbU1cPm9ZsI3sYe+v5a11TiSPzs8ZK0hclXwp7evT7bsORtePsDa61l1V2u+gtoO2v6QOZq/XWdl1d3d3pDSz3W7p+76lBiklLYlVMQGRdu7LCNqaRmDCBvIoPXqaplRBAAyASkn7o3NamuwrwaLSIWFdjWhxzXKvKikFM6L2ivqiJaRu/ANZGmm6rlOttCoHZe/rUCDqfLlwPJ24XC6UZOshL+L7i5zQ0rW1RHU/PqWox/P7gQtNuBvQ2UNf/555nDk/HDkfj3z65ZGbV6+4XC7c398xDIEYPL/5zRve39+Ti5Y9qkZSvYmL51vt5PW7shjJI8JEM2RBY00e/31eFkdZGfmHi/3jLK3HORCsvfPTI+c1peDpZqGGUAHoZYOopl5JBc7K1sv1aiqq3jBVBcrmt3UjrHnY43sldWmxlG7WeEJu5/I4dITaD90CTlvY85w5nU6Atj/WzbeU0sj/WoEoDYis5bgQ/OozFmN1wbfPX4+vTTmpCJ8ZbWs7TY/bT9dp2Pr6H1ctijmDZdN/mu9S8qMNv5Rks42UrKRgVPeERajRRvX8p8uZ2cL16tEfPU+chdCPQ/jlPH/COnCpg5ZFSd3qBYQ0Tbz77lsupxOX04nj/T33n7+H4Nnstty8eMHL2xvSPPE3//ffcilz661UFo/ehDrDR6j/LisEU9XspYixhDSHqwO2GvAl+ZF51Z1Piob+beGvQthHHt/s87GgG7YL17y6ei4NoUsuy+bQ8tnlYUjbOJZm7vrgH/kIWTztY69kHTZmpXW+kVCWtjan7/NofynqZRpmwHKf1uNLPpb3LT3SyqVe8n9hnmdOpxPzPDev6r2vMhzNGz7OIY1ZVddPPT+7tzW6q68vdWAA1hHEYog1pF7I/6VhHIA1Wiyb8Doaqp7uY6BYQcPjCkJF5xfljbycm7bNLnI50zQxzgu9snpl3Sr077wLhJV01JrRtf76nFIaPLcfuCaWLMyl+nWeZx7u3vMffvUPHE8PfP/9Ww43N/z5P/sLXr58yR//0S/5q3/9r9n0He/v7lSiTBzBBxW2s5tUea2PQtB6YauHVD3Co9cg7cYtdi9NzqV69yX1WPdlrnZsJ08+Z/F47Wa3TYAWLtYgvdjP6yubVa3AirZ2V4OzW3nKFqmuwrLadPSPltYz+59bwtW14edSFUbazWAJ1xZw5mmk8bRh42NI7NI3u/Kkosy5pUFgMWAVtFve4+nxgbfUfxgmsNT2qyfV+2veSj58zxou14hNZHnG2Zrz11FOCJ5+6Lk6XBFjVMcwa9g+jZMJ78/N8Gr4vg7dqwqr5DrPSbXfYowM/YCI43w8cZkTcy3vtefSLvlZx7ND6KoZ5CwHWwhjGnKdT2e+/u1vuX944Ms/+iWvXv43TJcz/+v/8j8zTzPH88lCce0q8UGFzYoRwXNRMv0SdprRCYshPHqg6xOsQAw481jFRN9g2a2rgX0052ZZpOuQ7OlCthui+a08NZSnQXZdkNVY66Kvr1o1dNRfi4bTxZruW771Qdhl4W4LoZeIouai+kL36HdLzsWj66z3PefUhPArCQaWOcN1IVcCTkraELH0RdMio9oMUYn+Tz3O+vPrkPG6bdp+1h50i4tWG/g6HH58HR/zajrgLQTXwmHvA33f0Q8bnaSYEuOYmKeJaRy5nC/MU/pAOWb92fZhICp62HXRjFcdVM6ZeRwZL1p/zixMr2emvY+OZ45WqZ7Q7qq5myLaPeftIuZx4u7dO87/X3tnkNwgDEPRH7sNJQdI73/AZpUYSmOrC1lGkGYymW7CzH8rFoCNsdCXLezLBfl6xen0hePxE+l8xjAO6A89cikYU0I+9HjvdTuRInMyfZlV5+IFNPkJlYc+xroxMNFUghB0wyztu3bOHNeZX7Oy1uv8/hUvVcd3Jxqu1fP1lgwb9Q67uOoE7iLn0XShQOvkS6+4kNir2M/q23aQhMzlN9VU//FxbeaPTV7bsc2kSFULfiHBuY4CsV006rx6C1+qfLYBLV+mzTsUoI3GBmgCiM+yayue+ma+483Xz2UfphgDuo+9/hEXY0uBFFHlNY4jUkoaIkw/Lf5eZKPAyXm7f22P+Bax7zr9MASdThqmhOl7gmSpeREuXPsnu2c1NyHkdQiPTyGEvCo0YEI2DA2YkA1DAyZkw9CACdkwNGBCNswvVwRResdDhw0AAAAASUVORK5CYII=\n" - }, - "metadata": { - "needs_background": "light" - } - } - ] + "layout": "IPY_MODEL_f5a3786b73544319973f81cb502247fa" + } }, - { - "cell_type": "markdown", - "source": [ - "# 5. Our custom ViT model architecture closely mimics that of the ViT paper, however, our training recipe misses a few things. \n", - "* Research some of the following topics from Table 3 in the ViT paper that we miss and write a sentence about each and how it might help with training:\n", - " * **ImageNet-22k pretraining** (more data) - Train a model on a large corpus of images (14 million in the case of ImageNet-22k) with 22,000 classes so it can learn a good underlying representation of images that can be applied to other problems.\n", - " * **Learning rate warmup** - start with a small learning rate (almost 0) and warm it up to a desired value (e.g. 1e-3) to prevent a model's loss from exploding during the start of training.\n", - " * **Learning rate decay** - slowly lower learning rate overtime so a model's loss doesn't explode when it's close to convergence (like reaching for a coin at the back of a couch, the closer you get to the coin, the small steps you take).\n", - " * **Gradient clipping** - reduce a model's gradients by a certain amount to prevent them from getting too large and causes the loss to explode.\n", - "\n", - "All of the above are ways to prevent overfitting (regularization) and in the case of ImageNet-22k pretraining, it also helps to prevent underfitting (apply learned patterns from another dataset to your own for better performance). " + "ea0de57a136f4ee782d0a0b60f15120c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ed05f564f7e84d00881ee38a5b38c635": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ef69dccad93e40509855e3042fca66b1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f19a9bb425c6488e830d5600c129f22e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_22ea6b6a2899467bab284b86ea60280e", + "IPY_MODEL_2afefd5f072f41a6a9754b8b86885fd4", + "IPY_MODEL_899a3c7eb54744b0867b948b62425136" ], - "metadata": { - "id": "ZLcCgRhS-OhV" - } + "layout": "IPY_MODEL_223758f1c0994fec8fcd2be8947f9f4e" + } + }, + "f3eb5a1beace49cab6c1f9ec107e57e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7ca1118a9dc54de5945764c9c5aba485", + "placeholder": "​", + "style": "IPY_MODEL_8c87a454a6d9410f90a1b657118fb794", + "value": "100%" + } + }, + "f5a3786b73544319973f81cb502247fa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f92c3db1bd3b40bd9c3f93f35a2f41c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f9d6180bf6e74ffcaaf5a8bbededb652": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f9fd5a5bb97f4f68978610975a864fcf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ff69c66d4d3f4c17be9826da8319a3f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } - ] -} \ No newline at end of file + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} From eafe86039c6a802f5abdd316ec446d3d8c094725 Mon Sep 17 00:00:00 2001 From: fxl <1475486684@qq.com> Date: Thu, 5 Dec 2024 20:49:13 +0800 Subject: [PATCH 2/2] "refactor-clear-confusion" --- ..._model_deployment_exercise_solutions.ipynb | 11564 ++++++++-------- 1 file changed, 5782 insertions(+), 5782 deletions(-) diff --git a/extras/solutions/09_pytorch_model_deployment_exercise_solutions.ipynb b/extras/solutions/09_pytorch_model_deployment_exercise_solutions.ipynb index f24aa357..b97c1019 100644 --- a/extras/solutions/09_pytorch_model_deployment_exercise_solutions.ipynb +++ b/extras/solutions/09_pytorch_model_deployment_exercise_solutions.ipynb @@ -1,5969 +1,5969 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "view-in-github" - }, - "source": [ - "\"Open" - ] + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "view-in-github" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zNqPNlYylluR" + }, + "source": [ + "# 09. PyTorch Model Deployment Exercise Solutions\n", + "\n", + "Welcome to the 09. PyTorch Model Deployment exercise solutions.\n", + "\n", + "Your objective is to write code to satisify each of the exercises below.\n", + "\n", + "Some starter code has been provided to make sure you have all the resources you need.\n", + "\n", + "> **Note:** There may be more than one solution to each of the exercises.\n", + "\n", + "## Resources\n", + "\n", + "1. These exercises/solutions are based on [section 09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/) of the Learn PyTorch for Deep Learning course by Zero to Mastery.\n", + "2. See a live [walkthrough of the solutions (errors and all) on YouTube](https://youtu.be/jOX5ZCkWO-0) (but try the exercises yourself first!).\n", + "3. See [all solutions on the course GitHub](https://github.com/mrdbourke/pytorch-deep-learning/tree/main/extras/solutions).\n", + "\n", + "> **Note:** The first section of this notebook is dedicated to getting various helper functions and datasets used for the exercises. The exercises start at the heading \"Exercise 1: ...\"." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sf8ab9cyHTzU" + }, + "source": [ + "### Get various imports and helper functions\n", + "\n", + "The code in the following cells prepares imports and data for the exercises below. They are taken from [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/). " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "ChRaHUSJ8DYZ", + "outputId": "0a27f03f-33ea-4721-e4ec-858b8dc255b1" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "zNqPNlYylluR" - }, - "source": [ - "# 09. PyTorch Model Deployment Exercise Solutions\n", - "\n", - "Welcome to the 09. PyTorch Model Deployment exercise solutions.\n", - "\n", - "Your objective is to write code to satisify each of the exercises below.\n", - "\n", - "Some starter code has been provided to make sure you have all the resources you need.\n", - "\n", - "> **Note:** There may be more than one solution to each of the exercises.\n", - "\n", - "## Resources\n", - "\n", - "1. These exercises/solutions are based on [section 09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/) of the Learn PyTorch for Deep Learning course by Zero to Mastery.\n", - "2. See a live [walkthrough of the solutions (errors and all) on YouTube](https://youtu.be/jOX5ZCkWO-0) (but try the exercises yourself first!).\n", - "3. See [all solutions on the course GitHub](https://github.com/mrdbourke/pytorch-deep-learning/tree/main/extras/solutions).\n", - "\n", - "> **Note:** The first section of this notebook is dedicated to getting various helper functions and datasets used for the exercises. The exercises start at the heading \"Exercise 1: ...\"." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "torch version: 1.12.1+cu113\n", + "torchvision version: 0.13.1+cu113\n" + ] + } + ], + "source": [ + "# For this notebook to run with updated APIs, we need torch 1.12+ and torchvision 0.13+\n", + "try:\n", + " import torch\n", + " import torchvision\n", + " assert int(torch.__version__.split(\".\")[1]) >= 12, \"torch version should be 1.12+\"\n", + " assert int(torchvision.__version__.split(\".\")[1]) >= 13, \"torchvision version should be 0.13+\"\n", + " print(f\"torch version: {torch.__version__}\")\n", + " print(f\"torchvision version: {torchvision.__version__}\")\n", + "except:\n", + " print(f\"[INFO] torch/torchvision versions not as required, installing nightly versions.\")\n", + " !pip3 install -U torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113\n", + " import torch\n", + " import torchvision\n", + " print(f\"torch version: {torch.__version__}\")\n", + " print(f\"torchvision version: {torchvision.__version__}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "Y5H5P8EjCNGK" + }, + "outputs": [], + "source": [ + "# Continue with regular imports\n", + "import matplotlib.pyplot as plt\n", + "import torch\n", + "import torchvision\n", + "\n", + "from torch import nn\n", + "from torchvision import transforms\n", + "\n", + "# Try to get torchinfo, install it if it doesn't work\n", + "try:\n", + " from torchinfo import summary\n", + "except:\n", + " print(\"[INFO] Couldn't find torchinfo... installing it.\")\n", + " !pip install -q torchinfo\n", + " from torchinfo import summary\n", + "\n", + "# Try to import the going_modular directory, download it from GitHub if it doesn't work\n", + "try:\n", + " from going_modular.going_modular import data_setup, engine\n", + " from helper_functions import download_data, set_seeds, plot_loss_curves\n", + "except:\n", + " # Get the going_modular scripts\n", + " print(\"[INFO] Couldn't find going_modular or helper_functions scripts... downloading them from GitHub.\")\n", + " !git clone https://github.com/mrdbourke/pytorch-deep-learning\n", + " !mv pytorch-deep-learning/going_modular .\n", + " !mv pytorch-deep-learning/helper_functions.py . # get the helper_functions.py script\n", + " !rm -rf pytorch-deep-learning\n", + " from going_modular.going_modular import data_setup, engine\n", + " from helper_functions import download_data, set_seeds, plot_loss_curves" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 36 }, + "id": "bE1AAH_uCjiP", + "outputId": "8337aa8d-9a46-41ad-9f96-658e857fcf57" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "sf8ab9cyHTzU" + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" }, - "source": [ - "### Get various imports and helper functions\n", - "\n", - "The code in the following cells prepares imports and data for the exercises below. They are taken from [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/). " + "text/plain": [ + "'cuda'" ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "device" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GmS5yuvxCpLp" + }, + "source": [ + "### Get data\n", + "\n", + "Want to download the data we've been using in PyTorch Model Deployment: https://www.learnpytorch.io/09_pytorch_model_deployment/#1-getting-data" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "dm772wqgCzN9", + "outputId": "ca47901f-5786-4d76-d768-58ad8349704c" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "ChRaHUSJ8DYZ", - "outputId": "0a27f03f-33ea-4721-e4ec-858b8dc255b1" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "torch version: 1.12.1+cu113\n", - "torchvision version: 0.13.1+cu113\n" - ] - } - ], - "source": [ - "# For this notebook to run with updated APIs, we need torch 1.12+ and torchvision 0.13+\n", - "try:\n", - " import torch\n", - " import torchvision\n", - " assert int(torch.__version__.split(\".\")[1]) >= 12, \"torch version should be 1.12+\"\n", - " assert int(torchvision.__version__.split(\".\")[1]) >= 13, \"torchvision version should be 0.13+\"\n", - " print(f\"torch version: {torch.__version__}\")\n", - " print(f\"torchvision version: {torchvision.__version__}\")\n", - "except:\n", - " print(f\"[INFO] torch/torchvision versions not as required, installing nightly versions.\")\n", - " !pip3 install -U torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113\n", - " import torch\n", - " import torchvision\n", - " print(f\"torch version: {torch.__version__}\")\n", - " print(f\"torchvision version: {torchvision.__version__}\")\n" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "[INFO] data/pizza_steak_sushi_20_percent directory exists, skipping download.\n" + ] }, { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "id": "Y5H5P8EjCNGK" - }, - "outputs": [], - "source": [ - "# Continue with regular imports\n", - "import matplotlib.pyplot as plt\n", - "import torch\n", - "import torchvision\n", - "\n", - "from torch import nn\n", - "from torchvision import transforms\n", - "\n", - "# Try to get torchinfo, install it if it doesn't work\n", - "try:\n", - " from torchinfo import summary\n", - "except:\n", - " print(\"[INFO] Couldn't find torchinfo... installing it.\")\n", - " !pip install -q torchinfo\n", - " from torchinfo import summary\n", - "\n", - "# Try to import the going_modular directory, download it from GitHub if it doesn't work\n", - "try:\n", - " from going_modular.going_modular import data_setup, engine\n", - " from helper_functions import download_data, set_seeds, plot_loss_curves\n", - "except:\n", - " # Get the going_modular scripts\n", - " print(\"[INFO] Couldn't find going_modular or helper_functions scripts... downloading them from GitHub.\")\n", - " !git clone https://github.com/mrdbourke/pytorch-deep-learning\n", - " !mv pytorch-deep-learning/going_modular .\n", - " !mv pytorch-deep-learning/helper_functions.py . # get the helper_functions.py script\n", - " !rm -rf pytorch-deep-learning\n", - " from going_modular.going_modular import data_setup, engine\n", - " from helper_functions import download_data, set_seeds, plot_loss_curves" + "data": { + "text/plain": [ + "PosixPath('data/pizza_steak_sushi_20_percent')" ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Download pizza, steak, sushi images from GitHub\n", + "image_path = download_data(source=\"https://github.com/mrdbourke/pytorch-deep-learning/raw/main/data/pizza_steak_sushi_20_percent.zip\",\n", + " destination=\"pizza_steak_sushi_20_percent\")\n", + "image_path" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "r1ML2c-dCzCi" + }, + "outputs": [], + "source": [ + "# Setup directory paths to train and test images\n", + "train_dir = image_path / \"train\"\n", + "test_dir = image_path / \"test\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nNBZ_2h_Cy86" + }, + "source": [ + "### Preprocess data\n", + "\n", + "Turn images into tensors using same code as PyTorch Paper Replicating section 2.1 and 2.2: https://www.learnpytorch.io/08_pytorch_paper_replicating/#21-prepare-transforms-for-images" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "mU0T4gP3DJdF", + "outputId": "00d58b26-a6cb-4c3f-b774-2414c36bbce9" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 36 - }, - "id": "bE1AAH_uCjiP", - "outputId": "8337aa8d-9a46-41ad-9f96-658e857fcf57" - }, - "outputs": [ - { - "data": { - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "string" - }, - "text/plain": [ - "'cuda'" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", - "device" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Manually created transforms: Compose(\n", + " Resize(size=(224, 224), interpolation=bilinear, max_size=None, antialias=None)\n", + " ToTensor()\n", + ")\n" + ] + } + ], + "source": [ + "# Create image size (from Table 3 in the ViT paper) \n", + "IMG_SIZE = 224\n", + "\n", + "# Create transform pipeline manually\n", + "manual_transforms = transforms.Compose([\n", + " transforms.Resize((IMG_SIZE, IMG_SIZE)),\n", + " transforms.ToTensor(),\n", + "]) \n", + "print(f\"Manually created transforms: {manual_transforms}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "W4vWgIprDJau", + "outputId": "10423c3f-dc63-4e76-cd80-db5c6915662a" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "GmS5yuvxCpLp" - }, - "source": [ - "### Get data\n", - "\n", - "Want to download the data we've been using in PyTorch Model Deployment: https://www.learnpytorch.io/09_pytorch_model_deployment/#1-getting-data" + "data": { + "text/plain": [ + "(,\n", + " ,\n", + " ['pizza', 'steak', 'sushi'])" ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Set the batch size\n", + "BATCH_SIZE = 32 # this is lower than the ViT paper but it's because we're starting small\n", + "\n", + "# Create data loaders\n", + "train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(\n", + " train_dir=train_dir,\n", + " test_dir=test_dir,\n", + " transform=manual_transforms, # use manually created transforms\n", + " batch_size=BATCH_SIZE\n", + ")\n", + "\n", + "train_dataloader, test_dataloader, class_names" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "u7eLIFHyDJRr", + "outputId": "dfa3408c-0ef4-45ae-c5c7-88f8f92d0beb" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "dm772wqgCzN9", - "outputId": "ca47901f-5786-4d76-d768-58ad8349704c" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[INFO] data/pizza_steak_sushi_20_percent directory exists, skipping download.\n" - ] - }, - { - "data": { - "text/plain": [ - "PosixPath('data/pizza_steak_sushi_20_percent')" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Download pizza, steak, sushi images from GitHub\n", - "image_path = download_data(source=\"https://github.com/mrdbourke/pytorch-deep-learning/raw/main/data/pizza_steak_sushi_20_percent.zip\",\n", - " destination=\"pizza_steak_sushi_20_percent\")\n", - "image_path" + "data": { + "text/plain": [ + "(torch.Size([3, 224, 224]), tensor(2))" ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Get a batch of images\n", + "image_batch, label_batch = next(iter(train_dataloader))\n", + "\n", + "# Get a single image from the batch\n", + "image, label = image_batch[0], label_batch[0]\n", + "\n", + "# View the batch shapes\n", + "image.shape, label" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 264 }, + "id": "2yyNHCmCDbSR", + "outputId": "a3d16804-3449-4105-e7e6-7da79bc495c2" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "id": "r1ML2c-dCzCi" - }, - "outputs": [], - "source": [ - "# Setup directory paths to train and test images\n", - "train_dir = image_path / \"train\"\n", - "test_dir = image_path / \"test\"" + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAAD3CAYAAADmIkO7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9y68tS5Lm9TNz94hYj/0677yPzJvZlZldXY1KjegZgxYgITHgL2HADDHrQQ9g2mLAEAFCzZQBA6YwAKlBVTSFqKzMqsy8r/PaZ7/WKyLc3Ri4x1rrnHvOvamsouuW2Cade/feK1asCA97fPaZuS0xM+7lXu7l+yf6t30B93Iv9/J+uTfOe7mX76ncG+e93Mv3VO6N817u5Xsq98Z5L/fyPZV747yXe/meyr1x/v9AROSfish/+y2v/5mI/JN/jZd0L7+D+L/tC7iXv30xsz/6276Ge/mm3EfOe7mX76ncG+f3VETkPxGRL0XkTkT+XET+XRH5r0Tknx0d809E5Itve8/RKRsR+a/ra38mIv/W0ft+LSL/3r+mW7uX31HujfN7KCLyc+A/Av6xmZ0A/z7w67/me/5D4F8A58D/APwXf+MXfi9/o3JvnN9PSUAL/AMRCWb2azP71V/zPf+Lmf2PZpaA/wb44/9vLv1e/qbk3ji/h2JmvwT+Y+CfAi9F5F+IyEd/zfc8P/p5A3Qick8Ifo/l3ji/p2Jm/52Z/dvAjwAD/nNgDcyPDnv2O7znXv6Oyr1xfg9FRH4uIv+OiLTADtgCGfgT4D8QkQci8owSKb/rPffyd1TujfP7KS3wnwGvKXD0CfCfUnLFP6UQPf8T8N//Du+5l7+jIvebre/lXr6fch857+Vevqdyb5z3ci/fU7k3znu5l++p3BvnvdzL91S+tQg9vvo/rRBGBmaIUH4GrNr1RChN/xcz9B0C38zq64rIwR8YIPtjMmBHx5b3/fKXv+Kf//P/ktW256sXb3hxecuYDDPI03EYUi6OdwmunMvFqCoiQs6ZnPP++ElEBBEhxkhKqZxLlFwvUkQRNTqB85OOZ88ecXaxYO49foyQepwqH3/0MY8uHpKGEe88bdcRmhbnHOPYc31zzeXlJZvNhhQTmuBs1vL47ITT5YLQeNrFnMWDJdp6YhbuNltevblmveuJKXOzuuTu7o71uidlwUzxrkFEmHeO5WJR7i+DoDx68JDFcsny4pSmDbRdoJt1dO0MJw7LgCiWhZQSMQ5s1itevX7B9e0NGcF7D1Ke05h2DMMOUtECURABFcWpA4R+3DEOW8DIjIxk1uPA9XrN9d0t29UtYoYLDa06Tpxx7h2ddsTR2OVEnDvcaUBbEKe03YzGB/qbFfFujTqYnc1YLmbIX95h/8cb3KVnxJHEcJLIGE0Qlgvh4UXHgwdzFqctbetx3nCu6IFzioqgKvhmRrt8Qts4xn7FsL3Bhi3OEkJCDARfQpszJDQsz54wO3/Mpu8J7Qx8QxwHhtuvWciWPGaGYcTMmC/nqHOkNDKMIw/+2f/8tjJW+VbjPCi6VMMpFlX+mkGEd8+qoohMRnMwPhHB7J2jzTiY0sEoVXVvRFdXV6zXa5zv6IehGtXRcZaxbO81tsPn2lv/PnSvIrL/7OM7n34xg2TQD5Hb1Rp1hl/MkWwM/cDJconTwBgzs/mCxgfm8wVN0xblJnNycsrDh4+I44iKEsSxaDzLxtMGh3qHiaBBCW1A1HE6O+F8fsJ2GMgYr69PuF3dcn19x+3NClFP23QMw8gwbrh6/YpxjDx5/ISYjDdvXvPy5XPUOcBousCzp095cPGAk5MzFssl2jSIgleHuoaYGkITyCkyDBHpOtQp2RJxGIjjiJggTot2mJHNyKko4fXtDd4py8WMcRh5+eaKl9dXrIaRiCFEulbp5o5GPcTI6EAbITthzBAbxyCG5IyTxNhn2MC43hG3G4iRc8uc5Rm6dQxRSWIki4gYjReaLnB6OuPBxYzTk0A3U3yjuKA4l9HqlEWKgZpRnk2/xmuHOkG0eB+Req8iCA7EMMmoKilndrsNTh1BBfX1ee5axtUNaRjJlktwyomUE8M4VL14v3xH+9Y+rr1taQeNBnmf0ctb74ZDZMq5mnaNaO8a1bHknHl9ecm275n5jl0/kI29gTZNIJnR9/3euA6XZm8Z5vFnve8zVRXvPTHG/fumY6tPAoQE9ENmtd6hZGSz5aLrcE549OAxZ2cXLBZLum5O27Z0bUvjPN77/VI9knpNlnGAt4wn453gvAcVFMPVkDQLsGhbkiVSzpyfLNj2O66ubnjz+g3BBxaLE4ZhpB933NzeAMonn36CDw0xjmw2O/pdT9/vSHlkc3PD7eUbUMejJ0949vHHzGYzrMAERMF5xXIkjT1RwTlHJmFxRCxhVp6nTajKhKEvn9WEjpPFCednJ7x49YrnX/+K52+uGYDslLNTWD6ZcXYxR8yR1z1DTGRNZC9scy7Rc2f4IIhk4jgQ1wPsEmEwZgls2zO8ukOe74jbhCKoF+Yzx/m8ZXHWcXY2ZzH3tK3gg+CCoL4Ymuyf//TMi67HcUMK4IPinSOqQs5kEfAexCMYSEJEieNIXK9o2pZdijQ540NArKJOG9GivKRhV+wmRlKKH9T/bzVOEa1KVBSTSWGrsk6Kf6zq2UDt+BzyljGUH0uEmqRA2uK9zKxELjNijNxcX2MoQ0zElDk2+b7vyXzT2A6OIL9lZB8yVjh87nTcFA3MykUbBrncdzTodwM9GXc65+n5BY+ePOLRoycslkuatqObLwhNSxMavID3vkLrgz8TDCXjMByG6uRgCsRyWry2SULJQLmf2XzGOEbOZ0uWvuH25o65U85OlyTmnM06UOViuWBxeoKK0I8jQzRiHEhxwMzox5HVdsc47nj+9eeIOGazBfP5HPVK4z1d27DbbBj7HVFLtMiWyCljApYzIuW605jp+4GLi4f8+LOf0rUtwXtOTx7y2y9f8fLNBrIhXji/WPLpDx/gWyGOiV4d43aHCcSc6OPIJkeSCME5xhjpNzvCNrOMgWVyLHeZWT8wxCvYJTxKM/fMFoGL0xkXpzO6maNpHE0AHwwfAAdIjZp7jHTkgsXQPJLTiLYdGgIyegzDBY+bzfEa8JIZ+jUpRSxHHI5xt8I5j1PF6xwnQkyGYOQcMTMGKwZtUNHM++V3bny2apyT4ooZ9k5kteolpnx0MrZjg5qCraoejFu0Gujb0vc9L1+9QtTRD5GYMikfvPW0pJOh/3UaKibjVNUCU2Lk+HTlDjKCFM+6G/Fd4JPHT/jRkyc8fHjOfDkjdC2uCQTv8MHjvMOr4NShKvt/Mq2qGCrgpDzAkpMrqJBUcCJANU4p1yEp4/C0GmieeU5nc5wKIQRElPH0FLOMd56ZU9q2xeYzBlWwTI4jY4yMOTEajCmxvlvzy1/9Ja9fX/Hxp5/y+OljjMys67CzU1KCYRzphx0p15wfq884k1LCEjx+9IxnTz9iPltW43S0bcff//kf8ldffM1uvULV8ejhBU8ePybRsxsiahuUTOp7yIk8DiX/rzl1Gg2/dZzvAmeDYzYI8x0s+oT4RGg9s7OW5aLj5HTG2fmc+axBnUGOOMngMmjhKIriHBzxpMMltQGRTLJINJDQom1CRqWbL2lPzskxkfoVKSdSGmlConFGHCNpt2PdD6R+iVpxhGLFiZW1Mpx6MkLOv2/kREFK/iU2RcujPPLoyBJgJjh7BAWNo0h1OObYkA5/O/xuZqzXa77++jnqAtvV9si3MS3ne881QdrjHPJDOenxz9P/j6P62+tRoGbrPF4S3gpBNJeMG3a4IdC2geAavAPRjHMZ70K9lmqYWj4rDpEYI20X8MEjgIor66c1xAoIDqkIRcxAE03jsZRw6lh0HSqU3JtMtkwaRtI4YNsNzjJN19GpQ0yJQFJBuznmPH1ObNqWze0d/XrLom1oVLlbr9ntthiCbwK+aWlnC8bYl+iZE+M4sl6vsGw8OH/Is6efMJ8vAcc4RMgZxLg4P2XWBW63GSSR04CaYhKwnBAVZsuO5B0pbZCeAutNYGeEnXHaO56slUVvOINWlHnnaReOxfmC0/M5y3nDbNbQLjvcLOBx5DRg/QbyQJYDuWmWK5tVkRVK8V8ZI5MskzDm8yXBB4b1CgkzmvaEyI7d3TVpHJEcScOGESPGkTSMmI6ICI0r56MSmLkaRcwZEY/qh9O6b4+cFYIKhjgBc/vouCeGjn/mAHnLJRRzOuSD8t7oVs4p08eV6GvG68s3vHz1GhcWbHfXII5KQZbPqpAT6gJMELp+RGgCOeeSk07XCgUq1vxi8puqhWk0sz3BVK6nsnmitKFEqacPH+KJXL/4gudffckPugYXewKZZRfw1uJJZd2sREfnBHXy1sMwMWzqTRdFtEBaQfckxbEj3P9zrqytJnzwxQByWRfNGUsJnCc5Txx6JBn0IzJGLEUYeiRnZqeKbzt2pjiUj54+pXGBk7NzZosZs64hNA03d3e8eHnJ1c0NXTdjeXrKxYNzlos5282WV/actp3x7OlHzLoZgpJTIkvGsuCdMG63BSaqYUTWqzWf//Y522HDZrejCcr5yYImNLRzo7PMsBuwTYIUWQzCRS+cDrAwwXWB0DlOZi2nZx3LsznzeaD1inNgLpOdENo5khuiF3IvWOzrOk56Ijjn9pxAcTpTlPCgLS7MChrc7RD1IK7k26muu6WSKpQTQE5gkTwOoAFQxpSK0ZshOHwT6LoFw/h7Rk40I9N11v8e8rYpB52M9VDWQEpZZP/7BCUo0fj98NOhVlg8o9zzF1++4Pp2x+J0yTiO5Mru7gFwVV7LxTs4LV4wYeRsDON4xNIWSHogeA75csk9ysPKseRT2HTHRvCOZ08e86OPP+IHDx5xvpzzm9/8itcvPufzyzta/4J/+Pic1hJx5mjnLUaHAkGlUO5yiOZQbL5rW6hlFq1M4PExUwQ/9q0lLbCiBM6VqOqFnFN5FCkjCriEcxENc8hFMSRvcZbxIqScYLvDh4Yggsc4WcwQe0BQj0Nw8zlNE1i0LZphu17xxeef08zm/IH7Oacn5zy4WDBr5zhRZm1H4zxOhShCNEjJsPWOl7/4LXa7I4gjJfjq+S2vbtZITuRxxDnlxXzDybLj4mTGfDknd45t3uKvRh7sHA/GhlmrNF5YzDwnJx2LRcds4Wk6xYVMloQJaMrIKOTQ0TQN6oVejbTJ+BxRrDpBhwstoW1JuURTVS1sa3dKCAuUUIgwjHHcsNsIcbsijStyKqUVy4ls/R5lYiM57ogekigpU/Lt6dk3HV23IOXd72ecMrnu9248qoqeD5FsXwsVatnkbbh58Fbv5oclOk+1zowxjiNffPk1MRVvsze0vbrae85TzlReLfh/D3H3l2gYtq+RTtHIzEg5MuZYcqrJQIAnDx/wj//RH/PDjz9m3ni2d2vuNlsijpRHfv3ykiUj7dxzHh9iyZAsb6GFY/Qy1Vx1YkYr5N3nlO8ggONUQLTAr6lcrPU40coJoOX/Koh3iDeoXlvNo2lEx4EowjAOrK+ukVlHaBpO2pbWN+RojDmRJdE2AVkuy/NUR2jnvLp8wy//4hfcre74yWefsZgV4kOdK0SWOBp1DFlrlNxw9eVLTgbBi+NGYOgzSSB4gSwMY2Qzrln1O/p+x2wRUC8sxdP6wIlXTnxgGTxdUOZzz+ykpZl7fBBUa0A49mRpJA1bzBfU4kPAvEPGiCKI8+BcYV5dAEtgwmy2ZH76kKbtiHFk2K4h9ahAGnv6NBB3G3Is+bFZnnw5KlJjlSFxICVX0zmHkfbGOfRbhnFkGBPn7zMvftdSih5yzv29T8qj5UXZs7olth0YWPnG+b7JnBrZMpAQKznuar3miy++RNUxjAPjOJZz2+Ece8OUClMq0ZRyqvT1AYK/1Qv1Vn32QGpNOW2uUU4xuibw408/5tMfPONk0WIxcbfZcL3eMKAIntWQ+OLqhidPHhDCnCANDo9Y8WwFNBZjPMDTKU/n4CHq9XyT4T78rCIojsk6BamooF69qzRdLvU0PKirBptCUUTxeEDYEuOIGwa6tsXalqielGEXB662K4ZhxKmyWMx55hyz2YyL83P+/C/+gj/90z/h5csX/OwPfsrDiwuW3QJtFacQEJwPRFXWogSnnGRHMybWKoyuXF6uUN5EyAZ9FK7utqy26wJ1Xcdy3tCqx2WHE6FrlFmnhCZjMmBZsClFV6mRy0hjQgRGB6FtcM4hTYNZwmFkH/BNg6hnHDMxG8552mZBNztjHLdsNtds7t4QMCRlUr9lHHskj0hNXTJTD0AqiVI+qKqlEXGuPujSA5DTSB9HKgX4Qev7jpxTjwzu4J2ZTjkFsKLR7DGwyZ6NneRQdvkmMbOvL9UbzWbc3q54/eYS0FIyqXh9OnKKMHmKjLXsgB7IcUVKwbhG7XcJpf0tmKHegxlDmiBvQkV4+OCcH336CSeLGd4Ju93IerOmH4aDkQv0OZLV4ZoZ3s9QLcypTO0z9XpVFJ3CXv1ddDLGQyowQfBp9ffFcg4pxgFJTChHyPtnlUuOnnM9nyJOsVoOck2HxwgYcRyQvse3Lc4rWRw4cLsC89UrjXNY2yJSuoV22w2bfsvVm9f82Z/1PHv8hE8++oRHDx4iC8GHyjo7x/zhGR/95EfcfvUK6UfaCGM0YhIkKJnS3GAIkpSk5S5jSmADEjzaKjmVFKlV6DTRWCJEEKcgWvx21j1vAUBScgrk7BDnkNBgcUAE3GzJ8vSMNEY2qzsUxauSU/l9s7liffcS0g4XAs4cpAxphFyCxfTY9qTpVL4zIZFwMaHqEHHkPBJtLHm/HJobPiTf3iFUFU9MOC6c7JXt+DiFqddNaw3Harg1s33ONREuVKPYR4X9/4oDuFuvuLtboc6x7Uecc1Db6spi2H79j53AcXODOkcIgZQzMUZMiod9GwqXay7Q0qE6FgKFUpi+OD/j4uIM75UYC1kwDCOWEkEMr4lTr3z65DE//tEPmS0WEDymxTAdiokeMdnlI7WyscLk0yaHJ3sfV1Cv7BVtX3/NhwMEQF0l0aDkIAUqlPrj9KlWFEeFbLUjRii5V4pYJWtKDbBUHWoSVvJI72lyppnKRD/5jAcPz7m+ueHNmytWdzf89jcjMY18HD4mdC1SC8PNYsbHf/ATfv1//Tm3mx1NMkKCnAzJpatMyaVGngFTJiywMmPIPVs1zoJj6zzZBTDBG7RJ9mu01y0pXAHi6hoY2jSoD2QRrPf4tuH0ySe0bcP69oami+XWLbFZXcH2jhR3MGwhl54mgitkIpArMz6VC6dSI9PzNMAyKSaq3yemjFiGXNKcdxtn3pXvKKXInsjZs6LH+d50XHUfplqhpFSoW436qJZUygQH4zwus0xB2gzW6zXjEGnajuvbFSKCc0qKNcd9J6edmhb2SmzgVemaljGl6oW/SURNddcYI14dTpSkWul0Y4wjQ+wZ80CKgpmj3/XkONKQuJh5fvrkMf/mT3/KJ08e4xuPBU9WRQ2kklVqQC75rqhh+QjSUlGqlGgvyj4q7psijkpE0/2WaFqvdY/wp9zzgOSn1RdJICU/StNH59Lq5h17RZ7y/5xGyBmnQuM9WUozhXdK4x2LecuTB+fsPnrG7d2Gl68v+frrL1meLOkWCxrKGrjWs7w44/wHT1ld3dCMPU2GlK3Wy+v1WiFksjmcaXEQlhly5jrt2HnY4ImuRUNLl5Q2QrBcoKRUtdDiwIxc2gybxHK2YHn2gPXtNXG7xTUds9MHpDHSj9c0bQexZ7fZ0m9XqEQa7/A5k5ORJKNayKYS6aXqenmQbxGM1IhoQo5GTsVp5JwhWa0yVNT4+8JaObaYt0yhaPWRgz9EgcnTT6H++LP35ypIfbLzyYjJ5eCcMq9evCLGyGLRMI6RcYyF8WJS4EJl7ymiY9IEKukDMcWjBvny32lx3moyqOSXq9EukrGcef7iOb/5zW9ZzDsaNyNTujqCCMtZ4A+fPeAf/fjHPH34mOAC0aR2SJVIRcpI0ulpVKMrxXBBEHOVfRUKazStg9U1ntarLFd+50EYB6dTwLsWZZ+aP2xak+rOrXpvjJRH0tjjrNb1UiSnVBBPTrTeE5uJzKp4mIxzQtOEvdF2bYtzniGOvLl6w8tXzzk5PcWFOd551ISu6/jJP/hpIVC++IIY1yQp5FuSg75YNkgZn12tc1KbTjI7s8KZ5kjjI+fNkrlQk9dSszRAs2DV0YBh40hKmbOHj3Di2N5cs+0jV69e0jYtjVdivyH2a9K4w1IPGiEFiFYqIyScL0giWwWJqepvdbI2caPVwZW/lUhpuTqMzN6RlJbBD5rfd0XOQ1p5UIZ3Xn+HmGHPVk0HV+vc/2FSsWIdWo3CMgV2ZqPvB7744otaHkgM40iq0UGtdhbJN69uXzap5ZIhJcbtdg9FDkRM0YTJb5So7Cr7TH3Ihehab7ZcXd8WRO0KFlyeLlnOWp62LT998ojHrcdrKp8dMzaMBZ55IaPIKLV26jCVwuQ6Sn6s1fgMBCXXXGS6OzmyximSTr+nVEmQfRZKhcWHRMjq2heDFZwpYolsiZQjMQ7kOJJ3AcIMwxfomyPzWYc2DSbF4K0y52aH/H9fB3aOedfx+OEFu82GYbtBujl4VzqJVHn240+Zny85/cuHvLx+zevVNZebW262G4bpWqcyUTbMFd3KZgWBZCOT2ERjE4WBkSS+NDbmCm21ODlB0Kkjp++5vbpkdXNDzpkQZozDitXlV+SuRcTYre+IwxZfyc8chSEWw8qZUvLJCaU4rpwykgVyyXXtKJUoel16j9VcQTZJsFzy5ikDNMu/f+Q8znUm5T/kMB96y9s4eiJcSmR1JWow1fSOPkMzZmWL1mq15je/+Rwo/ZoxpWLw2UCmftd8hIUPeeTxtU55qX7APb27c2XaCbOHk4B3jtOz01orK4t7dnbGw4tH5JvX3LzZcKMtZ5ZwaYenh3FF0oC1c1LXQRtxOeDEVWLGoV4xFUxTJbMKDJoazxFXclVkv+ai071NOWR1bjVdKO10qeak77DVxj4dtYr9RD3qArEfiP2ImyVIk9E5fONZiicBu74vhlz7m1UUXPlkHSON95ydntK2Ldu+x0mFyWo1UmfaNvDk2RMePnrIut/y8s0r/p9f/5L/+y9+wbBaFyWXKcJYIbAm4stKNPQZZsFz2jQ0KqUtzqQSXZnSHFCfrdYe7jiyu7vl61//iq6ZQU44hXG34npzhWBohe/eBwwhpeIIsEI6kqidZnU57Sgq7j1/QRnZconc6kpXUNWrnA1LVkNTJR3d77kr5d22uHd3a7x7zDcVv0ao6Y6k1uH2dRmpMCEXpaVAk9Vqw9XVNc419P1IStPd70PBPlf8Lnn3uo+v/d17zbm2V03vwWhCw8nipEKTCAZN0/D4o4+4zpHXEbpdYuCO07HH2YCqshszYXZKc3KKLDrEN6g2oI7sG1II4BRzuu/n3dc6pXYHySE6iZSIq7XdbE+q1UcttWEhW2aCLjYVvTlEozzleSaoBlwzw4YRE0XVY+oQp6hTnDjQUNdGGMeE5YTzjuAdokKMpXanKWHSgwiLxYLV3YrddlPyeBcoxf3StaXLJZ0tmZ3NkdZxeXXF3XpDrDXzvfJX5GX18hWlRViqZymOphomuUSlKcmuYBYohgoR2264ffWCOF/SNg1qGbGIpR7LZTeLmBJ3Bd6nnMvprGygwIyU0h6FVYRfHMk+wMg+iooVss2q8VrK9WcpKGAikuTD00t/p8g55Up7IHmUb75rCN9yshoVyoIfYcqaSBXq31JivdnS9yNN03Kz2tZ+xEJ+TG/Mb8HktyPnu8Z4/Pr75LicY1jhs+oWIR982ZoWE84ywQesDZw/ecTp+QmBRJ9G3qxX3Nyt2AyXPFl2yDgguxV5fUk4OUebFlMPTUvuZuS2Q0JTlF8d2VWqfzJUibXhoDK0tVRiEwW/p6qpxjqVZ4qxTBouxoHiz6k6mQrRcsaJwzsPLqDqSKI4H3DBYeoxlJyha9mjChMlBE8pBdXN6TIyukTf9/Qx8ubqiqs3N3z80ccs5gt2ux1tG2i6ptSRVZjP5jx59JiHDx7wq99+jlnCsiBO9gRKzlWpAYdyoo6HruHUlFCddkolQuepE5LKhtd8FUuQBxJKFMUJeDdZckaq040RckUvJQIalOBYWJKYyH5a2uoArcJ9ivOw6li1pmg2RcsaOcllX3NBv6XF8UPyO0XOY2g6/f1DRfJ31P6IaoZ9/JcDVAMKU1mVCBJvLq/oh0g7m7Pd3XBgZg+NC9/mB9411Pe99u5177eYUUy01Ma19HqGpuwccTViIHB6QggXqBrDdkMfZozXymZ9g9nIhSbaoSfeXiHrNdq2JBHMOWQ2xy9P0dkCDR34hqwefEB8wLyHKZLWbiKsGqgrCnAwTpluoPg5OTDWitbIYqXfdmrxy6XHNtd/WtfTq5SIWSMnrtQgY8wEr8xmHQgMMRYFdAr4Uq6yjK9tiGOODGPkzZtrFidnoI6+73HBESvhE0LdpUOZvjBRe9kMNSPXvaI5l10cKtBkY4lwjuPElKZGoD1BU9Vkny6ZFKbUMk7Bcs82W+kM6loEB2hxBFbSgVwbPAQ5wFZKAMkpYa5cV5r6amtUpR5vqpALu1sQTSLGuHcyVO6KGmHftxtrku/cMnbcPLCPlxPNX5XiYMRHEXH/fvavTXpk+79P6bDsIW7Kma+fP2eMiRal3w3s60jYN6Icpm8Z4Yccxfui6bE45w6NDvX+nAiL5aKOGmkIbcA7h69N8IIUjqgxtmeKNi3puuP1+pZx7DFG/Lhh2O7IbcPUw2EuoCenuNMzbNYRcWQX8LMl2s6w0JBCU6KpyL7dT0SwGlkLwrdSrqn3pwJJxhI5SoNtaXIwkJhqZCqEhqWhtJ/1OySOuOTqvlNXfWGu/aK5KKWVup73WrbtWWaabOGdw6nDubJhvR8GYs7MFgva2RwXWuahIbQN2QRnhkMYx4GrqyvevHlDypm8pxBqulNhuAp4J3hLdMkzT0ZDoR1yBVP5WI2OlMxwpafVDHIk57IVUbwj4ABXcsFqZLkatoq+BcDjXswAACAASURBVFktF+7D5anbpw4OSAVaixxH6bQPPoYijBiZHDM5JiSD05JDf6A3tqzrB1+BA5lAvdsJQtUkwGQyhhpR9yzouwZScykOtaBy/DFxVLxI3w88f/mywoZMiuMeYtp+1dl/zje6ZN795Pfkxsetg8dkECI4KSWUEvWFtm1omoaua0v5YM/qZqzmW13T4sQTXUePEpuGly92jNst51mYxVKiwBXoE4YtcbtF0hYdFgz9SM7gTs/Is44xBJgv0WaGFy2tf86BKx03qr7mQ1P+WDZri5a9iFOemivz7LR0CuU0lvfkjOYBG3bkfguxB+3JwwmOGUmaEhBy2fMZU4GXZT9tIXdyrj8bJe+sho0ql1dXbPodP/jBR8yXc9quxUntu1VPwEgxcnu34vPPv+TN5TXJSvbspExgcMFAIo2HWdsiKrT9yBLHIjtUIFZDClI3O9jUqGY4KJbrSiup5Fp/BOJuR3YKTVnHQkTWYlMqG+CNXDdaCPtG5jTVKaWuf65OqsBh5IAQteoIacTq/tyyqSIhuZRnSu/I7wtr85ECT4o+GV9lTY8h5mED9CGKvW0vU+0J9pk/HHIkYL3Z8Pr16/3IEKt7MQ+2tY+15Zpq69vUGbQ/6lsi6P5qjuD5PqeWI1gEBfY5ITSh/PMBgHEcMSjwRpXQeLwvYSx1nu3uli9ur9mkzJMgzICUM0GE+ZBJaYPvoNVM3A3EmPA6ImNgdALDgqabQxI0Gz4EcK602FH3cprhRchDTxx6XNviZrMyHkNgt90Rs9HM54XMiKUXVM2wscf6HZojSRKjj+h4i49zzC1IBilGxpQYc0E0qeZfE6NsueSh2VLZEpeVmCK//fJLXNPStt2e4PLB1/lSCpYYhoHLN1c8//pr+t0OLIMavnEsT1qaTjHryxwg59GYObWGCwkEEVLtIXIGpIqKbGKTCkrLFeaXrXv1uScj77Y4p4i2OINUqMjCCOdEzpCql5s2FkwhYKwQOzJB15oKWXlOU33ZYN/I4jWVWUs51/LgFI0nLX6/fKtx5mm+yaTQe8UW9pX8otkHKMHxD6WZeW+EcriQ450ih/cIN9e3XF3dEJqWfhhIORWvxLvQdOprLb2epTGebxjqu3D22CAnqHg8mW/PLmOoCl3b0XhP07iSU5VhAninJEoekQSSlht1jUfCnPDwMdvdjq9evSCNA49RXDRyTtiYiG3CbCDYBl041Af6znAhI05wzQ5xGRc8NiayOJx4lAGXtRQ5U4ncLkZSvyHToe2Id3NUHRYGANowkH3GmgLV01C6ntTFMiMnePJZi7RGsjWWU2kOiCPjmOkj1ft7wCPqytQ+mdbzkOPHGHn9+pLF8oKhT5Q20tJP7H2B2BNc9c5zfnpG1wQ0bggeZnPl/MGMiwcniCaG3YbU98x28MQcJxHEIkkLNBYzxpJd4/NBk6ICXgsTW4v/Wst4No7Y0KNtwImU+RYmNSc3RoxkECikk+TSWpgDuFCmEOaUSWNGcm1BBKYdQVC25FkuddeYDbWSd2ZyyetDmZTxoY398J2wNleFPnA5+g6JcugZnaCrcLxdTI7zvAkmy3TuAySG8tBeX77mbnWHDx03dxNTe3jb3h9Mp7FD2x4ccuTjaQjvyzXfjaCFeEg1Ly4R/2S55NNPP2bWNXjV/bYv1cIcizlMEqlOi/BSuNWIo12e0T1L3Bq8+PpLZJdYWsINIw7oZ46xE+zE8HNHWJRpd13wzEKga5tCLuDw1mC5GHDWkicF58ugrVT2Z4Z4UqbjzWbQNPgQ8LasnttVmJbK84iBbuwKRKOwo9J5rGnIPpN1h7NM1kjGKLX4CuelGKmolnxQC0+ZJnbVMrvdjmG4od+NZXCa8zhXWItciSlDOJkv+ezTH3J185rtl1t6P7JYKIul4+S8pWkcd7eJcWuczJTlDpqbAR0TCRgWDYMKQ4o0CCEbasUAold855itBUm5RjHdd6PF7UBsExI8yQQXQbIRzRi9Yo1DxoyMCYmZrIaZx2WP4LHsIHuIGcm56OJR33LOh9RpzBmnhqnhvKeddTRdi2/8vnb9PvlOtvYt5bYpz7Z6Ad9kRPf7No8i9lFFZp+xTz23h4TbGMfIixevGIbIfOnZ9X3d4ioHFHyUBk/Xctzs/l2E0PteTykdaHspUNmp8uzpE37w9Cld2+BEaNuWVPOJHCPmhZwKG9d6R6sOM2UdB9R5Qrdg9vAJV1fXvHj9mqyZMIyIF3bOM3aO1IBrMk1rdF1mcInBQWwDjVOSOjoJoB6nAXWOrJ7sPU4WaM1/fO0qyt6j6nCVsJocGDkh1oNlPKHQ/pmjUk1pjUNiyZfIZJcxBXFl4mCqqMJwpUhvkGtEGPrIdteTUubi4gFv3tyV+Ti5Np6LkOJYZvVWg22bjkcXD/ijv/8zUjfyYvMK30LTKsO4IWYQNdpFiw8Nts1YhHTb03thmHuGuceS4lPGJ8ObEHNmPW7o1PjEuX3QkFwaIhQt3UN9qjl8WYs0GoOTkvM3rswQijVJU4XgsDYQQ4cs5hAzeRwZdjvyMGDDgMSMyzV12NNbGd84mjDHBU/TNeX5lJ0HH5TfrUNosqmaYx7X2A6EzMTo1qRtT9y+jxyqEfOd6Jli5MXzF8SUGGJk0/ekdwz5OAZOxjgNgX7L8H4HQy23+DbkNSjFZTGapqFtAt5p2WdqieA8wQeSKsMwoALr9YoutMwXJ+AVyaWNT0RouzmyPOXq669p1ZhRal+bFElSpjcEA1+ZvIQxSEaHHeatTMrwDicQankjaSETSuOBlDplZXFdxRRTb6nW0Ss5gUt1npKWTQRTH3S22rNqBydXCxs4l2hbIVkm9hEzIZkRkzIipNr3vN72bPuyjerRo4fc3NwQxy2bzS1NEGIIWM5lMl0IZb5ryiy6GU8ePuDp+gG3L67Al+vud1tQCKEhhEBslFWMuAC7xrP1cJ0jPYZzlHTBIs5K+rQZek5EOZWOk85jQ3kmLk+6auQ4Eq00gkTqTOKmIZ+c0MyXpZGgGrSI4IJDZx0ym+FcUxoXcsbGgd3tDcNXz0lvbnEpE7Q8Wx/KZIxm5iuhqAUa6wFtfki+s/H9+L2FuHkbIu6Z133SXBNzvpnqHpjdiYSRw84KjO1ux/MXLxCKwQ2VdHn3HO8a1nsZ2f11HWAuHEZ/vLW1rHZ9kFLp46RA7C+/+pJf/PKMZfeHtO4UTWUvh3BweGbG6u6OLRvmbUcW6NOIC46ZtUjTkn7wEW8uX7G+fk2yEqFvdhn6ls4cbRaIEYmAKyy4k4Qw1m1ssY5adIgDySPjOKIieHXgZwTnC9VJLPlVbWBwEkuZSEBxmEG0SlS4qftman+Tyh8UpjLmRM5DmaIAqHjG3BPHzJAcY6ZsSIiJcRgKmxsTm80aJNKPa/phzWajDBpQUebz+V4FvHO4JtDEhq4NWI7stj1jGnBN6VSKCWI03FiYVN96LArXY8/VdiQnXxxWTozjQI6RRhRi2TS/XQROujlx3TOudjSFdyqteWOPzw4LDmYtbrnEn85J56eE7qxMTHQFHZU6t1YmuaQYKo7gHF6M7uKULcY6J1w/0onQhdKs4dqABEG8lmckk969S5i+Ld9hnMXo9op+pPVy4EvfMYf9kd+QfX2y9naW8Q55b3B3tze8uXxD8E1R/2lr4rfcwPs6gd412g8dvy85iNS9nlU5TUgoL69W/G//+79i0XZ0f/Qz5jkza1uSWhkunErNbNv3aDbW/Rr1Dp3yvFCY3YsHF+TPPuPq10a/WrGLO27WieZqxJ8Z3hnZFCNguey2SZrI6khWao3JMgOprEmMiGVa9eAdYxLEt3WieEEZ2UpErSAOdYqRy678PJZcckI7YlDZxInZL3XBsqvGciooxxJxMMYkZMq0QKdKJtM0DZnMm2HD1fUV6A78jiGv6ccO8w1x2CJqzBZtcQBqpX9YW7wLeBFIRhozqCOOER0TTZNpQiABd0Q2acPtesOQFDRQAESJnE0j5EZpFzOi83zdDOwa5YF3dOLw2wRDLsNGVVl2J7iTE7IP5OCRoCUXDAGRQv6I1rEwnpKfO8NpGbepUnjj7B3+0UPmKM22Z5Z2eNuVcknlMaaRqFarFqUJ4fdkaydjPOR4RzmbHUfCSepHv6em+B4rKcZ59B0pr19f8ubqTd1gPezPWHYdHMZbqioppXdm375N8Lz7+3H+/BZZRKk1iVC2bMU6diKX6Hl9t+Zf/sm/IgTHH3z2KXaSmdX6WMyJm+vXxGGHqnJ3d0fTNjjfENTtpzq4pmH59AmmsL685PbyFbeba/RqS3vRoq7BOyE1gew9loQoRuMVrLTPRTF8MqJAUC0lAStkjKjHKNBTzUpNcd8kX3JyJ0LpfDHUuQPDSq2HWqo7Jay+91BDzRXSm2VSNmJUkpT8GoSmbfFZGdKOm5sb7lZ3nD1cosHYjbfMZgtwLWaZ3XbLOOwQr/v2tiwZ8Y6260hSZguNKWEqqAuMY2Kz3jEMEbLSb0bWq0jOgkimmcNsUaarnzxY0DaOxjsUeLnbcjeOxPkZj847nDO42eG1Zf70GWeffMIQPLfDQFYwaokq57rjvPQzO1dgfsqx6C1WEEgGpFzn/PyUZTvHr7bo6grrr7E8Flup0yXrkIeK3PJfYzTmkXK//Ye9fR1+oVDmZt+MWG/tFDk6lXAYKZJy5sXLF6zXG0J7wnazPvrqhbev4zgyOudKDe89zOyHCKDD5xfDpE4qcHVsxLSjBRFSNr588Zr/9V/+KdvNmh998hEfPXtC65Xdbsvd9SU27oiu4eb2hrZtWSxOyoBnLYV37wJhsWQmhi5mxJM5d88DL29f4V+s6eaepo0MfU9wimnx2jErYyowzAmMKaNiqCrBF5ioWr4aoGwRMYzyBlGpDd3l+1FsGgNS+1r3vZ97ZFJnQR1t9EZqH28uf3MKXVPGPObco9oVp5BKS9+23/Hi1UvOz8/5ez/7DHNrrrevaGbKxfkp3lpiH+m3W3yrdUQpxBwxhXbWQRBu1nes1mva2YymFXbDwGa1IY1CToHdRuh3HrOED4nTxYyLRwviuEOdsZi1KEbKCT/r6AV+s1txO3oe0/L49Jxnz35I9/Qxvffc7TbsSuMeiNXGhKkDzUCMlEGImA3lqxXqvtiiY6UfuW+VrmtJESwNkHcw5DoetehankbAfhck5Hds35sM4X1/f9tup/riN7H02+epRlB7PYHatveCMUZmi8BuGL7hFD4EU99laadB0t92/RMRInrIOaXmv9OG5LJxGWI2blZrfvGrv+SLL77gH/7RH/Lo4ozt6obNalWMOEW2u4yo0sRIrqygZcOZEZwnLxaIU+bJ8JfXbFeZ12xZnrb4tkPoEdOyd9gEUU925Yt9MqVe5oHGhepQSlnDkFoLlgKzMmTJpW/VEpmEE62DwahoqDIEdnheWo2FWu8t3F/Z21qMU5nPAhllvYmYJMZojDGz3g589fVLQPjZz/+Qi8fnXN7+mpE1L69/w8XFA4KcYUDfb+vul/INZ0PsuVvdcbNaldm+LuBDoGkbvC+9u7NuxijG7W1k15d7dCrMu8BZO6eJDp9CmdkjmYfnpyzncyzBV9eXXPUrnm83SAj8+LPPWD7+mFVK9CkSzepU/tJt67RwIDlXonEiy6TsL1ZLVUdSRX5FT7ZuIGmZFuh8i2s6XIookTL86219lAp3PyTfaZzvi1zHpzy8PkHcKa/85nvK8dPJqLOGStNxHBOXl1fVIIShzqmdGprfZ5jHBjgZaNu25JzZbDbvjeBTJ5DlUnNaLBfElNjudrUBe/osw1GGfHVtYQzv1htevHzJarvlR598xOliRnCGE8Hq9x72w4Afek7kgArIBb4E53GhYyMb4i5C8ozbzO3VwNnFnCZ4Yq7fFTLWtkUTnPPEXPpao2XG+m1VWWVf5DaxysD6anhvc/TZDLOR0m2q+1a28s1ZWtrnbNppKPudQAUul2FdqoJzwmIWyDmx7QdSMobRcXl1wy9+9Vc8e/YDHj9+Rmg8TegwMje7FX/1xS95dvIZjSxwMWBDxjeZHI27uzuur2+4u1mX/HXRcXZ2TrfocMHRtB6bJ8bRMFkxjHfEPrJsAz+4OOWzB094+vARJ/N53Q+feXC65OL0hCYrf/rLP+fPtn/FVnqyOmaPH9O3gbQpA7idlBbBNvhSkhLIvvRa59qTjEVK26JgVhr8xKa1MiRHzCIqZWO5OkfXtIS4Q/JY1/ZgPTLt9vjrGOeHlPubr32DyP2gHOqVtq9B9WPP5dVV2aCa68yfydjtXY9zDJO/+aHHfz9+fc/Q1kjhtHyD1DiO5Bjr9y4WNk3NaL3y0bMn/L2f/ITlvGOz2/CLv/glL15fcbfZ8fHTx/zg6UNmjS/dOmKIRoZxLFukug4VJbnigCQXGkWhfKOWCY6G25uRy5db2naGc4bIDpOA8w4dDdkkUghY0wBtgcxB93xZUY4yDLkMtSrDyHBle1RZ7pIz7eFVJYOmmpfUh7ifHifT3sTSCIG4MkWO8r0uQY1V2jKOsB2UL77+GnCcnD4k+FldvxmIJ1rm8vYNklou5o/I+ZSgiprQrwZur2/p/Iyz0we8ub1ms+nJKkgjeBNC4zh/cE7jG07OOk5OhXHV82B+wh98/Bk//+hHPDq7YN4u6BqPiuHVcGT86PjZRz/h8y+/5uryFfOPH9C2gd24I1kxqBCEpnGlM8uXaG1a9aWlNE1YBInEcWTse8ixRNIcy+rWkl7SVFKSlMq4FakE7Xvt428Y1h5Y2vcf913nOjQ0lPPlmlxfX99yeXmJ9+U7NqZBXt/V3XOcZ04Rs8BVfesz3yq3VGVMKXF7c0vMaV8rxXkUo/XCT374CX/8b/wRjx9ckC3x1YsXJaKoZ7Xt+cvPv2K1XvPo4ozz0yVd26G+wKHbu1vaoa+DjAtG9AaaKF8iZImYExKVu+uRIb6hm3c8beYMOpauIwO6tuw/VGXIEY2QN0aOkUXb4r3itMBXi7bPaYTyfSjBe7ybGg2oX4w05VOlnjkRPxMnMFFFZnXkTK4jNbWudy5fxzcOG7bbyJfPVzx/+YqnH/2E+fKUYYio5PqFvoGclXXcQC5zoWZuhw8OUYPR6McBFUfrWyyV8TKJDevdHeqNbhaAyMliwWwh/HB2QZMcz5aP+OGjT3i6OGfZzMsXJwVf431htNGG/5e1N32SI0my/H52+RFH3rgKha6rp3uGs+R+GNldCvmB/z4pQnJI7sxy2Wd11wlkAplxu7td/KDmEZGJzO7qmnWRqgQScYeZqerTp++dnp7z6y//jtWHBVfzE1xG5kR0RjvQRpENUEoIMZCSSSXIqDImphTSpzUVKQyQA7nYN8iYoazFSCYAPglYoLRCFaUGQW31vRbkU9dP0BAaScV53A0P9mY+unV6cO/7iO6IzN5/AOmxfXh/x3a9xZqKbe/30+cFYTocDupoioTxsDigkiELlephhN0/W+ndjkhtTHE/rkQGlSJ1rfn1V2/4d//wD1xdXDGZNIQ0sF5vWC2XhFTSaGPYbAa69Vs+NDdcXl1ycXWJrWpsigxDTwwBZQv1TxlUkj7jpKqorZX6qaTx735cM5k5pidaeKMqobQvm8SUdk8iK4VJBuXlQIpGDHsMsrCdLXOVQehyqqkxRtKokISYYMZvIYOYVY2orFDdxokTSWgzUSmSGgWUE0ZlapPww5Y/fv017z50vPqiRjlNJJC1IecKQ0ttG7ZxTa82rLQht+B0he8CGkuuMsH3aJWYtBU2aPrgGXwiaeh6T+8XnMwHWmdpkuLy7Blvzl7yYnrOSXOytxvUuuicowUEMzCNjr9/9Sn1P/ZMpzOcziQdCYjyIEVORcsoC2NZJnW4QnjkmpxlTTlnCUoLAwoZWgdw2qGUE5V3U6PcVHjUuUeqWfnAR6T2sD8ev366NObRljsubA/X08BRPkCCRz/ZP3bOiQ/vP9B1PVU9o19uJUU8qltH86Fjz03JeMfGXNmMuQzs3n+qxyO7kro3kVFJlUpNcXF6xq9/9XdcnF8wbae0bcVy2RO9x5Zh5E/f/ILP37zhZDph6He8/eFblusl3FmUFRZMzgpPwiY5KV3ZESknptMJZ6czrj/cEQchmn+4XjE/syjX0CgDKiKtUocPAeuVuDGjMUqEnofgUSkRylC1ypkQBUSx2hTCwSEawh7vEU2jkubmFMt/ZRysDAjLkVv+HC0hBmLIwIC1UDkjTmQZ/CBTLLW1MtWSRBE/Z/EU1caRTSaonpQDXfD4PuCsI9lAMzN8enVOP0T+9Ocf8etAzGIa1O8G1rcDU2v45atP+PTqc16cf8JZeyISlsbsQS1zpCudSNSV4XQ+5e9//Wt8CAzRIzpgArTpwrTKhRk29mDVGJNUWWzHeIkuQFlhXOUsjtoyclaLwVS05FQTlAPlSyBJyLOyp4o+df2kmvMxUOgv7fiHt5OJj1yK4ENqOe57HwJvr98SYqIxhn7oZRKevJfqGNHUcbMbY4RE/VRNfRQ1j+83/tu4EdXIsslZvijg7GTOyXTKtJGJFFMEySZtw+uXL/nii6/44ssvOZnN0IgpalM7/vf/8/8grTcoWxGS4vzsTIZqc8YaLawUFM46zs7OaGcNs9OWH9/ecnu3YnHb8eP3C5qJo6oM2DK2pT3KGWmleDAE6qpmNww0pswkKjk0FAqfEykMuHZC07aAIqZCUGAsgCikBXVAI8cB6xhJ0UsEHc1yEzIXmiGnnph2DF42Y1NXwmIyMq8ZoqT2QxhIKeN9pHKyY3zoxTY+RPqd9ABP3AlVa2Wd2AFUxLaavMkQJJ/OUUgis7MT/rvP/5Ffvv6KEyfGSXqkKipR3JNVT1FalzR8JJrvdjvizmP2A9ZgtUUriyrKjomIPdJWPoK1D9kGad8rPuAb0gfOaJTORGCHxbgJmgEVPTpJL1q2gi7uKY9ffxMgNG62+y/o44b/0a33UfOYeH7855wzfdfz7sd3ciqnkbZX0MNy+7ZphNI3DIdH13ovdDVybH9S7Vt+jma5ShWbBCSNc9bRthNqV5F8YIgBqxW//PJzfvnll5yfXVJXUt/k7JFpNcViuaR/7/nh3Q1N2/Lm0ze8ev6cSe2oZ1PatiWFwOCr8vyek5MWcISg+LD4wLsfV9Sto64vcLbC+4zKnhR1kdywKCJq11Nbi240Wue992dSY7PbSDM/RVzdFHK/gFZGinmSUphSoZHzAYjLogQQxyiCHKwqK5Q2ZO2Iucdny2a3Y7MbsMYRBk/f7bDOEmOiL6CLdYZIInpPHwLaiuNbVIP0lxvAgB+8kOeT4fTqgqqeslvt2Ky2EGFST/j81SteX14xdxWVAaVCwSYU4pliiuyN2gc7rTXZKGIGbVXJFAJkcbfW2mC0Peo/Smo/yrbKb0fSzLje8z7tTUnv/25QJSobkqvYxUhVT3CxQ8eEIWEIktUWn5inrp/USvlrC/6vR9NDeHuMbtd1He9vP4jILplYTvQ955VM3/eP3n8sgR9Dbh/WmvvfH5XNx5zbFKVFMZuKKzNK+JSoDFExmbQ0VcOsrbHGYq0RlYAgtuPWGLqC1PaDZ7v9Dd9//z2vLi/4T//xP/Li+QvhnRpNF3r6DxviEIFE01TYjaPbDPzwzYrZbMrp6anMP8ZMQCD+KhkylpAUOmaGIP02pWQDmNKywUqNOvgBHzyVcXt+bgaZrgFJy8pc6uBlwmb0c1Gaomwn85ehzEN2SbMcDN/d7Pjt19d8+8MdVy9/ARpi6sm+J8VECDuMzjSTij72bPuekGWEy1mDqUTTdUgDOQzsuoHdACFJG8k2mst2xrOrhhwzJ/WML19fcja1OB3FDdyoPftGyppUhLrL9551kW9JpOzFSiOVForOaCND4OSRGaWkVs1BxuOytJusNaSkCMGT88dmzFKjimKFyjIeptuKbGVAQqWATqDjGh2DSNaMMq9PXD9ZGvPh9dQIlvz+4ePAYwjv+Bx3d7fcLe5wlcOHSAgC0mTUwdskHaLi/nkzwEFE7KMnfaLPOf65/JZxbIpyINjK7b1AJ/MZIQxkI1qnk7pCp4xzmhzFFc1ZxWzS8Nmnr7m+u2Wx3rLddQQfWN4uuJjOmE3nZcLCi87OrmNxu2LXdQwh4BxM2grvB7arzHd/WjKfz/nqly9pmpLYK+Hgei9toKgtQ4AYPSlD5SzOicSoSrG8X4VRGo9YuMecMEo2KUhqO4pYJW2KV0rp3yVh/wQv4lZCI4Sbpec3X3/g//4vf+aHtwuCqqnbOTlFtrsVzozg3KYoGhg2g2e9FfPZymlc05BVJISBbhgIPgm41kUCmZA8RmemjeViNuH8ZMblbM7pzGILQ0fYUao4r90HAY++dUYfTqWMjLkliCGSSWhlkRRVol9OgZw9aHkPWmmMNRhjMFqjlSJEz/EEz+E5dXm8Mn6nFaoV97ZUOZIx5GUgJY9VMo4XVXx0X8C/YXM+GZX2v37sVFD73x/f5+bmPavlGmsr1tueVIanj0FiSVEOPbnDWNNR0XlUx6qjVPo4hR4f9yhj2d9PkDjDpG329/NBjF0rVWE1zKczTqdzht7T9R0qZ7RRvHj+jHY6Ydv3/PjuHb/93R+4vV1gjeXy4gJrxS0t50xdVUwmoh20uFuJPEftmM1aBh/Zbj3L254fv1vw5VefMZvNcE7T7dYoIv3g8UPH5fkpTTsjR09IgdB1VFETnSMaK+7O2mCVTKNoJWoPSWmiiocFDaVOM6J1kyWixpDp+shu50lpIKH4sFnzf/2Xb/mX33zP2bPP+Md///es1xuapkVbzdBvCTqASfi8od8s2aY1m6EXQY+UMcribEVVWza7DSllqkozDIn1eifeoBqRJa0bqrbF1RZjZLhbzIaNuEyXMbkR4BFhLqQcKoc3pWNgbIUxTkbzYsJWGmsFpMkpkigsIDXW4DLZEgaIXX/UOQAAIABJREFUKogChDVUVtZHDCILqk3pSOTCsCqodxrbVdpA02CZQ9qRGBhSTzJKFBueuP7qyNhTG3QEdz6+jlsrY5RivynG26RiLBFS4LsffmC380xnM7puS8iFvcKRGJiEtjIInPf1xDEQnHMBjzIFTy8iSw8uDWUIWN3bpErBxUnDi4tTWuewZQRLY3DW4bShqRqqumYYAsZadNaEGGnbCVVdg1K8fHbJJ88u+c1vfsNiseTF1Rm1Fal+aXO0vHz2gu6rjtV6RTNpAOj9wM3NB96+u2az3bG8XvFf//Pv2X71jFevLpi2LaSMD1tImc0moNWA0QmjIlpnHIYQEiTRX8quIiIURKdKxC3UPl0WsELtkW9ZW5kcMyEkdkPHcrdm1wXWveKbt2t+9/0ab044PXvJs2eXXFyEcpAmhmHBrv9Az4qb1XuW2zXKaYkSGaEXZjDagTJUdUMMnhAidaWZthafyhxkY5lNLE2NyJHsInpmsXUNVks0cxarpLeZij+Fs2UCByXURS3zkzYZQt2wLiwgY2zZhJ6kfbGqkZpUMhVVOsICPBqVIWpUFnBLW4utZK3GKGJ0OUobaRzuzojyQyIRakM+OWdAs90tWbFjZyP/4Ymd9N+05vxrhAGJmoeh3oyAANfv3hOCLIy+H/bp6rhhSsX/0esZC/PxsciH2XNV/v4RYWG8dT56vUrvN+npyQkn8xlNU9PUNQr26UxV1eSc2Ww3+Cj+nEYbBu+pq0am25WkirPpjPPTc77++msmk8m+8ay0Fq5o23Jxec4QZTaz63u6vuPVi1d89osly8WaD4v3LD7c8H3liX7Di5dXKDIXF2eczGZs11v63kMOOAuu0hgfsUa0fLKzpJipbCUD4+X96zFt3Sf0eW84O7ZUUhB38WHwLNc9f/z2hh9udujmnM+/+BWunjObnAIZrcHaChQ4n9gM79n1K5bLWzZ9Tz2dghLEWCvoVeBuuaJua7KKZAQdNpXm7PJUal6jcVZjVSJ2A32OnM2nzNs5ta0k6ucEMZB0Ltl4LpYKRvjFUdg7qtTiKMN00rKdTgixL625KGNvab/Y9mWSfFaHejKnRMRL0FCGuq5xrhbpoTSQEJmWtFdvzGUNCoPIo6CqCNMpd/2aH3cdm+if3Fc/SaZk3FiP9ywOt33svvc394hyHXinISQ2m+0+5fIxkNVhKHqUqTxuoRyDPzLZPxr1HpBhHunRHq776fH4wVtnOT8/YzabMJ/PsVoTg3zB1ggooJQo71kr0L/3nhijOCK7RnRfyUyaCW3dSvo6iFlrSrFIa0JVOZpJQ8qJEAPDMND1Pbtpx3w24+qs58X2kq+/h+XtNSkPbLots5MWrTUvXrykbWcsFwuC71Fa0/UDQ7fFGkVdF6FnZUhArSqU0vjoDzVnQWXVCHyUxR78QPSRvgust4HbZWKxc7j5OdPTZzSupSrE9AyCVpeaLeUk4mE6FzE06cvGmIleAJhd9PQ+Ug2erIT0YbSoE1TWiUW81jhtMEmhlOWkmfHi/CWzakbqA0EpMAFlitZuEV+LMRdf21L0KEX0Y7qpIAesk3WYYhQQMokYjpzQQoAf117KBwG4MUjIWB3kHEkxkJO0x6y2eNWLW1uKAmypQwDIGYLWqElLlc/xac3ySP/q4fWT6XvHG3MEeB5GsePN/Bhy+1AWM2dYrTYsFguhuQGhjH/lwxOhlJJh3pQwxkhUKBH4Hs/2qHbcp6sPIv/4O44Oj/F3dVXx7NkV89lU/ChjZJz1FDQ3MpTXYIy+l6ZrY0UR3rlygMiJnHOmHw6n9AENjKKmpzQaKzxSbairirZu6Oueyln64RN23665e78ipMxuGAh9pB8G5vM5iszJfMbZ5RVGa65vviWRWG02WCP0vSEGah+Y1LWIkOWI1bHA/jIzCkrGoFLC+8Ru51mte95/GFhuFc38JW1zinEtRimskUUbk9Rd1lkBrHQk6YCtpL6LcUcImeATfR+IBrLR+G1PWm2pW8t07mhqRWUNxlpSgqH3RDyVUkydY9JOaVtRURj6AfLAgAzrGw3WairnymcuNV+MkRAlu5HqRuHDwGq9IGXpseakjogAZfj8nvfriJPIISbLLZIjhAzaQVW1OFuXXn4mRk2MIr6239BJY9RYdlmm01PazR119zN1a3/O9VTfc+RtwnH7A969e8+7d+9RSgvdrYhtZZX3fUhXUsG6rtlsNhzmOGXDj/6b+wb7/kkeIcArtVcE3L/WcluxW7Cl74m0UrQWTVY9kuUV1o71dsIYjXNGfq/lfs5ocTEur8loJXVglnou5khQwoyxRvqRWWW0tVIHpoxKmRgbzk+f8Wyz4fff/IYVPSFloo9su566EgPb0/mMk5MTrDFsuh6lEtvVCmsV87YlxoR3icEPGCQqVcZSGYvTFq3KuH4Scn7XZ97d9nz9zTW3d4HJ/Dnt6TnKTcRQSGWxYlCRwe/wMWBrhzYQ+gFMYvCZ5aZnCKD7jB8iw5CIJqIsDCGRDdStQZVZVGMsfsisFms2mw06J06nEzidYzcrcvwzm2bBpydXzEwlKW0K5ORRKuGsFUKEUvjg8YMnYaiqpni7ZoZhYAg7iZa52DHkvE9fx800kl9kYx4BmZRDWSVSDsRk8KGXzaiEMqjNOIpoiSnI4yF2kMbIZ22M5vnJBX34mWntR5vtQWZ7HJGe+vP96HrYpLlA2jfX16zXG6yrWG370kIpT6XUIb3N4vIUo0TLWGwBR+mHh1q1x+pH9wn3kv+ro9eWC9mh73turq9Z3D3HlomVETi4/4iSosYY6bquHBaS9pITw9DTdR2bzUp8NYhFgCoT44g2Cgm9sk4ygZj2YJZWCm3AWEvbTLg4fc7X33zLZrmkbicMLlHFhIqRuO7p+y3+Xzzn5+fsdhuGYUfbWFRW9DEQc8bFhGpqOi/26pW2OKWpXUXlKulnxkjfeW7eb/jNH97xp+9umZ28pLUzKtdQN06+t5yBxDB0DENHVtD7HpUifdix3Cz44f0tt8udyK/oQPCRWHR7VRQLdltbDA6itHtIiuu3tyyWK3JOTNuapBRDTqz8ls1uyUbdUQM0c3SMRO/JccBoCM7iO7P3IJbTVYS8UgGsvO/woT/qsmUhL4x3Kmt8BH1G4FFuWpQPClMKMjEOpOj3BlRlick61Er0fQv4Kf1jg0Fjk+HN1Uvqun5y7/2kVsq9evJeGfdw4/21xzqqX7MI817f3OBDZNJaBr88tD1UUSaAfRrbdR05c1CDzxll7L6nNxoRlQLj3uu5x2x60APNAEkiy29+/0dm0wm//Aouz8/2qeHBzlZej1KKvusYhoHJZIIxkq6O+rfL1R2bzVZeaxa/kaqqcNZQV6JLK6p+Qjtz1hAixLEFUF6i1hqrLdlDtw50E1HoqyuoK0flQOnM3eIDfd+VRnpifjJhGDp5xWmgquSAMCisMmgjkhveDzgjkiP9LvLu3ZLf/e4Hvnu7YXr2gvnZM4yrUUjamXLGx8AQAt2wYYgdgYQPa1bbBe/vvuOHdz+y2ngGLwtDe/BeXMByFCBd9Jo0MSaCz+ToiGT8kHC2xhrFbNbSTltsZUWVPg14ZYlJHkTnTFJS/xmtIItFfMpl0gYZ18pZgLGYRIAsjhbpCOEia0VOsrmUHg/3Mvc7Tu6ow7pVIp4hk8floMopCcC2X1eSHoskjNkHHXkgjdGaqa14086e3DN/Q8356L8e3e7w82Faez+qlpeupHXw7uZGBmm0oet7MhmtJbVUBVHV+ngqRbR9xhN8pPPtp03IwrUsR97hdd1/H/t6szzuaOJ2vdjyv/7zv3K3WvM//tO/5/LsFD22ZxCDX5Bxs9VqRdM0uMJvHXWOlNYYV5HZcrdc0Q+eqnJYY3GN2LRbraBENZQqSnoarNgNqqzRWah5PnUihJY0t9cb7CZDUDTmjMvTU5pGs14vsUaI6dYZtHYMfov3vcR87bBWBLVSTCQ/EIcOncW8d9dl3v644es/fuD2znN28YLnz1/Ttg1VZTFVhU+KfuiIeWAYduyGNet+zbv1Dcthw3KzYLPe0O16UjSF+K5IOpOiIkUZpNfFfToUOmaKkZxkowQSVW1pKsO0dTSVwTqNJqNtxfnkgtPZBZN6ivI9xF6YPOU7DjGWVDdijUVli/cDPhTFguLTkEoLJaPBWJQpAxBjNqUkhRWX8UOJJFjG2EOVnSrraNyox5tTAhBKjXRfci48K+Uw2QqV8onrb6o5nyIefLz4n37Ccmtyzux2Wz58+ABKpslDCIwjagrQxgjdLIvl2ggGxegpH9EekT0mGxynw8d8279E1j9MvMDt3S3ffmvo/t2vUZwCkELc0yCVUuyKnX3TNIwqaurosay1pJzZbrfEUcUgemk7GH0UuIXYPUbJuriddQXhNdrQ1A2X5+fkrFhvt3TLNe99oqLhfP6c+XRGOzFoE7E60fcd1ze3knoHT1VZEoqYAo01kub1A7EPqKQY+sT1zZbvvlsRQ8Onb/6Ol68+pZ20UmNqg4+BTb+h9xsSA5vdksXmlpvFe94t37Pzg2gLBVW0fpJo5SpJ5XPOpCAASdKZYlLC0GeiCZA8zpXJEqdxE4tpZObT5szUNpycTnl9+op5M8dqAexiFtKBKSBijJEweImkRfozhEAICaVdQeZFX0gh1vDj+jBo4SYriZip9IIPUIb0LfPRBiQfy43I39m3+MZxS0qffmS9FXEvAodRso+vv03x/a9cj9H54LApUinKx2u33bHZbDDaEAa/TzckjdAi6uwqum5HCGlfV+4xnPIBHW/M4+f7W68UxS1Lq8ykbaisKyflAXBKUeZMQwhMJhPRwaFMeKRRcDnsR9uUgums5fTkhElbU9WCasp7GE/gUVy7pH457iO/QjGbzPj8zefM57fcLZbc3b7nw+0df/79NZt14rMvX3JyYUmqRzvNei1zpCkncvQ0taNyAyfzirpSxGFHGjxpgGELt+87FovEbPac1598zvn5M6qqwlaGmALd0LHZdHRhSx83bIcVt8v33K0WLDcbuhAIUah+ouhxaHelLO2NHOWAzTmLfKgWwjlKgCBXGdrGkZL0O6tGqIi10UyN5fnklJdnLzlvzqUtlCAhPONMFjfuklXFPGDQpX2hGAYZczOV0PCss/hukFqwHFoEhVKmtOXKFFTJlPbraq8zGwsoVNZ1Fp9RaSfpA55xXMPKqyzRM5GI5Fg+gyeunxw5Dxt1/M2IYI2Ra/zdg9bFE5s7Z7hbLNhutriqYvCBNDoEa4OrKrSGwfeEI0RLa8nlR9MhxkX+4HkOkfDjSZjH3pssJJHRryc1L148p20bIU3HUKYWDoPepsj4C7I8fjGpRFF5Ta70Ai8uLjk9meOsaOGNNW+Rty51stpnCBSGysjecbbi4uyCuq45mc05m84gWd5ef+DmxyUhROYXjmYqPdblakPwIrKcU2DSOqpKc3ZaMZk4rA7kkAg97FaZzTJxcf4JX375K05OTg8EdjKBnk1Ysu3XrLsV627Bartk2+/Ydl4ApyT27tEriBT3LHmbMYlq33E2pRAGkDEGRUBrRV3VzKYtKW5lBjNnmqyYm4pn7ZxXJ1dcTc6pdQNROMIoS9VMIYeClMuhPvRD2RDjnFFpryQhpFtrhSlV1C/y0Wc/ZjA5swcOx3V8KK/yAbsob22c7JF2oSHv1+bR/jlqz+ztBR9hsI3Xz6bvjR/++KE/Fazut1IOgFBKiQ/v39MPA85a1psdaW9PTElhpR5RRdqeII8xRp0RZT1+vff6nn8BQT6+/Xjbsda4OD/n2bNnVM4VQEWK/vGKUYS/RgUFrWXcLMbDiJvRmrquubi45OzsjLoq5rmx6J4mpI4c2Urj4VEYN0K21uggprbZJVKqRbEwJT55+QKtjchHThzX128Zvt+RSiO+iLBKlN96XKXotzJ3alQmDBGnKs5PnnH++pQXz15xenqCsgmfdvRqw9Dv2PkNm27Darvibrlks92KQkEGP0AIhhQUKSAaWJTIkEbwTaIZx99HyQhGRDXFXKJbYFo5bIYpFee65ao+4dn8gsvJGVPXopWlD15AIaWwVYMkoGJipHQAZQVZzSIPUlcNWgXx7lQC0riqIu1SOd/HDczewh5dRNCUKehPKRrHDTbWpcfYRS5o9Gi1sIeVDoDpuGekfaUfDRbj9Vc357iwjwGZA6jz01Lew23GLygXq7gbgvfY2jEMg3yYWYZgh6GT1kT5NtXRBzPWhmPUvKeO8MTrf3gdWB/3/91Zw7OrSxkZy4c0u6x0IUqEMkNY+ppKF5fjEXcvbJm6rmnbFqvdPjJSrA+SUHLElk6NjW9QBX2snCUEEVQeTWdr51AID9c4w/nlCZPZjLqZ8C//qvj/fvsb6tYyn845P7ukbSbk7AlxR8bjYyANmeV6x27rOZ1VfP7pS55dXtLUlmHY4Ict27BkG+/o44bOe/oQ2ew6VpsNm43He0NO4gg9IrA5IdMtKoltY5S8QO+zraNFmI83J6UlFdmYyOx0wtVkzpmtOXUtp3bKXDc4bAHmxC1tBFhkYZjy2Uk9aIxFXKwzxCzIuK3wKcjBrjNN06AKWjyCfLqYDwtA57C2RjjkYzpaDuks4OEYJOQ9lTlRoPhhlPed948x6jZp7VDaorX7+Wntk4a04+vZ/+XB4n9kv46tFIWkj90w8Pb6RiQflWLwxQ611NXaCLSdtcK5ihCKPZ/KMl+43wgfHxDH0fCx6/i0uxdFkU0xm04gJwbvaSsHSgaTcwFqBu9LSpbRqRiiliHfPUoMewcwoXgV+8Q8cotH8jkoNUpS5j0SrceoLnLskjkY+TKVsdSxJiMel9bVPL+65Ptvp9S14c2rT/ny86+YTKeCDiaPD508b9YsF2sWiwVKQdtOMVagfj9s2YUlW7+gV1t6enxM+CESBvHajF7JlEbMhyAyrtcsw+8xSB9YodFWLAvHgw1yIdaL7sS49FNKdH0g9pHKJVqVcBQR7ZjJ/cCAJmVdxN/UPktRSu3bGs5qaCr8MGZCsqCMlQNFNIPAaIuZVHLA5AxZY6zFWJnTNc6ICl+SGddxUF3t10/ZD+p4nalC86zLIZ6KxKig1EopMaUyldgoCiP40TUKfxO39n6Eyfc26oNTUX18+3Hxj4X0erPl+ua9xKMEISIphJgYfFQjjh+GcFMTPsQyKPx4yvoQzHpsM46I7j69RTi0zlmU0vTDQGganBXPku1mzXK5om4aqqqRVDYlYtRkFbG2QOpjUMgG0X31MjGPpHyxELKNLpQune99ZjlLDTd0HavFHaHwh4dhYDKdyhecx2xBFAouz8548/olbSMKDFeXF3uyva005EhbWVlwiFbscr3e18YgqXTYRnLcErIhaulrxpAIPhWCd97Xb3LQyPefyyKUFLdECQUpiAO0GRk3qmCeMUCWFpSxRkAiJ62kpMErkWeJJooIW/CgFRkDSd9TV1SqkDpQGOdEQzYFfCj97xIYdMEJpCUaMTbt16O1FVU9wRgnj63l/cXggZ6UQhlLGyVGDkMco3CdAvF8sbU8X1FQzEof+aVYUDK4ndLjwWO8flKf8xhUeezfxwW+/zMfb2jJyWVWjgx3d3fc3t6hlGXwaW+poJUIHB/fv+866R0+2EwlyO6vhzXkQyDoqYPm6BFAabRxGFeRshKbcavofeTHd9dsVmtevvoEY6LUiYxyFuI5In1OaYGMgFGKI8ostXbf92y3a5y1nMznWKtkJlABSfq3Pgjqu91tWa5WoDTKaFxdCR92fL8ZckpMp1O++uJLZrMZs+kMo2RjGiNCYGSK6ruinUxxRuwcBu9Bie2EpsbqObUV9YSoBqLKxKJUF1IkZhilJHKpJw/O4Mcq6fJZx6I/bGqLpILClpGVDhhxDmvairoy5NawbTXOQFUkKbsUUNHjBiQlVGYPzpVp/LK+QO0tKiRdtNbJf1VDVTfCAc4JUiSSCpfbYF2FsVJ+jKBPygFd0mSjRYLUVa5Ik0jGFIsb9ggQiW5RMUDKB5sQofYWDWBMKcX0z2+lPLz20ejB745/KthzXR/eNyM1SUqZD7e3bDY7jKnY7Dy+tEoS+ZDSlrRa5PFl8cpiz4cv5Oh66gCB+0ZI44Z9qBgPBftRGmMc2lb4nEmDZxgGdruBbSf83xDEzhwlbKZsIJZFm3Ji2k6K1GKhh5UTNoTA3d2Cd+9+ZD6bobWmqovzs5J1E2MqTtERV8lXZK1mMp2VaCgZxPj5pJQwWnNycrKPgiF4rDGgJY3UZRYRBTnKZ6iK8rvIgwaxiE+ayrbUqiaXiRZlssxjItpxFGwg7ReyKmDH0UFcsMkM+9oUSjpsMk4rlNPoKmErRV1rmtqgnaK3iaGoHOSQCNrTFzTU2ZGfCnKSqSInciivtJbvz1UtJ/M5xlXYqqWqG5QS0bRMIuaMSWVw7l6NWGYxUxniLnOfWiucqzHWlveb9hMoZSHt54RHf9QRZBzDyEGVQbIjnliv8DOUEPab8ck7PR5N91cBcO4WC4bgMbbF+20Zzyl1Sdk4kiZYQRyDkOBjjnIqpyJdyMdg0MOU9hiNfQrNhQMYJ5oxDldVKK0YgmeIgaadsFpv6HuP1jKZr8hC/wJSKgBDyjgb0Eb6eJLCCBd3s1lxff2WxeIOpWCyntDGGmPZn/4xJkJKeB8wRtNOGqqqpm5qSe+hmOJKq4IyQ9h3PX/68zdMJzOev3hOWzflTYWDlpRWrFdrdn3HEHwRSEuUaUMgolIQK3tj6aPYNeSsxX4+lc3JiCCUMa2xB70XUGZ/u5TGGrVQ2shQdGKNVVgHlc3UJtMoxO/EGsFeVBIbwhwJMaOxMjy9B2ZkXpMCsI2HI1phK4d1FdZVaGPwIRavTSGmo0o2Vorm8XFyAZIYswB9ICPEEBFrCl2itNm31VTKRcLkgDvEIpiGup/nCZ7yOJA5Xn+TV8p+8R9tgMf+7akro8hJEWJguVzv30Q/dIwMmwyFRG7FIqF82WOPSaPI94yKnn6d8PEB83DDPqxDjVa4MmFilKKpKgYtddm0ElctbR055yKGhTTES5oXgzTV+35g5GTmpIgp0nU7bj98YL1Zkol0fcfdYoGPLU3tZNID9jzQEDwxBDFgLXOskpLdR5lT0Zq9vbvj//nX/xdQfPaLz/jq8885O5vhnEKTGNSAHnSJzIUHXOqllAPRR7Eb8D3ZKIxqsMljUiANPXGQ96ey9INTksNBsoJDEFBq7EXLIpdDZ9zUQlM0SpUhbYWziqbSTBtHqxR1zNRAUJHeJOokImZJ5QKuJbIqRsYKFHJg5xSJYWAYenrvyVrEuo2tCDExFD52ZTVWjcqDuaCocgCkJMoFwiJKZT1aOSyU8KdjQPxZi5yJQv4uSLKUOcYUmW+l9qk9WYkthx7xE8j5Z2oIHX3aklcfNVEfW/iPP8QYwRQKTcqZvpfUTuqU0iwv5GHKbJ0QxsWchyztBLFLN2VB5GJP97ES2vjangKKYASHoKoslavYbiV6O2Nw1mCtpqkc00lDm2uMdViluby8JMaA73pWqyV+kP5stxMWU12JTuwwyMRCycaIMbLdbdn126IuLs5k6/WawXeFw1qVOVH5XAY/iOeJFomTLKEEEHGxtO8nlsff7lhvO9abLYvlhh++/4FXr57x6euXXF2dYTX7dF5MolJhM2ViiIS+I8Ug4shWkWONwWPCAMFAlGa+UPMSKZVm/YPPXD52iXypoNTS4C8nWBYwTGvxKGlqi7OiWqdSpo4aYuTObwgoJpOGpkx4HE9+lD8yMn1yDvgwEGIgxADDQD8MQtwvOrGH1ycFfo6ixMBeLlOAxpxkGFuqHDFDNlbS6VQc0MfILZYi6SiLU/J5iWrAkQNcOQxKpqMKOPXU9ZP6nIzv5aiHcvyYef8/9sXx4a4jKDNGOeHULpcLSQVzxscRcpYNLA3aEhGKGrcq4EvMYd8jRAk1IJWDw5Rc/jgKP/aelBxd1HXizasT2qrhT996PpR2jjaaunJM6orGVgWMMUJWr8RBOjUtVVXx4f1b3t284+bmBuccV5fPUCoRk0JHec0pi2LCrtuRc94PlueciKEnO4u1DUoZUaILsqhijFhrsRpSEeSSz1HtF1mm1MdobFXx/OqKyt6x3WwlGkZpUShVYSthxQy7jl23kwhJIobEdr1ju11T14amrTCqwPxBo3YaFywmalQsQweM0xpqL6jF8aeeZLPtmQmFnSNIiRVcgUhlKoxq+eabDzgUr+YtbjIlRs/ad+xCYm5bmkkjLQgl0UgXUGiPGCsj0coZKh0xTlzkqmaCcRUKmQsehkEmmlLAGWlp7RexUvL4uaTTRlorZewFY7S0uqJMGY1VdVaxqBiOWUghyGQtHq2FBjrWTcJ8G0T76Ektrr8aOe//5Wi/if1Z2RQl1f9oQ4yB6/BTQJH1esVyuZSpkhBKI7gga5V8ceOHFVMih1iaw5RT55DTj0ZIHINB+fGNeXj5GWfgF58+47//h6+4eXvLn/8shVI3eHa7jtpVNHW9R2JlaLp8kElS29lsRkwDf/rmT9zdLXHWMp+dlkHdXKzeofeezWZbvhiFHUEbH9Ba8/z5M37xiy/Q1jL4gWHouLm54fr9taSeKaFCJBWkMyOI5GQyo6rbohIB7XTGy0/e0Pcdm82aq6tLptMp1lrqyqGVDAHMZicMQ8f19TsWiw/c3t2yWC3p+w1167gwZ7SmJfjAervEx4BzFVptCxAn38041ihSH4eDIwaJSFqN9arUnMLik3pT6IkKpxtur3e8+75DK023GticRawBnwI+diwngbOJptKGbK34sJTVbo2lqoyQ5nOWaaASCZxzVE2NRjEMAzFJxzHnRI6JmKNM8JTDGrSAe9buS9qsDTEXooIyWCvpeggelaT7kCibcx8USgpfvF9NAYgKpgkIKKUAU1VPrtOfTXwft6ogXQ8R3TYXAAAgAElEQVT5tIcNefxYBS1icbdguVyjjWPYdMQyiJyyTKfHEMWWj8R8PsenTtI9EsZYxEDmSHR6rBnvvb6/sEFVZtY6/vHXn/Pq+Tnf/PFbhsGjsshjvP9wJ67aJZ1El/8UqKKslkta0rZTaQcNUiOu1ltm8xPatsU5Ryax3gjXdfD9/tVpY6m1YdK0tO2UyWRC005EnpHM+blwad9dv5PenBaObwgC/V9cPuP09AxthKmTUczmJ6WWUQdFiSwntYBsw5583jQtV1dXtG2NbQzeDKRtj3bgtdAmffBEm9F1Tdz0ZFX4pShRTjeqsIGkFk0RcsxC5ctyqIxp6PjdKyW9wpwicVCEPrNd9aSgmZ+dYE8yW6XI/YDViqqa0TQnKFOBlQxGF6Om2lW0TUNV9IPEsHispyPOKjQecsZqqSO1Mw8kM+WHLgCRtEJGTq4QA4eYSroLpYwEIjH5ks6OBk+5zDDoMocrQmVyKkl7xShBx4E9weSp6yejtfcAoMxR/QmP1Xb3N+iY2kqtc/P+A9tth7MNPqxlIWURgnJOwBYfgpjNaku2jt1uS0xB8n5G+P4B2vqglfLYwSL90czL52d89eYl3W7LYrHCF8ZLDJEf375jtdmCuiz9RyUpWeFXKiXS/jlDVpq6mXB2dsH5xQUvXjzn2bNnTCbt3rXr7DzSdVsWiwV3d7d0fYezhsvzcz795DWz+Sl13Qr6J2kJbTvhzZtfMJlMqSqHqxy7nUzxhAAvnr3AWLvvCaeSeYCIVRlT0/cdKUVBuYNHl95rCAlRj2vxYeDk7BRvetxK0YeOXezod8JfTSi8T3RbUWsoyaRkS0qQapKQMRT3sxdZAyMAJ+vAGI1RVgyXgvhdXl3NCcNAM0m0U0v0HhUSp/WM12eXnE1m1HVT7P0UaEVdV0zbicjKxMK4KpHJaMT2UI3Jd5JesiqHqjqQJkAsAPctQiXsI6MVSjmSMmgrKhwqx32dGWMghmGEk/ZKhnKQWrSxWGcx1pXDs1AMSYCkxDkHxHvw8esnc2vHn2rE8vdrPj+yUY6Bo/vzbkJ4vxNzG6Pxg8D5SiGFf1Oz2+0KaJFYrVYQEyFEUo4FMSuPl+5vRHUUQY+rzocb1BjN86tLrs7m/O7DNeuux49TW2Ru3t/wu9/9ls9eP6N2k5K62YOolypRu7hOf/bZF3zyyS9o26bYpFucq/bCUSkFGVWyjqqqeP/+PX3fYa1jOp0xnc5QSlK1PbnCaGbTE1nIGuqqIp0mvPeEmBGWSRKCQZmwULqgwrtO1OmULBsRuvJlYen91IW8YY3VjpPZqdz3pmO53NAN4lotrCaFzgabNaQy7UNBaDNEn8ghk5PeWyPE0u9LMe/RSW2EIqe1FTpcyiyWt1xcznj92RytM6hI73sqo3h1dsKrkxOmxtA4+exSFMOkpq6orKjbx+wFTCrMnbEqknXBXmgNykaEgi6rfc2XD9sLYXkJMUQb6UumJHInMUr2ITOiIhKWimGxtRZrhcygtEYZh9JOgCYMo22ZMNuyROOfK415vPDvRccHCeTDCHuQqtf7jTnWp33fc3NzU3pjGT8M5WQTalnfd3Rdv7edzzmP7bnS1FciHlyea6SEKR5Gzse5tcLgkahhFPR9z5CSyIOohDHQtjXvrt/y9u1bppPPcXUjfUUR2Rd/DS31oXM1V8+e0Q8De09RJSNNjavFT8WPTevMfH5KVTUslwu2ux3vrq9xVUvTTKS/psuiyJqsMtY4RIxaahOrLSGLvX3OsvGtcWStSCmQoieEgRBEfSHnvKcLjmgl6JLmZrQyOFWRmXBaw9AGVnc9JiisloPBWcvF6QUn01Oh/yn2DmKL1Yo//OFr1sOOkHL5kuRgHD1WNOLtmVORmbSgrSzemKUUqCtNXVnqyjCbTjgxLc/PLrmYnlK5mqqqaRsZRnBF3ynHSI4RVCgH4SEoKITnKiSM4r2jyrDDHuE/UC3HqK8KiqwMGCscb6WNbMisiHEcUlCFDAOmctT1FONG7rPeg44+ls9biNcorQhdadkQiE93Un6eTMk4CvT47Y6j5kieH6NdZrvdsViusEWOI6a038ybzYaskCiZ7o+Dwdjol/6TvOGyCPIBEHqKkDD+WR4DdtuOzWZL34uiXVIyD/jixRX/y//8P/HmkxeczFr6wSOrKYs3pionK/c5qUoL6DDWESPpQOZP01FaZ2iahqpyxOBxxrDZbsqkvhCutR5peWIHIUJjh5ZUUfkgFvhepqekh9b3O7puy267w1pL2woRQXqhAdCl75oYBg9ZoXHYnKlV5nxyRf16BkZLPZulad+4mmk7w1USFSKZoR84m26JPfzuj38gdL0sutK0T6X8yaUnKgsykxB5FpUVStWEUKwOB0+oPHVdcXV5wXx2KnQ9Y7HOYbRCY7BKQRT6pCYXbnKJjGUDGmWoKkeigDdKYa1Fa4XvBgGkKMP1WjjQiYMkjjGytsa+agyCKQQvn5m1NaoeB8UnaF2jjCmlT4FmlS4aRpkkWLsMKhiDB0iS2j91/eSa896kRx63y7g5jgAfQN3bVEePBywWS5ZLEfIafC9T8hhSQfVy5hAx9RHMPP5Z6SKdIb09ReGMls0pw88U9PARokSWXP/m9j1v7+7ofESHjEsAmmdnZ7y4uuRkOkdpw2bbs1zt+Oabb5jNWj777DMBe2xVCAaRGAPWgsEKOyaLJ2XsDyn7uDBV2dzWWpwxaDJD39F1O1zT0poZGkXwg8xu5kjMCt3logKo6f2ADx2D7wCISqN1RfCBod8w9Fv6vmO9iuy2TREg0wyxeG8mmSdNoxdneW111TBppqAgpAHve0IC6yq5bYoED1VV07iKxjgM8MWbTyFn/vD1n9h2HaNc6zgtORojKF1I/ohur3w1TpJJk9EqoZLFRmiUCIoplWkqRWMStZKoNkI1GUUunqRGHYTItTZlI0pbrpzdjKWVrWVOV/kg/UoljyGYUKHXJSNAJZ6MqAV6X7i0KlPVFaqpGA2SMrqgvpBLG0ob+RlLRhVjxIeyR8bl+BdC59+khPDx78b0dXyqh3jp8X0Fgn737prFYgVohqEjlDZKVVWgFLtdt0dgj6mCUupJunBAkct0BBll7f7wGFPop15/zvD+/YLvf3hPiAWBzKH4fSas0rTtRBg6PjAMPe/evSWGc8InnlAm6ZUS2wPvxWfDar1Xgs/K0w0DeYjUrsKZot2TRlBhFGaWL23oB/QAvlicV3VNLn25nBPBe5xzaAx3t0Lg0FbJwLbJoLZsuw3L3Qe2/Y7eR1LK7LYLdrHGVZY4EghyLDKNioSAQ9Y1TNo5ztaFGphI0ZPIWFfR9VvW6xVaj0RwWTrGVJzMTvjszRvmsxn9MDCEyB/+/C3vbxcUYmlJBTU5amLQ2GqsEYXM7kwDUWqzyjp83+O7DVU1oVYKnaSfqLWlcm4/JzpOu1h7IAkIQUUyLa0UlRPaY0xyIBhj9uuAGEtrrgSdnMhEUg57JDYmoY+GUNQL9hudfao6AlVjB0EkWA5K81rpwvIa0GU0Lfjwl8Daf4Oo9CMoaH7k9/fvkrm9W9APAyhLP4g7ltKaum6KctpBK2i8z97gtvw8jogPfz6GHD+8lNJstp7vvnvPdCYo6WzW8tUXX/DFL17TFA7r6BYFcH5+xotnzzAoog+EcjL6UOwYCmwek/Qi19s1P9y8ZblY4YxjOhVkMSPix8ZodsmTk3Axra3IydJ3G7QR7qic2IOIFqeI7jUhRHabHpUNPiXulu/Z+gUnF4akezbDiq7zBC9KAM45fHSkXSypuSgs7C3tUChqSd2MwrpMxkktWglraQRNRBh6IEbQJmOrmpPThr7vMMZycXYu/qOAwrJa/ishBoRir4ghM/QJi8E4jVYRVykq17BeDVy/W1JbzWefzrhoLX7ocFZTaScMHVN0paqqRLoxfY5UlWPcMJL1Htg6xphyyAnjTCmZL02FLpmjL6nWyPRhnw3mnIkJUlSQDQcAKe8BRCitmFJua3XQlcoZXOH4phSJPkNy5LqVlJnH1yj8Ddzax9FYHvm3w22OWykgdc9yvRLqkpFxJRkaN6zXK3yI++e8P+Fw2KTHkyTyoRyQuKcUEe6lt0qR0fgIP7xdchkAo/nVrz7nP/3Tf+DsdEbjHH3fMQIGWitevXxJWwSgAQYg9X3hpoqRz2a7Y9dvuV3c8tvf/5Zvv/8WqRE1XbdDqcykbZmfzKQWS4HaOaqqhqw4OTnl7PyCs7MzmuiFeG0SSQX6sBP/UiI/fPiBb779ge9/fMdic8vrzy/4bHKJdj0xe7JT2MpgrMPYgNYRq4RorvCo0g6SgXEFqSMMSzbBEJhQuwlONfig2HUWcoXWtaS8GGKUOriuWpyrmM9mpLMz+t2WbVWx2+24mJ8wsY6+l341UVy3vc8oG8TrdGqxRuGHgffXCzarQJwa7jZbulhjaotrKlxdU1UCjGlE2nMsF1Tpvfa93wOCh/8k00oplYxmXAu6AEHizSPlUSqMJmlFpWLnEKMg/0ZXAkIpoaCq0k8aU3VtEJFcxpJT+pwpCfKek7RPjNb4LONmymjUvyVyPkVwf7iJPr7fx7fr+oG7u6XMDmqpy45v95APe9zCMQUUGTfHsXjX+BzjT6Uet6Dfb3SEYrVY9STWGOP49PUnnMymNHUt0HuKBbWrkFzJHnRyFYSc8CGw6zref3jPsOupm5ohDHz3wzfsug2TpkIhvEwVt/ihZ1K3GHre/vgDm+2Gtm3R2gramxUXl1d8+uYNzy9POZk2VK3D1oZ2qkgqsNnd8tvv/jM/vnuPrjR/98tPuHw5R1UebKIpjXStbanBMqKtKj/J7COOIkp7g4hrFNY4NBs0HSoJ2T7mhmHn0GqK1tOCfJZIkcTV2xjLyWyOPTllt9lwe/uB9abj17/8kv/629+z6jsCWW7vI6YxTKuas3lDt9uScuTF1ZxJ3ZN0pnKI1YZ2RKXxZCxg9wipLPRxk4zswT1GUcAf5xwxHoYHBK8IRF8ILwin+KAwI9FxBLBC0YQyxmFsjVKuYBmFPKBzkTaRtlXZk1BsOpTWhJzIUSwZgvf4YUfXbfC+k/fxNHvv54tKP7Vhn3qMnDPL5ZKbm2sBfOI4InbgGj183IfPHUaz0kci6PGfj6Puw8kTkM0ZMww+s94MnF/OmU1nOONEvsIgTBJV5oFLY8wPA9EP+Jzoh4HFaslitSQl4fXmYLCV5ezijM03C2ZNjSXR5MTrl8+pG8fJ6YzZdMLw5WtW6yWd7wgx0oXA9z++JaU7pu1Lnl/VNK0lqQAu0kwmYC0djv/hn77kH+KnMp5U6iNpTdSQw75XqikIvvSZSjrHgeVT2gamnPLOKIwSuiTK41yNKtNBm1WPUoGUbaGiOXmuKDVcv91hp3POz66oXMvFxQWffPKS5y+u+N/++Z95d7vYb4IcM6ezM5SPbG57FAanHK+fndDWhsoGnk/POKlPUF7h1YDJmTQCQori1yKPl6LQIFFq31v2fiD0WtJPrUhpOIJBitIiBVzSmpQNo45TJqNMxllZlrLpZVgcnVEJCqu7pL+ppNmCQAOolElxIMXSykmR7WrBdrdBKAsJpUZH7cevny0q/VhteUDFHruPbM7Vao3WGh+iWH+XpuxIQH64scY/j6fiaAUuKefHB8Txhnwy6is5FGSDBpQyOGMhZXw/QG1Kf3Fsg2SUEZ2dXd9xfXPNerMBraQuq2vphQH9/8/am/5IdiVZfr+7vMXdY8klMpNLkSzW0tVdI7U00sxIkAQIEKB/ej5J0AdBGLU0Ahpdmq6VLJJF5hbhEe7+lruYPti9zz2CSXYVSw4kkxnh4eHv+b3XzI6dc+wwsh8Gbm+3XDx9wgdPH7NJifPNBucNTevYtA3rR+c0Hz3HNJriR2B72DPGwPr8DOsdIc3YxmJbj/GJx1dPuHy8gt/dMKfM4TAWMoBO0bLWoXmFbk3dgKb0h7UW1jaDnureORrXkIOmi0Ygx4CkhLee1nusM8R1ZhoDd3dvydIjxtD1nk23UbFBWZxhnln1a9abM1LUfm2/6bHe8u//l/+NKehnHIfEq6+2uCYyHuaih5yhHVmvG66eP+bTqw94un5MIw15Tkx5wrStAkwWMhlX4H2LkHNErMVm3cAC5Kg1nVgpgv1qFqAhIZ84OqTa5yzetUhRARn13j12K3Qtq8zMLOvdUNtfKg8LITKMEyFUGmUizZOmsUYQ0YG82Ps+XaePHzZ2Xr79nCrBOi3Kj6ipSmy2t1sOw4hzDcOoJtKaSpjq3nrvUQEgby2N94QYVUtodWM9fK+nafF39Ts1qtSaQ9+XKdQzBesyYciYrIV8yolhmnSGpkR+//nvub29pus6+tWZpsFNp/NC5sRwmPjsD18x7g48enHFj/oV69UG361Ukd94nBed8DwP2BRxnaP18OSsIWLBR4ILOgkrC713WJs4vPkagMd9zxwtPgiBRJAZ1+ipPkwKv1Aig0Z/7b2JKympKSbIuZhhAxYFanAtzvWsV2t1VQ+R9VpZODeHN7x+PbHfWV6+eswvfvZLHVfhMs6AY2YabulX52TX0vrE1fkFv/zJp/zqH/+JP3z1DTEZYoaX3+zpe0fresREWgc5GsBz4S94evFEfZMoLbOYIEPXNbiM+vOQ0PEGpe43DYJVR4eC5ho8kjLidS3Wq7XOI9U5uEQVKZtVx5VKaQSZk4CjKiPlIPhjzlfICNlGnaYosN8PjNNE03T4xhHE43yLSYkYRnKYsDZXMPudjz+LvvcwGpX25r3nnGyDJaguG0T0Br9585ZxGLGmIcz7QibgpFGdjxvIVIqcDvo5Aj+60E6tUI4eNt99Cp2+H1MjqtHFmaWObSh6SaOSnjnOpBwXB/fDMDLNM+vNGc77YgSlAEWcAq+3b/nsD79hfPmSX7z3jI+fvmDz6BF9t8Y1Hda1hcImOKNW/MZEkDJgxyadSJYSqcmlJ2gwKZOjMIeENY42r7C5RYwlSkCcTrM2Du5SQyhUPj2AKG2FjNgChmBVEiZ6UDXelalqOoKwsZ51v8Y7R44zoZuxjRA512z29cBXX/4a/wdofv5LLtfnOlCq2Hns9ltttQi0zvHs8WP+zb/+e6b4D3zx8g0pq8JjDoIkwRtFf2POtJcdL56/R9d2KgovB64zwlS4rDrH0yBJUdnKqZWccA4oa0k1wEpQiFFUvuU8xjR672t5tKSXRdqYdQTlcR8cs7eiN9KNLaXulozEjHFaLsxzUD2pZCQHms7jjObIOQu5aZhmR84B639gWvtupPZfWvzHzaoKeAVfYkhcv71hniOuaZhjpZTpzbxX0JdHBXWMqDYPWPqXD8Ege+Lg/X3v/3Tjm0JWCCkxDKMOuXVF6uPUfiJnQbIObH396jXzFHn24hm+bbQxnSK32xu++uxPfPHNZ9iw5+/ff4//6b/61zx68gS76WmbXjWFrinXKTgrWFbFsiPjbSTbRDKBKDOBEYwo4kqDMZ62MaQMHYZEou/PkByJcSKOB2Kc2LgesULTN4QUCCaDhSS5DPhtyCktBl/WOladOgnmrFKqxjUYsRixNK4hxRlnhX5lWJ0Ll9ZiN+cMb9/yp5d/hKuP6f2G0KnliLWCb89x1oFEWu/4ycc/4ub2hnEaeHUzIBi1dUFJJFkSrml4/vwFz58/xxir5ltiCudWI1wGcB4BpjmSktA4q5PSqmVqHblowGQdz4exNK7F2h7n++PAI0GVRtWfVqo7won1iTHF7a+Io40p718QUTmYCMshGkPQWtao4P6wj1jX0PVrJZIYR+e9puf5ryQhvKu1wQmUcz+lvL9Ba5gdx4mb7VZJB1YIIR7pXSfPrq/zkHLXtq32qjj+jKCp28MN+H0gljGmOKmpTi9k4c31lq9fvuTq8hJZqxsBwRT6mg69udvtEYFnz56zWp9pVI2Jm5s3/PbXv+XNy2set4a//8lP+Ne/+AlPXzylbTe4boVtW9Xt2WKRKMf00hkLJiOmtDxcojOJbKIO1DUWyZac9MR2QLbqHudcRAg0viWJZ457ZN7pcN4w4Fce3zbgHXOKOKttGxW0lxTOOBrX0jUNiA6/bco8EWcsOQScNLgcaIzqQn0Y6A00xnF99ycMjovVMzarDd3K0feWXlIx9gpqgH15wU8//hG73R3DP/2WwxhJZWNEBO8Mm/WGDz98T1sWWWs9K6qXxAiuaWj6HmN96RFanG+XwbfWOYzNxKDDrnRChjoGtu2G1rbkbMrszSKellzuQ42cJZmVgm6bvJRcBgoS7shSOtEFkxASOZRDAdRCNGs0F6J6EhlHt2q0NjZet7/5/4EhdG+Rn/y3LvqHz7gfrSyHw8DN9a2qxENa+LNVKF038enPLaZR5XdUHVyWY64uJ889rTe/q995+pxUdJAhZm5utgzDnqaBlEpkFe0qh6gtn65bYazlbnfgiy+/ZDoc+NMf/8h02HGxavnv/+7v+Hd/+zNWFz1us8K6jtZ1CmR4t2xOY3QqlqMwnsgYkwp6pwvCGkWznSnet0ZPaWchEPA+YVwmx1kH4hTI3uSJIQfmecJ2Rvmw6zVzzErFKwybLNra6Lte0z9RQYFtGizgi/lVtg2d34DoSL/GDDi0Bu7OIYWZL1/+huF85OrRC85YYe0KenCtJwwzaQ60TcuP3v+ggFAtv/v8S/706oYY1KzZNS3vvfdCbWCyzrr0p2tCtLlPptwvdb03gvoLpUSalRaYcyDnoKBLzmRxdN0FOifTaI+06DePi1QJ7lqrK8tHKYbpuMrKBgajZY0Yoo0khJw0C8CoJYvqgRt9TcB4B84Rk+DaBhVkUyh+7378WSSEby30uhnfkS7WLx0jn76J3d3A3e6AtZ4QEzHnZT6I5EWvde/16t+2IKUxpSXhqBvs9G++4+v1tdQy0RXqVzHRymCsmiwPw0DfN4uhVk1rq7WjMYaYMtdvt/zuN79nvL3Fp8B7jy75b//zn/Jf/uIXPD47A+8xTQ9NRy5EZ+ccuahqqkJCKV4VilK7KcpsUSlu57Un4o1C9iknvFhEAy7JqOEZxtA4QzZZqYgSGfc7+s2a88se54RhmHDGlFoyEpP2KX3TlsMo62GQi3axiKX7vqPrGoxzXN9uafC0NoObubxqmKeRb17/Vo2c0xUYi+Wa9UrTOOc8TaNKoFW/4urRJZ989CP+1//9/+SLr74BEVbrjk8++bgMjwra7qo6TZewYsgxMzMXdDiBBHKeyWEu6aG2KHQzlQ1c3NZjBOdbUii5nTnaoFLWWMUbnNW2iogtz8nL+tHDtNSOurrAWP0MrLrRZ2Ox/mhBknVGIcZ6RYXzCX+8+Ss25ztTxPol846OyglYRL0JCDfbW/Wp9Z7DOKjFYIHC9SUL+GHeEZENjNNIdcjWHzEF7j6JkqXGreDRw1pT+3pqUjWFwJj0t1oH+8OewzhwEXv6vlEliFXig3NqOTKFzKtXb/jNP/+a+W5PD3z4/AX/w7/7r/lX7z+iO1/DekVjGpqmI7aeXNJD7cPpSWkLYkxpXuvDopVMvcFG012RxcpRxGCSQacV6T1zpRZyjaGxDutamFtkDjSNIafA7fU1uIaUhc43bPqeaZhYNV2Z85LVy1XURlABFl2IbdPgXZn1guHq8RUTCQ63zMxYK3zw0SP255m3X3/DzfaWt5tbnl494dHFY54+fsLaN8r+igmL5Wy15sNnV/zNp58wFwG5sVVtVA75nFRInrMSCYyQrJo8Sw5AJMWRlHTcvbM6csEaCkXvGDAU4FMCuyqIdExEzkfTZ22h1LV31HVa06AGYKWUqqVbKUty2dguq4BcjHrtVpmYMWpTkq1mA846QoxUA26ZvxvP+WGSsVrx1T1R2xA1UoGeQmTEZELOvL65YZim0uMMZCPLz1pk6TPV33nKAIohLgx/gy12oqqoFXPsj+oH8W4Sw2mvNKRESIlUwNmQYT8O7A47QlhjWCMCcY7MITAMA3e3N3z1py/50x+/wM0znz4555P3nvPLX/ycjz/8gKZx2LbBdx3We8QpEVs3uSK7jqIXrFmGoSCFyxsuKbxuuNpjPV5QLghrJekbjElkRhqXsR00dKyNZz23BIRo0HEQ5XW9E+Zx0E1nVaVvHSTUYwc0cjSFYdP5VhkyrsN3FwQ8Q0qkLNxOB8RmfA/tumV11vPbX73iP/w/v8Hac64eP+e/+7f/hk9+dIWzlUfqSLRcXDzm3/79f8aTsw3//Jvf8urtNf/0q99w0Rneu9qw0hE1xc84Q54JkmicKlxynpEcSClgKZshJnAKZGl9aEnOgHXMMRBi1GwlqebYuKObX4ZlKJXkMmBK6gp1VHdIMWC0QsGYo3BakXu/9C5rVFYpH5is/kQ637UuSu4FsoePP6vm/D4yeQVszEndWDF8DYxVYP2GaVKbQq03T+o/jkntw1TUoDcrn6QWqSoJoIz6/u73+/B9q1t7HW7LMvPlMAxc39zy9NE5Xd+zyobd7Y5vvvma25trwjTQ5cjfv/+c95495fnzZ1w9fUK/6fFtQ+PVaMt6h3GlkW0pC8AXRX1RLyz91gI+LAeVGhwfCRcnypycFcSwqHkW6GoSNXy2vgEbca5hfXbBq7fqoXMYJ5y3pZ3isWLp2w5vHTlpU0CVHU7BNWtom5bGN/qnzP5wrqVbNeA9++nA7rBjzhNBMufna11KKfDJz664ub3mt7/+hu32jg/ff87V1Rlto9fRNlq3W7Gcbzb88hc/58WzK/6P//APfPab3yG7G/7V337Cpx+9x6bvUBZORHLASCyHk9pYVp2lNQlcDRaq1KlOhaYcflKM4LJo2RDmQNP6RVztYClhltbh8hplLZfVKllbPMYchwTXiO+swzSlcyzVGrS8r2VZ6v9Y4+o33/n4i6aMPVjuPNz2pjbWHpwMh8PAmzdvigdrXvqbmCM6Vnfn6cZqmr3EiHIAACAASURBVEZ7n7VI4NRwrFzgSY/znuaUY728kLxNnXFRonLNy0VnheyGkcM40e/37Ld3fPPFF4y7HZfnGz780ad8/PgRZ6ueru/p1j22baBxuLbF+R6sw5R61ZQ6EHscoFNTLagsFT18DIVILfWrLNdnyn2q9bxgFC1Mqdw2wXhVn2RRosQ8TvRdxxhmHND1Hc51xOAU6j9MiHc0jU7UMsYQsuC9MqPaVkne6hPb0DYd1mrr6HJ9zo9e/Ih5nple7SFlHA2u6el6wT0x/M0vX7DfwRefv+V3f/gdn/74A842+prWqJayOqh75zhfr7hcddicefPyhl/FmfluxycffcjZWY/zCUQHgErWa0a0R5pTZetknC2HeUk3HYLN2rbS6WdqDGeMfkZkNcc2YhYvprqG60bWj6IqpY4GAAZtg9yLA6aUZ2ViABi1lAGyqCP8wzVuf+jmrC90yk192OowpoqkzbHSpoqEdLHtdju221sU+YzMIX4rmled5unGqkNqm1bVIHU2oxb7x9/3Lored71v3ZxSatMaxRQcuNsd2N7uGO5uCbsdHzx9wo//9udcnp/TNp7WGVqvi7XpWsRafKNpLM5hfXEGt7aIdrVnapxdDpH6adYIWi1Yypssp7SmXc6efJBGGUAZcOK1jql1e844USQ2S4OkSGM9ySaCsaRxxjaOzvfq92o1Etus6Zk1FutVi+qcw4jFofQ+dU6QEl0sISQu+gs+/fBTQpz4+s03jNuAbU2xEzU8fxH4+d9a9vs9X7/+ildvXrFafYA1wnAY8c6xXvdI9iRRUvjl+YYPXjxl3A2Mw8Dnn/2RYbfjg/efaeTtRJFsytEmcpz5Yir2oGQLX+89ZaCxTXgDcZ7AFC2rtBjfoEaOprR17HKoWqcke5Fj2VE54RVhrQetHvqJ+ztVU2QreqhWB436FLvMdP3ux1/cSjlGrtMNYe4FUQ1s9dSB7c0t2+2t0rFC1IK4FM+6M75NYtcLqJOyHNOstpKyRN3j+1me+85+bGmblClmR6mZer3UoC05c3O7483L1zxet3x49ZSPP/yAx5ePaNtGofO2QXwLvgHf4Kwr5AIDvoyyK8CPIrKmqONtiZAnKXxJcZdoKpX7Wk5lVPIkZRbKMfHVa/DGFpEvhBChpLp92xNFXdutBLw4lT1JJKcJ17SQ1e/VGx1kZFEwxRiDqcN7oLict6QMYR4xWHw5jJ+eP+GnP/o5kixfv3nJdBjoH11wdrYmThPPX8x88uPHfP77G3aHO1LKNOjwJcERg2hKbhyu8bz//gtaB7vba3bbN4Rh4O3rN4TxwDw94er5hQJ1tqa1iVyYW9bWXvkx0/O2pJWiLRlvDXEelglt5JYka3IuIxMwSq+jIOtyXNYFYdGU2B6zM2OOa66i/5rRWEIISEllNeMpM0oX7FId/1P67uz0X2QIPZRkVTT03uaUait48iW0oM9ZfWoPh4OOkh/n8obq6933Cnq4qer49W/Jv8p/zMnPfZ9S5rgp7THtLP4+FYSZpsDhbsdPnv+Y958942y1xjuvzJ6mw5darNaVrmkw3p0YQqk+UlOVgg4fAWeQQkdfUMR6MlA2cAXajmn7UnlboxzR5bWUz2qgyJK0B+xtjxHHPAbCEIkhqUmhs4gdkQqKtB0Gg+8bWt9qRpIVlXa26AyLjKRxOp9UZ1U63dBZeP/Jc3KaERl5uX1FnO4YTaKxhiePPT/96RVpNszTQJgDfddixeCMV69bAazHegXSzi43XJxDeNqyfXXN3c2ecRj55ptXYBJPn17Sdw3OKNE9pVnT2zIgSYRj898B4rHGYZ2KtYnFOygnJDkSgpUW6xus9egcNQVwUtQ7XT+L6gNlT7K7OgaiZnm5KK3Iier0X7aMIr4lK0oxKSW0jnX4jsf3R06p/6m12/1vL/80siwiKeqH+gIxJW5u7pjGGUyjzKCcSwwoWjxOCAcPNqoyMsz9G1JXenk8dE44fremHctlLGCLcKQHeueW56+85+n5hvNVR9u12LbDtZ26h/tWdYLeqcWiM9q/crb4OpkFiYWSrpqqDzHlMDkCXdozk+Obq98pYJGmVEtOVdoqJXtRxyydmZIi4tHRdEZbNTlZcrLMYy6egQnvO7rOIpKYxoBvfBlKpA4A1qnmEZQuaUuNjrN47wrIYjC+jAY0mauLCw5PnhLCnuvdlkEym7Nzuu4CyQ1vX4+8+dNLbp5+xOb5Gbaph7J63TqnLRpjHG3b443hbL1m1axo/Wu2b98Sp4ntm2u8MZjHZ7SNWzjPBk3PKxijebroACWn7oVd25VlmiFPuDSTQ8TIjN08JpWfp/ydJPMwntUImMt0O72EEgkr4FQ+o+OMFe2XZql7RAkK6nkbjy/8HY9/YXPWHzwiPEeliXnw1JNNYYDivzKOM2/fbpW03SqnVopnS1m793qVD6PfQ35sRYcrhPaQ6nf/rVuqN8wC/pTFXadsaUorizvDuutYN47WqS+NErqdIprWlrrSF4aJzuywBUW9D/ooEmxPrmdJqU7eZMGBlmgq5YMUsXoPK0xYbDSWgFuuv06wEjKu89hVxzhO6GDWlsaDR0hJcKbH0JDSiBRXPXLA5OJ9ZAsYUgfvWIs0Rb0hBmcEsYLYgoCGCHPksj/n2fkVKWZGUaeFFC0pTYS45ZuXd3g+Y7O65NGFp80Gh9d9ZFXk3fcbpTKmCSMz/ZnlKYJ3mf32hjDNbK9vaLyBs54sseAPUvk8iE0Y68EJ2unP0Otnn3MmmwRxRvJInvZYmchtSxSHFYdzRR5WPIpSPq5Ja9UnmDKd4Jj0CLlMbUtZiHMgRKUOeq+DfiWzKGdSyqQQFzDw+0DXv1jPKScbVh5uiHupmJ4qh8OB65ubko/nkouzbMwFCzn5HfWGiFRrEootxVGNIu8opr/V5jnBPuvgo/IPrQdqe6XMuchZ1GfUqoGVOrcVwkAFd8wRRLJWe63W2OIaXj/I43uvm9OcHGb3UveCQC8mUUZOrs0cF0HdlWUhVgMrgyKeMc6q+LeGECac96z6Dd73pDpP0zUFYRSaxuI8eNdircdZRxYtV6riJmfBG42mJqYlLa/1Oxka6zjrNjx//IyMcL3fMoWIxIi3hvW6w/pbfvP739C0HT/99ANePLpk7Va0XYd3OrG7bSzz2DIedsQZJM/41YpHV8/o+o793ZYQJm5u94i1dG0pIRaCuka1IJpeeufIVh0e5zBhkiNZwRfnQcmGRhxEIZiMI4BYsOpOoD5OHMGccq+TCFKvn2MtmpOmq/M8M4dpaXl532r0zPG4EXPpmUpx1viOxw83+Pq+hxy33O3djuvtFsGUWR9xOf2lorsPot/p4q1zOqtUbek3lb1WD4zaKjlKx+pCrofG0VS4mFRqQY/2raxRcv0QIqmaANc2DpW7U4t/bXrrBq19ymNtfk/5QmkbPMg09MnHg+ze3isFtbUW7qVRlGh/bJDrAWEWxf00HIjzjHqrNhjTknK5Vm9JxTWgZoAGj7VNQWnBupbVaq2bM+oIBl+kYApyZ6wtpUTWzdo3LU33RN0FrOP19i1NA/3jS/YvIl8+HXj16pp//NWvmOaB7u9+wtnlWq1BS/uja1bL2IlxcBzuAjFM0LSsLh5jXMP25pq3u8CQB55ennHWeeUgl/ul70/IRXOZEfbjgdU00LUrJBuwjR6EjUFcT0iG7EAklFkoxS3CldJriaBHOVk94JZU11Rf4FTS26iqlxSV72yUYK+TyQwpRuZpVK/e8Fdszu8jIJx+bekbLj+nmdj29pbt3R3GOWJIZdIvS9Rdou07NmeNPHEhtZuSEpvjxn7X+yhtFjF1W5bN6SyrvmdOmXDYoziJo+t7+rbh8uyMFCYOw6iN/pzxBWc7IqvHtHLZUFDqQ1vaNSwg1hJt792bAk4Z8449q6dOPa3FqvBbI3eVuRlI9eetTvDKQg6RMc1I0jTWOjU/tmJxzpNKlNbInnDl+41r8AaCFBTbqGpHjIBYjFF5k5IBpEyazgXciCpEsNC7hhdPrkCEOQ2Idzy/yrz/wZab7cjXX235/Is/8OHzcz766EM0JbWLc6H1XkG31oHo4p6zkJNhHx2vdpbru0R4ecOPP3D85P0zmkaAYpZdUseMRreYM8lappDwjbrupVJCaNGlfNoc1C8qG5XMkcHajMFxOrpCrS3V1UDFLLoOY1YzMMmxbM5U7lVEUihEejW3jjES5kln0uZv+1ydPv7s+ZwPuaoPI9z9fqJ+LeXEzc2W/eGAdZ44zkWJgtaLCxjysF7U1/YlvYpRC2xOTzC5tzcXxOz4heNiN8bQNF69cVHPGXKibRqePX3K+8+f0bUNcZq4/uZrTcPff4rNCS8Jh+DubUxwzpxsUFMSgPs3ujKC6vV+C/nmdHOzIIIG7r2e0fCLpPqzdnmdKhzIOROmmeiyoqBiyUZ1hMYacIJd3p6aVvnGa5uo+NS2TUu73pSWgsE3hiw6rDhVzyfJaHNQ6/QYZ3WmiBmJkabzbLqeJjsO88zV40s+/vgRxsLZ5pbtm5n9fkcIga4Q7vW96GRvkYQzAueX5DgTQ2QYAp9/c8vv/7TnMAuHw8h+fstm09I99erxVO51zZpicdNz4jGmR8Qj0jDnoM6JSQgm0jh1dXdG8A6kIvg2YE1GPXwFxJRUVJ3zjbFFuK2srqT+mcQwEcMMxJK+lppU1DE+hHmJriDfRxD6gTYlD57zLkAGlGz89vqaYZwQ0yr5uPSHKn3vqDg/snwQ5Sr2fX9PRJ1r82l51EWqUfbU2r4kofosqwN0RITdfk+IARAuL8746IP3+PC9FxiEt69fsbWWl69fsr97xtPNGivKTlFm7HEjLr/nJCjWqHRs69T8/dv3TVHjvLxGhexPg+kiBKinUcnrjwpYWdIlyRlE+6IhBK0zvRCzKLUvFRVM+TlrlR3UtR2Nd6SoomSzWHUYnPWYrGP3KO0L5yCFxDxOzElP/67pyJPOaElpVClae8Yw3mAk8fhRB7LhfLXmm68O5JwYx5FNv644V+H4GtSXx2lE953qHsVwN0S+uZ0YoidEz/TqwNMv3vL47IpHaxWXqc5yXiKdGGi7M5p2AzRkLKkIrLMY4jyT3IR1RXKYrY4ow2ESlNZkuWWmuDIUU25ndPNR+ptZUdpxHBmHO918ZQ5oTnXutW5s3ZDH7OO7Hn/RfE5TcvuHUfNd0i0Bhmnk7c01MaoF4xySSrSM1oFSXu9dD2uMNrxTIT7r/Tn+jiVaHdPJe9GbggEVYbW1jhAi0xxIInhvWa9XnJ+vaRuHpMzZ5oJ+c871zVfsdjfY8BgkkUym048Wg1PgQMyyeczJ5oRa98pCzXrIVDJlB0pFYVFHuaVfrBWxci8pIjmjdaMCbYXRgmhNmnLhG9eo6oihtBmkNOqd9nUrC8hbaL0eEKmyvhHm6YCZKIp9gxiPb1c4Z5izuqAjiRgHwjxhjGESnYFzGA4kCdqbRjCSmUcVO6zWXRmM7Hj5x8AcpzL4WDOhnCMpZHU/NA2IB6OzaLyBq8ue55c9X28DMRvGCH98uedvfvwBFxc9jcmA9mpJBtCRkl23wjrdmFKux1iLREgxIOPAutd6NYpHEXGNpDoESUkF4ArXuQjT0hGPSCmQUkRyIobAOA5ImqjTrRdYsnQOsqGg/e6Hb87jNiv/J8d/n27a+jj9miDs9geur280SpLVhXxpx3y7TnTOHRlAAm3TMo6jGoEVtEQBoVJ3UtPb05S6oicFBS3vLSUVV6eFMFGJDZmUAw5H36+4uHjEV2+/5G63w6SkvTGUg0l5vrl/W5ZrPx5YpwfO/Ws8kjkqZFU3sC0fppxsekOdkFW0GPqe6y0qrRhvPTk5vOsQAz5bkrPMUZYU3CG0jXrvNN7inKFtLAZtiPsysjAXUUCdRRmSMBx2JBFCmMk5QJqJYSQUz9dpShyGkXEaEJvYnK9KLVnlZwbfdHR9xzgk5viGYdqXxELXQ04KfHVNA86zlx0xJKq66b0nG1arjs+/ueXl9Z44G7wEDocR5x+phUuciUlJCFoDOLzzamJmlVOrqLrgkhBlIM+B6APWemIRV5sgiNHa0mhahjUNuW40ix6qRWESYlQjgFQBoTpyMWu9btyCwB/71nXD/lXWmEfU853ffZDS1mdLFnZ3e262d0tkq1xZc5KqfisCC8umOj8/X2Z1Hld0SRPN8Zc9rIeP7+0okJ3DrDS3uvApRGiprRD9s1n3GGN5e3PHPEd8CLisPkb6h+V6jm/k4eb89r+XLKTey5I61mfIt+5xqd2X69LrzieDYnUbO5xtCbnB0OGM0PoW44WVtxgHMU5YK3RN1SwmjNW+XqWBeF/HNVpyEmKKZXSgwfmGeRwZh4MON5oHUpyISZUuIcH+MGkLxSSyGXFdVJuUxsKoZUrTrHj2bMMXZztu766JOZb5LajftRPlXZfaW7EnbXG1jeFnV1d88sFT3ry9ZhpHSJHLcxWHZ2mUbeSaUufprdMDJeNcA2WDKmLnwWqGEWLC+/qZRoxoZiGhZArWYU0Gc3SN14NRwaIUVcwhRYyggGV1/yvu9NX1QqD6Byte8J1b6wfalDyIEHr6HftNlJ7h7e2O27I5Q9APeyGEPwBHThlCxpgFvDmtI5dlaszJtoBKaH/4HjXCKWycU0Qb7yWlkCowlkIi0B5f36l/ztvtHdubW7rLc3wKkLqlrWGWaP3t1P7038uhUerQenxVIMxwfA3l0JZry1I+WCmpq0ZUKSiYWe69Tom2tgXxSLJ0Xacpr0Rs65Fif+KMCrONKyoZbxinQ5lQbUhkvG90/qYYYlBHewQIgXGamMaRFGd2t7fM00Ckwfqe1fqcrvckBqYwst9HTJiws0FaRclz1Dr3448+5uZt4Ivff82vf/ufeP/Zxzx98lyfkyBPEyBlYvgK37QIljkm5jiwbj3PzoS5NaTcYBwoC8eWLMNjbC72JJq9rc8ucU1X7nqRzxkLTq3l1VsWHY9A9S3SeTUZTV9zLV+MICkumxMcUq0xc9mcS8uNeqbey6WOS8Xyfbvzz0Zr7//73q86WZjHOJBL5JymgHOeOEzaCzqpT489SY5fK5Gt6zoFNnK6F1WW1Pnk4h9GrJruOWtovNY5baN2GTFFxnEgRTUH82UUu3Nqk9i1Ht+13G4P7KdZPW1zPtnoUoTLlcgu995/fQ/fygiOt4ZKPNBrP7Z+DIsGoKS3HE/ignJX0GlRNJhiD1nYPc7osCRvmmUytRGLa46HojhLqBs+JeUZx0hhBBJiZBrnQq0VYiyj60xDksRhiOx3A4GZ1drie0vTr9n4FXYa2B1uSWHSKWVBBdB1mhrGcH5xBhb++NUf+dEHP8ZYo8BVmbAGamPZ9Ws2Z5fsd3fc7ra8fnvLpjPYOJJiIGExtmVOicYYVQcVkMxkBcl07N6My6sy8bqQ1AVtpZR0VmIsB11e5qQgmWyqu23ElEnhYtRzWcErvwBQWTS9jWXGijEoEb7OW0VrUCXrK/D1PUnpn+++d1x8pVJacuWTVVd/kzGEEHj79oZpnLG2Owqcy7Mf2mDW15fyd9O2C/d1iUDlAk0Zp1bX56mWs75213hePH3E5eUFKWUdgovyYG+2N7x987aktmnhRBqTaVqL7zumG0MsaYkz2lx3rlmOvZySysSKIbYtaPO7rmu5tpPNWyvz8k2Wk+b0y1CI3DrB2cBSwy3PyIl5PCASydkRYyh+NoV0sbRywNmGbrOCxhCyNsjjOGrm4FvmOTAM6ohQG++IJUZhmjNzAEtHv3rM6zd3jGnEtmesopL++5W6DUZxDNOBmPeM4x20ok6GORLiiPOOZy+e8+gMzi/OyUZKm4aFcGENWO/ZnJ3z5MlTDoc7dru3SEw4Im1xq0/ZEFMkZvXuLSQnpFjyZXR0hm1nPNXEq0Rb4xDjqbNCLdr+s9ZgstEoKZlUnBaqB65kIUclrTubl88pSWYOodTiUn5/KteUyhszJRFyWCsKMH7H4wcYfOmHdgoOHTfoEeKoVpghJpwXdWs/AWi+62Frf9MYhmEoJ9T96FhnINak0JbXtQVU2qxXfPDec56crxjHUSNd64gx0fctjy8/5urJY5yx6j5nj31D57XtMqbMzX6n9UxOCkqlhLNe0yfvSyrvyuHA0aS4PJS1xBLllogqNXPQC1gOB47jDvVW1wyhSuoyKas42FbiWhbcoj0sjnOm2GFYX0agd+qQbjyCNvq9+lEx2R373Y5pP+gMyiRIMcUyRo2xYlJqXy7WgZvzjvOLgd3rL9U7NqOgh3H0/TlnySC2Yz5kch4I04h1gnORm5u3tN2Kp0+fYB/paIcYdWx8FiFEPWi9s3jradqOVb9h06+Zh1ulgCZN9Z0RvAhSWGeCsnRymWOS0bbSOI74bqXsIIyWJ6auVI1+Ou/2NNCU228o/fXSgy4bdhHtl+wnFeuWcTwQ5rn0MbOWFSecZf0NDinW8Ee7um8/vr+VUn78uPcq/s87cuUSOY2+4cPhwPX1VmcbZp1J8v2+CuZeRMg5MUwDKVf2/pEVlLPe+IpiOqtePVYyjy7O+MXPf8bl5RkpDNyIypyMVTPfvl9x+egRTfMJKSVVmBTTL/2EEi0Ns3W8HUckCqRESjMmSrHBC+W8s4gYSBTrSlkGs95DruVEcSMn8rfyoVECpx6w+eRO6POc9WDUsFigjFt32OyxrsOuNsTDjKRMnCOuuJlXW0ZBNC0NiSYIZtYUbM6Rw35knALTPJNKzYZt1IDaeDCoG2FjwKaSXgvnT17w+u6WJJZhnrHtqL/PGJp2RZeFtZwRdjPzlIk2QpvY7bbEeUfjzmicV3eMDIRM0+jMUERraW8hmYDxjm7d0xw6xiESE0otzNC2DT4EbYt4o9K20nqSgoXM00SYZwwO33Zl6RZQMOk9TaKOCc4qDzZR9Zq6GW1Z/9mwbE7JeZlajYCkSBpHJBaiASUVyBCzKRYoGee1fNNz/Lvz2u+PnO8Icxow5cFrnmgQRVOU27s73r69xhiNLDEdU8/K/lGGSdl8uSo0ZGmP5FIzHGPkcdFLAVR0k0LrPc4qFN+3jTKA2obLy4tizdhhrKfvV5yfn9N1HcMwLENVdRyhUuDiVAys9gdyTJgiiBXkyBKpQEEqB4s/pie1PsQUVYqRYuJ8/4YuBPcTpHu59fbUf4alFl+eJ8uMLLVczKilZaMQv3Wtmi8jpBS0jxeFcQzMs7bEk0Ri1lEFKaGzMx04r4i6GK+ZhGsAB6KDgrFw7h/hm55pVqDINz2N7zX1s5ZVvyamwKoPzDES8sQ4TFgbmSbBSuLq0SOtaeegtbwRbKMSvmWsnlVyQhYpZYxG75TrgFwVm8c54G0Dxi2AvvbShWEOuGEgY2jJRcoF5Fj4sEdbTe/q+Hm3jAHRdtsRA1iYUqLsH92oiXGcmcaJEOIShI1ROqEplasIZUZQKrK779x9f6kq5biEKqR8/6FIZEqZ2+0dd7sdzjvmWU21jGhK6r2n6zpyzozDqA30imWWd5tOplzrhmQ5EHS+hfb9vLWl3umWDRlCYL1u2WxUk5mzskes8/R9T9epPjPGeE8VEGNgnmbmEEhJmOdAmAOdZGxOII1C/DkXPxjNKkwt+JNS57RdVGqeksomBGsKsFQ27WkdujjyZaHqBA1yco8rGFVRaKizWkhKilivNjTrc2zbY5pGp28b8LT6uxylngQxWhroPW5KVqHDYY31NG2v1LWTBaXcUl1sTdPx4vn7/OHzPxCi4KxXWZqvAIphtTpTcKmdCWPEmoYYC4VTErvdHeerDhE1i05JOxzOedSTNitB31s9ZLLWft63pc2StWxqMiFlnFQXCqvtj+xIJjCHwN1+D84Sc1RtqnWLywSSyh9t62jCEdSsi0omkQUUrMSYKjWUlBmnicNh1JmetdIvH5T28A2Ku2X1LCrYibUP99CfvTkforUckccHr3lEUQ1hTtxsb7nd3jHPwjxpG0UAh6ag3jnEOoILCmKUF7TOIQZiToQUy4BU+/CXUVk2xqItgvLezs42+MZzfn7OxcWGaZqWtLptOzabDX3fL++5cnKttcrvNGt804IxjOPIfr9nk68UoKhC7dIqqmMAoPavTuCxEzS1fjGbWh/LwnpaDruTw6cgDOVn9XQ2oLXPSSTNJYOxxtG3K9qmwbU9rluB8zpfxlbjUYUkchIddGS0fprThAkGk2OxbtF5KpTR6QaKnYtRmp0YjGhtt1ptaFzP2fqC1WqDdy1ziHipgAy07YrNKjHHwGG+U4MvE8gxMY57NqtHy7pJyRDnRDSJvqDrGKFt1njfQ5HuUaxfckqalopiGj4pIKdIvMWYBuuOLLxxHPHe4huPtQarEBFGlKiOZKptn0HIZQBo/QiVAJLUWCyr/DHMc5GKBTK2lE8sSLd2AnSbxco2MkfgcyHdvOPxZ6hS7v2rRDB58BxZ/q436vr6huEwYJrVccr0SbRoGqVmTdPRmQD0JG8aT+1dppxV4V7WsampYpmiZY1RD9ZGlRPWKsn9xYv3uLw84+XLV9zt9rrwrDvS0uRoPh1CwDlH27QkaxQQEVtU77oDFTXN2HLKS85I0Twq2FK7HuZb98aYE5f54kS+GL3UiFmfW+8j1fXgZMMvqK5GaYzFuAZrNJK1vsU0HcargwPOlfeoaZazXuePRO3HpRy03ZQyIrO+Hg6Mjqw/nsJWA3RJPcVo31LE8fz5e5xfXGBsg7UO74reUxRFJUPfbdikQEgz47SjbRxDCGAjIQyQG8i66T0eMTro1npV0sQoxFj4q+UQq97uWvoI8xwxbqLtOv28TO0qsOhrVRWSsRPF+b/BZEFiQGLAd46mbzWddnrfWDoFpZyJiThHhkGNyGIhTTRNS9uti7+H3Pv8j4IMKYQgUyw6M/Kg1Dl9fD8glOuOqF84AYS+s5A1zFPkbnsHQFNqS1PyFpyaHgAAIABJREFU98Z7+q7TeR0503cdKUbGeS5RUnWIzrl7KhOROgBVH1XELIBvG9qmYQw66MgYwziNrOaO87NzQtApYgZt8dS+5ikyWqPiPIfiJICmn86V/mNRHlh1TKjDZsnKETYlPclRo/AxyurZK7YAQ5JxxUFL6j2tmUFpJenfBaI3qDevKBjTWFcyBou1DZTemTUeQSVguEbJ7k5rTjWUM+j8Pui8AaeibAlGp3mFKl9SaVUJrbrYCpdXUBFyzhGMYb0+o+/XtSDBNQ0uZcZpYJ4HxFjlylro2p7Nao11CbER5xvikNgP15BavGmx7Yosgbc3d5gUubi8QKxlu99zd3ers22kXLIcxdUuRGybsSGBCzhjEBK24M7WUg5XRXljztwNygCTkCAGrGTa3vPkxRXNqtiaGNHPNyvZPaXEsD+w3+0JIRbnREvT6nrWCdm1u3AkxhxHW+pnu9Sj/DU157GyfviNky9+e7NO08Tt3R3G6pSuOQac0/AuIozjSIyRruuWSFqBohrNKuoJevKlJO+8EmcVANgfBuI0MU8zh+HAl19+wd32hvV6Q0qF/eIc3nvqPMda53Vdh3OOcRr1Mkx1OHBF9ZEhJGx3vCeSNQo6a5FiuaLjGvMJqAVK8ar1klD5QamCaka5ngXU17tbNqcxJ8wpAVJmTlnnWZZnO4ySKzCkkGisGpIJqvPUEF16e+Wzy0AMQRd6QXWt8cSspYcOFNbbEBeH8vobFeHMSWumttWRDtp41/S573py1n6pWMOcZprGsVr1uE7IzMxTZB9n7q637G8jRlpeXD3n7NEZ/ZlnOoy8efk5b7a37Kew3C9NHkpdjilyNlGWTsmkfKsyMmeFOI2q2kk16gXGYWQOWtPKHHE5460hOcOwH7DeYdtCzUvaY04xMpW6MiSlAzZNg7OWpvFYYxUoylIAJgWkTrNMUz7rY2mSi7HYux//Qlor1K7w0tesgfTeLz1+XwR2hz1vtzdkqy2RFMPS0ytGqYSUGHd3xBg1NUDtNmoNGEI8dm0KhA3HyL0ozTTE4dqGw3BgOwycz5F8vWXTr8jltVbrNW23wjm9kSYruNI1LbkRxnkum1+YRYW4ru+RldpMRNuo65wY7TPWW1OQ2SR2uUbdT9Xvx2jUE1UjWSyk4/0qEBq6G8ryF0OyUaOeGAU6itLeGFEXPKMkAzE6TsGUSGimQFOc3bMxqux3noUyaI63TYCc1AyMIonTGk6tPihAnGYXep2xfjYYXcSlFWWdI4QAUDKiDfvDDiRgiaQ4IzFjRVHgrs3EtXBzO/Mf/+nX7LaWn3yy57/5Lz7lo6sNj8+fEq+e0L+65o9ffMntfq861ZxK71mIomQJGxOrFCHMRGeJxtO1nmk8MAwHpW6GWaNkyIQ5I8kghageEIzzWOOZA6ySV3xIdE6LZCUXHMZITBbjWnX1LzV9oACCJwegFOContJVJqZboDTLDMtG/mGb88EGvNcg52G9CVkyt7d3XG+3KrAuzInaoM8i5JLypXLa6omnqWDTNMvIBP29NZW9fwKVe7B8R5kZkevtDRdnGz54/oyLi0ueP3/O9fYG53RKFmi9aEBTkc2GKcya2pmO6TAQk6Y5m/WadrVSn9pS92Ypk7hKX1Mzn0KKt9VLVgp4Y4CIrX3ORYlQN2FFY5VgveQFUmtqWz7xpP3PAloYElImJ1unbJ9hHHBtQyzlgcvqr2uNthFzqZkoYJRQau6k6ZnzbhmxKOWzWcC4Eq1i1mjZtG1BRM09p4fa/lJPYmG1WjPMQ+kXFuJ31P7jYY68fLXjs8+v+erlHcPBMITfslllLtd/S3+5pl21PHvRMYbI7rPPGMZR1TJouy6ic29MsPQx4qMlR62dJUfSPDAHFT0TBYmZXIkWWdshlUGVBULK2Dmw3x+ws2UKIzpKsJLbj9siF9R7yS45BfUUEcrlBwyyBBdT/y61Zl4+9G8//kVu7bsI3Sf7Yvla/XqMiZvbW50cZQwxpjKDsRpi3Td4PuWYntLwKohUYeyjRyj3EOOclPBAMbya58Cr12+4PD9jjpHN+Tn9ZsPt9o7bu1u880fEzyqjyCW3DLE1zmBJNCby7PEFvmkUWCmL2ohVaVA5Da3T9ofNGXGu1BsUQ656f1K9odQEpPKINXoWOH+5s1ZFzvaYJjdkTJqRFHUo0HSAeWAOM3NMTHg2T64YD3v1gU1RaXy+QZxujJzTsbw1epioa1xcrCZDikp+h2JcpbTLEPXrm7MLvK/30CylhohmPkFCmRNqtLeXDSlIMaZODOPMnANffPWKf/i//xNv3kb2I0wpM263/L+/+4KPXlzR2Oes1haMw7iWJLq2tPbWDRqycLufaXyiX3W0OeFyxOZINmoA5lxDihMpsoypF9T+0hqLbxt1YkTX5xwi83Zb0uas4CpVwnfUDZ+WYnCyKStBIVa5WyWOlJ40oACEPt/9NeMYTjfkvX8/QGjrY57nxf3A+BVznO/N4dQyR0/apX4oBXTTaB4/z/O9HucxTy8HwwJ1aq0WYyxDadWrZbcf+Off/p6UIk234tGjR2rim3Wqtg4aqmheuaFJkTnnHX1jWK1bnj+5xBpLrCTxrNYXkjKZgHFO7RkVwkayUhTFVpBJ/45lIxtk2ZgVmbWgRLxc7BIr4IOi3noolSZ5GGAeyPFA3N/g5gOtVe5rdGvSfAbOMMXAHGfwHtd1ZUyd+tAaV4E0IREWovYUZ/aHg5L/u14jUzw9MKAtvc+azSzOhLWgLUQLyYacDSmiKCwWssXSavRPwuXZMx5fbvnm5UuyZCJa+twNgc++/IaLzYqLpIOYvvz6G27vDsQaBcsiCBH2+0SSyPmFsF6jhPdYSA0ZyBYRdSech0CYZvXkteo0b5wHKQ56GYSshJhy2FssFVAQc1zzlc53lAKW25AEkUVPRPUbVqd4rYljKjpba5jno+rq4ePPtik5bT3wYLOePmcYR96+eUvKShCIi6/qKUH9ZGOgFClQjuU4jkvkzDkXCVM9paBa4C/IJkpCryeftRYxlmmK/OmbV3zz+jXn5+fEEGkKCuy9/qm/Q0T1kVmErml4tF5x3hger/rSzhFMCuSgKoVsikmWtUiZ4UkBb5yziDuyVDBW1ROmbMRcG961x6UTqW11vrcWqTUJomp8NLq58UA67IlhB0FnU0bjmJIg6467/VYXpvPqvdo05BCgkAmsUckYhnIdlIip5cU4TmXkgPY6rddMR4f/eox1y9RpEYoYoB60NeerJ2cFEy1GPEYyTdPTRWUiWYl89OFH/OGza7W7jAHnVVr45vqG3/3hc1arNWOM3N7esR8Cca4aYF2C+zHy5jYxp8CjJ4GL8wYnSiVPsQihQ+Juu+fu+hYKD7lzJSt0Hj0/NEtJUIwpqheuWVJZY5T0biwlC6nEjGOrpnKkRY4tnyXTLUOUanlU0eN7vld/yeb81galXNSDuvP0uYfDgddv3uipkqUAO3LvqafpwL3UgG8zg4wxS72kapRSr+biSifH14xZRxR4LNnAMAf++NVXPH36lN77BchSvx23tFK8dXSNqmCMNTy92HBFS28EkyCHhLHKcEoC4lSelFNGiHjrNHUsqTnldUSKrUkZZy45IGnG5Yip06NTIA0HpBiO4bUfK1kUPPPab0vTAHc7wm6HuVjTrs8wzePii5PITvu80zBq9WpdYQmhouKTQbFYbe3kIqFy3tG1Lf1qjbEO71pFeI0SJLUKsLoxo+pDwdA0uhEXvCHnAnw5VWNg6doV4bDTgJct3rU0NtO6yFnf8PNPP8S5V3z98g0gbPqOvm3Z7/ccxplkHNv9yNdvbhjGiMGWloXlMAZ2Q8AgXN9OPH/S0zRG+dhimfcD25trDrsDHk/jC7FBQQ7NDpIuIit1PcuCki+BADAmLy0Z/X+70E9rz15Q3aeIIghSU1qpGZJZyhTkWMb9oM35kPRetXD1nUh9zsmmGw4Dt7c7VW8AIYTScIUKGjwUW9eoXC/4yKnV+0ixKzQFto4x6OsZW+aFaBqBJC34jcGVkXXb7R3X1zc8e/IYK0otC2WWhfc6jq5tW7x3zHPAjAMXfc9V0+NLWppiwrtY0MKohNcYyvcNyVrw6govOS+RNdU0HoOThI0j+bBj3G9pvaH1ljiNHK6vMTmxXq/IzuqGCqLmyecbdaUbZ/Ldjmm/p3/yBLt5QrCOZB1zCMxpgqx2jklEU0BACke0DuSN5b7WsYRiKrVRh+S2XUfbKhtHf0YtH1NWlDbFtPgyzbPSHOsYweVQxSwt8TmqVE+yIsExqFH12XpFTIEXzx6RkmE+aHvt8qynKQ772Wh/dU6Jfcxs58A8RxVHiyGJ0g0bLG9uB+72vQ4oRoCG7dsth/0OZwzG24UBhVXHhWk/YI2h65pF2aRtrWq0JggRg1LvkEIisCztMVMOYusc2Sj5Qawp2ti8SMdqq6ceYBUQ/OGbcwmQJ2GvADJGKoVOicFZ1Olte7tne7PHGE8IiVic7o5dvCPaejq9+pRJcU/7WPICg46m6zoHZiRFWDUXPL903B4C2zGgLnkRK56YLcTM9c2W3/3+d3T+Z1ycn3F7t8Vaw6NHl4BbkEXrLZ1pcDEw9z3rtUU8BAmYmCEHohjwIKLMmqq2b9c9yXtc06rfbQGdKs84SdKBP8MOs71lun5DXvfIxYZ5Ghm3WwiBOOxJRmvodJjxTUt8coFr9NpDzMT1CuvbhciBc7jUsmKliOOsn0NDiYzW4hqv7oRBCRKu1YZ5zFl1nRimOeN8xDhP05nSv/Ql4kdsiohMTOOkWkaTMN6TS2qmvFulNVLMsWxbNKVikVFPc2cdzkMKHhFPipntzQ05Rh6fn/Fo3WIMJLwCJzmRUypyNm1Z1b5yW9LTlB3Xu4nXNwfWbU/faE/98vFTvFdzbLWh8YoUj4G7ux2I5fxsRUQnlS0uGZgimkvHTEMo5Vgd/pB1ZIMRlYVJwhpHdQURqmKFwmzKy9QDiyNndP7pX+ch9GDD3ktz78fOGCM321uFoq0jzdroXZCsk1T29PWqSqXrOsZxvPccKTfMlN7hetWx6oTXh2s+en/D//w//pz/6x8/5z/+0xfEYECUfiZC6XEGvvzyK26vr3nv+RXnZxuunj4lZ23XHMkOyvSJzuL6DseMm0ZVMxS/UZ8MvivyLckMw6g3/PKCvGnJjXrtrLoO6ywxp8UTdg4T425P3h0YDwMmzngrTDGQ54A5zPiDLgYrgsyBgxmZ4oRYp3NAu56zZ89x/er/Y+29ni1Nr/O+3xu+sOOJHadnpmeAAUiQoEmTIEWpSFNFUC5TEq2S5SqXb1yla1/4z3KVQ/nCdtkyRTCANC2IBEgQgQiTOp+48xfe5Iv1fvucHgC0OPBBTTVmuvucvff3hrWe9QRsNULbgqQVo1p6Sh8DthItZ1QymUwKVNbHjkZDTy7PovOO5GQM5VPEFpaikMyUQaCglCYEg1JGyBxFpOsaYULJ8blncw2YhGBsKS++kJHLhA+Ovu8JzuNCom0CZ6+uubxYcHg45+ToAGM8MQMqKGlfYorZIFxKS62tIKi5v40p0gXHy9WG2UHNYWExWUBdjqZ5gwjDq+kcy+sdXecYj0qSknJdKh6ERwwyx1ay+cXFUfJJtcoMIOSQkObzhhM+jEpAlD0xZB51jHm8MggDBseHnxKt/XEbk0/eqglc77i+umbXdhR1LbkoSW7NQVL2Sbn1ba7teDyi67qbW/MWg6eqoO9bgnM8engXt1zy8NjwhfeOuLi65G+/Z9h5iaoj3+pGm1yyWs6vrun7jl/84s9zdHSQU5wFCU757WgjFh62rEmXS1zbsttscN1O/KCqAjOqUBZSLxYcLkSKvkNfG3QC37dMavGCNVZTlqJk6boO37TEXU/0EeU1PVt61+OXO/yuFUqeLShtgdLQpQh9jylKtHLoqmI0n2GnM1Q9YshUSBlYMylR1oJEDxmojqF3zxKzDHz5KH3jvvzKkXo+lBhv6fKBWtgKpcSoa4gbCKGn80L6NrbYs5hua1lDiHgvIvUhqiAET9e3NLuGXRv56Mk5z55fMBlP+ZVf/iVU8lxdvMK7Pqs+ssuEKXIKd2YdJYXoYge1UsQDV03k+6/WHG4LDmvLyGp0spAUfRdpti2b5QYfAtZYKqWzAXd2VyShcibP4DihMxg9GJDpvFE1iZiCbMgcZZFStj9JstJTlM8hDgncmRusSLL2tMZU5afbnD8qCdv/zmv1csycx7btuby+xgWPSQjXdbg19wPYm7J2oOuByLXatt3PPIcvYwxVVQq1TsF2u6My9/jM4/sczw3zUc20nqIo5ZaKLaSIVo7S1hwdn2C0YbFYkMghPUphlMLkHlcNrymBSgFrLYv1lucvLvB9jnOzEVN6dO1RhcIkhW89HoXbbFmlSNf1jEtLVbRYDUVpKa1Fd5nVEwJ1gkopTOixMZG8xze92EBaBSpQqhySq6W00z4RXIcpKk7LAl2PiabMDzrLuvINEqOgq2RLlULUZFmDqHIXIgbIMUuegveE6PBO4foOUsKYipQUsVQUWaWjjYxRtLFEROmjP6HTLctyD3b0vRiD+ZgIUdF2ntV6x2q95vJqx9Mnr3B95NG7D3j7rTdQyXM4G/Hi+XN2u83erFlrRVlYYZBp0Z6GkCuDfMvGZGic5XwV2Laea+0YWWTYHw194wlOdJVGGwqlcAF6n8QVIgoVkyyAHgIqhYN987kNIxOdsgm2ijm6Ia/xvB9CjsSIMd3I9IYWTQuuoI0i/OSq9tOXtYPWcLgRU4KmacWnFuGOygznhqo0AELD97HWZm8hIRxImamJ8YZXa7TGdY6ua9HW0LvE8+cX/OLPPuSz7x4xnxxRFuekJBsvJoVSAaM0hwdzHtx/wNNnz2l7lzenyaZfN/IveWkyxwpW4yrDC614f7Nh20aiMZR1wUFRUKoKawti72h6x/GdO9jxGFPW6F1DNIpt8Hjv6PqOzWLDxfmCzvUYBVOjmVcF1iSq2lIpKPpAiaJUUMZI5eX1ixwuYKJQyCpVE3aebdMRdCEKkwzsyHvPiyGDNoKuD+i2BwVGaXwS9s/Nk4QYA22zQ6lEqGrKUj6TkMBnt7kURaIFBmtr+n5H10ni+FDleO8zsJfoetFRbtuWzXbLq/Nzzi+v2K53bNseFwP3H9zjncdvcXRwSIo9k1osVJ6/eMJqvaaPYQ/6hRBlmK+k54sg5a6Sw6nvHQnNZDyii57gAr4PBAcqSt9ulcLmeeWmc5SVpbIKk9ibzylAq8HKJBu6SRudb05u5phANALHhszhiyHus1Ti0HNGoRrKrSteRSqZTKj4FJvzJ7GDGDZlyuqJJCyZzXbH5eV1tsWXIbbScnSrm4J8/72893s+prU3Yba3T2JySSizI4VOlsvLLRcXV9z7h+8xno1JyhOVQxuDiYnkoSpqDg4O2O12fPz0qYh+nWez3bJcLRlVFVVVitrdGHQUxkxKhm2faOsJ7cEh17pBGcO9O8ec3L1PNa4oRwUmKkyMHJ2c4lJiNhnhu57tep1J4eBiZLndsjMf8eTDj+hCpCBR7CRLw1qYVwVHZc3heCReqX2HDT0lispoSiJ1EqPGcduxahrSbkeXpKoobUlIEZOd3ENG2K212KIg9j6PozL5PgN6QxKzjEsU3vV0rsX5nrp2VHWk9BGpnsViw2qDLeTGriqTaZaO3W63xw3IqGcAVqstry4u+eDDj3l1ccG27dCqoK5GnJwec3R0xKNHDzmcz9HKYEyF0j2H8wmkO5Igdr0mBkVhhX0lyiBNUnKrJhKm0GgjobSFMUK8TzpHThpcDNl3CXz0VCiKQpDbzslBmIbtntjnraJExmaQg3K/OZNEgMp2iBifCDpjoypvyJT2lYyYmct9jMrCgxjRJArzUwBCr/V/t4bNagBscs0fQmC9XrNYLgVWDkPyUr7sh7+/n08Pm1dJuZJpcJ2TnixGMfplQL32G9sQY2C9XmGKQH1QMj4YoZQHHVBGSp6UNLtdw4tXZ/RdRwiRq8WKb377ezx/8ZLpZMR8OuHk8ICjgxl1VUukvFfMRwdUb5ZM5idcLNbUdcXJ4QH1qCIZhS00o6JkUtWirlFQlQJO1KmUWZgx1MBoPqFzgfc/fkrrwSV5ONaMGI9HHB4fcOf4mIPZhN53vHr1kna9RsUopZb3VClRqMS885j1lgeTLXXnKQqbY/Q0ZVmiTNY4KrEEtUWRx2ES/upy32eMfc3Z0Cch/u92ok8MIQqX1A+hsIHJeEpVjaR31TZvzB7vHU3bio0pcms771huG66uFrw8u+D52TlKWx6//R7HJ6fMZwfM5hPK0mCtoszKDDH4kjl3VRhODyX1zS9adBaAifJF1l5RSO9WFkb63aSoa8v8wNB20OyilOIm93wJEgGfNFGXEm2Ioo8JozwmJVQyYp6WxLJFpUQcVEMqiQqIoecFULgcN6LzPDukW+hsPqhiRn21FVTbaC2a2U8LCP0IQ2hgfQwFUVLZGjLiQ89itWS7azBKTiRxnRvehFz9aoCilTT7NidHD7iv1ib7pqUcUSd/V1AzhSEym1g+/96bHB6OMJMaU44wFIgPqSKqROv6nAsKIXhiTGzbnh88eckPn73CWsWssjx+cJe3Ht7j9OiQ09M7TKZzxrM50zTn8M4dHgdRlHjvad0OFMwnU2zulYUUIcPspA1miDjPv29TYjobU5QF9A6yT83J4YyHD+5x52TOwWxOWZYEJ+5+7qQnGcXLs3Nevrog+IBOMLrcsfjbj3l03TKqSqrSMp+Omc+mjEcVxhq0kTlnYQuUEdX/kNYWM0nCGJmBhhxm3HUN20aAGu96vHP4kZf3hMygy6JCGQdJSlfZtJl0YCWxfNe27HY71psNL64WpKSYHh7yM0enVNWY+fyQsqyysN2KZ3A+4GX+GulTykhui3eNjEu8o2/FAiQkhU4aaxSzWUlhI0olqlGJ0gVKJ3xoGY8KSm1YBsnddH3KfN8CFxNtH+mkAcx97RD3aEV5FIfSNqFTlL+rbjJAg5ZNGlUS29KgKPJuiiR8ioRhoyohuNtCVDyDuB9DBuY+xeZ8bZOmwago35ikLMaW0qLvHVdX1/Sdo6jFxyc3PcOYM3MQhZt6U7ZKeXtwMKNpGyw2O6VlxNUoknYYVUPUlEXk8VunPH77AX1rKKoDkYJZUf0Pyg8fPOvNRsq57FE0qCZjhNBHLJ71ruHV+QW+75gfzJlq0FZucdQNmR7SXqA9GY1lfhuz6DH3QIVVmUA/VAtyJk2nU2bTKVfrLdbA0cGUt956wN3TU8ajkrqqxc1hbHKJp8GIUqTrHJu19HaNC1ytd2zb57jeUVcFx0cHHB8dMh5XVNnyMiH9fO96irJkMplQVSWjSgAqWxgZzJOI3tNtN6wXS1zf4AtD3xUyXomRqDRBWUIyjL2Uy65v6XuZeTZNQ9sJ+X612bLZbGi7ntFozHg8pSgqrC2xppRfbSH2KcMBneRzNpmBlLQhomh6z2q1pWl6GhdoWkfw0gEK5zcxHs0YTzS97wTj6CT3xeiEMQXT+RhlGq6vPApDzFIwlTwhBZyJzA8P2awbcIpSKwol5mMohc3Vmh5iRJTGG0Ubk9ARlaFImkJuG4jCXgrkGAnSvrc3hVRcSUEymmAM2xBpt81Ptzlft3mEnBQjWzXJi2h7x+XVghATlRaO5J4EqW64oird8BBVApcNtgSgEepVjDFbdAxEhyh9a4Sjg5rHb5+yWCz5wQ8sv/Rbh5zcfYgtjSQ45xI6pSQLLI8UXuuec20doqL3ic4FNm3LptkxcV3+UCPeBbq+p+97FBptZXP6rNAg5rBVyTSQz+RWzN7QE42qiul4RGkUB7MJj996yBsP71KWJYURortWirqqKPIoJSbP24/eIPrIR0+ekQhUZcHJ3ftMpzOMLRiPKqpCfHY67+hdxCB8ZIvi8npD07VyMhIZV5b5dMLR4QHjUU1VWoJzrFZLrq9XQKAsDYX19CHgAIdl20XKouVg7piMahSRvmvYtT3L9VqAG+fx0aNtwWw0RtsKsTcRM+6yqLI3kdqj9DpnYZJLvhiSWMkUNdpWuGRYd56dT7io8vxTwJQYI70PjCnoXGDXdPh8MBdW04VIGT3zwxG7phOGkpd1dXg0YjI1jEaaqpjw9GxN6BJ1qRkVCWsjGkWhtFSdUUYtOs+HnU4QPWWK1MoQlIKMmuuh31Ts0XClxSUiAE3ncRH6pqf1gc2n3pzDyANAyWaS2yRv1v2iVHRdz9XVNQPZYKDYJaWQaLtshqwHqp1gyyoPsW8I7/HWj1e5nypIfaKwkUdvnGCs5ht/80PefAQ+Tblz7xGjSU2zE+6lBBMZfJCbIWU0eT+bRW425wObtmc8HmG7nucvX6GMYTabAdkGo5fDAiXllPceFRMHB3Pqssros8DqWpl9LILc2EIqN1pGGpXV3D055MG9O9SVza8nMXicxjyC8MGjVWI6HnNycsR6u6EoDUVRcnp6yuO332Y+n2GNzr1j2Eu7QAAuEkwOj1iuVyyWS66vrnh5cU7XPmE2nTKfTRiPalKMdG2D73aUhaYqDWVpxXJk08H5ht2uxxrL22++xb17pxRG0bQN14sVL16egYbReMJ0NiUNmy+PYhTsbWdSfn+KANYAQr8kJbkVU0DpJOBWUWOKmqgautATB6Q/r0FlNOtNQ9+3uORkAqJytSLfWhDUKC7+YsYWuXNnxqO3D9Cmx3v46P0l1+sO31sKG5jWinpsKE2i1JqysJAjUIw2BA19fm7RiJ5WF5ZQarZR+nCVhN+tFCijKIuSpEo2Tcdq17NpHdvW0UaEhfVpNuftVnVYhMM8R477QS4UadqOq+tlXhhSqt5siLwd1E1exwAwoaGqqn0ZmwYPln2jrKjKCT7umI4sJ6dznjy74odPrknVlm1vuf/G29z9uzMZAAAgAElEQVR/cJ8nH72QzZdEXDxA45mywjA2GEpxHxOrTZP7nwnnlxJX+ODBA2bzGWVZMfA5gH3w0XK1wnvHwXzOuKopy4LSCinfaJMTuoKACTFgCzg8mFBZTWUNpc1Rh1pEvjqrkpTan215BKKoqpIHD+5yN94hxcD9u6c8uHsq1LHgUdbkAy/lXA7pO713FFXBaDLm4PCQ+w8ecHW14lvf/jbf+/BpptHZDCFEKquYT0YcH86YjgtUF3Bhw3qzZblcAprVpuHlxQWub2naHX3nqKqau/fvMp7OMEUhPVS2PrHK3nBth0cBQpUjCPnf6Iz+RzQxy7JE5G3LGmUL+hjR1mDzn9W5t+z6iPeymTGJ8aykqKCuNHUpPkJN0zMaFxzMJ5gi8cYbh9TjSNt6/Cay67b0Mco/PpG8wgeoxb+BZAymKOWzRcTdAY8xiaoymFGFLixeKVbrhrZ1FFozqUYUWgt6PJ+zbXo2vWPZtCw2LY2LuKQxxU/ef3/n5hxIuxnwY7Bm3Je4GbYPPrFeb1gssvtBuCGuD6LiYUvvv/JAVmdkUSkhYO8PgrxSQ0gYVeFZMj+sgMiHH1+x7S1nyx1Pn13yC1/8WR6/+5hnT1/uTX5jFr3mlZ4XYdpvzqHObXvHatMwG48pTOLyeoHKTn2HB+IoN3gNDZaefdvSdx3b7Rbf9xzM51S2yjPGXhwevNyaJOlF7945ov6BQaWU3Qqi8FitZdBEaqOx1sgJHSJ9Lp9Pjo+YTCeolKhsKWCUUvL4lMJmQ+tk80muDU7nXM78z2Q8Yjady8/RmsVyw3K9pukdMUo/jR1xb3zM+HCOymgjeiFaUFMwPTjCJ8133/8Q13e88eA+b7z5JpPJZC9218ZgbYGmyOMR8phFrrOUIiq5fGPm2DxStgLp6EJHu+tw3gkXlmxAZkQFk4IIC1I+xWJM+E74rcenJaf3aqDHdy1d25NCoi4tB8cVRRHo/Qa/EX+oqjKcnMw4P9Ks1x4fI8GA1/IPCZL3aEOOjZdwXmthNKqwlaWNTgytbUGbAm30BGVz/GJBiorOexabDV3wFKOSkQbXdLQ7t8/7+XtvTplJ5L2kyPrD7JfCDTndec/1YsW2aVGmpHeBEIeSOO9sEcVnWw+xnyRJ2lJVF9lZTfiaIZehPs+HRNCsmc/GLJcNi5UjKU3fOf7mr77FqKxZLXd0XcB7md8NpH0xe9SZTZJPiNwfDoiNNlogbqVpOsfTF2dsdh0P79/jzukpVVnk75WdBEqbD4HAetvhfM+2rqjrEptLcZUSJuWI8gQmKaa5z+v7FhNLykri8QyRFD0xSPRAUgqXgkQEGIPRMB/X4rerEDQ7Ql0Kh1erwVmevV/scFVls0spr1XkrUcPmE7GXFwveHV2zg8/+JDr5QqQGeB6t0MbzaiuODyYcefukRhT25LJdE7nOp48f8J4fIe3Hj7i6PgEpeTcjvlgNUYOHKOzEiT/PinLz7J/T5+pfCE4Ygj0oROUM0g+TURMuodGx1iLTm7v9B6iyklikaiClN/FFKW67DNsReJmPKpI+BRYXG8Fv0C0rbY2PP7slLZNLBctq0UjrztTA10gz9gFQzAqUteWycQSg6PdtVitmc8t4/kIZaEyhmqkKI1F95rdsmH1qsH5ACWMDmvSRBMXkbEdfcrNGW9uGEFnh4FH/m/5Juo6x8X5FV3vqMcj+sZl/uNQoiTR0Q2aQFR2FpfZkQ8i9dJ74CjrNX2QuIDgUGhKW3K1WNP1CV1CoQ3f/ua3+eH33+fb3/o+m02brSxuysSUN4tJae8kN8ynRDyrqEc19Xg0xKDQti1nF1e0bcdu13F4MKOuSqzN7ymXq4L8BrquZbWOGKsplPTI46piXFX4ELi8XnL+6py6rDAanO8pjGZkR8wmNWUev6TQ0ex6jLFEbTE6YnRgXBeMS0Vdibg7RkNC5VtS7l3xTdMka3IVIjenGE0V2YIkYAtDWRbM5lOODucoIk+fPaOqSsqioNkuib5h/PABJyeHnBwfUlgr/XuCypd88ed+nqoumdYjqrIiZssPeabS8yt1cyXEMOSjJkF4VyuatmG32+C6FvLYTFvRr1prQCV8DPS5AhlsUxVKgLjEXlestPSuXddDitQjQzGtJYXeR7Y7CReyRYH3FtdHSSHI4yBjNPWoYDQac3hQ4/pI17f4NLgd5N7ZaOazEXdOarTy7DYyp1fGoI1iPKk5no8prcKHXtaIVmwudnTrhtArtiHiGs/44YiD4wlj9WlTxvaEoNfnnbf/fyLRdR1nZxeZGSM6v6Gk3N9Pt0rkWztEeIYu4J3PJPE8woh5iBvF+WykZUGu11sxsMrQ9tmrS87OzrheLMTeJMW9OkAbIXsnBSEFMRB+rY4QMGo0GjMajdCZ2D2YjK23DdsPn+QhvuJwPqUuS+qqEF1nDBRW0rBMpXMeinBBrTWUxtJ0LReXS66WawGgNmtmk4I7R3MePnzI0dFcjJAR+uNyuWK3a8QXVyeKKnI810zriDKRoprQRiOVRky4IGJjfO7jg9oTs5VKWKPRhSZhCTEx8gEXAvPphMP5jHFV8eDeac4sdWgUh0eHPLx/n9PTU6qyzO2HzKDVSDOuaxIRNYT1IKVsIp8SUbyHBsf8IZMGYLlYsNtt8K4TV0aSHBhFJrdHTUhift00LdtdS9fn8KI980Z+ahxGdblq6Huhgk4nltJ4QU69xaqEazs0Ba6H3hlClBCltm1IyVEWgaryjGclZVGy2SjOLhakZEV7h0zNysIwHlV4HzFWUZRGWgItQUijylAWiotFw67zVGYKdaKsIrte03aG1WUgTiLzI2jD5lNuzmEJ3+LDvm76JaVt27RcXl7u0V3n+lt9483fFzvKbJ2kBptAebDB3xCxb3rDrKAIAZXJ1m3bDe0qISR2u57lckPXZR/S/LqMNcxmc6bTKS9fneFDDpdRN8JvEApcYbNdpk43PqTa0PWebduy3uxomxZrNHVZcPfkSDSDKVKVhros0KX4H1lr931WDIFts2O16XAx0TlHUWjunh7x+c8+5u6dU8bTkYi+lZRRXddzcXHJ9aIh+o5S94xMi863vi7GaKUJKt7MjtNgXCWqCrEjlRFQaQvm85lIwUBYKspQWrGPnNQPeXDvmPV6zXKxoCgK3njjDWazGQolbK0AOkcjDtVODA7JBBUWjrGZwxsSi8WCq6tzVssl6/WGpmlJSbJWvHcoJYegUgjKnFuclDwpaIK39BGWqy3r9Y7gYwbmBIeQjZnL+CTPNMVE3wfaxlHYGVaLqCD4TojpUdG0PZttS6RAKSsEgQgpaYmC8AGlG4xN+JjlaiHtD3urEn3b430vN73J7oNa5tJJO6ICY2tiSGyXDUFbxmqCnmuadoPXAVtBXQlwumt+CpuSH79bEfQzu1rvmp2AQTm9yfssUpUZzB7pRYHK1o46+7RqfYPeDlB74hbolNL+wvU+0DsHVCTCfiG3fZ9L1rQ/SWezA/6jX/gFjLGcX1wywKCDg9pQFsQQcN7T955i4FNmskSIgbbradqWzjlSK6DAwYEnJUWpIXUC/sS2wxaWshQ7Sq00PjiatmPb9DRNDzFydHTMW28+4vTkiPlswmhc750flNbYUYWbTWgbR7IB7SOxbwnRo8uC7XZJKCdoWzAaj+l66cGivqkKBqvK8XjMuB6JMDzdIO5ai+bTkDCFobRjpqOaO8dH2KLk4OAAlCZ4jyo1KUrytCDgwshxvocosQTKaKqyJsTAxeUVH37wAdvNWmRreYFro/aZNsbmKbmSmWUIPveOGqc1aMvOBS6uljRNjyRAq/2tObB00GJ0vQ+2ihrXF5yfOSqbmFQjknKgpDxdLDfsGoct5SBOBNCi5VS6wBYV43FNSrBZL3BOiP+AVGomiZjdJ6zNThFa+nwfIw6PV2JVOp/OoK949cGS7aal0mOq+YxCX1FNEg/uVThv2a12P/3mfN1lbyC8C3y/3mxYrzc5aSq87miQf9XioIJSUp7FPHw2OVMxxtftMuVW1Qzq+oTKNL+bGznEQOu2e9VETNKTlEXFm2++w2fe+xxf/ZOvinFVFLmQ6DcHoEvyM5bLJeOqYFLJpvdBQpQk3q6B6DEKPAEfJUW50HKT++F9xij6Th/2digxBLatDOt9SExGFScnx4zHIxH+Nm3upwcniITrHevNhq5vIPYUQXyRAgmsx6cOfElR1kTvxS83kRU+IjDuuxZrSwmoRcnhka03lcmHng/kT1XyZqoKVY/Q2chLKYOpS2HuhEjqnfi+hkDbN6w2CzbLBdeXVwLia5lVL1crdk1DCD5P27IPjzKizRyQcyQaIwwKQRfwPqF1wpNY7VpWmxZx95DnLSTyW/1mIqtSBKgkFbx62fDsWYNOgflkwvGdiqLQNE3PpgmEKBvK2kSM8rkbC+VIM57WFGXN4mqF81nvGkS3qa2sHZ0BRb/3sRVdqQ+RtofCWFQUxlI9L7n35jGLJys2i4Y4KahPDNO54vTEsrzuMfr/J1XK/ksNH5h8WFeXV2w2Gwo7o+19LlmG2dYQsyAN9dHhnDffesjF5SUvXp4L4yb4HFdw60co6QeHmzRGsMZmsECa9D01L8a9yFprw/HRMZ//mZ/l6ZOnfPjhR7g+5PIlv3gGtFbe42q1RsfIwWxCVRf4GHK/tMP1HUZpTKFQSgTaQhaP2RhYFonWQpbW+aYnQXKBEo2ajOg6R1WVGGNZrtZMRjWQMH1OVXOB3a6h2TXCSooeQ/anSUb8X30gFZ4UAr7vEDKlRMZ3zgvi6RzeuTyiEQFCSoqyGBEIGeXuhYgdk+Rv5opnaMdTyv260rjMo00qklSk6bZcXJ1zdvaS3XJJ33bSH7Yd6/Umjz/ifiNG0j4bBsWtiFIhuQ9FmIgbMtvMOxabhs6FnM0SxKkuO73vB8IMl0YEDN5rLi4aUpJA3quLhqcv1xidqEYFk+kIpT3O91RlDglWUJaew8MJRaHZrNf03uUyXspnDdgiMJ4YDg5rlFJsNjvarkebMpNBPH0TaQl46+lDi4+Jclpy8jMz0g93vFpv6ZVnfnRMqRNHhxZdHH66zfnJjXrbQDffDTjvuFqs6F1iPqlo2rWIUnN5qbSSD8fCwzfu8rv/7B/zcz/3Lv/m//hD/vgPd4RY0NHg1E05LH1EXhx9izicSyju0dSyXUk4bNSGwBAfKABIUWgePrxLVVm+/o1vsGt2cjMPm2Y4XfJsUQ7tyNV6yy7r+1CJ0PfZslJMn43WRK2YTicURUWIAR0VVguxP2luWWkolIuwa6kLSzWpqUtRvK9XWxbLHcZcs6y3ZJ9tnIsygvIpf24aq5IoJbQhRgUuoJJHFxJxIewFi3ioin2mdwK8ONezXC5lBpnpcUZZUpRbQ9QsmahDTvJKkZgcISkJDI5Jxg7ZyLnZrrk8e8nZq5esVgt834v9Su9YrjY4FyjrOrv3y8EhdEp9A9wwCJDlNk+RPBdHZqVK0TihuYlLQciSK3FvuCGWDL/keW8aeNuZQx1FguiClOFt16NUSV1r0IouBbQuKMrIbFIzrmC1XtB1MqLBaJQBm+RiqUeJ49Oa0cSwbXfsth4fFNYmIGAsYNLeKd9F6HpPmyJGRdSxIbZSFpdFjS4SZaF4Y3L86TbnT3IHu32f9s5xcXktD0LpjMoNTn1glaIoLXfuHPOf/e7v8k//+Zd5/4ff5NmzZ3gfsaUl9lIihzjcuHFf0vp8ukYvAMKdO1POX12Brkl5lLGXDWtFXZUcHx3yve9+l8urS/wQP0geraTb9+bNewsx0TpHn82dDTmnRGVndyWk9hQT6/VaQpkKiwYKkxPH8s2Q8kzXVhWjusYVBjM41muRXDWdy+4OOfJAWVAm098E+Q0JHJIvEkLKptaBsgjicxsV2kR63+3fp7V67+mza7agEnVVsVq3tF1PWZRUZY2xwqDpXAdRNkBMMgv03lEVRX6/0PYdi9WKs7NXnJ2fsd6s6bpmT8To+p62l+zJQbeYlCh2ysJQ2OK1AKkYPL3ryac8LkiJqKLBx8R66+idApOjOWLI6dvZ5uMTa3JQOu3lz3kOLw9a3PqDi2w3DdaMMKXB+4A2HuUjKWgm47nkboYmC8g1Riu0lQquLMXDdrHc0LUe7yFFtTfqL5Ki0EKuJ2aLFifPTWvHdFoymhrCNlKPLEE1lMYwGX/aOSc/Wtre/veYEm3bc3F+mRcYdE6yFU0OLDIGRqOaX/zlX+a3fvt3QJf8+Z9/g+cvLtDWUtYltNLzpARdL9YmRpvsQQSgSTHg2p7Hb9/l5fMVbSxwybLLsXqKJKlgMfLq1SuappGA3jgwhQYa3vBgf7Rkj7cAlSF6HMglmgzVd02DUoaiLEmxJEUDVZmjAoVlkZQm5ITmWFiUAZ2E3jedTnIuSdqDYWiT2VES5TeUbQqRM/VJ+s6YIPURr1pGGGwhJWEEUgoS/puDYZ0Taddms+bp0yd8/et/xbOXl4xHY956623efvMRJydHVLXNqWVy84foCcGxDZ6m2fHy1TkXF9dsmxz90Pf0rs+3VJ9d6VUW2EMMiZACHkXsfBYpt4KEZzAuOEdSKSPbolJOSeO9Y73tWa0dUStMqXPSWaL3gZAPuNfX4iddqV7HR25XYt5Fus4zyqQTQZg1V1c7jNLcvTOlPq0YjzYsVj3rjfBvtSkoShGZt62n7xwxSPUVY8ruihpCxLso3rkp3mS6GsPx6ZjxpGK7dUxnhq7vKMuxFD4/4es/KCvl9huVZZ3ykoWmbVksV5mnqXDeZRBIRiXGWu7eu8Mvf+lLPHjjDb72//wpH7z/jL5PiKW+w4dIWZR0bZeRW/kZ+zAjhDS9uN7yj37983z2c1s++Kij8YrCKJLP0HqMeOf4+MkTul7kTPte9tZ45id9DQ8b2IMcSiuid3tgImaak4myYAbvzpgSVS0xgwFxVfBKCAFGDfI3vbf5J1PQ5P2a/YYUt0G9Z8BEjCDRmZboQ0C1giCPxmNGo4kYXMeQZ5yGGDP3jESMnqdPn/L9H3wP5zXXVwueP3/FX/3VNzk9PeKNRw/53Hvvcnp0gOs72mZLCA5rFV3bcHF5wbMXr+i934N7wydpUMLCIWIQsoFIpRQeMeAebNRVSDIuyS50xkoCutERrQzO9Wy3Hautw0VDQKFcoiw10Uecl/V2MwX4/3qaA274+mYWwzEtQqcUAE3vEucXa7pux5tvHnF4MGI8NfRe2G4pBwrvmg7vg/gkRU3fix1NDAmvFHU5yswkQ/COGHqs1cwOxtjCczSuufvggK7fsOuy2F1/Sj3nHjl9bbaZfw+Zra3XO5arLWBkow3EZyWnfV0WfOYz7/KFn/8CzrV88P77rFYNJCMRCNFDntO9FpY7OGOTS0Xg+qqlKCq+/Du/wf/6v32Tp2cXkqRsbuapMUbatqXrndClbr3e/Mh+lEhx698HdHHv/4Jg/0JfHCScgs5pI6BG8F7yI7UCbSkK2YQoQ9RyC5dWU9clvevoXY8xo/w+pQLRiB0IkF0mhk2sxdU9RBE/p4RKDh88u2ZHWW6YTMfU9YikhiQwtQfKIHF8fMB0MmG97TGmlCRo1/Py1RmX15e8fPmM0+MDCJ5RVXJ0eMDx8SEhu+e5zKSRZ5EPkVw6JqUkii8lQg7ZFQ8ptUdDh9GVGdhaxuSDSsYp1kiStg+gWomEDOJKJthGlBs5X4AiRdB5o+Y523B/DmSXm/ropjWTUV/ayxltVCQjPbGLcL3uUC8W3Ls3ox4XlCOdecWGEKFtFd5VlLaiKOqMFQTapmW5WnMwHRGDo6oNVT2n911GgxNtu8VYgcqm8xG9H+Voy0+J1v4kN2qFoHA+BK6uF2w2W2w5F2ZQEmKyyYttOpvw2fc+y93793jx7GPOz14SXaA0BcW4pveRVdrsD8OUkniAcuvmVpGkLJuN4emzK37rd76MLt7mv/+f/0ea7RbX99lhfLgt0r63/OQr/0lfwwYNOWQGJb0Qt+D/NIyIlPgDxd5htaCRvfd5DlhCKqmrMs9U5XupbMUSojBnxqMpVmn2TUsQ8nk9HlGWFd6L5673DpcXnE4DmJIjB4HdbkPb7hiNR0wmY4wd7Z3zhw06nU74tV/7FT744AlN0zObHVLWtdiJrK4pSsPh0Zx7p6dMyhoVE6vNio+ffMzLV2dinKUGYUIG05TUTi7I+EjsUYz02+kGGR9GYTpHGkqIsvRzqCCx91ZnudocXVa8eHnNthOBu4zTsw1m7lFvitkBHFL7nJIf82Tlj+hbbQQZFQlyoCatCErho+Xsqme5vuJgXnB6Z8LRSU1dW5zzGCJqLJ/BeFLjes963VKPNcZM0Eqz3XSMtNAYy1K2V9t2YESt5Noen3qmszlWF/uwqx/39R9wc+bDaR9UIx+KApwPXF5ciSp/rNludvvFmBRYqzk4POCNR4+oypKXz5+w3ayoipKqqtBa45IXdkcQNQdJ3Nd9HFb1MMsC5xV//Tc/5OXZkn/6e7/H5eaS/+V/+N/Z7Vq6JDOzhMisXHg9vem10c4ePvjkwxzmjTH3QkK+l7tLFoS42slVPgzEScJ82u4avGtJYSzjl8pitFhqlKWlrise3L/P6eldRtUYDfTtjs1mDUoxm06ZzWbYsmQ4ZHrnabuW7WYtuksvDCBhUt3yW2Qg9ufRQgZJU0wUZcG7777D47ffoe16EhqtJVvFuZ6iNFSFlhCgJMwm0xQcHByjqprr9YrrxTVd7+VnqZiritzgKBFCR0W+OeX6HG7NGENeiILiaiXfQ+aGCmsG4r5mpmqWq5Jd1+2BsWHPSeK2AGj7KEOSlDMD2WWotvbPXT4T4RrrHLwU5fVmxtpgvg2GlAxNq3BdYrNe0bVzTk8LdtueZtdyeueI0bQguJ6ubWmaHW3rIDv71XXFZDpFKVgsr6nrmtnkMHOxB9OvKLH1ZU45+1Sbk3izfG/Np4YTLPjExcUlCYc2AuMbCoErlUebgtnBIYfHJ8SkWCy29D2YsqaqHZFAv3P4EGhbyd1QJKxSmTOqSGSkU3nM2FJP3uK739vxm799yO/95/+Clx9+yL/9g3Mur33OzogEHNpGkhuW7bAp1X7RDDLNH60O5BASm/wc05f/TMw3xvBxSH8hi8vmWLwAbFqHLoTZosuC4BMxWA5mxzx++7OSiRIjfdtQj0uSmoDSVOMaTDaXQl6nNYbJaExhLE1ZsF4vJTksysFgbMn88JjxZLZXgBitM5NHoxDryqKoiEYMmodWxRhNTLUoaBgOQxkPPZgf8ODx24QYaduG5y+e88P33+fy+pre9ag0DEosLkEKcqP7IOMOlT109hEGeZyDUtkwS2gpaDn6tNX5M82HTDTobGEqVp431ja3n1kaZs0Mvsiy+fbK3TzB0SZhKzClxjkntpTDwZrELFpsn8Qi1flEv4lsf7jk4ydbTA5F9qHhjUeaaqQwGowp8CT64BmXmtlsRDWqMFrT7naEzlFUI3RtCckRUpR8mUocAAeL1k+xOdOP6bvT/n9d6zg/v8wLVBzBTWbxJKVlYY0njEdjFOSbEZQyVKMxutSsmp4AUroNCgtjUUoyFuV0NSiVODw65PjkHi+eX3J1ec18NuK//m9+g/X6nD/76gestg1BOckaCiOsFmpUiDd3pLp1uNzm/n6yJPrklh0ocWKSFVBRSP5FziwxWiD7gTPatX12akuApowJYwtsaQkx0PedvDdtqOo8FgqR3onrgNZ6714YcqyE1rkq2DWEpKjrMUfHJxRlDdns2WSaXNu2+cbIgUX57d2mS4Kke2v5kPZ+PkMcQ1Jyk46qEe88fpeHD9/gxcuXfOdvv8vl1RXDKFQqjqGMzpsi5s9QD9FCUnvEJLNbk3txjZDkAyI1832P7/t8yEi4bFKZIbUH7NTfDfDdUsQoJYbQRTFwpnPlkYxs45gNo9Otta5ug0eG6KW9UTqyXO04aYuMD0SK0lA6Q1QRWyi0IXs0yYETo/y54BOt7zMiHtHG0nuffYB//Nffe845vIcYY87ivBYWR5KhawjimSIcyoKYEl3fZY9VIxxRa5nUE6IKJH25t5VIg3+ounEykMNQiAGHB8fsdh3j0Zyv/MEfc718wm/+w7f51//6v+LOna/wlT/4U87OO/peglqjFtlOGG7N2/doLrk+eRJ/8r0PQMPwZ4ySMx8FVVlQlSWz2YyqqlkuF0JbS+Jqt3GO6BzT6YiyCnTO0/VOtnh0osNM5J42l9TOi6A4Q/EhpDxSEmI4KMqqxhYVh0cn1KOxbH9tsaXdW5dUWekyhEX9ONR9nwyWhAIo/zn7ECeJs8BoYRMpKIqSx4/HFGXFX3z965xfLmi7XvrjEDL5nnxjCx82BYVPEaMjjiR5lik/7yT5JKREClBOSuazGfNpT9evsYUlJU+K4UZLrPZnagaChumBrE15qdkWJwMZ1mqqymKsbBStBYjUyd6s6ZCyzUzm6yq/F2GISEPWTt8nnMtlfApYA1Upn4+1ihAcm/WSsigpCsMoJ2f7bCrtk4ekiG1PDJq/w1P67w8I3RDUE7tdw2bTYG0tCVAh5BFBRMluE2QwW0IqHYmxx9iS6cEB5ajkarng+fMXKG4i/3z2+1SKDHxIj3dwcMR20/DWm4/51t98iz/6o/+TP//KA/7lf/Gb/Kv/8h/zcz93n//r33yNb33rKYtlj3aWSCDmGMIEt5LTfvz7ev2/yesZNo7MP7WkfmlFVdqMPmqs1RRGU5iCFEImDQR639G0MusNweNcL+5warC5yY998ANWQqzw3mc/pZTBoQ7pWTxVVTGqxyhlCS6ijCYSs2P7YJ41BBGp7Kp/Q+y4vVEHszUzrPoMPjHYxSgtVVFGZgss9+7c4+1Hb3FxtcB7h3cBpTSltfuIQRWh957WyeEIibIQ+mO04J1C60RZiuesVoam6YVTrGA0HhHIrGactKcAACAASURBVKkw8GlvPZ9bACBKSuJhBHeDK0ilUJaGorTC4kHGODFXOBlJYCDNSHaMaHWtMTgnyWBDLmzTBNYbx2hcZUmip9ARrLQJIQQ2XU9deeqqwvcOYy2lKQi9/IDkBWw0KdF37ifuv08XO4/QqVbrDZtdi8noosDt+rVuvGs7VsuF6OxmNTF5vJeh9cHsgMPplNoomnyikIkEKQ69RC5NVGI6m7IOO956/A5/8md/yNX1kquLC548fc5v/sYv8dtf/hL/7X/3BT788Dl/+Md/zVf/6Fv0Zxci1g1+vyFvv5sfh/ClKKflYJSlMotn0GkKihiIURZucD1NcFSF5fT4iIf379G1DWfnr1hv1jjXs9ms2WzW+N5RlIUAFEPE3rAxh1c3ACAxR/YZxW7nCKHPlDshKngfiFFRoHBul82xSlK6ycoEOTRvj8R+pG8jp3Xvf74cvkrJIdtmcMZWFdZaiqLgzTff4mqxJMTIbD6nKCS6b7vd8fFHH3F5uWKz2dB0Dp8PxjgaURiF6yPWwGhsKVVBjIo+JJxr2XU9zkv/3vW9qG58IiWdKzYBVTQCIsUB5NM/euoqlRmO6pb4HPlVI7S8gW45XMfD+ElMyjQmCqEgCpeQtgm8fLHB2sjJSYlRUNoMaGk5aDxOMkR9g1Fa3OW1FeVOm0GhoNisdnTtp4ydf73xvl0WycK5vLymax2z0Yxd1xLjzQKTeZMsoMvLK9q24e133+TgeMLl+1cU6xWKQL/dMrYaM61ZbxtcUtni5IbRk1LIuktDVRUYq3nx/AW97+l9x+7ZNRf/0//NX//13/Lb/+RL/NaXv8w/m3+Ojz/Y0LSO9vxsvwx/XKPyyfI9kfLilocmXFGdZ2Qub/SItTobVsuNcP/OHb74hS9wOJuiFfT+s1wvr/no4485f3XG4vKa7XLN7N4dCi1eQVHFnHKthvQPEhItMCCwxoi7wnbX0DadxO0pw+X5goODI6bTMZdXr+j7HW++9dl8kOj9ppR+VVzhh/c7/Lsgh5k4EmOeL0cIgeDlz16cX9A5x937DxiPBYmczyf82q/+CsNQo+u7PYj13rtvsVyt+ejjF/z7v/oOZ5dXpKzk0EpczgMQkqHPtETfe7rO4WLEBUvrAr0PuAgCPWlSCvubfs8FzOvxx7Vf8psJAfmiAGZGU0SbL5KYdZmaoW8eEHvp1+VglI8jU0ujZbOOnJ9tqUqYzytKazHa0jmPjwmjyz2irpSi7wM69EJPTQqVjLCJukjf9D9x//29fGtv+mX5oC8uL7PPTYHrtzejl+ETQxN8yJzMl7zzzgO+8PPv8fTZ17A6MRtXPOtbHt075fBgwje/9be8WjR7e8y0lzBI39A7x/RgxsXFGS9fvsB7RQgjEo5tv+Xb37ni7GLH5fWcNx494tmzF2w2G4YIPK1yVuKt9/TJDTr8lwg5j1J4oTHzJckPTgTHIeeJJk6PTnnv3cccH8wptJzKk3HF0dGc+/fu8uL5c14+f856ueL+nTtUVY0xGhf6TKLJyWIKCC57uuqMrAwer5Ibs91sCVHz4cdPeP7sa/zsFz5LYRPXiwuqesbx8eneuFkICZ4QVO7J5JRPKtH3/c2hqxQuCOLuuoaubUSw7Xu6rkMbS9vu9uZnILzjYUGPqlKcDZQRt4Bxzb379zm9f59/+5Wv8uLVZZ78CEdVo6UVahzOebwTn+CAsL1ciPsbl8ydleckwuuhpH2NfMDrt6ZgH2l/e6Ys8LdF9gjKAJ73kaouScnk2IbBsnP43sPPE2ArBMVm07FatozqirKQCqttG2KCuqqEXBLETTCESFVW+CxDdCHm522ZjKc/3eZMeQ50++1HD4urFSgJEW379uZ3k4ZoiUFi4p48+Zi/+It/x8nJr/Lrv/5Fnj8959lHl2wWz9kuV7z1cM69uwXvfwRxIdC6IvvNZotIjeb84oIvfelX+eij99lsNuDFKh8SIUnpEFEsri/41re/yfOzc9rOkZRFEYgZGrp5gD/aZw5/olCaqpCxQ5+9b2V2KKhsUViq8YhRZfn8Z97l7Yf3OT44oLTSf8a9nWOJHRXM3hnzmTffoiwss+mU8Wgkyhef6H3i1dk1y82GeiIczLIgp2cnUvB41wkwQuL8fMFHH58znh1xtlhy+edf4837J1SF4uz5S6b1WHJSFOKvYzMXOBm88+LhmmeW4kUkc0OXzZm3mzWr6wuia8FqlLXSenQNtqwprKEsR2gbcK7fO1gkpSFXGEYrVEy88+gev/off5Hf/8pXaQPCyEki4et6RYgxm7sJiSEEI9/PByEJpKFNSrn/z/POlPbG4zePNMNDQyU0HEbWkLQAbFGovPlgGVpsScQrixLpZGKOMEkoLesjJkhBobKMz3vF5ZUH03NwOGa3a1muG6qyhiTCAxVhOimRdF1FaWvQBbSd5JsmD+pTlrWvb9Cbtx8RCc7F5QVDvmbvuj2SloiSWeE9282W5aLg33/tL5mM4D/5rX/AP/+9f8m/+7O/5OMPv4cxjtEYUnL7D3a4geWjlrPROcerV6+4e/cO3/nWt/HeifA2N/RKWapqxBuPHtG2Ld/4+jdouz6PB/Ipmn6Uivi6m/3Nz9Va1AgpZsAl80NVkoCbw9mYX/mlX+D4cMp0nGeFRtA6lcOK6BXJisFwUVjG84nMFkOgaRqcc/TOc7XY8vW/+S7f+d73QcPdu6d87nPv8uaj+4wrQ9+39F0j0X7J0LuWzW6LKipO7z3g5fOX/OD9Vzx6cI/j055N26D7XhDyqsR5j/dR6IxK5qA6I+OgwEV8kBmcCyE3aJbeZS1jHqv44AjBoZUV94JhvBTDfsheaC02HhmkSVrz3rvv8P0ffsAHH78QHWxGib3PcOtQseTS1Hsv/fSPwwO4XbKqGzLCvu26/SzlGUpLIsoXi9h3vg7ASWhTF2WqIH11FhD0DpByOuY5qM40zdYFzi6WbHY7YvK0raMxEdfL4W1UYlRryqrAByfyQVOgjabIbUoIP+3mTJ9YyAk22w1X1+I5I5YeEWWk3Ik5jLV3LdutZbSpSCnw+7//p2hT8Ru/8Z/yL/7VZ/jrv/wzdouXHE4CwXWSNjY8pOFncsPP1FpzeucOr1694nac/eCScPfeA/7Br/8jvvonf0LX9Xt+7id1C5/spW9v0CFuXGeSOgPXNnPSkozMMVpxenzI4bSma9asthK6U5czUsxOeN7jk+gxSdDgJMYhgXOeza7jxfkV3/neB3z3Bx+wWG9BweV6y5MX53z+vXf47Lv3qYpI8gHnIq4XQsF4AqYomB3M2GwaVosF6y7w4fNn7PoWayyj0Yi7d/5f0t6sSZLkytL7dDMzXyMiIyL32tBAQ3p6podCkeEI3ygyv5j8AXzlUMghRVq6Gw2gqwBUVlYusfpuiy58uKrmngU0wM4Jkarc3CPMzVT13nvuOedeA4mhExqgqyrqpqHUWO1BBOVD30na7EPuvwWMUUyUxSQtHGNVFrmn7w8YJ1PDpc0TcgRqpQWTBFgjRprK8T//T/+Jrv8/+eHdBxLCxS0BsfQuUxLwSg7dsbdDOabH/maSdo/iJKoeny4njxeT1ULj89XmE0DsCACl/POlZaWUppnUWBdBBYwRCmEMKvPFYrZ4lcG9Mg/G0LU9vuuoq0jTONY6ME8Ga8WMrXIVrtIkramCZhg+l4RwenKlAlMzjvvb7rbY2uUR5xGtbR4ABELx8gx9z2F3wBr4sNvyv/2v/ztaX/Jf/sv/wn/6z/+Zhdvw23/4r/zm178ba5/SOimFedlQk8kEawx3d3fZISEh+LDC2oovvviSq8trPn68zbrCTz7Mn2CXfBpB5SuraXRWkMQkNh8xZuNdmaxmbEVSht7L5Ku3P7xhv14x/eXPmVYVSUWGoSVbtjGoRD+IjUVK0B563n6847/9w2/49bd/4NAFgtIjsjhsDvy/f/8rbm7e8ze//JJpU7PbtDzcr7m9vaEbBpRZ0wdRi/zsF685Xy44O5vS1LWYkbka5wy77Y4f377lt999j7YV0/mCGLODfRgkFTdC5l9tdgyDDBSqmpqLixlPn55zfXUptR7Z2Y8ofrMpZGLDcb5qiVZ+GBCWU8Xzp9d8+folb3/8kVhqSKWymCB7AwUh7ocUP3l2qWy6/CdJo0ukVHkVnD7DdPLnPCwpJLSR1lD59wLyyeF8Ss5QghJHT1Vr6ok4JqQY6bOHUMzoZ8oE/xAUCXGPDDFx6CKD7xl8oG17lkuDq4pDIRiraCb1aIz2p77+7XpOxC7icfXIoW2xdU3X94JMmSKeFw9TYVkMtIcdzirq2nF/u+W//h//F3/1s29geITYcnk2FQS4lKypGMuUGyy/n85mub+6PxqBIaQFW1levHzJ9z+8EbvDGI+0g1MwK6cx5fd/3ErJow0oC0ZmnJvsY0SCFKLUo9mus6qnnJ8/YbN+5PbmhsvzpShuUpTRe9FRVQ6FZkiBFGC/2/O73/+ef/nd79i3AxFxg1NksrdR+AjvPtxT1w3zSc3t3R2b9YZZU7Gcz2gmNZP5hOm0pplULJcLJs2E2tXojNLutmv6oWMyqzlbztnsWm5u7litt1TW8MWL57x4+pTKadrDgYmreVzv2O471vdrHh4e+Hhzw5df7PjZN19S2RrTWFISNpDKboWlxeS9Z/ADEXE7tEbmhCoPfb/HGEXnj9YzkhaTnfCOZP00PovjcxmjJ4Wzm8GebBz2x2s2O8IPAW0DKRan/GKdU9p1eaRFTnV1YSVFT4iaqpnirBbrUBsZekHytRY9qhxM0qqTNamxWjyTDq0QT/ygMKZmpsBVAlBa96f43cevf4OH0PHbxBB5eHwkxkhVVWy7VtJaLfSDktJEFfF+oO80rTOiPrBT/ODZbff8/p//kcvJRzi04sw9on+m7KRPbvr5+TltJzrNfIH51FRYZ1kuF3z77W9lEO+f+NB/DLf/6RuTcjPbe48KARsjE+tonEjEfAyEw4p42NA0ZxijefXyC9aTCc4YPn54B2kAlbi8ukKpKUMfSVbYJyppYahoJbWJ8eL5G+U+a6OoKodRir7zfPvtO7RKhDTQTDT/4edf8vz6kknT4JwT0+d8/xpnUEpQZt97YhqIyWNd4q9//hqfNOtdz69/8y0qJv7qm1dcPznHDx2HPSymhsvzKavNnvv1npvHNQ/3W9rD7+jbDoPm+dOnWG3A2rHWFhmYISFN+7JhjDFEAt0w8NVXX/Lh9p7f//Axq3hy5EnFqiSnx+OKKw+u/OHYy4whEpRskE8P8lyTZvwj5s1ucgYcsm2J1koka4DVihAQC1AjCG/MfVSlpOVS1zWDTmgdqKv8HJWguyEIUST4YeQ0l+v2MZJ8xHeaENdchRkXlxOUKXXyZ+o5P7kvKBnMg8yuuL9/JALGaoa+y7BMBhky2JCSGDcN3jP0QkFzruLJk2vquuLZ1RnPl55vf33Lencc4fDpg8mQuVIsZnO2681oUFw4vuIgkOi7A7/77js+3t4QiJSytKgVyvc89gBzefuTQ6jKtLzkB5xOPJk2fP3sKU8vJqzWK27v7zC6p7v/kfq8gWg5bxquXr7Ed2seD0IW11aD71HVFFIS/9UUs6GV5/xiyevXzwk/fGC1bkdASgO+7xlCgqgZlJDFUZ7F+YzrqznPn5+xnC6wxkFSWeU/EFVkCJ6+8xituDg/I4RA37U4owlJUzcHHq8WOGP44vUVlTX0XcKZhs4mnEkY3TCb1SgNtw+K2awmDJ4PHz4gEykqdOWYzeeE4DKAwrgrUgZOhuDpB8/gI1dXl/zH//h3rLb/Nz++v8km0XkB50jITw7Q42JIp0iQZDejNLBE01I/Hjcn5OcbFUY7KbuMZGeF1yp9YXmtuOQfRQ1KJYahByYy4Fj1gqIjG9rHQMxrKBWlUL6e0bcqQcKyWfcy4EsllmcVSqfPB4TGDD4J7zAgaOXQRT5+fCBlFcnQ9RCFJyg0sfJu6XWmqIlRE5PwMxdnF7hJxc++Oce0t/zuxwd++NgzxCqToQOhYLVlNqdSnC2XtLud1IAUuZIMO+3bjt/++jfc3t6JhX9BfVEjBF8+y1EKVxorx4dutWKemSw6eZ6dzfn3Xz7nb758xbSp2G5XrDZLNvsdMxdYuoSrK2bVBIsn1VMu9QWPKwXOAQb6gHai8euLJ89mw3a/xVrNfDajPUR6ypDWJJzLFKW2QxEQ6dpiMuHpk2c8v3rOpKqFfxqLzjMSlNAqheGjsNoy9AO7/U5Aqlx/XS4mzGcLFrMZioTN80GIGqUcxtbUPnDd98wnjuvrK84vzgnB83B/x3qzQRvH1dUVk9mMyWRC3cgQYG00MQ2kXtLUqq5wTgj/zy8v+fk3X/Hh/Q2DT/gxdRX3PZK4EWaIaNydKv0kF0ri35O1/SeZUjnMpdwvvUyShSSpt0LqxUISKG6RRWgvEV9nB8IyJS1R1zV94Tx76Y96n83JksYaOzLRVP4QWsm6TzqhsOz3njffP/Di5TkXT+qfTCD4N2zO01qtFM4hRtqu4+FxLZB0lJCuVbaRyzlF8Z4t0bP4jVprWMwXPHnyhEvb8eaff8tvv3vH2/f39F6f5O3lAcn20VqzXC7ZbDf5e6XjcKIEh/2eX/3qnzkcDiPLJebNqZMePwOUEzVzhBEEzxiZdOZUZNE4JkZx/XTJ3379JV9dX7KcTmRo0KRhcXXB4Hvmi3NmZxe4aoLBoJNH15qmMpw9eULShkPb0Xc9+/bApu25X+9YHVoe1jtu71fc3G3YFcMoEHNoIl7JIrJKGFIqJqyCy9mcq/MLzpdn1JUbqXyQPZ18z2w2zSe5gGXtocNqRd+Lbea8aXj59CnT6ZRJnVlDVYUzFmssfdfTDwOd9yQUtqqYz+egFCFk9pEfuL1/4P7ulqQ1s9mSZjJleXbGdD6lspbptME6k9eDpq4NMcKrV085u5hx+PiIUuaYhuZnrcpz5U8bzJWHWNJUrUUN8pMX5PdmfEHLfUxRSdVUwmtZq6WvqSQld5Ua6X5ay7we7xUhBoZOgE5RnBiKENxknvUwZB/m7A2lMphU2kZ9H1g/tlLt2s+clZJOfpM4thx2uz2r1QZrK3zI9ZKSCxTCtYzNi4UOpkQOlaKirhznZ2csFguqeM+792u+/+GR1foApsqzk8rWPM1kFHXT8MObNydg0AgP4INnu9uiTHaf8xkuGiPl8SHnvTmidMZUTPPEZpsGzicVv/zyBa8uz3l6vqSpJ6i6IRpLNZ0hw6QDk6bBGodSWa+IQZmaaVVlwhjMZ8DQs1qv6Xbv6R8f8G2L6wfODbjFhJXpWR16dn3IXjlxTOeFdG/KcmN5ds5yPmfW1FLnZa6rzqTrKjjpO2a4OkXRx9ZWprKt12v80PP0+pLJZEJTudzIl1mSlbUMvaftOvZtlyVtNdPZHGMMh/bAeiO+u+b6gvVmy93jmrdvf+DQeWaLJbP5nFfPn/Lq1Utm1slcESPaReM0T67O+eabL7m5f5Rp1mQ2FCVh/VPR5FhgnX7FEElGg5H2hipDlFReO0l4t8YAWhwCyYFDYcbMSecRGsaISUBVy0YbAcXk6fuYh7qnMQ7pTCNUJFJmjgmiHNFR3PuEmB9O2GmW1eOBzXrHbPGZ7nufAtMlRZBZnNvtHmerXEfJpvRRPqDN1LEYjumDfBBB9WZTQb+67YHv33zkcTPQ9gll5KSWD0BGZhQosS6ZL+Y8rlY5YqbxGlNKxGxIXFcO65003NMxjR0/01gfyMJXSqFTxERPZRRPFjN+8folv/zqNVMns1FsXUPdgLaYyggBPQWisnlwD2hnsVqJa4KW+lxlNFFrw8W5YTGb8fWrZ0KR6zu6IbBpPberPe/u1ry/37DZ9WwPLUElvO/ZHw60MYqbnU6oSlM7TZ1ndVgr/1W1I0SDC1o8eGIk+iCpXAwYErU1pDCQgtDsZrMZVVXnnqMsVas01nh0XphKQ1U3TCdCerdWNoGINAIspkymU9bbA6vtgUPnub25od3tUMrw+vUrEgZXBfEBNuCM4fXL5/zDP/yazV6cGWRzJrKHfo5kZT7KyWLMz5vcdis8aJvKAZlISWVndnm9sRpjRQVjrIA+xwM7QQEVrc66TzGUdtXx5xeyje/DWOuOl6UUaIXKIy1VlsOFqIgDaCOfxBib5W+K4DV9kEnYn7U5x5uRY5ToCwOPDw+0bcdiMWHfik+tMVa0aqcbRx+BGIUU5HXlmE0nGAOr7QPf//CefefFZW7I6vl8g1WuWZVKWGc5Oz9jt9vJNSmOvRckpeuDR3tPXVX0fZnjmMbaovSwSkqM0jRVzcRoXBw4n9T84tUVXz+/ysN0ZUq0qWqUzQJarUnKobG0wyCTu1yFs05YSPIkUSR0jPlElffVzjKdVujoSb4nAkNSdFGx6wKrXc9m0/L4uCFp2B12vHv/gdv1nof9gX5oWVpodKTRCW0SWgWM0lgVcFZhtCVam53eU+Z8e1T0pKiZzyb0XUuMSRwcjMIoMbDCJpG75ZrLWENNxWzaMGnqHKUNxiiRfznwYUpIirre0TQ1h3ZgZQ13D2v+8R//md2+49Xrl1w8OUPbPGMkeC6WM77+8jk//HhD2wXCIC4KI8EynexGFJ92Pk8XZxo9d4+qm2OFZYyoQqyV9FQfuymUaKyUUCWtVWIV6oSmJ0oWmwEjk5lLnmEI2Y+2xHnZ4KVWFUFEKQsFPxB9bHZapLQK1efrOVP+8CRIStDPEAK3t7cEHzHG0nVb2ZzWoMIf/6SSegoVyzCdTlku5xid2O1X3D+uciM/4f2Jo3dGYUUErGjqhvOzczEjLimqkghV0MEYI37wTGdTmmrIbn6fNqzLwwaB+Z9eXzEzYPotz89mfHF1zvlMJn9pW6OtRVmDIuFsVtPbCh8j28cWpTX1fCYEjCQbHp0PFh1kcJPVpGAQ9/JAEmUxKiZqFE4lmlnkyRO538MgVMYw9KxXr1nvOu7XO/a7La+ul1S+I7ZbcBbtHEpHdJR+n0bqnIjCGiebNchMFZLURf1sgg+Rpq6k1aGU+KtETTQynsGalBe1EbCnlrkpzsp0b2s19cTSddJot9owrWsGH7m+uCDEt7z54R3r7T9x//DA3/y7v+biaiEIafLMGsV/+NtvePrsnP1+4LDveHjccPuwpm37fLB+CteVr1OBQkpkKmDEuTKq43SjSrvKuYSygTIOs8gB5Ywu/GPDZFqLaDoOGWgTHaz3kb4TZ8DSJxdRejqJ5DmIZpGCeBPrPGhZ0FwBnYSza4C6+dfnzv/5zalT1lUmUFILDX7g5vZe8mujhYCQ0igMLkLfAhFLu0L0j0oFlhdz5mdzFAMh7GWwTMz8xpz+5la8vE8ljDLUVY3Wlu7QjaeeHkkE+VElkXdNmykpJNqukzw/ZafwlM0yVLkwDTEynVi+ePaSl0+WPDlbUFUy08RYB1ZnUEBT1zXOWXFsGwZQClc1GFdnRPvk0EC4NCXyow0kGQQUkpy6RBFDGZVESZC5M5WTJj+1YzmdyiKIoIIn+Ra6lvZhwDpDqiuYNCg/wdQ14hpvxFHBOrAVdeUY+l6oiSkxm0wIQWxTVG6Wp+SJKuUIokEZmlSBUlTOYvOoRKXE4d5ZzWGwWNMyDJ66muDnQRQmIXHoEt//8J6H7YH+Dz9gneFvq58zm9ek2KKU4vryjOvLJyht8H3gcbXh7btb3n+85e5+zXq9px2C0ORKOwWV+9A5hc3lj5ROp04Jsia0krmZ2ihsZcCoUSt85N8qrBM5YpW1tmlI4rAYZDq5H3yWC8ZTu7fjwZ8H7Sqy/YpV4tWrUuYyA1EAVa2EIVTVMj38szZnLO0QBYk8yKbt+HBzhzJiIDoEWaQhirWGzg3Y4rRGEmPjmALawOJiwWTaoFJLZSNGO3TSqLFHpQq+JukJEaMrJvWElPJ8zpQfCLkvdnq0Zs+b6WSSkd1AONnEJ60yiIF+t+Ly+gVfv7jmcrmkahqMEwd3nRUK1lY0k0Zc8TKyp5KwX1zl8v3Jg5dGlDiN0HzJArQS+0synzOpHGmR9EkXeDtBTB6STCwjimkzyRF6Q/BbtA+oGMQ9vR+ExNEN0lowNlPiFIO1aO1QfS8ZUD/glKRe2jqUMUKqCF4Q4iyxsmRKWmbSmGxkJj1jOXRCtKSqwVmZVj70A8Mg7ZMXzy6pm4ZV37JrPb/7/RsW8wlf/+wLrImi1lGWqmqYNA2kyNXFGS+eXbNeb7m5W/H23S3fvfmRm/u1GGtz3HTyqMcm4kjpMwpQufutEAVNbVAmiu9cISqMUVHaHc46sXZJwiga+iitnl78gv1QJrXJetP5FBDOdd6qWq7PKsk6tBKjdW2ERN93XiaX2xrrNHWjMfqzWykZ3i4Oaimx37fc3N6PE8BCiDRNQ0hptKMMwePc8cSOfY6ixjKdziAODJt7KhLWIl5CBTYvQZBjwa6VYrFYkFLKcywYiQXHnXZMW5fLJa9fv+Ltj2/phv6YasTj6zUwUZHnM8fLZcM8z/RwldRWxuTx7cYwOd2YWkS/MQ+DraoKdHaSUxz9U40aQYSY6yABDY5oIfb4EVT+TGOlFTUpz21RKZJigKjQTY0OCafJ5mFZ5pYcyStS7/GEsR4fQl5QSolLXllYRio5hcIqRdSOoAJB+eyxE4ihA2WIwRG8os+i91LDO2sx1sq4PKVwxtGZgb7vmU0qjNXZHkax2nb86rd/wE3mvHw2l0jsaqxxVK5GkTDaY61jMZtxfXnJi+dPOb9Y8Pf/9BvefXzAx3KvSrb06cKOMYlwOh/0xlpsZbDOEpXPg3ulxZSyC2OMYDx4H8WVoBHJ2qHt6TpP8GSjr3LYys83TsQP0oUovG0BgiZNzXQ6gZREgB1kALHPJt1iC6o57AY24XPnc+YIdVz4is2uZbttcVWV52JGnHVi18iR8ygbwmTYOeW3a+p6wnZ1EhoM5gAAIABJREFUx+HDt7jYUTstp1r5kSn98TUAFxcXhEEe/E+LEHX6f6WYTCe8fPVqdJYzWmd2U+5QKEklF07zdOpY6IiLXgy3tMY5J9OKlaKZCEUOpUYdoSyEKHVK1nyKm/iRm4lSGT3Mn0Hr/MPlV5U3uviYZhG4Om5oFGIXmRIpeqkJjZbRDlFT+oKSwSWMqUhao12Qa4xRWFOxkzmeSo81kNFZ1JjE+c4oi1MarxRByxzVvhsYugPaOIK1pODl0Mq+REob6etpnY2tIiYrPmIMOCf3I8VIVKIMuX/Y8dt/eYOK15wt5jx7+hyVPEPvqetKABgiVkt6f75o+MXXL/C+pes8tw97aTONSL34VCV1XHcpO+WUloi2MscVTQZpxHWCvA4g4YfIfncghAHnzvAh5P50IIZMii+prEoYDa4yTCcNfSeDj1QqPfd8HUFM1w/7nn7wom3uA0OXLQvVkCcefCZ9T9pFaSQGxKTYbLa0fc9sPs9aN0l1QhlgGxPWSho5DGIUXfpWsnEWbLdbPn73Ha+vFa52WCdoV6mrpaRUx6iSI2fbthks+XQTfwL1KIVzjul0grWyWIwWl7uQZU1KQeMsi4ljWlmcklTE5N6nLhpAhaCwJRWiPFCJktaKVb/sJAGvdI6448tOPkf5h4LoJiWk74gYZAnmnskcWmr10jJQRloiKEH4tDbSukoJYw0xb/5BJWzexOIwp0CLB3Az6knEvzYCfRiIaZB2kDQ18DEwdB2H3Q7jKpQWRYXSCvIAH6Xl8HBGY3Mvszjw2XwPihtfDJGoRM1xe3vH1A4Mz66ZNFMmTS2bmNlYEqV8CBqVmDWOr1894+F+R3d4S9u1Y+tHmv+aMgxZUltBXnXeoGhkAFJ2YUhj9JUNp1Q27+4TKQ4cmgEfBoYukkKOsKUbGsXZQCH2msYmpqbGGDDKMgyR9tDiu8ghDXif6NpE18u1DUMaHS9iIPN3P9NUWiwcS10napT7hwd8CFhrORy245orJ0Cxlx+GPEp81F0maldxtnhCHxR/+PGeyixQ2lDXUjCfqgnIMLTRUr9OZzMeHx+Fm1gicT6pxtutRNVf142wM1RxEgdK/ZsCzmmWixmVy35FudVhTOZTkvta5mSxKJVtLzKQNLZm8uVmSF4XgbY+SVPLNcDYVlFGj4tQsgw9Ls7jy5N8H3mcubtQvmeeVGbMWP/HFIhoPHKNQ4bwta1EVqdsfk6SzjqtSSHS9uKyINW+jADcbbds1+vsPg8wGxHQpAwpKCptUAja6KzJgF7M4B5jPaYRiqWJieQ1h0PLw8M9s2nN06dXWK/p2uK7W+VeocZqi9eBs8WCX3zzmsYZ9l3LaiM16e4g/dzcEOFoa6MYkwMlh41SeYpAyqNCdLmTWWwRoe8jm81BSqCgchsqoXMtrsZtiqit2j3WiDn0YraApNlutgztgB9S9ggSxwcBlvJi0VkqlxOpz9uceQyCXJBM8Lp/fCAlGd/W98N4sWUBFzFrafRrVUwvFZVx1K7h0O748HBgOKxZbw/Mmhql2rwcPyn5M7XOcH5+zsPj40/SXvXJq6VfJe2O4P24cVNKo1sbWuGsweUH/ebDnrnTXDx5gtUnjA+lMNk7SCdJ31I2W45RUrzRgkwVqmIaUduCCBeSQ7lela08hDWSARgloMRI4C4L7NiQGw+blCI6I9rkaCvrqKCTwh8NAWLS44bWWudRCRlDyAijVQodAyH0ZG8O/DCwXq1YPaypJvUonwsh4ar6CCT5xNB3QqEzluj92C7YbPYM/YBRMGkqLhYTnl4usc4yndTsdmtubj6wWE4z3VDcDEvK71wNaMwgM0nP5zXmiwt88nT+CferAx9uNrz98Zb1ruXk9JONlA9MmYeUIEpHoayBGBPayn0XEYQ8u74LVJVFJ0OIgcpYJtMGrSIh9vgYMM7SNBYI9L3P5dsmZ1uBiPRCuy7kaKlJWEF0ySwjASg+31S65Nhk8WsIsH5ci2NZFtM6q7AqQQojt1BrJ45qw5AXmEVhaZoFlWu4u3vHYdvxz2/ec3u7QlPlqHHUxOls9m+QiHJ1ecn33/+esZo/WcpKUfzZZBhQUxP8kYRAwZlyWhlRtH1Pans2faC63fHNX8GTTMVTJbIhPrEyJFWh8pjyCAgH0xYkh8KeSimRdD5jk0IZO5YHcgl6rBWP5lqSpZRR7ePnEkb32FqKZTJvjtxyb+N4EBZfXfKWVjplgTjEDF6o/I8miXTAqEilPH44kHQFSRG6gb44xhsZGNx1HUpLtHZ1otI1cVB4FTEh4FUkeBn3brWlOxx4cTnnlxfnvHr+nMvLcyaN49Ae2G879ocZD5tHVg8rzs8vROWiFCpCiANtkDEdnR9o+x2b3SPD0DOdN8zshOVyyYunz7Bofvv7H+l6KZ8kA5BDUEnolJURTkYu6Izc57BRErAUxXwsREWhTTrreHq15Py8ovc72qGX8kPBbr9nv0/0Q2TXHohDJPpIyHrPocupLAmljKyrXDKbvA5Jn7k5U4ljKkHSBJ94vF/nhjsEH6isw5oSBY4Kg8TRtbxEhflygbGGu48f6XvP/WrP23fHqdifHAu5brPWUlUVT59e8+tf/RPkzfhTUKiklsZoZtMpQ9+PDnSp/D/XbyHXw8RAUIZDIFswZl1ibh9EZHZk8URNUtBQHOeapiblNtKp92lCGtC2zD0p6W+5lszcSamUATkxS1mfmkoGkbL30ZECabUo2k22dAlBUlQxZmasqUgJlXIrJB+mwcv3Lumc7NRICj2x7wg6ga2Zz2b88he/ENCnrqUVYKUe9j7SD0P24YHgBzBi3lIYOUrDV1++5vLqgsViTtNIi6LvW7ZbhYly70xlePfxA/z+e372zTdMG4vJ/fTeD/RDYrPd8+aHt2w2Dzx7ekVdN2KWpQyT2vHzn73m7nHLx9sHQhTsQiubM4hjvS8ODXqc6H1MT0MGseSgHHqf58ImNJqu6+h7meJWUeEGcQYcfBgH/w5ezKFDnwh9wA+iSU5e5QM1gZaMgjGrlAWg1b+e1/6FyHlMMlNKtO3A4+MGa2uCFxHr8uJMNsHdgyxK71E2YY1FOTNqL5WBZtoQU+Du4Z7BB/aHgYd1C1hklqMaN3n50kZTVQ3TyYzNZlNC4CdR8/RyrbVMZzP6tsVn8Egd/3ksP7XO0SRCHwN9EFtGGforOjvj7IieJoDcGwMyulgkRoJWFgBq/Co9UVVqm/GYGK99fH0qUbU0tT9N72OUekdUNBnUQaGtE4PrTLQ4lhcKFWXTlvdbffT7IdfYoe9IIWJT5n8qRTWdcnF+hrU1ZOBIGY2tLD4Guq7FBzHh2mx27A87IgpnHVXdQIDz5ZzlYsZ0OkEpZB3EgDMO5wZS8EybmvPlktvbW2JMfPHqFZXTaKPoOs/d3Y4/fP8jH27ec321ZL5YUNVC7JesMPDkYs715RkPjyti78daLnFEs4tPkAjCc7qfs42ScZCOMsIUBHAq7gjd0NH7nqQj3SCMKJ9HZiilhPLoAyloxHkvkUKEpIU8opSsnUyIKUFMZ5HGv/b1FzZnoSkBSbHb7thsdlSuwYeAc46vv/6a27v7cfEaq2hqMTvah0EWoMmbrKkJMbDdbOk7z3bb0g0wBD8ie+PJklNRay2L5ZJmOmW/P4jEph8bLyfLN6GUtEFmsxnr7NRQZG8nHUQZDKQSxEDMQI/RSoyUh2Fc0ModG5EpEwtiKs3rY21dlDinlLFydTIY94hWlx5huWY4Hh6cAD5K6/HvY5IIOqasGTFKeVENIXxyqJmT1DZGGWIsyubSDsisGC0URu1kmlcwBiYN2hqqupZDGDH3sk7mi8qsV4f2cg3OGVSbmE4mGC0R1lWGMjh32jTETJaorGNaN+x2e6wWfu5yMWez2/OH79+QEjy5mKKN4nG141/+5R3v392jjOblq+mYCZVNo7SiqQxPLhbUzohUKzH2mke8MCWsU7gqm7aFguyKk3uRm5VDTQ5COf6tUzinGHxPSJ6+D+MAohiRvjUqZ0KSPYjTRT5gYyHN5wFYBUgU1PGPEsDTr79sU5LbIzHJQNW23VPPzuj7jqpquLy85ObmHigmSRqjDCmKD6qkT+KbOl8uaA8HdpstwQd8vpk+w+Cn0UXnBVQ5y3Qyw9oqz1wRTegp4KPy61XuUU5nU1mUxmRw57j2I+SBNaKdjF5meNRGYfHolJdjmRpWNma+mSd35+T3KqOlcjqaXO+MgoGT+1k27Om3SyXikTGZnLcrY+QE5hhhj5FZ7D2kVSWAUemzjl1jddSsqgwApVyzizNeQPuesNtxWK1Qyyc4a9GVk14oMnVaZaf0pJJMU7NOUFKlaZoGlKKqJyiVW0HySXLaLqk3KVMgm4rZfEo/dIT9gEoBa8Uo7Xdv3pLUM+pJxc39ivcf71jvO5rJJM/iyaCOjhhlUEqjraKpbZ7xmbLZlqCyMVstGF2el1hWQkkrKQm+4BblvishyTe15ey8Yras6X1H7z39kBhCNiPzgvD6Ph3R3TIASotEMo1E+7xWj/1BQgj4z605R5gZSCmw3T7gw4GZXbLbDsymM549fc7f//0/YbTBVBUoGX8X8qlUokFVT7h8cikMEx/w3UB3OBCDhyRkbXwZEXiMcsuzJZPpFG0M/dAfzZ/y4VMApJKyWmupnROTr5Iilmg8AieigySCVlHI6b6jij5zMZWwW/JmMKYIhota3uYhrMeoKqVijl4ZICKBz5GzpC9jClXub1YzFJ5wygtFzNGCXG9+3/hcddE+5r5q1s/6QcbRVyXyG41JBoLPKbSktIpI8gPBd4Tdms3Hj3R9T7O8GIkYJIhZRG+sLjRkFDqriwxaDRjdo7TFuorJZHY8fLRm8Hk+jc6Tv5U4V1S1IxGYNDW99ywXCxbLnrfvPtL+9ntevX6BxxKUpQ8dygdu7h44P2u4ulpSVWKOpZXci9m0xlkhOpCyxrPcoJyeai21bMjijBgTKumMh6RMzJCsprIa4xRni4aLywZje9quZQiKIWi8l9m07WGgOwSC1yjy3FMtvFqjTZZTkqW5gj+cZmKCgn8mCaHsaVksgdX6kZSlNP3Qc3lxyeXlFX0vmzF5j6KMR8tEZK1RytA0UxaLJWHwuX2QMnFBUEpiGUpz/DJGFBDLxRKjNYfsuhdP1C/FhqSQB5pmQtNM8N4LsyfJiSu1lvyAECH4jKamRHvYs16tSM+vMRqhyyVJbUyOBCqnrpTFVxT8SPQyVmafyOZRY4orMJPcTXl9OUakL6nyAoq5X3caGcfvRR7VcPIg5V7Je2KIKGvoh4Fh6KkqRwgBi9TEUUEKMQNOwnXWfiANPf12S7ffoqsaozQxeNEgKgPKEHoRfhucgEtKo5GU2lnwIWB0xGRbVKU1RmmCEnKEz0bWpRwIUdQjCdmgjZ+gth2r1ZrtvmW7TwQMl1fX2Loh6QNDDDysVtzdNSwWDbVrpIZDyotn15e8evWMze57fAq5lkQChsmDi7RsjBAGgs+bkyNmUFpgAp5BXSvOLqZUNTJ1PQVCNPggMcR7kYJFD3HgBHVV4+GaUsibSJQ+Jv8cX6w//1xOy19Ma9UIUEQPD7dbSDVKOUJMTBdzbG0ZQg9IqJcGq8D0SYFJoJNiYismrmazWRFij64MUcnohZib14IKyy8qQWMdlxcXXFxc4Ieett0j7myClpY5mQlZ5NbUNNWMyjj6w44UQgEkibkIVyTSMOBJaDykgZtd5P95e8PlF1/yxVJRowR6t2pMOcmL2o/GYPqE2J5rwBzGxxQ0P4CYW0Qqu6B/+pqUUz4z9tpKviWUMXNEbwvRO+uSVUECgTh4mqrCOUUMPUTh3FptUElULmEYhMUUIi5EdDfQHfa45QI3P0M5Q+w7uW+uIuJFTqaFpK+tzQ6L5BpXiAJD6lF4kavlClsAbaE16JTynJoASbi7IktrSCnw/R/ecXv7wKSuqJ2jP7Tc3z4waxpmk4q+7+i6wGbfiha1hpgkWhsTuWqm/O1ff83vf/zI9nEvpViIKAzGHgXvInTO+l6hYAnmQFGSlMUXOZtPWC5qQjqgk9TkKiKBRWsMiRCl9cM4P1Q6GiHzmQvOUXx4tdKEET4mZ0WfidYqirGyOOitVlvRB0aIUVFVEz58uGG33+d6Lo5Q/mm9BjCbTpnPZtzevc9u6nmkW1l4peeXTx6pyQRVu76+Zrfb0/f9sa2RJBJpyEZMCrQYT1d1PdYPKdeyZbSjBKqBkPxYE4agufmwZvNwgOs0VokF+o4xoFIgBMkIZrPZpydubneMLKJ88/NR8Cn6rDUUwCLFHPUlOqfEcZRdLCBSyvNiJJql3Ncs9ZL8vfgDOSttH43KnqtJZFIFwVWKFD1GQfKe9rAnpsRkMYemAWNJiE2lj50065UMv7UxyNDeSiZoyWMVvafgHeW+FbF0Gm1qYhLSiladmIwZg4nQNI723Q39oeV//Lt/x/XTp3Ttge/fvOX9xzswFXUlMz+HZLh5PHC12lNXhsYlpraiMpraBZ5ezVkuJtw9yjAh77NuluIRVFpgQskU7fBx3RmTzacJTCrD8rxhMtF0HmmJqCS8X5VQQaOiwqts4qoMQSmpP4dyEGfEvKxnrfEhEHzMe0qNNflnbU5yozomaDvP/eMjxjqC9xhd88Xrr1BKUheRP4W8IXITV0LCWLfFFHl4eCDEyL7tRM2AwPdHg0CJREorGRI7mfL06TXeZ05teclJSiA0OOkBTiZTEX6bXMf+idcXsWuKktqapGkw2K4nDD2BWlC7lFBJ+KzGCvPUGffJZitfhRZXiPOnLn9QiOpHkA34JPJG4b2PE6ZTSYtTvt58YimUIIz58NFKWDVjGp7nmBTBwtD3cjZLUxJDwGqZrD0MHa6pcdMpqpmSbIXCEEIUylu+3hgCalAMus8RPN/OnP4PQ4dNjmAlchYwKMQ8I3Rs78h9KEL9Sd3wV199wdPrS4mw1rLd7XGij+PdhzvJiFzF7jDgH/e8efuR2iieLKekmKgdeA74IaJjQkchTYQk1jXGHltJUn/q8VA9lgnCqFLZGWJxNmM2b9Am4ZQl4FFBDrWoJVOLOk/pVmKRqYK0rnTWCsn9EecDa01WrwiIFkP52eq/Y+w8UjdGFPu2Y73dU+WF51zDi1dfsFk/5gUvC+oEJpH/55TVGHFsW60exIl8t2PwPhfgjhAOP/3h1HWNtYazs3M2222eqVg2qBrTvVy2oY2mmUzGVDTkejblHV2QOZJBJYMhoVXkYur45dfPuDx3GJOOqGMOgeLVY0CdON2dWJ+M3NuTPx//XY8LGVVSmVMlPeP7CuQuJ37eyCpAUsca5bi3KZxgkph7q1yXamVRRongOslod50SKslk8RADvmtBa+rpFFM3JFuhXYW03gOFUzGZTAkpsdvt2O52aGepmoYynr3vOh7v75nM5FCsqupYX4bA4EVJ1A8D4i/lJLYmGUHYVAZrplIXK0VlwahLZBJZ4M27e/zQEQfPZOIIXcvdx/eE3YTlfEKlOg4mcL9PHPYtKuX6PAxSVhlDShLNjJGf74fAkZ9dONEao6Gq5DOsNwd2B/J7IxELSuNsQscAZmBIgTBEpKrTeXMKZbJQWUHIOoJ7MD7v48H9r3/9RYMvaQ8oHlZr1ustVTWhHwJVU3P19Cn39zfyQ3NNJ4ijygZawh4jwWw6Y+g77m5vWK03rNZbvI8I5B3GniTZQQ2lWC6XNM2E2XzGd9/9iyjRUxijeQJMypE2p5R1VZFiZLV65NAejqfYcVejkkVHQ516nsxq/u5vfsbffvOM87lFOUtAFc95eahKi6O6VjJaL32aqsrr4nHTlKos5bpRlaOhMH5OQZ+jql4VhUVGHY8awTR+iKLiL7WcDxGiH9NlYj6ElNSHISPgWmdli7KkKEOHlVaYiUTMWJBobXDagFekFOj6jq6XGZqCggYG1YkHb9txc/uB7XbL5dOnNM0EpR1ghTMegmzMvDmNldEMxlnIE9tiDDgcKRMrlIIUA9tZzdX5nM1mhw+BxhqciVjl8X3ioCI2BR6UR9cN3/74yGbXImwzRmsQKDpPAM0weIY+HNtX+QCNMeA96AHu7h6pnLTsYq4nddbu1hMn4F/U+N5nWqfN2aJkjkqZ8aANQQgLiYIz5NRfiahB/5m89i+ktaUvB70P+BCogKHvOXtyzcX5OR8/fpTyKG8SqYVEY1cWVGFSeD9wOOzoh45D2+Jzq+CYvh2jCcB0Kv3KxXLB4+MjQx7aM9YK/OToSYKuhmGQG87pxsyppBI0zurAs3nN//CLr/j5N69YzBt8pTC6JilDTEYYNjazPMynEfHTmyo3vNTXsbBCkM15XAgidBGGSLG1kFcVP5rxIylD6UuWcyD4DCrlDGUsT4WMIpYnWQyd8r3VeXCPeLsalHEEr3GVCJ2jrYjGCbhSNyRthIxBJmUXDajRouU0GrRQFo1KTJuatjtw2O9p5y3a1pJmI328tm3pOulVVnU9HuDKqhG9DIg5m88TtiExrR0Xyymb8zl1M2F58QTnIMYDvj0Q+0CXDOs9rO92fPf9A61P4hGU10bMPshl6FVKiuDzJID8TETIAE3TYB2gAn0XSEnhh5APVYOJhtZH2n0HMUnN2arsZZuzM1UCmscPY3qTebTkiCp/a4pTyJ+BbP/85lSCCKYEj49reu9ZOIePW55cPmE2n7F6fJSoUd6SWf7FRbtEkPaw5w/ffcvdzUcgfWI0XS547ONlkGS5XKC1pqorHlcP4xSr0z0hj0G+gbGa2Xw2ntJHWErumjOWSV1hVOByovn3P3vBL768zqr9CcrVJF3nuKkzx14ayWNqOf7oI92rPBTgk5pGKSUOBkrqIG2OYNaoUzl5Pun0JiThzBYU+Jj+jol8FrUfU+qYIoST3FcpnK1I0UuqrCS79iGhXIWta6KrsFWFsU7E1K4GPxAVmCC9Oq2lRuy9jDDUuUUSU+Ts/IzJfMp2f5CxD31PTANt2/Pw+Mj94z2TZsKlc1R1TZMneisU1lh2h70QSlTxiJWF2zQVZ/MJlxcL9u9u2e3WvPzyJfPZJV3bcfvxnpvbe/pDz8OqZbX3eZPI9PEUk9hYelGixBRFxpiApItTjNAgtcK5CpQnJY82AqgpYzDKYrTQUA+HltBHTKpwtpI2StCZLC8C8azeEycMdYIpKD0qvI4tln99Y8Jf9BAClEWRWK/WpBAAgw+ayXRBUordYQcI458CFJQFJfxflE5YO7BZ/Uh3WDGZLzJDRwrrlIq8KUeevKligr4f0Cpwe/M+T6A65eAWFEXAGoCkE5vdBh9hGBIkYepUleXZ0yc8WczQj/d8OXN8fXFOZR1RWSLSciAbREuDW2qjlDQpE+BHMoPKJHXkIDGZaF3AkE8Rq1hKZEJ2iSjK+oTcH1VaKOMBVTamHmvlI90vs3zKwaMjSek8miISg88OEHkYj7Zy4MROUEoUuq6JlcNWFlMJf9Z7T4gi8ZO6G5SOqBiwVsqGJE5VWKfBzaDvScZz5ia0fc/q8ZbHxzXv3n1gs90yP1tQOTF800amj5cn3A0dIXpSHMAPqOBlgVtD1VTMz2c8VYm23/P9j7fcfrAsfvYFy+UMrRU+gbU1l0Pkt9/+ntv7Lb4cfEkT+0DqE7rSoAYiIT8f6SpoFCprbw/tVtouRpBlm935YvQEHxm6QPLZRVE3DN5w2He0h8TgZa03lWM2cdSVQhtxoijZVuAYNr2PWSd6IsT/nM2ZksyF2O8OY2sjJcXl1RU+BNbrTU4xU44ucmIXo66c8DF0LQ93twzDgMtAQcop4pGwzWhXqrXOfkORMAw8PDxkofW44j/5tbQhKmd5eHhgv9uL4iB7B02nU84vzjFEKueYN002VxJ1e9IKZY2oTIJ45SgrMp+SwkqkzOcBBZDK3yOPkSvXVDboKUhEvk/ls5bIq3PNPJ6mx+CYP1v6E79PJ5tWSoeECOILQJZiZMiyPasRtDGPBbDW4epGHAbHz6fHGr18quI8773PGUKuobXGWPFPCgeZzdIeDrx7/57tdsu7928xxjCdN3T9ga7b4Ye5CCKsHuVuxe9HBM9RdLNRCB9NU7NIidevX+JxPG5aDruOxWzO5GrG5eU1CUN7GFitNqzWO+KQ63RSTl/zHUr6uLhyJyEBzlqpFZUcklVdMZlUqJQIQyAkIRyEICls30UOvmXoA13rx38jKQ77ju1WM5kYJhNH5YzwjbUiqZAd+FImq4STq/iMzVke/H5/4P379xL6kU1weXlJipGu68YFk/KiFAZPlOUTIzqJ27gwbixdNzD0wqtVSHN43GYJyITs6XRKu9/z4cN73v34bpzdSErjJi0M/1K7dX3PbrOm7ztOp18XwKTrW/A9SUttpI20VaKW+SQupbEHm3J/Q+h5ciO1UsXvjELVOzJCjrVmubayoQoYcDruvPxbsd1QMPZjyX8zModOdmsaF7ScFPo0oucHF1JARYlEWiliCKToCUNPignnXN4oTggaKuWolmvOUMgecn+UzkLA5LHZuV/61Q7vBagz1vDq1Uusc3z1zVe8efMDm92Gtt1x2K9pZ1OMkUVe7FzKx5LR70GG52ZhgTHSmtFK4Yyl3Xfc3604O79gNm/ET0lJK+6LL17ww7sPtP0+g4WK4MWqE8NYmpT0Ticxiha7l4GUVJ4GXsk6aj3tfuCwH+jbiB+kNxkzaV4mjIkvU4Z4IGm6ITH4gfW2zyZmjtpZ6omiqoQqiIo4J+4W/x1ia2HXt23H3d091jqGIdA0Da9evaLveqkXxsVTCt9jFFAamqrifL4gEQUg2B5kLPwJCDTuzhyVrJV+nfeeD+8/cDgcRunP6VdKZKsP6YteXV3yh+++Zb/fjaRwkANjGMRCkhBpY8q2FYVsnkkUP/n+IymgVPy5DZCKf6kSaxR5SfpkI54O6R3VCKiTGvulUimzAAAgAElEQVTT1x+LV3WMzOMpJC8pguoyx1KiZsq1jNzvcfxW5u0WM5yhOzB0LVUl9Z9xFUkbab7n8qB8fPuJ7YjUttISs1hrcZV4C/V9j7EGGy11XWXkM7KYL/jqqy9488Mbmam637JZP4jrubFobbBWLE5EFF+epcoorpDz2/bA27c/8sObG3YHzxA887Mz6mZC5RRWgXGGVy+fcXG+ZLNr6QZ5iiFEvA/CL86iDBLZPkXE54OPoMWJ3jotM1nRrB73HLYDbRsJg83qEyNpaogjEUfWQ8miGA9IlaCP0A+ezgQWSmNMjdExM6TE7Nr/mc35Z/gJJYWTl3jvs5GTp2kmXF1d8vj4MPavxvRtPElGwRl1ZTEpsn54ZLfdj15ACp1Tj59uuIS1hrbrMNay3e1GYy+SLMbjezRkAvN0OuHlyxdoo4QkX9zfYsi80wHrLL0y3B0GesQyxJCwKWFK3Xfy+cfNo1RuUxQHAvmAMaOi5bpDiTrp+HfHNtGnn/Gnvy/Rl1Kn5IxCnWwaKCns+O6cScjfaFWsrCOGJGMffA+hRwUvhlwmS5uMuNcbV2FtNcrgxAS5EMsCiUBSsoh1ntGijB7PKmvtSL5QJwjkdDrjZ998w4vnz7HGcNht2W83BN/jfU/fd9l8PGWlkPRsYwz4YWDoetr9AWcNr15d88UXTwHPjz/+yMPDiuDFUb8yMGsqzhazcdL0+PyAAuZJ3S3PLWUigCJRVTIfJcZA1w3s9z2H/UDbBoZOCejjFd4HhiHgQ7aBiTJy/rjikUyLgoHIQayzM433Pd4Po+md9H0/0+CLfEq3bUffDdT1lK5vmc8WLJdn/OY3v5JCXyuM0VlUEo83JT8833d8/7vveNzuqFxNnTQprbOzGcd0Y/yAUFU1wzBwvjyj7+VDfbp1jvUfSo0n7+AHGaRz2Jd1i9KaqqrkRihok+aHxy2v1jsuL86ofMLahI2yAFVZ7PmUDDqOzgNjDl2wmBwpzB9Fz9xbVMeU8zi7lD8Cjcqm5CSqlq8i0h3na8J4jSlH/kLcTlEyA50y2SF6fN9CiKQwiI0MOTXO0bIsaO9l0ZicvcR82PjoUUZTGSdugzpTGvPiixkNdpVFeY/CoowlZM3vfD7ncDiwWm047PdgRUBfPmKZPVJaVDpqrDHoScOLly84f3LJrj1w97hm13XcPtzz5oc31PZLJldLIdJruL6+xP3uB9o+jotDa4M2Vs7wlGecZP6vMlDVGlvlZ5Fks+33HcFDSmak2ZGziDBGzPHJyS+FwpgXqaDoEWthtqio6oys53sva6FCfa77HioRfeTDh4/s9weW53OGIfDkyRWLxYL1ajMa5caUsk1EXrulpoops1PkZjWTKfsgynlJw8pKL59KTv/JpCGGyNlyyerxUcjEKY1RY5TDRkiZVH04bLn58I6+ayk7STaJFgTOOSqr2TnHw2bFd28/8Gw5Z2IcSjuSMqAtUceM4il0OgqkRfUuZPJU6keljrXhJ+mqsKtOKXoFTBthozFrSLl/Cen09CnQ+xgdy8/7NBJ/8p7IyMpKmQm0f7gn+o7JbIbRDZHsSDf0Ak6EXE+OlL2IH3q6/YFuaEV6pnW2nDRHO1AK/1gOQJ2y651LVPWEmCLBe7zvaZoJ1tbc3t7S7g9YY4X65gVwDKXEMIraVNhssGVtxBqHdeLx++LZFdt9x83Hj1wsplwsGyHVK8PZ+ZzJrGbXDcQk11Z8rdCW6OPItYZE3SgWywnKBHzsIWkpscb3gteiPCHFbK0qtWUqN76AsOUhjKCTGKZP5xWTqaVypS8thmVjiXOK/P1bNqcsFs3D/TafbIYQFOdn11SuZvW4oowKD6eengkiWtorOlA5TV1bjLco5/JJmZv5KqF0QBVRMWR7fMt+v2c2W/BwfydSMU7AkxJthVKS66qOrtsyhBYfPo20WmsmVc1s2nDY7nlMie/vVzx/95GnTcNcW6Jx4AIqZntLLGONGUM27hIJWpFyyRF8jI5H4Ed+8qlrglIF7WaMeEWZmcZUgwwyHVPdoiZQpKz4Kc7j4x4uxScEOfF9lHENsW/x20dit0fVFbppZHJWBuvoW2kdWUehPPowiHTMB3wfMBasRlBWnfmzqsgChU8sqg9psWilMwHfiqG3ElmdtXB+fsbj44put8PMF1I7ZxBOITW+1hqHlV54CDgbUVqu68nZgquzMz7c3PHw8MDuxTXKJNa7Hev9LeeXM+43G3SESlucA2dkQ/Yx4YxBpYStNeeXltlSZsX0g8x0VR00lSUNHqISx3dfLGDUuHkLAHlM9oRYIg5ecn/qpqaZOmylqGuFmNEHoflp2fA/9c76/7850YQYWa3XqJPRwWfn5/gwcHt3MyoU8nk+FsSSz8vJVTknKOp+x9niCSVKKq3G2SLj4Z9Pnslkgvc9WiUeH+6PyvWf1s8jgAK1q0bP1bJeQTbm6F+bI15IsN4P/OHdHX/15JL5bI5JA4SBpIV7Szb04v9r70ya5EiS7PzZ5kssuQKopaerRTjkhXf+/99AES7CGc50T1ehCoUll4iMCHe3RXlQc49ATU/NdF3YB3gJOtGZyMwId1Mz1afvPV28e/W1lULlUFbZGrL8d7bJLGflTZ7JFubiJc+khvMbukRwl3bLxd9lzjaqc7xUooLUoEVY2jKzUNx6T9t3DNOASRMmThgfsNZjTFQmkamDgGrAaWDq6ALnLjYeLn++3seZRysVAHPVkG3eiM4ZhabIfd+S84aPHz/gfcA1QZ3inYItOrIvgFF3x4ghpxFQhHmz7nh9f83D4xOPj098+PTAJCve/vyWH35+z+r6iqubhv3TiPcZa3SwvXMGaTOBgm8sNzcrtjcO3wVSttgTxAkkCV3jidOJnApN64kxVlT1L59yCzVz+V+DFBjHRBiMmsSJpe88wTlco71jpJydEf7C9e8afKWU+PjpEyGEJb27v79nnAY90Wq66Z3FiCWaWBez7vjz2znVAURN8MyypwWl/Oz16Yn05tUrptMRZ4X987PadSxmTEs5uxTjwXlur6/ZrDeKBFe0b3nvRoXBwzBWRwWB4vjweOCHj4+8urti21iM84j14NVnVO3VTfWdqcis1GAwloKmwFRbklm6VneoJXhm2cmi/7x40+UiyC4OTz1h68ag6/uCxP8XatPzU6vfIw4XOqTfkIaRMg5MUoGtAhLT0s+VUmreJUhKOiApZ2Z3TVvLjcX8ewYW5rreKALprF2sTbQWVXG1MUKMhabxhMYpMFISresUJbYGaz3Oq8hAgTdfT92Ej+pi33jHum/Zrnt+/vTIP//xe+RH2J12DOnEfef53XfXHG8HiInVKtC0HtdajPe4AKuNp1sF2gZscJyGzDCmmoBp2hqCI8X6zO1yY+tz+kuXbl0sz8eQYmG3OxFjoAme4RS5v+0J3gJRrUt/5frV4MxSOJ5OfHp4wHnHlCLOO+5e3TGNJ07Hg+7eVYBqjXr7pDr2e+6xOefJZUZ+pc6olAq7X/7GMwl8vVpxeP5EEwzTOGkwGlN3mnOuXmn2BKuDcI8vB4ZhXOpfUEg910lRkiMpTqpIKQJT4fl5z+F4YNU3uJCRHCnJ1Yw1ANXLFlOZGUUNpo2KeIuICpStqSPmqmCugArB69zIOWjqz1r0nDV1Ljkz903n6DO1pqXMp5RSxLRUPReppqb3ZTnldEirGLX7ME0HJarZVorYcSQxYgAXArZtwDvEGnJKlJTqZjiPN1AkVdHVqhs1Tu9hBaN8E+rrVgI4FJXmSTVzNmoAZ4ymqMfjC6v1enn9Iaj9i6teuXOzyFqde+Kj2spYU9huej4973l4emFAdACTN4zjid99e88ffrfBG0twVyoh9AbjEsWMjGlPYURdkbWN4qwjxpFhyJSow4StsUv9PgfgQmqYP3PR1z5vmjP32iAZDofIkYhzBe+gue/qYVYWj6i/OjhLKZyGgafnZ4xzyu4JLVdXWw6HPeN4WvYRtaOo55iZIRudIeGdU3DEWYbxxDQOiBS8D2eHvBl5rWdiyYoyto1jjGOtN6uliakLs/5ua1SNYoHxNJBiUopUvaQCEzkn1Xy2DXQtnSvcBcNt73XxZ3C5ksbr2IdswEhtuLuwDKyRIgvdcD7uFGzQezATAzR9PatYzqhtTVF/8bX5odZ4PaetCwSuPE5Tznu4rSf1rMJAFMwXlHaIb3H9BiuTppvOqzo/Z9I0UErBtx1h1YGvtV6pM029w9e5nCA1KdC0WgcmaVYg1AlfRh0j5uxAM4A6nkGyqookUUrk4eHA5uqKrlvjnFMnfq+bV4qxLl6tf+cgCRbWnWez7vEhEIdRSXne03tPg6d1nnXf65/uK5rQgYFYRqZ04OXo2B8eeXg8ISbpppJXpCkznrTOVrM6T85xKUvmE3F+Vn/pmjnXs6uH1qlOb5MUjseJcttgnMVUO5V/6/p33fd2+z3DcKJbXfFyOLLZXHN1fcWHj28Zh9N5aUr1BFpsBWuY1UUWY6Lf9ghCTBOqWfxlE14XozOe4XjieHjhj//0D7z/8F6BoDnVg1p31Q3AOTbrNXc3t2qstDBc9JTNpTBOEzEmmmDVDmPVco/lu5s1X71a0TpXie4FclJyVdHWixVHEQ/VUqXUk8JUsENpjfpoitQcqFqSFKmDcj97mKLTq/g8OD976LV/towPLLUvd9FLVi8mFV+bWaW9CApm5NvRdGuys+Q4aA+zpuzWgCsWpkSZBiYKxTuSMSRMneuy5M/Lae5qbZpyIcZJe9YzWdyYsyxuQaqkljKZUpLS+aaBj58eWF9d89XXHb4CCqZyd2XhDlN71Vq76th7W1ll6hfcdpa7uw2vX91yd3fF7c2WvgJfTbPGh5YcC1IavOvxXcvpSfj+nx44jhPdutMuwovlsDOUBGIKzhdSmimY9RFeqK3+QsTU1865pJqBvrrEnbcVma56z89O3s+vX09rc+KH798yjiOrDUyxsN5cc3N7xT/8n//OMJzOgE59IeZyt6cCJxiiCJ0zTHFURUOpJ80vdqC5MeutRVLktN9zPJ0qaCTLo54fnNKo1YU7NA3OVK+W6ukyg1TTFBnGUW0UrSOL4XkY2K0aNlHoU6HERI4DRjI2qGlwcehunxISRD11amdZjCFLpoQAtW04v7KcykJeEEx9qLUvKDMSy/Lgz5cuwks0VgyYeq+kuu/Pd6LU3cpaWYCa+dQVNMHEWIoJFFt0vIJzuFqKeGvBtyqMLoU8DPozXCC7QMFibMIBWSa8FJxc2JmkiCLlpipvbF10dRQeUkFDfV85JY6HF07HE4+PO3z7ns3mhq6dR3JUyRsZSPoOjE5Fh8zxdOTd+w/89PMj4ziy2bS8/uqKb799xe3NLdv1lsa3eNciVCd8HIUEYrESaNyWq9UbbP6Jw+PA7nHA+gRSSFGBTON0KsC8HktRnu3lSXfGD+bAhLnuFG2sYurzlBmBF71npY5SzL9ydP5qcKYp8v2f3lbZDaQIm80tTeN5//M7hmFQLuQSX1U0nAtidVqcwahuMyea4cjLOBLHiIidEY+64M4rNASvaarA6XBkmuJFP/CCLlyBkpQLu8OR590Tm1Wji1QqlVDq+VptR2JKatvoGx7ikecPT3wYIt8dI79/nbmODV3b0vZrbNuSbcZYtfeXAqKjyNSFzhgQV1UQalolVC+aix7nGcXTjzO/RyVh9tzrrW2i+XmLsGj+ZGFsAGYmelQE1VT5GHNWwRIcORe8sVUEPTsUKE3GYXG2wYaAsRM2R+wwUNKAWE/xq7oYhSRKPrBJJXzW6tSulNSu1Fmn96IUTJGzxhGdATo/v3E4cti98PIysNtHxvSRm+s7bq9XOlTJlGoEljFkrE0EX5imyPHwyPsPH/nw6ZHDcUJK5v7VNX/37Wu2V2uaEPBWXRCd1ek5pfapm8YRY6lWlIbr61u++eoVH98/k5JjjAVhNh+z1UFxFmnrepqz+HmtX4TpxfOYHx5YI/Stwzc6xiJnrce9c7ig9NTyWz2ETqeJ9+8/4VxAxFCSsN1ckXPmx7dvz7MyqfVSPTFnmgCcWTKpFE7HEy8vR3LMCwWuUqvPuTxC2wZEsrZgTmr9f3kti7B+L0VIceL58RFJU7VSmf9x/YuZe5SZqWSKNeQQeBojh0/PvNvt+OHxif90vebb6yvu7yLt9RqkI7kG8DgTkeDJXtkyrQmK1KZMcQbjyjK5ejYjWRQpZTYDs4sHj8WiXrJnywopc16gCG4RBZ6K5KUnOm9kS8Da+Sno110Fi1S2J5UQYhCrJtVximQy3lmysyrfo5CNQGMocWI6Hsg+YbqeRMCIU3c+sUDCO0/McDwcGMaJrm9pu1ab99ktr0YHWynYlXJiv3tmt9vzsj8xDpmXlyf++M9/4v4m0Pdv6G2PNQVnM8VEnE1YM1LSC3na0fiRN686shjCAHfX1/Rtp2R865ZSQyqJxBhomoam8YzjqTq1F5wzfPvN1/zjP3zPGKvZm6ntJwvOz699PkPU+6eUwqKc5vK+C2rFp6WK95b1ynN/t8Z5w3BKTBN0vSU0HrE6cuISG/nl9avBeTiMPO8OONcs7u3X19ekmPjw/v1CLFfxcGXv1N1Sao1ojPJcY5ywYpjGpLu81TaE/ge24jyYQte3zKfk8aiE93JZtsm5lTJ/wkghx4lPHw5sttsavGeAZBondvs9JTU01mFR2ZQx2sd6Pww8vXvm6eHIx6sj3+2PvH69ZXu9oW06SobQNpRVgwRHDg3JBH0dziMlIOLVAcrY+qGSDxYXdBAny4kvFfydFwT1XmoapCMH50nccy/RXL7ziqbOzuaCKP44jxes6GKqPbVSgz8PI2k4YCysrjZ0qw4bWjAemzLTCU6HF4Z0xPUb/GqF7xp83+Cahmz050wx8bLf8fD4gA+e7fWW1WpF17VK5bMG64JqL1FMopSRLAMlDwSnouOcDrwcPhBjx2Yd8MZQnOCcVCubzHplsVZ7mA+7idP0QL9Zs92qDC04r077F6WC1f6PtqpzwtdaOBVNtdfrnq5reXqJ50LMGKw3hEYDdN7gnEO1rWbObgq/pJ0qGzkTGsvVVcP1dct27XVjtdB2ntBYimRiFl6OWuL9puDcvRzZvxzxXkkEGOHN6zvG4cDu6fmsulDP/SVdw4CpBGkffG1WF3zowQ7qK7RYXFJz9JrDG2HVt0qwnk+7z6hql6R3FI0sBQsEZxmT0LVdRToVXVQhceZwPCl1qm1praf1nuIsxyIY5znFxJ+Hwj698DgMfP30yJurjjdtx8pY/P0N/naLdAG8I3lfmTUeWxqsqFKjoDUptd8nFTAy1tTgPdetc6AVc8YGpFKHpNT6tBoxyXyjpJLO681TNz6Y/YILpe5eipwqeKLfO+s+Y1SlyDQeefXmDZvNFQSYxkRoWgzw/OmBUfb4zYb+akW77WlXHW3X4oJjShOn4Ynd7gO5ZI6nNTe3t1zfXHEVNjShpfEF6wyhjtb49ps7mkZoG8d3p0Lbrbh/veXV6xW3Nx19Vz2AiqGIsnaCa2iDYRg9LyfLaSy0rSeYjlXfsmo7+q7HubCQ8I2pVjmlME16ouky1ZReSmaaxpqVVdBH2604a/AevDcUyWpAXk/FXwJ7zOsWg4imw6t1YHPV4HwhppMSK7yKr0ENA5x4LO63kxAenx4ZhoHNdsvLaY81hq+/fs3j4yd2ux0l52pBWEeozy+4Ntu997Rdi/eWmEaGmBirEt85p5YOIxdkYf3+pvWM06CBfaFyqXG/pIqXvU6kkFOkJFnQSt0DZjfV+QH4qsZwC7JrJRKc0DaBhOVpisSXgefTwMfnA4/B8VXTMg2Rbn/Ar3ust/SbFe56QwoKmkiKFOeUYeQ8UpzOPjeupp/16deTUed7KrgzI4GLA4Kdg3hW99Tacqm9qelydX23Rl3d57tVN/VSEqUkNZMWKDkituBahz1mjg8fOQFXTcA4j3cF58GYwng68GE/wW5Hd1jRHTtW257t9ZrVusc6y2pt+fZ3dzjnWF+t6fue1XpF33c0Tajud0pTy1lo2i031z2v768Aoe1b2q6p7RrdhJStpLIs4wziLZIskzXkbDidCoZA23U0nVcL1bbXwJy9d4u69xkDknSzWtDxuoUNw0CcpuXEZA5Qq3N6nK9kjQKLoGM5HObd9ILoUvucoTE4n3VNIBgbVFwQSx3RoFlm5xpM+o3B+eHjJ2KKeGeZ4oR1LX3n+enHP/NyeEEHHBUSMwReX6KZA0a/nrOiivvTkeM0UVCOo6XURTPvPLrQur5lOB1pmsBwvBRzf16GQwVNKs49nI6UAnmczswao7XdbN3vvKdYQzKC9ULbevrVlnXfs63+Qx/eP/Dw/omfo/AcMztb2HeW5+kJ//6RddeyDoHrqzVX37zCX/fkLkIIGnT1RDU+kLMFPGL4DDq31inBfvlcbZXU4KXWT26poepcDTNzOFF/pzq5inwBCFHIlFrb6kKXXJBqtCwmY7xh1TWMLy/sfvwBF480rzbQwxj3FDPiW/AT2JWl33i2tz3X91tu7jasNj3eBoy5xQdP8AHr3TIL9JzwyUVbS09wh8ffrnG+VFKCBYI+OxnBlDrzV+fYyGyzOSV2u4GPH/eU0tJ2PaGZ59boPQ11Xk86Hmug1/JGgMrjRYScEp8eHjQjrBRMY2YDOLNgJUo0EZxxzOPnFcBcThNdh0UUVbaqzllvvEroEIy4avjgyWmiJB0s7Y3FN91vC85Pn14wZSQQOSZPGxoaeeLtn/6R4zBWn1qnNzCVGRqth4M9t1GyOsYPUyaqSQJkIeZCWdTptSAncLPdkHZHxuGodocXm8siZl02goIRQxbDcVAmUSr7uiirzlTAG0OwRvtpokLppmv55ut7bq82dE0gOMc0Tqx6nbXy+LRnN8IpwcMxcz0MrCxsXiLXjed6d+Dmec/2ZsV6u2K16REjdNs1YbOGtlUQpgamuIC2QXQKlTOV9mcN4qAYUbGxAVsy1vpz26YoZdA4y8VZCnW8AIYqhMpKMDBVnlbHVxjJWqOKyppcsQTX4m1g9/Ej7959wLxes/rDHd2rFdu/e83ff3XPH5yn3W5o1yvavqPpWkKrFDyWsubcvvLe1XEE1bGiFGZLDvU+SlXcnavyQzMLZRFVLm7lnErJlBQpOZJyZBgT+8PEcUzYpqPtGtqmwzhtmSUptFZd8UuZX4PmEvOgKFtQBDcK7z++EKVSMOdqfq5IjMGhfkrWmgsxdoU7y5zP1VzFaAMxNIbXX/V89U0DFOJUiBOkKmNTc3UgKlbwm4fnfvz0pA+8JMZJ6FuYnn7i7Z/+SacbW1fRq7qTzLtJNTsOIVTgYKwskpnVr1K0mHPtkZpldzM4gnMM08R6s+b9p5dqO3E+PWtUMgNPVM1e16/JaSLW6NUPM6Zr8NWO0AKN97y6u+Wbr75is25xBnLlmr5647De8f33b3n37oE4Cg8585wSnXGsbWIzFbZW2BxOrB923PaBzbqnbS2b6w23r+5oN2vEWbwH0zTanjAOsR7xHrGh3kPVERqn7ZlZ4ZBtDcI6rkEpy6rQQMDU4axz7SlkFgsTk1Ez+ITJEUrW9+8tNguuQM4DUzoyloEkhevrFde/e42/73VYrjFY7/Bdo8COU0I7VvEErCykjBntzOVM3fv8Y32NUsiqwUJw6ExLXbjKFtP3oAOrUmUHJVKOjCkRMxijqWwT/NI60f1dbXN85QqXkqpfj6aWxnpyhsPhwPdvf+bx6YgLDUYmFpYaZxKptbYGeqlWLeo0YYpZwNr60pe07uq65/7Vmrv7hlwip8PEOGYilrEIEi1T1ExAkuB+q57z/YdPmDpXIo0D7abh44//wk8//FmRN5l7eueAEYFUYWxQlJGKlNk5mC7S3rk/hFCtAw3eWYbhxHrtGepMzsvrc58ear1ab6Zz5FH7anOKaC7/sdH+VxtarrdXrLqOLgS6Rl0ephgJTUO/6un6jnGKfPrwDAYGaYgFBjHsp8KjgT4Zuilxc8ysdpHtKrB6Hti833F9tWG1aln3lvV2g22Uv4q3SKiesb6mws5jXKNIr1A9fUwNzLozV4tNQelxVpSja6RgKAsZXwnVmZISJk+QJqwpsG7wbaCkiNjE6AfKlRDcls3tDa//899h73tiKFirWn5rM0WUwmZF03AzmyhVZL7e3IsHpJ8+UzP14+wBNf//2RhuIUXVwFWTcUVUU1EfoClOjHHicBgxNKz7axqvRlwsDCmhpIRrVP5WimCrSXdCX/tUDH/84Wf+x//6R15GzaC8ayprTZZe5tJXt3OaOxM9RLNCM/Nsa5DWj6VASqgjHwUfBCRjJ0cZhVif0/zzLyfH/VXBudvtsKEjlgIl0nvh+PzI48NjFVjPIl2VRxmR5UXOzXhjqA7ZIFoJLftokTm6bI0wTcWkZE6DuneP8WKKytwzvAg2Y877csyZNE3s98f6c+ufCp6kouP/vDW1Ue3qfEY1d/LW4UMgi5BSJATP8/Mzw3DicNBWUJzUYHFAOBU4AF4M+wJtLvRxYOMNa3tk+7jnqm/YdIauDXRdS981NE1gvepp1z2mCRACpmnAV0+fJftQTm+pQSC1/aScKJBZkV+Spq8l6+nmDDghyUSMR3IcaLuANZmpRGwwWJfhVc/mTcerVU/YrJHOMdqoxAutbNXdIk+IWFxota4LeuLPRia/dHgQUQ/XGc1fAvESaa8BMPOBNXj1pCyiBuYpF2LKDDHxcpx4fDryvBtpules+hucDYvXEKJyNmtm6w8VThdx9WcLSRLfv33H//6nf+Hj7oCgwnFbEV5Ng1nAxKVfagTvDU3jSBNIrvRLgTk30xaL5flp4I9/eqCYLdfXDY13ND5jnSFWbMBi1erFu0tWw18XnMfjkc3milMcdUeSrALXYVoUEnNdp+CPnI+yet7raAVLlqQo6hKY5dUlekQAAA/FSURBVMLV4BzS1sDz0yPDcCKJY5r9dy+umY8ronQ6i9qTPD8/Y4wwzI6AZ3IjIurMZ62BttFhrkUF5KCu3W3TaGO+JIZB6FeWb779it1ux4ePj3AaGeaBqB5ELKMUIjDiCUCTYZczKyv0U6Q/DqwbQ+8dK+9YO8vKWdZtw2bT06waXNfQbTf4zQppA+ItBg/WVZqg7jG2boBF8mLqpXVfwhARKaTicK3Hdo4ShOgSdu1Y3V+xvrlVvWUIlVAeQSIYdXif8lBPSFV/iGSl/6EMIym5UhYTpmiNO2cxioxWEbgxtdY8P69UhQRaO9f6WQ87XUtZQSslK0RSLkxZmGLhNGSedpEf378QS8P9zT3r7VaH+mKxTsn6GMDB/vDC0+6Zt2/fsd+dyLkwJiWfPDw9sTsctTtVVPQvtUugK1EWQTuiyC5Wj4+m8ZReK9FxLOc1Vj2Mjajj39PjCR+E00vD67uO7Spo79QpPTAntf8MjWOZ+/HXBmecRjCW06g3/s3re8aUOEx11Pn8YC5OzBmqnlMeY7SeilFJxMK8S86n6Jzr1xTUQi7qS3Rzc8uf3+3Poftv9ISk/uaYIm3bMI9/mL9HSh0TnispvGRWXUPMWes875fKSCs+h3OeUibatuXm9prD8ajpp1iG01glU2qzUQwUMklgMpZBhJckdFZoitAk6JzQm6zBaQ29jfTPA+su0Laetnum23Z02x7fBXwIOnskeGZ+ajKCcZbJFHJFF3NJiElYq9OrXQg0XQeNY3N3pTRDZymdZTQDThxxGkhpQsgYSQhKWLdSra6lkMmIRJx1hCZUcGo24RL9vWL188taqM/youw4p7YXJ2f9mHOum6z+u5gSMUZSiiQpjJMwjIXdfuTtTy98+JS5fX3H6voK1/qaXjb19yVFeYGX44EPDw/833/+Mz+8fVIfKFMInVOPKKunoGQUlCyxVg9zsyVXYYLW1rOKyDpD0xh1myjCmFUphVEwy7eO1bZnfaUtssMhsW4j66ZRQblxpFQYJqVVMsXFufGvDk5F0BzDlHSCV9OwO7wwJJY6QZbQmL9H2RCN9/Rdy9XVNcPxwOl0IlW+5Zz6nENtdkfT3et0OCACm+sbxHy/FNufv7ZZXlVvae0LutlZroITmtqYBeWNKXM4nehaz2kcyFJ0XKBzpLL4NGnbAxX+Xl1t+fjhE1O23DVrHuSJaZiUU2xVhRGM2pdkKRqk9Y/HEjCEpP+mzUJnoLGFfhLWQ6H3E40V2g9C33naxtF0ntW2p1/3YGGYRprW0256Tq0hW3S39uCCLhrjDWZjcNuWWBL7sqeUjC+OmAfsQDWY9lhTWS9GqtBZUVMjhlKEVHSGaePR0Xp18aqPbq1zLw3HPtsMS00382IaNqewl86Js5pHVUSz31DSGjMpCHk4FT582vPnHx7ZTy13rtWWjbcgDsmKEi+Ef4SYE0Oc6LcrCntOU0JMwTROyQuNAmMSlYGkp67Wk01wtEE9onLOOHuW/Hmv9Edja7nmDAadVNC2ns1VQ7+twm6jJhrB+5rhyOLcl4pBUDG64TcyhIz39KXllMHKEXfc8/50YqyjxIVKuL54MGpNokFScuTh8SPDaWKMSvw14hZgyCwPVlO0YgytLZijYX8c+J//+C/kWOaKdMnxZwDI4JYgz6K2+ClpCqt/6tCa2tLBUNMy1K0cIacJpCUV7SlKPltZzpmSdwZrM8EJd7dXXF2veHx45nQaaNqOtg04M/Hx0zOnU0aKJYshirrgNVk9eAIwAieEYIUWy56kQWuFxgjNS6Z1nt5HmvZEexNobnqaqxW3b645tTD1Fpwhl0gTHMVlsrcUSUROnE6TSsNyHWzrAwmdQ+qtOpzbmgNqH9Vi6riJxaakoqapCMQJwdTd/3yPmgaCndFlqYokqhqlcogrd3jGGAp1JF9RsojztZUkhmKLdmgzlKiqkMd95I8/nvi0y9zcr/T9xoyvI/mKqelzFVJkyYzDRBonrrYdt7drDscTvrGsNh1tB9bWdeES1qNj4Ct5PxjBmuok6GaMwyHalWcehiKAcZbgDKENrDaBrhd8U7CeeppWYTodYJhi1jLNNIhRZz/kXwOe/6HgtNZV491EX+dwPO0PpFLQZPlc+/3y+7Sfkxkn9YxNWaqM65wKK2x00Sapva3hOKjEqxxr8M+BKdXct6bBS29UrRrHKdO1zbnGrg37pUbVH4ExikSWnDgdDlxv13ijBtoF7bE55wgSWPUrck78/ve/5zQk1us1uahRVc4Z5xuctVAGnHN8+PRISjBNGUmFlGpdlYVsDBHBAV5gMEIAvAFfBI8QUsG7QtcY7t5sef2He8LrG+5+9zW3b24Y4h77smf3/ES7amm6wMvLM2OeVF1PHSKLxZEJzjNJxlWAqVSU3FhPqim/s4KRjGRVUmgmolPWmM2Ua11eclQZllE2Dkb9ciilcnrRIE9ndBaj4FIRBftEqEj0GVSRuhyNBEqZGKNh92L44ccTf/7pCdt03L+6p+/bBeBR13SgmsWJMUwxst/tVO6FcH3V8Pwc6DY9bWfATTAPEjJmWYOmttiQyudN0IWWmGM1sRNEbJ1ubsAI1haazrHeOpo243yp1EFZdLCH48i6bemcTujORU0JzgZxv0gJ/6PB6awhSiKlSB80X38+nplBs6fQ5XU+RcG5gHHKvs+luq/PxfcvRKu23lys0YE6KZOIF72SObDmH6J/nDVLGqoE53IGJ0R3+3IexYzu6epz44xlGkdOhyN+E9BxcKIInjU4JzRNYHu15euvvyGmjLU6YWv/cuB5t1fja2uR1PDd7w2v31xTcubjpx3vfnpkHJSyVQRlUtVXbkX3VIduc94YvFBHV8DrVytW/+U1f//f/ivJFHbDwP7pPW3nOA17JpmUfmZbXB84HUciEKzDWyU0+OARZ4glKx03a63qnaZnriLaxmhwOqvPwNigX6sPTGdqBiWVONG0eLalyYKrbbO5+tAFOhtis5iAlTJTK3NV5MyFjEFnWjYYa8gmckyFnz4l/vT2yJg9f/fd19y/uqcJoeIYs6Dc4IIi2jFHfv75HU9PT7X/qkSPJhiQQkl6KhojeKvElVzm46LKvipMqzNQhLZpOZ0OVcZmFvqdb4TQWFYbS9MUMFGzETM7LRoQ9Q16siO31x2h67DuhSIJYyoB47c6IVgMQxooJbHyHkQ4pYjB/qugXGoPDBRNbZSE7DB2uCASnA2SjJlfm1kC1GIWulfOl3XpDFp/9omKWpo6+0ODeFa9uApWqDt3Rgo03nK9WXN9tdLFmIU0pcWUbJYJAYTQzJRLQuNomkwuQqjQe9s2PDw9qfO494QgbPGkNOGcYTpNpGh53O2q+kAVEbPW0UnBiTJRnLFYo8mT+ED2nuNw4s/f/4nVdoW1gf1+r8iqDAgJHxzplOi6hmyNTloWcEmHNWWrSGZJCcmFLBON93qqGtQHyTuMMxgrS3vEqtJzudvGeYxRTatxdvl8EbMEWCllmSNTog74uVx5c2+TGSw0estt7U8XPVZJOXOMkY/7E3/68YndMfP6m694/fquuhtoaq0TCLz6U+XEaRx4+9NPvP3xLcM06XMX9bwdjpH4Erm67Wmtx9rMPJVuNi5D5g7CzCaCcYo0refu7o4YdQBwCGrM7Vs1qi4lQ8lY3AJoukr9K6mQ8eyPiSk+sNlcsd62jKfq5i/m1zopvx6cq7blOGWsEe7WG6y3jKWoto2/fGou9h1WWxcpF6aU67AcWCBrM5O99XutWE2X667oQsCK2lDw2TPVidfb7RVv3/6gjA2njKScJsasXkEYf0bCRLBiKVZYrzru7q7p+kYXjNF5FlNKdKEhBFe/5XOgAwxN6Jf5LdYo59hbw5BGHFZRTedIyXNvOzarGyiWDw8P/Pz+I8+7PTKmZRFkLcooWJJUE38LwRiep0TYH5neZVZ7RW6Dc1irIJDuJdrKGnPBhwYjmSRZU8gpU2QkuETftst9Ns5r3c2sLbWLWWKpCYoxphpJ+4XMYazFOFfBoHrWGLsgr/oguGiqnwneSr6/ICSgwFkuSt8UVC0yxsgQJ3bHxNuf97z79ELTX3F3c81q1avIexm1COM4UsqJKU7sXnY8Pn6q7hx6Aqq9kaMUR4qFp6eJdfasN0ED0KbaJtESyRqr1EdYTsnDywEphdAofXWzCjS9QDDEnBkGQaLDikdUGKfPqNbcpcAkwngaKcZwdb1iz5HDy0COAWh+W3D2TctuPCFFbSqOpyNjTsjFD7xcxLOzetc2OK/GxuMUmWJcepzGnJkhnx+EmvKFSrfqmoZTEdKonqULiwjhcFCHvTnXLbnoiLr6Opfpz3PgK/qNs4a+61hve9q+VVBFhFQKh+GkbYhGFQTzvJO5NeB9Q9u0jNNIKWCtx1ph1a85Hk+kEjHF07iAc56uK2xW+jpu71d8990bHh72fPz4xMPDnsfHZ8YpVheJ2axLsEY4lczTyZJ3Ql4bcgsinnbVEryh5Igpttp0Fh2Ga8A61acao6mrremnQRFDF9THVlsDysRNVdViaqtk5qLONb4mQqrXVc7rOTAXuZPoqafMzFztUvXxzMgtzHY2RfWlgK/kFWpwxpw4DJGPnwrv3hecW3G13dK4hi6saII6MNgKTOWcdcpdyYqMzvLEKnoQDC9HxUj69ZbTdGT/MtD2G9VqGhWwW6zuLQbtVZb6/mqZ9LI/KvpqLN3a4ZqAb622oSs/3OSaxqNKoNlYu5b4FGN52u/ZtIHr6xVxjJymvMzD+auDExFl7UtBUmS3GxlzAjoq6/CzIJ2d5UoRDbKSF5Hw5en9F/9eA89aPS13LweO1WrCLl/Xv6SUKivpXI/ObJQFqr881Y2SmUPwbLcb+r7DBkumcBoHtWScAruXPXEa6fuetm2XIJ/fX05Z7UokgmhB3zQNXdfxcpqIWU+HNjSEAM4JxhRa4+kaz6pteXN3z8t+5P2HB374+R3vn56JsTbmUTaKKYkwOIbnwqkrXPUe2wEpKam8pp9StNZer1eMw4kUC6FxBFfhe1GzqkRZHAlyKWoCVrMcRDnHUnTfn31pjcln4TKK4po6SmIeZV8tGEgp4Sy1jVUtPi/WxPx3OPe0LzvjKc0UvcT+MPLz+4HnR8GEjufnPcF0NF/3NM1ZhF8KtU9qCW3ARreoScRYbc1I5uV0ACustivkVHg5jhxPA9c3vVqEiPJlXT1cjEiV3s3vUdslqq22pMkwDqgYvDd0qwbxGZMMpVjS7JYw+4GI0RTaKl8bK6w3HZbA2+93SPy3ASHzbzX2v1xfri/X/9/rV+yFvlxfri/X/8/rS3B+ub5cf6PXl+D8cn25/kavL8H55fpy/Y1eX4Lzy/Xl+hu9vgTnl+vL9Td6/T9grf+8iXWdOwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot image with matplotlib\n", + "plt.imshow(image.permute(1, 2, 0)) # rearrange image dimensions to suit matplotlib [color_channels, height, width] -> [height, width, color_channels]\n", + "plt.title(class_names[label])\n", + "plt.axis(False);" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nwmoMhW8IqSu" + }, + "source": [ + "## Exercise 1. Make and time predictions with both feature extractor models on the test dataset using the GPU (`device=\"cuda\"`). \n", + "\n", + "* Compare the model's prediction times on GPU vs CPU - does this close the gap between them? As in, does making predictions on the GPU make the ViT feature extractor prediction times closer to the EffNetB2 feature extractor prediction times?\n", + "* You'll find code to do these steps in [section 5. Making predictions with our trained models and timing them](https://www.learnpytorch.io/09_pytorch_model_deployment/#5-making-predictions-with-our-trained-models-and-timing-them) and [section 6. Comparing model results, prediction times and size](https://www.learnpytorch.io/09_pytorch_model_deployment/#6-comparing-model-results-prediction-times-and-size)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "P8DX4FnUe0lp" + }, + "source": [ + "### Train two models on Pizza, Steak, Sushi data\n", + "\n", + "Need:\n", + "* Trained EffNetB2 feature extractor \n", + "* Trained ViT feature extractor" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "W9gGOufOfD5l" + }, + "source": [ + "### EffNetB2 \n", + "\n", + "See function creation source here: https://www.learnpytorch.io/09_pytorch_model_deployment/#31-creating-a-function-to-make-an-effnetb2-feature-extractor" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "UR-P1QaBfFoZ" + }, + "outputs": [], + "source": [ + "def create_effnetb2_model(num_classes:int=3, \n", + " seed:int=42):\n", + " \"\"\"Creates an EfficientNetB2 feature extractor model and transforms.\n", + "\n", + " Args:\n", + " num_classes (int, optional): number of classes in the classifier head. \n", + " Defaults to 3.\n", + " seed (int, optional): random seed value. Defaults to 42.\n", + "\n", + " Returns:\n", + " model (torch.nn.Module): EffNetB2 feature extractor model. \n", + " transforms (torchvision.transforms): EffNetB2 image transforms.\n", + " \"\"\"\n", + " # 1, 2, 3. Create EffNetB2 pretrained weights, transforms and model\n", + " weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT\n", + " transforms = weights.transforms()\n", + " model = torchvision.models.efficientnet_b2(weights=weights)\n", + "\n", + " # 4. Freeze all layers in base model\n", + " for param in model.parameters():\n", + " param.requires_grad = False\n", + "\n", + " # 5. Change classifier head with random seed for reproducibility\n", + " torch.manual_seed(seed)\n", + " model.classifier = nn.Sequential(\n", + " nn.Dropout(p=0.3, inplace=True),\n", + " nn.Linear(in_features=1408, out_features=num_classes),\n", + " )\n", + " \n", + " return model, transforms" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "PcLxlyFrfUGJ", + "outputId": "47bf699d-c300-43e5-e26d-680e5518eb91" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "nNBZ_2h_Cy86" - }, - "source": [ - "### Preprocess data\n", - "\n", - "Turn images into tensors using same code as PyTorch Paper Replicating section 2.1 and 2.2: https://www.learnpytorch.io/08_pytorch_paper_replicating/#21-prepare-transforms-for-images" + "data": { + "text/plain": [ + "ImageClassification(\n", + " crop_size=[288]\n", + " resize_size=[288]\n", + " mean=[0.485, 0.456, 0.406]\n", + " std=[0.229, 0.224, 0.225]\n", + " interpolation=InterpolationMode.BICUBIC\n", + ")" ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "effnetb2, effnetb2_transforms = create_effnetb2_model()\n", + "# effnetb2\n", + "effnetb2_transforms" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "b8LqE-XMgZM6", + "outputId": "1f5b9547-8ce2-4b99-f4aa-8e90f0c7fb3d" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "mU0T4gP3DJdF", - "outputId": "00d58b26-a6cb-4c3f-b774-2414c36bbce9" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Manually created transforms: Compose(\n", - " Resize(size=(224, 224), interpolation=bilinear, max_size=None, antialias=None)\n", - " ToTensor()\n", - ")\n" - ] - } - ], - "source": [ - "# Create image size (from Table 3 in the ViT paper) \n", - "IMG_SIZE = 224\n", - "\n", - "# Create transform pipeline manually\n", - "manual_transforms = transforms.Compose([\n", - " transforms.Resize((IMG_SIZE, IMG_SIZE)),\n", - " transforms.ToTensor(),\n", - "]) \n", - "print(f\"Manually created transforms: {manual_transforms}\")" + "data": { + "text/plain": [ + "(PosixPath('data/pizza_steak_sushi_20_percent/train'),\n", + " PosixPath('data/pizza_steak_sushi_20_percent/test'))" ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_dir, test_dir" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "IWMbHg7pf24Y", + "outputId": "39d2b3f8-7796-4723-9e02-293ca9c395f6" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "W4vWgIprDJau", - "outputId": "10423c3f-dc63-4e76-cd80-db5c6915662a" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(,\n", - " ,\n", - " ['pizza', 'steak', 'sushi'])" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Set the batch size\n", - "BATCH_SIZE = 32 # this is lower than the ViT paper but it's because we're starting small\n", - "\n", - "# Create data loaders\n", - "train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(\n", - " train_dir=train_dir,\n", - " test_dir=test_dir,\n", - " transform=manual_transforms, # use manually created transforms\n", - " batch_size=BATCH_SIZE\n", - ")\n", - "\n", - "train_dataloader, test_dataloader, class_names" + "data": { + "text/plain": [ + "(15, 5, ['pizza', 'steak', 'sushi'])" ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Create dataloaders for EffNetB2 \n", + "from going_modular.going_modular import data_setup\n", + "\n", + "BATCH_SIZE = 32\n", + "train_dataloader_effnetb2, test_dataloader_effnetb2, class_names = data_setup.create_dataloaders(train_dir=train_dir,\n", + " test_dir=test_dir,\n", + " transform=effnetb2_transforms,\n", + " batch_size=BATCH_SIZE)\n", + "\n", + "len(train_dataloader_effnetb2), len(test_dataloader_effnetb2), class_names" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 227, + "referenced_widgets": [ + "198a73324ffa4478afc64c011df8368c", + "d9c166e1d7d9461eb3d9fe0fa2ced5b1", + "8025ad7772fb40f69b2fddfd7eab62e6", + "984c980048f24b2cbfb45df1dc3c9bd7", + "583f6c14fb3b4125a7c4486782fe7a2f", + "254d130afee243edb15dba9198e14f95", + "350d659062d34f90b0a61aca7f07b108", + "6f375d622ce84f95959f1ec00ab5b4fb", + "1b7118878ac04c4ab3a5555f59aade61", + "f7ddad2e2e604fd8b0240683f54ad8a3", + "afdc91f716ec416db36ef586ce623942" + ] }, + "id": "POcQESk6gulj", + "outputId": "2181b910-47c7-4e19-b574-607f400ef0bb" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "u7eLIFHyDJRr", - "outputId": "dfa3408c-0ef4-45ae-c5c7-88f8f92d0beb" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "198a73324ffa4478afc64c011df8368c", + "version_major": 2, + "version_minor": 0 }, - "outputs": [ - { - "data": { - "text/plain": [ - "(torch.Size([3, 224, 224]), tensor(2))" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Get a batch of images\n", - "image_batch, label_batch = next(iter(train_dataloader))\n", - "\n", - "# Get a single image from the batch\n", - "image, label = image_batch[0], label_batch[0]\n", - "\n", - "# View the batch shapes\n", - "image.shape, label" + "text/plain": [ + " 0%| | 0/10 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Plot image with matplotlib\n", - "plt.imshow(image.permute(1, 2, 0)) # rearrange image dimensions to suit matplotlib [color_channels, height, width] -> [height, width, color_channels]\n", - "plt.title(class_names[label])\n", - "plt.axis(False);" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 1 | train_loss: 0.9856 | train_acc: 0.5604 | test_loss: 0.7408 | test_acc: 0.9347\n", + "Epoch: 2 | train_loss: 0.7175 | train_acc: 0.8438 | test_loss: 0.5869 | test_acc: 0.9409\n", + "Epoch: 3 | train_loss: 0.5876 | train_acc: 0.8917 | test_loss: 0.4909 | test_acc: 0.9500\n", + "Epoch: 4 | train_loss: 0.4474 | train_acc: 0.9062 | test_loss: 0.4355 | test_acc: 0.9409\n", + "Epoch: 5 | train_loss: 0.4290 | train_acc: 0.9104 | test_loss: 0.3915 | test_acc: 0.9443\n", + "Epoch: 6 | train_loss: 0.4381 | train_acc: 0.8896 | test_loss: 0.3512 | test_acc: 0.9688\n", + "Epoch: 7 | train_loss: 0.4245 | train_acc: 0.8771 | test_loss: 0.3268 | test_acc: 0.9563\n", + "Epoch: 8 | train_loss: 0.3897 | train_acc: 0.8958 | test_loss: 0.3457 | test_acc: 0.9381\n", + "Epoch: 9 | train_loss: 0.3749 | train_acc: 0.8812 | test_loss: 0.3129 | test_acc: 0.9131\n", + "Epoch: 10 | train_loss: 0.3757 | train_acc: 0.8604 | test_loss: 0.2813 | test_acc: 0.9688\n" + ] + } + ], + "source": [ + "# Train EffNetB2 feature extractor\n", + "from going_modular.going_modular import engine\n", + "\n", + "optimizer = torch.optim.Adam(params=effnetb2.parameters(), lr=1e-3)\n", + "\n", + "loss_fn = torch.nn.CrossEntropyLoss()\n", + "\n", + "set_seeds()\n", + "effnetb2_results = engine.train(model=effnetb2,\n", + " train_dataloader=train_dataloader_effnetb2,\n", + " test_dataloader=test_dataloader_effnetb2,\n", + " epochs=10,\n", + " optimizer=optimizer,\n", + " loss_fn=loss_fn,\n", + " device=device)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "dE5GngR5igju" + }, + "outputs": [], + "source": [ + "# With label_smoothing=0.1\n", + "# Epoch: 1 | train_loss: 1.0005 | train_acc: 0.5708 | test_loss: 0.7872 | test_acc: 0.9347\n", + "# Epoch: 2 | train_loss: 0.7704 | train_acc: 0.8500 | test_loss: 0.6603 | test_acc: 0.9409\n", + "# Epoch: 3 | train_loss: 0.6679 | train_acc: 0.8896 | test_loss: 0.5883 | test_acc: 0.9500\n", + "# Epoch: 4 | train_loss: 0.5608 | train_acc: 0.9146 | test_loss: 0.5522 | test_acc: 0.9318\n", + "# Epoch: 5 | train_loss: 0.5528 | train_acc: 0.9125 | test_loss: 0.5239 | test_acc: 0.9352\n", + "# Epoch: 6 | train_loss: 0.5718 | train_acc: 0.8875 | test_loss: 0.4973 | test_acc: 0.9597\n", + "# Epoch: 7 | train_loss: 0.5609 | train_acc: 0.8854 | test_loss: 0.4864 | test_acc: 0.9472\n", + "# Epoch: 8 | train_loss: 0.5457 | train_acc: 0.8958 | test_loss: 0.5050 | test_acc: 0.9318\n", + "# Epoch: 9 | train_loss: 0.5338 | train_acc: 0.8896 | test_loss: 0.4809 | test_acc: 0.9193\n", + "# Epoch: 10 | train_loss: 0.5417 | train_acc: 0.8500 | test_loss: 0.4654 | test_acc: 0.9625\n", + "\n", + "# Without label_smoothing=0.1\n", + "# Epoch: 1 | train_loss: 0.9856 | train_acc: 0.5604 | test_loss: 0.7408 | test_acc: 0.9347\n", + "# Epoch: 2 | train_loss: 0.7175 | train_acc: 0.8438 | test_loss: 0.5869 | test_acc: 0.9409\n", + "# Epoch: 3 | train_loss: 0.5876 | train_acc: 0.8917 | test_loss: 0.4909 | test_acc: 0.9500\n", + "# Epoch: 4 | train_loss: 0.4474 | train_acc: 0.9062 | test_loss: 0.4355 | test_acc: 0.9409\n", + "# Epoch: 5 | train_loss: 0.4290 | train_acc: 0.9104 | test_loss: 0.3915 | test_acc: 0.9443\n", + "# Epoch: 6 | train_loss: 0.4381 | train_acc: 0.8896 | test_loss: 0.3512 | test_acc: 0.9688\n", + "# Epoch: 7 | train_loss: 0.4245 | train_acc: 0.8771 | test_loss: 0.3268 | test_acc: 0.9563\n", + "# Epoch: 8 | train_loss: 0.3897 | train_acc: 0.8958 | test_loss: 0.3457 | test_acc: 0.9381\n", + "# Epoch: 9 | train_loss: 0.3749 | train_acc: 0.8812 | test_loss: 0.3129 | test_acc: 0.9131\n", + "# Epoch: 10 | train_loss: 0.3757 | train_acc: 0.8604 | test_loss: 0.2813 | test_acc: 0.9688" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 458 }, + "id": "g73VUMNfi8yO", + "outputId": "d57b3bb4-5d56-4ddf-f415-6e6612811e57" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "nwmoMhW8IqSu" - }, - "source": [ - "## Exercise 1. Make and time predictions with both feature extractor models on the test dataset using the GPU (`device=\"cuda\"`). \n", - "\n", - "* Compare the model's prediction times on GPU vs CPU - does this close the gap between them? As in, does making predictions on the GPU make the ViT feature extractor prediction times closer to the EffNetB2 feature extractor prediction times?\n", - "* You'll find code to do these steps in [section 5. Making predictions with our trained models and timing them](https://www.learnpytorch.io/09_pytorch_model_deployment/#5-making-predictions-with-our-trained-models-and-timing-them) and [section 6. Comparing model results, prediction times and size](https://www.learnpytorch.io/09_pytorch_model_deployment/#6-comparing-model-results-prediction-times-and-size)." + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAG5CAYAAAD/HsejAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hVVb7/8fdKJyGEVHroEJq0ACIdGzDYy6iAgiD6u+qdos7gndFRrnd0ZhzHcWyDCiq2seuoA6gEEBEh9JZA6KElIZSEkL5+f+wTCEhJIGSfc/J5Pc95yDl7n72/icjO56y1v8tYaxERERERERHvEeB2ASIiIiIiInIiBTUREREREREvo6AmIiIiIiLiZRTUREREREREvIyCmoiIiIiIiJdRUBMREREREfEyCmoiIiIiIiJeRkFN5DwYY7YZYy5zuw4REZELzRgzzxhzwBgT6nYtInWBgpqIiIiInJExphUwCLDA1bV43qDaOpeIt1FQE6lhxphQY8yzxpjdnsezFZ8+GmPijDFfGGMOGmNyjTHfGWMCPNt+a4zZZYzJM8akG2Mudfc7EREROeZ2YDHwOnBHxYvGmBbGmI+NMdnGmP3GmOcrbbvLGLPBc11bb4zp5XndGmPaVdrvdWPME56vhxpjMj3XxL3ADGNMtOfame0Z0fvCGNO80vtjjDEzPNfcA8aYTz2vrzXGXFVpv2BjTI4xpucF+ymJ1CAFNZGa9zvgYqAH0B3oC/zes+0BIBOIBxoB/wNYY0xH4D6gj7U2ErgS2Fa7ZYuIiJzW7cDbnseVxphGxphA4AtgO9AKaAa8B2CMuQl4zPO+BjijcPureK7GQAzQEpiM8/vqDM/zROAo8Hyl/WcC4UAXIAH4m+f1N4GxlfYbBeyx1q6oYh0irtJwskjNGwPcb63NAjDGPA78E3gEKAGaAC2ttRnAd559yoBQoLMxJttau82NwkVERE5mjBmIE5Let9bmGGM2A7fhjLA1BR6y1pZ6dl/o+XMS8Gdr7VLP84xqnLIc+IO1tsjz/CjwUaV6/g9I8XzdBBgJxFprD3h2me/58y3gEWNMA2vtYWAcTqgT8QkaUROpeU1xPl2ssN3zGsBfcC5Wc4wxW4wxUwA8oe2XOJ8+Zhlj3jPGNEVERMR9dwBzrLU5nufveF5rAWyvFNIqawFsPsfzZVtrCyueGGPCjTH/NMZsN8YcBhYADT0jei2A3Eoh7Rhr7W7ge+AGY0xDnED39jnWJFLrFNREat5unE8eKyR6XsNam2etfcBa2wZnGsivK+5Fs9a+Y62t+NTSAn+q3bJFREROZIypB9wMDDHG7PXcN/YrnKn9+4DE0zT82Am0Pc1hC3CmKlZofNJ2e9LzB4COQD9rbQNgcEV5nvPEeILYqbyBM/3xJuAHa+2u0+wn4nUU1ETOX7AxJqziAbwL/N4YE2+MiQMexZl+gTFmtDGmnTHGAIeAMqDcGNPRGDPc03SkEGeaR7k7346IiMgx1+Jcqzrj3HvdA+iEM3X/WmAP8JQxJsJzHRzged+rwIPGmN7G0c4YU/Eh5krgNmNMoDFmBDDkLDVE4lwXDxpjYoA/VGyw1u4B/gO86Gk6EmyMGVzpvZ8CvYBf4NyzJuIzFNREzt9XOBeQikcYkAqsBtYAy4EnPPu2B74B8oEfgBettSk496c9BeQAe3Fuhn649r4FERGRU7oDmGGt3WGt3VvxwGnmcStwFdAO2IHTLOvnANbaD4D/w5kmmYcTmGI8x/yF530Hce7r/vQsNTwL1MO5Ri4GZp20fRzOPeBpQBbOrQR46qi4v6018HE1v3cRVxlrTx5dFhERERHxD8aYR4EO1tqxZ91ZxIuo66OIiIiI+CXPVMmJOKNuIj5FUx9FRERExO8YY+7CaTbyH2vtArfrEakuTX0UERERERHxMhpRExERERER8TKu3aMWFxdnW7Vq5dbpRUSkFi1btizHWhvvdh2+QtdIEZG64UzXR9eCWqtWrUhNTXXr9CIiUouMMdvdrsGX6BopIlI3nOn6qKmPIiIiIiIiXkZBTURERERExMsoqImIiIiIiHgZLXgtInVeSUkJmZmZFBYWul2KzwsLC6N58+YEBwe7XYqIiIhPU1ATkTovMzOTyMhIWrVqhTHG7XJ8lrWW/fv3k5mZSevWrd0uR0RExKeddeqjMWa6MSbLGLP2NNuNMeY5Y0yGMWa1MaZXzZcpInLhFBYWEhsbq5B2nowxxMbGamRSRESkBlTlHrXXgRFn2D4SaO95TAZeOv+yRERql0JazdDPUUREpGacNahZaxcAuWfY5RrgTetYDDQ0xjSpqQJFRERERETqmpro+tgM2FnpeabntZ8wxkw2xqQaY1Kzs7Nr4NQiIiIiIiL+p1bb81trp1lrk621yfHx8bV5ahERr3Xw4EFefPHFar9v1KhRHDx4sNrvGz9+PB9++GG13yciIiK1pyaC2i6gRaXnzT2viYhIFZwuqJWWlp7xfV999RUNGza8UGWJiIiIi2qiPf/nwH3GmPeAfsAha+2eGjiuiEite/zf61i/+3CNHrNz0wb84aoup90+ZcoUNm/eTI8ePQgODiYsLIzo6GjS0tLYuHEj1157LTt37qSwsJBf/OIXTJ48GYBWrVqRmppKfn4+I0eOZODAgSxatIhmzZrx2WefUa9evbPW9u233/Lggw9SWlpKnz59eOmllwgNDWXKlCl8/vnnBAUFccUVV/D000/zwQcf8PjjjxMYGEhUVBQLFiyosZ+RiIiInOisQc0Y8y4wFIgzxmQCfwCCAay1LwNfAaOADKAAmHChihUR8UdPPfUUa9euZeXKlcybN4+f/exnrF279thaZNOnTycmJoajR4/Sp08fbrjhBmJjY084xqZNm3j33Xd55ZVXuPnmm/noo48YO3bsGc9bWFjI+PHj+fbbb+nQoQO33347L730EuPGjeOTTz4hLS0NY8yx6ZVTp05l9uzZNGvW7JymXIqIiEjVnTWoWWtvPct2C9xbYxWJiLjoTCNftaVv374nLBj93HPP8cknnwCwc+dONm3a9JOg1rp1a3r06AFA79692bZt21nPk56eTuvWrenQoQMAd9xxBy+88AL33XcfYWFhTJw4kdGjRzN69GgABgwYwPjx47n55pu5/vrra+JbFRERkdOo1WYiNamkrJxl2w+4XYaISI2LiIg49vW8efP45ptv+OGHH1i1ahU9e/Y85YLSoaGhx74ODAw86/1tZxIUFMSSJUu48cYb+eKLLxgxwllK8+WXX+aJJ55g586d9O7dm/3795/zOURELpjiAjiif5/kAstcBiU/vR7XJJ8Nam8t3s4NLy1iZ26B26WIiJyXyMhI8vLyTrnt0KFDREdHEx4eTlpaGosXL66x83bs2JFt27aRkZEBwMyZMxkyZAj5+fkcOnSIUaNG8be//Y1Vq1YBsHnzZvr168fUqVOJj49n586dZzq8iEjtKi2CxS/Bs13hL23g5YHw9aOwZb6zTaSm7FsHb1wFsx++oKepiWYirhjSwWnvn5Kexe39W7lbjIjIeYiNjWXAgAF07dqVevXq0ahRo2PbRowYwcsvv0ynTp3o2LEjF198cY2dNywsjBkzZnDTTTcdayZyzz33kJubyzXXXENhYSHWWp555hkAHnroITZt2oS1lksvvZTu3bvXWC0iIuesvBzWfAApT8DBHdBmGLQcAFvmwQ8vwPd/h+BwaDUQ2l4KbYdDXHswxu3KxRcd2Q/v3gqhkTD4Nxf0VMa5xaz2JScn29TU1PM6xtC/pNAqLoLXJ/StoapEpC7asGEDnTp1crsMv3Gqn6cxZpm1NtmlknxOTVwjRfyetZDxLXzzGOxbA026w2WPOUGsQlEebFvo7Ld5LuRudl6PagFthznBrc0QqBftwjcgPqesBGZeBzuXwIT/QPPe533IM10ffXZEDWBYUgLv/LiDo8Vl1AsJdLscEREREakNu5bB13+Abd9BdCu44TXocj0EnHRXT2gkdBzpPAAObHMCW8a3sO5TWP4mmABo1tsJeG0vdb4O9OlfkeVCmf075+/ctS/XSEg7G5/+WzisYwIzvt/Gos05XNqp0dnfICJSh9x77718//33J7z2i1/8ggkTtIqKiPio/Zvh26mw/lMIj4ORf4He4yEopGrvj24FyXc6j7JS2JV6fLRtwV9g/p8gNAraDD4+TTK65YX8jsRXLH8TlvwT+t8HPc7YFL/G+HRQ69cmhvCQQFLSsxTURERO8sILL7hdgohIzcjb64SoZW9AUBgMfRj63+uMmJ2rwCBIvNh5DP8dFOTC1vnHg9uGfzv7xbY7PtrWaiCE1q+Z70l8x44f4YtfO/c/XvZ4rZ3Wp4NaaFAgA9rFkZKWjbUWo5tCRURERPxH4WFY9JzTFKSsGPpMhMEPQf2Emj9XeAx0uc55WAs5G49Pk1w+E5ZMg4BgJ9hV3N/W+KKfTrcU/3IoE/41Fhq2gJtm1Oq0WJ8OagDDkxL4ev0+Nu7Lp2Pj8/hURURERES8Q2kRpE53piMW7IeuN8Cw30Fs29o5vzEQ39F5XPz/nPWydi72jLalONMvv53qTL+sCG1th0Fk49qpT2pHyVF4b4zz5x3/rvWmMz4f1IZ2PN6mX0FNRERExIf9pNX+UKeTY9Oe7tYVHObU0mao8zxvH2xJOT5Ncs0HzuuNuh4Pbon9nfeJb7IWPr8f9qyCW9+FhKRaL8Hng1qTqHp0atKAuWlZ3DOklj5lEREREZGac3Kr/cYXwbi/n9hq35tENoLutziP8nKn5oppkotfhkX/gKB60GrA8fvb4jtq7TZfsug5J4APf+R419Ba5heTaocnxbNs+wEOFZS4XYqISLUdPHiQF1988Zze++yzz1JQUHDGfVq1akVOTs45HV9E5ILbtQzeuArevgGK85xW+5Pne29IO1lAgLOG28Bfwfgv4Lfb4Lb3odftcGA7zP4feLEf/K0LfHYfbPveCabivTZ97Sz/0OU6GPSAa2X4RVAb1jGBsnLLgk3ZbpciIlJtFzqoiYh4pf2b4f074JXhkLXBabV/71LodqNvN+gIrQ8droRRf4b7U+GXa+Cqvzvrs637FF4fBS/0dRqkFOS6Xa2cLGcTfDgRGneFa15wdRTU56c+AvRMjKZheDAp6Vlc1b2p2+WIiC/7zxTYu6Zmj9m4G4x86rSbp0yZwubNm+nRoweXX345CQkJvP/++xQVFXHdddfx+OOPc+TIEW6++WYyMzMpKyvjkUceYd++fezevZthw4YRFxdHSkrKWUt55plnmD59OgCTJk3il7/85SmP/fOf/5wpU6bw+eefExQUxBVXXMHTTz9dYz8SEanD8vZ5Wu2/7rTaHzIFLrnv/Frte7OGic5ab73HQ/ERWPeJ873P/h/45nHocq2zLbG/pka67ehBePcWCAyGW96BkAhXy/GLoBYYYBjSIZ756dmUl1sCAvSXXER8x1NPPcXatWtZuXIlc+bM4cMPP2TJkiVYa7n66qtZsGAB2dnZNG3alC+//BKAQ4cOERUVxTPPPENKSgpxcXFnPc+yZcuYMWMGP/74I9Za+vXrx5AhQ9iyZctPjr1//34++eQT0tLSMMZw8ODBC/oz8HbGmBHA34FA4FVr7VMnbW8JTAfigVxgrLU207OtDKhI/zustVfXWuEi3qTwsHPv1g/PO632k++EIb+5MK32vVVIBPQc6zz2rnEC2+r3YfW/ID7JCWwX/dxZKkBqV3kZfDQJDmyD2z93ArbL/CKogdOm/7OVu1mVeZCeibXbOlNE/MgZRr5qw5w5c5gzZw49ezodzvLz89m0aRODBg3igQce4Le//S2jR49m0KBB1T72woULue6664iIcD4hvP766/nuu+8YMWLET45dWlpKWFgYEydOZPTo0YwePbpGv09fYowJBF4ALgcygaXGmM+ttesr7fY08Ka19g1jzHDgSWCcZ9tRa22PWi1axJu43WrfWzXuBj/7K1w+FdZ+7IS2WVOchiqdK0bZLtYoW235dipkfA0/e8ZpAuMFfHgC8IkGt48nwEBKuu5TExHfZa3l4YcfZuXKlaxcuZKMjAwmTpxIhw4dWL58Od26deP3v/89U6dOrbFznurYQUFBLFmyhBtvvJEvvviCESNG1Nj5fFBfIMNau8VaWwy8B1xz0j6dgbmer1NOsV28WeEh2P4DZKc7n6pLzSgvd0aLnk92AkijrjB5Htw4XSGtspAI6DUO7voW7v4OeoyBtC9hxgh48WKni+TRA25X6d9WfwDfP+uM8vaZ6HY1x/jNiFp0RAg9E6NJScvi15d3cLscEZEqi4yMJC8vD4Arr7ySRx55hDFjxlC/fn127dpFcHAwpaWlxMTEMHbsWBo2bMirr756wnurMvVx0KBBjB8/nilTpmCt5ZNPPmHmzJns3r37J8fOz8+noKCAUaNGMWDAANq0aXNBfwZerhmws9LzTKDfSfusAq7HmR55HRBpjIm11u4HwowxqUAp8JS19tNTncQYMxmYDJCY6P6UG79VeNhZF2nPSti9AnavhNzNx7cHR0CTi5x1u5r0gKY9ILYdBAS6V7OvsRY2fwtfP+Ybrfa9SZOLYPQzcMX/wtqPIHUGzPotfOPpQNh7ArToq1G2mrR7BXx+H7QcACP+5HY1J/CboAbO9Me/zE4n63AhCQ20wKCI+IbY2FgGDBhA165dGTlyJLfddhv9+/cHoH79+rz11ltkZGTw0EMPERAQQHBwMC+99BIAkydPZsSIETRt2vSszUR69erF+PHj6du3L+A0E+nZsyezZ8/+ybHz8vK45pprKCwsxFrLM888c2F/CL7vQeB5Y8x4YAGwC6gYmmlprd1ljGkDzDXGrLHWbj75ANbaacA0gOTkZPXurgknhDJPMKscyho0d4JYj1udMFGw//h+qTOg9KizX0h9Z3vTHscDXGw73+5MeKHsWuZM3du6ABq2dFrtd7leP6vqColw2vv3ut35O7zsdWfUZ9W7kNDZcy/bzVBPt/ucl7x98N4YiIiHm96AoBC3KzqBsS6t45CcnGxTU1Nr9Jjrdh/iZ88t5M83XMTNfVrU6LFFxH9t2LCBTp06uV2G3zjVz9MYs8xam+xSSefFGNMfeMxae6Xn+cMA1tonT7N/fSDNWtv8FNteB76w1n54pnNeiGuk3ys8DHtXHw9ae1bC/ozj2ytCWRNP2GraAyLOMBJdVgo56c7xKoLe3tVQWuhsPxbeeh4/bl0Ob/s3O/f4rP8UwuNgyG+dMOFlv/j6tKJ8Z5Rt2euwe7nTMbPL9c7PWaNs1Vda5Kzft2c1TJzjjGa64EzXR78aUevcpAGNG4SRkp6loCYiIjVlKdDeGNMaZ6TsFuC2yjsYY+KAXGttOfAwTgdIjDHRQIG1tsizzwDgz7VZvF+qHMoqpjCeEMqaOQHqoluOh6j68dU7R2AQNOriPHqOcV6rHN4qwmDqa5XCW6Tzy17lMBjT1r/DW0Wr/eVvQGCo/7fad1Nofeh9h/PYvdIJbGs+gFXveEbZJnhG2Rq6Xan3sxa+fAB2/gg3znAtpJ2NXwU1YwzDkuL596o9FJeWExLkx/8wioicpF+/fhQVFZ3w2syZM+nWrZtLFfkHa22pMeY+YDZOe/7p1tp1xpipQKq19nNgKPCkMcbiTH281/P2TsA/jTHlOA28njqpW6ScTVGe84l3RTDaXTFS5pkR1KCZE4wu+vnxaYnVDWVVdbrwlp12vLbThbfK97z5WngrLXaaWRTsh6O5ziLNR3OdhYFTpzut9ntPqHut9t3UtAc0ffbEe9n+8xB8/Sh0vd7579E8WaNsp7PkFVgxEwY96Py8vJRfTX0EmLNuL5NnLuOdSf24pN3Zb64XEdmwYQNJSUkYXdDOm7WWtLQ0v5r66IY6O/WxIpRVvqesciiLbHriVMOmPbwzGJwQ3jwNS/atPSm8dT9xKmZMmwsf3qyFkgInaJ0Qug6c4jXP84IDUJx3mgMap8HF8N+ri6M32L3CM8r2IRTnQ0IXSJ4A3W7SKFtlWxfAm9dC+yucRa1d/tCkzkx9BBjQLo6QwABS0rMU1ESkSsLCwti/fz+xsbEKa+fBWsv+/fsJC1MzJ6mConzP9MUVx0eicjZxYijr4fySWRHOvDGUnUpgEDTu6jx6jnVeKytxwlvl6ZpLXoEyzyh4aIOfNiw5U3grL4eiQ56AlXtSwDpVENvvfF1WdOrjAYRGQXg01IuB8FiI6+D5OsZpWhEe6/na81p4LATXq9mfnZy7pj2dxxVPOGFt2Qz46kGY84izdl3v8RplO7AN3r/DuZ/0+mmuh7Sz8bsRNYBxr/3I7oNH+faBoRfk+CLiX0pKSsjMzKSwsNDtUnxeWFgYzZs3Jzg4+ITXNaJWPX41olaQCwe2Qq7nkbPxFKGsyYlTA5v0gMhGrpZdKyqHt4qpnXvXnhjemnSHqBZQePDEka6jB8CWn/q4JtATrGKOh65jAazyazEnBrHA4FMfT3xXRQfTNR9CyRFnLbuKjpFhUW5XV7uK8uG1K+BwJtyV4jWjwGe6PvplUJu+cCtTv1jPgoeGkRgbfkHOISIiVaegVj0+FdTKyyF/rxPCDmyF3C0nfl146MT9I5sen/ZXEc7qQiirqrISyNpw4j1veXudIFURvsJjTxO6PNtDo7x+pEBqWeFhWPuhE9r2robgcM+9bHdCs17+P8pWXg4f3O4sJD7mQ2h3qdsVHVOnpj4CDEtKYOoX65mbto/xA1q7XY6IiIhvKyuBgztOHBmr+PrAtuPrjYEzmtMwEWJaQ9cbnT9j2kB0a4huBSH6APWMAoM9nSMvctbQEqkJYQ0g+U6nycjuFc60yDUfwYq3oFE3SB7vNOTx126dC/4MG/4NV/yfV4W0s/HLoNY6LoLWcRGkpGcrqImIiFRF8REndJ1qZOzgTrBlx/cNqnc8gLW71AlgMW2c16JaaAqdiLcyxhlBa9bLCS1rPnBC25cPQMqTMHSKMzXSn/4f3vBvmPckdL8V+t979v29iF8GNYBhHRN468ftFBSXEh7it9+miIhI1Vjr3Nd0yimKW53pi5XVi3ZGwZr19oyMeYJYdGuIbOz/U6VE/F1YA+gz0Rlpy1zqLFj+1YPw48tw2WOQNNr3/z/ftw4+vtv5d2z0sz73/fhtghmelMD077eyKGM/l3XW3HcREalDdix2mnXkbqk0RXHrqe8Xi2kN7S7zjJB5glhMayeoiYj/MwZa9IU7/g0bZztrsf1rLCT2h8v/F1r0cbvCc1OQC+/e6kzn/PnbEOx7HYn9Nqj1aR1NeEggKelZCmoiIlK3fH6/010xIMi5Xyy6tdOWu+JesRjP/WJqrS4iFYyBjiOcD25WzISUP8Jrl0Hna+GyPzj/fviKshL44A7I2wMT/gMNmrhd0Tnx26AWGhTIwHZxpKRlYa3V2kgiIlJ33PCq09o9qoWzppeISFUFBh1fKHvRP2DRc063xD6TYMhvnM6i3m7O752Fra99yfmQykf5de/W4UkJ7D5USPq+PLdLERERqT1NujujZgppInKuQuvDsIfh/uXQ41ZY8k/4ew9Y+CyUePG6o8tnOvfZXXwv9LjN7WrOi18HtaEdEwCYm5blciUiIiIiIj6oQRO4+h/w/xZBYj/45g/wfDKsft9Zn8yb7PgRvvgVtBkGl091u5rz5tdBrXFUGJ2bNGBeWrbbpYiIiIiI+K6ETjDmA7j9c6fZ0Md3wStDnSmG3uDQLqcJSlRzuHG6X8wo8OugBs70x2U7DnCooMTtUkREREREfFubITB5Plw3zems+MZV8PbNkJXmXk0lR+G926CkAG591zfuo6sCvw9qw5ISKCu3zN+kUTURERERkfMWEADdfw73pcJljztLgrzUHz7/b8jbe/b31yRrnfPuWQnXv+KM/PkJvw9qPVo0JDo8mHm6T01EREREpOYEh8HAX8J/r4C+d8PKt+G5XpDyJBTl104Ni56DNe/DsN9D0qjaOWct8fugFhhgGNIhnnkbsykrt26XIyIiIiLiXyJiYeRTcO8SaH8ZzH8K/tELUmdAWemFO++mb+DrPzhrvQ1+8MKdxyV+H9TAmf6Ye6SYVZkH3S5FRERERMQ/xbaFm9+EiV9DdCv44pfw8gDYONuZoliTcjbBh3dCo65w7YvOgt1+pk4EtSEd4gkwkKLpjyIiIiIiF1aLvnDnbLh5JpSVwDs3O01Hdq+omeMXHoJ3b3U6O976DoRE1MxxvUyVgpoxZoQxJt0Yk2GMmXKK7S2NMd8aY1YbY+YZY5rXfKnnrmF4CL0So0lJV1ATEREREbngjIHOV8O9P8LIv0DWepg2FD66Cw7uOPfjlpfBR5PgwFZn9K5hYo2V7G3OGtSMMYHAC8BIoDNwqzGm80m7PQ28aa29CJgKPFnThZ6vYUkJrN11mKzDXrySuoiIiIiIPwkMhn6TnYYjA38NGz6HfyTDnEfg6DnclvTtVNg0B0b+CVoNrPl6vUhVRtT6AhnW2i3W2mLgPeCak/bpDMz1fJ1yiu2uG56UAKBRNRERERGR2hYWBZf9Ae5fBl1vgEX/gOd6wA8vQmlx1Y6x5kP4/lnoPQH6TLqw9XqBqgS1ZsDOSs8zPa9Vtgq43vP1dUCkMSb25AMZYyYbY1KNManZ2bW7rllS40iaRIWRkqb11EREREREXBHVHK57Ce5eAE26w+yH4YU+sPbjMzcc2b0CPrsXEi+BkX+uvXpdVFPNRB4EhhhjVgBDgF1A2ck7WWunWWuTrbXJ8fHxNXTqqjHGMLRjAgszciguLa/Vc4uIiIiISCVNLoJxn8KYjyA4HD6cAK9eBtt/+Om++Vnw3hgIj3PuSwsKqf16XVCVoLYLaFHpeXPPa8dYa3dba6+31vYEfud5zet64Q9PSiC/qJSl23LdLkVEREREpG4zxll37Z6FcPXzcHgXzBjhhLKcDGef0iL41zgoyHU6PNav3cEeNwVVYZ+lQHtjTGucgHYLcFvlHYwxcUCutbYceBiYXtOF1oRL2sYSEhjA3LQsBrSLc7scEREREREJCIRe46Dr9c49a98/Cy/0heQJUHwEdi6GG6c7UyXrkLOOqFlrS8xbfxIAACAASURBVIH7gNnABuB9a+06Y8xUY8zVnt2GAunGmI1AI+D/LlC95yUiNIh+bWLUUERERERExNuERMCQh5wOkb3HQ+oMWPUuDHrAaUBSx1RlRA1r7VfAVye99milrz8EPqzZ0i6M4UkJPP7v9Wzff4SWsf65OJ6IiIiIiM+qnwCjn4F+98COH6DnOLcrckWVgpo/GdbRCWpz07KYMKC12+WIiIiIeKXi0nL2HykiJ6+Y7PxCz59FZOcVkZ1fxOGjJQzrmMDP+7QgIrTO/UoptSG+g/Ooo+rc/1Wt4iJoExdBSnq2gpqIiIjUKaVl5eQeOR64cvKLneCVV0ROfqU/84s4WFByymNEhgYRHxlKUKBh6hfr+fu3mxh3cUvuuKQV8ZGhtfwdifivOhfUAIYlJTBz8XYKiksJD6mTPwIRERHxE2XllgMFxT8NW5WCWMXz3ILiUy5VFR4SSHxkKHH1Q2kbX59+bWKIrx/meS3k2Lb4yFDCggOPvW/5jgNMm7+FF+ZlMO27LdzQqzl3DWpNm/j6tfgTEPFPdTKlDE9K4LWFW/k+Yz+Xd27kdjkiIiIip3SooIR1uw+dMOWw8hTEnPwi9ucXUX6K8BUaFHAsYLWICadnYjTxkU7Yiq8UvuLqh57z1MVeidG8PK43W7LzeXXhVj5clsl7S3dwRedG3D2kLb0So8/zJyBSd9XJoNanVQwRIYGkpGcpqImIiIhXyc4r4uv1+/jP2j38sHk/pZVSWHCgIb5+KHGRoTSNCuOiZlHHwlfFiFfFCFj90CCMMbVSc5v4+vzxum786rIOvPnDNt78YTuz1+2jT6to7h7cluFJCQQE1E4tIv6iTga1kKAABraPIyUtC2ttrf0jJiIiInIquw4eZfbavcxau5el23OxFhJjwpk4sDWD2sfTOCqU+PphNKhXe+HrXMRHhvLAFR25Z0hb3k/dyavfbWXSm6m0S6jP5EFtuKZnU0KDAs9+IBGpm0ENnOmPs9ftI21vHp2aNHC7HBEREaljtmTnM2udE85WZx4CoGOjSO4f3p4RXRrTqUmkV4eyM4kIDWLCgNaMvbglX63Zwz/nb+E3H63m6TnpTBjQmtv6JRJVL9jtMkW8Wp0NakM7JgAwNy1LQU1ERM7IGDMC+DsQCLxqrX3qpO0tgelAPJALjLXWZnq23QH83rPrE9baN2qtcPEq1lo27Mlj1to9zFq3l4378gHo3jyK34zoyIgujf2uCUdwYADX9GjG1d2bsjAjh2kLtvCnWWm8kJLBbf0SmTCgFU2i6rldpohXqrNBrVGDMLo0bcC89CzuHdbO7XJERMRLGWMCgReAy4FMYKkx5nNr7fpKuz0NvGmtfcMYMxx4EhhnjIkB/gAkAxZY5nnvgdr9LsQt5eWWlZkHmeWZ1rgjtwBjnPvlHx3dmSu7NqZZQ/8PKsYYBrWPZ1D7eNbuOsS0BVt4beFWpi/cyjU9mjF5cBs6No50u0wRr1Jngxo40x9fSMngYEExDcND3C5HRES8U18gw1q7BcAY8x5wDVA5qHUGfu35OgX41PP1lcDX1tpcz3u/BkYA79ZC3eKS0rJylmzLZdbavcxet5d9h4sICjBc0i6O/ze0LZd1alSn1xvr2iyK527tyUNXduS1hVv519KdfLQ8k2Ed45k8uC0Xt4nx2SmfIjWpTge1YUkJ/GNuBvM3ZnNNj2ZulyMiIt6pGbCz0vNMoN9J+6wCrseZHnkdEGmMiT3Ne095wTHGTAYmAyQmJtZI4VJ7ikrLWJSxn/+s3cPX6/dxoKCE0KAAhnSIZ2S3xgxPaqR7sk7SIiacx67uwi8ubc9bi7fz+qJt3PrKYro3j2Ly4LaM6NqYQHWKlDqsTge17s0bEhMRwrx0BTURETkvDwLPG2PGAwuAXUBZdQ5grZ0GTANITk4+xapY4m0KikuZl57NrLV7mZuWRX5RKfVDg7i0UwIjujRmSMd4wkPq9K9aVRIdEcL9l7bnrsFt+Gh5Jq9+t5V731lOy9hwJg1qw029m5+wyLZIXVGn//UIDDAM6RDPvPQsysqtPrUREZFT2QW0qPS8uee1Y6y1u3FG1DDG1AdusNYeNMbsAoae9N55F7JYubAOHS3h2w37mLV2L/M3ZlNUWk50eDA/69aEEV0bc0m7WLWfP0dhwYGM6deSW/ok8vX6vbw8fwuPfLqWv329kTv6t+L2/i2JjtCtKjWtrNzyw+b9BAYY+rSKJigwwO2SxKNOBzVwpj9+smIXK3cepHfLaLfLERER77MUaG+MaY0T0G4Bbqu8gzEmDsi11pYDD+N0gASYDfzRGFNxgbnCs118SE5+EXPW7WPWur0sysihtNzSqEEot/RpwZVdG9O3VYx+ua1BgQGGEV2bcGWXxizddoB/zt/M377ZyEvzM/h5cgsmDWpDi5hwt8v0efvzi3g/NZN3lmxnZ+5RAGIiQri8UyN96OAl6nxQG9I+ngADKWlZCmoiIvIT1tpSY8x9OKErEJhurV1njJkKpFprP8cZNXvSGGNxpj7e63lvrjHmf3HCHsDUisYi4t2OLUC9bi+p23Ipr7QA9ZVdG9OjeUMCNBPngjLG0Ld1DH1bx7BpXx7TFmzhnSU7mLl4O6O6NeHuwW3p1jzK7TJ9irWW5TsO8tbi7Xy5eg/FZeVc3CaG345IItAYZq3by1dr9vCv1J1EhgYxXNN4XWWsdWcafHJysk1NTXXl3Ce76eVFFBSX8eV/D3K7FBERv2SMWWatTXa7Dl/hTdfIuqRiAerZa/eyqtIC1Fd2bezzC1D7i72HCpmxaCvvLN5BXlEpl7SN5e4hbRncPk7/bc7gSFEpn63czczF29mw5zD1Q4O4oVczxl7ckvaNTlwWoaIxzqy1e5mzfq8a41xgZ7o+KqgBL87L4M+z0vnxfy6lUYMwt8sREfE7CmrV403XyLrgwJFi7nozldTtzvJ23ZtHHQtn/rYAtb84XFjCe0t28NrCrew7XERS40juHtKG0Rc1JVjTUI/JyMrjrcU7+GhZJnlFpSQ1juT2/q24pkdTIkLPPkJWWlbO0m0HmLV2D7PX7WPv4cJjS02M7NqYyzs3Iq5+3V1qoiYoqJ1F2t7DjHj2O566vhu39FVLZBGRmqagVj3edI30d3mFJdz2yo+k78vjoSs6MuqiJnViAWp/UVxazuerdjNtwWY27sunaVQYdw5szc/7tCAyrG6O+pSUlTNn3T7eWrydH7bsJyQwgFHdGjOuf0t6JUaf88hjeblllWfx9v94Fm8PMJDcKoYRXRozomtjmur/nWpTUDsLay2XPDWXi5pH8c9x+j1CRKSmKahVjzddI/3Z0eIy7pi+hOU7DjDt9t4MT2rkdklyjsrLLfM2ZvHP+Vv4cWsuIYEB9G4ZzeAO8QzuEEenxg38/p7CPYeO8u6Snby3ZAdZeUU0j67HmH4tuTm5ObE1POplrSVtbx6z1u5l1tq9pO/LAzQafS4U1Krgfz5Zw2crdrH80cvV4UZEpIYpqFWPt10j/VFRaRmT3kjl+4wcnru1J6Mvaup2SVJDVu08yJdr9rBgYzZpe50AEVc/hEHt4xnUPo5B7eOJj/SP6XrWWr7P2M9bi7fz9YZ9lFvL0A7xjOvfkiEdEmpt6akt2fnMXrePWWv36P7OalJQq4Jv1u9j0pupvDWxHwPbx7ldjoiIX1FQqx5vu0b6m9Kycu57ZwWz1u3lzzdcxM19Wpz9TeKTsg4XsmBTDt9tyua7TTnkHikGoFOTBgzuEMfg9vEkt4r2uQ/pDxWU8OHyTN5evJ0tOUeIiQjh5uQWjOmX6PrSBbsOHmXOOmekbamnY2rL2HBGdGmsjqmnoKBWBQXFpfSY+jVj+7Xk0as6u12OiIhfUVCrHm+7RvqT8nLLgx+s4uMVu3h0dGfuHNja7ZKklpSXW9bvOcz8jdl8tymbZdsPUFJmqRccSL82MQxuH8/gDvG0jY/w2tGfNZmHeGvxdj5btYvCknJ6JTZkXP+WjOzahLBg7wubOflFfL3eWSB+0eYcSsosjRuEcWWXRlqD0ENBrYpun76EzNwC5j441O1SRET8ioJa9XjjNdIfWGt59LN1zFy8nQcu78D9l7Z3uyRxUX5RKT9u2c+Cjc5o25acIwA0jQpjcId4BrWPZ2C7OKLC3W1KUlhSxher9zBz8XZW7TxIveBAru3ZjLEXJ9Klqe+sI3foaAlz05zQNn9jNoUl5VpgmzNfH7VyXSXDO8bz2L/Xsy3nCK3iItwuR0RERGrQn2enM3Pxdu4e3Ib7hrdzuxxxWf3QIC7t1IhLOzlNZHbmFrBgUzbfbczhyzV7eG/pTgIMXNS8odOUpH0cPVo0rLURoO37j/D2jzt4P3UnBwtKaBsfwWNXdeb63s1p4IMdLaPqBXNdz+Zc17M5BcWlzE/PPmGB7fqhQQxPSmBkVy2wXUEjapXs2F/A4L+kaCqEiEgN04ha9XjjNdLXvZCSwV9mpzOmXyJPXNvVa6e2iXcoLStnVeZB5m907m9btfMg5RYiQ4O4pF2sJ7jF1/j9YGXllrlpWcxcvJ0FG7MJCjBc2aUxYy9uycVtYvzy721RaRmLNu9n1pq9fL1hH7lHio8tsD2ia2Mu7eTfC2xr6mM1DP/rPJo1rMfMif3cLkVExG8oqFWPt14jfdXr32/lsX+v57qezfjrTd3VyECq7WBBMYs2O9MkF2zMZvehQgBax0UwqL3TlOTitrHUr8Ii0qeSnVfE+6k7eefHHew6eJRGDUK5rW9LbunbgkYNwmryW/Fqp1pgOyQogBt7N+euQW1o7Ycz3hTUquGJL9bz5g/bWfHo5VVasV1ERM5OQa16vPUa6Ys+SN3JQx+u5orOjXhxTK8637hAzp+1ls3ZRzz3tmWzeEsuR0vKCA409EqMPjba1qXpmddus9aydNsBZi7ezqy1eygpswxsF8fYi1tyWaeEOv93tWKB7fdTM/loeSYlZeVc2bkxdw9pQ8/EaLfLqzEKatWwKCOH2179kWnjenNFl8ZulyMi4hcU1KrHW6+RvubL1Xu4/93lDGgXx6t3JNfJRgVy4RWVlrFs2wHme+5vW7/nMAAxESEMbBfnaUwSd2xkLL+olE9W7OKtH7aTvi+PyLAgburdgjEXJ9JWi0SfUnZeEW8s2sbMxds5dLSEvq1iuHtIG4Z1TPD5EXIFtWooLi2n1/9+zVXdm/Dk9Re5XY6IiF9QUKseb71G+pKUtCwmz0yle/OGvDmxrxoTSK3Jyivk+4wcFnjub8vJd9ZuS2ocSftGkczdsI8jxWV0bdaA2y9uxVXdm1IvRB8iVMWRolL+tXQnry3cyq6DR2mXUJ/Jg9twTY+mPvtBjLo+VkNIUAAD28WRkpaNtdYvb9oUERHxZ4u37Oeet5bRsXEk0yf0UUiTWpUQGXasu2F5uWXD3sN8tymHBRuzWbgpmxFdmzCuf0u6N4/S75nVFBEaxJ0DWzOuf0u+WrOHl+dv4Tcfrubp2encObA1t/VL9MmOmKejf7lOYXhSArPW7WXDnjw6N23gdjkiIiJSRSt3HmTi60tJjAnnzTv7+dUvbeJ7AgIMXZpG0aVpFPcMaet2OX4jODCAa3o04+ruTVmYkcM/52/hqf+k8fzcDG7rl8iEAa1oElXP7TLPm4LaKQztGA9ASnqWgpqIiIiPSNt7mDumLyG2fihvTepHTESI2yWJyAVkjGFQe2dx8rW7DjFtwRZeW7iVGd9v5eruzZg8uA0dG0e6XeY5q9vtZE4joUEYXZs1ICUty+1SREREpAq25hxh7KtLqBccyNuT+tWpluYiAl2bRfHcrT2Z9+BQxvRzpkZe+ewCJsxYwuIt+3GrL8f5UFA7jeEdE1i+4wAHjhS7XYqIiIicwa6DRxnzymLKreWtSf1qfBFiEfEdLWLCeezqLiyaMpwHLu/A6sxD3DJtMde+8D1frdlDWbnvBDYFtdMYlpRAuYUFm7LdLkVEREROIyuvkDGvLCavqJQ37+xLuwS1NxcRiI4I4f5L2/P9lOE8cW1XDh0t4b/eXs7wv85j5uLtFJaUuV3iWSmonUb35g2JjQhhrqY/ioiIeKWDBcXc/toSsvKKeH1CH7o2i3K7JBHxMmHBgYy9uCXfPjCUl8b0omF4CI98upYBT83l799s8urZc2omchoBAYYhHeKZm55FWbkl0McX0xMREfEn+UWl3DF9CVuyjzBjQh96t4xxuyQR8WKBAYaR3ZowomtjlmzNZdqCLfztm428PH8zNyc3Z9KgNl43bVpB7QyGJSXw8YpdrNx5QBcAERERL1FYUsbE15eydvdhXh7bmwHt4twuSUR8hDGGfm1i6dcmlo378pi2YAvvLNnBzMXbGdWtCXcPbku35t4xOq+pj2cwuH08gQFG0x9FRES8RHFpOfe8tYwl23J55ubuXN65kdsliYiP6tAokqdv6s53vxnOXYPaMD89m6ueX8htryxm/sZs1ztFKqidQVR4ML0To0lJU0MRERERt5WWlfPLf61gXno2f7yuG9f0aOZ2SSLiBxpHhfHwqE58//BwHh6ZxObsfO6YvoSRf/+OT1ZkUlJW7kpdVQpqxpgRxph0Y0yGMWbKKbYnGmNSjDErjDGrjTGjar5UdwxLSmD9nsPsPVTodikiIiJ1Vnm5ZcrHa/hqzV5+/7NO3No30e2SRMTPNAgL5u4hbfnuN8P5y40XUVZu+dW/VjHkzym8+t0W8otKa7WeswY1Y0wg8AIwEugM3GqM6XzSbr8H3rfW9gRuAV6s6ULdMjwpAYCUdE1/FBERcYO1lqlfrOfDZZn88rL2TBrUxu2SRMSPhQQFcFNyC2b/cjDTxyfTPCacJ77cwCVPfsufZ6WRlVc7AzhVGVHrC2RYa7dYa4uB94BrTtrHAg08X0cBu2uuRHd1aFSfZg3r6T41ERERl/x1zkZeX7SNSQNb84tL27tdjojUEQEBhuFJjXj/7v588l+XMKBdHC/N38zAp1KY8tFqNmfnX9jzV2GfZsDOSs8zPa9V9hgw1hiTCXwF3H+qAxljJhtjUo0xqdnZvnHflzGGoR3j+T4jh6JS718YT0RExJ+8NG8zz6dkcGvfFvzuZ50wRsvliEjt65kYzUtjezP3gaHclNycj1fs4v2lO8/+xvNQU81EbgVet9Y2B0YBM40xPzm2tXaatTbZWpscHx9fQ6e+8IYnJVBQXMaSrblulyIiIlJnzPxhG3+alcbV3ZvyxLXdFNJExHWt4yL4v+u6sWjKcO4e0vaCnqsqQW0X0KLS8+ae1yqbCLwPYK39AQgD/GZRk0vaxhESFKDpjyIiIrXko2WZPPLZOi7r1Ii/3tydwACFNBHxHnH1Q4mJCLmg56hKUFsKtDfGtDbGhOA0C/n8pH12AJcCGGM64QQ135jbWAX1QgLp3yaWeel+8y2JiIh4rVlr9/DQh6sY0C6W52/rSXCgVhMSkbrnrP/yWWtLgfuA2cAGnO6O64wxU40xV3t2ewC4yxizCngXGG/dXiGuhg1PSmBrzhG25hxxuxQRERG/NX9jNve/u4IeLRoybVwyYcGBbpckIuKKoKrsZK39CqdJSOXXHq309XpgQM2W5l2GdUzgD6xjbloWEwe2drscERERv7Nkay53z0ylfUIkMyb0JSK0Sr+miIj4Jc0lqKLE2HDaxkeQovvURETqHGPMCGNMujEmwxgz5RTbE40xKcaYFcaY1caYUZ7XWxljjhpjVnoeL9d+9b5hdeZB7nx9Kc0a1mPmxL5E1Qt2uyQREVfpo6pqGJ6UwOuLtnGkqFSf8omI1BHGmEDgBeBynCVqlhpjPvfMJqnwe5xbA14yxnTGmYXSyrNts7W2R23W7Gs27svjjulLaBgezFuT+hFbP9TtkkREXKcRtWoYlpRASZllYUaO26WIiEjt6QtkWGu3WGuLgfeAa07axwINPF9HAbtrsT6fti3nCGNe/ZHgwADentSPJlH13C5JRMQrKKhVQ59WMdQPDdL0RxGRuqUZUHlV00zPa5U9Bow1xmTijKbdX2lba8+UyPnGmEGnO4kxZrIxJtUYk5qdXTe6DO8+eJQxr/5IaVk5b0/qR8vYCLdLEhHxGgpq1RAcGMCg9nGkpGfhZ00tRUTk/NwKvG6tbQ6MAmYaYwKAPUCitbYn8GvgHWNMg1MdwFo7zVqbbK1Njo+Pr7XC3ZKTX8TYV3/k8NESZk7sR/tGkW6XJCLiVRTUqmlYUgL7Dhexfs9ht0sREZHasQtoUel5c89rlU0E3gew1v6As55onLW2yFq73/P6MmAz0OGCV+zlDhWUMO61Jew5VMiMCX3o2izK7ZJERLyOglo1De3ofMqp6Y8iInXGUqC9Maa1MSYEuAX4/KR9dgCXAhhjOuEEtWxjTLynGQnGmDZAe2BLrVXuhfKLShn/+hI2Z+Uz7fbeJLeKcbskERGvpKBWTQmRYXRrFkVKet24f0BEpK6z1pYC9wGzgQ043R3XGWOmGmOu9uz2AHCXMWYV8C4w3jpz5AcDq40xK4EPgXustbm1/114h8KSMu56I5XVmYf4x209GdTe/6d4ioicK/WYPwfDkhJ4fu4mDhwpJjoixO1yRETkArPWfoXTJKTya49W+no9MOAU7/sI+OiCF+gjPlqeyQ9b9vPMzd25sktjt8sREfFqGlE7B8OTEii3MH+jRtVERESqasOew0SGBXFdz5ObZoqIyMkU1M7BRc2iiI0IYa7uUxMREamyjKx82iXUxxjjdikiIl5PQe0cBAQYhnSMZ/7GbMrK1aZfRESkKjKyjtAuvr7bZYiI+AQFtXM0PCmBQ0dLWLHjgNuliIiIeL1DBSXk5BfRLkFBTUSkKhTUztGg9vEEBhhNfxQREamCjOw8AAU1EZEqUlA7R1H1gundMlpt+kVERKogIysfUFATEakqBbXzMDwpgQ17DrPn0FG3SxEREfFqGVn5hAQF0Dw63O1SRER8goLaeRielABASppG1URERM4kIyufNnERBAao46OISFUoqJ2H9gn1adawnu5TExEROYuM7HxNexQRqQYFtfNgjGFYUjzfZ+RQVFrmdjkiIiJeqbCkjMwDRxXURESqQUHtPA1PSuBoSRk/bsl1uxQRERGvtDk7H2vVSEREpDoU1M5T/zZxhAYFaPqjiIjIaajjo4hI9fl2UCvKc7sC6oUE0r9tLPPSFdREREROZXNWPgEGWsdFuF2KiIjP8N2gtvIdeKYL5LsfkIYnJbBtfwFbsvPdLkVERMTrZGTnkxgTTmhQoNuliIj4DN8Nai36QXE+LHzW7UoY1tFp06/pjyIiIj+VkaWOjyIi1eW7QS22LXS/FVJfg8N7XC2lRUw47RPqk6LpjyIiIicoLStna84R2iqoiYhUi+8GNYDBD0J5KSx8xu1KGJaUwJKtueQXlbpdioiIiNfYkVtASZmlXbyCmohIdfh2UItpDT3GwLLX4VCmq6UM65hASZll4aYcV+sQERHxJur4KCJybnw7qIEzqmYtfPdXV8tIbhVNZGgQKbpPTURE5JgMT6MtTX0UEake3w9qDROh9x2wfCYc2O5aGcGBAQzqEEdKehbWWtfqEBER8SYZWfk0ahBKg7Bgt0sREfEpvh/UAAb+GkwAfPe0q2UM65hAVl4R63YfdrUOERERb7FZHR9FRM6JfwS1qGaQPAFWvA25W1wrY6inTb+mP4qIiIC1ls3ZR9RIRETkHPhHUAMY+CsIDIb5f3GthPjIULo3j2Ku2vSLiIiw93Ah+UWlGlETETkH/hPUIhtDn0mw+j3IyXCtjKEdE1i58yC5R4pdq0FERMQbVHR8VCMREZHq85+gBjDglxAUBvP/5FoJw5MSsBbmb9SomoiI1G1qzS8icu78K6jVj4e+k2HNB5Cd7koJ3ZpF0axhPV5ZsJXSsnJXahAREfEGGVn5NAgLIr5+qNuliIj4HP8KagCX/DeERMC8J105fUCA4Xc/68T6PYd5+8cdrtQgIiLiDTI8HR+NMW6XIiLic/wvqEXEQr97YN0nsG+dKyWM7NqYQe3jeHpOOtl5Ra7UICIi4rbN2fm0VcdHEZFz4n9BDaD/vRDawLVRNWMMj13dhcKSMp78zwZXahAREXHTwYJicvKLdX+aiMg58s+gFh4DF/8XbPg37FnlSglt4+szeXAbPl6+iyVbc12pQURExC2bs9VIRETkfPhnUAPo/18QFgXznnKthHuHtaNZw3o8+tlaNRYREZE6RR0fRUTOT5WCmjFmhDEm3RiTYYyZcortfzPGrPQ8NhpjDtZ8qdUUFgWX3A/pX8Gu5a6UEB4SxCOjO5O2N483f9juSg0iIiJuyMjKJyQogObR4W6XIiLik84a1IwxgcALwEigM3CrMaZz5X2stb+y1vaw1vYA/gF8fCGKrbZ+90C9aEj5o2slXNmlEUM6xPO3rzeSdbjQtTpERERqU0ZWPm3iIggMUMdHEZFzUZURtb5AhrV2i7W2GHgPuOYM+98KvFsTxZ230EgY8AvI+Bp2LnGlhIrGIkWl5fzxKzUWERHxRVWYWZJojEkxxqwwxqw2xoyqtO1hz/vSjTFX1m7l7snIzte0RxGR81CVoNYM2FnpeabntZ8wxrQEWgNzT7N9sjEm1RiTmp2dXd1az02fuyA8ztVRtdb/n707D4+yOt84/j0z2RMSkhCWBAgQwo5sAVFAQAVRFKxWC2qrVbHaWlttrVhbtW61P1u1rhW3uhartopKRSmLqCigYpWwOGGRPSFAYLKQ7fz+eIcQFCSQmXknyf25rrnMvPMuT7QluTnnPKdNIleO7sZry7fw0dpi1+oQEZGj15CZJcDvgH9aawcBU4BHAtf2CbzvC0wAHgncr1mrqKph065yBTURkUYIdjORKcAr1tqaQ31orZ1hrc2z1uZlZGQE+dGHEZsEI38Ja+fDhg/D88xDuGpMdzqmOo1FqtRYAOTYcwAAIABJREFURESkKWnIzBILJAe+TgG2BL6eDMy01u6z1q4DfIH7NWsFRX6sVSMREZHGaEhQ2wx0qve+Y+DYoUwhUqY91pd3GSS1c3VULT7Gyy1n9WXNdj/PfLjetTpEROSoNWRmya3ARcaYTcBs4OdHcW2zo46PIiKN15CgthTINcZ0NcbE4ISxWd88yRjTC0gFFge3xCCISYCR18H6RbDuPdfKOLV3W07u1Zb73l3DthI1FhERaUamAn+31nYEzgCeM8Yc1awVV5YHhEhBoR+Pcab+i4jIsTniDxFrbTVwNTAHWIkzB3+FMeY2Y8ykeqdOwZneYUNTaiMNuQRadXBG1Vwq0RjDLWf1oarWcqcai4iINBUNmVlyGfBPAGvtYiAOaNPAawlcF/7lASHiK/LTOS2B2KhmvxxPRCRkGvS3fdba2dbaHtbaHGvtnYFjN1trZ9U751Zr7bc6YUWM6DgY9Sv4erGzXs0l2emJ/HRMDm98voUPfTtcq0NERBqsITNLvgZOATDG9MYJakWB86YYY2KNMV2BXMCdNsRh5CtUx0cRkcYKdjORyDb4R5Dc0dVRNYArR+fQOS2Bm2etoLJajUVERCJZA2eW/AqYZoz5HGet9iXWsQJnpC0feBv42eEabjUX1TW1rNtRSo6CmohIo7SsoBYVC6Ovh01LwTfXtTLior3cOqkPvkI/T3+wzrU6RESkYY40s8Ram2+tHWGtHWCtHWitfafetXcGrutprf2PW99DuHy9s4yqGkv3DAU1EZHGaFlBDWDghdA6G+bf6eqo2sm92nFq73b89b9fsbWk3LU6REREgkkdH0VEgqPlBTVvNIz+DWz5DFa7+xebt5zVh5payx1vqrGIiIg0D74iJ6hp6qOISOO0vKAGcNwUSO3qrFWrdW+NWKe0BK4e2523vtjKoq+aditmERERcEbU2iXHkhwX7XYpIiJNWssMat4oGDMdtn8Bq950tZRpJ3WjS3oCt7y+gn3VzXp9uYiItAAF6vgoIhIULTOoAfQ/D9JzYcEfXR1VcxqL9GXtjlKeWKTGIiIi0nRZaykoKlUjERGRIGi5Qc3jdUbVCvMh/zVXSxnTsy2n9W3Hg/O+YvNuNRYREZGmadueCvz7qjWiJiISBC03qAH0/R5k9IYFd0Otu9MObz6rLwC3v5Hvah0iIiLHan/HRzUSERFpvJYd1PaPqu1YDV++6mopWa3j+fnJuby9YhsLVhe6WouIiMixUGt+EZHgadlBDaD3JGjXzxlVq6l2tZTLR3WlW5tEbp2lxiIiItL0+Ar9JMdFkZEU63YpIiJNnoKaxwNjboSdBfDFP10tJTbKyx8m92V9cRkzFq51tRYREZGj5Qt0fDTGuF2KiEiTp6AG0GsidBgAC/8ENVWuljIqN4OJ/Tvw0HwfG3eWuVqLiIjI0SgoUmt+EZFgUVADMAbG3gS71sPyF92uht+d2Ruvx3Dbm2osIiIiTcPuskp2+CsV1EREgkRBbb/c8ZA1BN67B6orXS2lQ0o815ySy7v525m3arurtYiIiDSEGomIiASXgtp+xsDY30LJRvjsOber4dIRXcnJSOTWWflUVKmxiIiIRLa6oJbRyuVKRESaBwW1+nJOgU7Hw6K/QFWFq6XERHm4fXI/vt5Zxt8WFrhai4iIyJH4Cv3ERnnISo13uxQRkWZBQa2+/WvV9myGT591uxpO7N6GswZk8siCAr4uVmMRERGJXL4iP90ykvB61PFRRCQYFNS+qetJkD0yMKpW7nY13HRGb6I9hj+8scLtUkRERA5rf2t+EREJDgW1bzIGxt4I/m2w7Cm3q6F9Shy/PLUH/11VyNx8NRYREZHIU15Zw+bd5XTPUFATEQkWBbVD6TISuo6G9++DylK3q+GSEV3IbZvErW+soLxSjUVERCSyFBT5sVYdH0VEgklB7XDG/hZKi2DpE25XQrTXw22T+7FpVzmPLvC5XY6IiMhBCorUml9EJNgU1A6n83CnC+T798O+vW5Xwwk56Zw9MJO/LVzL+h3uj/KJiIjs5yv04zHQpU2C26WIiDQbCmrfZexNUL4TlsxwuxIAfntGb2KiPNz6xgqstW6XIyIiAjhBLTs9kdgor9uliIg0Gwpq36XjEOgxAT54ACpK3K6GtslxXDuuBwtWF/GOGouIiEiE8BX6yVEjERGRoFJQO5IxN0LFbvjob25XAsDFJ2TTq30rbnsjn7LKarfLERGRFq66ppb1xaVanyYiEmQKakeSORB6nQmLH4byXW5XQ1Sgscjm3eU8PF+NRURExF0bdpZRVWMV1EREgkxBrSHG3Aj7SmDxI25XAsCwrmmcMziLGe+tZW2g05aIiIgbfIXq+CgiEgoKag3Rvh/0ORs+ehTKdrpdDQA3nt6buCgvt8xSYxEREXHP/qCWk5HociUiIs2LglpDjZkOlX748AG3KwEgo1Usvxrfg0Vf7eA/X25zuxwREWmhCgr9tE+Oo1VctNuliIg0KwpqDdW2N/Q7Fz6eAf4it6sB4KLh2fTpkMztb+ZTuk+NRUREJPx8RX5NexQRCQEFtaMx+gaoLocP/+p2JYDTWOT2s/uytaSCB+epsYiIiISXtZaCQgU1EZFQUFA7Ghk9oP/5sOQJ2BsZ+5gNyU7jvCEdeWLRWnyFe90uR0REWpCtJRWUVtaQo6AmIhJ0CmpHa/RvoKYSPrjf7Urq3HB6LxJi1FhERETCq67joza7FhEJOgW1o5WeAwOnwtInYc9Wt6sBoE1SLNef1pMPfMW8+b/IqElERJo/teYXEQkdBbVjcdL1YGtg0V/crqTOBcdn0y8rmTveysevxiIiIhIGviI/KfHRtEmKcbsUEZFmR0HtWKR2gUEXwafPwO6NblcDgNdjuH1yP7bv2ccD//3K7XJERJoVY8wEY8xqY4zPGDP9EJ/fZ4xZHnitMcbsrvdZTb3PZoW38tDyBRqJGGPcLkVEpNlRUDtWo34N1kbUqNqgzqlMGdqJp95fx5rtaiwiIhIMxhgv8DBwOtAHmGqM6VP/HGvttdbagdbagcCDwL/qfVy+/zNr7aSwFR4GBYV+rU8TEQkRBbVj1boTDLkYPnsOdm1wu5o6v5nQi8TYKH7/2pdqLCIiEhzDAJ+1dq21thKYCUz+jvOnAv8IS2Uu2lVaSXFppdaniYiEiIJaY4z6FRgvvHeP25XUSUuM4TcTevLxup3M+nyL2+WIiDQHWUD9ee6bAse+xRiTDXQF5tU7HGeMWWaM+cgYc/bhHmKMuSJw3rKioqJg1B1SviI1EhERCaUGBbUjzc0PnHO+MSbfGLPCGPNicMuMUMmZkHcpLH8RigvcrqbOlKGdGdAxhTveWsneiiq3yxERaUmmAK9Ya2vqHcu21uYBFwD3G2NyDnWhtXaGtTbPWpuXkZERjlobRR0fRURC64hBrSFz840xucCNwAhrbV/glyGoNTKNvBa8MRE1qub1GG6b3I8d/n3cP1eNRUREGmkz0Kne+46BY4cyhW9Me7TWbg78cy2wABgU/BLDz1foJy7aQ1breLdLERFplhoyotaQufnTgIettbsArLWFwS0zgrVqB0Mvg/+9BDsiJxQN6NSaqcM68/cP17Nq2x63yxERacqWArnGmK7GmBicMPat7o3GmF5AKrC43rFUY0xs4Os2wAggPyxVh5iv0E+3Nkl4POr4KCISCg0Jag2Zm98D6GGM+SAwB3/CoW7U1ObfN9iIX0JUPCz8k9uVHOT68T1Jjovi5tdWqLGIiMgxstZWA1cDc4CVwD+ttSuMMbcZY+p3cZwCzLQH/4HbG1hmjPkcmA/cba1tNkFN0x5FREInWM1EooBcYAxOt6vHjTGtv3lSU5t/32BJGXD8FfDFK1C4yu1q6qQmxnDDhF4sWb+Tf392uFk6IiJyJNba2dbaHtbaHGvtnYFjN1trZ9U751Zr7fRvXPehtba/tXZA4J9Phrv2UCirrGbz7nIFNRGREGpIUGvI3PxNwCxrbZW1dh2wBie4tRwnXgMxibDgj25XcpDz8zoxsFNr7pq9kpJyNRYREZHGW1tUCqiRiIhIKDUkqDVkbv5rOKNp++fg9wDWBrHOyJeQBsOvgvzXYNuXbldTx+Mx3HF2P4pLK7nv3TVulyMiIs2AOj6KiITeEYNaA+fmzwGKjTH5OHPwr7fWFoeq6Ih1ws8gNjniRtX6ZaVw0fHZPLt4Pflb1FhEREQax1fox+sxdElPdLsUEZFmq0Fr1I40N986rrPW9gnMwZ8ZyqIjVnyqE9ZWvQlblrtdzUF+Pb4nrRNi+P3rX6qxiIiINIqv0E92WgIxUcFa6i4iIt+kP2GDbfhVEJ8Gr/8M9vndrqZOSkI0N0zoyScbdvHm/7a6XY6IiDRhviI/OZr2KCISUgpqwRaXAuc+DoX58NpVEEGjV98f0ole7Vvxp7dXUVFV43Y5IiLSBFXV1LJ+R6nWp4mIhJiCWih0PxXG3QYrZ8F797hdTR2vx/C7iX3YtKucZz5c73Y5IiLSBG0oLqO61tI9Q0FNRCSUFNRC5YSr4bgpMP9OWPmm29XUGZnbhrE9M3hovo+dpZVulyMiIk2MOj6KiISHglqoGANn3Q+Zg+HfP4Ht+W5XVOe3Z/SmrLKGB/77lduliIhIE1NQ5AQ1rVETEQktBbVQio6HKS9ATBLMnAplO92uCIDcdq2YMrQTz3+0gbVFkdPwREREIp+v0E+HlDiSYqPcLkVEpFlTUAu15Ez4wfOwZwu8fAnUVLtdEQDXjutBXLSXP/5nlduliIhIE+Ir9Gvao4hIGCiohUOnoXDm/bBuIbzzO7erAaBNUixXjcnh3fztfLS25e1NLiIiR89aS0GRnxw1EhERCTkFtXAZdCEM/yl8/Ch89rzb1QBw2ciuZKbEccdb+dTWRs42AiIiEpm2llRQVlmjETURkTBQUAuncbdDtzHw5rWwcYnb1RAX7eX6CT35cvMeXlu+2e1yREQkwqnjo4hI+CiohZM3Cr7/tLNu7aWLnHVrLps8IIvjOqZwz5zVlFdqE2wRETk8BTURkfBRUAu3hDSYOhMqS2HmBVBV7mo5Ho/hpjN6s7WkgiffX+tqLSIiEtl8RX5aJ0STnhjjdikiIs2egpob2vaGc2bAls/gjV+AdXd92PHd0hnfpx2PLiigcG+Fq7WIiEjk8hU6jUSMMW6XIiLS7CmouaXXRBj7O/jfS7D4IberYfrpvdhXXcv9c7UJtoiIHFpBoZ/u6vgoIhIWCmpuOunX0GcyvHsz+Oa6Wkq3jCQuGp7NzCVfs2b7XldrERGRyLOrtJLi0kqtTxMRCRMFNTcZA2c/Cm37wMuXwg6fq+X84pRckmKjuGv2SlfrEBGRyOMrUiMREZFwUlBzW0wiTHnR6Qg5cypUlLhWSmpiDD8/OZcFq4tY9FWRa3WIiEjkUcdHEZHwUlCLBKnZcP6zsHMtvDoNat1rk/+jE7PplBbPnW+tpEabYIuISICv0E9ctIes1vFulyIi0iIoqEWKLiNhwt3w1RyYd4drZcRGeblhQi9WbdvLK59sdK0OERGJLL5CP93aJOHxqOOjiEg4KKhFkqGXw5BL4P174YtXXCtjYv8ODO7cmj+/s4bSfdWu1SEiIpHDV+jXtEcRkTBSUIskxsDp90DnE+D1q2HLcpfKMNw0sQ9Fe/fx2HvaBFtEpKUrq6xm8+5yBTURkTBSUIs0UTFw/nOQkA4zLwR/oStlDMlOZeJxHZjxXgHbSrQJtohIS7a2qBRQIxERkXBSUItESRkw5QUoK4aXfgjVla6UMX1CL2pr4c/vrHbl+SIiEhnU8VFEJPwU1CJV5kA4+2HY+BHM/jXY8Hdg7JSWwCUjuvDqp5tYscW9bQNERMRdvkI/Xo+hS3qi26WIiLQYCmqRrN+5MPI6+PQZWPqEKyX8bGx3WsdHc9fslVgXwqKIiLjPV+gnOy2BmCj92iAiEi76EzfSnfw7yD0N3p4O6xaF/fEp8dH84pRcPvAVM3+1O+vlRETEXb4iPzma9igiElYKapHO44VzH4e0bvDyxbBrQ9hLuHB4Nl3bJHLX7FVU19SG/fkiIuKeqppa1u8o1fo0EZEwU1BrCuJSYOpMqK2GmRdAZWlYHx/t9TD99F74Cv38Y6k2wRYRaUk2FJdRXWvpnqGgJiISTgpqTUV6Dnz/KSjMh9euCntzkfF92jGsaxr3v7uGvRVVYX22iIi4Rx0fRUTcoaDWlHQ/FcbdBvmvw3v3hPXRxhh+N7E3xaWVPLKgIKzPFhFxmzFmgjFmtTHGZ4yZfojP7zPGLA+81hhjdtf77GJjzFeB18XhrbzxCoqcoKY1aiIi4aWg1tSccDUc9wOYfyeseiusjz6uY2u+NyiLJ99fx6ZdZWF9toiIW4wxXuBh4HSgDzDVGNOn/jnW2muttQOttQOBB4F/Ba5NA24BjgeGAbcYY1LDWX9j+Qr9dEiJIyk2yu1SRERaFAW1psYYOOuvkDkY/nUFbM8P6+OvP60nBrhnjjbBFpEWYxjgs9autdZWAjOByd9x/lTgH4GvTwPetdbutNbuAt4FJoS02iDzFfo17VFExAUKak1RdDxMeQFiEmHmVCjbGbZHZ7aO5/JRXXl9+RaWb9x95AtERJq+LKB+J6VNgWPfYozJBroC847h2iuMMcuMMcuKiooaXXQw1NZaCor85KiRiIhI2CmoNVXJmfCDF2DPFnjlx1BTHbZHXzWmO22SYrjrLW2CLSLyDVOAV6y1NUd7obV2hrU2z1qbl5GREYLSjt7WPRWUVdZoRE1ExAUKak1Zp6Fw5n2wdgG887uwPTYpNoprx/VgyfqdzFmxPWzPFRFxyWagU733HQPHDmUKB6Y9Hu21EUcdH0VE3KOg1tQNugiOvwo+fhQ+ez5sj/1BXidy2yZx939WUlmtTbBFpFlbCuQaY7oaY2Jwwtisb55kjOkFpAKL6x2eA4w3xqQGmoiMDxxrEhTURETco6DWHIy/A7qOhjevhY1LwvLIKK+H307szfriMp7/aENYniki4gZrbTVwNU7AWgn801q7whhzmzFmUr1TpwAzbb054dbancDtOGFvKXBb4FiT4Cv00zohmvTEGLdLERFpcRTUmgNvFJz3d2fd2ksXOevWwmBMjwxGdm/DA/O+oqRMm2CLSPNlrZ1tre1hrc2x1t4ZOHaztXZWvXNutdZ+a481a+1T1trugdfT4ay7sQoK/XTPSMIY43YpIiItjoJac5GQBlNnQmUpzLwQqspD/khjDL89ozcl5VU8OO+rkD9PRETCy1ek1vwiIm5RUGtO2vaGc2bAlk/hjV9AGDoy9slM5rwhHXlm8Xo2FJeG/HkiIhIeO0sr2VlaqaAmIuKSBgU1Y8wEY8xqY4zPGPOtaR3GmEuMMUXGmOWB1+XBL1UapNdEGHsT/O8lWPxQWB75q/E9ifJ4+NPbq8LyPBERCb39jURyFNRERFxxxKBmjPECDwOnA32AqcaYPoc49SVr7cDA64kg1ylH46Troc9kePdm8M0N+ePaJcfxk9HdmP3FNpatbzJr5EVE5DvUdXzUZtciIq5oyIjaMMBnrV1rra0EZgKTQ1uWNIoxMPkRaNsHXr4UdvhC/sgrTupGu+RY7tAm2CIizYKv0E98tJes1vFulyIi0iI1JKhlARvrvd8UOPZN5xpj/meMecUY0+kQn2OMucIYs8wYs6yoqOgYypUGi02CKS+Cxwszp0JFSUgflxATxa/G92T5xt28+b+tIX2WiIiEnq/IT7eMRDwedXwUEXFDsJqJvAF0sdYeB7wLPHOok6y1M6y1edbavIyMjCA9Wg4rNRvOfxZ2roVXp0FtTUgfd+7gjvTukMyf3l5FRVVonyUiIqFVUKiOjyIibmpIUNsM1B8h6xg4VsdaW2yt3Rd4+wQwJDjlSaN1HQUT7oav5sC8O0L6KK/H8LuJvdm0q5xnPlwf0meJiEjolO6rZvPucq1PExFxUUOC2lIg1xjT1RgTA0wBZtU/wRjTod7bScDK4JUojTb0chh8Mbx/L3zxSkgfNaJ7G8b2zOCh+T52llaG9FkiIhIaa4uc7VY0oiYi4p4jBjVrbTVwNTAHJ4D901q7whhzmzFmUuC0a4wxK4wxnwPXAJeEqmA5BsbAGX+GzifAv38Ci+4N6TTI357Rm7LKGv46d03IniEiIqHjK9oLKKiJiLipQWvUrLWzrbU9rLU51to7A8duttbOCnx9o7W2r7V2gLV2rLVWG2pFmqgYmPoP6HUm/PcP8Mwk2L3xyNcdg9x2rZgytBMvfPw1BUX+kDxDRERCx1fox+sxZKcnul2KiEiLFaxmItIUxKfCeX+Hsx+Frcvh0REhmwp57bgexEV7+eNsZXYRkabGV+gnOz2BmCj9miAi4hb9CdzSGAMDL4ArF0FGD3j1MvjXFUFv398mKZarxuQwd+V2FhcUB/XeIiISWr5CvxqJiIi4TEGtpUrrBj9+G8bc6IyqPToSNiwO6iMuG9mVrNbx3Dk7n9pabYItItIUVNXUsqG4TOvTRERcpqDWknmjYMx0uPRt8Hjg72fAf2+Hmqqg3D4u2sv1p/Xky817eG355iNfICIirttQXEp1rVVQExFxmYKaQKdhcOX7MOACWPRneHI8FBcE5daTBmRyXMcU7pmzmvJKbYItIhLpfIVOEygFNRERdymoiSO2FZz9MJz3DOxcC38bCZ88A7ZxUxY9HsPvJvZha0kFT76/NkjFiohIqOwPajlaoyYi4ioFNTlY37Phqg+hYx68cQ28dBGUNq4ZyLCuaZzWtx2PLiigcG9FkAoVEZFQ8BX6yUyJIzE2yu1SRERaNAU1+baULPjh6zD+DvjqHXj0RPD9t1G3vGFCL/ZV13Lfu18FqUgREQkFX5GfHE17FBFxnYKaHJrHAyf+HKbNg/jW8Pw58J/pUHVsI2LdMpK4aHg2Ly39mtXb9ga5WBERCYbaWktBYanWp4mIRAAFNflu7fvDFQtg2BXw8aPw+FjYvuKYbvWLU3JJio3irtkrg1qiiIgEx5aScsqrahTUREQigIKaHFl0PJxxD1z4CpTugBljYfEjUFt7VLdJTYzh5yfnsnBNEe+tKQpRsSIicqzqOj6qkYiIiOsU1KThcsc5jUZyToY5NzrTIfdsPapb/OjEbDqnJXDX7JXUaBNsEZGIotb8IiKRQ0FNjk5SBkz9B5x5H3z9kdNoZOUbDb48NsrLDRN6sWrbXl5etjGEhYqIyNEqKPKTmhBNelKs26WIiLR4Cmpy9IyBvEvhJ+9B605OC/9ZP4d9/gZdfkb/9gzJTuUv766hdF91iIsVEZGG8hX6NZomIhIhFNTk2GX0gMvmwshr4dPn4LFRsOmTI15mjOGmib0p2ruPx97TJtgiIpFCQU1EJHIoqEnjRMXAqbfCJW9CdSU8OQ4W3gO1Nd952eDOqZx5XAdmvFfAthJtgi0i4rZi/z52lVWRo0YiIiIRQUFNgqPLSLjqA+j7PZh/Bzx9Buxa/52X3DChF7W18Od3VoenRhEROSw1EhERiSwKahI88a3h+0/COY9DYT48OhI+fwnsobs7dkpL4JIRXXj1002s2FIS5mJFRKQ+X5GCmohIJFFQk+A77ny48n1o3w/+fQW8ehmU7z7kqT8b253W8dHc+dZK7GECnYiIhJ6v0E98tJfMlHi3SxERERTUJFRSs+GSt+Dk30H+6/DoCFj//rdOS4mP5hen5PJhQTHTnl3GE4vW8vnG3VTXHN1m2iIi0ji+Qj85bRPxeIzbpYiICBDldgHSjHm8cNL1zgbZr06Dv58JI34BY29ympAEXDg8m/XFZcxbVcjclYUAJMR4GdS5NXnZaQzrmsbATq1JjNX/XEVEQqWg0M+wrmlulyEiIgH6zVdCL2uIs+fanN/CB/fD2vlwzhNOe38g2uvh1kl9uXVSX7bvqWDp+p0sW7+LJet28sC8r7AWvB5D38xkhnZJY2iXVPK6pNFGG7KKiARF6b5qtpRUaH2aiEgEUVCT8IhNgkkPQO44mHUNPHYSnHans3G2OTDNpl1yHGcel8mZx2UCsKeiis++3s3SdTtZun4nz3+0gSffXwdAtzaJ5HVJDYS3NLLTEzBGU3ZERI5WgRqJiIhEHAU1Ca/eZ0FWHrz+U3jrOvjqXZj0ICRlHPL05LhoRvfIYHQP5/PK6lq+2FzCsvVOcHsnfzv/XLYJgIxWsc5oW2C6ZK/2rYjyNr9lmOWVNWwpKWdnaSWdUhNolxyrgCoSYsaYCcBfAS/whLX27kOccz5wK2CBz621FwSO1wBfBE772lo7KSxFHwW15hcRiTwKahJ+yR3gwldhyWPw7i3w6Akw+RHoMf6Il8ZEeRiSncqQ7FR+MjqH2lpLQZGfJYHpkkvX72T2F9sASIzxMjjbGXHL65LKoE6pxMd4Q/3dNUpNraVo7z427y5na0k5W3aXs2V3BZt3O19vLalgZ2nlQdekxEfTs10rerRPomf7ZHq2a0XPdq1ISYh26bsQaV6MMV7gYWAcsAlYaoyZZa3Nr3dOLnAjMMJau8sY07beLcqttQPDWvRR8hX6ifIYstMT3S5FREQCFNTEHR4PDL8Kup7kNBp58Tzofz6ccjO07nQUtzHktmtFbrtWXHh8NgBbS8pZun5X3XTJ++auwVqI8hj6ZaXUrXEb2iWNtMSYIzwhuPZUVLF1dwVbdpfXha8tu8vZUuIc21ZSQXXtwdsUJMVGkdU6ng6t4xjQqTVZrePJbB1H64QYNu4sY9W2vazZtpfXl29hb8XXdde1T46jR/tW9Gx3IMB1b5sU8WFVJAINA3zW2rUAxpiZwGQgv94504CHrbW7AKy1hWGvshEKivxkpycQ3QxnIYiINFUKauKudn1h2jx47x748EFYOQtOuBpG/hJiWx3TLTukxDNpQDyTBjjr3ErKq/h0w666JiXPLN7BQ4ZwAAAgAElEQVTA44ucdW45GYkM65pGXrYT3DqlxR/zNMKqmlq2BQLXlpIDI2FbA6NiW3aXs3df9UHXRHkM7VPiyEyJJy87lczW8WS2jq8LZpmt40mOa9jImLWWrSUVrN7uBLfV2/ayevtenllbTGW1s92BMdAlPZEe7ZKckbf2yfRsn0SX9MRmOU1UJEiygI313m8Cjv/GOT0AjDEf4EyPvNVa+3bgszhjzDKgGrjbWvvaoR5ijLkCuAKgc+fOwau+AXyFfk17FBGJMApq4r7oODjl9zDkYvjvbbDoz/Dps84ebIMuctr8N0JKfDRje7VlbC9nJlJFVQ1fbi5xRt3W7+St/23lH0uc38HaJcc6o23ZqQztmkav9sl4PQZrLbvKqg4aCdtaUnHQqFjh3n18c8/utMQYMlvH0Tk9gRNy0skMhK8OKU4Yy2gVizdIexYZY+qC3tieB2ZdVdfUsmFnmRPeth8IcO/mb2f/4F2M10NO26QDo2/tk+jRrhVZrY89uIq0MFFALjAG6Ai8Z4zpb63dDWRbazcbY7oB84wxX1hrC755A2vtDGAGQF5env3m56FSVVPLhuIyJvRrH65HiohIAyioSeRo3RnOfQKOv9Jp5f/GNfDxY3DaHc5ebEESF+0lr0saeV3SuApnnduawr0sXb/LaVKyzglvAK1io8hoFcuWknIqqg7ehDs2ylM38nVSbsa3RsIyU+IjYpphlNdDTkYSORlJnN6/Q93xiqoafIV+1mw/EOCWrNvJa8u31J2TFBvljL61bxVYB+f8M11bI0jLshmoPye7Y+BYfZuAj621VcA6Y8wanOC21Fq7GcBau9YYswAYBHwrqLllQ3Ep1bVWI2oiIhFGQU0iT8c8uHQO5L8O794Mz30PcsfDuNuhba+gP87jMfRqn0yv9sn8cLizzm3z7nKWrd/JknU72V1WxSm92x40EpbZOo60xJgmPdoUF+2lX1YK/bJSDjq+p6KqbvRtzba9rNq2l/98ua1u1BGgTVJs3ahbr/at6NHOeWlTcmmmlgK5xpiuOAFtCnDBN855DZgKPG2MaYMzFXKtMSYVKLPW7gscHwH8X/hKP7K6jo8ZxzbdXEREQkO/VUlkMgb6ng09T3dG1d67Bx49EfJ+DGNuhMQ2IX18Vut4sgZmMXlgVkifE4mS46LrRhz3s9ZS5N/nTJvcttcZhdu2l5lLNlJeVVN3Xqe0eHq2a8XI7m34fl4nkhTcpBmw1lYbY64G5uCsP3vKWrvCGHMbsMxaOyvw2XhjTD5QA1xvrS02xpwIPGaMqQU8OGvU8g/zKFfsD2o5bdXxUUQkkhj7zUU1YZKXl2eXLVvmyrOlCSrdAQvuhmVPQUwinPRrGPYTZ32buKa21rJpVzmrtu0JTKH0k7+lhIKiUlrFRXHBsM5cfGIXMlvHu12quMwY84m1Ns/tOpqKcP6M/OXMz1i6fhcfTA/eFHMREWmY7/r5qL/ulqYhsQ1M/DMMmwbv/N6ZErn0SRj3B+hztjMCJ2Hn8Rg6pyfQOT2B8X0PNCL47OtdPPn+Op4IvCb278Dlo7pyXMfWLlYrIofiK/KTo/VpIiIRR/24pWnJ6AkX/hN++G+ISYKXL4GnToNNGp2NJIM6p/LQBYNZeP0YLh3RhfmrCpn00Aec/7fFzFmxjZpad0byReRgtbWWgsJSumcoqImIRBoFNWmack6GKxfBWQ/AznXwxCnwymWw++sjXyth0zE1gZsm9uHDG0/m92f2YfPucn7y3Cec/JcFPPPhesoqq498ExEJmS0l5ZRX1ajjo4hIBFJQk6bL43X2XrvmUzjpelj1JjyYB3P/ABV73K5O6mkVF81lI7uy8PoxPHzBYNISY7hl1gpO+OM8/vT2KraVVLhdokiLVNfxUUFNRCTiKKhJ0xfbytkc++efOJ0i378XHhwMy56GGo3YRJIor4eJx3Xg3z8dwatXnciI7uk8trCAkX+ax7UvLefLzSVulyjSoiioiYhELgU1aT5SOsI5M2DaPEjvDm/+Ev42Enxz3a5MDmFIdiqPXDiEhdeP5UcndOGdFds488H3mTJjMXPzt1OrdWwiIVdQ5Cc1IZq0xBi3SxERkW9QUJPmJ2sI/Pg/cP6zUF0Oz5/rvApXul2ZHEKntARuPqsPi397Cjed0Zuvi8u4/NllnHLvQp77aIPWsYmEkK/Qr9E0EZEIpaAmzZMx0Gcy/GwJjL8TNi51Nsx+81rwF7ldnRxCclw0007qxsLfjOXBqYNIjovi9699yYl3z+OeOavYvkfr2ESCTUFNRCRyNSioGWMmGGNWG2N8xpjp33HeucYYa4zRpqYSGaJi4cSr4ZrPYOg0+OQZeGAQvH8fVOkX/0gU7fVw1oBMXvvZCF658gSO75rGIwucdWzX/XM5K7ZoHZtIMBT797GrrIocteYXEYlIR9zw2hjjBR4GxgGbgKXGmFnW2vxvnNcK+AXwcSgKFWmUxHQ44/9g6OXOZtlzb4WlT8Gpt0C/c7VhdgQyxpDXJY28LmlsKC7l6Q/W889lG/nXp5s5MSedy0d1ZUyPtng8+m8ncizUSEREJLI1ZERtGOCz1q611lYCM4HJhzjvduBPgIYpJHJl9IALZsKPXoe4FHj1MnhyHGxc4nZl8h2y0xO5dVJfFk8/hemn92JtUSmX/n0Z4+5byIsff01FVY3bJYo0Ob4iBTURkUjWkKCWBWys935T4FgdY8xgoJO19q3vupEx5gpjzDJjzLKiIq0TEhd1GwM/WQiTH3Y2yX5yHLz8Y9i1we3K5DukJERz5egcFt0wlr9OGUh8jJff/vsLTvjjf/nLO6sp3Ku/JxJpKF+hn/hoL5kp8W6XIiIih9DoZiLGGA9wL/CrI51rrZ1hrc2z1uZlZGQ09tEijePxwqCL4OefwugbYPV/4KGh8O4tUKF1UJEs2uth8sAs3rh6JC9dMZy8Lmk8NN/HyLvnc/3Ln7NqmzY8FzkSX6GfnLaJmj4sIhKhjrhGDdgMdKr3vmPg2H6tgH7AAuOs82kPzDLGTLLWLgtWoSIhE5sEY38Lgy+GebfDB/fDZ88Fjl0C3ob830TcYIzh+G7pHN8tnXU7Snn6g3W8vGwTL3+yiVG5bbhsZFdG98jAaA2iyLcUFPoZ1jXN7TJEROQwGjKithTINcZ0NcbEAFOAWfs/tNaWWGvbWGu7WGu7AB8BCmnS9KRkwff+BtPmQ0YveOtX8LcRsGYOWG2+HOm6tknktsn9WHzjyfxmQk/WbN/LJU8vZfx97zFzidaxidRXuq+aLSUVWp8mIhLBjhjUrLXVwNXAHGAl8E9r7QpjzG3GmEmhLlAk7LIGwyVvwQ+eh+p98OL58OR4WLvQ7cqkAVonxPDTMd1Z9JuTuff8AUR7PUz/1xeMCOzHNn91IYXak01auAI1EhERiXgNmtNlrZ0NzP7GsZsPc+6Yxpcl4jJjoPdZkHsaLH8eFt4Dz06CLqPg5N9D5+PdrlCOICbKwzmDO/K9QVksXlvMk4vW8ciCAqwtAKBNUix9MpPpm5lMnw7J9MlMpmu61utIy6DW/CIikU+Lb0S+S1QM5F0KAy6AT56GRX+Bp8ZD93Fw8k2QOcjtCuUIjDGcmNOGE3PasKeiipVb9pC/dQ8rtuwhf8senli0lqoaZ2prQoyXXu1b0TczhT6BANezfSvior0ufxciweUr9BPlMWSnJ7pdioiIHIaCmkhDRMfB8Ktg8I9gyQx4/36YMQZ6nQljb4J2fdyuUBogOS66rvnIfpXVtXxVuJf8LYHwtnUPr322mec+crZq8HoMORmJTnjrEBiBy0ymdUKMW9+GSKP5Cv1kpycQ7W1082cREQkRBTWRoxGTCCOvdUbZPnoUPnwIVr0F/c6FMTdCm+5uVyhHKSbKQ9/MFPpmpnBe4FhtrWXTrnJWbCkhf6sz8ra4oJh/f3ag4W1mShx9AiNv+6dPdkyNV4dJaRJ8RX5yNe1RRCSiKaiJHIu4FBgzHYZdAR8+AB8/Biv+5UyRHP0bSM12u0JpBI/H0Dk9gc7pCZzev0Pd8WL/vrrgtn/0bd6q7dQGmoImx0UFpkym1I28dW+bpFELiSiV1bVsKC7j9H7t3S5FRES+g4KaSGMkpMGpt8Lwn8L798HSJ+F/LzlTJE/6NSRnul2hBFF6UiyjcjMYlZtRd6y8soZV2w5e9/bikg1UVNUCEOP10KN9En07BNa9ZSbTu0MySbH641fcsaG4lJpaq0YiIiIRTr8piARDUluY8Ec44Wqn4cinz8Bnz8PQy52pkkkZR76HNEnxMV4GdU5lUOfUumM1tZZ1O/x1wS1/6x7eXbmdl5ZtrDunS3rCQU1LkuOjqbWWmlpLrbXU1uK8txZrLTW1zn1t4FitdaZo1p0fOFZ3Tq2lxlL3da3lG/cPnG8PvK8JPHP/q8bJmvzxnP7h/tcqIVTX8TGjlcuViIjId1FQEwmmlCw4814YcQ0s/D/4+FGnW+TxV8KJP3dG4KTZ83oM3du2onvbVkwemAU4gWn7nn3OurdAePticwlvfbHV1To9BjzG4DHmwHuPwWsMxhiivVpz19zsD2o5bdXxUUQkkimoiYRCahc4+xFnNG3B3YFpkU84I27Dr4K4ZLcrlDAzxtA+JY72KXGc0rtd3fE9FVWs3raXssoavOZAUHKCk3OdNxCijNkfrva/6r0PhKv6Qcs5Tl0IM4Z691IAa6l8RX6yWseTEKNfAUREIpn+lBYJpTa58P0nYdR1MP8uWHCXM8o24hdOI5IY/Y12S5ccF83QLhpplfDxFfrJ0fo0EZGIp1ZkIuHQri9MeQGmzYesPJh7K/x1IHz0N6iqcLs6EWkhamstBUV+umcoqImIRDoFNZFwyhoMF70Cl86BjJ7w9g3w4GBY9hRUV7pdnYg0c5t3l1NRVauOjyIiTYCCmogbOg+HS96EH82C5Cx481p4KA+W/wNqa9yuTkSaKV9RoOOjgpqISMRTUBNxU7fRcNk7cMHLzibar10JjwyHL1+F2lq3qxORZqagUEFNRKSpUFATcZsx0GM8/OQ9OP85MF545VJ4bBSsegusdbtCEWkmfIV+0hJjSEuMcbsUERE5AgU1kUhhDPSZBFd9AOc8AVVlMPMCeHws+OYqsIlIo/kK1UhERKSpUFATiTQeLxx3HvxsKUx+GEqL4flz4enTYf37blcnIk2UtRZfkVrzi4g0FQpqIpHKGwWDLoKffwIT/wK71sPfJ8Kzk2HjUrerE2lRjDETjDGrjTE+Y8z0w5xzvjEm3xizwhjzYr3jFxtjvgq8Lg5f1QcrLq1kd1mV1qeJiDQR2vBaJNJFxcDQy2HghU4b/0X3wpOnQu5pMPAC6H4qxOoXL5FQMcZ4gYeBccAmYKkxZpa1Nr/eObnAjcAIa+0uY0zbwPE04BYgD7DAJ4Frd4X7+/CpkYiISJOioCbSVETHwwk/g8EXw5LHYPHD8NUc8MZCtzHQayL0PB2S2rpdqUhzMwzwWWvXAhhjZgKTgfx650wDHt4fwKy1hYHjpwHvWmt3Bq59F5gA/CNMtddRUBMRaVoU1ESamtgkGPUrOPEXsPFjpzPkqjed0PaGgU7HQ68zoNeZkJ7jdrUizUEWsLHe+03A8d84pweAMeYDwAvcaq19+zDXZh3qIcaYK4ArADp37hyUwuvzFfpJiPGSmRIX9HuLiEjwKaiJNFXeKOgywnmddidsX+GEttVvwbs3O6+MXs5IW6+J0GEQeFrYstSaKtj6P9jwAWz4EEo2Qd+znVHJpAy3q5PmJQrIBcYAHYH3jDH9j+YG1toZwAyAvLy8oLd5LSjyk5ORhDEm2LcWEZEQUFATaQ6Mgfb9nNeYG2D317D6P85I2/v3w6K/QKtMZ2pkr4nQZZSz9q25qSqHzZ84oWzDB07TlapS57O0bpDQBubdDgv/BH2/B0OnQcc859+fyOFtBjrVe98xcKy+TcDH1toqYJ0xZg1OcNuME97qX7sgZJV+B1+hn+Hd0t14tIiIHAMFNZHmqHVnOP4nzqtsJ3z1jjPa9vk/YNmTEJsMueOd0Nb9VIhLdrviY1OxBzYuOTBituVTqKkEDLTr6zRbyT7RebVq71xTuAqWPgGfz4T/vQQdBjiBrf/3nXWAIt+2FMg1xnTFCV5TgAu+cc5rwFTgaWNMG5ypkGuBAuAuY0xq4LzxOE1Hwsq/r5qtJRVanyYi0oQoqIk0dwlpMGCK86oqh7ULnZG21f+BL18Bbwx0PSnQjOSMA4EmEpXugK8XHxgx2/YF2FowXsgcBMdf6YSyTsc73/ehtO0FE/8Mp97ihLWlT8Csq+Hd3zvbIeRdBmldw/t9SUSz1lYbY64G5uCsP3vKWrvCGHMbsMxaOyvw2XhjTD5QA1xvrS0GMMbcjhP2AG7b31gknAoCjURytNm1iEiTYawN+jT4BsnLy7PLli1z5dkiAtTWwKalTmhb+SbsWucc7zg0ENomQkYPd2ss2QQbFh8YMdux2jkeFefUmX0idD7B+fpYtyiw1tlIfOnjzr8HWwu545xRtu6ntrx1fSFijPnEWpvndh1NRbB/Rr76ySZ+9fLnzL1utEbVREQiyHf9fNSImkhL5fFC5+HOa9ztULTKCW2r3oK5tzqv9NxAM5IzIWtIaEOLtVBcAF9/eGDEbPfXzmexyc4o2YApkD0CMgdCVGxwnmsMdB3lvEo2wyd/d14vngepXQ7sYXe4ETqRJsBX5CfKY8hOT3C7FBERaSCNqInIt5VshtWzndC2fhHUVkNSO2dqZK+JzlTJxgal2looXHHwiFlpYOuphDYH1pZlnwjt+jnBMlyqK2HlLGda5NeLnRG8/t93RtkyB4avjmZEI2pHJ9g/I6c9u4x1O0qZe93ooN1TREQaTyNqInJ0UrJg2DTnVb4bvnrXGW374mX45GmIaQW5pzojbbnjIC7lyPesqYItyw+MmH29GCpKAs/rBDljnWmM2SOgTa67nRijYpxg1v/7zjq4JY873/tnz0PHYc6/lz6TgzeqJxJiBYV+erRr5XYZIiJyFBTUROS7xbeG485zXtX7YN17gSmSs2HFv8ET7Uwb3D/alpzpXFdZBpuXHRgx27QUqsqcz9Jzoc/ZTijLPsHpUhmp2veHSQ/AuNtg+YvOKNu/psHbN8KQiyHvUkjp6HaVIodVWV3Lhp1lnNG/g9uliIjIUVBQE5GGi4p1RtByx8HE+5wgtn9d2+xfO6/MweCNhs2fQm0VYJywM/hHB5p/JLV1+zs5evGt4YSfOp0l1853RtkW3Qvv3+eE1GHToOto7ckmEWd9cSk1tVZNREREmhgFNRE5Nh4PdBrmvMbdBkVrDrT9BzjhZ86IWadhTshpLjwe6H6K89q1AZY9BZ8+63zvbXo4zUcGTG26e9NJs+MLtOZXUBNpXqqqqti0aRMVFRVulyINEBcXR8eOHYmOjm7wNQpqIhIcGT0g4zoYdZ3blYRPajaM+wOMudGZBrpkBvznNzD3D06HymHToG1vt6uUFm5/UOuWkehyJSISTJs2baJVq1Z06dIFo9kcEc1aS3FxMZs2baJr14bv1aoNgkREGis6DgZOhSvmw7R5TqORz56HR4bD0xOdEFdT5XaV0kL5Cv1ktY4nIUZ/NyvSnFRUVJCenq6Q1gQYY0hPTz/q0U8FNRGRYMoaAt97FK5bCaf+AUq+hpcvgfv7w4K7Ye82tyuUFsZX6Ne0R5FmSiGt6TiW/1YKaiIioZCYDiN/Cdcsh6kzoW0fWPBHuK8vvPxjZ4sCl/axlJajttaydoeCmohIU6R5ECIioeTxQs/TnVdxASx9EpY/Dyv+5WzkPfQy6H8+xOoXaQm+zbvLqaiqVVATEWmCNKImIhIu6Tkw4S5nWuRZDwAG3rwW7u0Ns38DhSvdrlCaGXV8FJFQ2b17N4888shRX3fGGWewe/fuEFTU/GhETUQk3GISnc2yB/8INn7s7Mn2ydOw5DHofCLk/Rh6T3KalIg0Ql1Qy1BQE2nO/vDGCvK37AnqPftkJnPLWX0P+/n+oPbTn/70oOPV1dVERR0+YsyePTtoNYbCkeoPJ42oiYi4xRjoPBy+/6QzyjbuNti7Ff41zRllm3MT7PC5XaU0Yb5CP+mJMaQmxrhdiog0M9OnT6egoICBAwcydOhQRo0axaRJk+jTpw8AZ599NkOGDKFv377MmDGj7rouXbqwY8cO1q9fT+/evZk2bRp9+/Zl/PjxlJeXH/Z5jz/+OEOHDmXAgAGce+65lJWVAbB9+3a+973vMWDAAAYMGMCHH34IwLPPPstxxx3HgAED+OEPfwjAJZdcwiuvvFJ3z6Qk5y+xFixY0OD63377bQYPHsyAAQM45ZRTqK2tJTc3l6KiIgBqa2vp3r173ftGsda68hoyZIgVEZFvqKmx1jfP2pkXWfuHNGtvSbb272da++W/rK3a53Z1xwxYZl36edMUX8H6GXnOIx/Y8/72YVDuJSKRJT8/39Xnr1u3zvbt29daa+38+fNtQkKCXbt2bd3nxcXF1lpry8rKbN++fe2OHTustdZmZ2fboqIiu27dOuv1eu1nn31mrbX2vPPOs88999xhn7f/emutvemmm+wDDzxgrbX2/PPPt/fdd5+11trq6mq7e/du++WXX9rc3FxbVFR0UC0XX3yxffnll+vuk5iYeFT1FxYW2o4dO9adt/+cW2+9ta6GOXPm2HPOOeeQ38Oh/pt918/HBo2oGWMmGGNWG2N8xpjph/j8SmPMF8aY5caY940xfRofIUVEWiCPB3LGwg+eg2tXwMm/g53rnRb/9/VxNtPetd7lIqUpsNaqNb+IhM2wYcMO2sz5gQceYMCAAQwfPpyNGzfy1Vdffeuarl27MnDgQACGDBnC+vXrD3v/L7/8klGjRtG/f39eeOEFVqxYAcC8efO46qqrAPB6vaSkpDBv3jzOO+882rRpA0BaWlpQ6v/oo4846aST6s7bf99LL72UZ599FoCnnnqKH//4x0d8XkMcMagZY7zAw8DpQB9g6iGC2IvW2v7W2oHA/wH3BqU6EZGWrFV7OOl6+MVyuOBl6DgUPrgf/joQnj8XVr4JNdVuVykRaoe/kpLyKq1PE5GwSExMrPt6wYIFzJ07l8WLF/P5558zaNCgQ272HBsbW/e11+uluvrwP9MuueQSHnroIb744gtuueWWo948GiAqKora2lrAmaJYWVnZqPr369SpE+3atWPevHksWbKE008//ahrO5SGjKgNA3zW2rXW2kpgJjC5/gnW2vqrFxMBbQ4kIhIsHi/0GA9T/wG//AJG3wDbV8BLFzobac+/C0o2uV2lRBh1fBSRUGrVqhV79+495GclJSWkpqaSkJDAqlWr+Oijjxr9vL1799KhQweqqqp44YUX6o6fcsopPProowDU1NRQUlLCySefzMsvv0xxcTEAO3fuBJz1cZ988gkAs2bNoqqq6qjqHz58OO+99x7r1q076L4Al19+ORdddBHnnXceXq+30d8vNCyoZQEb673fFDh2EGPMz4wxBTgjatcc6kbGmCuMMcuMMcuCssBORKSlSekIY2+EX34JU16Edn1g4f85ge0fU2HNO1Bb43aVEgF8RQpqIhI66enpjBgxgn79+nH99dcf9NmECROorq6md+/eTJ8+neHDhzf6ebfffjvHH388I0aMoFevXnXH//rXvzJ//nz69+/PkCFDyM/Pp2/fvtx0002MHj2aAQMGcN111wEwbdo0Fi5cyIABA1i8ePFBo2gNqT8jI4MZM2ZwzjnnMGDAAH7wgx/UXTNp0iT8fn/Qpj0CGGcN23ecYMz3gQn/397dB0dVZnkc/54kYBLUDJDVRRHDjK6gQpIh6ijlVAlGsLTiUqgIyi7UgoqCWUpdwpZvGccSp1hkHXVL1iFD4RsMjsqugKDg+jJbkICRtzhCkB2BKBHkJSCMCWf/6AajJiG36XC7k9+nqot7n+779OmHkMPp+9znuvu46P5o4DJ3n9jM60cBQ9z9H1vqt6CgwCsqKmKLWkREvvP1Vlg9Bz6aCwdqIasXDPgHyB8dmT6ZAMxstbsXhB1HsohHjnxk4Qb+UPE560uHYGZxikxEEkVVVRV9+/YNOwyJqqioYPLkybz//vvNvqapv7OW8mNrzqhtB85ptN8z2tacV4C/b0W/IiISD11z4OqHYfJGuOn30C0Hlv8anrwI5o2G6hUQnZMvHUd1bR0/O+NUFWkiIm1s2rRpDB8+nMcffzyu/bbmbm7lwPlm1ptIgXYLMKrxC8zsfHc/upTLdcCPl3UREZG2ldYZLhoWeXy1OXIT7cqXoGohdO0duZF23q3QJTvsSOUk2Lyzjst/2j3sMEREArn77rv58MMPv9dWXFwc1ymF8VZSUkJJyY8Wxj9hxy3U3L3ezCYCbwGpwGx332BmvyKy7v9CYKKZXQ18C3wNtDjtUURE2lj2eTDkMRj0YKRQqyiDZQ9FzrT1LYoUbecOjNx0W9qdusP11Ow9xM90fZqIJJlnnnkm7BASRmvOqOHui4BFP2h7qNF2cZzjEhGReOiUDv1vjjx2VsHq30Ply7B+AWT/HQwYC7m3QObx7zEjyaNaKz6KiCS9Vt3wWkRE2oEz+sK1T8C9n8ANz8Ipp8NbU2FGX3htAny+Co6zwJQkBy3NLyKS/Fp1Rk1ERNqRzpmQf2vkUbM2ci3b2vnw8Utw5sUwYAz0HwHpp4cdqcRoc20dnVKNc7tlhh2KiIjESGfUREQ6sh794fonI2fZrp8JlgKL7oN/6wMLJ8GOj8KOUGKweWcdOd27kJaqNC8ibWPPnj08++yzMR07c+ZMDh48GOeI2h/9BhcRETjltMgCI3e8B+OXw8XDYO0f4HdD4Juvw45OAqreWadpjyLSptpLoVZfXx92CM3S1EcREfmOGZw9IPK45jHYvhoyuoYdlQT021H5GFrRU2NLotEAAAylSURBVKTDWFwCX6yLb59/2w+undbs0yUlJVRXV5OXl0dhYSFnnHEG8+fP5/DhwwwbNozS0lIOHDjAzTffzLZt22hoaODBBx/kyy+/ZMeOHVx11VVkZ2ezYsWKJvufMGEC5eXlfPPNN9x4442UlpYCUF5eTnFxMQcOHOCUU07hnXfeITMzkylTprBkyRJSUlIYP348kyZNIicnh4qKCrKzs6moqOC+++7j3Xff5ZFHHqG6upotW7bQq1cvHn/8cUaPHs2BAwcAePrpp7niiisAeOKJJ3jhhRdISUnh2muvZfz48dx0002sWbMGgE2bNjFixIhj+/GkQk1ERJqW8RM4b3DYUUgMLjorK+wQRKSdmzZtGuvXr6eyspKlS5eyYMECVq1ahbtTVFTEe++9R21tLWeddRZvvvkmAHv37iUrK4sZM2awYsUKsrObv6/nY489Rrdu3WhoaGDw4MGsXbuWPn36MGLECObNm8cll1zCvn37yMjIYNasWWzdupXKykrS0tLYvXv3cePfuHEjH3zwARkZGRw8eJBly5aRnp7Opk2bGDlyJBUVFSxevJg33niDlStXkpmZye7du+nWrRtZWVlUVlaSl5dHWVlZm93jTYWaiIiIiEgya+HM18mwdOlSli5dSn5+PgB1dXVs2rSJK6+8knvvvZcpU6Zw/fXXc+WVV7a6z/nz5zNr1izq6+upqalh48aNmBk9evTgkksuAeD00yOLXr399tvceeedpKVFSptu3Y5/y5mioiIyMjIA+Pbbb5k4cSKVlZWkpqby6aefHut37NixZGZmfq/fcePGUVZWxowZM5g3bx6rVq1q9ecKQoWaiIiIiIjEzN2ZOnUqd9xxx4+eW7NmDYsWLeKBBx5g8ODBPPTQQ0308H2fffYZ06dPp7y8nK5duzJmzBgOHToUOK60tDSOHDkC8KPju3Tpcmz7ySef5Mwzz+Tjjz/myJEjpKent9jv8OHDKS0tZdCgQQwYMIDu3bsHjq01tJiIiIiIiIgEctppp7F//34AhgwZwuzZs6mri9zDcfv27ezcuZMdO3aQmZnJbbfdxv3333/sOq7GxzZl3759dOnShaysLL788ksWL14MwAUXXEBNTQ3l5eUA7N+/n/r6egoLC3nuueeOLQxydOpjTk4Oq1evBuDVV19t9v327t1Ljx49SElJYe7cuTQ0NABQWFhIWVnZsYVPjvabnp7OkCFDmDBhQptNewQVaiIiIsdlZkPN7M9mttnMSpp4foyZ1ZpZZfQxrtFzDY3aF57cyEVE2kb37t0ZOHAgF198McuWLWPUqFFcfvnl9OvXjxtvvJH9+/ezbt06Lr30UvLy8igtLeWBBx4A4Pbbb2fo0KFcddVVTfadm5tLfn4+ffr0YdSoUQwcOBCAzp07M2/ePCZNmkRubi6FhYUcOnSIcePG0atXL/r3709ubi4vvfQSAA8//DDFxcUUFBSQmpra7Ge56667mDNnDrm5uXzyySfHzrYNHTqUoqIiCgoKyMvLY/r06ceOufXWW0lJSeGaa66Jy3g2xdy9zTpvSUFBgVdUVITy3iIicnKZ2Wp3Lwg7jliYWSrwKVAIbAPKgZHuvrHRa8YABe4+sYnj69w90Fr5ypEicjxVVVX07ds37DA6rOnTp7N3714effTRVh/T1N9ZS/lR16iJiIi07FJgs7tvATCzV4AbgI0tHiUiIu3SsGHDqK6uZvny5W36PirUREREWnY28Hmj/W3AZU28briZ/ZLI2bfJ7n70mHQzqwDqgWnu/npTb2JmtwO3A/Tq1StesYuIJLTLLruMw4cPf69t7ty59OvXL6SIju+11147Ke+jQk1EROTE/RfwsrsfNrM7gDnAoOhz57r7djP7KbDczNa5e/UPO3D3WcAsiEx9PFmBi4iEaeXKlWGHkLC0mIiIiEjLtgPnNNrvGW07xt13ufvRr4SfBwY0em579M8twLtAflsGKyIdR1hrTUhwsfxdqVATERFpWTlwvpn1NrPOwC3A91ZvNLMejXaLgKpoe1czOyW6nQ0MRNe2iUgcpKens2vXLhVrScDd2bVr13Hvz/ZDmvooIiLSAnevN7OJwFtAKjDb3TeY2a+ACndfCNxjZkVErkPbDYyJHt4XeM7MjhD5cnRa49UiRURi1bNnT7Zt20ZtbW3YoUgrpKen07Nnz0DHqFATERE5DndfBCz6QdtDjbanAlObOO5PQOJeES8iSatTp0707t077DCkDWnqo4iIiIiISIJRoSYiIiIiIpJgVKiJiIiIiIgkGAtrpRgzqwX+7wS7yQa+ikM4HYnGLDiNWXAas+Da+5id6+5/E3YQyUI5MjQas+A0ZsFovIJr72PWbH4MrVCLBzOrcPeCsONIJhqz4DRmwWnMgtOYSbzpZyo4jVlwGrNgNF7BdeQx09RHERERERGRBKNCTUREREREJMEke6E2K+wAkpDGLDiNWXAas+A0ZhJv+pkKTmMWnMYsGI1XcB12zJL6GjUREREREZH2KNnPqImIiIiIiLQ7KtREREREREQSTNIWamY21Mz+bGabzawk7HgSnZmdY2YrzGyjmW0ws+KwY0oGZpZqZh+Z2X+HHUuyMLOfmNkCM/vEzKrM7PKwY0pkZjY5+m9yvZm9bGbpYcckyU35MRjlx9gpRwaj/BhcR8+RSVmomVkq8AxwLXAhMNLMLgw3qoRXD9zr7hcCvwDu1pi1SjFQFXYQSebfgSXu3gfIRePXLDM7G7gHKHD3i4FU4JZwo5JkpvwYE+XH2ClHBqP8GIByZJIWasClwGZ33+LufwVeAW4IOaaE5u417r4mur2fyC+Hs8ONKrGZWU/gOuD5sGNJFmaWBfwS+B2Au//V3feEG1XCSwMyzCwNyAR2hByPJDflx4CUH2OjHBmM8mPMOnSOTNZC7Wzg80b729Av1VYzsxwgH1gZbiQJbybwL8CRsANJIr2BWqAsOh3meTPrEnZQicrdtwPTgb8ANcBed18ablSS5JQfT4DyYyDKkcEoPwakHJm8hZrEyMxOBV4F/tnd94UdT6Iys+uBne6+OuxYkkwa8HPgP9w9HzgA6BqZZphZVyJnO3oDZwFdzOy2cKMS6ZiUH1tPOTImyo8BKUcmb6G2HTin0X7PaJu0wMw6EUlCL7r7H8OOJ8ENBIrMbCuRqUODzOyFcENKCtuAbe5+9NvoBUQSkzTtauAzd69192+BPwJXhByTJDflxxgoPwamHBmc8mNwHT5HJmuhVg6cb2a9zawzkQsLF4YcU0IzMyMyL7rK3WeEHU+ic/ep7t7T3XOI/Hwtd/cO9S1OLNz9C+BzM7sg2jQY2BhiSInuL8AvzCwz+m90MLq4XE6M8mNAyo/BKUcGp/wYkw6fI9PCDiAW7l5vZhOBt4isADPb3TeEHFaiGwiMBtaZWWW07V/dfVGIMUn7NAl4MfqfxC3A2JDjSVjuvtLMFgBriKw89xEwK9yoJJkpP8ZE+VFOFuXHAJQjwdw97BhERERERESkkWSd+igiIiIiItJuqVATERERERFJMCrUREREREREEowKNRERERERkQSjQk1ERERERCTBqFATaSUzazCzykaPkjj2nWNm6+PVn4iIyMmkHCkSf0l5HzWRkHzj7nlhByEiIpKAlCNF4kxn1EROkJltNbPfmNk6M1tlZudF23PMbLmZrTWzd8ysV7T9TDN7zcw+jj6uiHaVamb/aWYbzGypmWVEX3+PmW2M9vNKSB9TREQkMOVIkdipUBNpvYwfTOsY0ei5ve7eD3gamBlt+y0wx937Ay8CT0XbnwL+x91zgZ8DG6Lt5wPPuPtFwB5geLS9BMiP9nNnW304ERGRE6AcKRJn5u5hxyCSFMyszt1PbaJ9KzDI3beYWSfgC3fvbmZfAT3c/dtoe427Z5tZLdDT3Q836iMHWObu50f3pwCd3P3XZrYEqANeB15397o2/qgiIiKBKEeKxJ/OqInEhzezHcThRtsNfHcN6XXAM0S+WSw3M11bKiIiyUQ5UiQGKtRE4mNEoz//N7r9J+CW6PatwPvR7XeACQBmlmpmWc11amYpwDnuvgKYAmQBP/rGUkREJIEpR4rEQN86iLRehplVNtpf4u5Hlx/uamZriXzjNzLaNgkoM7P7gVpgbLS9GJhlZv9E5FvBCUBNM++ZCrwQTVQGPOXue+L2iUREROJDOVIkznSNmsgJis6/L3D3r8KORUREJJEoR4rETlMfRUREREREEozOqImIiIiIiCQYnVETERERERFJMCrUREREREREEowKNRERERERkQSjQk1ERERERCTBqFATERERERFJMP8PKm3iPwGv/s8AAAAASUVORK5CYII=", + "text/plain": [ + "
" ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from helper_functions import plot_loss_curves\n", + "\n", + "plot_loss_curves(effnetb2_results)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jk25LUPyioIe" + }, + "source": [ + "### Preparing and training ViT feature extractor" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "1Bp3kSv8i1B1" + }, + "outputs": [], + "source": [ + "def create_vit_model(num_classes:int=3, \n", + " seed:int=42):\n", + " \"\"\"Creates a ViT-B/16 feature extractor model and transforms.\n", + "\n", + " Args:\n", + " num_classes (int, optional): number of target classes. Defaults to 3.\n", + " seed (int, optional): random seed value for output layer. Defaults to 42.\n", + "\n", + " Returns:\n", + " model (torch.nn.Module): ViT-B/16 feature extractor model. \n", + " transforms (torchvision.transforms): ViT-B/16 image transforms.\n", + " \"\"\"\n", + " # Create ViT_B_16 pretrained weights, transforms and model\n", + " weights = torchvision.models.ViT_B_16_Weights.DEFAULT\n", + " transforms = weights.transforms()\n", + " model = torchvision.models.vit_b_16(weights=weights)\n", + "\n", + " # Freeze all layers in model\n", + " for param in model.parameters():\n", + " param.requires_grad = False\n", + "\n", + " # Change classifier head to suit our needs (this will be trainable)\n", + " torch.manual_seed(seed)\n", + " model.heads = nn.Sequential(nn.Linear(in_features=768, # keep this the same as original model\n", + " out_features=num_classes)) # update to reflect target number of classes\n", + " \n", + " return model, transforms" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "LNbhVc0BjR5X", + "outputId": "cff89102-6e62-4666-b22f-bf660eac5a65" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "P8DX4FnUe0lp" - }, - "source": [ - "### Train two models on Pizza, Steak, Sushi data\n", - "\n", - "Need:\n", - "* Trained EffNetB2 feature extractor \n", - "* Trained ViT feature extractor" + "data": { + "text/plain": [ + "ImageClassification(\n", + " crop_size=[224]\n", + " resize_size=[256]\n", + " mean=[0.485, 0.456, 0.406]\n", + " std=[0.229, 0.224, 0.225]\n", + " interpolation=InterpolationMode.BILINEAR\n", + ")" ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "vit, vit_transforms = create_vit_model()\n", + "# vit\n", + "vit_transforms" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "yKqlWhjcjcGh", + "outputId": "5258c1ca-31f2-4404-c837-ddd1ccd045f7" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "W9gGOufOfD5l" - }, - "source": [ - "### EffNetB2 \n", - "\n", - "See function creation source here: https://www.learnpytorch.io/09_pytorch_model_deployment/#31-creating-a-function-to-make-an-effnetb2-feature-extractor" + "data": { + "text/plain": [ + "(15, 5, ['pizza', 'steak', 'sushi'])" ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Create dataloaders for ViT\n", + "from going_modular.going_modular import data_setup\n", + "\n", + "BATCH_SIZE = 32\n", + "train_dataloader_vit, test_dataloader_vit, class_names = data_setup.create_dataloaders(train_dir=train_dir,\n", + " test_dir=test_dir,\n", + " transform=vit_transforms,\n", + " batch_size=BATCH_SIZE)\n", + "\n", + "len(train_dataloader_vit), len(test_dataloader_vit), class_names" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 227, + "referenced_widgets": [ + "aedc4452fd6c4e369c3b9a97f2dc7f4a", + "d80e97a6b93f4c2fb10f1dd68ef7d593", + "3e5d069cc92e4043bf5910b929fc33c5", + "fbe8e188bfb04a6686661761dc6d81d2", + "c104170bf4694edf925f9a1fbabe3f0c", + "3dc2eed246ea4996ad7671f71eb47394", + "187c5d5bf68643fbbe754554c5ed9143", + "f91d279664c74d53bc460d05f0af5d39", + "a3b71aabdf9e42fc9517aa924b114531", + "d2e3fd807351478abeb4fd9440310999", + "9a69b9bbcca740d6811e51bbf2c7e0c7" + ] }, + "id": "G28CNZNzjpoR", + "outputId": "970b0956-a0b1-4975-d796-16df917cadaf" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "id": "UR-P1QaBfFoZ" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "aedc4452fd6c4e369c3b9a97f2dc7f4a", + "version_major": 2, + "version_minor": 0 }, - "outputs": [], - "source": [ - "def create_effnetb2_model(num_classes:int=3, \n", - " seed:int=42):\n", - " \"\"\"Creates an EfficientNetB2 feature extractor model and transforms.\n", - "\n", - " Args:\n", - " num_classes (int, optional): number of classes in the classifier head. \n", - " Defaults to 3.\n", - " seed (int, optional): random seed value. Defaults to 42.\n", - "\n", - " Returns:\n", - " model (torch.nn.Module): EffNetB2 feature extractor model. \n", - " transforms (torchvision.transforms): EffNetB2 image transforms.\n", - " \"\"\"\n", - " # 1, 2, 3. Create EffNetB2 pretrained weights, transforms and model\n", - " weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT\n", - " transforms = weights.transforms()\n", - " model = torchvision.models.efficientnet_b2(weights=weights)\n", - "\n", - " # 4. Freeze all layers in base model\n", - " for param in model.parameters():\n", - " param.requires_grad = False\n", - "\n", - " # 5. Change classifier head with random seed for reproducibility\n", - " torch.manual_seed(seed)\n", - " model.classifier = nn.Sequential(\n", - " nn.Dropout(p=0.3, inplace=True),\n", - " nn.Linear(in_features=1408, out_features=num_classes),\n", - " )\n", - " \n", - " return model, transforms" + "text/plain": [ + " 0%| | 0/10 [00:00" ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_loss_curves(vit_results)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aDdDMVm8j5gm" + }, + "source": [ + "### Get all the images from the test path\n", + "\n", + "Want to make predictions acrosss the test dataset images and time them on GPU to see if they're faster on GPU or CPU..." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "OlTkRkdyj8Fp", + "outputId": "21c5c064-4a9f-4286-d409-e4b6498b72ff" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "IWMbHg7pf24Y", - "outputId": "39d2b3f8-7796-4723-9e02-293ca9c395f6" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(15, 5, ['pizza', 'steak', 'sushi'])" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Create dataloaders for EffNetB2 \n", - "from going_modular.going_modular import data_setup\n", - "\n", - "BATCH_SIZE = 32\n", - "train_dataloader_effnetb2, test_dataloader_effnetb2, class_names = data_setup.create_dataloaders(train_dir=train_dir,\n", - " test_dir=test_dir,\n", - " transform=effnetb2_transforms,\n", - " batch_size=BATCH_SIZE)\n", - "\n", - "len(train_dataloader_effnetb2), len(test_dataloader_effnetb2), class_names" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 227, - "referenced_widgets": [ - "198a73324ffa4478afc64c011df8368c", - "d9c166e1d7d9461eb3d9fe0fa2ced5b1", - "8025ad7772fb40f69b2fddfd7eab62e6", - "984c980048f24b2cbfb45df1dc3c9bd7", - "583f6c14fb3b4125a7c4486782fe7a2f", - "254d130afee243edb15dba9198e14f95", - "350d659062d34f90b0a61aca7f07b108", - "6f375d622ce84f95959f1ec00ab5b4fb", - "1b7118878ac04c4ab3a5555f59aade61", - "f7ddad2e2e604fd8b0240683f54ad8a3", - "afdc91f716ec416db36ef586ce623942" - ] - }, - "id": "POcQESk6gulj", - "outputId": "2181b910-47c7-4e19-b574-607f400ef0bb" - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "198a73324ffa4478afc64c011df8368c", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/10 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from helper_functions import plot_loss_curves\n", - "\n", - "plot_loss_curves(effnetb2_results)" + "data": { + "text/plain": [ + "['pizza', 'steak', 'sushi']" ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "class_names" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 36 }, + "id": "l6I_Dz5Ak8TW", + "outputId": "4106f906-7809-425d-91ec-8421982f50b2" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "jk25LUPyioIe" + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" }, - "source": [ - "### Preparing and training ViT feature extractor" + "text/plain": [ + "'cuda'" ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\"cuda\" if torch.cuda.is_available() else \"cpu\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ZT_GTmmTezW7" + }, + "outputs": [], + "source": [ + "import pathlib\n", + "import torch\n", + "\n", + "from PIL import Image\n", + "from timeit import default_timer as timer \n", + "from tqdm.auto import tqdm\n", + "from typing import List, Dict\n", + "\n", + "# 1. Create a function to return a list of dictionaries with sample, truth label, prediction, prediction probability and prediction time\n", + "def pred_and_store(paths: List[pathlib.Path], \n", + " model: torch.nn.Module,\n", + " transform: torchvision.transforms, \n", + " class_names: List[str], \n", + " device: str = \"cuda\" if torch.cuda.is_available() else \"cpu\") -> List[Dict]:\n", + " \n", + " # 2. Create an empty list to store prediction dictionaires\n", + " pred_list = []\n", + " \n", + " # 3. Loop through target paths\n", + " for path in tqdm(paths):\n", + " \n", + " # 4. Create empty dictionary to store prediction information for each sample\n", + " pred_dict = {}\n", + "\n", + " # 5. Get the sample path and ground truth class name\n", + " pred_dict[\"image_path\"] = path\n", + " class_name = path.parent.stem\n", + " pred_dict[\"class_name\"] = class_name\n", + " \n", + " # 6. Start the prediction timer\n", + " start_time = timer()\n", + " \n", + " # 7. Open image path\n", + " img = Image.open(path)\n", + " \n", + " # 8. Transform the image, add batch dimension and put image on target device\n", + " transformed_image = transform(img).unsqueeze(0).to(device) \n", + " \n", + " # 9. Prepare model for inference by sending it to target device and turning on eval() mode\n", + " model = model.to(device)\n", + " model.eval()\n", + " \n", + " # 10. Get prediction probability, predicition label and prediction class\n", + " with torch.inference_mode():\n", + " pred_logit = model(transformed_image) # perform inference on target sample \n", + " pred_prob = torch.softmax(pred_logit, dim=1) # turn logits into prediction probabilities\n", + " pred_label = torch.argmax(pred_prob, dim=1) # turn prediction probabilities into prediction label\n", + " pred_class = class_names[pred_label.cpu()] # hardcode prediction class to be on CPU\n", + "\n", + " # 11. Make sure things in the dictionary are on CPU (required for inspecting predictions later on) \n", + " pred_dict[\"pred_prob\"] = round(pred_prob.max().cpu().item(), 4)\n", + " pred_dict[\"pred_class\"] = pred_class\n", + " \n", + " # 12. End the timer and calculate time per pred\n", + " end_time = timer()\n", + " pred_dict[\"time_for_pred\"] = round(end_time-start_time, 4)\n", + "\n", + " # 13. Does the pred match the true label?\n", + " pred_dict[\"correct\"] = class_name == pred_class\n", + "\n", + " # 14. Add the dictionary to the list of preds\n", + " pred_list.append(pred_dict)\n", + " \n", + " # 15. Return list of prediction dictionaries\n", + " return pred_list" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "xORYjBaRlV-G", + "outputId": "c88c6ed0-6fb7-4470-c4fa-2b2639735c60" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "id": "1Bp3kSv8i1B1" - }, - "outputs": [], - "source": [ - "def create_vit_model(num_classes:int=3, \n", - " seed:int=42):\n", - " \"\"\"Creates a ViT-B/16 feature extractor model and transforms.\n", - "\n", - " Args:\n", - " num_classes (int, optional): number of target classes. Defaults to 3.\n", - " seed (int, optional): random seed value for output layer. Defaults to 42.\n", - "\n", - " Returns:\n", - " model (torch.nn.Module): ViT-B/16 feature extractor model. \n", - " transforms (torchvision.transforms): ViT-B/16 image transforms.\n", - " \"\"\"\n", - " # Create ViT_B_16 pretrained weights, transforms and model\n", - " weights = torchvision.models.ViT_B_16_Weights.DEFAULT\n", - " transforms = weights.transforms()\n", - " model = torchvision.models.vit_b_16(weights=weights)\n", - "\n", - " # Freeze all layers in model\n", - " for param in model.parameters():\n", - " param.requires_grad = False\n", - "\n", - " # Change classifier head to suit our needs (this will be trainable)\n", - " torch.manual_seed(seed)\n", - " model.heads = nn.Sequential(nn.Linear(in_features=768, # keep this the same as original model\n", - " out_features=num_classes)) # update to reflect target number of classes\n", - " \n", - " return model, transforms" + "data": { + "text/plain": [ + "ImageClassification(\n", + " crop_size=[288]\n", + " resize_size=[288]\n", + " mean=[0.485, 0.456, 0.406]\n", + " std=[0.229, 0.224, 0.225]\n", + " interpolation=InterpolationMode.BICUBIC\n", + ")" ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "effnetb2_transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "btrxf2A3lg8i" + }, + "source": [ + "### Make and time predictions on CPU" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49, + "referenced_widgets": [ + "1e97fcc5d26e4a8dbef0d4f341f39f46", + "3b4eb48ac44e4cdc9310fa04adae8e00", + "6b4a4941520f4181bff6cd8394cb039f", + "ef9785a565e24c559819d32c72aa3a82", + "16f48f6e2af44c45a6c8bf7c62feb80e", + "f90632431c9e4de7b359b868810c5a7d", + "ab373d07afb942819cd636173630ba58", + "a051a4276dc34b12815cd37518213d81", + "e7bfad97ff2f4042800d5938f5d05113", + "a9c96bdd52a64bd187368d93885efdfb", + "3b703b1d4ce24f949fbc49870af349bf" + ] }, + "id": "pmDd_YZ7VSrL", + "outputId": "729ce303-0fad-4332-e421-29efe8f00192" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "LNbhVc0BjR5X", - "outputId": "cff89102-6e62-4666-b22f-bf660eac5a65" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1e97fcc5d26e4a8dbef0d4f341f39f46", + "version_major": 2, + "version_minor": 0 }, - "outputs": [ - { - "data": { - "text/plain": [ - "ImageClassification(\n", - " crop_size=[224]\n", - " resize_size=[256]\n", - " mean=[0.485, 0.456, 0.406]\n", - " std=[0.229, 0.224, 0.225]\n", - " interpolation=InterpolationMode.BILINEAR\n", - ")" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "vit, vit_transforms = create_vit_model()\n", - "# vit\n", - "vit_transforms" + "text/plain": [ + " 0%| | 0/150 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_loss_curves(vit_results)" + "text/plain": [ + " 0%| | 0/150 [00:00\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
effnetb2_cpuvit_cpueffnetb2_gpuvit_gpu
00.2328740.5389530.0362630.019143
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + " \n", + " " ], - "source": [ - "from pathlib import Path\n", - "test_image_paths = list(Path(test_dir).glob(\"*/*.jpg\"))\n", - "len(test_image_paths)" + "text/plain": [ + " effnetb2_cpu vit_cpu effnetb2_gpu vit_gpu\n", + "0 0.232874 0.538953 0.036263 0.019143" ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "effnetb2_gpu_pred_time = get_mean_pred_time(effnetb2_preds_on_gpu)\n", + "vit_cpu_pred_time = get_mean_pred_time(vit_preds_on_cpu)\n", + "vit_gpu_pred_time = get_mean_pred_time(vit_preds_on_gpu)\n", + "\n", + "pred_times = {\"effnetb2_cpu\": effnetb2_cpu_pred_time,\n", + " \"vit_cpu\": vit_cpu_pred_time,\n", + " \"effnetb2_gpu\": effnetb2_gpu_pred_time,\n", + " \"vit_gpu\": vit_gpu_pred_time}\n", + "\n", + "pred_times_df = pd.DataFrame(pred_times, index=[0])\n", + "pred_times_df" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xt7IzAngnPh_" + }, + "source": [ + "It looks like the predictions on the GPU are much faster than the CPU overall.\n", + "\n", + "And it looks like the ViT model is faster than EffNetB2 on the GPU as well.\n", + "\n", + "So potentially if we had access to a GPU in deployment, a ViT model would be better due to having lower latency (prediction time) as well as better performance.\n", + "\n", + "But if we're focused on deploying to CPU, EffNetB2 wins because of good performance + faster inference time." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MBWnDZao9w_5" + }, + "source": [ + "## Exercise 2. The ViT feature extractor seems to have more learning capacity (due to more parameters) than EffNetB2, how does it go on the larger 20% split of the entire Food101 dataset?\n", + "\n", + "* Train a ViT feature extractor on the 20% Food101 dataset for 5 epochs, just like we did with EffNetB2 in section [10. Creating FoodVision Big](https://www.learnpytorch.io/09_pytorch_model_deployment/#10-creating-foodvision-big).\n", + "\n", + "Want to download and split whole Food101 dataset into 20% dataset.\n", + "\n", + "E.g. instead of training on all ~100,000 images in Food101, only train and test on ~20,000 (to save time experimenting)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AdtXlrposFRt" + }, + "source": [ + "### Create ViT feature extractor for Food101\n", + "\n", + "Need to get a ViT model capable of fitting on Food101 data (freeze the base layers and update the output layers to work with 101 classes)." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "TZsxj0F3qYZj", + "outputId": "4f4a702e-908c-4bf3-d492-9eede2ec5101" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "MFs4wubEksKd", - "outputId": "6765bd64-9283-492e-e9eb-6af889ffb9a5" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[PosixPath('data/pizza_steak_sushi_20_percent/test/sushi/715227.jpg'),\n", - " PosixPath('data/pizza_steak_sushi_20_percent/test/sushi/3401466.jpg'),\n", - " PosixPath('data/pizza_steak_sushi_20_percent/test/sushi/2948087.jpg'),\n", - " PosixPath('data/pizza_steak_sushi_20_percent/test/sushi/1203702.jpg'),\n", - " PosixPath('data/pizza_steak_sushi_20_percent/test/sushi/511818.jpg')]" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "test_image_paths[:5]" + "data": { + "text/plain": [ + "======================================================================================================================================================\n", + "Layer (type (var_name)) Input Shape Output Shape Param # Trainable\n", + "======================================================================================================================================================\n", + "VisionTransformer (VisionTransformer) [1, 3, 224, 224] [1, 101] 768 Partial\n", + "├─Conv2d (conv_proj) [1, 3, 224, 224] [1, 768, 14, 14] (590,592) False\n", + "├─Encoder (encoder) [1, 197, 768] [1, 197, 768] 151,296 False\n", + "│ └─Dropout (dropout) [1, 197, 768] [1, 197, 768] -- --\n", + "│ └─Sequential (layers) [1, 197, 768] [1, 197, 768] -- False\n", + "│ │ └─EncoderBlock (encoder_layer_0) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_1) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_2) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_3) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_4) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_5) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_6) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_7) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_8) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_9) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_10) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ │ └─EncoderBlock (encoder_layer_11) [1, 197, 768] [1, 197, 768] (7,087,872) False\n", + "│ └─LayerNorm (ln) [1, 197, 768] [1, 197, 768] (1,536) False\n", + "├─Sequential (heads) [1, 768] [1, 101] -- True\n", + "│ └─Linear (0) [1, 768] [1, 101] 77,669 True\n", + "======================================================================================================================================================\n", + "Total params: 85,876,325\n", + "Trainable params: 77,669\n", + "Non-trainable params: 85,798,656\n", + "Total mult-adds (M): 172.54\n", + "======================================================================================================================================================\n", + "Input size (MB): 0.60\n", + "Forward/backward pass size (MB): 104.09\n", + "Params size (MB): 257.85\n", + "Estimated Total Size (MB): 362.54\n", + "======================================================================================================================================================" ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Create another ViT feature model instance\n", + "vit_food101_20_percent, vit_transforms = create_vit_model(num_classes=101)\n", + "\n", + "# Print ViT model summary (uncomment for full output) \n", + "from torchinfo import summary\n", + "summary(vit_food101_20_percent, \n", + " input_size=(1, 3, 224, 224),\n", + " col_names=[\"input_size\", \"output_size\", \"num_params\", \"trainable\"],\n", + " col_width=20,\n", + " row_settings=[\"var_names\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yfhMWkQur5EI" + }, + "source": [ + "### Create Food101 data transforms \n", + "\n", + "Because of the large amount of data, going to use data augmentation to (hopefully) prevent overfitting.\n", + "\n", + "See here: https://www.learnpytorch.io/04_pytorch_custom_datasets/#81-how-to-deal-with-overfitting" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "6pyYhCpsn8bI", + "outputId": "09ac890d-90e1-43c0-96c0-5265a96bb56d" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "AoZQAC1ZfGBO" - }, - "source": [ - "### Get function for making predictions and timing them\n", - "\n", - "See the source here: https://www.learnpytorch.io/09_pytorch_model_deployment/#51-creating-a-function-to-make-predictions-across-the-test-dataset" + "data": { + "text/plain": [ + "Compose(\n", + " TrivialAugmentWide(num_magnitude_bins=31, interpolation=InterpolationMode.NEAREST, fill=None)\n", + " ImageClassification(\n", + " crop_size=[224]\n", + " resize_size=[256]\n", + " mean=[0.485, 0.456, 0.406]\n", + " std=[0.229, 0.224, 0.225]\n", + " interpolation=InterpolationMode.BILINEAR\n", + ")\n", + ")" ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Create Food101 training data transforms (only perform data augmentation on the training images)\n", + "food101_train_transforms = torchvision.transforms.Compose([\n", + " torchvision.transforms.TrivialAugmentWide(),\n", + " vit_transforms,\n", + "])\n", + "\n", + "food101_train_transforms" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "id": "NFXVZNCzVYgV" + }, + "outputs": [], + "source": [ + "from torchvision import datasets\n", + "\n", + "# Setup data directory\n", + "from pathlib import Path\n", + "data_dir = Path(\"data\")\n", + "\n", + "# Get training data (~750 images x 101 food classes)\n", + "train_data = datasets.Food101(root=data_dir, # path to download data to\n", + " split=\"train\", # dataset split to get\n", + " transform=food101_train_transforms, # perform data augmentation on training data\n", + " download=True) # want to download?\n", + "\n", + "# Get testing data (~250 images x 101 food classes)\n", + "test_data = datasets.Food101(root=data_dir,\n", + " split=\"test\",\n", + " transform=vit_transforms, # perform normal ViT transforms on test data\n", + " download=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "kmuPigfPoOl5", + "outputId": "20dd7ada-4b6e-49fa-f663-9e9fc556268f" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "DdbrRRfKk4FZ", - "outputId": "9c7eb41b-45aa-4327-82dc-9991d7226368" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['pizza', 'steak', 'sushi']" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "class_names" + "data": { + "text/plain": [ + "['apple_pie',\n", + " 'baby_back_ribs',\n", + " 'baklava',\n", + " 'beef_carpaccio',\n", + " 'beef_tartare',\n", + " 'beet_salad',\n", + " 'beignets',\n", + " 'bibimbap',\n", + " 'bread_pudding',\n", + " 'breakfast_burrito']" ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Get Food101 class names\n", + "food101_class_names = train_data.classes\n", + "\n", + "# View the first 10\n", + "food101_class_names[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9XRxmce1rt1O" + }, + "source": [ + "### Create Food101 20% data splits\n", + "\n", + "Want to split whole Food101 dataset into: \n", + "* Train set: 20% of whole original Food101 train dataset\n", + "* Test set: 20% of whole original Food101 test dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "id": "SSJrk250olsV" + }, + "outputs": [], + "source": [ + "def split_dataset(dataset:torchvision.datasets, split_size:float=0.2, seed:int=42):\n", + " \"\"\"Randomly splits a given dataset into two proportions based on split_size and seed.\n", + "\n", + " Args:\n", + " dataset (torchvision.datasets): A PyTorch Dataset, typically one from torchvision.datasets.\n", + " split_size (float, optional): How much of the dataset should be split? \n", + " E.g. split_size=0.2 means there will be a 20% split and an 80% split. Defaults to 0.2.\n", + " seed (int, optional): Seed for random generator. Defaults to 42.\n", + "\n", + " Returns:\n", + " tuple: (random_split_1, random_split_2) where random_split_1 is of size split_size*len(dataset) and \n", + " random_split_2 is of size (1-split_size)*len(dataset).\n", + " \"\"\"\n", + " # Create split lengths based on original dataset length\n", + " length_1 = int(len(dataset) * split_size) # desired length\n", + " length_2 = len(dataset) - length_1 # remaining length\n", + " \n", + " # Print out info\n", + " print(f\"[INFO] Splitting dataset of length {len(dataset)} into splits of size: {length_1} ({int(split_size*100)}%), {length_2} ({int((1-split_size)*100)}%)\")\n", + " \n", + " # Create splits with given random seed\n", + " random_split_1, random_split_2 = torch.utils.data.random_split(dataset, \n", + " lengths=[length_1, length_2],\n", + " generator=torch.manual_seed(seed)) # set the random seed for reproducible splits\n", + " return random_split_1, random_split_2" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "yve-zgQDpFci", + "outputId": "bfaf02cd-2847-42d3-80c5-6dfd4f657c51" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 36 - }, - "id": "l6I_Dz5Ak8TW", - "outputId": "4106f906-7809-425d-91ec-8421982f50b2" - }, - "outputs": [ - { - "data": { - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "string" - }, - "text/plain": [ - "'cuda'" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"cuda\" if torch.cuda.is_available() else \"cpu\"" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "[INFO] Splitting dataset of length 75750 into splits of size: 15150 (20%), 60600 (80%)\n", + "[INFO] Splitting dataset of length 25250 into splits of size: 5050 (20%), 20200 (80%)\n" + ] }, { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "id": "ZT_GTmmTezW7" - }, - "outputs": [], - "source": [ - "import pathlib\n", - "import torch\n", - "\n", - "from PIL import Image\n", - "from timeit import default_timer as timer \n", - "from tqdm.auto import tqdm\n", - "from typing import List, Dict\n", - "\n", - "# 1. Create a function to return a list of dictionaries with sample, truth label, prediction, prediction probability and prediction time\n", - "def pred_and_store(paths: List[pathlib.Path], \n", - " model: torch.nn.Module,\n", - " transform: torchvision.transforms, \n", - " class_names: List[str], \n", - " device: str = \"cuda\" if torch.cuda.is_available() else \"cpu\") -> List[Dict]:\n", - " \n", - " # 2. Create an empty list to store prediction dictionaires\n", - " pred_list = []\n", - " \n", - " # 3. Loop through target paths\n", - " for path in tqdm(paths):\n", - " \n", - " # 4. Create empty dictionary to store prediction information for each sample\n", - " pred_dict = {}\n", - "\n", - " # 5. Get the sample path and ground truth class name\n", - " pred_dict[\"image_path\"] = path\n", - " class_name = path.parent.stem\n", - " pred_dict[\"class_name\"] = class_name\n", - " \n", - " # 6. Start the prediction timer\n", - " start_time = timer()\n", - " \n", - " # 7. Open image path\n", - " img = Image.open(path)\n", - " \n", - " # 8. Transform the image, add batch dimension and put image on target device\n", - " transformed_image = transform(img).unsqueeze(0).to(device) \n", - " \n", - " # 9. Prepare model for inference by sending it to target device and turning on eval() mode\n", - " model = model.to(device)\n", - " model.eval()\n", - " \n", - " # 10. Get prediction probability, predicition label and prediction class\n", - " with torch.inference_mode():\n", - " pred_logit = model(transformed_image) # perform inference on target sample \n", - " pred_prob = torch.softmax(pred_logit, dim=1) # turn logits into prediction probabilities\n", - " pred_label = torch.argmax(pred_prob, dim=1) # turn prediction probabilities into prediction label\n", - " pred_class = class_names[pred_label.cpu()] # hardcode prediction class to be on CPU\n", - "\n", - " # 11. Make sure things in the dictionary are on CPU (required for inspecting predictions later on) \n", - " pred_dict[\"pred_prob\"] = round(pred_prob.unsqueeze(0).max().cpu().item(), 4)\n", - " pred_dict[\"pred_class\"] = pred_class\n", - " \n", - " # 12. End the timer and calculate time per pred\n", - " end_time = timer()\n", - " pred_dict[\"time_for_pred\"] = round(end_time-start_time, 4)\n", - "\n", - " # 13. Does the pred match the true label?\n", - " pred_dict[\"correct\"] = class_name == pred_class\n", - "\n", - " # 14. Add the dictionary to the list of preds\n", - " pred_list.append(pred_dict)\n", - " \n", - " # 15. Return list of prediction dictionaries\n", - " return pred_list" + "data": { + "text/plain": [ + "(15150, 5050)" ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Create training 20% split of Food101\n", + "train_data_food101_20_percent, _ = split_dataset(dataset=train_data,\n", + " split_size=0.2)\n", + "\n", + "# Create testing 20% split of Food101\n", + "test_data_food101_20_percent, _ = split_dataset(dataset=test_data,\n", + " split_size=0.2)\n", + "\n", + "len(train_data_food101_20_percent), len(test_data_food101_20_percent)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vUv8YLfnrqoZ" + }, + "source": [ + "### Create DataLoaders for Food101 20 percent data" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "tXThBOJfpROq", + "outputId": "47f541c0-278e-4579-fc97-e14de76a5a9c" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "xORYjBaRlV-G", - "outputId": "c88c6ed0-6fb7-4470-c4fa-2b2639735c60" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "ImageClassification(\n", - " crop_size=[288]\n", - " resize_size=[288]\n", - " mean=[0.485, 0.456, 0.406]\n", - " std=[0.229, 0.224, 0.225]\n", - " interpolation=InterpolationMode.BICUBIC\n", - ")" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "effnetb2_transforms" + "data": { + "text/plain": [ + "(474, 158)" ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Turn torch Datasets into DataLoaders\n", + "from torch.utils.data import DataLoader\n", + "\n", + "BATCH_SIZE = 32\n", + "NUM_WORKERS = 2\n", + "train_dataloader_food101 = DataLoader(train_data_food101_20_percent,\n", + " batch_size=BATCH_SIZE,\n", + " shuffle=True,\n", + " num_workers=NUM_WORKERS)\n", + "\n", + "test_dataloader_food101 = DataLoader(test_data_food101_20_percent,\n", + " batch_size=BATCH_SIZE,\n", + " shuffle=False,\n", + " num_workers=NUM_WORKERS)\n", + "\n", + "len(train_dataloader_food101), len(test_dataloader_food101)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3ED6j6HgqMYy" + }, + "source": [ + "### Train ViT feature extractor on 20% of Food101 data\n", + "\n", + "**Note:** The cell below may take 15 mins to run on Google Colab (due to ~15,000 training images and ~5000 testing images)." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 138, + "referenced_widgets": [ + "1650ba7f3c7a4bab89245cadb89937aa", + "e2efe6b3123e489988806acd74d20f0a", + "aed7142a2eee4822b96b65e38f703a97", + "41cbdb7ebcc8475981b9183190470fbf", + "3bb210096b4a43a7abcaf4ed911d6e00", + "1578fb055b2b409a9a66b07471aa21c3", + "98988f14959f4ca49d7af3d9b5929a0c", + "67080ebd1ca04cf7bdc642a9ea3b0697", + "9c2aa13be594439f97e7fea01fbb0afb", + "4cb5a209da54421082b58fa407bc26e9", + "5c7f60cde457493fa6d8f914accb00c1" + ] }, + "id": "d08a7xh1qPGd", + "outputId": "63f439b6-4a4a-46d7-8ca5-0f90a3a9697a" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "btrxf2A3lg8i" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1650ba7f3c7a4bab89245cadb89937aa", + "version_major": 2, + "version_minor": 0 }, - "source": [ - "### Make and time predictions on CPU" + "text/plain": [ + " 0%| | 0/5 [00:00\n", + "Traceback (most recent call last):\n", + " File \"/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py\", line 1510, in __del__\n", + " self._shutdown_workers()\n", + " File \"/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py\", line 1493, in _shutdown_workers\n", + " if w.is_alive():\n", + " File \"/usr/lib/python3.7/multiprocessing/process.py\", line 151, in is_alive\n", + " assert self._parent_pid == os.getpid(), 'can only test a child process'\n", + "AssertionError: can only test a child process\n", + "Exception ignored in: \n", + "Traceback (most recent call last):\n", + " File \"/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py\", line 1510, in __del__\n", + " self._shutdown_workers()\n", + " File \"/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py\", line 1493, in _shutdown_workers\n", + " if w.is_alive():\n", + " File \"/usr/lib/python3.7/multiprocessing/process.py\", line 151, in is_alive\n", + " assert self._parent_pid == os.getpid(), 'can only test a child process'\n", + "AssertionError: can only test a child process\n" + ] + } + ], + "source": [ + "# Loop through test DataLoader (with batch size 1)\n", + "# Make prediction with model\n", + "# Store prediction and prediction probability to dictionary\n", + "# Append dictionary to list\n", + "# Inspect list\n", + "\n", + "# Easy way: set up batch size of 1 of test data loader - from Sali1997s\n", + "# Create batch size of 1 (predict on 1 image at a time)\n", + "test_dataloader_food101_batch_size_1 = DataLoader(test_data_food101_20_percent,\n", + " batch_size=1,\n", + " shuffle=False,\n", + " num_workers=NUM_WORKERS)\n", + "\n", + "# Prepare model (do this outside the loop)\n", + "vit_food101_20_percent = vit_food101_20_percent.to(device)\n", + "vit_food101_20_percent.eval()\n", + "\n", + "# Loop through test DataLoader with batch size 1 and make predictions on each image\n", + "# store predictions and truth values to a dictionary and then append dictionary to list for inspection later\n", + "vit_food101_pred_list = []\n", + "for X, y in tqdm(test_dataloader_food101_batch_size_1):\n", + " # Send data to target device\n", + " X, y = X.to(device), y.to(device)\n", + " \n", + " # Create empty prediction dictionary (each sample gets a dictionary)\n", + " pred_dict = {} \n", + "\n", + " # Make predictions\n", + " with torch.inference_mode():\n", + " pred_probs = torch.softmax(vit_food101_20_percent(X), dim=1)\n", + " pred_labels = torch.argmax(pred_probs, dim=1)\n", + " pred_dict[\"pred_prob\"] = torch.max(pred_probs).cpu().numpy()\n", + " pred_dict[\"pred_label\"] = pred_labels.cpu().numpy()[0]\n", + " pred_dict[\"label\"] = y.cpu().numpy()[0]\n", + " \n", + " vit_food101_pred_list.append(pred_dict)" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "aggsGHYF2Wrv", + "outputId": "e89209d6-4d74-46a7-a068-344615623344" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 81, - "referenced_widgets": [ - "95eacc9dbddd4a56a882071b1b96a73d", - "21362da1989e4a4aa4c84dbac552115f", - "41b025a486c64cd390339bcfe21fd62a", - "8fe414cbc5a7495180415c0754c526ec", - "3f2f13e0559a4fafb4d759970be46bd6", - "694e8f3018e6426ebe598917a920a3e8", - "dfe279159de44764b1f52f7ba6c161af", - "e55a11a7724e475a8249e578083cd3de", - "20235d0a25b942cbbe3a43b0e79b084e", - "54ca6b2cd1ac478cb3aa9e09eb87e413", - "32fc7b9eff2f463a9e28b3aa7369500f", - "b891ed053df248d1865c95eeaf13fff1", - "23223f72b27f4f85bc580f5732ae97c0", - "d86109f9c9e643a3bcf15486c305f635", - "e857367fa306441ca7ca9579e906e066", - "ba94ef6625db42208129c71d5f77f950", - "87046b1dec5f4189b52f517d5aed0614", - "696eb95e9f224eefa80e8d34841ac798", - "3f1d000380fd4a2e9cd823acf803883e", - "272fd9fb794347ab855f544acc3a720c", - "a70381f756144655b998a514ae83bd38", - "d88fef0654ba494c840cef7f23c86651" - ] - }, - "id": "qBAGto93lpe4", - "outputId": "fa9d41f5-2121-4d6c-ede8-fd2ffb1ebe94" - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "95eacc9dbddd4a56a882071b1b96a73d", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/150 [00:00\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pred_probpred_labellabelis_correctpred_classlabel_class
00.79484357272Truepancakespancakes
10.61369125757Truehummushummus
20.192828738080Truepulled_pork_sandwichpulled_pork_sandwich
30.581697645151Trueguacamoleguacamole
40.8230461511Truebaby_back_ribsbaby_back_ribs
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + " \n", + " " + ], + "text/plain": [ + " pred_prob pred_label label is_correct pred_class \\\n", + "0 0.7948435 72 72 True pancakes \n", + "1 0.6136912 57 57 True hummus \n", + "2 0.19282873 80 80 True pulled_pork_sandwich \n", + "3 0.58169764 51 51 True guacamole \n", + "4 0.82304615 1 1 True baby_back_ribs \n", + "\n", + " label_class \n", + "0 pancakes \n", + "1 hummus \n", + "2 pulled_pork_sandwich \n", + "3 guacamole \n", + "4 baby_back_ribs " ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Create DataFrame with various columns\n", + "pred_df_20_percent = pd.DataFrame(vit_food101_pred_list)\n", + "\n", + "# Create a column for if the prediction is correct\n", + "pred_df_20_percent[\"is_correct\"] = pred_df_20_percent[\"pred_label\"] == pred_df_20_percent[\"label\"]\n", + "\n", + "# Create class name columns (e.g. pred_label=72 -> pred_class=\"pancakes\")\n", + "pred_df_20_percent[\"pred_class\"] = pred_df_20_percent[\"pred_label\"].apply(lambda x: food101_class_names[x])\n", + "pred_df_20_percent[\"label_class\"] = pred_df_20_percent[\"label\"].apply(lambda x: food101_class_names[x])\n", + "pred_df_20_percent.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 }, + "id": "2M3SUAsg2NRj", + "outputId": "faa3253c-663e-40fe-f937-857a6e4954da" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "5eUw-OM6mNei", - "outputId": "97b3aa32-5f49-4833-cf20-9cfe19e3bc62" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "0.23287399999999997" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pred_probpred_labellabelis_correctpred_classlabel_class
31070.98356385232Falsegyozadumplings
13060.94270467144Falsepaellafried_rice
28480.9298615418Falsefrench_onion_soupbread_pudding
7080.90341496912Falsebreakfast_burritocannoli
17260.8848796843Falseonion_ringsfried_calamari
34360.87869584558Falsefrozen_yogurtice_cream
22870.858544473828Falsefish_and_chipscroque_madame
32090.84964484936Falsebreakfast_burritofalafel
18720.849399037937Falseprime_ribfilet_mignon
13380.84500131551Falsecevicheguacamole
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " ], - "source": [ - "import pandas as pd\n", - "\n", - "def get_mean_pred_time(input):\n", - " df = pd.DataFrame(input)\n", - " return df.time_for_pred.mean()\n", - "\n", - "effnetb2_cpu_pred_time = get_mean_pred_time(effnetb2_preds_on_cpu)\n", - "effnetb2_cpu_pred_time" + "text/plain": [ + " pred_prob pred_label label is_correct pred_class \\\n", + "3107 0.9835638 52 32 False gyoza \n", + "1306 0.9427046 71 44 False paella \n", + "2848 0.9298615 41 8 False french_onion_soup \n", + "708 0.90341496 9 12 False breakfast_burrito \n", + "1726 0.884879 68 43 False onion_rings \n", + "3436 0.8786958 45 58 False frozen_yogurt \n", + "2287 0.85854447 38 28 False fish_and_chips \n", + "3209 0.84964484 9 36 False breakfast_burrito \n", + "1872 0.84939903 79 37 False prime_rib \n", + "1338 0.8450013 15 51 False ceviche \n", + "\n", + " label_class \n", + "3107 dumplings \n", + "1306 fried_rice \n", + "2848 bread_pudding \n", + "708 cannoli \n", + "1726 fried_calamari \n", + "3436 ice_cream \n", + "2287 croque_madame \n", + "3209 falafel \n", + "1872 filet_mignon \n", + "1338 guacamole " ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Get top 10 samples that are \"most wrong\", e.g. highest pred_prob but wrong prediction - why??\n", + "pred_df_20_percent[pred_df_20_percent[\"is_correct\"] == False].sort_values(\"pred_prob\", ascending=False)[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xx6wDwHZ45r_" + }, + "source": [ + "Comparing the \"pred_class\" to the \"label_class\" the model is often wrong on samples that are visually similar.\n", + "\n", + "For example, gyoza and dumplings look quite the same.\n", + "\n", + "The same as paella and fried rice.\n", + "\n", + "And onion rings and fried calamari.\n", + "\n", + "The model is getting confused on similar looking classes and thus predictions are in the right \"space\" but not necessarily correct compared to the ground truth." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LH-vHr3m9_oH" + }, + "source": [ + "## Exercise 4. Evaluate the ViT feature extractor across the whole Food101 test dataset rather than just the 20% version, how does it perform?\n", + "* Does it beat the original Food101 paper's best result of 56.4% accuracy?" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "k-oDd365w4A1", + "outputId": "6bfad8ba-a61c-43a5-fa17-d1c4ec5481aa" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 81 - }, - "id": "_Bnjfb4ymyLP", - "outputId": "daa59808-446a-4f85-b8fa-21d71c36c12c" - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
effnetb2_cpuvit_cpueffnetb2_gpuvit_gpu
00.2328740.5389530.0362630.019143
\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n", - " " - ], - "text/plain": [ - " effnetb2_cpu vit_cpu effnetb2_gpu vit_gpu\n", - "0 0.232874 0.538953 0.036263 0.019143" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "effnetb2_gpu_pred_time = get_mean_pred_time(effnetb2_preds_on_gpu)\n", - "vit_cpu_pred_time = get_mean_pred_time(vit_preds_on_cpu)\n", - "vit_gpu_pred_time = get_mean_pred_time(vit_preds_on_gpu)\n", - "\n", - "pred_times = {\"effnetb2_cpu\": effnetb2_cpu_pred_time,\n", - " \"vit_cpu\": vit_cpu_pred_time,\n", - " \"effnetb2_gpu\": effnetb2_gpu_pred_time,\n", - " \"vit_gpu\": vit_gpu_pred_time}\n", - "\n", - "pred_times_df = pd.DataFrame(pred_times, index=[0])\n", - "pred_times_df" + "data": { + "text/plain": [ + "25250" ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Check length of Food101 test data\n", + "len(test_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "czLfR8Pjw9gb", + "outputId": "9916f6a5-1107-42f9-d582-19d84bf67da4" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "xt7IzAngnPh_" - }, - "source": [ - "It looks like the predictions on the GPU are much faster than the CPU overall.\n", - "\n", - "And it looks like the ViT model is faster than EffNetB2 on the GPU as well.\n", - "\n", - "So potentially if we had access to a GPU in deployment, a ViT model would be better due to having lower latency (prediction time) as well as better performance.\n", - "\n", - "But if we're focused on deploying to CPU, EffNetB2 wins because of good performance + faster inference time." + "data": { + "text/plain": [ + "25250" ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Turn Food101 test data into DataLoader\n", + "# Easy way: set up batch size of 1 of test data loader - from Sali1997s\n", + "# Create batch size of 1 (predict on 1 image at a time)\n", + "test_dataloader_food101_all_data_batch_size_1 = DataLoader(test_data,\n", + " batch_size=1,\n", + " shuffle=False,\n", + " num_workers=NUM_WORKERS)\n", + "\n", + "len(test_dataloader_food101_all_data_batch_size_1)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49, + "referenced_widgets": [ + "b972c74283244c4580489025f2306921", + "62c29ae67a5c4f658f74f94caf75abd8", + "fdaf41692b1b4205bbe2b8570051062f", + "80e05c26a564402da7e3b52fddc8845f", + "5b5b28d04c76476fb2bfa4a23bd241cb", + "d2686785dee340b489781070fd0e4ab8", + "5d717bf09ecb441e8e61e57d92a623df", + "eb61d02241d3438fbf44a3e629adfcb6", + "ba54748f87e840ba9a3fcc8b2f30c135", + "26bcaf624dd24d68aa15aef3a0866d2d", + "c7bbdad837be48179a660a2aea18005d" + ] }, + "id": "dWxceTz3VmeB", + "outputId": "64b278ab-60e3-40ab-c02d-380a7ab19ce5" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "MBWnDZao9w_5" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b972c74283244c4580489025f2306921", + "version_major": 2, + "version_minor": 0 }, - "source": [ - "## Exercise 2. The ViT feature extractor seems to have more learning capacity (due to more parameters) than EffNetB2, how does it go on the larger 20% split of the entire Food101 dataset?\n", - "\n", - "* Train a ViT feature extractor on the 20% Food101 dataset for 5 epochs, just like we did with EffNetB2 in section [10. Creating FoodVision Big](https://www.learnpytorch.io/09_pytorch_model_deployment/#10-creating-foodvision-big).\n", - "\n", - "Want to download and split whole Food101 dataset into 20% dataset.\n", - "\n", - "E.g. instead of training on all ~100,000 images in Food101, only train and test on ~20,000 (to save time experimenting)." + "text/plain": [ + " 0%| | 0/25250 [00:00\n", - "Traceback (most recent call last):\n", - " File \"/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py\", line 1510, in __del__\n", - " self._shutdown_workers()\n", - " File \"/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py\", line 1493, in _shutdown_workers\n", - " if w.is_alive():\n", - " File \"/usr/lib/python3.7/multiprocessing/process.py\", line 151, in is_alive\n", - " assert self._parent_pid == os.getpid(), 'can only test a child process'\n", - "AssertionError: can only test a child process\n", - "Exception ignored in: \n", - "Traceback (most recent call last):\n", - " File \"/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py\", line 1510, in __del__\n", - " self._shutdown_workers()\n", - " File \"/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py\", line 1493, in _shutdown_workers\n", - " if w.is_alive():\n", - " File \"/usr/lib/python3.7/multiprocessing/process.py\", line 151, in is_alive\n", - " assert self._parent_pid == os.getpid(), 'can only test a child process'\n", - "AssertionError: can only test a child process\n" - ] - } - ], - "source": [ - "# Loop through test DataLoader (with batch size 1)\n", - "# Make prediction with model\n", - "# Store prediction and prediction probability to dictionary\n", - "# Append dictionary to list\n", - "# Inspect list\n", - "\n", - "# Easy way: set up batch size of 1 of test data loader - from Sali1997s\n", - "# Create batch size of 1 (predict on 1 image at a time)\n", - "test_dataloader_food101_batch_size_1 = DataLoader(test_data_food101_20_percent,\n", - " batch_size=1,\n", - " shuffle=False,\n", - " num_workers=NUM_WORKERS)\n", - "\n", - "# Prepare model (do this outside the loop)\n", - "vit_food101_20_percent = vit_food101_20_percent.to(device)\n", - "vit_food101_20_percent.eval()\n", - "\n", - "# Loop through test DataLoader with batch size 1 and make predictions on each image\n", - "# store predictions and truth values to a dictionary and then append dictionary to list for inspection later\n", - "vit_food101_pred_list = []\n", - "for X, y in tqdm(test_dataloader_food101_batch_size_1):\n", - " # Send data to target device\n", - " X, y = X.to(device), y.to(device)\n", - " \n", - " # Create empty prediction dictionary (each sample gets a dictionary)\n", - " pred_dict = {} \n", - "\n", - " # Make predictions\n", - " with torch.inference_mode():\n", - " pred_probs = torch.softmax(vit_food101_20_percent(X), dim=1)\n", - " pred_labels = torch.argmax(pred_probs, dim=1)\n", - " pred_dict[\"pred_prob\"] = torch.max(pred_probs).cpu().numpy()\n", - " pred_dict[\"pred_label\"] = pred_labels.cpu().numpy()[0]\n", - " pred_dict[\"label\"] = y.cpu().numpy()[0]\n", - " \n", - " vit_food101_pred_list.append(pred_dict)" - ] + "34b0ac29e4744ec5866c3cf31c2cab57": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "aggsGHYF2Wrv", - "outputId": "e89209d6-4d74-46a7-a068-344615623344" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['apple_pie', 'baby_back_ribs', 'baklava', 'beef_carpaccio', 'beef_tartare']" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "food101_class_names[:5]" - ] + "350d659062d34f90b0a61aca7f07b108": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 206 - }, - "id": "oF2kZZTG0KNo", - "outputId": "d8ea3694-7b41-4d4c-a1fa-980b6589e269" - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
pred_probpred_labellabelis_correctpred_classlabel_class
00.79484357272Truepancakespancakes
10.61369125757Truehummushummus
20.192828738080Truepulled_pork_sandwichpulled_pork_sandwich
30.581697645151Trueguacamoleguacamole
40.8230461511Truebaby_back_ribsbaby_back_ribs
\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n", - " " - ], - "text/plain": [ - " pred_prob pred_label label is_correct pred_class \\\n", - "0 0.7948435 72 72 True pancakes \n", - "1 0.6136912 57 57 True hummus \n", - "2 0.19282873 80 80 True pulled_pork_sandwich \n", - "3 0.58169764 51 51 True guacamole \n", - "4 0.82304615 1 1 True baby_back_ribs \n", - "\n", - " label_class \n", - "0 pancakes \n", - "1 hummus \n", - "2 pulled_pork_sandwich \n", - "3 guacamole \n", - "4 baby_back_ribs " - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Create DataFrame with various columns\n", - "pred_df_20_percent = pd.DataFrame(vit_food101_pred_list)\n", - "\n", - "# Create a column for if the prediction is correct\n", - "pred_df_20_percent[\"is_correct\"] = pred_df_20_percent[\"pred_label\"] == pred_df_20_percent[\"label\"]\n", - "\n", - "# Create class name columns (e.g. pred_label=72 -> pred_class=\"pancakes\")\n", - "pred_df_20_percent[\"pred_class\"] = pred_df_20_percent[\"pred_label\"].apply(lambda x: food101_class_names[x])\n", - "pred_df_20_percent[\"label_class\"] = pred_df_20_percent[\"label\"].apply(lambda x: food101_class_names[x])\n", - "pred_df_20_percent.head()" - ] + "3b4eb48ac44e4cdc9310fa04adae8e00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f90632431c9e4de7b359b868810c5a7d", + "placeholder": "​", + "style": "IPY_MODEL_ab373d07afb942819cd636173630ba58", + "value": "100%" + } }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 363 - }, - "id": "2M3SUAsg2NRj", - "outputId": "faa3253c-663e-40fe-f937-857a6e4954da" - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
pred_probpred_labellabelis_correctpred_classlabel_class
31070.98356385232Falsegyozadumplings
13060.94270467144Falsepaellafried_rice
28480.9298615418Falsefrench_onion_soupbread_pudding
7080.90341496912Falsebreakfast_burritocannoli
17260.8848796843Falseonion_ringsfried_calamari
34360.87869584558Falsefrozen_yogurtice_cream
22870.858544473828Falsefish_and_chipscroque_madame
32090.84964484936Falsebreakfast_burritofalafel
18720.849399037937Falseprime_ribfilet_mignon
13380.84500131551Falsecevicheguacamole
\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n", - " " - ], - "text/plain": [ - " pred_prob pred_label label is_correct pred_class \\\n", - "3107 0.9835638 52 32 False gyoza \n", - "1306 0.9427046 71 44 False paella \n", - "2848 0.9298615 41 8 False french_onion_soup \n", - "708 0.90341496 9 12 False breakfast_burrito \n", - "1726 0.884879 68 43 False onion_rings \n", - "3436 0.8786958 45 58 False frozen_yogurt \n", - "2287 0.85854447 38 28 False fish_and_chips \n", - "3209 0.84964484 9 36 False breakfast_burrito \n", - "1872 0.84939903 79 37 False prime_rib \n", - "1338 0.8450013 15 51 False ceviche \n", - "\n", - " label_class \n", - "3107 dumplings \n", - "1306 fried_rice \n", - "2848 bread_pudding \n", - "708 cannoli \n", - "1726 fried_calamari \n", - "3436 ice_cream \n", - "2287 croque_madame \n", - "3209 falafel \n", - "1872 filet_mignon \n", - "1338 guacamole " - ] - }, - "execution_count": 73, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Get top 10 samples that are \"most wrong\", e.g. highest pred_prob but wrong prediction - why??\n", - "pred_df_20_percent[pred_df_20_percent[\"is_correct\"] == False].sort_values(\"pred_prob\", ascending=False)[:10]" - ] + "3b703b1d4ce24f949fbc49870af349bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } }, - { - "cell_type": "markdown", - "metadata": { - "id": "xx6wDwHZ45r_" - }, - "source": [ - "Comparing the \"pred_class\" to the \"label_class\" the model is often wrong on samples that are visually similar.\n", - "\n", - "For example, gyoza and dumplings look quite the same.\n", - "\n", - "The same as paella and fried rice.\n", - "\n", - "And onion rings and fried calamari.\n", - "\n", - "The model is getting confused on similar looking classes and thus predictions are in the right \"space\" but not necessarily correct compared to the ground truth." - ] + "3bb210096b4a43a7abcaf4ed911d6e00": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - { - "cell_type": "markdown", - "metadata": { - "id": "LH-vHr3m9_oH" - }, - "source": [ - "## Exercise 4. Evaluate the ViT feature extractor across the whole Food101 test dataset rather than just the 20% version, how does it perform?\n", - "* Does it beat the original Food101 paper's best result of 56.4% accuracy?" - ] + "3cafb6d12ee149e3acedbfa568346e33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "k-oDd365w4A1", - "outputId": "6bfad8ba-a61c-43a5-fa17-d1c4ec5481aa" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "25250" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } + "3dc2eed246ea4996ad7671f71eb47394": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3e5d069cc92e4043bf5910b929fc33c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f91d279664c74d53bc460d05f0af5d39", + "max": 10, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a3b71aabdf9e42fc9517aa924b114531", + "value": 10 + } + }, + "3f1d000380fd4a2e9cd823acf803883e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3f2f13e0559a4fafb4d759970be46bd6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "41b025a486c64cd390339bcfe21fd62a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e55a11a7724e475a8249e578083cd3de", + "max": 150, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_20235d0a25b942cbbe3a43b0e79b084e", + "value": 150 + } + }, + "41cbdb7ebcc8475981b9183190470fbf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4cb5a209da54421082b58fa407bc26e9", + "placeholder": "​", + "style": "IPY_MODEL_5c7f60cde457493fa6d8f914accb00c1", + "value": " 5/5 [15:31<00:00, 183.71s/it]" + } + }, + "4a57bee54360480f98bd88aaa8549d0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c1364b3347f24575a7726165e145a054", + "placeholder": "​", + "style": "IPY_MODEL_8cc7a775f8e142a6b45317cd705c036a", + "value": "100%" + } + }, + "4a79c15365174feea8dc1658133756c5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4cb5a209da54421082b58fa407bc26e9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "52c543fb5696491f955f285bc4187b8d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "543117542e0c470c8b38b177669e3dd0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "54ca6b2cd1ac478cb3aa9e09eb87e413": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "583f6c14fb3b4125a7c4486782fe7a2f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5b5b28d04c76476fb2bfa4a23bd241cb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c7f60cde457493fa6d8f914accb00c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5d717bf09ecb441e8e61e57d92a623df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "607c1f043b7346edb799452c68c9e7b1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "62c29ae67a5c4f658f74f94caf75abd8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d2686785dee340b489781070fd0e4ab8", + "placeholder": "​", + "style": "IPY_MODEL_5d717bf09ecb441e8e61e57d92a623df", + "value": "100%" + } + }, + "656d68087a7b4e2397ae787e863ee428": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "67080ebd1ca04cf7bdc642a9ea3b0697": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "694e8f3018e6426ebe598917a920a3e8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "696eb95e9f224eefa80e8d34841ac798": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6b4a4941520f4181bff6cd8394cb039f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a051a4276dc34b12815cd37518213d81", + "max": 150, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e7bfad97ff2f4042800d5938f5d05113", + "value": 150 + } + }, + "6f375d622ce84f95959f1ec00ab5b4fb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "76a9c2e5ee364f6ab19cf7ddcd1ef310": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8025ad7772fb40f69b2fddfd7eab62e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6f375d622ce84f95959f1ec00ab5b4fb", + "max": 10, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1b7118878ac04c4ab3a5555f59aade61", + "value": 10 + } + }, + "80e05c26a564402da7e3b52fddc8845f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_26bcaf624dd24d68aa15aef3a0866d2d", + "placeholder": "​", + "style": "IPY_MODEL_c7bbdad837be48179a660a2aea18005d", + "value": " 25250/25250 [05:38<00:00, 77.53it/s]" + } + }, + "87046b1dec5f4189b52f517d5aed0614": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8cc7a775f8e142a6b45317cd705c036a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8fe414cbc5a7495180415c0754c526ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_54ca6b2cd1ac478cb3aa9e09eb87e413", + "placeholder": "​", + "style": "IPY_MODEL_32fc7b9eff2f463a9e28b3aa7369500f", + "value": " 150/150 [00:05<00:00, 37.37it/s]" + } + }, + "95eacc9dbddd4a56a882071b1b96a73d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_21362da1989e4a4aa4c84dbac552115f", + "IPY_MODEL_41b025a486c64cd390339bcfe21fd62a", + "IPY_MODEL_8fe414cbc5a7495180415c0754c526ec" ], - "source": [ - "# Check length of Food101 test data\n", - "len(test_data)" - ] + "layout": "IPY_MODEL_3f2f13e0559a4fafb4d759970be46bd6" + } }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "czLfR8Pjw9gb", - "outputId": "9916f6a5-1107-42f9-d582-19d84bf67da4" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "25250" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - } + "984c980048f24b2cbfb45df1dc3c9bd7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f7ddad2e2e604fd8b0240683f54ad8a3", + "placeholder": "​", + "style": "IPY_MODEL_afdc91f716ec416db36ef586ce623942", + "value": " 10/10 [01:10<00:00, 5.99s/it]" + } + }, + "98988f14959f4ca49d7af3d9b5929a0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9a69b9bbcca740d6811e51bbf2c7e0c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9c2aa13be594439f97e7fea01fbb0afb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a051a4276dc34b12815cd37518213d81": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a152e63878824439bb7f4fc916e80f5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_52c543fb5696491f955f285bc4187b8d", + "placeholder": "​", + "style": "IPY_MODEL_f908c3aa76b9414795e0a7345ffaa7ca", + "value": " 5050/5050 [01:07<00:00, 40.17it/s]" + } + }, + "a3b71aabdf9e42fc9517aa924b114531": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a70381f756144655b998a514ae83bd38": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a8bab731fc1b41ffb526072144e661cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4a79c15365174feea8dc1658133756c5", + "max": 150, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3cafb6d12ee149e3acedbfa568346e33", + "value": 150 + } + }, + "a9c96bdd52a64bd187368d93885efdfb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ab373d07afb942819cd636173630ba58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "aed7142a2eee4822b96b65e38f703a97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_67080ebd1ca04cf7bdc642a9ea3b0697", + "max": 5, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9c2aa13be594439f97e7fea01fbb0afb", + "value": 5 + } + }, + "aedc4452fd6c4e369c3b9a97f2dc7f4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d80e97a6b93f4c2fb10f1dd68ef7d593", + "IPY_MODEL_3e5d069cc92e4043bf5910b929fc33c5", + "IPY_MODEL_fbe8e188bfb04a6686661761dc6d81d2" ], - "source": [ - "# Turn Food101 test data into DataLoader\n", - "# Easy way: set up batch size of 1 of test data loader - from Sali1997s\n", - "# Create batch size of 1 (predict on 1 image at a time)\n", - "test_dataloader_food101_all_data_batch_size_1 = DataLoader(test_data,\n", - " batch_size=1,\n", - " shuffle=False,\n", - " num_workers=NUM_WORKERS)\n", - "\n", - "len(test_dataloader_food101_all_data_batch_size_1)" - ] + "layout": "IPY_MODEL_c104170bf4694edf925f9a1fbabe3f0c" + } }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 49, - "referenced_widgets": [ - "b972c74283244c4580489025f2306921", - "62c29ae67a5c4f658f74f94caf75abd8", - "fdaf41692b1b4205bbe2b8570051062f", - "80e05c26a564402da7e3b52fddc8845f", - "5b5b28d04c76476fb2bfa4a23bd241cb", - "d2686785dee340b489781070fd0e4ab8", - "5d717bf09ecb441e8e61e57d92a623df", - "eb61d02241d3438fbf44a3e629adfcb6", - "ba54748f87e840ba9a3fcc8b2f30c135", - "26bcaf624dd24d68aa15aef3a0866d2d", - "c7bbdad837be48179a660a2aea18005d" - ] - }, - "id": "dWxceTz3VmeB", - "outputId": "64b278ab-60e3-40ab-c02d-380a7ab19ce5" - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b972c74283244c4580489025f2306921", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/25250 [00:00