-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_fsc.py
98 lines (66 loc) · 2.87 KB
/
compute_fsc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from emda.core import iotools, restools, fsc, plotter
import numpy as np
import matplotlib as mpl
from matplotlib import pyplot as plt
import matplotlib.ticker as mticker
### set plot properties#####
plt.rcParams['svg.fonttype'] = 'none'
plt.rcParams['figure.figsize'] = 3.5,2.75
params = {'legend.fontsize': 6,
'legend.handlelength': 2}
plt.rcParams['legend.frameon'] = True
plt.rcParams['legend.fancybox'] = True
mpl.rcParams['axes.linewidth'] = 0.3
mpl.rcParams['axes.labelsize'] = 8
mpl.rcParams['xtick.labelsize'] = 6
mpl.rcParams['ytick.labelsize'] = 6
mpl.rcParams['xtick.major.width'] = 0.3
mpl.rcParams['ytick.major.width'] = 0.3
mpl.rcParams['xtick.minor.width'] = 0.3
mpl.rcParams['ytick.minor.width'] = 0.3
mpl.rcParams['xtick.major.size'] = 2
mpl.rcParams['ytick.major.size'] = 2
mpl.rcParams['xtick.minor.size'] = 1 # half of the major ticks length
mpl.rcParams['ytick.minor.size'] = 1
plt.rcParams.update(params)
colors={"FF99SB":"#66CCEE","FF99SB-disp":"#AA3377","FF14SB":"#4477AA","FF19SB":"#228833","IDPSFF":"#BBBBBB","target":"#fe6100"}
####################################
def plot_nlines(
res_arr,
fsc_arr,
mapname="FSC_mapname",
fscline=0.143 #fsc threshold for precision estimate
):
bin_arr = np.arange(len(res_arr))
fig, ax = plt.subplots()
ax.plot(bin_arr, fsc_arr, linewidth=0.8, color="#AA3377")
ax.axhline(y=fscline, ls='dashed', lw =0.5, color='k',label='FSC = 0.143')
pos = np.array(ax.get_xticks(), dtype=np.int)
n_bins = res_arr.shape[0]
pos = np.delete(pos, np.where(pos <0))
pos = np.delete(pos, np.where(pos > n_bins))
label_format = '{:5.1f}'
ax.xaxis.set_major_locator(mticker.FixedLocator(pos))
ax.set_xticklabels([label_format.format(res_arr[x]) for x in pos])
ax.set_ylim(-0.05, 1.05)
ax.set_xlabel("precision [$\AA$]")
plt.legend(loc=0)
plt.ylabel("Fourier Shell Correlation")
leg=ax.legend(loc='best',frameon=1,framealpha=0.7)
ax.set_aspect(1.0/ax.get_data_ratio(), adjustable='box')
fig.tight_layout()
fig.savefig(mapname+'.png',dpi=600, transparent=True)
plt.savefig(mapname+'.svg', transparent=True)
plt.close(fig)
###########################################
# P:\Lif\LIF_synthetic_data\figures\2022-07\Figure_8\FourierShellCorr\case-I\FF14SB\L-corner\th0.400_L-BFGS-B_ref_15
# truth
uc, ar1, org = iotools.read_map('3D_density_map_h1.mrc')
uc, ar2, org = iotools.read_map('3D_density_map_h2.mrc')
hf1 = np.fft.fftshift(np.fft.fftn(ar1)) # Fourier transform of half maps
hf2 = np.fft.fftshift(np.fft.fftn(ar2))
nbin, res_arr, bin_idx = restools.get_resolution_array(uc,hf1)
bin_fsc,_,_,_,_,_ = fsc.halfmaps_fsc_variance(hf1,hf2,bin_idx,nbin)
res_fsc=np.column_stack([res_arr, bin_fsc])
np.savetxt('FSC_mapname.txt', res_fsc, delimiter='\t', header='precision[A] FSC',fmt='%.3f')
plot_nlines(res_arr,bin_fsc)