-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathpreprocess.py
74 lines (60 loc) · 3.02 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# we used the precomputed min_max values from the original implementation:
# https://github.com/lukasruff/Deep-SVDD-PyTorch/blob/1901612d595e23675fb75c4ebb563dd0ffebc21e/src/datasets/mnist.py
import torch
import numpy as np
from torch.utils import data
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from PIL import Image
from utils.utils import global_contrast_normalization
class MNIST_loader(data.Dataset):
"""This class is needed to processing batches for the dataloader."""
def __init__(self, data, target, transform):
self.data = data
self.target = target
self.transform = transform
def __getitem__(self, index):
"""return transformed items."""
x = self.data[index]
y = self.target[index]
if self.transform:
x = Image.fromarray(x.numpy(), mode='L')
x = self.transform(x)
return x, y
def __len__(self):
"""number of samples."""
return len(self.data)
def get_mnist(args, data_dir='./data/mnist/'):
"""get dataloders"""
# min, max values for each class after applying GCN (as the original implementation)
min_max = [(-0.8826567065619495, 9.001545489292527),
(-0.6661464580883915, 20.108062262467364),
(-0.7820454743183202, 11.665100841080346),
(-0.7645772083211267, 12.895051191467457),
(-0.7253923114302238, 12.683235701611533),
(-0.7698501867861425, 13.103278415430502),
(-0.778418217980696, 10.457837397569108),
(-0.7129780970522351, 12.057777597673047),
(-0.8280402650205075, 10.581538445782988),
(-0.7369959242164307, 10.697039838804978)]
transform = transforms.Compose([transforms.ToTensor(),
transforms.Lambda(lambda x: global_contrast_normalization(x)),
transforms.Normalize([min_max[args.normal_class][0]],
[min_max[args.normal_class][1] \
-min_max[args.normal_class][0]])])
train = datasets.MNIST(root=data_dir, train=True, download=True)
test = datasets.MNIST(root=data_dir, train=False, download=True)
x_train = train.data
y_train = train.targets
x_train = x_train[np.where(y_train==args.normal_class)]
y_train = y_train[np.where(y_train==args.normal_class)]
data_train = MNIST_loader(x_train, y_train, transform)
dataloader_train = DataLoader(data_train, batch_size=args.batch_size,
shuffle=True, num_workers=0)
x_test = test.data
y_test = test.targets
y_test = np.where(y_test==args.normal_class, 0, 1)
data_test = MNIST_loader(x_test, y_test, transform)
dataloader_test = DataLoader(data_test, batch_size=args.batch_size,
shuffle=True, num_workers=0)
return dataloader_train, dataloader_test