-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmodel.py
66 lines (54 loc) · 2.29 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import torch.nn as nn
import torch.nn.functional as F
class network(nn.Module):
def __init__(self, z_dim=32):
super(network, self).__init__()
self.pool = nn.MaxPool2d(2, 2)
self.conv1 = nn.Conv2d(1, 8, 5, bias=False, padding=2)
self.bn1 = nn.BatchNorm2d(8, eps=1e-04, affine=False)
self.conv2 = nn.Conv2d(8, 4, 5, bias=False, padding=2)
self.bn2 = nn.BatchNorm2d(4, eps=1e-04, affine=False)
self.fc1 = nn.Linear(4 * 7 * 7, z_dim, bias=False)
def forward(self, x):
x = self.conv1(x)
x = self.pool(F.leaky_relu(self.bn1(x)))
x = self.conv2(x)
x = self.pool(F.leaky_relu(self.bn2(x)))
x = x.view(x.size(0), -1)
return self.fc1(x)
class autoencoder(nn.Module):
def __init__(self, z_dim=32):
super(autoencoder, self).__init__()
self.z_dim = z_dim
self.pool = nn.MaxPool2d(2, 2)
self.conv1 = nn.Conv2d(1, 8, 5, bias=False, padding=2)
self.bn1 = nn.BatchNorm2d(8, eps=1e-04, affine=False)
self.conv2 = nn.Conv2d(8, 4, 5, bias=False, padding=2)
self.bn2 = nn.BatchNorm2d(4, eps=1e-04, affine=False)
self.fc1 = nn.Linear(4 * 7 * 7, z_dim, bias=False)
self.deconv1 = nn.ConvTranspose2d(2, 4, 5, bias=False, padding=2)
self.bn3 = nn.BatchNorm2d(4, eps=1e-04, affine=False)
self.deconv2 = nn.ConvTranspose2d(4, 8, 5, bias=False, padding=3)
self.bn4 = nn.BatchNorm2d(8, eps=1e-04, affine=False)
self.deconv3 = nn.ConvTranspose2d(8, 1, 5, bias=False, padding=2)
def encode(self, x):
x = self.conv1(x)
x = self.pool(F.leaky_relu(self.bn1(x)))
x = self.conv2(x)
x = self.pool(F.leaky_relu(self.bn2(x)))
x = x.view(x.size(0), -1)
return self.fc1(x)
def decode(self, x):
x = x.view(x.size(0), int(self.z_dim / 16), 4, 4)
x = F.interpolate(F.leaky_relu(x), scale_factor=2)
x = self.deconv1(x)
x = F.interpolate(F.leaky_relu(self.bn3(x)), scale_factor=2)
x = self.deconv2(x)
x = F.interpolate(F.leaky_relu(self.bn4(x)), scale_factor=2)
x = self.deconv3(x)
return torch.sigmoid(x)
def forward(self, x):
z = self.encode(x)
x_hat = self.decode(z)
return x_hat