-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathtest_retain.py
301 lines (240 loc) · 10.1 KB
/
test_retain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#################################################################
# Code written by Edward Choi (mp2893@gatech.edu)
# For bug report, please contact author using the email address
#################################################################
import sys, random
import numpy as np
import cPickle as pickle
from collections import OrderedDict
import argparse
import theano
import theano.tensor as T
from theano import config
def sigmoid(x):
return 1. / (1. + np.exp(-x))
def numpy_floatX(data):
return np.asarray(data, dtype=config.floatX)
def load_embedding(infile):
Wemb = np.array(pickle.load(open(infile, 'rb'))).astype(config.floatX)
return Wemb
def load_params(options):
params = OrderedDict()
weights = np.load(options['modelFile'])
for k,v in weights.iteritems():
params[k] = v
if len(options['embFile']) > 0: params['W_emb'] = np.array(pickle.load(open(options['embFile'], 'rb'))).astype(config.floatX)
return params
def init_tparams(params, options):
tparams = OrderedDict()
for key, value in params.iteritems():
tparams[key] = theano.shared(value, name=key)
return tparams
def _slice(_x, n, dim):
if _x.ndim == 3:
return _x[:, :, n*dim:(n+1)*dim]
return _x[:, n*dim:(n+1)*dim]
def gru_layer(tparams, emb, name, hiddenDimSize):
timesteps = emb.shape[0]
if emb.ndim == 3: n_samples = emb.shape[1]
else: n_samples = 1
def stepFn(wx, h, U_gru):
uh = T.dot(h, U_gru)
r = T.nnet.sigmoid(_slice(wx, 0, hiddenDimSize) + _slice(uh, 0, hiddenDimSize))
z = T.nnet.sigmoid(_slice(wx, 1, hiddenDimSize) + _slice(uh, 1, hiddenDimSize))
h_tilde = T.tanh(_slice(wx, 2, hiddenDimSize) + r * _slice(uh, 2, hiddenDimSize))
h_new = z * h + ((1. - z) * h_tilde)
return h_new
Wx = T.dot(emb, tparams['W_gru_'+name]) + tparams['b_gru_'+name]
results, updates = theano.scan(fn=stepFn, sequences=[Wx], outputs_info=T.alloc(numpy_floatX(0.0), n_samples, hiddenDimSize), non_sequences=[tparams['U_gru_'+name]], name='gru_layer', n_steps=timesteps)
return results
def build_model(tparams, options):
alphaHiddenDimSize = options['alphaHiddenDimSize']
betaHiddenDimSize = options['betaHiddenDimSize']
x = T.tensor3('x', dtype=config.floatX)
reverse_emb_t = x[::-1]
reverse_h_a = gru_layer(tparams, reverse_emb_t, 'a', alphaHiddenDimSize)[::-1] * 0.5
reverse_h_b = gru_layer(tparams, reverse_emb_t, 'b', betaHiddenDimSize)[::-1] * 0.5
preAlpha = T.dot(reverse_h_a, tparams['w_alpha']) + tparams['b_alpha']
preAlpha = preAlpha.reshape((preAlpha.shape[0], preAlpha.shape[1]))
alpha = (T.nnet.softmax(preAlpha.T)).T
beta = T.tanh(T.dot(reverse_h_b, tparams['W_beta']) + tparams['b_beta'])
return x, alpha, beta
def padMatrixWithTime(seqs, times, options):
lengths = np.array([len(seq) for seq in seqs]).astype('int32')
n_samples = len(seqs)
maxlen = np.max(lengths)
x = np.zeros((maxlen, n_samples, options['inputDimSize'])).astype(config.floatX)
t = np.zeros((maxlen, n_samples)).astype(config.floatX)
for idx, (seq,time) in enumerate(zip(seqs,times)):
for xvec, subseq in zip(x[:,idx,:], seq):
xvec[subseq] = 1.
t[:lengths[idx], idx] = time
if options['useLogTime']: t = np.log(t + 1.)
return x, t, lengths
def padMatrixWithoutTime(seqs, options):
lengths = np.array([len(seq) for seq in seqs]).astype('int32')
n_samples = len(seqs)
maxlen = np.max(lengths)
x = np.zeros((maxlen, n_samples, options['inputDimSize'])).astype(config.floatX)
for idx, seq in enumerate(seqs):
for xvec, subseq in zip(x[:,idx,:], seq):
xvec[subseq] = 1.
return x, lengths
def load_data_debug(seqFile, labelFile, timeFile=''):
sequences = np.array(pickle.load(open(seqFile, 'rb')))
labels = np.array(pickle.load(open(labelFile, 'rb')))
if len(timeFile) > 0:
times = np.array(pickle.load(open(timeFile, 'rb')))
dataSize = len(labels)
np.random.seed(0)
ind = np.random.permutation(dataSize)
nTest = int(0.15 * dataSize)
nValid = int(0.10 * dataSize)
test_indices = ind[:nTest]
valid_indices = ind[nTest:nTest+nValid]
train_indices = ind[nTest+nValid:]
train_set_x = sequences[train_indices]
train_set_y = labels[train_indices]
test_set_x = sequences[test_indices]
test_set_y = labels[test_indices]
valid_set_x = sequences[valid_indices]
valid_set_y = labels[valid_indices]
train_set_t = None
test_set_t = None
valid_set_t = None
if len(timeFile) > 0:
train_set_t = times[train_indices]
test_set_t = times[test_indices]
valid_set_t = times[valid_indices]
def len_argsort(seq):
return sorted(range(len(seq)), key=lambda x: len(seq[x]))
train_sorted_index = len_argsort(train_set_x)
train_set_x = [train_set_x[i] for i in train_sorted_index]
train_set_y = [train_set_y[i] for i in train_sorted_index]
valid_sorted_index = len_argsort(valid_set_x)
valid_set_x = [valid_set_x[i] for i in valid_sorted_index]
valid_set_y = [valid_set_y[i] for i in valid_sorted_index]
test_sorted_index = len_argsort(test_set_x)
test_set_x = [test_set_x[i] for i in test_sorted_index]
test_set_y = [test_set_y[i] for i in test_sorted_index]
if len(timeFile) > 0:
train_set_t = [train_set_t[i] for i in train_sorted_index]
valid_set_t = [valid_set_t[i] for i in valid_sorted_index]
test_set_t = [test_set_t[i] for i in test_sorted_index]
train_set = (train_set_x, train_set_y, train_set_t)
valid_set = (valid_set_x, valid_set_y, valid_set_t)
test_set = (test_set_x, test_set_y, test_set_t)
return train_set, valid_set, test_set
def load_data(dataFile, labelFile, timeFile):
test_set_x = np.array(pickle.load(open(dataFile, 'rb')))
test_set_y = np.array(pickle.load(open(labelFile, 'rb')))
test_set_t = None
if len(timeFile) > 0:
test_set_t = np.array(pickle.load(open(timeFile, 'rb')))
def len_argsort(seq):
return sorted(range(len(seq)), key=lambda x: len(seq[x]))
sorted_index = len_argsort(test_set_x)
test_set_x = [test_set_x[i] for i in sorted_index]
test_set_y = [test_set_y[i] for i in sorted_index]
if len(timeFile) > 0:
test_set_t = [test_set_t[i] for i in sorted_index]
test_set = (test_set_x, test_set_y, test_set_t)
return test_set
def print2file(buf, outFile):
outfd = open(outFile, 'a')
outfd.write(buf + '\n')
outfd.close()
def train_RETAIN(
modelFile='model.npz',
seqFile='seqFile.txt',
labelFile='labelFile.txt',
outFile='outFile.txt',
timeFile='timeFile.txt',
typeFile='types.txt',
useLogTime=True,
embFile='embFile.txt',
logEps=1e-8
):
options = locals().copy()
if len(timeFile) > 0: useTime = True
else: useTime = False
options['useTime'] = useTime
if len(embFile) > 0: useFixedEmb = True
else: useFixedEmb = False
options['useFixedEmb'] = useFixedEmb
print 'Loading the parameters ... ',
params = load_params(options)
tparams = init_tparams(params, options)
options['alphaHiddenDimSize'] = params['w_alpha'].shape[0]
options['betaHiddenDimSize'] = params['W_beta'].shape[0]
options['inputDimSize'] = params['W_emb'].shape[0]
print 'Building the model ... ',
x, alpha, beta = build_model(tparams, options)
get_result = theano.function(inputs=[x], outputs=[alpha, beta], name='get_result')
print 'Loading data ... ',
testSet = load_data(seqFile, labelFile, timeFile)
print 'done'
types = pickle.load(open(typeFile, 'rb'))
rtypes = dict([(v,k) for k,v in types.iteritems()])
print 'Contribution calculation start!!'
count = 0
outfd = open(outFile, 'w')
for index in range(len(testSet[0])):
if count % 100 == 0: print 'processed %d patients' % count
count += 1
batchX = [testSet[0][index]]
label = testSet[1][index]
if useTime:
batchT = [testSet[2][index]]
x, t, lengths = padMatrixWithTime(batchX, batchT, options)
else:
x, lengths = padMatrixWithoutTime(batchX, options)
n_timesteps = x.shape[0]
n_samples = x.shape[1]
emb = np.dot(x, params['W_emb'])
if useTime:
temb = np.concatenate([emb, t.reshape((n_timesteps,n_samples,1))], axis=2)
else:
temb = emb
alpha, beta = get_result(temb)
alpha = alpha[:,0]
beta = beta[:,0,:]
ct = (alpha[:,None] * beta * emb[:,0,:]).sum(axis=0)
y_t = sigmoid(np.dot(ct, params['w_output']) + params['b_output'])
buf = ''
patient = batchX[0]
for i in range(len(patient)):
visit = patient[i]
buf += '-------------- visit_index:%d ---------------\n' % i
for j in range(len(visit)):
code = visit[j]
contribution = np.dot(params['w_output'].flatten(), alpha[i] * beta[i] * params['W_emb'][code])
buf += '%s:%f ' % (rtypes[code], contribution)
buf += '\n------------------------------------\n'
buf += 'patient_index:%d, label:%d, score:%f\n\n' % (index, label, y_t)
outfd.write(buf + '\n')
outfd.close()
def parse_arguments(parser):
parser.add_argument('model_file', type=str, metavar='<model_file>', help='The path to the Numpy-compressed file containing the model parameters.')
parser.add_argument('seq_file', type=str, metavar='<visit_file>', help='The path to the cPickled file containing visit information of patients')
parser.add_argument('label_file', type=str, metavar='<label_file>', help='The path to the cPickled file containing label information of patients')
parser.add_argument('type_file', type=str, metavar='<type_file>', help='The path to the cPickled dictionary for mapping medical code strings to integers')
parser.add_argument('out_file', metavar='<out_file>', help='The path to the output models. The models will be saved after every epoch')
parser.add_argument('--time_file', type=str, default='', help='The path to the cPickled file containing durations between visits of patients. If you are not using duration information, do not use this option')
parser.add_argument('--use_log_time', type=int, default=1, choices=[0,1], help='Use logarithm of time duration to dampen the impact of the outliers (0 for false, 1 for true) (default value: 1)')
parser.add_argument('--embed_file', type=str, default='', help='The path to the cPickled file containing the representation vectors of medical codes. If you are not using medical code representations, do not use this option')
args = parser.parse_args()
return args
if __name__ == '__main__':
parser = argparse.ArgumentParser()
args = parse_arguments(parser)
train_RETAIN(
modelFile=args.model_file,
seqFile=args.seq_file,
labelFile=args.label_file,
typeFile=args.type_file,
outFile=args.out_file,
timeFile=args.time_file,
useLogTime=args.use_log_time,
embFile=args.embed_file
)