MRI super-resolution reconstruction using efficient diffusion probabilistic model with residual shifting
🔥🔥Res-SRDiff is a deep learning framework designed to robustly restore high-resolution pelvic T2w MRI and ultra-high field brain T1 maps using an efficient probabilistic diffusion model.
- Our paper on arXiv: MRI super-resolution reconstruction using efficient diffusion probabilistic model with residual shifting ❤️
The following diagram illustrates the diffusion process used in this project:
- Python (>=3.12)
- PyTorch (>=2.5)
- NVIDIA CUDA (for GPU acceleration)
- Additional dependencies as listed in
requirements.txt
-
Clone the repository:
git clone https://github.com/mosaf/Res-SRDiff.git cd Res-SRDiff
-
Install dependencies:
conda env update --file environment.yml --prune
To run the project, modify the parameters in the main.py
file and execute the main.py
script:
python main.py
The diagram below visualizes the key hyper-parameters used in this model:
If you find Res-SRDiff useful for your research or project, please consider citing our work:
@misc{safari2025mrisuperresolutionreconstructionusing,
title={MRI super-resolution reconstruction using efficient diffusion probabilistic model with residual shifting},
author={Mojtaba Safari and Shansong Wang and Zach Eidex and Qiang Li and Erik H. Middlebrooks and David S. Yu and Xiaofeng Yang},
year={2025},
eprint={2503.01576},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2503.01576},
}
- This project is based on Original Repository Name.