-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathinference.py
71 lines (59 loc) · 2.18 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import tensorflow as tf
from PIL import Image
from load_models import load_generator
from tf_utils import allow_memory_growth
def inference(ckpt_dir, use_custom_cuda, res, out_fn=None):
# create generator
resolutions = [4, 8, 16, 32, 64, 128, 256, 512, 1024]
featuremaps = [512, 512, 512, 512, 512, 256, 128, 64, 32]
filter_index = resolutions.index(res)
g_params = {
'z_dim': 512,
'w_dim': 512,
'labels_dim': 0,
'n_mapping': 8,
'resolutions': resolutions[:filter_index + 1],
'featuremaps': featuremaps[:filter_index + 1],
}
generator = load_generator(g_params, is_g_clone=True, ckpt_dir=ckpt_dir, custom_cuda=use_custom_cuda)
# generate image
fake_images = generator([tf.random.normal(shape=[1, g_params['z_dim']]),
tf.random.normal(shape=[1, g_params['labels_dim']])],
training=False, truncation_psi=0.5)
fake_images = (tf.clip_by_value(fake_images, -1.0, 1.0) + 1.0) * 127.5
fake_images = tf.transpose(fake_images, perm=[0, 2, 3, 1])
fake_images = tf.cast(fake_images, tf.uint8)
fake_image = fake_images[0].numpy()
image = Image.fromarray(fake_image)
image = image.convert('RGB')
image.show()
if out_fn is not None:
image.save(out_fn)
return
def main():
allow_memory_growth()
checkpoints = [
{
'res': 1024,
'ckpt_dir': './official-converted/cuda',
'use_custom_cuda': True,
'out_fn': None,
},
{
'res': 256,
'ckpt_dir': '/mnt/vision-nas/moono/trained_models/stylegan2-tf-2.x/gold/stylegan2-ffhq-256x256',
'use_custom_cuda': True,
'out_fn': 'out_256x256_0.png',
},
]
for run_item in checkpoints:
res = run_item['res']
ckpt_dir = run_item['ckpt_dir']
use_custom_cuda = run_item['use_custom_cuda']
out_fn = run_item['out_fn']
message = f'{res}x{res} with custom cuda' if use_custom_cuda else f'{res}x{res} without custom cuda'
print(message)
inference(ckpt_dir, use_custom_cuda, res, out_fn)
return
if __name__ == '__main__':
main()