Skip to content

Latest commit

 

History

History
31 lines (16 loc) · 701 Bytes

File metadata and controls

31 lines (16 loc) · 701 Bytes

bearing-fault-diagnosis-by-wdcnn

wdcnn model for bearing fault diagnosis

This project is developed using tensorflow.

EPOCH: 100, ACCURACY: 98.93%

【bearing fault data source:】

Case_Western_Reserve_University_Bearing_fault_data

【Reference:】

Limited Data Rolling Bearing Fault Diagnosis with Few-shot Learning

【paper】https://ieeexplore.ieee.org/abstract/document/8793060

Content

Step 1 【download or clone this github.】

step 2 【checkpoint file download:】

EPOCH: 100, TEST_ACCURACY: 98.93%

link:https://pan.baidu.com/s/19LK4SbKjkKeB2J9qwz8VMw access code:jzv5

Step 3 【data download】

link:https://pan.baidu.com/s/1wyKCrS_X_kCgV1lC5ibAYw access code:tg6k