-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCentroidUtils.py
237 lines (186 loc) · 8.52 KB
/
CentroidUtils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# coding: utf-8
# In[2]:
from datetime import datetime
# In[9]:
class TweetObject:
def __init__(self,identifier,time,list_of_keywords):
self.identifier=identifier
self.time =time
self.list_of_keywords=list_of_keywords
class CentroidObject:
def __init__(self,cluster_label,start_time,last_updated_time,list_of_keywords):
self.cluster_label=cluster_label
self.start_time=start_time
self.last_updated_time=last_updated_time
self.list_of_keywords={}
for i in list_of_keywords:
self.list_of_keywords[i]=1
self.buffer=[]
self.childArray=[]
self.parentTopic=None
self.height=0
def centroidDetails(self):
print("cluster number",self.cluster_label)
print("last_updated_time",self.last_updated_time)
numberOfKeywords=0
l=[]
for i in self.list_of_keywords:
l.append(i)
print("list_of_keys",l)
print("no of keys",len(l))
print("no of tweets ",len(self.buffer))
def clusterTopic(self):
maxc=0
topic=[]
for words in self.list_of_keywords:
if(self.list_of_keywords.get(words)>maxc):
maxc = self.list_of_keywords.get(words)
topic.append(words)
print( "topic is:",topic)
def makeTweetObjects(list_of_keywords):
time=0
# time = datetime.datetime.now()
tweet = TweetObject(0,time,list_of_keywords)
return tweet
def similarityBetweenTweetObjectAndClusterCentroid(cluster_object,tweet):
cluster_centroid_list_of_keywords=cluster_object.list_of_keywords
fading_time=1#fadingFunction(cluster_object,tweet)
#print(fading_time)
#print("keywors in cluster ",cluster_centroid_list_of_keywords)
#print("cluster,no",cluster_object.cluster_label)
similar_keywords=list(set(cluster_centroid_list_of_keywords)&set(tweet.list_of_keywords))
#print("similar",similar_keywords)
total_keywords=list(set(cluster_centroid_list_of_keywords)|(set(tweet.list_of_keywords)))
#total_keywords=list(set(cluster_centroid_list_of_keywords).union (set(tweet.list_of_keywords)))
len_of_total_keywords=len(total_keywords)
#print("total keys in cluster :",len_of_total_keywords)
len_of_similar_keywords=len(similar_keywords)
similarity=((len_of_similar_keywords/len_of_total_keywords))
return similarity
def assignTweetObjectToClusterCentroid(centroidObj,tweetObj):
list_of_segments_in_tweet = tweetObj.list_of_keywords
list_of_segments_in_centroid = centroidObj.list_of_keywords
# print(list_of_segments_in_tweet)
# print(list_of_segments_in_centroid)
for segment in list_of_segments_in_tweet:
if(segment in list_of_segments_in_centroid):
centroidObj.list_of_keywords.get(segment)
centroidObj.list_of_keywords[segment] += 1
else :
centroidObj.list_of_keywords[segment] = 1
centroidObj.buffer.append(tweetObj)
centroidObj.last_updated_time = tweetObj.time
def activeCluster(list_of_clusters,params):
list_of_active_clusters=[]
for centroids in list_of_clusters:
if(len(centroids.buffer)>=params):
list_of_active_clusters.append(centroids)
return list_of_active_clusters
# In[2]:
def give_list_of_active_clusters(list_of_tweet,param_for_cluster_similarity_limit,param_for_active_cluster_pruning):
list_of_centroids=[]
cluster_number=2
for tweet in list_of_tweet:
if(len(tweet.list_of_keywords)==0):
print("Noise Tweet")
elif(len(list_of_centroids)==0):
time = 0
#time = datetime.datetime.now()
centroid=CentroidObject(1,time,time,tweet.list_of_keywords)
centroid.buffer.append(tweet)
list_of_centroids.append(centroid)
else:
maxc=-1
most_similar_centroid=type(CentroidObject)
for centroid in list_of_centroids:
value=similarityBetweenTweetObjectAndClusterCentroid(centroid,tweet)
#print(value)
if(value>maxc):
maxc=value
most_similar_centroid=centroid
if(maxc>=param_for_cluster_similarity_limit):
#print(most_similar_centroid.list_of_keywords)
assignTweetObjectToClusterCentroid(most_similar_centroid,tweet)
else:
centroid=CentroidObject(cluster_number,0,0,tweet.list_of_keywords)
list_of_centroids.append(centroid)
cluster_number+=1
list_of_active_clusters=activeCluster(list_of_centroids,param_for_active_cluster_pruning)
return list_of_active_clusters
# print("list of keys :",tweet.list_of_keywords)
# print("creating a new cluster ",centroid.list_of_keywords)
# print("created cluster no",cluster_number)
# In[12]:
def fadingFunction(centroidObj,tweetObj):
lamda = 0.05
time_centroid = centroidObj.last_updated_time
time_tweet = tweetObj.time
#diff_new = time_tweet- timedelta(hours=time_tweet.hour,minutes=time_tweet.minute)
print("c",time_centroid)
print("t",time_tweet)
diff = (time_tweet - time_centroid).seconds
print(diff)
return int(2**((-1)*lamda*diff))
# In[13]:
def similarityBetweenCentroids(centroidOne,centroidTwo):
if centroidOne.cluster_label == centroidTwo.cluster_label:
return 1
else :
similar_keywords=list(set(centroidOne.list_of_keywords)&set(centroidTwo.list_of_keywords))
# print("similar",similar_keywords)
total_keywords=list(set(centroidOne.list_of_keywords)|(set(centroidTwo.list_of_keywords)))
len_of_similar_keywords=len(similar_keywords)
len_of_total_keywords=len(total_keywords)
similarity=((len_of_similar_keywords/len_of_total_keywords))
return similarity
def intraClusterSimilarity(list_of_tweets):
cluster_value = 0
for tweet in list_of_tweets:
tweet_value = 0
comparewithlist = list_of_tweets
for compare_with_tweet in comparewithlist :
if compare_with_tweet !=tweet :
similar_keywords=list(set(tweet.list_of_keywords)&set(compare_with_tweet.list_of_keywords))
total_keywords=list(set(tweet.list_of_keywords)|(set(compare_with_tweet.list_of_keywords)))
len_of_similar_keywords=len(similar_keywords)
len_of_total_keywords=len(total_keywords)
similarity=((len_of_similar_keywords/len_of_total_keywords))
tweet_value = tweet_value + similarity
cluster_value=cluster_value + tweet_value
return cluster_value
# In[10]:
def mergeClusters(mergeIn_cluster,merge_cluster,parent_cluster):
if any(centroidChild == merge_cluster for centroidChild in mergeIn_cluster.childArray):
centroidOne.childArray.remove(centroidTwo)
elif any(centroidChild == merge_cluster for centroidChild in parent_cluster.childArray) and any(centroidChild == mergeIn_cluster for centroidChild in parent_cluster.childArray):
list_of_keywords=list(set(mergeIn_cluster._list_of_keywords)|(set(merge_cluster.list_of_keywords)))
buffer_elements = mergeIn_cluster + merge_cluster
childArray = mergeIn_cluster.childArray+ merge_cluster.childArray
parent_cluster.remove(mergeIn_cluster)
parent_cluster.remove(merge_cluster)
time = datetime.datetime.now()
merged_cluster =CentroidObject(mergeIn_cluster.label,time,time,list_of_keywords)
merged_cluster.buffer = buffer_elements
merged_cluster.childArray = childArray
parent_cluster.childArray.append(merged_cluster)
else :
print("Cannot be merged")
# In[5]:
def addChildCluster(parent_cluster,child_cluster):
parent_cluster.childArray.append(child_cluster)
child_cluster.parentTopic=parent_cluster.cluster_label
child_cluster.height=parent_cluster.height+1
# In[7]:
def giveDetails(list_of_cluster):
global_value = 0
for b in list_of_cluster:
b.clusterTopic()
cluster_value = 0
cluster_value = intraClusterSimilarity(b.buffer)
global_value = global_value + cluster_value
print("--------------------------")
print("cluster_value",cluster_value)
try:
print("Global measure for similarity among clusters : ",global_value/len(list_of_cluster))
except:
pass