This repository has been archived by the owner on Sep 30, 2019. It is now read-only.
forked from znxlwm/pytorch-generative-model-collections
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfoGAN.py
322 lines (261 loc) · 14.3 KB
/
infoGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import utils, torch, time, os, pickle, itertools
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
from dataloader import dataloader
class generator(nn.Module):
# Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)
# Architecture : FC1024_BR-FC7x7x128_BR-(64)4dc2s_BR-(1)4dc2s_S
def __init__(self, input_dim=100, output_dim=1, input_size=32, len_discrete_code=10, len_continuous_code=2):
super(generator, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.input_size = input_size
self.len_discrete_code = len_discrete_code # categorical distribution (i.e. label)
self.len_continuous_code = len_continuous_code # gaussian distribution (e.g. rotation, thickness)
self.fc = nn.Sequential(
nn.Linear(self.input_dim + self.len_discrete_code + self.len_continuous_code, 1024),
nn.BatchNorm1d(1024),
nn.ReLU(),
nn.Linear(1024, 128 * (self.input_size // 4) * (self.input_size // 4)),
nn.BatchNorm1d(128 * (self.input_size // 4) * (self.input_size // 4)),
nn.ReLU(),
)
self.deconv = nn.Sequential(
nn.ConvTranspose2d(128, 64, 4, 2, 1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.ConvTranspose2d(64, self.output_dim, 4, 2, 1),
nn.Tanh(),
)
utils.initialize_weights(self)
def forward(self, input, cont_code, dist_code):
x = torch.cat([input, cont_code, dist_code], 1)
x = self.fc(x)
x = x.view(-1, 128, (self.input_size // 4), (self.input_size // 4))
x = self.deconv(x)
return x
class discriminator(nn.Module):
# Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)
# Architecture : (64)4c2s-(128)4c2s_BL-FC1024_BL-FC1_S
def __init__(self, input_dim=1, output_dim=1, input_size=32, len_discrete_code=10, len_continuous_code=2):
super(discriminator, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.input_size = input_size
self.len_discrete_code = len_discrete_code # categorical distribution (i.e. label)
self.len_continuous_code = len_continuous_code # gaussian distribution (e.g. rotation, thickness)
self.conv = nn.Sequential(
nn.Conv2d(self.input_dim, 64, 4, 2, 1),
nn.LeakyReLU(0.2),
nn.Conv2d(64, 128, 4, 2, 1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2),
)
self.fc = nn.Sequential(
nn.Linear(128 * (self.input_size // 4) * (self.input_size // 4), 1024),
nn.BatchNorm1d(1024),
nn.LeakyReLU(0.2),
nn.Linear(1024, self.output_dim + self.len_continuous_code + self.len_discrete_code),
# nn.Sigmoid(),
)
utils.initialize_weights(self)
def forward(self, input):
x = self.conv(input)
x = x.view(-1, 128 * (self.input_size // 4) * (self.input_size // 4))
x = self.fc(x)
a = F.sigmoid(x[:, self.output_dim])
b = x[:, self.output_dim:self.output_dim + self.len_continuous_code]
c = x[:, self.output_dim + self.len_continuous_code:]
return a, b, c
class infoGAN(object):
def __init__(self, args, SUPERVISED=True):
# parameters
self.epoch = args.epoch
self.batch_size = args.batch_size
self.save_dir = args.save_dir
self.result_dir = args.result_dir
self.dataset = args.dataset
self.log_dir = args.log_dir
self.gpu_mode = args.gpu_mode
self.model_name = args.gan_type
self.input_size = args.input_size
self.z_dim = 62
self.SUPERVISED = SUPERVISED # if it is true, label info is directly used for code
self.len_discrete_code = 10 # categorical distribution (i.e. label)
self.len_continuous_code = 2 # gaussian distribution (e.g. rotation, thickness)
self.sample_num = self.len_discrete_code ** 2
# load dataset
self.data_loader = dataloader(self.dataset, self.input_size, self.batch_size)
data = self.data_loader.__iter__().__next__()[0]
# networks init
self.G = generator(input_dim=self.z_dim, output_dim=data.shape[1], input_size=self.input_size, len_discrete_code=self.len_discrete_code, len_continuous_code=self.len_continuous_code)
self.D = discriminator(input_dim=data.shape[1], output_dim=1, input_size=self.input_size, len_discrete_code=self.len_discrete_code, len_continuous_code=self.len_continuous_code)
self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))
self.info_optimizer = optim.Adam(itertools.chain(self.G.parameters(), self.D.parameters()), lr=args.lrD, betas=(args.beta1, args.beta2))
if self.gpu_mode:
self.G.cuda()
self.D.cuda()
self.BCE_loss = nn.BCELoss().cuda()
self.CE_loss = nn.CrossEntropyLoss().cuda()
self.MSE_loss = nn.MSELoss().cuda()
else:
self.BCE_loss = nn.BCELoss()
self.CE_loss = nn.CrossEntropyLoss()
self.MSE_loss = nn.MSELoss()
print('---------- Networks architecture -------------')
utils.print_network(self.G)
utils.print_network(self.D)
print('-----------------------------------------------')
# fixed noise & condition
self.sample_z_ = torch.zeros((self.sample_num, self.z_dim))
for i in range(self.len_discrete_code):
self.sample_z_[i * self.len_discrete_code] = torch.rand(1, self.z_dim)
for j in range(1, self.len_discrete_code):
self.sample_z_[i * self.len_discrete_code + j] = self.sample_z_[i * self.len_discrete_code]
temp = torch.zeros((self.len_discrete_code, 1))
for i in range(self.len_discrete_code):
temp[i, 0] = i
temp_y = torch.zeros((self.sample_num, 1))
for i in range(self.len_discrete_code):
temp_y[i * self.len_discrete_code: (i + 1) * self.len_discrete_code] = temp
self.sample_y_ = torch.zeros((self.sample_num, self.len_discrete_code)).scatter_(1, temp_y.type(torch.LongTensor), 1)
self.sample_c_ = torch.zeros((self.sample_num, self.len_continuous_code))
# manipulating two continuous code
self.sample_z2_ = torch.rand((1, self.z_dim)).expand(self.sample_num, self.z_dim)
self.sample_y2_ = torch.zeros(self.sample_num, self.len_discrete_code)
self.sample_y2_[:, 0] = 1
temp_c = torch.linspace(-1, 1, 10)
self.sample_c2_ = torch.zeros((self.sample_num, 2))
for i in range(self.len_discrete_code):
for j in range(self.len_discrete_code):
self.sample_c2_[i*self.len_discrete_code+j, 0] = temp_c[i]
self.sample_c2_[i*self.len_discrete_code+j, 1] = temp_c[j]
if self.gpu_mode:
self.sample_z_, self.sample_y_, self.sample_c_, self.sample_z2_, self.sample_y2_, self.sample_c2_ = \
self.sample_z_.cuda(), self.sample_y_.cuda(), self.sample_c_.cuda(), self.sample_z2_.cuda(), \
self.sample_y2_.cuda(), self.sample_c2_.cuda()
def train(self):
self.train_hist = {}
self.train_hist['D_loss'] = []
self.train_hist['G_loss'] = []
self.train_hist['info_loss'] = []
self.train_hist['per_epoch_time'] = []
self.train_hist['total_time'] = []
self.y_real_, self.y_fake_ = torch.ones(self.batch_size, 1), torch.zeros(self.batch_size, 1)
if self.gpu_mode:
self.y_real_, self.y_fake_ = self.y_real_.cuda(), self.y_fake_.cuda()
self.D.train()
print('training start!!')
start_time = time.time()
for epoch in range(self.epoch):
self.G.train()
epoch_start_time = time.time()
for iter, (x_, y_) in enumerate(self.data_loader):
if iter == self.data_loader.dataset.__len__() // self.batch_size:
break
z_ = torch.rand((self.batch_size, self.z_dim))
if self.SUPERVISED == True:
y_disc_ = torch.zeros((self.batch_size, self.len_discrete_code)).scatter_(1, y_.type(torch.LongTensor).unsqueeze(1), 1)
else:
y_disc_ = torch.from_numpy(
np.random.multinomial(1, self.len_discrete_code * [float(1.0 / self.len_discrete_code)],
size=[self.batch_size])).type(torch.FloatTensor)
y_cont_ = torch.from_numpy(np.random.uniform(-1, 1, size=(self.batch_size, 2))).type(torch.FloatTensor)
if self.gpu_mode:
x_, z_, y_disc_, y_cont_ = x_.cuda(), z_.cuda(), y_disc_.cuda(), y_cont_.cuda()
# update D network
self.D_optimizer.zero_grad()
D_real, _, _ = self.D(x_)
D_real_loss = self.BCE_loss(D_real, self.y_real_)
G_ = self.G(z_, y_cont_, y_disc_)
D_fake, _, _ = self.D(G_)
D_fake_loss = self.BCE_loss(D_fake, self.y_fake_)
D_loss = D_real_loss + D_fake_loss
self.train_hist['D_loss'].append(D_loss.item())
D_loss.backward(retain_graph=True)
self.D_optimizer.step()
# update G network
self.G_optimizer.zero_grad()
G_ = self.G(z_, y_cont_, y_disc_)
D_fake, D_cont, D_disc = self.D(G_)
G_loss = self.BCE_loss(D_fake, self.y_real_)
self.train_hist['G_loss'].append(G_loss.item())
G_loss.backward(retain_graph=True)
self.G_optimizer.step()
# information loss
disc_loss = self.CE_loss(D_disc, torch.max(y_disc_, 1)[1])
cont_loss = self.MSE_loss(D_cont, y_cont_)
info_loss = disc_loss + cont_loss
self.train_hist['info_loss'].append(info_loss.item())
info_loss.backward()
self.info_optimizer.step()
if ((iter + 1) % 100) == 0:
print("Epoch: [%2d] [%4d/%4d] D_loss: %.8f, G_loss: %.8f, info_loss: %.8f" %
((epoch + 1), (iter + 1), self.data_loader.dataset.__len__() // self.batch_size, D_loss.item(), G_loss.item(), info_loss.item()))
self.train_hist['per_epoch_time'].append(time.time() - epoch_start_time)
with torch.no_grad():
self.visualize_results((epoch+1))
self.train_hist['total_time'].append(time.time() - start_time)
print("Avg one epoch time: %.2f, total %d epochs time: %.2f" % (np.mean(self.train_hist['per_epoch_time']),
self.epoch, self.train_hist['total_time'][0]))
print("Training finish!... save training results")
self.save()
utils.generate_animation(self.result_dir + '/' + self.dataset + '/' + self.model_name + '/' + self.model_name,
self.epoch)
utils.generate_animation(self.result_dir + '/' + self.dataset + '/' + self.model_name + '/' + self.model_name + '_cont',
self.epoch)
self.loss_plot(self.train_hist, os.path.join(self.save_dir, self.dataset, self.model_name), self.model_name)
def visualize_results(self, epoch):
self.G.eval()
if not os.path.exists(self.result_dir + '/' + self.dataset + '/' + self.model_name):
os.makedirs(self.result_dir + '/' + self.dataset + '/' + self.model_name)
image_frame_dim = int(np.floor(np.sqrt(self.sample_num)))
""" style by class """
samples = self.G(self.sample_z_, self.sample_c_, self.sample_y_)
if self.gpu_mode:
samples = samples.cpu().data.numpy().transpose(0, 2, 3, 1)
else:
samples = samples.data.numpy().transpose(0, 2, 3, 1)
samples = (samples + 1) / 2
utils.save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
self.result_dir + '/' + self.dataset + '/' + self.model_name + '/' + self.model_name + '_epoch%03d' % epoch + '.png')
""" manipulating two continous codes """
samples = self.G(self.sample_z2_, self.sample_c2_, self.sample_y2_)
if self.gpu_mode:
samples = samples.cpu().data.numpy().transpose(0, 2, 3, 1)
else:
samples = samples.data.numpy().transpose(0, 2, 3, 1)
samples = (samples + 1) / 2
utils.save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
self.result_dir + '/' + self.dataset + '/' + self.model_name + '/' + self.model_name + '_cont_epoch%03d' % epoch + '.png')
def save(self):
save_dir = os.path.join(self.save_dir, self.dataset, self.model_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
torch.save(self.G.state_dict(), os.path.join(save_dir, self.model_name + '_G.pkl'))
torch.save(self.D.state_dict(), os.path.join(save_dir, self.model_name + '_D.pkl'))
with open(os.path.join(save_dir, self.model_name + '_history.pkl'), 'wb') as f:
pickle.dump(self.train_hist, f)
def load(self):
save_dir = os.path.join(self.save_dir, self.dataset, self.model_name)
self.G.load_state_dict(torch.load(os.path.join(save_dir, self.model_name + '_G.pkl')))
self.D.load_state_dict(torch.load(os.path.join(save_dir, self.model_name + '_D.pkl')))
def loss_plot(self, hist, path='Train_hist.png', model_name=''):
x = range(len(hist['D_loss']))
y1 = hist['D_loss']
y2 = hist['G_loss']
y3 = hist['info_loss']
plt.plot(x, y1, label='D_loss')
plt.plot(x, y2, label='G_loss')
plt.plot(x, y3, label='info_loss')
plt.xlabel('Iter')
plt.ylabel('Loss')
plt.legend(loc=4)
plt.grid(True)
plt.tight_layout()
path = os.path.join(path, model_name + '_loss.png')
plt.savefig(path)