-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathblake2b.cu
298 lines (253 loc) · 9.64 KB
/
blake2b.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/*
* blake2b.cu CUDA Implementation of BLAKE2B Hashing
*
* Date: 12 June 2019
* Revision: 1
*
* This file is released into the Public Domain.
*/
#include <assert.h>
extern "C"
{
#include "blake2b.cuh"
}
#define BLAKE2B_ROUNDS 12
#define BLAKE2B_BLOCK_LENGTH 128
#define BLAKE2B_CHAIN_SIZE 8
#define BLAKE2B_CHAIN_LENGTH (BLAKE2B_CHAIN_SIZE * sizeof(int64_t))
#define BLAKE2B_STATE_SIZE 16
#define BLAKE2B_STATE_LENGTH (BLAKE2B_STATE_SIZE * sizeof(int64_t))
extern "C"
{
typedef struct {
WORD digestlen;
BYTE key[64];
WORD keylen;
BYTE buff[BLAKE2B_BLOCK_LENGTH];
int64_t chain[BLAKE2B_CHAIN_SIZE];
int64_t state[BLAKE2B_STATE_SIZE];
WORD pos;
LONG t0;
LONG t1;
LONG f0;
} cuda_blake2b_ctx_t;
}
typedef cuda_blake2b_ctx_t CUDA_BLAKE2B_CTX;
__constant__ CUDA_BLAKE2B_CTX c_CTX;
__constant__ LONG BLAKE2B_IVS[8] =
{
0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b,
0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f,
0x1f83d9abfb41bd6b, 0x5be0cd19137e2179
};
const LONG CPU_BLAKE2B_IVS[8] =
{
0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b,
0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f,
0x1f83d9abfb41bd6b, 0x5be0cd19137e2179
};
void cpu_blake2b_init(cuda_blake2b_ctx_t *ctx, BYTE* key, WORD keylen, WORD digestbitlen)
{
memset(ctx, 0, sizeof(cuda_blake2b_ctx_t));
memcpy(ctx->buff, key, keylen);
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
ctx->digestlen = digestbitlen >> 3;
ctx->pos = 0;
ctx->t0 = 0;
ctx->t1 = 0;
ctx->f0 = 0;
ctx->chain[0] = CPU_BLAKE2B_IVS[0] ^ (ctx->digestlen | (ctx->keylen << 8) | 0x1010000);
ctx->chain[1] = CPU_BLAKE2B_IVS[1];
ctx->chain[2] = CPU_BLAKE2B_IVS[2];
ctx->chain[3] = CPU_BLAKE2B_IVS[3];
ctx->chain[4] = CPU_BLAKE2B_IVS[4];
ctx->chain[5] = CPU_BLAKE2B_IVS[5];
ctx->chain[6] = CPU_BLAKE2B_IVS[6];
ctx->chain[7] = CPU_BLAKE2B_IVS[7];
ctx->pos = BLAKE2B_BLOCK_LENGTH;
}
__constant__ unsigned char BLAKE2B_SIGMAS[12][16] =
{
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
};
__device__ LONG cuda_blake2b_leuint64(BYTE *in)
{
LONG a;
memcpy(&a, in, 8);
return a;
/* If memory is not little endian
BYTE *a = (BYTE *)in;
return ((LONG)(a[0]) << 0) | ((LONG)(a[1]) << 8) | ((LONG)(a[2]) << 16) | ((LONG)(a[3]) << 24) |((LONG)(a[4]) << 32)
| ((LONG)(a[5]) << 40) | ((LONG)(a[6]) << 48) | ((LONG)(a[7]) << 56);
*/
}
__device__ LONG cuda_blake2b_ROTR64(LONG a, BYTE b)
{
return (a >> b) | (a << (64 - b));
}
__device__ void cuda_blake2b_G(cuda_blake2b_ctx_t *ctx, int64_t m1, int64_t m2, int32_t a, int32_t b, int32_t c, int32_t d)
{
ctx->state[a] = ctx->state[a] + ctx->state[b] + m1;
ctx->state[d] = cuda_blake2b_ROTR64(ctx->state[d] ^ ctx->state[a], 32);
ctx->state[c] = ctx->state[c] + ctx->state[d];
ctx->state[b] = cuda_blake2b_ROTR64(ctx->state[b] ^ ctx->state[c], 24);
ctx->state[a] = ctx->state[a] + ctx->state[b] + m2;
ctx->state[d] = cuda_blake2b_ROTR64(ctx->state[d] ^ ctx->state[a], 16);
ctx->state[c] = ctx->state[c] + ctx->state[d];
ctx->state[b] = cuda_blake2b_ROTR64(ctx->state[b] ^ ctx->state[c], 63);
}
__device__ __forceinline__ void cuda_blake2b_init_state(cuda_blake2b_ctx_t *ctx)
{
memcpy(ctx->state, ctx->chain, BLAKE2B_CHAIN_LENGTH);
for (int i = 0; i < 4; i++)
ctx->state[BLAKE2B_CHAIN_SIZE + i] = BLAKE2B_IVS[i];
ctx->state[12] = ctx->t0 ^ BLAKE2B_IVS[4];
ctx->state[13] = ctx->t1 ^ BLAKE2B_IVS[5];
ctx->state[14] = ctx->f0 ^ BLAKE2B_IVS[6];
ctx->state[15] = BLAKE2B_IVS[7];
}
__device__ __forceinline__ void cuda_blake2b_compress(cuda_blake2b_ctx_t *ctx, BYTE* in, WORD inoffset)
{
cuda_blake2b_init_state(ctx);
LONG m[16] = {0};
for (int j = 0; j < 16; j++)
m[j] = cuda_blake2b_leuint64(in + inoffset + (j << 3));
for (int round = 0; round < BLAKE2B_ROUNDS; round++)
{
cuda_blake2b_G(ctx, m[BLAKE2B_SIGMAS[round][0]], m[BLAKE2B_SIGMAS[round][1]], 0, 4, 8, 12);
cuda_blake2b_G(ctx, m[BLAKE2B_SIGMAS[round][2]], m[BLAKE2B_SIGMAS[round][3]], 1, 5, 9, 13);
cuda_blake2b_G(ctx, m[BLAKE2B_SIGMAS[round][4]], m[BLAKE2B_SIGMAS[round][5]], 2, 6, 10, 14);
cuda_blake2b_G(ctx, m[BLAKE2B_SIGMAS[round][6]], m[BLAKE2B_SIGMAS[round][7]], 3, 7, 11, 15);
cuda_blake2b_G(ctx, m[BLAKE2B_SIGMAS[round][8]], m[BLAKE2B_SIGMAS[round][9]], 0, 5, 10, 15);
cuda_blake2b_G(ctx, m[BLAKE2B_SIGMAS[round][10]], m[BLAKE2B_SIGMAS[round][11]], 1, 6, 11, 12);
cuda_blake2b_G(ctx, m[BLAKE2B_SIGMAS[round][12]], m[BLAKE2B_SIGMAS[round][13]], 2, 7, 8, 13);
cuda_blake2b_G(ctx, m[BLAKE2B_SIGMAS[round][14]], m[BLAKE2B_SIGMAS[round][15]], 3, 4, 9, 14);
}
for (int offset = 0; offset < BLAKE2B_CHAIN_SIZE; offset++)
ctx->chain[offset] = ctx->chain[offset] ^ ctx->state[offset] ^ ctx->state[offset + 8];
}
__device__ void cuda_blake2b_init(cuda_blake2b_ctx_t *ctx, BYTE* key, WORD keylen, WORD digestbitlen)
{
memset(ctx, 0, sizeof(cuda_blake2b_ctx_t));
ctx->keylen = keylen;
ctx->digestlen = digestbitlen >> 3;
ctx->pos = 0;
ctx->t0 = 0;
ctx->t1 = 0;
ctx->f0 = 0;
ctx->chain[0] = BLAKE2B_IVS[0] ^ (ctx->digestlen | (ctx->keylen << 8) | 0x1010000);
ctx->chain[1] = BLAKE2B_IVS[1];
ctx->chain[2] = BLAKE2B_IVS[2];
ctx->chain[3] = BLAKE2B_IVS[3];
ctx->chain[4] = BLAKE2B_IVS[4];
ctx->chain[5] = BLAKE2B_IVS[5];
ctx->chain[6] = BLAKE2B_IVS[6];
ctx->chain[7] = BLAKE2B_IVS[7];
memcpy(ctx->buff, key, keylen);
memcpy(ctx->key, key, keylen);
ctx->pos = BLAKE2B_BLOCK_LENGTH;
}
__device__ void cuda_blake2b_update(cuda_blake2b_ctx_t *ctx, BYTE* in, LONG inlen)
{
if (inlen == 0)
return;
WORD start = 0;
int64_t in_index = 0, block_index = 0;
if (ctx->pos)
{
start = BLAKE2B_BLOCK_LENGTH - ctx->pos;
if (start < inlen){
memcpy(ctx->buff + ctx->pos, in, start);
ctx->t0 += BLAKE2B_BLOCK_LENGTH;
if (ctx->t0 == 0) ctx->t1++;
cuda_blake2b_compress(ctx, ctx->buff, 0);
ctx->pos = 0;
memset(ctx->buff, 0, BLAKE2B_BLOCK_LENGTH);
} else {
memcpy(ctx->buff + ctx->pos, in, inlen);//read the whole *in
ctx->pos += inlen;
return;
}
}
block_index = inlen - BLAKE2B_BLOCK_LENGTH;
for (in_index = start; in_index < block_index; in_index += BLAKE2B_BLOCK_LENGTH)
{
ctx->t0 += BLAKE2B_BLOCK_LENGTH;
if (ctx->t0 == 0)
ctx->t1++;
cuda_blake2b_compress(ctx, in, in_index);
}
memcpy(ctx->buff, in + in_index, inlen - in_index);
ctx->pos += inlen - in_index;
}
__device__ void cuda_blake2b_final(cuda_blake2b_ctx_t *ctx, BYTE* out)
{
ctx->f0 = 0xFFFFFFFFFFFFFFFFL;
ctx->t0 += ctx->pos;
if (ctx->pos > 0 && ctx->t0 == 0)
ctx->t1++;
cuda_blake2b_compress(ctx, ctx->buff, 0);
memset(ctx->buff, 0, BLAKE2B_BLOCK_LENGTH);
memset(ctx->state, 0, BLAKE2B_STATE_LENGTH);
int i8 = 0;
for (int i = 0; i < BLAKE2B_CHAIN_SIZE && ((i8 = i * 8) < ctx->digestlen); i++)
{
BYTE * BYTEs = (BYTE*)(&ctx->chain[i]);
if (i8 < ctx->digestlen - 8)
memcpy(out + i8, BYTEs, 8);
else
memcpy(out + i8, BYTEs, ctx->digestlen - i8);
}
}
__global__ void kernel_blake2b_hash(BYTE* indata, WORD inlen, BYTE* outdata, WORD n_batch, WORD BLAKE2B_BLOCK_SIZE)
{
WORD thread = blockIdx.x * blockDim.x + threadIdx.x;
if (thread >= n_batch)
{
return;
}
BYTE* in = indata + thread * inlen;
BYTE* out = outdata + thread * BLAKE2B_BLOCK_SIZE;
CUDA_BLAKE2B_CTX ctx = c_CTX;
//if not precomputed CTX, call cuda_blake2b_init() with key
cuda_blake2b_update(&ctx, in, inlen);
cuda_blake2b_final(&ctx, out);
}
extern "C"
{
void mcm_cuda_blake2b_hash_batch(BYTE *key, WORD keylen, BYTE *in, WORD inlen, BYTE *out, WORD n_outbit, WORD n_batch) {
BYTE * cuda_indata;
BYTE * cuda_outdata;
const WORD BLAKE2B_BLOCK_SIZE = (n_outbit >> 3);
cudaMalloc(&cuda_indata, inlen * n_batch);
cudaMalloc(&cuda_outdata, BLAKE2B_BLOCK_SIZE * n_batch);
CUDA_BLAKE2B_CTX ctx;
assert(keylen <= 128); // we must define keylen at host
cpu_blake2b_init(&ctx, key, keylen, n_outbit);
cudaMemcpy(cuda_indata, in, inlen * n_batch, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(c_CTX, &ctx, sizeof(CUDA_BLAKE2B_CTX), 0, cudaMemcpyHostToDevice);
WORD thread = 256;
WORD block = (n_batch + thread - 1) / thread;
kernel_blake2b_hash << < block, thread >> > (cuda_indata, inlen, cuda_outdata, n_batch, BLAKE2B_BLOCK_SIZE);
cudaMemcpy(out, cuda_outdata, BLAKE2B_BLOCK_SIZE * n_batch, cudaMemcpyDeviceToHost);
cudaDeviceSynchronize();
cudaError_t error = cudaGetLastError();
if (error != cudaSuccess) {
printf("Error cuda blake2b hash: %s \n", cudaGetErrorString(error));
}
cudaFree(cuda_indata);
cudaFree(cuda_outdata);
}
}