A subset of the near complete list of German traffic sign(s) is of interest to us. More specifically these. These signs form a subset (signs of interest) which formalise turn-restrictions
in OSM. Using the templates for the signs of interest we build a synthetic training set following the idea presented in IJCN2019 and CVPR 2016.
Use generate-synthetic-dataset to generate a synthetic sign dataset:
optional arguments:
-h, --help show this help message and exit
--backgrounds BACKGROUNDS
Path to the directory containing background images to
be used (or file list).
--templates-path TEMPLATES_PATH
Path (or file list) of templates.
--augmentations AUGMENTATIONS
Path to augmentation configuration file.
--distractors-path DISTRACTORS_PATH
Path (or file list) of distractors.
--random-distractors RANDOM_DISTRACTORS
Generate this many random distractors for each
template.
--out-path OUT_PATH Path to the directory to save the generated images to.
--max-images MAX_IMAGES
Number of images to be generated.
--n JOBS Maximum number of parallel processes.
--max-template-size MAX_TEMPLATE_SIZE
Maximum template size.
--min-template-size MIN_TEMPLATE_SIZE
Minimum template size.
--background-size BACKGROUND_SIZE
If not None (or empty string), image shape
'height, width'
The following example generates a dataset of 2M images. The file augmentations.yaml specifies augmentation parameters (geometric template distortion, blending methods, etc.). Refer to the documentation of generate_task_args()
in synthetic_signs.dataset_generator for a parameter description.
generate-synthetic-dataset --backgrounds=synthetic_signs/external/lists/Building_without_signs.list \
--templates-path=synthetic_signs/templates \
--out-path=experiments/synthetic-signfeld-dataset \
--n=16 \
--max-images=200000 \
--augmentations=resources/configs/augmentations.yaml
Sample training images can be found here