forked from 0xPARC/plonkathon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprover.py
354 lines (289 loc) · 13.1 KB
/
prover.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from compiler.program import Program, CommonPreprocessedInput
from utils import *
from setup import *
from typing import Optional
from dataclasses import dataclass
from transcript import Transcript, Message1, Message2, Message3, Message4, Message5
from poly import Polynomial, Basis
@dataclass
class Proof:
msg_1: Message1
msg_2: Message2
msg_3: Message3
msg_4: Message4
msg_5: Message5
def flatten(self):
proof = {}
proof["a_1"] = self.msg_1.a_1
proof["b_1"] = self.msg_1.b_1
proof["c_1"] = self.msg_1.c_1
proof["z_1"] = self.msg_2.z_1
proof["t_lo_1"] = self.msg_3.t_lo_1
proof["t_mid_1"] = self.msg_3.t_mid_1
proof["t_hi_1"] = self.msg_3.t_hi_1
proof["a_eval"] = self.msg_4.a_eval
proof["b_eval"] = self.msg_4.b_eval
proof["c_eval"] = self.msg_4.c_eval
proof["s1_eval"] = self.msg_4.s1_eval
proof["s2_eval"] = self.msg_4.s2_eval
proof["z_shifted_eval"] = self.msg_4.z_shifted_eval
proof["W_z_1"] = self.msg_5.W_z_1
proof["W_zw_1"] = self.msg_5.W_zw_1
return proof
@dataclass
class Prover:
group_order: int
setup: Setup
program: Program
pk: CommonPreprocessedInput
def __init__(self, setup: Setup, program: Program):
self.group_order = program.group_order
self.setup = setup
self.program = program
self.pk = program.common_preprocessed_input()
def prove(self, witness: dict[Optional[str], int]) -> Proof:
# Initialise Fiat-Shamir transcript
transcript = Transcript(b"plonk")
# Collect fixed and public information
# FIXME: Hash pk and PI into transcript
public_vars = self.program.get_public_assignments()
PI = Polynomial(
[Scalar(-witness[v]) for v in public_vars]
+ [Scalar(0) for _ in range(self.group_order - len(public_vars))],
Basis.LAGRANGE,
)
self.PI = PI
# Round 1
msg_1 = self.round_1(witness)
self.beta, self.gamma = transcript.round_1(msg_1)
# Round 2
msg_2 = self.round_2()
self.alpha, self.fft_cofactor = transcript.round_2(msg_2)
# Round 3
msg_3 = self.round_3()
self.zeta = transcript.round_3(msg_3)
# Round 4
msg_4 = self.round_4()
self.v = transcript.round_4(msg_4)
# Round 5
msg_5 = self.round_5()
return Proof(msg_1, msg_2, msg_3, msg_4, msg_5)
def round_1(
self,
witness: dict[Optional[str], int],
) -> Message1:
program = self.program
setup = self.setup
group_order = self.group_order
if None not in witness:
witness[None] = 0
# Compute wire assignments for A, B, C, corresponding:
# - A_values: witness[program.wires()[i].L]
# - B_values: witness[program.wires()[i].R]
# - C_values: witness[program.wires()[i].O]
print("R1 - Program: ", program.constraints)
# print("R1 - setup: ", setup)
print("R1 - group order: ", group_order)
print("R1 - witness: ", witness)
print(witness[program.wires()[0].L])
print(witness[program.wires()[0].R])
print(witness[program.wires()[0].O])
# Init vectors so the length matches for later multiplication + guarantees indices
A_Val = [Scalar(0) for _ in range(group_order)]
B_Val = [Scalar(0) for _ in range(group_order)]
C_Val = [Scalar(0) for _ in range(group_order)]
for i in range(len(program.wires())):
A_Val[i] = (Scalar(witness[program.wires()[i].L]))
B_Val[i] = (Scalar(witness[program.wires()[i].R]))
C_Val[i] = (Scalar(witness[program.wires()[i].O]))
print(A_Val)
print(B_Val)
print(C_Val)
# A_Val = witness[program.wires()[]]
# Construct A, B, C Lagrange interpolation polynomials for
# A_values, B_values, C_values
self.A = Polynomial(A_Val, Basis.LAGRANGE)
self.B = Polynomial(B_Val, Basis.LAGRANGE)
self.C = Polynomial(C_Val, Basis.LAGRANGE)
# Compute a_1, b_1, c_1 commitments to A, B, C polynomials
a_1 = setup.commit(self.A)
b_1 = setup.commit(self.B)
c_1 = setup.commit(self.C)
# Sanity check that witness fulfils gate constraints
assert (
self.A * self.pk.QL
+ self.B * self.pk.QR
+ self.A * self.B * self.pk.QM
+ self.C * self.pk.QO
+ self.PI
+ self.pk.QC
== Polynomial([Scalar(0)] * group_order, Basis.LAGRANGE)
)
# Return a_1, b_1, c_1
return Message1(a_1, b_1, c_1)
def round_2(self) -> Message2:
group_order = self.group_order
setup = self.setup
print("Powers of X: ", setup.powers_of_x[1])
# Using A, B, C, values, and pk.S1, pk.S2, pk.S3, compute
# Z_values for permutation grand product polynomial Z
#
# Note the convenience function:
# self.rlc(val1, val2) = val_1 + self.beta * val_2 + gamma
# Accumulator
Z_values = [Scalar(1)]
roots_of_unity = Scalar.roots_of_unity(group_order)
# It's an array
for i in range(group_order):
Z_values.append(
Z_values[-1]
* self.rlc(self.A.values[i], roots_of_unity[i])
* self.rlc(self.B.values[i], 2 * roots_of_unity[i])
* self.rlc(self.C.values[i], 3 * roots_of_unity[i])
/ self.rlc(self.A.values[i], self.pk.S1.values[i])
/ self.rlc(self.B.values[i], self.pk.S2.values[i])
/ self.rlc(self.C.values[i], self.pk.S3.values[i])
)
# Check that the last term Z_n = 1
assert Z_values.pop() == 1
# Sanity-check that Z was computed correctly
for i in range(group_order):
assert (
self.rlc(self.A.values[i], roots_of_unity[i])
* self.rlc(self.B.values[i], 2 * roots_of_unity[i])
* self.rlc(self.C.values[i], 3 * roots_of_unity[i])
) * Z_values[i] - (
self.rlc(self.A.values[i], self.pk.S1.values[i])
* self.rlc(self.B.values[i], self.pk.S2.values[i])
* self.rlc(self.C.values[i], self.pk.S3.values[i])
) * Z_values[
(i + 1) % group_order
] == 0
# Construct Z, Lagrange interpolation polynomial for Z_values
# Compute z_1 commitment to Z polynomial
Z = Polynomial(Z_values, Basis.LAGRANGE)
z_1 = setup.commit(Z)
# Return z_1
return Message2(z_1)
def round_3(self) -> Message3:
group_order = self.group_order
setup = self.setup
# Compute the quotient polynomial
# List of roots of unity at 4x fineness, i.e. the powers of µ
# where µ^(4n) = 1
# Using self.fft_expand, move A, B, C into coset extended Lagrange basis
# Expand public inputs polynomial PI into coset extended Lagrange
# Expand selector polynomials pk.QL, pk.QR, pk.QM, pk.QO, pk.QC
# into the coset extended Lagrange basis
# Expand permutation grand product polynomial Z into coset extended
# Lagrange basis
# Expand shifted Z(ω) into coset extended Lagrange basis
# Expand permutation polynomials pk.S1, pk.S2, pk.S3 into coset
# extended Lagrange basis
# Compute Z_H = X^N - 1, also in evaluation form in the coset
# Compute L0, the Lagrange basis polynomial that evaluates to 1 at x = 1 = ω^0
# and 0 at other roots of unity
# Expand L0 into the coset extended Lagrange basis
L0_big = self.fft_expand(
Polynomial([Scalar(1)] + [Scalar(0)] * (group_order - 1), Basis.LAGRANGE)
)
# Compute the quotient polynomial (called T(x) in the paper)
# It is only possible to construct this polynomial if the following
# equations are true at all roots of unity {1, w ... w^(n-1)}:
# 1. All gates are correct:
# A * QL + B * QR + A * B * QM + C * QO + PI + QC = 0
#
# 2. The permutation accumulator is valid:
# Z(wx) = Z(x) * (rlc of A, X, 1) * (rlc of B, 2X, 1) *
# (rlc of C, 3X, 1) / (rlc of A, S1, 1) /
# (rlc of B, S2, 1) / (rlc of C, S3, 1)
# rlc = random linear combination: term_1 + beta * term2 + gamma * term3
#
# 3. The permutation accumulator equals 1 at the start point
# (Z - 1) * L0 = 0
# L0 = Lagrange polynomial, equal at all roots of unity except 1
# Sanity check: QUOT has degree < 3n
assert (
self.expanded_evals_to_coeffs(QUOT_big).values[-group_order:]
== [0] * group_order
)
print("Generated the quotient polynomial")
# Split up T into T1, T2 and T3 (needed because T has degree 3n - 4, so is
# too big for the trusted setup)
# Sanity check that we've computed T1, T2, T3 correctly
assert (
T1.barycentric_eval(fft_cofactor)
+ T2.barycentric_eval(fft_cofactor) * fft_cofactor**group_order
+ T3.barycentric_eval(fft_cofactor) * fft_cofactor ** (group_order * 2)
) == QUOT_big.values[0]
print("Generated T1, T2, T3 polynomials")
# Compute commitments t_lo_1, t_mid_1, t_hi_1 to T1, T2, T3 polynomials
# Return t_lo_1, t_mid_1, t_hi_1
return Message3(t_lo_1, t_mid_1, t_hi_1)
def round_4(self) -> Message4:
# Compute evaluations to be used in constructing the linearization polynomial.
# Compute a_eval = A(zeta)
# Compute b_eval = B(zeta)
# Compute c_eval = C(zeta)
# Compute s1_eval = pk.S1(zeta)
# Compute s2_eval = pk.S2(zeta)
# Compute z_shifted_eval = Z(zeta * ω)
# Return a_eval, b_eval, c_eval, s1_eval, s2_eval, z_shifted_eval
return Message4(a_eval, b_eval, c_eval, s1_eval, s2_eval, z_shifted_eval)
def round_5(self) -> Message5:
# Evaluate the Lagrange basis polynomial L0 at zeta
# Evaluate the vanishing polynomial Z_H(X) = X^n - 1 at zeta
# Move T1, T2, T3 into the coset extended Lagrange basis
# Move pk.QL, pk.QR, pk.QM, pk.QO, pk.QC into the coset extended Lagrange basis
# Move Z into the coset extended Lagrange basis
# Move pk.S3 into the coset extended Lagrange basis
# Compute the "linearization polynomial" R. This is a clever way to avoid
# needing to provide evaluations of _all_ the polynomials that we are
# checking an equation betweeen: instead, we can "skip" the first
# multiplicand in each term. The idea is that we construct a
# polynomial which is constructed to equal 0 at Z only if the equations
# that we are checking are correct, and which the verifier can reconstruct
# the KZG commitment to, and we provide proofs to verify that it actually
# equals 0 at Z
#
# In order for the verifier to be able to reconstruct the commitment to R,
# it has to be "linear" in the proof items, hence why we can only use each
# proof item once; any further multiplicands in each term need to be
# replaced with their evaluations at Z, which do still need to be provided
# Commit to R
# Sanity-check R
assert R.barycentric_eval(zeta) == 0
print("Generated linearization polynomial R")
# Generate proof that W(z) = 0 and that the provided evaluations of
# A, B, C, S1, S2 are correct
# Move A, B, C into the coset extended Lagrange basis
# Move pk.S1, pk.S2 into the coset extended Lagrange basis
# In the COSET EXTENDED LAGRANGE BASIS,
# Construct W_Z = (
# R
# + v * (A - a_eval)
# + v**2 * (B - b_eval)
# + v**3 * (C - c_eval)
# + v**4 * (S1 - s1_eval)
# + v**5 * (S2 - s2_eval)
# ) / (X - zeta)
# Check that degree of W_z is not greater than n
assert W_z_coeffs[group_order:] == [0] * (group_order * 3)
# Compute W_z_1 commitment to W_z
# Generate proof that the provided evaluation of Z(z*w) is correct. This
# awkwardly different term is needed because the permutation accumulator
# polynomial Z is the one place where we have to check between adjacent
# coordinates, and not just within one coordinate.
# In other words: Compute W_zw = (Z - z_shifted_eval) / (X - zeta * ω)
# Check that degree of W_z is not greater than n
assert W_zw_coeffs[group_order:] == [0] * (group_order * 3)
# Compute W_z_1 commitment to W_z
print("Generated final quotient witness polynomials")
# Return W_z_1, W_zw_1
return Message5(W_z_1, W_zw_1)
def fft_expand(self, x: Polynomial):
return x.to_coset_extended_lagrange(self.fft_cofactor)
def expanded_evals_to_coeffs(self, x: Polynomial):
return x.coset_extended_lagrange_to_coeffs(self.fft_cofactor)
def rlc(self, term_1, term_2):
return term_1 + term_2 * self.beta + self.gamma