Skip to content

Latest commit

 

History

History
164 lines (126 loc) · 21.5 KB

README_EN.md

File metadata and controls

164 lines (126 loc) · 21.5 KB

(简体中文|English)

What is recommendation system ?

  • Recommendation system helps users quickly find useful and interesting information from massive data.

  • Recommendation system is also a silver bullet to attract users, retain users, increase users' stickness or conversionn.

    Who can better use the recommendation system, who can gain more advantage in the fierce competition.

    At the same time, there are many problems in the process of using the recommendation system, such as: huge data, complex model, inefficient distributed training, and so on.

What is PaddleRec ?

Getting Started

Environmental requirements

  • Python 2.7/ 3.5 / 3.6 / 3.7 , Python 3.7 is recommended ,Python in example represents Python 3.7 by default

  • PaddlePaddle >=2.0

  • operating system: Windows/Mac/Linux

    Linux is recommended for distributed training

Installation

  • Install by pip in GPU environment
    python -m pip install paddlepaddle-gpu==2.0.0 
  • Install by pip in CPU environment
    python -m pip install paddlepaddle # gcc8 

For download more versions, please refer to the installation tutorial Installation Manuals

Download PaddleRec

git clone https://github.com/PaddlePaddle/PaddleRec/
cd PaddleRec

Quick Start

We take the dnn algorithm as an example to get start of PaddleRec, and we take 100 pieces of training data from Criteo Dataset:

python -u tools/trainer.py -m models/rank/dnn/config.yaml # Training with dygraph model
python -u tools/static_trainer.py -m models/rank/dnn/config.yaml #  Training with static model

Documentation

Background

Introductory tutorial

Advanced tutorial

FAQ

Community


Release License Slack

Version history

  • 2021.01.29 - PaddleRec v2.0.0
  • 2020.10.12 - PaddleRec v1.8.5
  • 2020.06.17 - PaddleRec v0.1.0
  • 2020.06.03 - PaddleRec v0.0.2
  • 2020.05.14 - PaddleRec v0.0.1

License

Apache 2.0 license

Contact us

For any feedback, please propose a GitHub Issue

You can also communicate with us in the following ways:

  • QQ group id:861717190
  • Wechat account:paddlerec2020

     

PaddleRec QQ Group               PaddleRec Wechat account