Skip to content

Latest commit

 

History

History
67 lines (52 loc) · 2.02 KB

File metadata and controls

67 lines (52 loc) · 2.02 KB

Summary of 5_Default_Xgboost

Extreme Gradient Boosting (Xgboost)

  • objective: binary:logistic
  • eval_metric: logloss
  • eta: 0.1
  • max_depth: 6
  • min_child_weight: 1
  • subsample: 1.0
  • colsample_bytree: 1.0
  • explain_level: 2

Validation

  • validation_type: split
  • train_ratio: 0.75
  • shuffle: True
  • stratify: True

Optimized metric

logloss

Training time

5.2 seconds

Metric details

score threshold
logloss 0.273109 nan
auc 0.931203 nan
f1 0.738846 0.382176
accuracy 0.877611 0.473314
precision 0.983229 0.858185
recall 1 9.98914e-05
mcc 0.655066 0.418355

Confusion matrix (at threshold=0.382176)

Predicted as negative Predicted as positive
Labeled as negative 4491 453
Labeled as positive 384 1184

Learning curves

Learning curves

Permutation-based Importance

Permutation-based Importance

SHAP Importance

SHAP Importance

SHAP Dependence plots

Dependence (Fold #1)

SHAP Dependence from fold 1

SHAP Decision plots

Top-10 Worst decisions for class 0 (Fold #1)

SHAP worst decisions class 0 from fold 1

Top-10 Best decisions for class 0 (Fold #1)

SHAP best decisions class 0 from fold 1

Top-10 Worst decisions for class 1 (Fold #1)

SHAP worst decisions class 1 from fold 1

Top-10 Best decisions for class 1 (Fold #1)

SHAP best decisions class 1 from fold 1