-
Notifications
You must be signed in to change notification settings - Fork 0
/
find_lane_advanced.py
472 lines (356 loc) · 16.7 KB
/
find_lane_advanced.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#!/usr/bin/env python
from pathlib import Path
import pickle
import functools
import numpy as np
import cv2
import matplotlib.pyplot as plt
import skimage.io
from moviepy.editor import VideoFileClip
import detect_edge
import mlhelper.visualize
def calibrate_camera(img_paths):
objp = np.zeros((6*9, 3), np.float32)
objp[:,:2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2)
objpoints = []
imgpoints = []
for path in img_paths:
img = cv2.imread(str(path))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, (9, 6), None)
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
img = cv2.drawChessboardCorners(img, (9, 6), corners, ret)
cv2.imshow('Calibration images', img)
cv2.waitKey(500)
cv2.destroyAllWindows()
img_size = (img.shape[0], img.shape[1])
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size, None, None)
cam_calib_parameters = {}
cam_calib_parameters['mtx'] = mtx
cam_calib_parameters['dist'] = dist
pickle.dump(cam_calib_parameters, open('./cam_calib_parameters.p', 'wb'))
return cam_calib_parameters
def save_undist_imgs(img_paths, cam_calib_parameters):
mtx = cam_calib_parameters['mtx']
dist = cam_calib_parameters['dist']
for path in img_paths:
img = cv2.imread(str(path))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
undist = cv2.undistort(img, mtx, dist, None, mtx)
cv2.imwrite('./output_images/camera_cal_undist/' + path.stem + '_undisttorted.jpg', undist)
fig = mlhelper.visualize.combine_in_one_img(
[img, undist],
['Original', 'Undistorted'],
[None, None],
'12')
filename = './figures/undistorted/' + path.stem + '_undistorted.jpg'
fig.savefig(filename, dpi=300, transparent=True, bbox_inches='tight', pad_inches=0)
def generate_binary(img):
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
s_channel = hls[:,:,2]
sobelx_binary = detect_edge.abs_sobel_thresh(gray, orient='x', thresh=(20, 100))
s_sobelx_binary = detect_edge.abs_sobel_thresh(s_channel, orient='x', thresh=(20, 100))
combo_binary = np.zeros_like(s_channel)
combo_binary[(sobelx_binary == 1) | (s_sobelx_binary == 1)] = 1
return combo_binary
def save_binary_imgs(img_paths):
for path in img_paths:
img = skimage.io.imread(str(path))
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
s_channel = hls[:,:,2]
sobelx_binary = detect_edge.abs_sobel_thresh(gray, orient='x', thresh=(20, 100))
s_sobelx_binary = detect_edge.abs_sobel_thresh(s_channel, orient='x', thresh=(20, 100))
combo_binary = np.zeros_like(s_channel)
combo_binary[(sobelx_binary == 1) | (s_sobelx_binary == 1)] = 1
font = {'family': 'IPAexGothic',
'color': 'black',
'weight': 'normal',
'size': 10,
}
plt.subplot(221)
plt.imshow(img)
plt.title('Original', fontdict=font)
plt.subplot(222)
plt.imshow(sobelx_binary, cmap='gray')
plt.title('X-gradient gray', fontdict=font)
plt.subplot(223)
plt.imshow(s_sobelx_binary, cmap='gray')
plt.title('X-gradient hls s channel', fontdict=font)
plt.subplot(224)
plt.imshow(combo_binary, cmap='gray')
plt.title('Combined', fontdict=font)
filename = './binary_images/' + path.stem + '_binarized.jpg'
plt.savefig(fname=filename, dpi=300, transparent=True, bbox_inches='tight', pad_inches=0)
def get_transformation_matrix(img):
width, height = img.shape[1], img.shape[0]
src = np.float32(
[[(width / 2) - 55, height / 2 + 100],
[((width / 6) - 10), height],
[(width * 5 / 6) + 60, height],
[(width / 2 + 55), height / 2 + 100]])
dst = np.float32(
[[(width / 4), 0],
[(width / 4), height],
[(width * 3 / 4), height],
[(width * 3 / 4), 0]])
M = cv2.getPerspectiveTransform(src, dst)
warped = cv2.warpPerspective(img, M, (width, height))
font = {'family': 'IPAexGothic',
'color': 'black',
'weight': 'normal',
'size': 10,
}
plt.subplot(121)
plt.imshow(img)
plt.title('Original', fontdict=font)
plt.subplot(122)
plt.imshow(warped)
plt.title('Warped', fontdict=font)
plt.show()
pickle.dump(M, open('./M.p', 'wb'))
return M
def save_warped_imgs(img_paths, M, cmap=None):
font = {'family': 'IPAexGothic',
'color': 'black',
'weight': 'normal',
'size': 10,
}
for path in img_paths:
img = cv2.imread(str(path))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
width = img.shape[1]
height = img.shape[0]
warped = cv2.warpPerspective(img, M, (width, height))
plt.subplot(121)
plt.imshow(img)
plt.title('Original', fontdict=font)
plt.subplot(122)
plt.imshow(warped)
plt.title('Warped', fontdict=font)
filename = './warped_images/' + path.stem + '_warped.jpg'
plt.savefig(fname=filename, dpi=300, transparent=True, bbox_inches='tight', pad_inches=0)
def window(img, n_windows=9, margin=100, minpix=50, f_img=None):
width, height = img.shape[1], img.shape[0]
if f_img == True:
out_img = np.dstack((img, img, img))*255
histogram = np.sum(img[height//2:,:], axis=0)
midpoint = np.int(width/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
window_height = np.int(height/n_windows)
nonzero = img.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
leftx_current = leftx_base
rightx_current = rightx_base
left_lane_inds = []
right_lane_inds = []
for window in range(n_windows):
win_y_low = height - (window+1)*window_height
win_y_high = height - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
if f_img == True:
cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),
(0,255,0), 2)
cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),
(0,255,0), 2)
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
ym_per_pix = 30/720 # meters per pixel in y dimension
xm_per_pix = 3.7/700 # meters per pixel in x dimension
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
left_fit_real = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2)
right_fit_real = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2)
if f_img == True:
ploty = np.linspace(0, height-1, height)
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
fig = plt.figure()
ax = fig.add_subplot(111)
ax.imshow(out_img)
ax.plot(left_fitx, ploty, color='yellow')
ax.plot(right_fitx, ploty, color='yellow')
return(left_fit, right_fit, left_fit_real, right_fit_real, fig)
return (left_fit, right_fit, left_fit_real, right_fit_real)
def save_window_imgs(img_paths, M, n_windows=9, margin=100, minpix=50):
font = {'family': 'IPAexGothic',
'color': 'black',
'weight': 'normal',
'size': 10,
}
for path in img_paths:
img = cv2.imread(str(path))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
width, height = img.shape[1], img.shape[0]
binary = generate_binary(img)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.imshow(binary, cmap='gray')
filename = './output_images/binary/' + path.stem + '_binarized.jpg'
plt.savefig(fname=filename, dpi=300, transparent=True, bbox_inches='tight', pad_inches=0)
plt.close(fig)
warped = cv2.warpPerspective(binary, M, (width, height))
fig = plt.figure()
ax = fig.add_subplot(111)
ax.imshow(warped, cmap='gray')
filename = './output_images/warped/' + path.stem + '_warped.jpg'
plt.savefig(fname=filename, dpi=300, transparent=True, bbox_inches='tight', pad_inches=0)
plt.close(fig)
left_fit, right_fit, left_fit_real, right_fit_real, fig = window(warped, f_img=True)
filename = './output_images/window/' + path.stem + '_window.jpg'
plt.savefig(fname=filename, dpi=300, transparent=True, bbox_inches='tight', pad_inches=0)
plt.close(fig)
def margin_fit(img, left_fit, right_fit, margin=100):
nonzero = img.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy +
left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) +
left_fit[1]*nonzeroy + left_fit[2] + margin)))
right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy +
right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) +
right_fit[1]*nonzeroy + right_fit[2] + margin)))
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
ym_per_pix = 30/720 # meters per pixel in y dimension
xm_per_pix = 3.7/700 # meters per pixel in x dimension
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
left_fit_real = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2)
right_fit_real = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2)
return (left_fit, right_fit, left_fit_real, right_fit_real)
def measure_the_curvature(height, fit_real):
ym_per_pix = 30/720 # meters per pixel in y dimension
y_eval = height - 1
curverad = ((1 + (2*fit_real[0]*y_eval*ym_per_pix + fit_real[1])**2)**1.5) / np.absolute(2*fit_real[0])
return curverad
def measure_offset_from_center(width, height, left_fit_real, right_fit_real):
xm_per_pix = 3.7/700
ym_per_pix = 30/720 # meters per pixel in y dimension
centerx = (width / 2) * xm_per_pix
y_eval = height - 1
leftx = left_fit_real[0]*(y_eval*ym_per_pix)**2 + left_fit_real[1]*y_eval*ym_per_pix + left_fit_real[2]
rightx = right_fit_real[0]*(y_eval*ym_per_pix)**2 + right_fit_real[1]*y_eval*ym_per_pix + right_fit_real[2]
return ((leftx + rightx) / 2) - centerx
def draw_road_area(img, warped, M, left_fit, right_fit):
ploty = np.linspace(0, warped.shape[0]-1, warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
# Create an image to draw the lines on
warp_zero = np.zeros_like(warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
Minv = np.linalg.inv(M)
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(color_warp, Minv, (img.shape[1], img.shape[0]))
# Combine the result with the original image
result = cv2.addWeighted(img, 1, newwarp, 0.3, 0)
return result
class Line():
def __init__(self):
# was the line detected in the last iteration?
self.detected = False
# x values of the last n fits of the line
self.recent_xfitted = []
#average x values of the fitted line over the last n iterations
self.bestx = None
#polynomial coefficients averaged over the last n iterations
self.best_fit = None
#polynomial coefficients for the most recent fit
self.current_fit = [np.array([False])]
#radius of curvature of the line in some units
self.radius_of_curvature = None
#distance in meters of vehicle center from the line
self.line_base_pos = None
#difference in fit coefficients between last and new fits
self.diffs = np.array([0,0,0], dtype='float')
#x values for detected line pixels
self.allx = None
#y values for detected line pixels
self.ally = None
def pipeline(img, mtx, dist, M, left_line, right_line, n_windows=9, margin=100, minpix=50):
width, height = img.shape[1], img.shape[0]
undist = cv2.undistort(img, mtx, dist, None, mtx)
binary = generate_binary(undist)
warped = cv2.warpPerspective(binary, M, (width, height))
if left_line.detected == False or right_line.detected == False:
left_line.current_fit, right_line.current_fit, left_fit_real, right_fit_real = window(warped)
left_line.detected = True
right_line.detected = True
else:
left_line.current_fit, right_line.current_fit, left_fit_real, right_fit_real = margin_fit(warped, left_line.current_fit, right_line.current_fit)
left_curverad = measure_the_curvature(height, left_fit_real)
right_curverad = measure_the_curvature(height, right_fit_real)
offset = measure_offset_from_center(width, height, left_fit_real, right_fit_real)
output = draw_road_area(undist, warped, M, left_line.current_fit, right_line.current_fit)
font = cv2.FONT_HERSHEY_SIMPLEX
text_curvature = 'Radius of curvature: {:.1f}'.format(np.average([left_curverad, right_curverad]))
text_offset = 'Offset: {:.1f}'.format(offset)
output = cv2.putText(output, text_curvature, (10, 40), font, 1.4, (255, 255, 255), 2, cv2.LINE_AA)
output = cv2.putText(output, text_offset, (10, 100), font, 1.4, (255, 255, 255), 2, cv2.LINE_AA)
return output
def main():
# cam_calib_parameters = calibrate_camera(Path('./').glob('camera_cal/*.jpg'))
# with open('./cam_calib_parameters.p', 'rb') as f:
# cam_calib_parameters = pickle.load(f)
# save_undist_imgs(Path('./').glob('camera_cal/*.jpg'), cam_calib_parameters)
# save_undist_imgs(Path('./').glob('test_images/*.jpg'), cam_calib_parameters)
# save_binary_imgs(Path('./').glob('test_imgs/*.jpg'))
# img = cv2.imread('./test_images/test1.jpg')
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# M = get_transformation_matrix(img)
# save_warped_imgs(Path('./').glob('test_images/*.jpg'), M)
# with open('./M.p', 'rb') as f:
# M = pickle.load(f)
# save_window_imgs(Path('./').glob('test_images/*.jpg'), M)
output = 'project_video_lane_found.mp4'
clip = VideoFileClip('./project_video.mp4')
with open('./cam_calib_parameters.p', 'rb') as f:
cam_calib_parameters = pickle.load(f)
with open('./M.p', 'rb') as f:
M = pickle.load(f)
left_line = Line()
right_line = Line()
pipeline1 = functools.partial(pipeline,
mtx=cam_calib_parameters['mtx'],
dist=cam_calib_parameters['dist'],
M=M,
left_line=left_line,
right_line=right_line)
output_clip = clip.fl_image(pipeline1)
output_clip.write_videofile(output, audio=False)
if __name__ == '__main__':
main()