From bf431b43c729aae34335790db1d20cebe3d4d650 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Thu, 13 Apr 2023 19:31:26 -0700 Subject: [PATCH] src/sage/rings/factorint.pyx: Revert; this file is handled in #35502 --- src/sage/rings/factorint.pyx | 50 ++++++++++++++++++------------------ 1 file changed, 25 insertions(+), 25 deletions(-) diff --git a/src/sage/rings/factorint.pyx b/src/sage/rings/factorint.pyx index fb61d7e801a..77def414b13 100644 --- a/src/sage/rings/factorint.pyx +++ b/src/sage/rings/factorint.pyx @@ -53,23 +53,23 @@ cpdef aurifeuillian(n, m, F=None, bint check=True): EXAMPLES:: sage: from sage.rings.factorint import aurifeuillian - sage: aurifeuillian(2, 2) + sage: aurifeuillian(2,2) [5, 13] - sage: aurifeuillian(2, 2^5) + sage: aurifeuillian(2,2^5) [1985, 2113] - sage: aurifeuillian(5, 3) + sage: aurifeuillian(5,3) [1471, 2851] - sage: aurifeuillian(15, 1) + sage: aurifeuillian(15,1) [19231, 142111] - sage: aurifeuillian(12, 3) + sage: aurifeuillian(12,3) Traceback (most recent call last): ... ValueError: n has to be square-free - sage: aurifeuillian(1, 2) + sage: aurifeuillian(1,2) Traceback (most recent call last): ... ValueError: n has to be greater than 1 - sage: aurifeuillian(2, 0) + sage: aurifeuillian(2,0) Traceback (most recent call last): ... ValueError: m has to be positive @@ -133,24 +133,24 @@ cpdef factor_aurifeuillian(n, check=True): EXAMPLES:: sage: from sage.rings.factorint import factor_aurifeuillian as fa - sage: fa(2^6 + 1) # optional - sage.libs.pari + sage: fa(2^6+1) [5, 13] - sage: fa(2^58 + 1) # optional - sage.libs.pari + sage: fa(2^58+1) [536838145, 536903681] - sage: fa(3^3 + 1) # optional - sage.libs.pari + sage: fa(3^3+1) [4, 1, 7] - sage: fa(5^5 - 1) # optional - sage.libs.pari + sage: fa(5^5-1) [4, 11, 71] - sage: prod(_) == 5^5 - 1 # optional - sage.libs.pari + sage: prod(_) == 5^5-1 True - sage: fa(2^4 + 1) # optional - sage.libs.pari + sage: fa(2^4+1) [17] - sage: fa((6^2*3)^3 + 1) # optional - sage.libs.pari + sage: fa((6^2*3)^3+1) [109, 91, 127] TESTS:: - sage: for n in [2,3,5,6,30,31,33]: # optional - sage.libs.pari + sage: for n in [2,3,5,6,30,31,33]: ....: for m in [8,96,109201283]: ....: s = -1 if n % 4 == 1 else 1 ....: y = (m^2*n)^n + s @@ -206,9 +206,9 @@ cpdef factor_aurifeuillian(n, check=True): def factor_cunningham(m, proof=None): r""" - Return factorization of ``self`` obtained using trial division + Return factorization of self obtained using trial division for all primes in the so called Cunningham table. This is - efficient if ``self`` has some factors of type `b^n+1` or `b^n-1`, + efficient if self has some factors of type `b^n+1` or `b^n-1`, with `b` in `\{2,3,5,6,7,10,11,12\}`. You need to install an optional package to use this method, @@ -226,7 +226,7 @@ def factor_cunningham(m, proof=None): sage: from sage.rings.factorint import factor_cunningham sage: factor_cunningham(2^257-1) # optional - cunningham_tables 535006138814359 * 1155685395246619182673033 * 374550598501810936581776630096313181393 - sage: factor_cunningham((3^101+1)*(2^60).next_prime(), proof=False) # optional - cunningham_tables + sage: factor_cunningham((3^101+1)*(2^60).next_prime(),proof=False) # optional - cunningham_tables 2^2 * 379963 * 1152921504606847009 * 1017291527198723292208309354658785077827527 """ @@ -249,12 +249,12 @@ def factor_cunningham(m, proof=None): cpdef factor_trial_division(m, long limit=LONG_MAX): r""" - Return partial factorization of ``self`` obtained using trial division - for all primes up to ``limit``, where ``limit`` must fit in a C ``signed long``. + Return partial factorization of self obtained using trial division + for all primes up to limit, where limit must fit in a C signed long. INPUT: - - ``limit`` -- integer (default: ``LONG_MAX``) that fits in a C ``signed long`` + - ``limit`` -- integer (default: ``LONG_MAX``) that fits in a C signed long EXAMPLES:: @@ -298,7 +298,7 @@ def factor_using_pari(n, int_=False, debug_level=0, proof=None): r""" Factor this integer using PARI. - This function returns a list of pairs, not a :class:`Factorization` + This function returns a list of pairs, not a ``Factorization`` object. The first element of each pair is the factor, of type ``Integer`` if ``int_`` is ``False`` or ``int`` otherwise, the second element is the positive exponent, of type ``int``. @@ -321,16 +321,16 @@ def factor_using_pari(n, int_=False, debug_level=0, proof=None): EXAMPLES:: - sage: factor(-2**72 + 3, algorithm='pari') # indirect doctest # optional - sage.libs.pari + sage: factor(-2**72 + 3, algorithm='pari') # indirect doctest -1 * 83 * 131 * 294971519 * 1472414939 Check that PARI's debug level is properly reset (:trac:`18792`):: - sage: alarm(0.5); factor(2^1000 - 1, verbose=5) # optional - sage.libs.pari + sage: alarm(0.5); factor(2^1000 - 1, verbose=5) Traceback (most recent call last): ... AlarmInterrupt - sage: pari.get_debug_level() # optional - sage.libs.pari + sage: pari.get_debug_level() 0 """ from sage.libs.pari.all import pari