-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpositive_imge_ayiklama.m
193 lines (146 loc) · 5.88 KB
/
positive_imge_ayiklama.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
clear all;
Base = '..\covid19_ECG\ECG Images of COVID-19 Patients (250)\type_1';
List = dir(fullfile(Base, '**', '*.jpg'));
Files = fullfile({List.folder}, {List.name});
load('coordinates.mat');
covid_statistical=[];
%iFile = 1
%figure, set(gcf,'visible','off');
for iFile = 1:numel(Files)
I = imread(Files{iFile});
%imshow(I)
%kýrpma
% [J,rect] = imcrop(I); %koordinatlarý bulmak icin
%[103.5 104.5 723 432] tüm ecg
I2 = imcrop(I,[103.5 104.5 723 432]);
% imshow(I2)
%%%%[J,rect] = imcrop(I2); %koordinatlarý bulmak icin
%I3 = imcrop(I2,[40.5 4.5 152 90]); % bir kanal
% imshow(I_image)
I_image= imcrop(I2,[42.5 0.5 112 112]);
aVR_image= imcrop(I2,[237.5 0.5 112 112]);
V1_image=imcrop(I2,[418.5 0.5 112 112]);
V4_image= imcrop(I2,[579.5 0.5 112 112]);
II_image= imcrop(I2,[42.5 112.5 112 112]);
aVL_image= imcrop(I2,[237.5 112.5 112 112]);
V2_image=imcrop(I2,[418.5 112.5 112 112]);
V5_image= imcrop(I2,[579.5 112.5 112 112]);
III_image= imcrop(I2,[42.5 224.5 112 112]);
aVF_image= imcrop(I2,[237.5 224.5 112 112]);
V3_image=imcrop(I2,[418.5 224.5 112 112]);
V6_image= imcrop(I2,[579.5 224.5 112 112]);
% -li sinyal oluþturma
I_image_neg=I_image(end:-1:1,:,:); %figure, imshow(I_image_neg)
aVR_image_neg=aVR_image(end:-1:1,:,:);
II_image_neg=II_image(end:-1:1,:,:);
aVL_image_neg=aVL_image(end:-1:1,:,:);
III_image_neg=III_image(end:-1:1,:,:);
aVF_image_neg=aVF_image(end:-1:1,:,:);
all_cropped_image=cat(4, I_image, aVL_image, III_image_neg, aVF_image_neg, ...
II_image_neg, aVR_image, I_image_neg, aVL_image_neg, III_image, aVF_image,...
II_image, aVR_image_neg, V1_image, V2_image, V3_image, V4_image, V5_image, V6_image );
%size(all_cropped_image)
% figure, imshow(all_cropped_image(:,:,:,5));
% coordinate_labels=["I", "aVL" , "III(-)" ,"aVF(-)" ,"II(-)" ,"aVR", "I(-)" , "aVL(-)", ...
%"III", "aVF", "II", "aVR(-)", "V1", "V2", "V3", "V4", "V5", "V6"];
%adjust
for i=1:18
K = imadjust(all_cropped_image(:,:,:,i),[0.1 0.7],[]);
% figure
% imshow(K)
% arkaplan kaldýrma
binaryImage = K(:, :, 2) < 250; % Or whatever threshold works.
binaryImage = bwareafilt(binaryImage, 1); % Extract only the largest blob.
% figure, imshow(1-binaryImage)
all_cropped_image_binary(:,:,i)=(binaryImage);
%figure, imshow (all_cropped_image_binary(:,:,5))
switch (i)
case 1
channel='\I\';
case 11
channel='\II\';
case 9
channel='\III\';
case 6
channel='\aVR\';
case 2
channel='\avL\';
case 10
channel='\avF\';
case 13
channel='\V1\';
case 14
channel='\V2\';
case 15
channel='\V3\';
case 16
channel='\V4\';
case 17
channel='\V5\';
case 18
channel='\V6\';
case 7
channel='\I(-)\';
case 5
channel='\II(-)\';
case 3
channel='\III(-)\';
case 12
channel='\aVR(-)\';
case 8
channel='\avL(-)\';
case 4
channel='\avF(-)\';
end
% coordinate_labels=["I", "aVL" , "III(-)" ,"aVF(-)" ,"II(-)" ,"aVR", "I(-)" , "aVL(-)", ...
%"III", "aVF", "II", "aVR(-)", "V1", "V2", "V3", "V4", "V5", "V6"];
%%save ECG images
kayit_yeri=strcat( '..\covid19_ECG\preprocessed_dataset\covid_19'...
,channel);
kayit_yeri=strcat(kayit_yeri,num2str(iFile));
kayit_yeri=strcat(kayit_yeri,'.png');
% imshow (1-all_cropped_image_binary(:,:,i))
% export_fig( kayit_yeri ,'-transparent', '-r300')
%-m2.5
end % 12 channel
% %comatrix
% comat=[];
% for k=1:18
% comat= [comat graycomatrix(logical(all_cropped_image_binary(:,:,k)))];
%
% end
%asýl feature cikarma burasi, eskiden matrix alýyorduk þimdi burada herþeyi
%düzgünce hesaplýyoruz
comat_energy=[];
comat_correlation=[];
comat_contrast=[];
comat_homogeneity=[];
for k=1:18
glcms=graycomatrix(logical(all_cropped_image_binary(:,:,k)));
stats = graycoprops(glcms);% Calculate properties of gray-level co-occurrence matrix
comat_energy= [comat_energy stats.Energy];
comat_correlation= [comat_correlation stats.Correlation];
comat_contrast= [comat_contrast stats.Contrast];
comat_homogeneity= [comat_homogeneity stats.Homogeneity];
end %feature exraction
%statistical difference
covid_statistical= [covid_statistical; comat_energy' comat_correlation' comat_contrast' comat_homogeneity'];
% statistical_label= ["Energy","Correlation","Contrast","Homogeneity"] ;
%loksayona göre haritalama
% x_coordinates = [2.5; 1.5; 3; 2; 1; 2; 3; 5; 6; 7; 6; 5; 6.5; 5.5];
% y_coordinates = [7; 5.7; 5.8; 5; 4; 2; 1; 1; 2; 4; 5; 5.8; 6; 7];
xi=linspace(min(x_coordinates),max(x_coordinates),100);
yi=linspace(min(y_coordinates),max(y_coordinates),100);
[XI YI]=meshgrid(xi,yi);
ZI = griddata(x_coordinates,y_coordinates,comat_energy(1,1:end)',XI,YI,'natural');
% figure, set(gcf,'visible','off');
% contourf(XI,YI,ZI,40);
%colormap(jet);
%axis off
%save features map
kayit_yeri=strcat( '..\covid19_ECG\feature_maps\covid_19\'...
,num2str(iFile));
kayit_yeri=strcat(kayit_yeri,'.png');
% export_fig( kayit_yeri ,'-transparent', '-r300')
%-m2.5
end% dosya